Merge tag 'v3.7' into stable/for-linus-3.8
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18
19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/compaction.h>
23
24 static unsigned long release_freepages(struct list_head *freelist)
25 {
26 struct page *page, *next;
27 unsigned long count = 0;
28
29 list_for_each_entry_safe(page, next, freelist, lru) {
30 list_del(&page->lru);
31 __free_page(page);
32 count++;
33 }
34
35 return count;
36 }
37
38 static void map_pages(struct list_head *list)
39 {
40 struct page *page;
41
42 list_for_each_entry(page, list, lru) {
43 arch_alloc_page(page, 0);
44 kernel_map_pages(page, 1, 1);
45 }
46 }
47
48 static inline bool migrate_async_suitable(int migratetype)
49 {
50 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
51 }
52
53 #ifdef CONFIG_COMPACTION
54 /* Returns true if the pageblock should be scanned for pages to isolate. */
55 static inline bool isolation_suitable(struct compact_control *cc,
56 struct page *page)
57 {
58 if (cc->ignore_skip_hint)
59 return true;
60
61 return !get_pageblock_skip(page);
62 }
63
64 /*
65 * This function is called to clear all cached information on pageblocks that
66 * should be skipped for page isolation when the migrate and free page scanner
67 * meet.
68 */
69 static void __reset_isolation_suitable(struct zone *zone)
70 {
71 unsigned long start_pfn = zone->zone_start_pfn;
72 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
73 unsigned long pfn;
74
75 zone->compact_cached_migrate_pfn = start_pfn;
76 zone->compact_cached_free_pfn = end_pfn;
77 zone->compact_blockskip_flush = false;
78
79 /* Walk the zone and mark every pageblock as suitable for isolation */
80 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
81 struct page *page;
82
83 cond_resched();
84
85 if (!pfn_valid(pfn))
86 continue;
87
88 page = pfn_to_page(pfn);
89 if (zone != page_zone(page))
90 continue;
91
92 clear_pageblock_skip(page);
93 }
94 }
95
96 void reset_isolation_suitable(pg_data_t *pgdat)
97 {
98 int zoneid;
99
100 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
101 struct zone *zone = &pgdat->node_zones[zoneid];
102 if (!populated_zone(zone))
103 continue;
104
105 /* Only flush if a full compaction finished recently */
106 if (zone->compact_blockskip_flush)
107 __reset_isolation_suitable(zone);
108 }
109 }
110
111 /*
112 * If no pages were isolated then mark this pageblock to be skipped in the
113 * future. The information is later cleared by __reset_isolation_suitable().
114 */
115 static void update_pageblock_skip(struct compact_control *cc,
116 struct page *page, unsigned long nr_isolated,
117 bool migrate_scanner)
118 {
119 struct zone *zone = cc->zone;
120 if (!page)
121 return;
122
123 if (!nr_isolated) {
124 unsigned long pfn = page_to_pfn(page);
125 set_pageblock_skip(page);
126
127 /* Update where compaction should restart */
128 if (migrate_scanner) {
129 if (!cc->finished_update_migrate &&
130 pfn > zone->compact_cached_migrate_pfn)
131 zone->compact_cached_migrate_pfn = pfn;
132 } else {
133 if (!cc->finished_update_free &&
134 pfn < zone->compact_cached_free_pfn)
135 zone->compact_cached_free_pfn = pfn;
136 }
137 }
138 }
139 #else
140 static inline bool isolation_suitable(struct compact_control *cc,
141 struct page *page)
142 {
143 return true;
144 }
145
146 static void update_pageblock_skip(struct compact_control *cc,
147 struct page *page, unsigned long nr_isolated,
148 bool migrate_scanner)
149 {
150 }
151 #endif /* CONFIG_COMPACTION */
152
153 static inline bool should_release_lock(spinlock_t *lock)
154 {
155 return need_resched() || spin_is_contended(lock);
156 }
157
158 /*
159 * Compaction requires the taking of some coarse locks that are potentially
160 * very heavily contended. Check if the process needs to be scheduled or
161 * if the lock is contended. For async compaction, back out in the event
162 * if contention is severe. For sync compaction, schedule.
163 *
164 * Returns true if the lock is held.
165 * Returns false if the lock is released and compaction should abort
166 */
167 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
168 bool locked, struct compact_control *cc)
169 {
170 if (should_release_lock(lock)) {
171 if (locked) {
172 spin_unlock_irqrestore(lock, *flags);
173 locked = false;
174 }
175
176 /* async aborts if taking too long or contended */
177 if (!cc->sync) {
178 cc->contended = true;
179 return false;
180 }
181
182 cond_resched();
183 }
184
185 if (!locked)
186 spin_lock_irqsave(lock, *flags);
187 return true;
188 }
189
190 static inline bool compact_trylock_irqsave(spinlock_t *lock,
191 unsigned long *flags, struct compact_control *cc)
192 {
193 return compact_checklock_irqsave(lock, flags, false, cc);
194 }
195
196 /* Returns true if the page is within a block suitable for migration to */
197 static bool suitable_migration_target(struct page *page)
198 {
199 int migratetype = get_pageblock_migratetype(page);
200
201 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
202 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
203 return false;
204
205 /* If the page is a large free page, then allow migration */
206 if (PageBuddy(page) && page_order(page) >= pageblock_order)
207 return true;
208
209 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
210 if (migrate_async_suitable(migratetype))
211 return true;
212
213 /* Otherwise skip the block */
214 return false;
215 }
216
217 static void compact_capture_page(struct compact_control *cc)
218 {
219 unsigned long flags;
220 int mtype, mtype_low, mtype_high;
221
222 if (!cc->page || *cc->page)
223 return;
224
225 /*
226 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
227 * regardless of the migratetype of the freelist is is captured from.
228 * This is fine because the order for a high-order MIGRATE_MOVABLE
229 * allocation is typically at least a pageblock size and overall
230 * fragmentation is not impaired. Other allocation types must
231 * capture pages from their own migratelist because otherwise they
232 * could pollute other pageblocks like MIGRATE_MOVABLE with
233 * difficult to move pages and making fragmentation worse overall.
234 */
235 if (cc->migratetype == MIGRATE_MOVABLE) {
236 mtype_low = 0;
237 mtype_high = MIGRATE_PCPTYPES;
238 } else {
239 mtype_low = cc->migratetype;
240 mtype_high = cc->migratetype + 1;
241 }
242
243 /* Speculatively examine the free lists without zone lock */
244 for (mtype = mtype_low; mtype < mtype_high; mtype++) {
245 int order;
246 for (order = cc->order; order < MAX_ORDER; order++) {
247 struct page *page;
248 struct free_area *area;
249 area = &(cc->zone->free_area[order]);
250 if (list_empty(&area->free_list[mtype]))
251 continue;
252
253 /* Take the lock and attempt capture of the page */
254 if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
255 return;
256 if (!list_empty(&area->free_list[mtype])) {
257 page = list_entry(area->free_list[mtype].next,
258 struct page, lru);
259 if (capture_free_page(page, cc->order, mtype)) {
260 spin_unlock_irqrestore(&cc->zone->lock,
261 flags);
262 *cc->page = page;
263 return;
264 }
265 }
266 spin_unlock_irqrestore(&cc->zone->lock, flags);
267 }
268 }
269 }
270
271 /*
272 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
273 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
274 * pages inside of the pageblock (even though it may still end up isolating
275 * some pages).
276 */
277 static unsigned long isolate_freepages_block(struct compact_control *cc,
278 unsigned long blockpfn,
279 unsigned long end_pfn,
280 struct list_head *freelist,
281 bool strict)
282 {
283 int nr_scanned = 0, total_isolated = 0;
284 struct page *cursor, *valid_page = NULL;
285 unsigned long nr_strict_required = end_pfn - blockpfn;
286 unsigned long flags;
287 bool locked = false;
288
289 cursor = pfn_to_page(blockpfn);
290
291 /* Isolate free pages. */
292 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
293 int isolated, i;
294 struct page *page = cursor;
295
296 nr_scanned++;
297 if (!pfn_valid_within(blockpfn))
298 continue;
299 if (!valid_page)
300 valid_page = page;
301 if (!PageBuddy(page))
302 continue;
303
304 /*
305 * The zone lock must be held to isolate freepages.
306 * Unfortunately this is a very coarse lock and can be
307 * heavily contended if there are parallel allocations
308 * or parallel compactions. For async compaction do not
309 * spin on the lock and we acquire the lock as late as
310 * possible.
311 */
312 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
313 locked, cc);
314 if (!locked)
315 break;
316
317 /* Recheck this is a suitable migration target under lock */
318 if (!strict && !suitable_migration_target(page))
319 break;
320
321 /* Recheck this is a buddy page under lock */
322 if (!PageBuddy(page))
323 continue;
324
325 /* Found a free page, break it into order-0 pages */
326 isolated = split_free_page(page);
327 if (!isolated && strict)
328 break;
329 total_isolated += isolated;
330 for (i = 0; i < isolated; i++) {
331 list_add(&page->lru, freelist);
332 page++;
333 }
334
335 /* If a page was split, advance to the end of it */
336 if (isolated) {
337 blockpfn += isolated - 1;
338 cursor += isolated - 1;
339 }
340 }
341
342 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
343
344 /*
345 * If strict isolation is requested by CMA then check that all the
346 * pages requested were isolated. If there were any failures, 0 is
347 * returned and CMA will fail.
348 */
349 if (strict && nr_strict_required > total_isolated)
350 total_isolated = 0;
351
352 if (locked)
353 spin_unlock_irqrestore(&cc->zone->lock, flags);
354
355 /* Update the pageblock-skip if the whole pageblock was scanned */
356 if (blockpfn == end_pfn)
357 update_pageblock_skip(cc, valid_page, total_isolated, false);
358
359 return total_isolated;
360 }
361
362 /**
363 * isolate_freepages_range() - isolate free pages.
364 * @start_pfn: The first PFN to start isolating.
365 * @end_pfn: The one-past-last PFN.
366 *
367 * Non-free pages, invalid PFNs, or zone boundaries within the
368 * [start_pfn, end_pfn) range are considered errors, cause function to
369 * undo its actions and return zero.
370 *
371 * Otherwise, function returns one-past-the-last PFN of isolated page
372 * (which may be greater then end_pfn if end fell in a middle of
373 * a free page).
374 */
375 unsigned long
376 isolate_freepages_range(struct compact_control *cc,
377 unsigned long start_pfn, unsigned long end_pfn)
378 {
379 unsigned long isolated, pfn, block_end_pfn;
380 LIST_HEAD(freelist);
381
382 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
383 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
384 break;
385
386 /*
387 * On subsequent iterations ALIGN() is actually not needed,
388 * but we keep it that we not to complicate the code.
389 */
390 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
391 block_end_pfn = min(block_end_pfn, end_pfn);
392
393 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
394 &freelist, true);
395
396 /*
397 * In strict mode, isolate_freepages_block() returns 0 if
398 * there are any holes in the block (ie. invalid PFNs or
399 * non-free pages).
400 */
401 if (!isolated)
402 break;
403
404 /*
405 * If we managed to isolate pages, it is always (1 << n) *
406 * pageblock_nr_pages for some non-negative n. (Max order
407 * page may span two pageblocks).
408 */
409 }
410
411 /* split_free_page does not map the pages */
412 map_pages(&freelist);
413
414 if (pfn < end_pfn) {
415 /* Loop terminated early, cleanup. */
416 release_freepages(&freelist);
417 return 0;
418 }
419
420 /* We don't use freelists for anything. */
421 return pfn;
422 }
423
424 /* Update the number of anon and file isolated pages in the zone */
425 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
426 {
427 struct page *page;
428 unsigned int count[2] = { 0, };
429
430 list_for_each_entry(page, &cc->migratepages, lru)
431 count[!!page_is_file_cache(page)]++;
432
433 /* If locked we can use the interrupt unsafe versions */
434 if (locked) {
435 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
436 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
437 } else {
438 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
439 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
440 }
441 }
442
443 /* Similar to reclaim, but different enough that they don't share logic */
444 static bool too_many_isolated(struct zone *zone)
445 {
446 unsigned long active, inactive, isolated;
447
448 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
449 zone_page_state(zone, NR_INACTIVE_ANON);
450 active = zone_page_state(zone, NR_ACTIVE_FILE) +
451 zone_page_state(zone, NR_ACTIVE_ANON);
452 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
453 zone_page_state(zone, NR_ISOLATED_ANON);
454
455 return isolated > (inactive + active) / 2;
456 }
457
458 /**
459 * isolate_migratepages_range() - isolate all migrate-able pages in range.
460 * @zone: Zone pages are in.
461 * @cc: Compaction control structure.
462 * @low_pfn: The first PFN of the range.
463 * @end_pfn: The one-past-the-last PFN of the range.
464 * @unevictable: true if it allows to isolate unevictable pages
465 *
466 * Isolate all pages that can be migrated from the range specified by
467 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
468 * pending), otherwise PFN of the first page that was not scanned
469 * (which may be both less, equal to or more then end_pfn).
470 *
471 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
472 * zero.
473 *
474 * Apart from cc->migratepages and cc->nr_migratetypes this function
475 * does not modify any cc's fields, in particular it does not modify
476 * (or read for that matter) cc->migrate_pfn.
477 */
478 unsigned long
479 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
480 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
481 {
482 unsigned long last_pageblock_nr = 0, pageblock_nr;
483 unsigned long nr_scanned = 0, nr_isolated = 0;
484 struct list_head *migratelist = &cc->migratepages;
485 isolate_mode_t mode = 0;
486 struct lruvec *lruvec;
487 unsigned long flags;
488 bool locked = false;
489 struct page *page = NULL, *valid_page = NULL;
490
491 /*
492 * Ensure that there are not too many pages isolated from the LRU
493 * list by either parallel reclaimers or compaction. If there are,
494 * delay for some time until fewer pages are isolated
495 */
496 while (unlikely(too_many_isolated(zone))) {
497 /* async migration should just abort */
498 if (!cc->sync)
499 return 0;
500
501 congestion_wait(BLK_RW_ASYNC, HZ/10);
502
503 if (fatal_signal_pending(current))
504 return 0;
505 }
506
507 /* Time to isolate some pages for migration */
508 cond_resched();
509 for (; low_pfn < end_pfn; low_pfn++) {
510 /* give a chance to irqs before checking need_resched() */
511 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
512 if (should_release_lock(&zone->lru_lock)) {
513 spin_unlock_irqrestore(&zone->lru_lock, flags);
514 locked = false;
515 }
516 }
517
518 /*
519 * migrate_pfn does not necessarily start aligned to a
520 * pageblock. Ensure that pfn_valid is called when moving
521 * into a new MAX_ORDER_NR_PAGES range in case of large
522 * memory holes within the zone
523 */
524 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
525 if (!pfn_valid(low_pfn)) {
526 low_pfn += MAX_ORDER_NR_PAGES - 1;
527 continue;
528 }
529 }
530
531 if (!pfn_valid_within(low_pfn))
532 continue;
533 nr_scanned++;
534
535 /*
536 * Get the page and ensure the page is within the same zone.
537 * See the comment in isolate_freepages about overlapping
538 * nodes. It is deliberate that the new zone lock is not taken
539 * as memory compaction should not move pages between nodes.
540 */
541 page = pfn_to_page(low_pfn);
542 if (page_zone(page) != zone)
543 continue;
544
545 if (!valid_page)
546 valid_page = page;
547
548 /* If isolation recently failed, do not retry */
549 pageblock_nr = low_pfn >> pageblock_order;
550 if (!isolation_suitable(cc, page))
551 goto next_pageblock;
552
553 /* Skip if free */
554 if (PageBuddy(page))
555 continue;
556
557 /*
558 * For async migration, also only scan in MOVABLE blocks. Async
559 * migration is optimistic to see if the minimum amount of work
560 * satisfies the allocation
561 */
562 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
563 !migrate_async_suitable(get_pageblock_migratetype(page))) {
564 cc->finished_update_migrate = true;
565 goto next_pageblock;
566 }
567
568 /* Check may be lockless but that's ok as we recheck later */
569 if (!PageLRU(page))
570 continue;
571
572 /*
573 * PageLRU is set. lru_lock normally excludes isolation
574 * splitting and collapsing (collapsing has already happened
575 * if PageLRU is set) but the lock is not necessarily taken
576 * here and it is wasteful to take it just to check transhuge.
577 * Check TransHuge without lock and skip the whole pageblock if
578 * it's either a transhuge or hugetlbfs page, as calling
579 * compound_order() without preventing THP from splitting the
580 * page underneath us may return surprising results.
581 */
582 if (PageTransHuge(page)) {
583 if (!locked)
584 goto next_pageblock;
585 low_pfn += (1 << compound_order(page)) - 1;
586 continue;
587 }
588
589 /* Check if it is ok to still hold the lock */
590 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
591 locked, cc);
592 if (!locked || fatal_signal_pending(current))
593 break;
594
595 /* Recheck PageLRU and PageTransHuge under lock */
596 if (!PageLRU(page))
597 continue;
598 if (PageTransHuge(page)) {
599 low_pfn += (1 << compound_order(page)) - 1;
600 continue;
601 }
602
603 if (!cc->sync)
604 mode |= ISOLATE_ASYNC_MIGRATE;
605
606 if (unevictable)
607 mode |= ISOLATE_UNEVICTABLE;
608
609 lruvec = mem_cgroup_page_lruvec(page, zone);
610
611 /* Try isolate the page */
612 if (__isolate_lru_page(page, mode) != 0)
613 continue;
614
615 VM_BUG_ON(PageTransCompound(page));
616
617 /* Successfully isolated */
618 cc->finished_update_migrate = true;
619 del_page_from_lru_list(page, lruvec, page_lru(page));
620 list_add(&page->lru, migratelist);
621 cc->nr_migratepages++;
622 nr_isolated++;
623
624 /* Avoid isolating too much */
625 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
626 ++low_pfn;
627 break;
628 }
629
630 continue;
631
632 next_pageblock:
633 low_pfn += pageblock_nr_pages;
634 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
635 last_pageblock_nr = pageblock_nr;
636 }
637
638 acct_isolated(zone, locked, cc);
639
640 if (locked)
641 spin_unlock_irqrestore(&zone->lru_lock, flags);
642
643 /* Update the pageblock-skip if the whole pageblock was scanned */
644 if (low_pfn == end_pfn)
645 update_pageblock_skip(cc, valid_page, nr_isolated, true);
646
647 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
648
649 return low_pfn;
650 }
651
652 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
653 #ifdef CONFIG_COMPACTION
654 /*
655 * Based on information in the current compact_control, find blocks
656 * suitable for isolating free pages from and then isolate them.
657 */
658 static void isolate_freepages(struct zone *zone,
659 struct compact_control *cc)
660 {
661 struct page *page;
662 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
663 int nr_freepages = cc->nr_freepages;
664 struct list_head *freelist = &cc->freepages;
665
666 /*
667 * Initialise the free scanner. The starting point is where we last
668 * scanned from (or the end of the zone if starting). The low point
669 * is the end of the pageblock the migration scanner is using.
670 */
671 pfn = cc->free_pfn;
672 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
673
674 /*
675 * Take care that if the migration scanner is at the end of the zone
676 * that the free scanner does not accidentally move to the next zone
677 * in the next isolation cycle.
678 */
679 high_pfn = min(low_pfn, pfn);
680
681 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
682
683 /*
684 * Isolate free pages until enough are available to migrate the
685 * pages on cc->migratepages. We stop searching if the migrate
686 * and free page scanners meet or enough free pages are isolated.
687 */
688 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
689 pfn -= pageblock_nr_pages) {
690 unsigned long isolated;
691
692 if (!pfn_valid(pfn))
693 continue;
694
695 /*
696 * Check for overlapping nodes/zones. It's possible on some
697 * configurations to have a setup like
698 * node0 node1 node0
699 * i.e. it's possible that all pages within a zones range of
700 * pages do not belong to a single zone.
701 */
702 page = pfn_to_page(pfn);
703 if (page_zone(page) != zone)
704 continue;
705
706 /* Check the block is suitable for migration */
707 if (!suitable_migration_target(page))
708 continue;
709
710 /* If isolation recently failed, do not retry */
711 if (!isolation_suitable(cc, page))
712 continue;
713
714 /* Found a block suitable for isolating free pages from */
715 isolated = 0;
716
717 /*
718 * As pfn may not start aligned, pfn+pageblock_nr_page
719 * may cross a MAX_ORDER_NR_PAGES boundary and miss
720 * a pfn_valid check. Ensure isolate_freepages_block()
721 * only scans within a pageblock
722 */
723 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
724 end_pfn = min(end_pfn, zone_end_pfn);
725 isolated = isolate_freepages_block(cc, pfn, end_pfn,
726 freelist, false);
727 nr_freepages += isolated;
728
729 /*
730 * Record the highest PFN we isolated pages from. When next
731 * looking for free pages, the search will restart here as
732 * page migration may have returned some pages to the allocator
733 */
734 if (isolated) {
735 cc->finished_update_free = true;
736 high_pfn = max(high_pfn, pfn);
737 }
738 }
739
740 /* split_free_page does not map the pages */
741 map_pages(freelist);
742
743 cc->free_pfn = high_pfn;
744 cc->nr_freepages = nr_freepages;
745 }
746
747 /*
748 * This is a migrate-callback that "allocates" freepages by taking pages
749 * from the isolated freelists in the block we are migrating to.
750 */
751 static struct page *compaction_alloc(struct page *migratepage,
752 unsigned long data,
753 int **result)
754 {
755 struct compact_control *cc = (struct compact_control *)data;
756 struct page *freepage;
757
758 /* Isolate free pages if necessary */
759 if (list_empty(&cc->freepages)) {
760 isolate_freepages(cc->zone, cc);
761
762 if (list_empty(&cc->freepages))
763 return NULL;
764 }
765
766 freepage = list_entry(cc->freepages.next, struct page, lru);
767 list_del(&freepage->lru);
768 cc->nr_freepages--;
769
770 return freepage;
771 }
772
773 /*
774 * We cannot control nr_migratepages and nr_freepages fully when migration is
775 * running as migrate_pages() has no knowledge of compact_control. When
776 * migration is complete, we count the number of pages on the lists by hand.
777 */
778 static void update_nr_listpages(struct compact_control *cc)
779 {
780 int nr_migratepages = 0;
781 int nr_freepages = 0;
782 struct page *page;
783
784 list_for_each_entry(page, &cc->migratepages, lru)
785 nr_migratepages++;
786 list_for_each_entry(page, &cc->freepages, lru)
787 nr_freepages++;
788
789 cc->nr_migratepages = nr_migratepages;
790 cc->nr_freepages = nr_freepages;
791 }
792
793 /* possible outcome of isolate_migratepages */
794 typedef enum {
795 ISOLATE_ABORT, /* Abort compaction now */
796 ISOLATE_NONE, /* No pages isolated, continue scanning */
797 ISOLATE_SUCCESS, /* Pages isolated, migrate */
798 } isolate_migrate_t;
799
800 /*
801 * Isolate all pages that can be migrated from the block pointed to by
802 * the migrate scanner within compact_control.
803 */
804 static isolate_migrate_t isolate_migratepages(struct zone *zone,
805 struct compact_control *cc)
806 {
807 unsigned long low_pfn, end_pfn;
808
809 /* Do not scan outside zone boundaries */
810 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
811
812 /* Only scan within a pageblock boundary */
813 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
814
815 /* Do not cross the free scanner or scan within a memory hole */
816 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
817 cc->migrate_pfn = end_pfn;
818 return ISOLATE_NONE;
819 }
820
821 /* Perform the isolation */
822 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
823 if (!low_pfn || cc->contended)
824 return ISOLATE_ABORT;
825
826 cc->migrate_pfn = low_pfn;
827
828 return ISOLATE_SUCCESS;
829 }
830
831 static int compact_finished(struct zone *zone,
832 struct compact_control *cc)
833 {
834 unsigned long watermark;
835
836 if (fatal_signal_pending(current))
837 return COMPACT_PARTIAL;
838
839 /* Compaction run completes if the migrate and free scanner meet */
840 if (cc->free_pfn <= cc->migrate_pfn) {
841 /*
842 * Mark that the PG_migrate_skip information should be cleared
843 * by kswapd when it goes to sleep. kswapd does not set the
844 * flag itself as the decision to be clear should be directly
845 * based on an allocation request.
846 */
847 if (!current_is_kswapd())
848 zone->compact_blockskip_flush = true;
849
850 return COMPACT_COMPLETE;
851 }
852
853 /*
854 * order == -1 is expected when compacting via
855 * /proc/sys/vm/compact_memory
856 */
857 if (cc->order == -1)
858 return COMPACT_CONTINUE;
859
860 /* Compaction run is not finished if the watermark is not met */
861 watermark = low_wmark_pages(zone);
862 watermark += (1 << cc->order);
863
864 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
865 return COMPACT_CONTINUE;
866
867 /* Direct compactor: Is a suitable page free? */
868 if (cc->page) {
869 /* Was a suitable page captured? */
870 if (*cc->page)
871 return COMPACT_PARTIAL;
872 } else {
873 unsigned int order;
874 for (order = cc->order; order < MAX_ORDER; order++) {
875 struct free_area *area = &zone->free_area[cc->order];
876 /* Job done if page is free of the right migratetype */
877 if (!list_empty(&area->free_list[cc->migratetype]))
878 return COMPACT_PARTIAL;
879
880 /* Job done if allocation would set block type */
881 if (cc->order >= pageblock_order && area->nr_free)
882 return COMPACT_PARTIAL;
883 }
884 }
885
886 return COMPACT_CONTINUE;
887 }
888
889 /*
890 * compaction_suitable: Is this suitable to run compaction on this zone now?
891 * Returns
892 * COMPACT_SKIPPED - If there are too few free pages for compaction
893 * COMPACT_PARTIAL - If the allocation would succeed without compaction
894 * COMPACT_CONTINUE - If compaction should run now
895 */
896 unsigned long compaction_suitable(struct zone *zone, int order)
897 {
898 int fragindex;
899 unsigned long watermark;
900
901 /*
902 * order == -1 is expected when compacting via
903 * /proc/sys/vm/compact_memory
904 */
905 if (order == -1)
906 return COMPACT_CONTINUE;
907
908 /*
909 * Watermarks for order-0 must be met for compaction. Note the 2UL.
910 * This is because during migration, copies of pages need to be
911 * allocated and for a short time, the footprint is higher
912 */
913 watermark = low_wmark_pages(zone) + (2UL << order);
914 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
915 return COMPACT_SKIPPED;
916
917 /*
918 * fragmentation index determines if allocation failures are due to
919 * low memory or external fragmentation
920 *
921 * index of -1000 implies allocations might succeed depending on
922 * watermarks
923 * index towards 0 implies failure is due to lack of memory
924 * index towards 1000 implies failure is due to fragmentation
925 *
926 * Only compact if a failure would be due to fragmentation.
927 */
928 fragindex = fragmentation_index(zone, order);
929 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
930 return COMPACT_SKIPPED;
931
932 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
933 0, 0))
934 return COMPACT_PARTIAL;
935
936 return COMPACT_CONTINUE;
937 }
938
939 static int compact_zone(struct zone *zone, struct compact_control *cc)
940 {
941 int ret;
942 unsigned long start_pfn = zone->zone_start_pfn;
943 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
944
945 ret = compaction_suitable(zone, cc->order);
946 switch (ret) {
947 case COMPACT_PARTIAL:
948 case COMPACT_SKIPPED:
949 /* Compaction is likely to fail */
950 return ret;
951 case COMPACT_CONTINUE:
952 /* Fall through to compaction */
953 ;
954 }
955
956 /*
957 * Setup to move all movable pages to the end of the zone. Used cached
958 * information on where the scanners should start but check that it
959 * is initialised by ensuring the values are within zone boundaries.
960 */
961 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
962 cc->free_pfn = zone->compact_cached_free_pfn;
963 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
964 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
965 zone->compact_cached_free_pfn = cc->free_pfn;
966 }
967 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
968 cc->migrate_pfn = start_pfn;
969 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
970 }
971
972 /*
973 * Clear pageblock skip if there were failures recently and compaction
974 * is about to be retried after being deferred. kswapd does not do
975 * this reset as it'll reset the cached information when going to sleep.
976 */
977 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
978 __reset_isolation_suitable(zone);
979
980 migrate_prep_local();
981
982 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
983 unsigned long nr_migrate, nr_remaining;
984 int err;
985
986 switch (isolate_migratepages(zone, cc)) {
987 case ISOLATE_ABORT:
988 ret = COMPACT_PARTIAL;
989 putback_lru_pages(&cc->migratepages);
990 cc->nr_migratepages = 0;
991 goto out;
992 case ISOLATE_NONE:
993 continue;
994 case ISOLATE_SUCCESS:
995 ;
996 }
997
998 nr_migrate = cc->nr_migratepages;
999 err = migrate_pages(&cc->migratepages, compaction_alloc,
1000 (unsigned long)cc, false,
1001 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
1002 update_nr_listpages(cc);
1003 nr_remaining = cc->nr_migratepages;
1004
1005 count_vm_event(COMPACTBLOCKS);
1006 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
1007 if (nr_remaining)
1008 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
1009 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1010 nr_remaining);
1011
1012 /* Release LRU pages not migrated */
1013 if (err) {
1014 putback_lru_pages(&cc->migratepages);
1015 cc->nr_migratepages = 0;
1016 if (err == -ENOMEM) {
1017 ret = COMPACT_PARTIAL;
1018 goto out;
1019 }
1020 }
1021
1022 /* Capture a page now if it is a suitable size */
1023 compact_capture_page(cc);
1024 }
1025
1026 out:
1027 /* Release free pages and check accounting */
1028 cc->nr_freepages -= release_freepages(&cc->freepages);
1029 VM_BUG_ON(cc->nr_freepages != 0);
1030
1031 return ret;
1032 }
1033
1034 static unsigned long compact_zone_order(struct zone *zone,
1035 int order, gfp_t gfp_mask,
1036 bool sync, bool *contended,
1037 struct page **page)
1038 {
1039 unsigned long ret;
1040 struct compact_control cc = {
1041 .nr_freepages = 0,
1042 .nr_migratepages = 0,
1043 .order = order,
1044 .migratetype = allocflags_to_migratetype(gfp_mask),
1045 .zone = zone,
1046 .sync = sync,
1047 .page = page,
1048 };
1049 INIT_LIST_HEAD(&cc.freepages);
1050 INIT_LIST_HEAD(&cc.migratepages);
1051
1052 ret = compact_zone(zone, &cc);
1053
1054 VM_BUG_ON(!list_empty(&cc.freepages));
1055 VM_BUG_ON(!list_empty(&cc.migratepages));
1056
1057 *contended = cc.contended;
1058 return ret;
1059 }
1060
1061 int sysctl_extfrag_threshold = 500;
1062
1063 /**
1064 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1065 * @zonelist: The zonelist used for the current allocation
1066 * @order: The order of the current allocation
1067 * @gfp_mask: The GFP mask of the current allocation
1068 * @nodemask: The allowed nodes to allocate from
1069 * @sync: Whether migration is synchronous or not
1070 * @contended: Return value that is true if compaction was aborted due to lock contention
1071 * @page: Optionally capture a free page of the requested order during compaction
1072 *
1073 * This is the main entry point for direct page compaction.
1074 */
1075 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1076 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1077 bool sync, bool *contended, struct page **page)
1078 {
1079 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1080 int may_enter_fs = gfp_mask & __GFP_FS;
1081 int may_perform_io = gfp_mask & __GFP_IO;
1082 struct zoneref *z;
1083 struct zone *zone;
1084 int rc = COMPACT_SKIPPED;
1085 int alloc_flags = 0;
1086
1087 /* Check if the GFP flags allow compaction */
1088 if (!order || !may_enter_fs || !may_perform_io)
1089 return rc;
1090
1091 count_vm_event(COMPACTSTALL);
1092
1093 #ifdef CONFIG_CMA
1094 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1095 alloc_flags |= ALLOC_CMA;
1096 #endif
1097 /* Compact each zone in the list */
1098 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1099 nodemask) {
1100 int status;
1101
1102 status = compact_zone_order(zone, order, gfp_mask, sync,
1103 contended, page);
1104 rc = max(status, rc);
1105
1106 /* If a normal allocation would succeed, stop compacting */
1107 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1108 alloc_flags))
1109 break;
1110 }
1111
1112 return rc;
1113 }
1114
1115
1116 /* Compact all zones within a node */
1117 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1118 {
1119 int zoneid;
1120 struct zone *zone;
1121
1122 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1123
1124 zone = &pgdat->node_zones[zoneid];
1125 if (!populated_zone(zone))
1126 continue;
1127
1128 cc->nr_freepages = 0;
1129 cc->nr_migratepages = 0;
1130 cc->zone = zone;
1131 INIT_LIST_HEAD(&cc->freepages);
1132 INIT_LIST_HEAD(&cc->migratepages);
1133
1134 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1135 compact_zone(zone, cc);
1136
1137 if (cc->order > 0) {
1138 int ok = zone_watermark_ok(zone, cc->order,
1139 low_wmark_pages(zone), 0, 0);
1140 if (ok && cc->order >= zone->compact_order_failed)
1141 zone->compact_order_failed = cc->order + 1;
1142 /* Currently async compaction is never deferred. */
1143 else if (!ok && cc->sync)
1144 defer_compaction(zone, cc->order);
1145 }
1146
1147 VM_BUG_ON(!list_empty(&cc->freepages));
1148 VM_BUG_ON(!list_empty(&cc->migratepages));
1149 }
1150
1151 return 0;
1152 }
1153
1154 int compact_pgdat(pg_data_t *pgdat, int order)
1155 {
1156 struct compact_control cc = {
1157 .order = order,
1158 .sync = false,
1159 .page = NULL,
1160 };
1161
1162 return __compact_pgdat(pgdat, &cc);
1163 }
1164
1165 static int compact_node(int nid)
1166 {
1167 struct compact_control cc = {
1168 .order = -1,
1169 .sync = true,
1170 .page = NULL,
1171 };
1172
1173 return __compact_pgdat(NODE_DATA(nid), &cc);
1174 }
1175
1176 /* Compact all nodes in the system */
1177 static int compact_nodes(void)
1178 {
1179 int nid;
1180
1181 /* Flush pending updates to the LRU lists */
1182 lru_add_drain_all();
1183
1184 for_each_online_node(nid)
1185 compact_node(nid);
1186
1187 return COMPACT_COMPLETE;
1188 }
1189
1190 /* The written value is actually unused, all memory is compacted */
1191 int sysctl_compact_memory;
1192
1193 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1194 int sysctl_compaction_handler(struct ctl_table *table, int write,
1195 void __user *buffer, size_t *length, loff_t *ppos)
1196 {
1197 if (write)
1198 return compact_nodes();
1199
1200 return 0;
1201 }
1202
1203 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1204 void __user *buffer, size_t *length, loff_t *ppos)
1205 {
1206 proc_dointvec_minmax(table, write, buffer, length, ppos);
1207
1208 return 0;
1209 }
1210
1211 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1212 ssize_t sysfs_compact_node(struct device *dev,
1213 struct device_attribute *attr,
1214 const char *buf, size_t count)
1215 {
1216 int nid = dev->id;
1217
1218 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1219 /* Flush pending updates to the LRU lists */
1220 lru_add_drain_all();
1221
1222 compact_node(nid);
1223 }
1224
1225 return count;
1226 }
1227 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1228
1229 int compaction_register_node(struct node *node)
1230 {
1231 return device_create_file(&node->dev, &dev_attr_compact);
1232 }
1233
1234 void compaction_unregister_node(struct node *node)
1235 {
1236 return device_remove_file(&node->dev, &dev_attr_compact);
1237 }
1238 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1239
1240 #endif /* CONFIG_COMPACTION */
This page took 0.054667 seconds and 6 git commands to generate.