Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
74 {
75 if (cc->ignore_skip_hint)
76 return true;
77
78 return !get_pageblock_skip(page);
79 }
80
81 /*
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
85 */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
91
92 zone->compact_cached_migrate_pfn = start_pfn;
93 zone->compact_cached_free_pfn = end_pfn;
94 zone->compact_blockskip_flush = false;
95
96 /* Walk the zone and mark every pageblock as suitable for isolation */
97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 struct page *page;
99
100 cond_resched();
101
102 if (!pfn_valid(pfn))
103 continue;
104
105 page = pfn_to_page(pfn);
106 if (zone != page_zone(page))
107 continue;
108
109 clear_pageblock_skip(page);
110 }
111 }
112
113 void reset_isolation_suitable(pg_data_t *pgdat)
114 {
115 int zoneid;
116
117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 struct zone *zone = &pgdat->node_zones[zoneid];
119 if (!populated_zone(zone))
120 continue;
121
122 /* Only flush if a full compaction finished recently */
123 if (zone->compact_blockskip_flush)
124 __reset_isolation_suitable(zone);
125 }
126 }
127
128 /*
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
131 */
132 static void update_pageblock_skip(struct compact_control *cc,
133 struct page *page, unsigned long nr_isolated,
134 bool migrate_scanner)
135 {
136 struct zone *zone = cc->zone;
137 if (!page)
138 return;
139
140 if (!nr_isolated) {
141 unsigned long pfn = page_to_pfn(page);
142 set_pageblock_skip(page);
143
144 /* Update where compaction should restart */
145 if (migrate_scanner) {
146 if (!cc->finished_update_migrate &&
147 pfn > zone->compact_cached_migrate_pfn)
148 zone->compact_cached_migrate_pfn = pfn;
149 } else {
150 if (!cc->finished_update_free &&
151 pfn < zone->compact_cached_free_pfn)
152 zone->compact_cached_free_pfn = pfn;
153 }
154 }
155 }
156 #else
157 static inline bool isolation_suitable(struct compact_control *cc,
158 struct page *page)
159 {
160 return true;
161 }
162
163 static void update_pageblock_skip(struct compact_control *cc,
164 struct page *page, unsigned long nr_isolated,
165 bool migrate_scanner)
166 {
167 }
168 #endif /* CONFIG_COMPACTION */
169
170 static inline bool should_release_lock(spinlock_t *lock)
171 {
172 return need_resched() || spin_is_contended(lock);
173 }
174
175 /*
176 * Compaction requires the taking of some coarse locks that are potentially
177 * very heavily contended. Check if the process needs to be scheduled or
178 * if the lock is contended. For async compaction, back out in the event
179 * if contention is severe. For sync compaction, schedule.
180 *
181 * Returns true if the lock is held.
182 * Returns false if the lock is released and compaction should abort
183 */
184 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
185 bool locked, struct compact_control *cc)
186 {
187 if (should_release_lock(lock)) {
188 if (locked) {
189 spin_unlock_irqrestore(lock, *flags);
190 locked = false;
191 }
192
193 /* async aborts if taking too long or contended */
194 if (!cc->sync) {
195 cc->contended = true;
196 return false;
197 }
198
199 cond_resched();
200 }
201
202 if (!locked)
203 spin_lock_irqsave(lock, *flags);
204 return true;
205 }
206
207 static inline bool compact_trylock_irqsave(spinlock_t *lock,
208 unsigned long *flags, struct compact_control *cc)
209 {
210 return compact_checklock_irqsave(lock, flags, false, cc);
211 }
212
213 /* Returns true if the page is within a block suitable for migration to */
214 static bool suitable_migration_target(struct page *page)
215 {
216 int migratetype = get_pageblock_migratetype(page);
217
218 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
219 if (migratetype == MIGRATE_RESERVE)
220 return false;
221
222 if (is_migrate_isolate(migratetype))
223 return false;
224
225 /* If the page is a large free page, then allow migration */
226 if (PageBuddy(page) && page_order(page) >= pageblock_order)
227 return true;
228
229 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
230 if (migrate_async_suitable(migratetype))
231 return true;
232
233 /* Otherwise skip the block */
234 return false;
235 }
236
237 /*
238 * Isolate free pages onto a private freelist. If @strict is true, will abort
239 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
240 * (even though it may still end up isolating some pages).
241 */
242 static unsigned long isolate_freepages_block(struct compact_control *cc,
243 unsigned long blockpfn,
244 unsigned long end_pfn,
245 struct list_head *freelist,
246 bool strict)
247 {
248 int nr_scanned = 0, total_isolated = 0;
249 struct page *cursor, *valid_page = NULL;
250 unsigned long nr_strict_required = end_pfn - blockpfn;
251 unsigned long flags;
252 bool locked = false;
253
254 cursor = pfn_to_page(blockpfn);
255
256 /* Isolate free pages. */
257 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
258 int isolated, i;
259 struct page *page = cursor;
260
261 nr_scanned++;
262 if (!pfn_valid_within(blockpfn))
263 continue;
264 if (!valid_page)
265 valid_page = page;
266 if (!PageBuddy(page))
267 continue;
268
269 /*
270 * The zone lock must be held to isolate freepages.
271 * Unfortunately this is a very coarse lock and can be
272 * heavily contended if there are parallel allocations
273 * or parallel compactions. For async compaction do not
274 * spin on the lock and we acquire the lock as late as
275 * possible.
276 */
277 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
278 locked, cc);
279 if (!locked)
280 break;
281
282 /* Recheck this is a suitable migration target under lock */
283 if (!strict && !suitable_migration_target(page))
284 break;
285
286 /* Recheck this is a buddy page under lock */
287 if (!PageBuddy(page))
288 continue;
289
290 /* Found a free page, break it into order-0 pages */
291 isolated = split_free_page(page);
292 if (!isolated && strict)
293 break;
294 total_isolated += isolated;
295 for (i = 0; i < isolated; i++) {
296 list_add(&page->lru, freelist);
297 page++;
298 }
299
300 /* If a page was split, advance to the end of it */
301 if (isolated) {
302 blockpfn += isolated - 1;
303 cursor += isolated - 1;
304 }
305 }
306
307 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
308
309 /*
310 * If strict isolation is requested by CMA then check that all the
311 * pages requested were isolated. If there were any failures, 0 is
312 * returned and CMA will fail.
313 */
314 if (strict && nr_strict_required > total_isolated)
315 total_isolated = 0;
316
317 if (locked)
318 spin_unlock_irqrestore(&cc->zone->lock, flags);
319
320 /* Update the pageblock-skip if the whole pageblock was scanned */
321 if (blockpfn == end_pfn)
322 update_pageblock_skip(cc, valid_page, total_isolated, false);
323
324 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
325 if (total_isolated)
326 count_compact_events(COMPACTISOLATED, total_isolated);
327 return total_isolated;
328 }
329
330 /**
331 * isolate_freepages_range() - isolate free pages.
332 * @start_pfn: The first PFN to start isolating.
333 * @end_pfn: The one-past-last PFN.
334 *
335 * Non-free pages, invalid PFNs, or zone boundaries within the
336 * [start_pfn, end_pfn) range are considered errors, cause function to
337 * undo its actions and return zero.
338 *
339 * Otherwise, function returns one-past-the-last PFN of isolated page
340 * (which may be greater then end_pfn if end fell in a middle of
341 * a free page).
342 */
343 unsigned long
344 isolate_freepages_range(struct compact_control *cc,
345 unsigned long start_pfn, unsigned long end_pfn)
346 {
347 unsigned long isolated, pfn, block_end_pfn;
348 LIST_HEAD(freelist);
349
350 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
351 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
352 break;
353
354 /*
355 * On subsequent iterations ALIGN() is actually not needed,
356 * but we keep it that we not to complicate the code.
357 */
358 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
359 block_end_pfn = min(block_end_pfn, end_pfn);
360
361 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
362 &freelist, true);
363
364 /*
365 * In strict mode, isolate_freepages_block() returns 0 if
366 * there are any holes in the block (ie. invalid PFNs or
367 * non-free pages).
368 */
369 if (!isolated)
370 break;
371
372 /*
373 * If we managed to isolate pages, it is always (1 << n) *
374 * pageblock_nr_pages for some non-negative n. (Max order
375 * page may span two pageblocks).
376 */
377 }
378
379 /* split_free_page does not map the pages */
380 map_pages(&freelist);
381
382 if (pfn < end_pfn) {
383 /* Loop terminated early, cleanup. */
384 release_freepages(&freelist);
385 return 0;
386 }
387
388 /* We don't use freelists for anything. */
389 return pfn;
390 }
391
392 /* Update the number of anon and file isolated pages in the zone */
393 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
394 {
395 struct page *page;
396 unsigned int count[2] = { 0, };
397
398 list_for_each_entry(page, &cc->migratepages, lru)
399 count[!!page_is_file_cache(page)]++;
400
401 /* If locked we can use the interrupt unsafe versions */
402 if (locked) {
403 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
404 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
405 } else {
406 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
407 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
408 }
409 }
410
411 /* Similar to reclaim, but different enough that they don't share logic */
412 static bool too_many_isolated(struct zone *zone)
413 {
414 unsigned long active, inactive, isolated;
415
416 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
417 zone_page_state(zone, NR_INACTIVE_ANON);
418 active = zone_page_state(zone, NR_ACTIVE_FILE) +
419 zone_page_state(zone, NR_ACTIVE_ANON);
420 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
421 zone_page_state(zone, NR_ISOLATED_ANON);
422
423 return isolated > (inactive + active) / 2;
424 }
425
426 /**
427 * isolate_migratepages_range() - isolate all migrate-able pages in range.
428 * @zone: Zone pages are in.
429 * @cc: Compaction control structure.
430 * @low_pfn: The first PFN of the range.
431 * @end_pfn: The one-past-the-last PFN of the range.
432 * @unevictable: true if it allows to isolate unevictable pages
433 *
434 * Isolate all pages that can be migrated from the range specified by
435 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
436 * pending), otherwise PFN of the first page that was not scanned
437 * (which may be both less, equal to or more then end_pfn).
438 *
439 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
440 * zero.
441 *
442 * Apart from cc->migratepages and cc->nr_migratetypes this function
443 * does not modify any cc's fields, in particular it does not modify
444 * (or read for that matter) cc->migrate_pfn.
445 */
446 unsigned long
447 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
448 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
449 {
450 unsigned long last_pageblock_nr = 0, pageblock_nr;
451 unsigned long nr_scanned = 0, nr_isolated = 0;
452 struct list_head *migratelist = &cc->migratepages;
453 isolate_mode_t mode = 0;
454 struct lruvec *lruvec;
455 unsigned long flags;
456 bool locked = false;
457 struct page *page = NULL, *valid_page = NULL;
458
459 /*
460 * Ensure that there are not too many pages isolated from the LRU
461 * list by either parallel reclaimers or compaction. If there are,
462 * delay for some time until fewer pages are isolated
463 */
464 while (unlikely(too_many_isolated(zone))) {
465 /* async migration should just abort */
466 if (!cc->sync)
467 return 0;
468
469 congestion_wait(BLK_RW_ASYNC, HZ/10);
470
471 if (fatal_signal_pending(current))
472 return 0;
473 }
474
475 /* Time to isolate some pages for migration */
476 cond_resched();
477 for (; low_pfn < end_pfn; low_pfn++) {
478 /* give a chance to irqs before checking need_resched() */
479 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
480 if (should_release_lock(&zone->lru_lock)) {
481 spin_unlock_irqrestore(&zone->lru_lock, flags);
482 locked = false;
483 }
484 }
485
486 /*
487 * migrate_pfn does not necessarily start aligned to a
488 * pageblock. Ensure that pfn_valid is called when moving
489 * into a new MAX_ORDER_NR_PAGES range in case of large
490 * memory holes within the zone
491 */
492 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
493 if (!pfn_valid(low_pfn)) {
494 low_pfn += MAX_ORDER_NR_PAGES - 1;
495 continue;
496 }
497 }
498
499 if (!pfn_valid_within(low_pfn))
500 continue;
501 nr_scanned++;
502
503 /*
504 * Get the page and ensure the page is within the same zone.
505 * See the comment in isolate_freepages about overlapping
506 * nodes. It is deliberate that the new zone lock is not taken
507 * as memory compaction should not move pages between nodes.
508 */
509 page = pfn_to_page(low_pfn);
510 if (page_zone(page) != zone)
511 continue;
512
513 if (!valid_page)
514 valid_page = page;
515
516 /* If isolation recently failed, do not retry */
517 pageblock_nr = low_pfn >> pageblock_order;
518 if (!isolation_suitable(cc, page))
519 goto next_pageblock;
520
521 /* Skip if free */
522 if (PageBuddy(page))
523 continue;
524
525 /*
526 * For async migration, also only scan in MOVABLE blocks. Async
527 * migration is optimistic to see if the minimum amount of work
528 * satisfies the allocation
529 */
530 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
531 !migrate_async_suitable(get_pageblock_migratetype(page))) {
532 cc->finished_update_migrate = true;
533 goto next_pageblock;
534 }
535
536 /*
537 * Check may be lockless but that's ok as we recheck later.
538 * It's possible to migrate LRU pages and balloon pages
539 * Skip any other type of page
540 */
541 if (!PageLRU(page)) {
542 if (unlikely(balloon_page_movable(page))) {
543 if (locked && balloon_page_isolate(page)) {
544 /* Successfully isolated */
545 cc->finished_update_migrate = true;
546 list_add(&page->lru, migratelist);
547 cc->nr_migratepages++;
548 nr_isolated++;
549 goto check_compact_cluster;
550 }
551 }
552 continue;
553 }
554
555 /*
556 * PageLRU is set. lru_lock normally excludes isolation
557 * splitting and collapsing (collapsing has already happened
558 * if PageLRU is set) but the lock is not necessarily taken
559 * here and it is wasteful to take it just to check transhuge.
560 * Check TransHuge without lock and skip the whole pageblock if
561 * it's either a transhuge or hugetlbfs page, as calling
562 * compound_order() without preventing THP from splitting the
563 * page underneath us may return surprising results.
564 */
565 if (PageTransHuge(page)) {
566 if (!locked)
567 goto next_pageblock;
568 low_pfn += (1 << compound_order(page)) - 1;
569 continue;
570 }
571
572 /* Check if it is ok to still hold the lock */
573 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
574 locked, cc);
575 if (!locked || fatal_signal_pending(current))
576 break;
577
578 /* Recheck PageLRU and PageTransHuge under lock */
579 if (!PageLRU(page))
580 continue;
581 if (PageTransHuge(page)) {
582 low_pfn += (1 << compound_order(page)) - 1;
583 continue;
584 }
585
586 if (!cc->sync)
587 mode |= ISOLATE_ASYNC_MIGRATE;
588
589 if (unevictable)
590 mode |= ISOLATE_UNEVICTABLE;
591
592 lruvec = mem_cgroup_page_lruvec(page, zone);
593
594 /* Try isolate the page */
595 if (__isolate_lru_page(page, mode) != 0)
596 continue;
597
598 VM_BUG_ON(PageTransCompound(page));
599
600 /* Successfully isolated */
601 cc->finished_update_migrate = true;
602 del_page_from_lru_list(page, lruvec, page_lru(page));
603 list_add(&page->lru, migratelist);
604 cc->nr_migratepages++;
605 nr_isolated++;
606
607 check_compact_cluster:
608 /* Avoid isolating too much */
609 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
610 ++low_pfn;
611 break;
612 }
613
614 continue;
615
616 next_pageblock:
617 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
618 last_pageblock_nr = pageblock_nr;
619 }
620
621 acct_isolated(zone, locked, cc);
622
623 if (locked)
624 spin_unlock_irqrestore(&zone->lru_lock, flags);
625
626 /* Update the pageblock-skip if the whole pageblock was scanned */
627 if (low_pfn == end_pfn)
628 update_pageblock_skip(cc, valid_page, nr_isolated, true);
629
630 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
631
632 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
633 if (nr_isolated)
634 count_compact_events(COMPACTISOLATED, nr_isolated);
635
636 return low_pfn;
637 }
638
639 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
640 #ifdef CONFIG_COMPACTION
641 /*
642 * Based on information in the current compact_control, find blocks
643 * suitable for isolating free pages from and then isolate them.
644 */
645 static void isolate_freepages(struct zone *zone,
646 struct compact_control *cc)
647 {
648 struct page *page;
649 unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
650 int nr_freepages = cc->nr_freepages;
651 struct list_head *freelist = &cc->freepages;
652
653 /*
654 * Initialise the free scanner. The starting point is where we last
655 * scanned from (or the end of the zone if starting). The low point
656 * is the end of the pageblock the migration scanner is using.
657 */
658 pfn = cc->free_pfn;
659 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
660
661 /*
662 * Take care that if the migration scanner is at the end of the zone
663 * that the free scanner does not accidentally move to the next zone
664 * in the next isolation cycle.
665 */
666 high_pfn = min(low_pfn, pfn);
667
668 z_end_pfn = zone_end_pfn(zone);
669
670 /*
671 * Isolate free pages until enough are available to migrate the
672 * pages on cc->migratepages. We stop searching if the migrate
673 * and free page scanners meet or enough free pages are isolated.
674 */
675 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
676 pfn -= pageblock_nr_pages) {
677 unsigned long isolated;
678
679 /*
680 * This can iterate a massively long zone without finding any
681 * suitable migration targets, so periodically check if we need
682 * to schedule.
683 */
684 cond_resched();
685
686 if (!pfn_valid(pfn))
687 continue;
688
689 /*
690 * Check for overlapping nodes/zones. It's possible on some
691 * configurations to have a setup like
692 * node0 node1 node0
693 * i.e. it's possible that all pages within a zones range of
694 * pages do not belong to a single zone.
695 */
696 page = pfn_to_page(pfn);
697 if (page_zone(page) != zone)
698 continue;
699
700 /* Check the block is suitable for migration */
701 if (!suitable_migration_target(page))
702 continue;
703
704 /* If isolation recently failed, do not retry */
705 if (!isolation_suitable(cc, page))
706 continue;
707
708 /* Found a block suitable for isolating free pages from */
709 isolated = 0;
710
711 /*
712 * As pfn may not start aligned, pfn+pageblock_nr_page
713 * may cross a MAX_ORDER_NR_PAGES boundary and miss
714 * a pfn_valid check. Ensure isolate_freepages_block()
715 * only scans within a pageblock
716 */
717 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
718 end_pfn = min(end_pfn, z_end_pfn);
719 isolated = isolate_freepages_block(cc, pfn, end_pfn,
720 freelist, false);
721 nr_freepages += isolated;
722
723 /*
724 * Record the highest PFN we isolated pages from. When next
725 * looking for free pages, the search will restart here as
726 * page migration may have returned some pages to the allocator
727 */
728 if (isolated) {
729 cc->finished_update_free = true;
730 high_pfn = max(high_pfn, pfn);
731 }
732 }
733
734 /* split_free_page does not map the pages */
735 map_pages(freelist);
736
737 cc->free_pfn = high_pfn;
738 cc->nr_freepages = nr_freepages;
739 }
740
741 /*
742 * This is a migrate-callback that "allocates" freepages by taking pages
743 * from the isolated freelists in the block we are migrating to.
744 */
745 static struct page *compaction_alloc(struct page *migratepage,
746 unsigned long data,
747 int **result)
748 {
749 struct compact_control *cc = (struct compact_control *)data;
750 struct page *freepage;
751
752 /* Isolate free pages if necessary */
753 if (list_empty(&cc->freepages)) {
754 isolate_freepages(cc->zone, cc);
755
756 if (list_empty(&cc->freepages))
757 return NULL;
758 }
759
760 freepage = list_entry(cc->freepages.next, struct page, lru);
761 list_del(&freepage->lru);
762 cc->nr_freepages--;
763
764 return freepage;
765 }
766
767 /*
768 * We cannot control nr_migratepages and nr_freepages fully when migration is
769 * running as migrate_pages() has no knowledge of compact_control. When
770 * migration is complete, we count the number of pages on the lists by hand.
771 */
772 static void update_nr_listpages(struct compact_control *cc)
773 {
774 int nr_migratepages = 0;
775 int nr_freepages = 0;
776 struct page *page;
777
778 list_for_each_entry(page, &cc->migratepages, lru)
779 nr_migratepages++;
780 list_for_each_entry(page, &cc->freepages, lru)
781 nr_freepages++;
782
783 cc->nr_migratepages = nr_migratepages;
784 cc->nr_freepages = nr_freepages;
785 }
786
787 /* possible outcome of isolate_migratepages */
788 typedef enum {
789 ISOLATE_ABORT, /* Abort compaction now */
790 ISOLATE_NONE, /* No pages isolated, continue scanning */
791 ISOLATE_SUCCESS, /* Pages isolated, migrate */
792 } isolate_migrate_t;
793
794 /*
795 * Isolate all pages that can be migrated from the block pointed to by
796 * the migrate scanner within compact_control.
797 */
798 static isolate_migrate_t isolate_migratepages(struct zone *zone,
799 struct compact_control *cc)
800 {
801 unsigned long low_pfn, end_pfn;
802
803 /* Do not scan outside zone boundaries */
804 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
805
806 /* Only scan within a pageblock boundary */
807 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
808
809 /* Do not cross the free scanner or scan within a memory hole */
810 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
811 cc->migrate_pfn = end_pfn;
812 return ISOLATE_NONE;
813 }
814
815 /* Perform the isolation */
816 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
817 if (!low_pfn || cc->contended)
818 return ISOLATE_ABORT;
819
820 cc->migrate_pfn = low_pfn;
821
822 return ISOLATE_SUCCESS;
823 }
824
825 static int compact_finished(struct zone *zone,
826 struct compact_control *cc)
827 {
828 unsigned int order;
829 unsigned long watermark;
830
831 if (fatal_signal_pending(current))
832 return COMPACT_PARTIAL;
833
834 /* Compaction run completes if the migrate and free scanner meet */
835 if (cc->free_pfn <= cc->migrate_pfn) {
836 /*
837 * Mark that the PG_migrate_skip information should be cleared
838 * by kswapd when it goes to sleep. kswapd does not set the
839 * flag itself as the decision to be clear should be directly
840 * based on an allocation request.
841 */
842 if (!current_is_kswapd())
843 zone->compact_blockskip_flush = true;
844
845 return COMPACT_COMPLETE;
846 }
847
848 /*
849 * order == -1 is expected when compacting via
850 * /proc/sys/vm/compact_memory
851 */
852 if (cc->order == -1)
853 return COMPACT_CONTINUE;
854
855 /* Compaction run is not finished if the watermark is not met */
856 watermark = low_wmark_pages(zone);
857 watermark += (1 << cc->order);
858
859 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
860 return COMPACT_CONTINUE;
861
862 /* Direct compactor: Is a suitable page free? */
863 for (order = cc->order; order < MAX_ORDER; order++) {
864 struct free_area *area = &zone->free_area[order];
865
866 /* Job done if page is free of the right migratetype */
867 if (!list_empty(&area->free_list[cc->migratetype]))
868 return COMPACT_PARTIAL;
869
870 /* Job done if allocation would set block type */
871 if (cc->order >= pageblock_order && area->nr_free)
872 return COMPACT_PARTIAL;
873 }
874
875 return COMPACT_CONTINUE;
876 }
877
878 /*
879 * compaction_suitable: Is this suitable to run compaction on this zone now?
880 * Returns
881 * COMPACT_SKIPPED - If there are too few free pages for compaction
882 * COMPACT_PARTIAL - If the allocation would succeed without compaction
883 * COMPACT_CONTINUE - If compaction should run now
884 */
885 unsigned long compaction_suitable(struct zone *zone, int order)
886 {
887 int fragindex;
888 unsigned long watermark;
889
890 /*
891 * order == -1 is expected when compacting via
892 * /proc/sys/vm/compact_memory
893 */
894 if (order == -1)
895 return COMPACT_CONTINUE;
896
897 /*
898 * Watermarks for order-0 must be met for compaction. Note the 2UL.
899 * This is because during migration, copies of pages need to be
900 * allocated and for a short time, the footprint is higher
901 */
902 watermark = low_wmark_pages(zone) + (2UL << order);
903 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
904 return COMPACT_SKIPPED;
905
906 /*
907 * fragmentation index determines if allocation failures are due to
908 * low memory or external fragmentation
909 *
910 * index of -1000 implies allocations might succeed depending on
911 * watermarks
912 * index towards 0 implies failure is due to lack of memory
913 * index towards 1000 implies failure is due to fragmentation
914 *
915 * Only compact if a failure would be due to fragmentation.
916 */
917 fragindex = fragmentation_index(zone, order);
918 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
919 return COMPACT_SKIPPED;
920
921 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
922 0, 0))
923 return COMPACT_PARTIAL;
924
925 return COMPACT_CONTINUE;
926 }
927
928 static int compact_zone(struct zone *zone, struct compact_control *cc)
929 {
930 int ret;
931 unsigned long start_pfn = zone->zone_start_pfn;
932 unsigned long end_pfn = zone_end_pfn(zone);
933
934 ret = compaction_suitable(zone, cc->order);
935 switch (ret) {
936 case COMPACT_PARTIAL:
937 case COMPACT_SKIPPED:
938 /* Compaction is likely to fail */
939 return ret;
940 case COMPACT_CONTINUE:
941 /* Fall through to compaction */
942 ;
943 }
944
945 /*
946 * Setup to move all movable pages to the end of the zone. Used cached
947 * information on where the scanners should start but check that it
948 * is initialised by ensuring the values are within zone boundaries.
949 */
950 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
951 cc->free_pfn = zone->compact_cached_free_pfn;
952 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
953 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
954 zone->compact_cached_free_pfn = cc->free_pfn;
955 }
956 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
957 cc->migrate_pfn = start_pfn;
958 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
959 }
960
961 /*
962 * Clear pageblock skip if there were failures recently and compaction
963 * is about to be retried after being deferred. kswapd does not do
964 * this reset as it'll reset the cached information when going to sleep.
965 */
966 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
967 __reset_isolation_suitable(zone);
968
969 migrate_prep_local();
970
971 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
972 unsigned long nr_migrate, nr_remaining;
973 int err;
974
975 switch (isolate_migratepages(zone, cc)) {
976 case ISOLATE_ABORT:
977 ret = COMPACT_PARTIAL;
978 putback_movable_pages(&cc->migratepages);
979 cc->nr_migratepages = 0;
980 goto out;
981 case ISOLATE_NONE:
982 continue;
983 case ISOLATE_SUCCESS:
984 ;
985 }
986
987 nr_migrate = cc->nr_migratepages;
988 err = migrate_pages(&cc->migratepages, compaction_alloc,
989 (unsigned long)cc,
990 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
991 MR_COMPACTION);
992 update_nr_listpages(cc);
993 nr_remaining = cc->nr_migratepages;
994
995 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
996 nr_remaining);
997
998 /* Release isolated pages not migrated */
999 if (err) {
1000 putback_movable_pages(&cc->migratepages);
1001 cc->nr_migratepages = 0;
1002 if (err == -ENOMEM) {
1003 ret = COMPACT_PARTIAL;
1004 goto out;
1005 }
1006 }
1007 }
1008
1009 out:
1010 /* Release free pages and check accounting */
1011 cc->nr_freepages -= release_freepages(&cc->freepages);
1012 VM_BUG_ON(cc->nr_freepages != 0);
1013
1014 return ret;
1015 }
1016
1017 static unsigned long compact_zone_order(struct zone *zone,
1018 int order, gfp_t gfp_mask,
1019 bool sync, bool *contended)
1020 {
1021 unsigned long ret;
1022 struct compact_control cc = {
1023 .nr_freepages = 0,
1024 .nr_migratepages = 0,
1025 .order = order,
1026 .migratetype = allocflags_to_migratetype(gfp_mask),
1027 .zone = zone,
1028 .sync = sync,
1029 };
1030 INIT_LIST_HEAD(&cc.freepages);
1031 INIT_LIST_HEAD(&cc.migratepages);
1032
1033 ret = compact_zone(zone, &cc);
1034
1035 VM_BUG_ON(!list_empty(&cc.freepages));
1036 VM_BUG_ON(!list_empty(&cc.migratepages));
1037
1038 *contended = cc.contended;
1039 return ret;
1040 }
1041
1042 int sysctl_extfrag_threshold = 500;
1043
1044 /**
1045 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1046 * @zonelist: The zonelist used for the current allocation
1047 * @order: The order of the current allocation
1048 * @gfp_mask: The GFP mask of the current allocation
1049 * @nodemask: The allowed nodes to allocate from
1050 * @sync: Whether migration is synchronous or not
1051 * @contended: Return value that is true if compaction was aborted due to lock contention
1052 * @page: Optionally capture a free page of the requested order during compaction
1053 *
1054 * This is the main entry point for direct page compaction.
1055 */
1056 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1057 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1058 bool sync, bool *contended)
1059 {
1060 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1061 int may_enter_fs = gfp_mask & __GFP_FS;
1062 int may_perform_io = gfp_mask & __GFP_IO;
1063 struct zoneref *z;
1064 struct zone *zone;
1065 int rc = COMPACT_SKIPPED;
1066 int alloc_flags = 0;
1067
1068 /* Check if the GFP flags allow compaction */
1069 if (!order || !may_enter_fs || !may_perform_io)
1070 return rc;
1071
1072 count_compact_event(COMPACTSTALL);
1073
1074 #ifdef CONFIG_CMA
1075 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1076 alloc_flags |= ALLOC_CMA;
1077 #endif
1078 /* Compact each zone in the list */
1079 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1080 nodemask) {
1081 int status;
1082
1083 status = compact_zone_order(zone, order, gfp_mask, sync,
1084 contended);
1085 rc = max(status, rc);
1086
1087 /* If a normal allocation would succeed, stop compacting */
1088 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1089 alloc_flags))
1090 break;
1091 }
1092
1093 return rc;
1094 }
1095
1096
1097 /* Compact all zones within a node */
1098 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1099 {
1100 int zoneid;
1101 struct zone *zone;
1102
1103 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1104
1105 zone = &pgdat->node_zones[zoneid];
1106 if (!populated_zone(zone))
1107 continue;
1108
1109 cc->nr_freepages = 0;
1110 cc->nr_migratepages = 0;
1111 cc->zone = zone;
1112 INIT_LIST_HEAD(&cc->freepages);
1113 INIT_LIST_HEAD(&cc->migratepages);
1114
1115 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1116 compact_zone(zone, cc);
1117
1118 if (cc->order > 0) {
1119 int ok = zone_watermark_ok(zone, cc->order,
1120 low_wmark_pages(zone), 0, 0);
1121 if (ok && cc->order >= zone->compact_order_failed)
1122 zone->compact_order_failed = cc->order + 1;
1123 /* Currently async compaction is never deferred. */
1124 else if (!ok && cc->sync)
1125 defer_compaction(zone, cc->order);
1126 }
1127
1128 VM_BUG_ON(!list_empty(&cc->freepages));
1129 VM_BUG_ON(!list_empty(&cc->migratepages));
1130 }
1131 }
1132
1133 void compact_pgdat(pg_data_t *pgdat, int order)
1134 {
1135 struct compact_control cc = {
1136 .order = order,
1137 .sync = false,
1138 };
1139
1140 if (!order)
1141 return;
1142
1143 __compact_pgdat(pgdat, &cc);
1144 }
1145
1146 static void compact_node(int nid)
1147 {
1148 struct compact_control cc = {
1149 .order = -1,
1150 .sync = true,
1151 };
1152
1153 __compact_pgdat(NODE_DATA(nid), &cc);
1154 }
1155
1156 /* Compact all nodes in the system */
1157 static void compact_nodes(void)
1158 {
1159 int nid;
1160
1161 /* Flush pending updates to the LRU lists */
1162 lru_add_drain_all();
1163
1164 for_each_online_node(nid)
1165 compact_node(nid);
1166 }
1167
1168 /* The written value is actually unused, all memory is compacted */
1169 int sysctl_compact_memory;
1170
1171 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1172 int sysctl_compaction_handler(struct ctl_table *table, int write,
1173 void __user *buffer, size_t *length, loff_t *ppos)
1174 {
1175 if (write)
1176 compact_nodes();
1177
1178 return 0;
1179 }
1180
1181 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1182 void __user *buffer, size_t *length, loff_t *ppos)
1183 {
1184 proc_dointvec_minmax(table, write, buffer, length, ppos);
1185
1186 return 0;
1187 }
1188
1189 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1190 ssize_t sysfs_compact_node(struct device *dev,
1191 struct device_attribute *attr,
1192 const char *buf, size_t count)
1193 {
1194 int nid = dev->id;
1195
1196 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1197 /* Flush pending updates to the LRU lists */
1198 lru_add_drain_all();
1199
1200 compact_node(nid);
1201 }
1202
1203 return count;
1204 }
1205 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1206
1207 int compaction_register_node(struct node *node)
1208 {
1209 return device_create_file(&node->dev, &dev_attr_compact);
1210 }
1211
1212 void compaction_unregister_node(struct node *node)
1213 {
1214 return device_remove_file(&node->dev, &dev_attr_compact);
1215 }
1216 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1217
1218 #endif /* CONFIG_COMPACTION */
This page took 0.059463 seconds and 5 git commands to generate.