mm: bootmem: fix checking the bitmap when finally freeing bootmem
[deliverable/linux.git] / mm / bootmem.c
1 /*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/export.h>
16 #include <linux/kmemleak.h>
17 #include <linux/range.h>
18 #include <linux/memblock.h>
19
20 #include <asm/bug.h>
21 #include <asm/io.h>
22 #include <asm/processor.h>
23
24 #include "internal.h"
25
26 #ifndef CONFIG_NEED_MULTIPLE_NODES
27 struct pglist_data __refdata contig_page_data = {
28 .bdata = &bootmem_node_data[0]
29 };
30 EXPORT_SYMBOL(contig_page_data);
31 #endif
32
33 unsigned long max_low_pfn;
34 unsigned long min_low_pfn;
35 unsigned long max_pfn;
36
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41 static int bootmem_debug;
42
43 static int __init bootmem_debug_setup(char *buf)
44 {
45 bootmem_debug = 1;
46 return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49
50 #define bdebug(fmt, args...) ({ \
51 if (unlikely(bootmem_debug)) \
52 printk(KERN_INFO \
53 "bootmem::%s " fmt, \
54 __func__, ## args); \
55 })
56
57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59 unsigned long bytes = DIV_ROUND_UP(pages, 8);
60
61 return ALIGN(bytes, sizeof(long));
62 }
63
64 /**
65 * bootmem_bootmap_pages - calculate bitmap size in pages
66 * @pages: number of pages the bitmap has to represent
67 */
68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70 unsigned long bytes = bootmap_bytes(pages);
71
72 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74
75 /*
76 * link bdata in order
77 */
78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80 struct list_head *iter;
81
82 list_for_each(iter, &bdata_list) {
83 bootmem_data_t *ent;
84
85 ent = list_entry(iter, bootmem_data_t, list);
86 if (bdata->node_min_pfn < ent->node_min_pfn)
87 break;
88 }
89 list_add_tail(&bdata->list, iter);
90 }
91
92 /*
93 * Called once to set up the allocator itself.
94 */
95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96 unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98 unsigned long mapsize;
99
100 mminit_validate_memmodel_limits(&start, &end);
101 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102 bdata->node_min_pfn = start;
103 bdata->node_low_pfn = end;
104 link_bootmem(bdata);
105
106 /*
107 * Initially all pages are reserved - setup_arch() has to
108 * register free RAM areas explicitly.
109 */
110 mapsize = bootmap_bytes(end - start);
111 memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114 bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116 return mapsize;
117 }
118
119 /**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129 unsigned long startpfn, unsigned long endpfn)
130 {
131 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133
134 /**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143 max_low_pfn = pages;
144 min_low_pfn = start;
145 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147
148 /*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system. Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157 void __init free_bootmem_late(unsigned long addr, unsigned long size)
158 {
159 unsigned long cursor, end;
160
161 kmemleak_free_part(__va(addr), size);
162
163 cursor = PFN_UP(addr);
164 end = PFN_DOWN(addr + size);
165
166 for (; cursor < end; cursor++) {
167 __free_pages_bootmem(pfn_to_page(cursor), 0);
168 totalram_pages++;
169 }
170 }
171
172 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
173 {
174 struct page *page;
175 unsigned long start, end, pages, count = 0;
176
177 if (!bdata->node_bootmem_map)
178 return 0;
179
180 start = bdata->node_min_pfn;
181 end = bdata->node_low_pfn;
182
183 bdebug("nid=%td start=%lx end=%lx\n",
184 bdata - bootmem_node_data, start, end);
185
186 while (start < end) {
187 unsigned long *map, idx, vec;
188
189 map = bdata->node_bootmem_map;
190 idx = start - bdata->node_min_pfn;
191 vec = ~map[idx / BITS_PER_LONG];
192 /*
193 * If we have a properly aligned and fully unreserved
194 * BITS_PER_LONG block of pages in front of us, free
195 * it in one go.
196 */
197 if (IS_ALIGNED(start, BITS_PER_LONG) && vec == ~0UL) {
198 int order = ilog2(BITS_PER_LONG);
199
200 __free_pages_bootmem(pfn_to_page(start), order);
201 count += BITS_PER_LONG;
202 start += BITS_PER_LONG;
203 } else {
204 unsigned long off = 0;
205
206 vec >>= start & (BITS_PER_LONG - 1);
207 while (vec && off < BITS_PER_LONG) {
208 if (vec & 1) {
209 page = pfn_to_page(start + off);
210 __free_pages_bootmem(page, 0);
211 count++;
212 }
213 vec >>= 1;
214 off++;
215 }
216 start = ALIGN(start + 1, BITS_PER_LONG);
217 }
218 }
219
220 page = virt_to_page(bdata->node_bootmem_map);
221 pages = bdata->node_low_pfn - bdata->node_min_pfn;
222 pages = bootmem_bootmap_pages(pages);
223 count += pages;
224 while (pages--)
225 __free_pages_bootmem(page++, 0);
226
227 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
228
229 return count;
230 }
231
232 /**
233 * free_all_bootmem_node - release a node's free pages to the buddy allocator
234 * @pgdat: node to be released
235 *
236 * Returns the number of pages actually released.
237 */
238 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
239 {
240 register_page_bootmem_info_node(pgdat);
241 return free_all_bootmem_core(pgdat->bdata);
242 }
243
244 /**
245 * free_all_bootmem - release free pages to the buddy allocator
246 *
247 * Returns the number of pages actually released.
248 */
249 unsigned long __init free_all_bootmem(void)
250 {
251 unsigned long total_pages = 0;
252 bootmem_data_t *bdata;
253
254 list_for_each_entry(bdata, &bdata_list, list)
255 total_pages += free_all_bootmem_core(bdata);
256
257 return total_pages;
258 }
259
260 static void __init __free(bootmem_data_t *bdata,
261 unsigned long sidx, unsigned long eidx)
262 {
263 unsigned long idx;
264
265 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
266 sidx + bdata->node_min_pfn,
267 eidx + bdata->node_min_pfn);
268
269 if (bdata->hint_idx > sidx)
270 bdata->hint_idx = sidx;
271
272 for (idx = sidx; idx < eidx; idx++)
273 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
274 BUG();
275 }
276
277 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
278 unsigned long eidx, int flags)
279 {
280 unsigned long idx;
281 int exclusive = flags & BOOTMEM_EXCLUSIVE;
282
283 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
284 bdata - bootmem_node_data,
285 sidx + bdata->node_min_pfn,
286 eidx + bdata->node_min_pfn,
287 flags);
288
289 for (idx = sidx; idx < eidx; idx++)
290 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
291 if (exclusive) {
292 __free(bdata, sidx, idx);
293 return -EBUSY;
294 }
295 bdebug("silent double reserve of PFN %lx\n",
296 idx + bdata->node_min_pfn);
297 }
298 return 0;
299 }
300
301 static int __init mark_bootmem_node(bootmem_data_t *bdata,
302 unsigned long start, unsigned long end,
303 int reserve, int flags)
304 {
305 unsigned long sidx, eidx;
306
307 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
308 bdata - bootmem_node_data, start, end, reserve, flags);
309
310 BUG_ON(start < bdata->node_min_pfn);
311 BUG_ON(end > bdata->node_low_pfn);
312
313 sidx = start - bdata->node_min_pfn;
314 eidx = end - bdata->node_min_pfn;
315
316 if (reserve)
317 return __reserve(bdata, sidx, eidx, flags);
318 else
319 __free(bdata, sidx, eidx);
320 return 0;
321 }
322
323 static int __init mark_bootmem(unsigned long start, unsigned long end,
324 int reserve, int flags)
325 {
326 unsigned long pos;
327 bootmem_data_t *bdata;
328
329 pos = start;
330 list_for_each_entry(bdata, &bdata_list, list) {
331 int err;
332 unsigned long max;
333
334 if (pos < bdata->node_min_pfn ||
335 pos >= bdata->node_low_pfn) {
336 BUG_ON(pos != start);
337 continue;
338 }
339
340 max = min(bdata->node_low_pfn, end);
341
342 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
343 if (reserve && err) {
344 mark_bootmem(start, pos, 0, 0);
345 return err;
346 }
347
348 if (max == end)
349 return 0;
350 pos = bdata->node_low_pfn;
351 }
352 BUG();
353 }
354
355 /**
356 * free_bootmem_node - mark a page range as usable
357 * @pgdat: node the range resides on
358 * @physaddr: starting address of the range
359 * @size: size of the range in bytes
360 *
361 * Partial pages will be considered reserved and left as they are.
362 *
363 * The range must reside completely on the specified node.
364 */
365 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
366 unsigned long size)
367 {
368 unsigned long start, end;
369
370 kmemleak_free_part(__va(physaddr), size);
371
372 start = PFN_UP(physaddr);
373 end = PFN_DOWN(physaddr + size);
374
375 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
376 }
377
378 /**
379 * free_bootmem - mark a page range as usable
380 * @addr: starting address of the range
381 * @size: size of the range in bytes
382 *
383 * Partial pages will be considered reserved and left as they are.
384 *
385 * The range must be contiguous but may span node boundaries.
386 */
387 void __init free_bootmem(unsigned long addr, unsigned long size)
388 {
389 unsigned long start, end;
390
391 kmemleak_free_part(__va(addr), size);
392
393 start = PFN_UP(addr);
394 end = PFN_DOWN(addr + size);
395
396 mark_bootmem(start, end, 0, 0);
397 }
398
399 /**
400 * reserve_bootmem_node - mark a page range as reserved
401 * @pgdat: node the range resides on
402 * @physaddr: starting address of the range
403 * @size: size of the range in bytes
404 * @flags: reservation flags (see linux/bootmem.h)
405 *
406 * Partial pages will be reserved.
407 *
408 * The range must reside completely on the specified node.
409 */
410 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
411 unsigned long size, int flags)
412 {
413 unsigned long start, end;
414
415 start = PFN_DOWN(physaddr);
416 end = PFN_UP(physaddr + size);
417
418 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
419 }
420
421 /**
422 * reserve_bootmem - mark a page range as usable
423 * @addr: starting address of the range
424 * @size: size of the range in bytes
425 * @flags: reservation flags (see linux/bootmem.h)
426 *
427 * Partial pages will be reserved.
428 *
429 * The range must be contiguous but may span node boundaries.
430 */
431 int __init reserve_bootmem(unsigned long addr, unsigned long size,
432 int flags)
433 {
434 unsigned long start, end;
435
436 start = PFN_DOWN(addr);
437 end = PFN_UP(addr + size);
438
439 return mark_bootmem(start, end, 1, flags);
440 }
441
442 int __weak __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
443 int flags)
444 {
445 return reserve_bootmem(phys, len, flags);
446 }
447
448 static unsigned long __init align_idx(struct bootmem_data *bdata,
449 unsigned long idx, unsigned long step)
450 {
451 unsigned long base = bdata->node_min_pfn;
452
453 /*
454 * Align the index with respect to the node start so that the
455 * combination of both satisfies the requested alignment.
456 */
457
458 return ALIGN(base + idx, step) - base;
459 }
460
461 static unsigned long __init align_off(struct bootmem_data *bdata,
462 unsigned long off, unsigned long align)
463 {
464 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
465
466 /* Same as align_idx for byte offsets */
467
468 return ALIGN(base + off, align) - base;
469 }
470
471 static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
472 unsigned long size, unsigned long align,
473 unsigned long goal, unsigned long limit)
474 {
475 unsigned long fallback = 0;
476 unsigned long min, max, start, sidx, midx, step;
477
478 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
479 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
480 align, goal, limit);
481
482 BUG_ON(!size);
483 BUG_ON(align & (align - 1));
484 BUG_ON(limit && goal + size > limit);
485
486 if (!bdata->node_bootmem_map)
487 return NULL;
488
489 min = bdata->node_min_pfn;
490 max = bdata->node_low_pfn;
491
492 goal >>= PAGE_SHIFT;
493 limit >>= PAGE_SHIFT;
494
495 if (limit && max > limit)
496 max = limit;
497 if (max <= min)
498 return NULL;
499
500 step = max(align >> PAGE_SHIFT, 1UL);
501
502 if (goal && min < goal && goal < max)
503 start = ALIGN(goal, step);
504 else
505 start = ALIGN(min, step);
506
507 sidx = start - bdata->node_min_pfn;
508 midx = max - bdata->node_min_pfn;
509
510 if (bdata->hint_idx > sidx) {
511 /*
512 * Handle the valid case of sidx being zero and still
513 * catch the fallback below.
514 */
515 fallback = sidx + 1;
516 sidx = align_idx(bdata, bdata->hint_idx, step);
517 }
518
519 while (1) {
520 int merge;
521 void *region;
522 unsigned long eidx, i, start_off, end_off;
523 find_block:
524 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
525 sidx = align_idx(bdata, sidx, step);
526 eidx = sidx + PFN_UP(size);
527
528 if (sidx >= midx || eidx > midx)
529 break;
530
531 for (i = sidx; i < eidx; i++)
532 if (test_bit(i, bdata->node_bootmem_map)) {
533 sidx = align_idx(bdata, i, step);
534 if (sidx == i)
535 sidx += step;
536 goto find_block;
537 }
538
539 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
540 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
541 start_off = align_off(bdata, bdata->last_end_off, align);
542 else
543 start_off = PFN_PHYS(sidx);
544
545 merge = PFN_DOWN(start_off) < sidx;
546 end_off = start_off + size;
547
548 bdata->last_end_off = end_off;
549 bdata->hint_idx = PFN_UP(end_off);
550
551 /*
552 * Reserve the area now:
553 */
554 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
555 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
556 BUG();
557
558 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
559 start_off);
560 memset(region, 0, size);
561 /*
562 * The min_count is set to 0 so that bootmem allocated blocks
563 * are never reported as leaks.
564 */
565 kmemleak_alloc(region, size, 0, 0);
566 return region;
567 }
568
569 if (fallback) {
570 sidx = align_idx(bdata, fallback - 1, step);
571 fallback = 0;
572 goto find_block;
573 }
574
575 return NULL;
576 }
577
578 static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
579 unsigned long size, unsigned long align,
580 unsigned long goal, unsigned long limit)
581 {
582 if (WARN_ON_ONCE(slab_is_available()))
583 return kzalloc(size, GFP_NOWAIT);
584
585 #ifdef CONFIG_HAVE_ARCH_BOOTMEM
586 {
587 bootmem_data_t *p_bdata;
588
589 p_bdata = bootmem_arch_preferred_node(bdata, size, align,
590 goal, limit);
591 if (p_bdata)
592 return alloc_bootmem_core(p_bdata, size, align,
593 goal, limit);
594 }
595 #endif
596 return NULL;
597 }
598
599 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
600 unsigned long align,
601 unsigned long goal,
602 unsigned long limit)
603 {
604 bootmem_data_t *bdata;
605 void *region;
606
607 restart:
608 region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
609 if (region)
610 return region;
611
612 list_for_each_entry(bdata, &bdata_list, list) {
613 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
614 continue;
615 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
616 break;
617
618 region = alloc_bootmem_core(bdata, size, align, goal, limit);
619 if (region)
620 return region;
621 }
622
623 if (goal) {
624 goal = 0;
625 goto restart;
626 }
627
628 return NULL;
629 }
630
631 /**
632 * __alloc_bootmem_nopanic - allocate boot memory without panicking
633 * @size: size of the request in bytes
634 * @align: alignment of the region
635 * @goal: preferred starting address of the region
636 *
637 * The goal is dropped if it can not be satisfied and the allocation will
638 * fall back to memory below @goal.
639 *
640 * Allocation may happen on any node in the system.
641 *
642 * Returns NULL on failure.
643 */
644 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
645 unsigned long goal)
646 {
647 unsigned long limit = 0;
648
649 return ___alloc_bootmem_nopanic(size, align, goal, limit);
650 }
651
652 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
653 unsigned long goal, unsigned long limit)
654 {
655 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
656
657 if (mem)
658 return mem;
659 /*
660 * Whoops, we cannot satisfy the allocation request.
661 */
662 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
663 panic("Out of memory");
664 return NULL;
665 }
666
667 /**
668 * __alloc_bootmem - allocate boot memory
669 * @size: size of the request in bytes
670 * @align: alignment of the region
671 * @goal: preferred starting address of the region
672 *
673 * The goal is dropped if it can not be satisfied and the allocation will
674 * fall back to memory below @goal.
675 *
676 * Allocation may happen on any node in the system.
677 *
678 * The function panics if the request can not be satisfied.
679 */
680 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
681 unsigned long goal)
682 {
683 unsigned long limit = 0;
684
685 return ___alloc_bootmem(size, align, goal, limit);
686 }
687
688 static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
689 unsigned long size, unsigned long align,
690 unsigned long goal, unsigned long limit)
691 {
692 void *ptr;
693
694 ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
695 if (ptr)
696 return ptr;
697
698 ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
699 if (ptr)
700 return ptr;
701
702 return ___alloc_bootmem(size, align, goal, limit);
703 }
704
705 /**
706 * __alloc_bootmem_node - allocate boot memory from a specific node
707 * @pgdat: node to allocate from
708 * @size: size of the request in bytes
709 * @align: alignment of the region
710 * @goal: preferred starting address of the region
711 *
712 * The goal is dropped if it can not be satisfied and the allocation will
713 * fall back to memory below @goal.
714 *
715 * Allocation may fall back to any node in the system if the specified node
716 * can not hold the requested memory.
717 *
718 * The function panics if the request can not be satisfied.
719 */
720 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
721 unsigned long align, unsigned long goal)
722 {
723 if (WARN_ON_ONCE(slab_is_available()))
724 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
725
726 return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
727 }
728
729 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
730 unsigned long align, unsigned long goal)
731 {
732 #ifdef MAX_DMA32_PFN
733 unsigned long end_pfn;
734
735 if (WARN_ON_ONCE(slab_is_available()))
736 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
737
738 /* update goal according ...MAX_DMA32_PFN */
739 end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
740
741 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
742 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
743 void *ptr;
744 unsigned long new_goal;
745
746 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
747 ptr = alloc_bootmem_core(pgdat->bdata, size, align,
748 new_goal, 0);
749 if (ptr)
750 return ptr;
751 }
752 #endif
753
754 return __alloc_bootmem_node(pgdat, size, align, goal);
755
756 }
757
758 #ifdef CONFIG_SPARSEMEM
759 /**
760 * alloc_bootmem_section - allocate boot memory from a specific section
761 * @size: size of the request in bytes
762 * @section_nr: sparse map section to allocate from
763 *
764 * Return NULL on failure.
765 */
766 void * __init alloc_bootmem_section(unsigned long size,
767 unsigned long section_nr)
768 {
769 bootmem_data_t *bdata;
770 unsigned long pfn, goal;
771
772 pfn = section_nr_to_pfn(section_nr);
773 goal = pfn << PAGE_SHIFT;
774 bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
775
776 return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, 0);
777 }
778 #endif
779
780 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
781 unsigned long align, unsigned long goal)
782 {
783 void *ptr;
784
785 if (WARN_ON_ONCE(slab_is_available()))
786 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
787
788 ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
789 if (ptr)
790 return ptr;
791
792 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
793 if (ptr)
794 return ptr;
795
796 return __alloc_bootmem_nopanic(size, align, goal);
797 }
798
799 #ifndef ARCH_LOW_ADDRESS_LIMIT
800 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
801 #endif
802
803 /**
804 * __alloc_bootmem_low - allocate low boot memory
805 * @size: size of the request in bytes
806 * @align: alignment of the region
807 * @goal: preferred starting address of the region
808 *
809 * The goal is dropped if it can not be satisfied and the allocation will
810 * fall back to memory below @goal.
811 *
812 * Allocation may happen on any node in the system.
813 *
814 * The function panics if the request can not be satisfied.
815 */
816 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
817 unsigned long goal)
818 {
819 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
820 }
821
822 /**
823 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
824 * @pgdat: node to allocate from
825 * @size: size of the request in bytes
826 * @align: alignment of the region
827 * @goal: preferred starting address of the region
828 *
829 * The goal is dropped if it can not be satisfied and the allocation will
830 * fall back to memory below @goal.
831 *
832 * Allocation may fall back to any node in the system if the specified node
833 * can not hold the requested memory.
834 *
835 * The function panics if the request can not be satisfied.
836 */
837 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
838 unsigned long align, unsigned long goal)
839 {
840 if (WARN_ON_ONCE(slab_is_available()))
841 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
842
843 return ___alloc_bootmem_node(pgdat->bdata, size, align,
844 goal, ARCH_LOW_ADDRESS_LIMIT);
845 }
This page took 0.046926 seconds and 5 git commands to generate.