powerpc: update comments for generic idle conversion
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_mutex
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113 {
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
119
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
133 }
134 mapping->nrpages--;
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
172 }
173
174 /*
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
178 */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 struct address_space *mapping = page->mapping;
182
183 trace_mm_filemap_delete_from_page_cache(page);
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
192 cleancache_invalidate_page(mapping, page);
193
194 page_cache_tree_delete(mapping, page, shadow);
195
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
198
199 __dec_zone_page_state(page, NR_FILE_PAGES);
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
202 BUG_ON(page_mapped(page));
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
215 }
216
217 /**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225 void delete_from_page_cache(struct page *page)
226 {
227 struct address_space *mapping = page->mapping;
228 void (*freepage)(struct page *);
229
230 BUG_ON(!PageLocked(page));
231
232 freepage = mapping->a_ops->freepage;
233 spin_lock_irq(&mapping->tree_lock);
234 __delete_from_page_cache(page, NULL);
235 spin_unlock_irq(&mapping->tree_lock);
236 mem_cgroup_uncharge_cache_page(page);
237
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int sleep_on_page(void *word)
245 {
246 io_schedule();
247 return 0;
248 }
249
250 static int sleep_on_page_killable(void *word)
251 {
252 sleep_on_page(word);
253 return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258 int ret = 0;
259 /* Check for outstanding write errors */
260 if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262 ret = -ENOSPC;
263 if (test_bit(AS_EIO, &mapping->flags) &&
264 test_and_clear_bit(AS_EIO, &mapping->flags))
265 ret = -EIO;
266 return ret;
267 }
268
269 /**
270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
273 * @end: offset in bytes where the range ends (inclusive)
274 * @sync_mode: enable synchronous operation
275 *
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
278 *
279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280 * opposed to a regular memory cleansing writeback. The difference between
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
283 */
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 loff_t end, int sync_mode)
286 {
287 int ret;
288 struct writeback_control wbc = {
289 .sync_mode = sync_mode,
290 .nr_to_write = LONG_MAX,
291 .range_start = start,
292 .range_end = end,
293 };
294
295 if (!mapping_cap_writeback_dirty(mapping))
296 return 0;
297
298 ret = do_writepages(mapping, &wbc);
299 return ret;
300 }
301
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
304 {
305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315 loff_t end)
316 {
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320
321 /**
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
324 *
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
327 */
328 int filemap_flush(struct address_space *mapping)
329 {
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333
334 /**
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
339 *
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
342 */
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 loff_t end_byte)
345 {
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348 struct pagevec pvec;
349 int nr_pages;
350 int ret2, ret = 0;
351
352 if (end_byte < start_byte)
353 goto out;
354
355 pagevec_init(&pvec, 0);
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 unsigned i;
361
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
364
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
367 continue;
368
369 wait_on_page_writeback(page);
370 if (TestClearPageError(page))
371 ret = -EIO;
372 }
373 pagevec_release(&pvec);
374 cond_resched();
375 }
376 out:
377 ret2 = filemap_check_errors(mapping);
378 if (!ret)
379 ret = ret2;
380
381 return ret;
382 }
383 EXPORT_SYMBOL(filemap_fdatawait_range);
384
385 /**
386 * filemap_fdatawait - wait for all under-writeback pages to complete
387 * @mapping: address space structure to wait for
388 *
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
391 */
392 int filemap_fdatawait(struct address_space *mapping)
393 {
394 loff_t i_size = i_size_read(mapping->host);
395
396 if (i_size == 0)
397 return 0;
398
399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
400 }
401 EXPORT_SYMBOL(filemap_fdatawait);
402
403 int filemap_write_and_wait(struct address_space *mapping)
404 {
405 int err = 0;
406
407 if (mapping->nrpages) {
408 err = filemap_fdatawrite(mapping);
409 /*
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
414 */
415 if (err != -EIO) {
416 int err2 = filemap_fdatawait(mapping);
417 if (!err)
418 err = err2;
419 }
420 } else {
421 err = filemap_check_errors(mapping);
422 }
423 return err;
424 }
425 EXPORT_SYMBOL(filemap_write_and_wait);
426
427 /**
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
432 *
433 * Write out and wait upon file offsets lstart->lend, inclusive.
434 *
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
437 */
438 int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
440 {
441 int err = 0;
442
443 if (mapping->nrpages) {
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 WB_SYNC_ALL);
446 /* See comment of filemap_write_and_wait() */
447 if (err != -EIO) {
448 int err2 = filemap_fdatawait_range(mapping,
449 lstart, lend);
450 if (!err)
451 err = err2;
452 }
453 } else {
454 err = filemap_check_errors(mapping);
455 }
456 return err;
457 }
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
459
460 /**
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
465 *
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
471 *
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
474 */
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476 {
477 int error;
478
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
482
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 if (!error) {
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
487
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
490
491 page_cache_get(new);
492 new->mapping = mapping;
493 new->index = offset;
494
495 spin_lock_irq(&mapping->tree_lock);
496 __delete_from_page_cache(old, NULL);
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 BUG_ON(error);
499 mapping->nrpages++;
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old, new);
506 radix_tree_preload_end();
507 if (freepage)
508 freepage(old);
509 page_cache_release(old);
510 }
511
512 return error;
513 }
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
516 static int page_cache_tree_insert(struct address_space *mapping,
517 struct page *page, void **shadowp)
518 {
519 struct radix_tree_node *node;
520 void **slot;
521 int error;
522
523 error = __radix_tree_create(&mapping->page_tree, page->index,
524 &node, &slot);
525 if (error)
526 return error;
527 if (*slot) {
528 void *p;
529
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
532 return -EEXIST;
533 if (shadowp)
534 *shadowp = p;
535 mapping->nrshadows--;
536 if (node)
537 workingset_node_shadows_dec(node);
538 }
539 radix_tree_replace_slot(slot, page);
540 mapping->nrpages++;
541 if (node) {
542 workingset_node_pages_inc(node);
543 /*
544 * Don't track node that contains actual pages.
545 *
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
550 */
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
554 }
555 return 0;
556 }
557
558 static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
561 void **shadowp)
562 {
563 int error;
564
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
567
568 error = mem_cgroup_charge_file(page, current->mm,
569 gfp_mask & GFP_RECLAIM_MASK);
570 if (error)
571 return error;
572
573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
574 if (error) {
575 mem_cgroup_uncharge_cache_page(page);
576 return error;
577 }
578
579 page_cache_get(page);
580 page->mapping = mapping;
581 page->index = offset;
582
583 spin_lock_irq(&mapping->tree_lock);
584 error = page_cache_tree_insert(mapping, page, shadowp);
585 radix_tree_preload_end();
586 if (unlikely(error))
587 goto err_insert;
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 trace_mm_filemap_add_to_page_cache(page);
591 return 0;
592 err_insert:
593 page->mapping = NULL;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping->tree_lock);
596 mem_cgroup_uncharge_cache_page(page);
597 page_cache_release(page);
598 return error;
599 }
600
601 /**
602 * add_to_page_cache_locked - add a locked page to the pagecache
603 * @page: page to add
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
607 *
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
610 */
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 pgoff_t offset, gfp_t gfp_mask)
613 {
614 return __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, NULL);
616 }
617 EXPORT_SYMBOL(add_to_page_cache_locked);
618
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620 pgoff_t offset, gfp_t gfp_mask)
621 {
622 void *shadow = NULL;
623 int ret;
624
625 __set_page_locked(page);
626 ret = __add_to_page_cache_locked(page, mapping, offset,
627 gfp_mask, &shadow);
628 if (unlikely(ret))
629 __clear_page_locked(page);
630 else {
631 /*
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
635 */
636 if (shadow && workingset_refault(shadow)) {
637 SetPageActive(page);
638 workingset_activation(page);
639 } else
640 ClearPageActive(page);
641 lru_cache_add(page);
642 }
643 return ret;
644 }
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
646
647 #ifdef CONFIG_NUMA
648 struct page *__page_cache_alloc(gfp_t gfp)
649 {
650 int n;
651 struct page *page;
652
653 if (cpuset_do_page_mem_spread()) {
654 unsigned int cpuset_mems_cookie;
655 do {
656 cpuset_mems_cookie = read_mems_allowed_begin();
657 n = cpuset_mem_spread_node();
658 page = alloc_pages_exact_node(n, gfp, 0);
659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
660
661 return page;
662 }
663 return alloc_pages(gfp, 0);
664 }
665 EXPORT_SYMBOL(__page_cache_alloc);
666 #endif
667
668 /*
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
676 * collisions.
677 */
678 static wait_queue_head_t *page_waitqueue(struct page *page)
679 {
680 const struct zone *zone = page_zone(page);
681
682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683 }
684
685 static inline void wake_up_page(struct page *page, int bit)
686 {
687 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688 }
689
690 void wait_on_page_bit(struct page *page, int bit_nr)
691 {
692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694 if (test_bit(bit_nr, &page->flags))
695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696 TASK_UNINTERRUPTIBLE);
697 }
698 EXPORT_SYMBOL(wait_on_page_bit);
699
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
701 {
702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704 if (!test_bit(bit_nr, &page->flags))
705 return 0;
706
707 return __wait_on_bit(page_waitqueue(page), &wait,
708 sleep_on_page_killable, TASK_KILLABLE);
709 }
710
711 /**
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
715 *
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
717 */
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719 {
720 wait_queue_head_t *q = page_waitqueue(page);
721 unsigned long flags;
722
723 spin_lock_irqsave(&q->lock, flags);
724 __add_wait_queue(q, waiter);
725 spin_unlock_irqrestore(&q->lock, flags);
726 }
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
729 /**
730 * unlock_page - unlock a locked page
731 * @page: the page
732 *
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737 *
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
740 */
741 void unlock_page(struct page *page)
742 {
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 clear_bit_unlock(PG_locked, &page->flags);
745 smp_mb__after_atomic();
746 wake_up_page(page, PG_locked);
747 }
748 EXPORT_SYMBOL(unlock_page);
749
750 /**
751 * end_page_writeback - end writeback against a page
752 * @page: the page
753 */
754 void end_page_writeback(struct page *page)
755 {
756 /*
757 * TestClearPageReclaim could be used here but it is an atomic
758 * operation and overkill in this particular case. Failing to
759 * shuffle a page marked for immediate reclaim is too mild to
760 * justify taking an atomic operation penalty at the end of
761 * ever page writeback.
762 */
763 if (PageReclaim(page)) {
764 ClearPageReclaim(page);
765 rotate_reclaimable_page(page);
766 }
767
768 if (!test_clear_page_writeback(page))
769 BUG();
770
771 smp_mb__after_atomic();
772 wake_up_page(page, PG_writeback);
773 }
774 EXPORT_SYMBOL(end_page_writeback);
775
776 /*
777 * After completing I/O on a page, call this routine to update the page
778 * flags appropriately
779 */
780 void page_endio(struct page *page, int rw, int err)
781 {
782 if (rw == READ) {
783 if (!err) {
784 SetPageUptodate(page);
785 } else {
786 ClearPageUptodate(page);
787 SetPageError(page);
788 }
789 unlock_page(page);
790 } else { /* rw == WRITE */
791 if (err) {
792 SetPageError(page);
793 if (page->mapping)
794 mapping_set_error(page->mapping, err);
795 }
796 end_page_writeback(page);
797 }
798 }
799 EXPORT_SYMBOL_GPL(page_endio);
800
801 /**
802 * __lock_page - get a lock on the page, assuming we need to sleep to get it
803 * @page: the page to lock
804 */
805 void __lock_page(struct page *page)
806 {
807 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
809 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
810 TASK_UNINTERRUPTIBLE);
811 }
812 EXPORT_SYMBOL(__lock_page);
813
814 int __lock_page_killable(struct page *page)
815 {
816 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
817
818 return __wait_on_bit_lock(page_waitqueue(page), &wait,
819 sleep_on_page_killable, TASK_KILLABLE);
820 }
821 EXPORT_SYMBOL_GPL(__lock_page_killable);
822
823 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
824 unsigned int flags)
825 {
826 if (flags & FAULT_FLAG_ALLOW_RETRY) {
827 /*
828 * CAUTION! In this case, mmap_sem is not released
829 * even though return 0.
830 */
831 if (flags & FAULT_FLAG_RETRY_NOWAIT)
832 return 0;
833
834 up_read(&mm->mmap_sem);
835 if (flags & FAULT_FLAG_KILLABLE)
836 wait_on_page_locked_killable(page);
837 else
838 wait_on_page_locked(page);
839 return 0;
840 } else {
841 if (flags & FAULT_FLAG_KILLABLE) {
842 int ret;
843
844 ret = __lock_page_killable(page);
845 if (ret) {
846 up_read(&mm->mmap_sem);
847 return 0;
848 }
849 } else
850 __lock_page(page);
851 return 1;
852 }
853 }
854
855 /**
856 * page_cache_next_hole - find the next hole (not-present entry)
857 * @mapping: mapping
858 * @index: index
859 * @max_scan: maximum range to search
860 *
861 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
862 * lowest indexed hole.
863 *
864 * Returns: the index of the hole if found, otherwise returns an index
865 * outside of the set specified (in which case 'return - index >=
866 * max_scan' will be true). In rare cases of index wrap-around, 0 will
867 * be returned.
868 *
869 * page_cache_next_hole may be called under rcu_read_lock. However,
870 * like radix_tree_gang_lookup, this will not atomically search a
871 * snapshot of the tree at a single point in time. For example, if a
872 * hole is created at index 5, then subsequently a hole is created at
873 * index 10, page_cache_next_hole covering both indexes may return 10
874 * if called under rcu_read_lock.
875 */
876 pgoff_t page_cache_next_hole(struct address_space *mapping,
877 pgoff_t index, unsigned long max_scan)
878 {
879 unsigned long i;
880
881 for (i = 0; i < max_scan; i++) {
882 struct page *page;
883
884 page = radix_tree_lookup(&mapping->page_tree, index);
885 if (!page || radix_tree_exceptional_entry(page))
886 break;
887 index++;
888 if (index == 0)
889 break;
890 }
891
892 return index;
893 }
894 EXPORT_SYMBOL(page_cache_next_hole);
895
896 /**
897 * page_cache_prev_hole - find the prev hole (not-present entry)
898 * @mapping: mapping
899 * @index: index
900 * @max_scan: maximum range to search
901 *
902 * Search backwards in the range [max(index-max_scan+1, 0), index] for
903 * the first hole.
904 *
905 * Returns: the index of the hole if found, otherwise returns an index
906 * outside of the set specified (in which case 'index - return >=
907 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
908 * will be returned.
909 *
910 * page_cache_prev_hole may be called under rcu_read_lock. However,
911 * like radix_tree_gang_lookup, this will not atomically search a
912 * snapshot of the tree at a single point in time. For example, if a
913 * hole is created at index 10, then subsequently a hole is created at
914 * index 5, page_cache_prev_hole covering both indexes may return 5 if
915 * called under rcu_read_lock.
916 */
917 pgoff_t page_cache_prev_hole(struct address_space *mapping,
918 pgoff_t index, unsigned long max_scan)
919 {
920 unsigned long i;
921
922 for (i = 0; i < max_scan; i++) {
923 struct page *page;
924
925 page = radix_tree_lookup(&mapping->page_tree, index);
926 if (!page || radix_tree_exceptional_entry(page))
927 break;
928 index--;
929 if (index == ULONG_MAX)
930 break;
931 }
932
933 return index;
934 }
935 EXPORT_SYMBOL(page_cache_prev_hole);
936
937 /**
938 * find_get_entry - find and get a page cache entry
939 * @mapping: the address_space to search
940 * @offset: the page cache index
941 *
942 * Looks up the page cache slot at @mapping & @offset. If there is a
943 * page cache page, it is returned with an increased refcount.
944 *
945 * If the slot holds a shadow entry of a previously evicted page, or a
946 * swap entry from shmem/tmpfs, it is returned.
947 *
948 * Otherwise, %NULL is returned.
949 */
950 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
951 {
952 void **pagep;
953 struct page *page;
954
955 rcu_read_lock();
956 repeat:
957 page = NULL;
958 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
959 if (pagep) {
960 page = radix_tree_deref_slot(pagep);
961 if (unlikely(!page))
962 goto out;
963 if (radix_tree_exception(page)) {
964 if (radix_tree_deref_retry(page))
965 goto repeat;
966 /*
967 * A shadow entry of a recently evicted page,
968 * or a swap entry from shmem/tmpfs. Return
969 * it without attempting to raise page count.
970 */
971 goto out;
972 }
973 if (!page_cache_get_speculative(page))
974 goto repeat;
975
976 /*
977 * Has the page moved?
978 * This is part of the lockless pagecache protocol. See
979 * include/linux/pagemap.h for details.
980 */
981 if (unlikely(page != *pagep)) {
982 page_cache_release(page);
983 goto repeat;
984 }
985 }
986 out:
987 rcu_read_unlock();
988
989 return page;
990 }
991 EXPORT_SYMBOL(find_get_entry);
992
993 /**
994 * find_lock_entry - locate, pin and lock a page cache entry
995 * @mapping: the address_space to search
996 * @offset: the page cache index
997 *
998 * Looks up the page cache slot at @mapping & @offset. If there is a
999 * page cache page, it is returned locked and with an increased
1000 * refcount.
1001 *
1002 * If the slot holds a shadow entry of a previously evicted page, or a
1003 * swap entry from shmem/tmpfs, it is returned.
1004 *
1005 * Otherwise, %NULL is returned.
1006 *
1007 * find_lock_entry() may sleep.
1008 */
1009 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1010 {
1011 struct page *page;
1012
1013 repeat:
1014 page = find_get_entry(mapping, offset);
1015 if (page && !radix_tree_exception(page)) {
1016 lock_page(page);
1017 /* Has the page been truncated? */
1018 if (unlikely(page->mapping != mapping)) {
1019 unlock_page(page);
1020 page_cache_release(page);
1021 goto repeat;
1022 }
1023 VM_BUG_ON_PAGE(page->index != offset, page);
1024 }
1025 return page;
1026 }
1027 EXPORT_SYMBOL(find_lock_entry);
1028
1029 /**
1030 * pagecache_get_page - find and get a page reference
1031 * @mapping: the address_space to search
1032 * @offset: the page index
1033 * @fgp_flags: PCG flags
1034 * @gfp_mask: gfp mask to use if a page is to be allocated
1035 *
1036 * Looks up the page cache slot at @mapping & @offset.
1037 *
1038 * PCG flags modify how the page is returned
1039 *
1040 * FGP_ACCESSED: the page will be marked accessed
1041 * FGP_LOCK: Page is return locked
1042 * FGP_CREAT: If page is not present then a new page is allocated using
1043 * @gfp_mask and added to the page cache and the VM's LRU
1044 * list. The page is returned locked and with an increased
1045 * refcount. Otherwise, %NULL is returned.
1046 *
1047 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1048 * if the GFP flags specified for FGP_CREAT are atomic.
1049 *
1050 * If there is a page cache page, it is returned with an increased refcount.
1051 */
1052 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1053 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1054 {
1055 struct page *page;
1056
1057 repeat:
1058 page = find_get_entry(mapping, offset);
1059 if (radix_tree_exceptional_entry(page))
1060 page = NULL;
1061 if (!page)
1062 goto no_page;
1063
1064 if (fgp_flags & FGP_LOCK) {
1065 if (fgp_flags & FGP_NOWAIT) {
1066 if (!trylock_page(page)) {
1067 page_cache_release(page);
1068 return NULL;
1069 }
1070 } else {
1071 lock_page(page);
1072 }
1073
1074 /* Has the page been truncated? */
1075 if (unlikely(page->mapping != mapping)) {
1076 unlock_page(page);
1077 page_cache_release(page);
1078 goto repeat;
1079 }
1080 VM_BUG_ON_PAGE(page->index != offset, page);
1081 }
1082
1083 if (page && (fgp_flags & FGP_ACCESSED))
1084 mark_page_accessed(page);
1085
1086 no_page:
1087 if (!page && (fgp_flags & FGP_CREAT)) {
1088 int err;
1089 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1090 cache_gfp_mask |= __GFP_WRITE;
1091 if (fgp_flags & FGP_NOFS) {
1092 cache_gfp_mask &= ~__GFP_FS;
1093 radix_gfp_mask &= ~__GFP_FS;
1094 }
1095
1096 page = __page_cache_alloc(cache_gfp_mask);
1097 if (!page)
1098 return NULL;
1099
1100 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1101 fgp_flags |= FGP_LOCK;
1102
1103 /* Init accessed so avoit atomic mark_page_accessed later */
1104 if (fgp_flags & FGP_ACCESSED)
1105 init_page_accessed(page);
1106
1107 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1108 if (unlikely(err)) {
1109 page_cache_release(page);
1110 page = NULL;
1111 if (err == -EEXIST)
1112 goto repeat;
1113 }
1114 }
1115
1116 return page;
1117 }
1118 EXPORT_SYMBOL(pagecache_get_page);
1119
1120 /**
1121 * find_get_entries - gang pagecache lookup
1122 * @mapping: The address_space to search
1123 * @start: The starting page cache index
1124 * @nr_entries: The maximum number of entries
1125 * @entries: Where the resulting entries are placed
1126 * @indices: The cache indices corresponding to the entries in @entries
1127 *
1128 * find_get_entries() will search for and return a group of up to
1129 * @nr_entries entries in the mapping. The entries are placed at
1130 * @entries. find_get_entries() takes a reference against any actual
1131 * pages it returns.
1132 *
1133 * The search returns a group of mapping-contiguous page cache entries
1134 * with ascending indexes. There may be holes in the indices due to
1135 * not-present pages.
1136 *
1137 * Any shadow entries of evicted pages, or swap entries from
1138 * shmem/tmpfs, are included in the returned array.
1139 *
1140 * find_get_entries() returns the number of pages and shadow entries
1141 * which were found.
1142 */
1143 unsigned find_get_entries(struct address_space *mapping,
1144 pgoff_t start, unsigned int nr_entries,
1145 struct page **entries, pgoff_t *indices)
1146 {
1147 void **slot;
1148 unsigned int ret = 0;
1149 struct radix_tree_iter iter;
1150
1151 if (!nr_entries)
1152 return 0;
1153
1154 rcu_read_lock();
1155 restart:
1156 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1157 struct page *page;
1158 repeat:
1159 page = radix_tree_deref_slot(slot);
1160 if (unlikely(!page))
1161 continue;
1162 if (radix_tree_exception(page)) {
1163 if (radix_tree_deref_retry(page))
1164 goto restart;
1165 /*
1166 * A shadow entry of a recently evicted page,
1167 * or a swap entry from shmem/tmpfs. Return
1168 * it without attempting to raise page count.
1169 */
1170 goto export;
1171 }
1172 if (!page_cache_get_speculative(page))
1173 goto repeat;
1174
1175 /* Has the page moved? */
1176 if (unlikely(page != *slot)) {
1177 page_cache_release(page);
1178 goto repeat;
1179 }
1180 export:
1181 indices[ret] = iter.index;
1182 entries[ret] = page;
1183 if (++ret == nr_entries)
1184 break;
1185 }
1186 rcu_read_unlock();
1187 return ret;
1188 }
1189
1190 /**
1191 * find_get_pages - gang pagecache lookup
1192 * @mapping: The address_space to search
1193 * @start: The starting page index
1194 * @nr_pages: The maximum number of pages
1195 * @pages: Where the resulting pages are placed
1196 *
1197 * find_get_pages() will search for and return a group of up to
1198 * @nr_pages pages in the mapping. The pages are placed at @pages.
1199 * find_get_pages() takes a reference against the returned pages.
1200 *
1201 * The search returns a group of mapping-contiguous pages with ascending
1202 * indexes. There may be holes in the indices due to not-present pages.
1203 *
1204 * find_get_pages() returns the number of pages which were found.
1205 */
1206 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1207 unsigned int nr_pages, struct page **pages)
1208 {
1209 struct radix_tree_iter iter;
1210 void **slot;
1211 unsigned ret = 0;
1212
1213 if (unlikely(!nr_pages))
1214 return 0;
1215
1216 rcu_read_lock();
1217 restart:
1218 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1219 struct page *page;
1220 repeat:
1221 page = radix_tree_deref_slot(slot);
1222 if (unlikely(!page))
1223 continue;
1224
1225 if (radix_tree_exception(page)) {
1226 if (radix_tree_deref_retry(page)) {
1227 /*
1228 * Transient condition which can only trigger
1229 * when entry at index 0 moves out of or back
1230 * to root: none yet gotten, safe to restart.
1231 */
1232 WARN_ON(iter.index);
1233 goto restart;
1234 }
1235 /*
1236 * A shadow entry of a recently evicted page,
1237 * or a swap entry from shmem/tmpfs. Skip
1238 * over it.
1239 */
1240 continue;
1241 }
1242
1243 if (!page_cache_get_speculative(page))
1244 goto repeat;
1245
1246 /* Has the page moved? */
1247 if (unlikely(page != *slot)) {
1248 page_cache_release(page);
1249 goto repeat;
1250 }
1251
1252 pages[ret] = page;
1253 if (++ret == nr_pages)
1254 break;
1255 }
1256
1257 rcu_read_unlock();
1258 return ret;
1259 }
1260
1261 /**
1262 * find_get_pages_contig - gang contiguous pagecache lookup
1263 * @mapping: The address_space to search
1264 * @index: The starting page index
1265 * @nr_pages: The maximum number of pages
1266 * @pages: Where the resulting pages are placed
1267 *
1268 * find_get_pages_contig() works exactly like find_get_pages(), except
1269 * that the returned number of pages are guaranteed to be contiguous.
1270 *
1271 * find_get_pages_contig() returns the number of pages which were found.
1272 */
1273 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1274 unsigned int nr_pages, struct page **pages)
1275 {
1276 struct radix_tree_iter iter;
1277 void **slot;
1278 unsigned int ret = 0;
1279
1280 if (unlikely(!nr_pages))
1281 return 0;
1282
1283 rcu_read_lock();
1284 restart:
1285 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1286 struct page *page;
1287 repeat:
1288 page = radix_tree_deref_slot(slot);
1289 /* The hole, there no reason to continue */
1290 if (unlikely(!page))
1291 break;
1292
1293 if (radix_tree_exception(page)) {
1294 if (radix_tree_deref_retry(page)) {
1295 /*
1296 * Transient condition which can only trigger
1297 * when entry at index 0 moves out of or back
1298 * to root: none yet gotten, safe to restart.
1299 */
1300 goto restart;
1301 }
1302 /*
1303 * A shadow entry of a recently evicted page,
1304 * or a swap entry from shmem/tmpfs. Stop
1305 * looking for contiguous pages.
1306 */
1307 break;
1308 }
1309
1310 if (!page_cache_get_speculative(page))
1311 goto repeat;
1312
1313 /* Has the page moved? */
1314 if (unlikely(page != *slot)) {
1315 page_cache_release(page);
1316 goto repeat;
1317 }
1318
1319 /*
1320 * must check mapping and index after taking the ref.
1321 * otherwise we can get both false positives and false
1322 * negatives, which is just confusing to the caller.
1323 */
1324 if (page->mapping == NULL || page->index != iter.index) {
1325 page_cache_release(page);
1326 break;
1327 }
1328
1329 pages[ret] = page;
1330 if (++ret == nr_pages)
1331 break;
1332 }
1333 rcu_read_unlock();
1334 return ret;
1335 }
1336 EXPORT_SYMBOL(find_get_pages_contig);
1337
1338 /**
1339 * find_get_pages_tag - find and return pages that match @tag
1340 * @mapping: the address_space to search
1341 * @index: the starting page index
1342 * @tag: the tag index
1343 * @nr_pages: the maximum number of pages
1344 * @pages: where the resulting pages are placed
1345 *
1346 * Like find_get_pages, except we only return pages which are tagged with
1347 * @tag. We update @index to index the next page for the traversal.
1348 */
1349 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1350 int tag, unsigned int nr_pages, struct page **pages)
1351 {
1352 struct radix_tree_iter iter;
1353 void **slot;
1354 unsigned ret = 0;
1355
1356 if (unlikely(!nr_pages))
1357 return 0;
1358
1359 rcu_read_lock();
1360 restart:
1361 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1362 &iter, *index, tag) {
1363 struct page *page;
1364 repeat:
1365 page = radix_tree_deref_slot(slot);
1366 if (unlikely(!page))
1367 continue;
1368
1369 if (radix_tree_exception(page)) {
1370 if (radix_tree_deref_retry(page)) {
1371 /*
1372 * Transient condition which can only trigger
1373 * when entry at index 0 moves out of or back
1374 * to root: none yet gotten, safe to restart.
1375 */
1376 goto restart;
1377 }
1378 /*
1379 * A shadow entry of a recently evicted page.
1380 *
1381 * Those entries should never be tagged, but
1382 * this tree walk is lockless and the tags are
1383 * looked up in bulk, one radix tree node at a
1384 * time, so there is a sizable window for page
1385 * reclaim to evict a page we saw tagged.
1386 *
1387 * Skip over it.
1388 */
1389 continue;
1390 }
1391
1392 if (!page_cache_get_speculative(page))
1393 goto repeat;
1394
1395 /* Has the page moved? */
1396 if (unlikely(page != *slot)) {
1397 page_cache_release(page);
1398 goto repeat;
1399 }
1400
1401 pages[ret] = page;
1402 if (++ret == nr_pages)
1403 break;
1404 }
1405
1406 rcu_read_unlock();
1407
1408 if (ret)
1409 *index = pages[ret - 1]->index + 1;
1410
1411 return ret;
1412 }
1413 EXPORT_SYMBOL(find_get_pages_tag);
1414
1415 /*
1416 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1417 * a _large_ part of the i/o request. Imagine the worst scenario:
1418 *
1419 * ---R__________________________________________B__________
1420 * ^ reading here ^ bad block(assume 4k)
1421 *
1422 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1423 * => failing the whole request => read(R) => read(R+1) =>
1424 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1425 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1426 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1427 *
1428 * It is going insane. Fix it by quickly scaling down the readahead size.
1429 */
1430 static void shrink_readahead_size_eio(struct file *filp,
1431 struct file_ra_state *ra)
1432 {
1433 ra->ra_pages /= 4;
1434 }
1435
1436 /**
1437 * do_generic_file_read - generic file read routine
1438 * @filp: the file to read
1439 * @ppos: current file position
1440 * @iter: data destination
1441 * @written: already copied
1442 *
1443 * This is a generic file read routine, and uses the
1444 * mapping->a_ops->readpage() function for the actual low-level stuff.
1445 *
1446 * This is really ugly. But the goto's actually try to clarify some
1447 * of the logic when it comes to error handling etc.
1448 */
1449 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1450 struct iov_iter *iter, ssize_t written)
1451 {
1452 struct address_space *mapping = filp->f_mapping;
1453 struct inode *inode = mapping->host;
1454 struct file_ra_state *ra = &filp->f_ra;
1455 pgoff_t index;
1456 pgoff_t last_index;
1457 pgoff_t prev_index;
1458 unsigned long offset; /* offset into pagecache page */
1459 unsigned int prev_offset;
1460 int error = 0;
1461
1462 index = *ppos >> PAGE_CACHE_SHIFT;
1463 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1464 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1465 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1466 offset = *ppos & ~PAGE_CACHE_MASK;
1467
1468 for (;;) {
1469 struct page *page;
1470 pgoff_t end_index;
1471 loff_t isize;
1472 unsigned long nr, ret;
1473
1474 cond_resched();
1475 find_page:
1476 page = find_get_page(mapping, index);
1477 if (!page) {
1478 page_cache_sync_readahead(mapping,
1479 ra, filp,
1480 index, last_index - index);
1481 page = find_get_page(mapping, index);
1482 if (unlikely(page == NULL))
1483 goto no_cached_page;
1484 }
1485 if (PageReadahead(page)) {
1486 page_cache_async_readahead(mapping,
1487 ra, filp, page,
1488 index, last_index - index);
1489 }
1490 if (!PageUptodate(page)) {
1491 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1492 !mapping->a_ops->is_partially_uptodate)
1493 goto page_not_up_to_date;
1494 if (!trylock_page(page))
1495 goto page_not_up_to_date;
1496 /* Did it get truncated before we got the lock? */
1497 if (!page->mapping)
1498 goto page_not_up_to_date_locked;
1499 if (!mapping->a_ops->is_partially_uptodate(page,
1500 offset, iter->count))
1501 goto page_not_up_to_date_locked;
1502 unlock_page(page);
1503 }
1504 page_ok:
1505 /*
1506 * i_size must be checked after we know the page is Uptodate.
1507 *
1508 * Checking i_size after the check allows us to calculate
1509 * the correct value for "nr", which means the zero-filled
1510 * part of the page is not copied back to userspace (unless
1511 * another truncate extends the file - this is desired though).
1512 */
1513
1514 isize = i_size_read(inode);
1515 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1516 if (unlikely(!isize || index > end_index)) {
1517 page_cache_release(page);
1518 goto out;
1519 }
1520
1521 /* nr is the maximum number of bytes to copy from this page */
1522 nr = PAGE_CACHE_SIZE;
1523 if (index == end_index) {
1524 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1525 if (nr <= offset) {
1526 page_cache_release(page);
1527 goto out;
1528 }
1529 }
1530 nr = nr - offset;
1531
1532 /* If users can be writing to this page using arbitrary
1533 * virtual addresses, take care about potential aliasing
1534 * before reading the page on the kernel side.
1535 */
1536 if (mapping_writably_mapped(mapping))
1537 flush_dcache_page(page);
1538
1539 /*
1540 * When a sequential read accesses a page several times,
1541 * only mark it as accessed the first time.
1542 */
1543 if (prev_index != index || offset != prev_offset)
1544 mark_page_accessed(page);
1545 prev_index = index;
1546
1547 /*
1548 * Ok, we have the page, and it's up-to-date, so
1549 * now we can copy it to user space...
1550 */
1551
1552 ret = copy_page_to_iter(page, offset, nr, iter);
1553 offset += ret;
1554 index += offset >> PAGE_CACHE_SHIFT;
1555 offset &= ~PAGE_CACHE_MASK;
1556 prev_offset = offset;
1557
1558 page_cache_release(page);
1559 written += ret;
1560 if (!iov_iter_count(iter))
1561 goto out;
1562 if (ret < nr) {
1563 error = -EFAULT;
1564 goto out;
1565 }
1566 continue;
1567
1568 page_not_up_to_date:
1569 /* Get exclusive access to the page ... */
1570 error = lock_page_killable(page);
1571 if (unlikely(error))
1572 goto readpage_error;
1573
1574 page_not_up_to_date_locked:
1575 /* Did it get truncated before we got the lock? */
1576 if (!page->mapping) {
1577 unlock_page(page);
1578 page_cache_release(page);
1579 continue;
1580 }
1581
1582 /* Did somebody else fill it already? */
1583 if (PageUptodate(page)) {
1584 unlock_page(page);
1585 goto page_ok;
1586 }
1587
1588 readpage:
1589 /*
1590 * A previous I/O error may have been due to temporary
1591 * failures, eg. multipath errors.
1592 * PG_error will be set again if readpage fails.
1593 */
1594 ClearPageError(page);
1595 /* Start the actual read. The read will unlock the page. */
1596 error = mapping->a_ops->readpage(filp, page);
1597
1598 if (unlikely(error)) {
1599 if (error == AOP_TRUNCATED_PAGE) {
1600 page_cache_release(page);
1601 error = 0;
1602 goto find_page;
1603 }
1604 goto readpage_error;
1605 }
1606
1607 if (!PageUptodate(page)) {
1608 error = lock_page_killable(page);
1609 if (unlikely(error))
1610 goto readpage_error;
1611 if (!PageUptodate(page)) {
1612 if (page->mapping == NULL) {
1613 /*
1614 * invalidate_mapping_pages got it
1615 */
1616 unlock_page(page);
1617 page_cache_release(page);
1618 goto find_page;
1619 }
1620 unlock_page(page);
1621 shrink_readahead_size_eio(filp, ra);
1622 error = -EIO;
1623 goto readpage_error;
1624 }
1625 unlock_page(page);
1626 }
1627
1628 goto page_ok;
1629
1630 readpage_error:
1631 /* UHHUH! A synchronous read error occurred. Report it */
1632 page_cache_release(page);
1633 goto out;
1634
1635 no_cached_page:
1636 /*
1637 * Ok, it wasn't cached, so we need to create a new
1638 * page..
1639 */
1640 page = page_cache_alloc_cold(mapping);
1641 if (!page) {
1642 error = -ENOMEM;
1643 goto out;
1644 }
1645 error = add_to_page_cache_lru(page, mapping,
1646 index, GFP_KERNEL);
1647 if (error) {
1648 page_cache_release(page);
1649 if (error == -EEXIST) {
1650 error = 0;
1651 goto find_page;
1652 }
1653 goto out;
1654 }
1655 goto readpage;
1656 }
1657
1658 out:
1659 ra->prev_pos = prev_index;
1660 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1661 ra->prev_pos |= prev_offset;
1662
1663 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1664 file_accessed(filp);
1665 return written ? written : error;
1666 }
1667
1668 /*
1669 * Performs necessary checks before doing a write
1670 * @iov: io vector request
1671 * @nr_segs: number of segments in the iovec
1672 * @count: number of bytes to write
1673 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1674 *
1675 * Adjust number of segments and amount of bytes to write (nr_segs should be
1676 * properly initialized first). Returns appropriate error code that caller
1677 * should return or zero in case that write should be allowed.
1678 */
1679 int generic_segment_checks(const struct iovec *iov,
1680 unsigned long *nr_segs, size_t *count, int access_flags)
1681 {
1682 unsigned long seg;
1683 size_t cnt = 0;
1684 for (seg = 0; seg < *nr_segs; seg++) {
1685 const struct iovec *iv = &iov[seg];
1686
1687 /*
1688 * If any segment has a negative length, or the cumulative
1689 * length ever wraps negative then return -EINVAL.
1690 */
1691 cnt += iv->iov_len;
1692 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1693 return -EINVAL;
1694 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1695 continue;
1696 if (seg == 0)
1697 return -EFAULT;
1698 *nr_segs = seg;
1699 cnt -= iv->iov_len; /* This segment is no good */
1700 break;
1701 }
1702 *count = cnt;
1703 return 0;
1704 }
1705 EXPORT_SYMBOL(generic_segment_checks);
1706
1707 /**
1708 * generic_file_aio_read - generic filesystem read routine
1709 * @iocb: kernel I/O control block
1710 * @iov: io vector request
1711 * @nr_segs: number of segments in the iovec
1712 * @pos: current file position
1713 *
1714 * This is the "read()" routine for all filesystems
1715 * that can use the page cache directly.
1716 */
1717 ssize_t
1718 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1719 unsigned long nr_segs, loff_t pos)
1720 {
1721 struct file *filp = iocb->ki_filp;
1722 ssize_t retval;
1723 size_t count;
1724 loff_t *ppos = &iocb->ki_pos;
1725 struct iov_iter i;
1726
1727 count = 0;
1728 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1729 if (retval)
1730 return retval;
1731 iov_iter_init(&i, iov, nr_segs, count, 0);
1732
1733 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1734 if (filp->f_flags & O_DIRECT) {
1735 loff_t size;
1736 struct address_space *mapping;
1737 struct inode *inode;
1738
1739 mapping = filp->f_mapping;
1740 inode = mapping->host;
1741 if (!count)
1742 goto out; /* skip atime */
1743 size = i_size_read(inode);
1744 retval = filemap_write_and_wait_range(mapping, pos,
1745 pos + iov_length(iov, nr_segs) - 1);
1746 if (!retval) {
1747 retval = mapping->a_ops->direct_IO(READ, iocb,
1748 iov, pos, nr_segs);
1749 }
1750 if (retval > 0) {
1751 *ppos = pos + retval;
1752 count -= retval;
1753 /*
1754 * If we did a short DIO read we need to skip the
1755 * section of the iov that we've already read data into.
1756 */
1757 iov_iter_advance(&i, retval);
1758 }
1759
1760 /*
1761 * Btrfs can have a short DIO read if we encounter
1762 * compressed extents, so if there was an error, or if
1763 * we've already read everything we wanted to, or if
1764 * there was a short read because we hit EOF, go ahead
1765 * and return. Otherwise fallthrough to buffered io for
1766 * the rest of the read.
1767 */
1768 if (retval < 0 || !count || *ppos >= size) {
1769 file_accessed(filp);
1770 goto out;
1771 }
1772 }
1773
1774 retval = do_generic_file_read(filp, ppos, &i, retval);
1775 out:
1776 return retval;
1777 }
1778 EXPORT_SYMBOL(generic_file_aio_read);
1779
1780 #ifdef CONFIG_MMU
1781 /**
1782 * page_cache_read - adds requested page to the page cache if not already there
1783 * @file: file to read
1784 * @offset: page index
1785 *
1786 * This adds the requested page to the page cache if it isn't already there,
1787 * and schedules an I/O to read in its contents from disk.
1788 */
1789 static int page_cache_read(struct file *file, pgoff_t offset)
1790 {
1791 struct address_space *mapping = file->f_mapping;
1792 struct page *page;
1793 int ret;
1794
1795 do {
1796 page = page_cache_alloc_cold(mapping);
1797 if (!page)
1798 return -ENOMEM;
1799
1800 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1801 if (ret == 0)
1802 ret = mapping->a_ops->readpage(file, page);
1803 else if (ret == -EEXIST)
1804 ret = 0; /* losing race to add is OK */
1805
1806 page_cache_release(page);
1807
1808 } while (ret == AOP_TRUNCATED_PAGE);
1809
1810 return ret;
1811 }
1812
1813 #define MMAP_LOTSAMISS (100)
1814
1815 /*
1816 * Synchronous readahead happens when we don't even find
1817 * a page in the page cache at all.
1818 */
1819 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1820 struct file_ra_state *ra,
1821 struct file *file,
1822 pgoff_t offset)
1823 {
1824 unsigned long ra_pages;
1825 struct address_space *mapping = file->f_mapping;
1826
1827 /* If we don't want any read-ahead, don't bother */
1828 if (vma->vm_flags & VM_RAND_READ)
1829 return;
1830 if (!ra->ra_pages)
1831 return;
1832
1833 if (vma->vm_flags & VM_SEQ_READ) {
1834 page_cache_sync_readahead(mapping, ra, file, offset,
1835 ra->ra_pages);
1836 return;
1837 }
1838
1839 /* Avoid banging the cache line if not needed */
1840 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1841 ra->mmap_miss++;
1842
1843 /*
1844 * Do we miss much more than hit in this file? If so,
1845 * stop bothering with read-ahead. It will only hurt.
1846 */
1847 if (ra->mmap_miss > MMAP_LOTSAMISS)
1848 return;
1849
1850 /*
1851 * mmap read-around
1852 */
1853 ra_pages = max_sane_readahead(ra->ra_pages);
1854 ra->start = max_t(long, 0, offset - ra_pages / 2);
1855 ra->size = ra_pages;
1856 ra->async_size = ra_pages / 4;
1857 ra_submit(ra, mapping, file);
1858 }
1859
1860 /*
1861 * Asynchronous readahead happens when we find the page and PG_readahead,
1862 * so we want to possibly extend the readahead further..
1863 */
1864 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1865 struct file_ra_state *ra,
1866 struct file *file,
1867 struct page *page,
1868 pgoff_t offset)
1869 {
1870 struct address_space *mapping = file->f_mapping;
1871
1872 /* If we don't want any read-ahead, don't bother */
1873 if (vma->vm_flags & VM_RAND_READ)
1874 return;
1875 if (ra->mmap_miss > 0)
1876 ra->mmap_miss--;
1877 if (PageReadahead(page))
1878 page_cache_async_readahead(mapping, ra, file,
1879 page, offset, ra->ra_pages);
1880 }
1881
1882 /**
1883 * filemap_fault - read in file data for page fault handling
1884 * @vma: vma in which the fault was taken
1885 * @vmf: struct vm_fault containing details of the fault
1886 *
1887 * filemap_fault() is invoked via the vma operations vector for a
1888 * mapped memory region to read in file data during a page fault.
1889 *
1890 * The goto's are kind of ugly, but this streamlines the normal case of having
1891 * it in the page cache, and handles the special cases reasonably without
1892 * having a lot of duplicated code.
1893 */
1894 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1895 {
1896 int error;
1897 struct file *file = vma->vm_file;
1898 struct address_space *mapping = file->f_mapping;
1899 struct file_ra_state *ra = &file->f_ra;
1900 struct inode *inode = mapping->host;
1901 pgoff_t offset = vmf->pgoff;
1902 struct page *page;
1903 loff_t size;
1904 int ret = 0;
1905
1906 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1907 if (offset >= size >> PAGE_CACHE_SHIFT)
1908 return VM_FAULT_SIGBUS;
1909
1910 /*
1911 * Do we have something in the page cache already?
1912 */
1913 page = find_get_page(mapping, offset);
1914 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1915 /*
1916 * We found the page, so try async readahead before
1917 * waiting for the lock.
1918 */
1919 do_async_mmap_readahead(vma, ra, file, page, offset);
1920 } else if (!page) {
1921 /* No page in the page cache at all */
1922 do_sync_mmap_readahead(vma, ra, file, offset);
1923 count_vm_event(PGMAJFAULT);
1924 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1925 ret = VM_FAULT_MAJOR;
1926 retry_find:
1927 page = find_get_page(mapping, offset);
1928 if (!page)
1929 goto no_cached_page;
1930 }
1931
1932 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1933 page_cache_release(page);
1934 return ret | VM_FAULT_RETRY;
1935 }
1936
1937 /* Did it get truncated? */
1938 if (unlikely(page->mapping != mapping)) {
1939 unlock_page(page);
1940 put_page(page);
1941 goto retry_find;
1942 }
1943 VM_BUG_ON_PAGE(page->index != offset, page);
1944
1945 /*
1946 * We have a locked page in the page cache, now we need to check
1947 * that it's up-to-date. If not, it is going to be due to an error.
1948 */
1949 if (unlikely(!PageUptodate(page)))
1950 goto page_not_uptodate;
1951
1952 /*
1953 * Found the page and have a reference on it.
1954 * We must recheck i_size under page lock.
1955 */
1956 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1957 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1958 unlock_page(page);
1959 page_cache_release(page);
1960 return VM_FAULT_SIGBUS;
1961 }
1962
1963 vmf->page = page;
1964 return ret | VM_FAULT_LOCKED;
1965
1966 no_cached_page:
1967 /*
1968 * We're only likely to ever get here if MADV_RANDOM is in
1969 * effect.
1970 */
1971 error = page_cache_read(file, offset);
1972
1973 /*
1974 * The page we want has now been added to the page cache.
1975 * In the unlikely event that someone removed it in the
1976 * meantime, we'll just come back here and read it again.
1977 */
1978 if (error >= 0)
1979 goto retry_find;
1980
1981 /*
1982 * An error return from page_cache_read can result if the
1983 * system is low on memory, or a problem occurs while trying
1984 * to schedule I/O.
1985 */
1986 if (error == -ENOMEM)
1987 return VM_FAULT_OOM;
1988 return VM_FAULT_SIGBUS;
1989
1990 page_not_uptodate:
1991 /*
1992 * Umm, take care of errors if the page isn't up-to-date.
1993 * Try to re-read it _once_. We do this synchronously,
1994 * because there really aren't any performance issues here
1995 * and we need to check for errors.
1996 */
1997 ClearPageError(page);
1998 error = mapping->a_ops->readpage(file, page);
1999 if (!error) {
2000 wait_on_page_locked(page);
2001 if (!PageUptodate(page))
2002 error = -EIO;
2003 }
2004 page_cache_release(page);
2005
2006 if (!error || error == AOP_TRUNCATED_PAGE)
2007 goto retry_find;
2008
2009 /* Things didn't work out. Return zero to tell the mm layer so. */
2010 shrink_readahead_size_eio(file, ra);
2011 return VM_FAULT_SIGBUS;
2012 }
2013 EXPORT_SYMBOL(filemap_fault);
2014
2015 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2016 {
2017 struct radix_tree_iter iter;
2018 void **slot;
2019 struct file *file = vma->vm_file;
2020 struct address_space *mapping = file->f_mapping;
2021 loff_t size;
2022 struct page *page;
2023 unsigned long address = (unsigned long) vmf->virtual_address;
2024 unsigned long addr;
2025 pte_t *pte;
2026
2027 rcu_read_lock();
2028 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2029 if (iter.index > vmf->max_pgoff)
2030 break;
2031 repeat:
2032 page = radix_tree_deref_slot(slot);
2033 if (unlikely(!page))
2034 goto next;
2035 if (radix_tree_exception(page)) {
2036 if (radix_tree_deref_retry(page))
2037 break;
2038 else
2039 goto next;
2040 }
2041
2042 if (!page_cache_get_speculative(page))
2043 goto repeat;
2044
2045 /* Has the page moved? */
2046 if (unlikely(page != *slot)) {
2047 page_cache_release(page);
2048 goto repeat;
2049 }
2050
2051 if (!PageUptodate(page) ||
2052 PageReadahead(page) ||
2053 PageHWPoison(page))
2054 goto skip;
2055 if (!trylock_page(page))
2056 goto skip;
2057
2058 if (page->mapping != mapping || !PageUptodate(page))
2059 goto unlock;
2060
2061 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2062 if (page->index >= size >> PAGE_CACHE_SHIFT)
2063 goto unlock;
2064
2065 pte = vmf->pte + page->index - vmf->pgoff;
2066 if (!pte_none(*pte))
2067 goto unlock;
2068
2069 if (file->f_ra.mmap_miss > 0)
2070 file->f_ra.mmap_miss--;
2071 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2072 do_set_pte(vma, addr, page, pte, false, false);
2073 unlock_page(page);
2074 goto next;
2075 unlock:
2076 unlock_page(page);
2077 skip:
2078 page_cache_release(page);
2079 next:
2080 if (iter.index == vmf->max_pgoff)
2081 break;
2082 }
2083 rcu_read_unlock();
2084 }
2085 EXPORT_SYMBOL(filemap_map_pages);
2086
2087 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2088 {
2089 struct page *page = vmf->page;
2090 struct inode *inode = file_inode(vma->vm_file);
2091 int ret = VM_FAULT_LOCKED;
2092
2093 sb_start_pagefault(inode->i_sb);
2094 file_update_time(vma->vm_file);
2095 lock_page(page);
2096 if (page->mapping != inode->i_mapping) {
2097 unlock_page(page);
2098 ret = VM_FAULT_NOPAGE;
2099 goto out;
2100 }
2101 /*
2102 * We mark the page dirty already here so that when freeze is in
2103 * progress, we are guaranteed that writeback during freezing will
2104 * see the dirty page and writeprotect it again.
2105 */
2106 set_page_dirty(page);
2107 wait_for_stable_page(page);
2108 out:
2109 sb_end_pagefault(inode->i_sb);
2110 return ret;
2111 }
2112 EXPORT_SYMBOL(filemap_page_mkwrite);
2113
2114 const struct vm_operations_struct generic_file_vm_ops = {
2115 .fault = filemap_fault,
2116 .map_pages = filemap_map_pages,
2117 .page_mkwrite = filemap_page_mkwrite,
2118 .remap_pages = generic_file_remap_pages,
2119 };
2120
2121 /* This is used for a general mmap of a disk file */
2122
2123 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2124 {
2125 struct address_space *mapping = file->f_mapping;
2126
2127 if (!mapping->a_ops->readpage)
2128 return -ENOEXEC;
2129 file_accessed(file);
2130 vma->vm_ops = &generic_file_vm_ops;
2131 return 0;
2132 }
2133
2134 /*
2135 * This is for filesystems which do not implement ->writepage.
2136 */
2137 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2138 {
2139 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2140 return -EINVAL;
2141 return generic_file_mmap(file, vma);
2142 }
2143 #else
2144 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2145 {
2146 return -ENOSYS;
2147 }
2148 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2149 {
2150 return -ENOSYS;
2151 }
2152 #endif /* CONFIG_MMU */
2153
2154 EXPORT_SYMBOL(generic_file_mmap);
2155 EXPORT_SYMBOL(generic_file_readonly_mmap);
2156
2157 static struct page *wait_on_page_read(struct page *page)
2158 {
2159 if (!IS_ERR(page)) {
2160 wait_on_page_locked(page);
2161 if (!PageUptodate(page)) {
2162 page_cache_release(page);
2163 page = ERR_PTR(-EIO);
2164 }
2165 }
2166 return page;
2167 }
2168
2169 static struct page *__read_cache_page(struct address_space *mapping,
2170 pgoff_t index,
2171 int (*filler)(void *, struct page *),
2172 void *data,
2173 gfp_t gfp)
2174 {
2175 struct page *page;
2176 int err;
2177 repeat:
2178 page = find_get_page(mapping, index);
2179 if (!page) {
2180 page = __page_cache_alloc(gfp | __GFP_COLD);
2181 if (!page)
2182 return ERR_PTR(-ENOMEM);
2183 err = add_to_page_cache_lru(page, mapping, index, gfp);
2184 if (unlikely(err)) {
2185 page_cache_release(page);
2186 if (err == -EEXIST)
2187 goto repeat;
2188 /* Presumably ENOMEM for radix tree node */
2189 return ERR_PTR(err);
2190 }
2191 err = filler(data, page);
2192 if (err < 0) {
2193 page_cache_release(page);
2194 page = ERR_PTR(err);
2195 } else {
2196 page = wait_on_page_read(page);
2197 }
2198 }
2199 return page;
2200 }
2201
2202 static struct page *do_read_cache_page(struct address_space *mapping,
2203 pgoff_t index,
2204 int (*filler)(void *, struct page *),
2205 void *data,
2206 gfp_t gfp)
2207
2208 {
2209 struct page *page;
2210 int err;
2211
2212 retry:
2213 page = __read_cache_page(mapping, index, filler, data, gfp);
2214 if (IS_ERR(page))
2215 return page;
2216 if (PageUptodate(page))
2217 goto out;
2218
2219 lock_page(page);
2220 if (!page->mapping) {
2221 unlock_page(page);
2222 page_cache_release(page);
2223 goto retry;
2224 }
2225 if (PageUptodate(page)) {
2226 unlock_page(page);
2227 goto out;
2228 }
2229 err = filler(data, page);
2230 if (err < 0) {
2231 page_cache_release(page);
2232 return ERR_PTR(err);
2233 } else {
2234 page = wait_on_page_read(page);
2235 if (IS_ERR(page))
2236 return page;
2237 }
2238 out:
2239 mark_page_accessed(page);
2240 return page;
2241 }
2242
2243 /**
2244 * read_cache_page - read into page cache, fill it if needed
2245 * @mapping: the page's address_space
2246 * @index: the page index
2247 * @filler: function to perform the read
2248 * @data: first arg to filler(data, page) function, often left as NULL
2249 *
2250 * Read into the page cache. If a page already exists, and PageUptodate() is
2251 * not set, try to fill the page and wait for it to become unlocked.
2252 *
2253 * If the page does not get brought uptodate, return -EIO.
2254 */
2255 struct page *read_cache_page(struct address_space *mapping,
2256 pgoff_t index,
2257 int (*filler)(void *, struct page *),
2258 void *data)
2259 {
2260 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2261 }
2262 EXPORT_SYMBOL(read_cache_page);
2263
2264 /**
2265 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2266 * @mapping: the page's address_space
2267 * @index: the page index
2268 * @gfp: the page allocator flags to use if allocating
2269 *
2270 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2271 * any new page allocations done using the specified allocation flags.
2272 *
2273 * If the page does not get brought uptodate, return -EIO.
2274 */
2275 struct page *read_cache_page_gfp(struct address_space *mapping,
2276 pgoff_t index,
2277 gfp_t gfp)
2278 {
2279 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2280
2281 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2282 }
2283 EXPORT_SYMBOL(read_cache_page_gfp);
2284
2285 /*
2286 * Performs necessary checks before doing a write
2287 *
2288 * Can adjust writing position or amount of bytes to write.
2289 * Returns appropriate error code that caller should return or
2290 * zero in case that write should be allowed.
2291 */
2292 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2293 {
2294 struct inode *inode = file->f_mapping->host;
2295 unsigned long limit = rlimit(RLIMIT_FSIZE);
2296
2297 if (unlikely(*pos < 0))
2298 return -EINVAL;
2299
2300 if (!isblk) {
2301 /* FIXME: this is for backwards compatibility with 2.4 */
2302 if (file->f_flags & O_APPEND)
2303 *pos = i_size_read(inode);
2304
2305 if (limit != RLIM_INFINITY) {
2306 if (*pos >= limit) {
2307 send_sig(SIGXFSZ, current, 0);
2308 return -EFBIG;
2309 }
2310 if (*count > limit - (typeof(limit))*pos) {
2311 *count = limit - (typeof(limit))*pos;
2312 }
2313 }
2314 }
2315
2316 /*
2317 * LFS rule
2318 */
2319 if (unlikely(*pos + *count > MAX_NON_LFS &&
2320 !(file->f_flags & O_LARGEFILE))) {
2321 if (*pos >= MAX_NON_LFS) {
2322 return -EFBIG;
2323 }
2324 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2325 *count = MAX_NON_LFS - (unsigned long)*pos;
2326 }
2327 }
2328
2329 /*
2330 * Are we about to exceed the fs block limit ?
2331 *
2332 * If we have written data it becomes a short write. If we have
2333 * exceeded without writing data we send a signal and return EFBIG.
2334 * Linus frestrict idea will clean these up nicely..
2335 */
2336 if (likely(!isblk)) {
2337 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2338 if (*count || *pos > inode->i_sb->s_maxbytes) {
2339 return -EFBIG;
2340 }
2341 /* zero-length writes at ->s_maxbytes are OK */
2342 }
2343
2344 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2345 *count = inode->i_sb->s_maxbytes - *pos;
2346 } else {
2347 #ifdef CONFIG_BLOCK
2348 loff_t isize;
2349 if (bdev_read_only(I_BDEV(inode)))
2350 return -EPERM;
2351 isize = i_size_read(inode);
2352 if (*pos >= isize) {
2353 if (*count || *pos > isize)
2354 return -ENOSPC;
2355 }
2356
2357 if (*pos + *count > isize)
2358 *count = isize - *pos;
2359 #else
2360 return -EPERM;
2361 #endif
2362 }
2363 return 0;
2364 }
2365 EXPORT_SYMBOL(generic_write_checks);
2366
2367 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2368 loff_t pos, unsigned len, unsigned flags,
2369 struct page **pagep, void **fsdata)
2370 {
2371 const struct address_space_operations *aops = mapping->a_ops;
2372
2373 return aops->write_begin(file, mapping, pos, len, flags,
2374 pagep, fsdata);
2375 }
2376 EXPORT_SYMBOL(pagecache_write_begin);
2377
2378 int pagecache_write_end(struct file *file, struct address_space *mapping,
2379 loff_t pos, unsigned len, unsigned copied,
2380 struct page *page, void *fsdata)
2381 {
2382 const struct address_space_operations *aops = mapping->a_ops;
2383
2384 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2385 }
2386 EXPORT_SYMBOL(pagecache_write_end);
2387
2388 ssize_t
2389 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2390 unsigned long *nr_segs, loff_t pos,
2391 size_t count, size_t ocount)
2392 {
2393 struct file *file = iocb->ki_filp;
2394 struct address_space *mapping = file->f_mapping;
2395 struct inode *inode = mapping->host;
2396 ssize_t written;
2397 size_t write_len;
2398 pgoff_t end;
2399
2400 if (count != ocount)
2401 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2402
2403 write_len = iov_length(iov, *nr_segs);
2404 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2405
2406 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2407 if (written)
2408 goto out;
2409
2410 /*
2411 * After a write we want buffered reads to be sure to go to disk to get
2412 * the new data. We invalidate clean cached page from the region we're
2413 * about to write. We do this *before* the write so that we can return
2414 * without clobbering -EIOCBQUEUED from ->direct_IO().
2415 */
2416 if (mapping->nrpages) {
2417 written = invalidate_inode_pages2_range(mapping,
2418 pos >> PAGE_CACHE_SHIFT, end);
2419 /*
2420 * If a page can not be invalidated, return 0 to fall back
2421 * to buffered write.
2422 */
2423 if (written) {
2424 if (written == -EBUSY)
2425 return 0;
2426 goto out;
2427 }
2428 }
2429
2430 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2431
2432 /*
2433 * Finally, try again to invalidate clean pages which might have been
2434 * cached by non-direct readahead, or faulted in by get_user_pages()
2435 * if the source of the write was an mmap'ed region of the file
2436 * we're writing. Either one is a pretty crazy thing to do,
2437 * so we don't support it 100%. If this invalidation
2438 * fails, tough, the write still worked...
2439 */
2440 if (mapping->nrpages) {
2441 invalidate_inode_pages2_range(mapping,
2442 pos >> PAGE_CACHE_SHIFT, end);
2443 }
2444
2445 if (written > 0) {
2446 pos += written;
2447 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2448 i_size_write(inode, pos);
2449 mark_inode_dirty(inode);
2450 }
2451 iocb->ki_pos = pos;
2452 }
2453 out:
2454 return written;
2455 }
2456 EXPORT_SYMBOL(generic_file_direct_write);
2457
2458 /*
2459 * Find or create a page at the given pagecache position. Return the locked
2460 * page. This function is specifically for buffered writes.
2461 */
2462 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2463 pgoff_t index, unsigned flags)
2464 {
2465 struct page *page;
2466 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2467
2468 if (flags & AOP_FLAG_NOFS)
2469 fgp_flags |= FGP_NOFS;
2470
2471 page = pagecache_get_page(mapping, index, fgp_flags,
2472 mapping_gfp_mask(mapping),
2473 GFP_KERNEL);
2474 if (page)
2475 wait_for_stable_page(page);
2476
2477 return page;
2478 }
2479 EXPORT_SYMBOL(grab_cache_page_write_begin);
2480
2481 ssize_t generic_perform_write(struct file *file,
2482 struct iov_iter *i, loff_t pos)
2483 {
2484 struct address_space *mapping = file->f_mapping;
2485 const struct address_space_operations *a_ops = mapping->a_ops;
2486 long status = 0;
2487 ssize_t written = 0;
2488 unsigned int flags = 0;
2489
2490 /*
2491 * Copies from kernel address space cannot fail (NFSD is a big user).
2492 */
2493 if (segment_eq(get_fs(), KERNEL_DS))
2494 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2495
2496 do {
2497 struct page *page;
2498 unsigned long offset; /* Offset into pagecache page */
2499 unsigned long bytes; /* Bytes to write to page */
2500 size_t copied; /* Bytes copied from user */
2501 void *fsdata;
2502
2503 offset = (pos & (PAGE_CACHE_SIZE - 1));
2504 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2505 iov_iter_count(i));
2506
2507 again:
2508 /*
2509 * Bring in the user page that we will copy from _first_.
2510 * Otherwise there's a nasty deadlock on copying from the
2511 * same page as we're writing to, without it being marked
2512 * up-to-date.
2513 *
2514 * Not only is this an optimisation, but it is also required
2515 * to check that the address is actually valid, when atomic
2516 * usercopies are used, below.
2517 */
2518 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2519 status = -EFAULT;
2520 break;
2521 }
2522
2523 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2524 &page, &fsdata);
2525 if (unlikely(status < 0))
2526 break;
2527
2528 if (mapping_writably_mapped(mapping))
2529 flush_dcache_page(page);
2530
2531 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2532 flush_dcache_page(page);
2533
2534 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2535 page, fsdata);
2536 if (unlikely(status < 0))
2537 break;
2538 copied = status;
2539
2540 cond_resched();
2541
2542 iov_iter_advance(i, copied);
2543 if (unlikely(copied == 0)) {
2544 /*
2545 * If we were unable to copy any data at all, we must
2546 * fall back to a single segment length write.
2547 *
2548 * If we didn't fallback here, we could livelock
2549 * because not all segments in the iov can be copied at
2550 * once without a pagefault.
2551 */
2552 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2553 iov_iter_single_seg_count(i));
2554 goto again;
2555 }
2556 pos += copied;
2557 written += copied;
2558
2559 balance_dirty_pages_ratelimited(mapping);
2560 if (fatal_signal_pending(current)) {
2561 status = -EINTR;
2562 break;
2563 }
2564 } while (iov_iter_count(i));
2565
2566 return written ? written : status;
2567 }
2568 EXPORT_SYMBOL(generic_perform_write);
2569
2570 /**
2571 * __generic_file_aio_write - write data to a file
2572 * @iocb: IO state structure (file, offset, etc.)
2573 * @iov: vector with data to write
2574 * @nr_segs: number of segments in the vector
2575 *
2576 * This function does all the work needed for actually writing data to a
2577 * file. It does all basic checks, removes SUID from the file, updates
2578 * modification times and calls proper subroutines depending on whether we
2579 * do direct IO or a standard buffered write.
2580 *
2581 * It expects i_mutex to be grabbed unless we work on a block device or similar
2582 * object which does not need locking at all.
2583 *
2584 * This function does *not* take care of syncing data in case of O_SYNC write.
2585 * A caller has to handle it. This is mainly due to the fact that we want to
2586 * avoid syncing under i_mutex.
2587 */
2588 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2589 unsigned long nr_segs)
2590 {
2591 struct file *file = iocb->ki_filp;
2592 struct address_space * mapping = file->f_mapping;
2593 size_t ocount; /* original count */
2594 size_t count; /* after file limit checks */
2595 struct inode *inode = mapping->host;
2596 loff_t pos = iocb->ki_pos;
2597 ssize_t written = 0;
2598 ssize_t err;
2599 ssize_t status;
2600 struct iov_iter from;
2601
2602 ocount = 0;
2603 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2604 if (err)
2605 return err;
2606
2607 count = ocount;
2608
2609 /* We can write back this queue in page reclaim */
2610 current->backing_dev_info = mapping->backing_dev_info;
2611 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2612 if (err)
2613 goto out;
2614
2615 if (count == 0)
2616 goto out;
2617
2618 err = file_remove_suid(file);
2619 if (err)
2620 goto out;
2621
2622 err = file_update_time(file);
2623 if (err)
2624 goto out;
2625
2626 iov_iter_init(&from, iov, nr_segs, count, 0);
2627
2628 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2629 if (unlikely(file->f_flags & O_DIRECT)) {
2630 loff_t endbyte;
2631
2632 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
2633 count, ocount);
2634 if (written < 0 || written == count)
2635 goto out;
2636 iov_iter_advance(&from, written);
2637
2638 /*
2639 * direct-io write to a hole: fall through to buffered I/O
2640 * for completing the rest of the request.
2641 */
2642 pos += written;
2643 count -= written;
2644
2645 status = generic_perform_write(file, &from, pos);
2646 /*
2647 * If generic_perform_write() returned a synchronous error
2648 * then we want to return the number of bytes which were
2649 * direct-written, or the error code if that was zero. Note
2650 * that this differs from normal direct-io semantics, which
2651 * will return -EFOO even if some bytes were written.
2652 */
2653 if (unlikely(status < 0) && !written) {
2654 err = status;
2655 goto out;
2656 }
2657 iocb->ki_pos = pos + status;
2658 /*
2659 * We need to ensure that the page cache pages are written to
2660 * disk and invalidated to preserve the expected O_DIRECT
2661 * semantics.
2662 */
2663 endbyte = pos + status - 1;
2664 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2665 if (err == 0) {
2666 written += status;
2667 invalidate_mapping_pages(mapping,
2668 pos >> PAGE_CACHE_SHIFT,
2669 endbyte >> PAGE_CACHE_SHIFT);
2670 } else {
2671 /*
2672 * We don't know how much we wrote, so just return
2673 * the number of bytes which were direct-written
2674 */
2675 }
2676 } else {
2677 written = generic_perform_write(file, &from, pos);
2678 if (likely(written >= 0))
2679 iocb->ki_pos = pos + written;
2680 }
2681 out:
2682 current->backing_dev_info = NULL;
2683 return written ? written : err;
2684 }
2685 EXPORT_SYMBOL(__generic_file_aio_write);
2686
2687 /**
2688 * generic_file_aio_write - write data to a file
2689 * @iocb: IO state structure
2690 * @iov: vector with data to write
2691 * @nr_segs: number of segments in the vector
2692 * @pos: position in file where to write
2693 *
2694 * This is a wrapper around __generic_file_aio_write() to be used by most
2695 * filesystems. It takes care of syncing the file in case of O_SYNC file
2696 * and acquires i_mutex as needed.
2697 */
2698 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2699 unsigned long nr_segs, loff_t pos)
2700 {
2701 struct file *file = iocb->ki_filp;
2702 struct inode *inode = file->f_mapping->host;
2703 ssize_t ret;
2704
2705 BUG_ON(iocb->ki_pos != pos);
2706
2707 mutex_lock(&inode->i_mutex);
2708 ret = __generic_file_aio_write(iocb, iov, nr_segs);
2709 mutex_unlock(&inode->i_mutex);
2710
2711 if (ret > 0) {
2712 ssize_t err;
2713
2714 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2715 if (err < 0)
2716 ret = err;
2717 }
2718 return ret;
2719 }
2720 EXPORT_SYMBOL(generic_file_aio_write);
2721
2722 /**
2723 * try_to_release_page() - release old fs-specific metadata on a page
2724 *
2725 * @page: the page which the kernel is trying to free
2726 * @gfp_mask: memory allocation flags (and I/O mode)
2727 *
2728 * The address_space is to try to release any data against the page
2729 * (presumably at page->private). If the release was successful, return `1'.
2730 * Otherwise return zero.
2731 *
2732 * This may also be called if PG_fscache is set on a page, indicating that the
2733 * page is known to the local caching routines.
2734 *
2735 * The @gfp_mask argument specifies whether I/O may be performed to release
2736 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2737 *
2738 */
2739 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2740 {
2741 struct address_space * const mapping = page->mapping;
2742
2743 BUG_ON(!PageLocked(page));
2744 if (PageWriteback(page))
2745 return 0;
2746
2747 if (mapping && mapping->a_ops->releasepage)
2748 return mapping->a_ops->releasepage(page, gfp_mask);
2749 return try_to_free_buffers(page);
2750 }
2751
2752 EXPORT_SYMBOL(try_to_release_page);
This page took 0.107821 seconds and 5 git commands to generate.