b418405903bc88ccd8a842cb670f79a58c72db59
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115 {
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
121
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
127 mapping->nrexceptional++;
128 /*
129 * Make sure the nrexceptional update is committed before
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
135 }
136 mapping->nrpages--;
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
174 }
175
176 /*
177 * Delete a page from the page cache and free it. Caller has to make
178 * sure the page is locked and that nobody else uses it - or that usage
179 * is safe. The caller must hold the mapping's tree_lock.
180 */
181 void __delete_from_page_cache(struct page *page, void *shadow)
182 {
183 struct address_space *mapping = page->mapping;
184
185 trace_mm_filemap_delete_from_page_cache(page);
186 /*
187 * if we're uptodate, flush out into the cleancache, otherwise
188 * invalidate any existing cleancache entries. We can't leave
189 * stale data around in the cleancache once our page is gone
190 */
191 if (PageUptodate(page) && PageMappedToDisk(page))
192 cleancache_put_page(page);
193 else
194 cleancache_invalidate_page(mapping, page);
195
196 VM_BUG_ON_PAGE(page_mapped(page), page);
197 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198 int mapcount;
199
200 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
201 current->comm, page_to_pfn(page));
202 dump_page(page, "still mapped when deleted");
203 dump_stack();
204 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205
206 mapcount = page_mapcount(page);
207 if (mapping_exiting(mapping) &&
208 page_count(page) >= mapcount + 2) {
209 /*
210 * All vmas have already been torn down, so it's
211 * a good bet that actually the page is unmapped,
212 * and we'd prefer not to leak it: if we're wrong,
213 * some other bad page check should catch it later.
214 */
215 page_mapcount_reset(page);
216 page_ref_sub(page, mapcount);
217 }
218 }
219
220 page_cache_tree_delete(mapping, page, shadow);
221
222 page->mapping = NULL;
223 /* Leave page->index set: truncation lookup relies upon it */
224
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (!PageHuge(page))
227 __dec_zone_page_state(page, NR_FILE_PAGES);
228 if (PageSwapBacked(page))
229 __dec_zone_page_state(page, NR_SHMEM);
230
231 /*
232 * At this point page must be either written or cleaned by truncate.
233 * Dirty page here signals a bug and loss of unwritten data.
234 *
235 * This fixes dirty accounting after removing the page entirely but
236 * leaves PageDirty set: it has no effect for truncated page and
237 * anyway will be cleared before returning page into buddy allocator.
238 */
239 if (WARN_ON_ONCE(PageDirty(page)))
240 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
241 }
242
243 /**
244 * delete_from_page_cache - delete page from page cache
245 * @page: the page which the kernel is trying to remove from page cache
246 *
247 * This must be called only on pages that have been verified to be in the page
248 * cache and locked. It will never put the page into the free list, the caller
249 * has a reference on the page.
250 */
251 void delete_from_page_cache(struct page *page)
252 {
253 struct address_space *mapping = page->mapping;
254 unsigned long flags;
255
256 void (*freepage)(struct page *);
257
258 BUG_ON(!PageLocked(page));
259
260 freepage = mapping->a_ops->freepage;
261
262 spin_lock_irqsave(&mapping->tree_lock, flags);
263 __delete_from_page_cache(page, NULL);
264 spin_unlock_irqrestore(&mapping->tree_lock, flags);
265
266 if (freepage)
267 freepage(page);
268 put_page(page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271
272 static int filemap_check_errors(struct address_space *mapping)
273 {
274 int ret = 0;
275 /* Check for outstanding write errors */
276 if (test_bit(AS_ENOSPC, &mapping->flags) &&
277 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
278 ret = -ENOSPC;
279 if (test_bit(AS_EIO, &mapping->flags) &&
280 test_and_clear_bit(AS_EIO, &mapping->flags))
281 ret = -EIO;
282 return ret;
283 }
284
285 /**
286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
287 * @mapping: address space structure to write
288 * @start: offset in bytes where the range starts
289 * @end: offset in bytes where the range ends (inclusive)
290 * @sync_mode: enable synchronous operation
291 *
292 * Start writeback against all of a mapping's dirty pages that lie
293 * within the byte offsets <start, end> inclusive.
294 *
295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
296 * opposed to a regular memory cleansing writeback. The difference between
297 * these two operations is that if a dirty page/buffer is encountered, it must
298 * be waited upon, and not just skipped over.
299 */
300 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301 loff_t end, int sync_mode)
302 {
303 int ret;
304 struct writeback_control wbc = {
305 .sync_mode = sync_mode,
306 .nr_to_write = LONG_MAX,
307 .range_start = start,
308 .range_end = end,
309 };
310
311 if (!mapping_cap_writeback_dirty(mapping))
312 return 0;
313
314 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
315 ret = do_writepages(mapping, &wbc);
316 wbc_detach_inode(&wbc);
317 return ret;
318 }
319
320 static inline int __filemap_fdatawrite(struct address_space *mapping,
321 int sync_mode)
322 {
323 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
324 }
325
326 int filemap_fdatawrite(struct address_space *mapping)
327 {
328 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329 }
330 EXPORT_SYMBOL(filemap_fdatawrite);
331
332 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 loff_t end)
334 {
335 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336 }
337 EXPORT_SYMBOL(filemap_fdatawrite_range);
338
339 /**
340 * filemap_flush - mostly a non-blocking flush
341 * @mapping: target address_space
342 *
343 * This is a mostly non-blocking flush. Not suitable for data-integrity
344 * purposes - I/O may not be started against all dirty pages.
345 */
346 int filemap_flush(struct address_space *mapping)
347 {
348 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349 }
350 EXPORT_SYMBOL(filemap_flush);
351
352 static int __filemap_fdatawait_range(struct address_space *mapping,
353 loff_t start_byte, loff_t end_byte)
354 {
355 pgoff_t index = start_byte >> PAGE_SHIFT;
356 pgoff_t end = end_byte >> PAGE_SHIFT;
357 struct pagevec pvec;
358 int nr_pages;
359 int ret = 0;
360
361 if (end_byte < start_byte)
362 goto out;
363
364 pagevec_init(&pvec, 0);
365 while ((index <= end) &&
366 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367 PAGECACHE_TAG_WRITEBACK,
368 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369 unsigned i;
370
371 for (i = 0; i < nr_pages; i++) {
372 struct page *page = pvec.pages[i];
373
374 /* until radix tree lookup accepts end_index */
375 if (page->index > end)
376 continue;
377
378 wait_on_page_writeback(page);
379 if (TestClearPageError(page))
380 ret = -EIO;
381 }
382 pagevec_release(&pvec);
383 cond_resched();
384 }
385 out:
386 return ret;
387 }
388
389 /**
390 * filemap_fdatawait_range - wait for writeback to complete
391 * @mapping: address space structure to wait for
392 * @start_byte: offset in bytes where the range starts
393 * @end_byte: offset in bytes where the range ends (inclusive)
394 *
395 * Walk the list of under-writeback pages of the given address space
396 * in the given range and wait for all of them. Check error status of
397 * the address space and return it.
398 *
399 * Since the error status of the address space is cleared by this function,
400 * callers are responsible for checking the return value and handling and/or
401 * reporting the error.
402 */
403 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404 loff_t end_byte)
405 {
406 int ret, ret2;
407
408 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
409 ret2 = filemap_check_errors(mapping);
410 if (!ret)
411 ret = ret2;
412
413 return ret;
414 }
415 EXPORT_SYMBOL(filemap_fdatawait_range);
416
417 /**
418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419 * @mapping: address space structure to wait for
420 *
421 * Walk the list of under-writeback pages of the given address space
422 * and wait for all of them. Unlike filemap_fdatawait(), this function
423 * does not clear error status of the address space.
424 *
425 * Use this function if callers don't handle errors themselves. Expected
426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427 * fsfreeze(8)
428 */
429 void filemap_fdatawait_keep_errors(struct address_space *mapping)
430 {
431 loff_t i_size = i_size_read(mapping->host);
432
433 if (i_size == 0)
434 return;
435
436 __filemap_fdatawait_range(mapping, 0, i_size - 1);
437 }
438
439 /**
440 * filemap_fdatawait - wait for all under-writeback pages to complete
441 * @mapping: address space structure to wait for
442 *
443 * Walk the list of under-writeback pages of the given address space
444 * and wait for all of them. Check error status of the address space
445 * and return it.
446 *
447 * Since the error status of the address space is cleared by this function,
448 * callers are responsible for checking the return value and handling and/or
449 * reporting the error.
450 */
451 int filemap_fdatawait(struct address_space *mapping)
452 {
453 loff_t i_size = i_size_read(mapping->host);
454
455 if (i_size == 0)
456 return 0;
457
458 return filemap_fdatawait_range(mapping, 0, i_size - 1);
459 }
460 EXPORT_SYMBOL(filemap_fdatawait);
461
462 int filemap_write_and_wait(struct address_space *mapping)
463 {
464 int err = 0;
465
466 if ((!dax_mapping(mapping) && mapping->nrpages) ||
467 (dax_mapping(mapping) && mapping->nrexceptional)) {
468 err = filemap_fdatawrite(mapping);
469 /*
470 * Even if the above returned error, the pages may be
471 * written partially (e.g. -ENOSPC), so we wait for it.
472 * But the -EIO is special case, it may indicate the worst
473 * thing (e.g. bug) happened, so we avoid waiting for it.
474 */
475 if (err != -EIO) {
476 int err2 = filemap_fdatawait(mapping);
477 if (!err)
478 err = err2;
479 }
480 } else {
481 err = filemap_check_errors(mapping);
482 }
483 return err;
484 }
485 EXPORT_SYMBOL(filemap_write_and_wait);
486
487 /**
488 * filemap_write_and_wait_range - write out & wait on a file range
489 * @mapping: the address_space for the pages
490 * @lstart: offset in bytes where the range starts
491 * @lend: offset in bytes where the range ends (inclusive)
492 *
493 * Write out and wait upon file offsets lstart->lend, inclusive.
494 *
495 * Note that `lend' is inclusive (describes the last byte to be written) so
496 * that this function can be used to write to the very end-of-file (end = -1).
497 */
498 int filemap_write_and_wait_range(struct address_space *mapping,
499 loff_t lstart, loff_t lend)
500 {
501 int err = 0;
502
503 if ((!dax_mapping(mapping) && mapping->nrpages) ||
504 (dax_mapping(mapping) && mapping->nrexceptional)) {
505 err = __filemap_fdatawrite_range(mapping, lstart, lend,
506 WB_SYNC_ALL);
507 /* See comment of filemap_write_and_wait() */
508 if (err != -EIO) {
509 int err2 = filemap_fdatawait_range(mapping,
510 lstart, lend);
511 if (!err)
512 err = err2;
513 }
514 } else {
515 err = filemap_check_errors(mapping);
516 }
517 return err;
518 }
519 EXPORT_SYMBOL(filemap_write_and_wait_range);
520
521 /**
522 * replace_page_cache_page - replace a pagecache page with a new one
523 * @old: page to be replaced
524 * @new: page to replace with
525 * @gfp_mask: allocation mode
526 *
527 * This function replaces a page in the pagecache with a new one. On
528 * success it acquires the pagecache reference for the new page and
529 * drops it for the old page. Both the old and new pages must be
530 * locked. This function does not add the new page to the LRU, the
531 * caller must do that.
532 *
533 * The remove + add is atomic. The only way this function can fail is
534 * memory allocation failure.
535 */
536 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537 {
538 int error;
539
540 VM_BUG_ON_PAGE(!PageLocked(old), old);
541 VM_BUG_ON_PAGE(!PageLocked(new), new);
542 VM_BUG_ON_PAGE(new->mapping, new);
543
544 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545 if (!error) {
546 struct address_space *mapping = old->mapping;
547 void (*freepage)(struct page *);
548 unsigned long flags;
549
550 pgoff_t offset = old->index;
551 freepage = mapping->a_ops->freepage;
552
553 get_page(new);
554 new->mapping = mapping;
555 new->index = offset;
556
557 spin_lock_irqsave(&mapping->tree_lock, flags);
558 __delete_from_page_cache(old, NULL);
559 error = radix_tree_insert(&mapping->page_tree, offset, new);
560 BUG_ON(error);
561 mapping->nrpages++;
562
563 /*
564 * hugetlb pages do not participate in page cache accounting.
565 */
566 if (!PageHuge(new))
567 __inc_zone_page_state(new, NR_FILE_PAGES);
568 if (PageSwapBacked(new))
569 __inc_zone_page_state(new, NR_SHMEM);
570 spin_unlock_irqrestore(&mapping->tree_lock, flags);
571 mem_cgroup_migrate(old, new);
572 radix_tree_preload_end();
573 if (freepage)
574 freepage(old);
575 put_page(old);
576 }
577
578 return error;
579 }
580 EXPORT_SYMBOL_GPL(replace_page_cache_page);
581
582 static int page_cache_tree_insert(struct address_space *mapping,
583 struct page *page, void **shadowp)
584 {
585 struct radix_tree_node *node;
586 void **slot;
587 int error;
588
589 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
590 &node, &slot);
591 if (error)
592 return error;
593 if (*slot) {
594 void *p;
595
596 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597 if (!radix_tree_exceptional_entry(p))
598 return -EEXIST;
599
600 if (WARN_ON(dax_mapping(mapping)))
601 return -EINVAL;
602
603 if (shadowp)
604 *shadowp = p;
605 mapping->nrexceptional--;
606 if (node)
607 workingset_node_shadows_dec(node);
608 }
609 radix_tree_replace_slot(slot, page);
610 mapping->nrpages++;
611 if (node) {
612 workingset_node_pages_inc(node);
613 /*
614 * Don't track node that contains actual pages.
615 *
616 * Avoid acquiring the list_lru lock if already
617 * untracked. The list_empty() test is safe as
618 * node->private_list is protected by
619 * mapping->tree_lock.
620 */
621 if (!list_empty(&node->private_list))
622 list_lru_del(&workingset_shadow_nodes,
623 &node->private_list);
624 }
625 return 0;
626 }
627
628 static int __add_to_page_cache_locked(struct page *page,
629 struct address_space *mapping,
630 pgoff_t offset, gfp_t gfp_mask,
631 void **shadowp)
632 {
633 int huge = PageHuge(page);
634 struct mem_cgroup *memcg;
635 int error;
636
637 VM_BUG_ON_PAGE(!PageLocked(page), page);
638 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
639
640 if (!huge) {
641 error = mem_cgroup_try_charge(page, current->mm,
642 gfp_mask, &memcg, false);
643 if (error)
644 return error;
645 }
646
647 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
648 if (error) {
649 if (!huge)
650 mem_cgroup_cancel_charge(page, memcg, false);
651 return error;
652 }
653
654 get_page(page);
655 page->mapping = mapping;
656 page->index = offset;
657
658 spin_lock_irq(&mapping->tree_lock);
659 error = page_cache_tree_insert(mapping, page, shadowp);
660 radix_tree_preload_end();
661 if (unlikely(error))
662 goto err_insert;
663
664 /* hugetlb pages do not participate in page cache accounting. */
665 if (!huge)
666 __inc_zone_page_state(page, NR_FILE_PAGES);
667 spin_unlock_irq(&mapping->tree_lock);
668 if (!huge)
669 mem_cgroup_commit_charge(page, memcg, false, false);
670 trace_mm_filemap_add_to_page_cache(page);
671 return 0;
672 err_insert:
673 page->mapping = NULL;
674 /* Leave page->index set: truncation relies upon it */
675 spin_unlock_irq(&mapping->tree_lock);
676 if (!huge)
677 mem_cgroup_cancel_charge(page, memcg, false);
678 put_page(page);
679 return error;
680 }
681
682 /**
683 * add_to_page_cache_locked - add a locked page to the pagecache
684 * @page: page to add
685 * @mapping: the page's address_space
686 * @offset: page index
687 * @gfp_mask: page allocation mode
688 *
689 * This function is used to add a page to the pagecache. It must be locked.
690 * This function does not add the page to the LRU. The caller must do that.
691 */
692 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693 pgoff_t offset, gfp_t gfp_mask)
694 {
695 return __add_to_page_cache_locked(page, mapping, offset,
696 gfp_mask, NULL);
697 }
698 EXPORT_SYMBOL(add_to_page_cache_locked);
699
700 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
701 pgoff_t offset, gfp_t gfp_mask)
702 {
703 void *shadow = NULL;
704 int ret;
705
706 __SetPageLocked(page);
707 ret = __add_to_page_cache_locked(page, mapping, offset,
708 gfp_mask, &shadow);
709 if (unlikely(ret))
710 __ClearPageLocked(page);
711 else {
712 /*
713 * The page might have been evicted from cache only
714 * recently, in which case it should be activated like
715 * any other repeatedly accessed page.
716 * The exception is pages getting rewritten; evicting other
717 * data from the working set, only to cache data that will
718 * get overwritten with something else, is a waste of memory.
719 */
720 if (!(gfp_mask & __GFP_WRITE) &&
721 shadow && workingset_refault(shadow)) {
722 SetPageActive(page);
723 workingset_activation(page);
724 } else
725 ClearPageActive(page);
726 lru_cache_add(page);
727 }
728 return ret;
729 }
730 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
731
732 #ifdef CONFIG_NUMA
733 struct page *__page_cache_alloc(gfp_t gfp)
734 {
735 int n;
736 struct page *page;
737
738 if (cpuset_do_page_mem_spread()) {
739 unsigned int cpuset_mems_cookie;
740 do {
741 cpuset_mems_cookie = read_mems_allowed_begin();
742 n = cpuset_mem_spread_node();
743 page = __alloc_pages_node(n, gfp, 0);
744 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
745
746 return page;
747 }
748 return alloc_pages(gfp, 0);
749 }
750 EXPORT_SYMBOL(__page_cache_alloc);
751 #endif
752
753 /*
754 * In order to wait for pages to become available there must be
755 * waitqueues associated with pages. By using a hash table of
756 * waitqueues where the bucket discipline is to maintain all
757 * waiters on the same queue and wake all when any of the pages
758 * become available, and for the woken contexts to check to be
759 * sure the appropriate page became available, this saves space
760 * at a cost of "thundering herd" phenomena during rare hash
761 * collisions.
762 */
763 wait_queue_head_t *page_waitqueue(struct page *page)
764 {
765 const struct zone *zone = page_zone(page);
766
767 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
768 }
769 EXPORT_SYMBOL(page_waitqueue);
770
771 void wait_on_page_bit(struct page *page, int bit_nr)
772 {
773 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
774
775 if (test_bit(bit_nr, &page->flags))
776 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
777 TASK_UNINTERRUPTIBLE);
778 }
779 EXPORT_SYMBOL(wait_on_page_bit);
780
781 int wait_on_page_bit_killable(struct page *page, int bit_nr)
782 {
783 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
784
785 if (!test_bit(bit_nr, &page->flags))
786 return 0;
787
788 return __wait_on_bit(page_waitqueue(page), &wait,
789 bit_wait_io, TASK_KILLABLE);
790 }
791
792 int wait_on_page_bit_killable_timeout(struct page *page,
793 int bit_nr, unsigned long timeout)
794 {
795 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
796
797 wait.key.timeout = jiffies + timeout;
798 if (!test_bit(bit_nr, &page->flags))
799 return 0;
800 return __wait_on_bit(page_waitqueue(page), &wait,
801 bit_wait_io_timeout, TASK_KILLABLE);
802 }
803 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
804
805 /**
806 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
807 * @page: Page defining the wait queue of interest
808 * @waiter: Waiter to add to the queue
809 *
810 * Add an arbitrary @waiter to the wait queue for the nominated @page.
811 */
812 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
813 {
814 wait_queue_head_t *q = page_waitqueue(page);
815 unsigned long flags;
816
817 spin_lock_irqsave(&q->lock, flags);
818 __add_wait_queue(q, waiter);
819 spin_unlock_irqrestore(&q->lock, flags);
820 }
821 EXPORT_SYMBOL_GPL(add_page_wait_queue);
822
823 /**
824 * unlock_page - unlock a locked page
825 * @page: the page
826 *
827 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
828 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
829 * mechanism between PageLocked pages and PageWriteback pages is shared.
830 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
831 *
832 * The mb is necessary to enforce ordering between the clear_bit and the read
833 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
834 */
835 void unlock_page(struct page *page)
836 {
837 page = compound_head(page);
838 VM_BUG_ON_PAGE(!PageLocked(page), page);
839 clear_bit_unlock(PG_locked, &page->flags);
840 smp_mb__after_atomic();
841 wake_up_page(page, PG_locked);
842 }
843 EXPORT_SYMBOL(unlock_page);
844
845 /**
846 * end_page_writeback - end writeback against a page
847 * @page: the page
848 */
849 void end_page_writeback(struct page *page)
850 {
851 /*
852 * TestClearPageReclaim could be used here but it is an atomic
853 * operation and overkill in this particular case. Failing to
854 * shuffle a page marked for immediate reclaim is too mild to
855 * justify taking an atomic operation penalty at the end of
856 * ever page writeback.
857 */
858 if (PageReclaim(page)) {
859 ClearPageReclaim(page);
860 rotate_reclaimable_page(page);
861 }
862
863 if (!test_clear_page_writeback(page))
864 BUG();
865
866 smp_mb__after_atomic();
867 wake_up_page(page, PG_writeback);
868 }
869 EXPORT_SYMBOL(end_page_writeback);
870
871 /*
872 * After completing I/O on a page, call this routine to update the page
873 * flags appropriately
874 */
875 void page_endio(struct page *page, int rw, int err)
876 {
877 if (rw == READ) {
878 if (!err) {
879 SetPageUptodate(page);
880 } else {
881 ClearPageUptodate(page);
882 SetPageError(page);
883 }
884 unlock_page(page);
885 } else { /* rw == WRITE */
886 if (err) {
887 SetPageError(page);
888 if (page->mapping)
889 mapping_set_error(page->mapping, err);
890 }
891 end_page_writeback(page);
892 }
893 }
894 EXPORT_SYMBOL_GPL(page_endio);
895
896 /**
897 * __lock_page - get a lock on the page, assuming we need to sleep to get it
898 * @page: the page to lock
899 */
900 void __lock_page(struct page *page)
901 {
902 struct page *page_head = compound_head(page);
903 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
904
905 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
906 TASK_UNINTERRUPTIBLE);
907 }
908 EXPORT_SYMBOL(__lock_page);
909
910 int __lock_page_killable(struct page *page)
911 {
912 struct page *page_head = compound_head(page);
913 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
914
915 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
916 bit_wait_io, TASK_KILLABLE);
917 }
918 EXPORT_SYMBOL_GPL(__lock_page_killable);
919
920 /*
921 * Return values:
922 * 1 - page is locked; mmap_sem is still held.
923 * 0 - page is not locked.
924 * mmap_sem has been released (up_read()), unless flags had both
925 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
926 * which case mmap_sem is still held.
927 *
928 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
929 * with the page locked and the mmap_sem unperturbed.
930 */
931 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
932 unsigned int flags)
933 {
934 if (flags & FAULT_FLAG_ALLOW_RETRY) {
935 /*
936 * CAUTION! In this case, mmap_sem is not released
937 * even though return 0.
938 */
939 if (flags & FAULT_FLAG_RETRY_NOWAIT)
940 return 0;
941
942 up_read(&mm->mmap_sem);
943 if (flags & FAULT_FLAG_KILLABLE)
944 wait_on_page_locked_killable(page);
945 else
946 wait_on_page_locked(page);
947 return 0;
948 } else {
949 if (flags & FAULT_FLAG_KILLABLE) {
950 int ret;
951
952 ret = __lock_page_killable(page);
953 if (ret) {
954 up_read(&mm->mmap_sem);
955 return 0;
956 }
957 } else
958 __lock_page(page);
959 return 1;
960 }
961 }
962
963 /**
964 * page_cache_next_hole - find the next hole (not-present entry)
965 * @mapping: mapping
966 * @index: index
967 * @max_scan: maximum range to search
968 *
969 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
970 * lowest indexed hole.
971 *
972 * Returns: the index of the hole if found, otherwise returns an index
973 * outside of the set specified (in which case 'return - index >=
974 * max_scan' will be true). In rare cases of index wrap-around, 0 will
975 * be returned.
976 *
977 * page_cache_next_hole may be called under rcu_read_lock. However,
978 * like radix_tree_gang_lookup, this will not atomically search a
979 * snapshot of the tree at a single point in time. For example, if a
980 * hole is created at index 5, then subsequently a hole is created at
981 * index 10, page_cache_next_hole covering both indexes may return 10
982 * if called under rcu_read_lock.
983 */
984 pgoff_t page_cache_next_hole(struct address_space *mapping,
985 pgoff_t index, unsigned long max_scan)
986 {
987 unsigned long i;
988
989 for (i = 0; i < max_scan; i++) {
990 struct page *page;
991
992 page = radix_tree_lookup(&mapping->page_tree, index);
993 if (!page || radix_tree_exceptional_entry(page))
994 break;
995 index++;
996 if (index == 0)
997 break;
998 }
999
1000 return index;
1001 }
1002 EXPORT_SYMBOL(page_cache_next_hole);
1003
1004 /**
1005 * page_cache_prev_hole - find the prev hole (not-present entry)
1006 * @mapping: mapping
1007 * @index: index
1008 * @max_scan: maximum range to search
1009 *
1010 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1011 * the first hole.
1012 *
1013 * Returns: the index of the hole if found, otherwise returns an index
1014 * outside of the set specified (in which case 'index - return >=
1015 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1016 * will be returned.
1017 *
1018 * page_cache_prev_hole may be called under rcu_read_lock. However,
1019 * like radix_tree_gang_lookup, this will not atomically search a
1020 * snapshot of the tree at a single point in time. For example, if a
1021 * hole is created at index 10, then subsequently a hole is created at
1022 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1023 * called under rcu_read_lock.
1024 */
1025 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1026 pgoff_t index, unsigned long max_scan)
1027 {
1028 unsigned long i;
1029
1030 for (i = 0; i < max_scan; i++) {
1031 struct page *page;
1032
1033 page = radix_tree_lookup(&mapping->page_tree, index);
1034 if (!page || radix_tree_exceptional_entry(page))
1035 break;
1036 index--;
1037 if (index == ULONG_MAX)
1038 break;
1039 }
1040
1041 return index;
1042 }
1043 EXPORT_SYMBOL(page_cache_prev_hole);
1044
1045 /**
1046 * find_get_entry - find and get a page cache entry
1047 * @mapping: the address_space to search
1048 * @offset: the page cache index
1049 *
1050 * Looks up the page cache slot at @mapping & @offset. If there is a
1051 * page cache page, it is returned with an increased refcount.
1052 *
1053 * If the slot holds a shadow entry of a previously evicted page, or a
1054 * swap entry from shmem/tmpfs, it is returned.
1055 *
1056 * Otherwise, %NULL is returned.
1057 */
1058 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1059 {
1060 void **pagep;
1061 struct page *page;
1062
1063 rcu_read_lock();
1064 repeat:
1065 page = NULL;
1066 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1067 if (pagep) {
1068 page = radix_tree_deref_slot(pagep);
1069 if (unlikely(!page))
1070 goto out;
1071 if (radix_tree_exception(page)) {
1072 if (radix_tree_deref_retry(page))
1073 goto repeat;
1074 /*
1075 * A shadow entry of a recently evicted page,
1076 * or a swap entry from shmem/tmpfs. Return
1077 * it without attempting to raise page count.
1078 */
1079 goto out;
1080 }
1081 if (!page_cache_get_speculative(page))
1082 goto repeat;
1083
1084 /*
1085 * Has the page moved?
1086 * This is part of the lockless pagecache protocol. See
1087 * include/linux/pagemap.h for details.
1088 */
1089 if (unlikely(page != *pagep)) {
1090 put_page(page);
1091 goto repeat;
1092 }
1093 }
1094 out:
1095 rcu_read_unlock();
1096
1097 return page;
1098 }
1099 EXPORT_SYMBOL(find_get_entry);
1100
1101 /**
1102 * find_lock_entry - locate, pin and lock a page cache entry
1103 * @mapping: the address_space to search
1104 * @offset: the page cache index
1105 *
1106 * Looks up the page cache slot at @mapping & @offset. If there is a
1107 * page cache page, it is returned locked and with an increased
1108 * refcount.
1109 *
1110 * If the slot holds a shadow entry of a previously evicted page, or a
1111 * swap entry from shmem/tmpfs, it is returned.
1112 *
1113 * Otherwise, %NULL is returned.
1114 *
1115 * find_lock_entry() may sleep.
1116 */
1117 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1118 {
1119 struct page *page;
1120
1121 repeat:
1122 page = find_get_entry(mapping, offset);
1123 if (page && !radix_tree_exception(page)) {
1124 lock_page(page);
1125 /* Has the page been truncated? */
1126 if (unlikely(page->mapping != mapping)) {
1127 unlock_page(page);
1128 put_page(page);
1129 goto repeat;
1130 }
1131 VM_BUG_ON_PAGE(page->index != offset, page);
1132 }
1133 return page;
1134 }
1135 EXPORT_SYMBOL(find_lock_entry);
1136
1137 /**
1138 * pagecache_get_page - find and get a page reference
1139 * @mapping: the address_space to search
1140 * @offset: the page index
1141 * @fgp_flags: PCG flags
1142 * @gfp_mask: gfp mask to use for the page cache data page allocation
1143 *
1144 * Looks up the page cache slot at @mapping & @offset.
1145 *
1146 * PCG flags modify how the page is returned.
1147 *
1148 * FGP_ACCESSED: the page will be marked accessed
1149 * FGP_LOCK: Page is return locked
1150 * FGP_CREAT: If page is not present then a new page is allocated using
1151 * @gfp_mask and added to the page cache and the VM's LRU
1152 * list. The page is returned locked and with an increased
1153 * refcount. Otherwise, %NULL is returned.
1154 *
1155 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1156 * if the GFP flags specified for FGP_CREAT are atomic.
1157 *
1158 * If there is a page cache page, it is returned with an increased refcount.
1159 */
1160 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1161 int fgp_flags, gfp_t gfp_mask)
1162 {
1163 struct page *page;
1164
1165 repeat:
1166 page = find_get_entry(mapping, offset);
1167 if (radix_tree_exceptional_entry(page))
1168 page = NULL;
1169 if (!page)
1170 goto no_page;
1171
1172 if (fgp_flags & FGP_LOCK) {
1173 if (fgp_flags & FGP_NOWAIT) {
1174 if (!trylock_page(page)) {
1175 put_page(page);
1176 return NULL;
1177 }
1178 } else {
1179 lock_page(page);
1180 }
1181
1182 /* Has the page been truncated? */
1183 if (unlikely(page->mapping != mapping)) {
1184 unlock_page(page);
1185 put_page(page);
1186 goto repeat;
1187 }
1188 VM_BUG_ON_PAGE(page->index != offset, page);
1189 }
1190
1191 if (page && (fgp_flags & FGP_ACCESSED))
1192 mark_page_accessed(page);
1193
1194 no_page:
1195 if (!page && (fgp_flags & FGP_CREAT)) {
1196 int err;
1197 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1198 gfp_mask |= __GFP_WRITE;
1199 if (fgp_flags & FGP_NOFS)
1200 gfp_mask &= ~__GFP_FS;
1201
1202 page = __page_cache_alloc(gfp_mask);
1203 if (!page)
1204 return NULL;
1205
1206 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1207 fgp_flags |= FGP_LOCK;
1208
1209 /* Init accessed so avoid atomic mark_page_accessed later */
1210 if (fgp_flags & FGP_ACCESSED)
1211 __SetPageReferenced(page);
1212
1213 err = add_to_page_cache_lru(page, mapping, offset,
1214 gfp_mask & GFP_RECLAIM_MASK);
1215 if (unlikely(err)) {
1216 put_page(page);
1217 page = NULL;
1218 if (err == -EEXIST)
1219 goto repeat;
1220 }
1221 }
1222
1223 return page;
1224 }
1225 EXPORT_SYMBOL(pagecache_get_page);
1226
1227 /**
1228 * find_get_entries - gang pagecache lookup
1229 * @mapping: The address_space to search
1230 * @start: The starting page cache index
1231 * @nr_entries: The maximum number of entries
1232 * @entries: Where the resulting entries are placed
1233 * @indices: The cache indices corresponding to the entries in @entries
1234 *
1235 * find_get_entries() will search for and return a group of up to
1236 * @nr_entries entries in the mapping. The entries are placed at
1237 * @entries. find_get_entries() takes a reference against any actual
1238 * pages it returns.
1239 *
1240 * The search returns a group of mapping-contiguous page cache entries
1241 * with ascending indexes. There may be holes in the indices due to
1242 * not-present pages.
1243 *
1244 * Any shadow entries of evicted pages, or swap entries from
1245 * shmem/tmpfs, are included in the returned array.
1246 *
1247 * find_get_entries() returns the number of pages and shadow entries
1248 * which were found.
1249 */
1250 unsigned find_get_entries(struct address_space *mapping,
1251 pgoff_t start, unsigned int nr_entries,
1252 struct page **entries, pgoff_t *indices)
1253 {
1254 void **slot;
1255 unsigned int ret = 0;
1256 struct radix_tree_iter iter;
1257
1258 if (!nr_entries)
1259 return 0;
1260
1261 rcu_read_lock();
1262 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1263 struct page *page;
1264 repeat:
1265 page = radix_tree_deref_slot(slot);
1266 if (unlikely(!page))
1267 continue;
1268 if (radix_tree_exception(page)) {
1269 if (radix_tree_deref_retry(page)) {
1270 slot = radix_tree_iter_retry(&iter);
1271 continue;
1272 }
1273 /*
1274 * A shadow entry of a recently evicted page, a swap
1275 * entry from shmem/tmpfs or a DAX entry. Return it
1276 * without attempting to raise page count.
1277 */
1278 goto export;
1279 }
1280 if (!page_cache_get_speculative(page))
1281 goto repeat;
1282
1283 /* Has the page moved? */
1284 if (unlikely(page != *slot)) {
1285 put_page(page);
1286 goto repeat;
1287 }
1288 export:
1289 indices[ret] = iter.index;
1290 entries[ret] = page;
1291 if (++ret == nr_entries)
1292 break;
1293 }
1294 rcu_read_unlock();
1295 return ret;
1296 }
1297
1298 /**
1299 * find_get_pages - gang pagecache lookup
1300 * @mapping: The address_space to search
1301 * @start: The starting page index
1302 * @nr_pages: The maximum number of pages
1303 * @pages: Where the resulting pages are placed
1304 *
1305 * find_get_pages() will search for and return a group of up to
1306 * @nr_pages pages in the mapping. The pages are placed at @pages.
1307 * find_get_pages() takes a reference against the returned pages.
1308 *
1309 * The search returns a group of mapping-contiguous pages with ascending
1310 * indexes. There may be holes in the indices due to not-present pages.
1311 *
1312 * find_get_pages() returns the number of pages which were found.
1313 */
1314 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1315 unsigned int nr_pages, struct page **pages)
1316 {
1317 struct radix_tree_iter iter;
1318 void **slot;
1319 unsigned ret = 0;
1320
1321 if (unlikely(!nr_pages))
1322 return 0;
1323
1324 rcu_read_lock();
1325 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1326 struct page *page;
1327 repeat:
1328 page = radix_tree_deref_slot(slot);
1329 if (unlikely(!page))
1330 continue;
1331
1332 if (radix_tree_exception(page)) {
1333 if (radix_tree_deref_retry(page)) {
1334 slot = radix_tree_iter_retry(&iter);
1335 continue;
1336 }
1337 /*
1338 * A shadow entry of a recently evicted page,
1339 * or a swap entry from shmem/tmpfs. Skip
1340 * over it.
1341 */
1342 continue;
1343 }
1344
1345 if (!page_cache_get_speculative(page))
1346 goto repeat;
1347
1348 /* Has the page moved? */
1349 if (unlikely(page != *slot)) {
1350 put_page(page);
1351 goto repeat;
1352 }
1353
1354 pages[ret] = page;
1355 if (++ret == nr_pages)
1356 break;
1357 }
1358
1359 rcu_read_unlock();
1360 return ret;
1361 }
1362
1363 /**
1364 * find_get_pages_contig - gang contiguous pagecache lookup
1365 * @mapping: The address_space to search
1366 * @index: The starting page index
1367 * @nr_pages: The maximum number of pages
1368 * @pages: Where the resulting pages are placed
1369 *
1370 * find_get_pages_contig() works exactly like find_get_pages(), except
1371 * that the returned number of pages are guaranteed to be contiguous.
1372 *
1373 * find_get_pages_contig() returns the number of pages which were found.
1374 */
1375 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1376 unsigned int nr_pages, struct page **pages)
1377 {
1378 struct radix_tree_iter iter;
1379 void **slot;
1380 unsigned int ret = 0;
1381
1382 if (unlikely(!nr_pages))
1383 return 0;
1384
1385 rcu_read_lock();
1386 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1387 struct page *page;
1388 repeat:
1389 page = radix_tree_deref_slot(slot);
1390 /* The hole, there no reason to continue */
1391 if (unlikely(!page))
1392 break;
1393
1394 if (radix_tree_exception(page)) {
1395 if (radix_tree_deref_retry(page)) {
1396 slot = radix_tree_iter_retry(&iter);
1397 continue;
1398 }
1399 /*
1400 * A shadow entry of a recently evicted page,
1401 * or a swap entry from shmem/tmpfs. Stop
1402 * looking for contiguous pages.
1403 */
1404 break;
1405 }
1406
1407 if (!page_cache_get_speculative(page))
1408 goto repeat;
1409
1410 /* Has the page moved? */
1411 if (unlikely(page != *slot)) {
1412 put_page(page);
1413 goto repeat;
1414 }
1415
1416 /*
1417 * must check mapping and index after taking the ref.
1418 * otherwise we can get both false positives and false
1419 * negatives, which is just confusing to the caller.
1420 */
1421 if (page->mapping == NULL || page->index != iter.index) {
1422 put_page(page);
1423 break;
1424 }
1425
1426 pages[ret] = page;
1427 if (++ret == nr_pages)
1428 break;
1429 }
1430 rcu_read_unlock();
1431 return ret;
1432 }
1433 EXPORT_SYMBOL(find_get_pages_contig);
1434
1435 /**
1436 * find_get_pages_tag - find and return pages that match @tag
1437 * @mapping: the address_space to search
1438 * @index: the starting page index
1439 * @tag: the tag index
1440 * @nr_pages: the maximum number of pages
1441 * @pages: where the resulting pages are placed
1442 *
1443 * Like find_get_pages, except we only return pages which are tagged with
1444 * @tag. We update @index to index the next page for the traversal.
1445 */
1446 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1447 int tag, unsigned int nr_pages, struct page **pages)
1448 {
1449 struct radix_tree_iter iter;
1450 void **slot;
1451 unsigned ret = 0;
1452
1453 if (unlikely(!nr_pages))
1454 return 0;
1455
1456 rcu_read_lock();
1457 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1458 &iter, *index, tag) {
1459 struct page *page;
1460 repeat:
1461 page = radix_tree_deref_slot(slot);
1462 if (unlikely(!page))
1463 continue;
1464
1465 if (radix_tree_exception(page)) {
1466 if (radix_tree_deref_retry(page)) {
1467 slot = radix_tree_iter_retry(&iter);
1468 continue;
1469 }
1470 /*
1471 * A shadow entry of a recently evicted page.
1472 *
1473 * Those entries should never be tagged, but
1474 * this tree walk is lockless and the tags are
1475 * looked up in bulk, one radix tree node at a
1476 * time, so there is a sizable window for page
1477 * reclaim to evict a page we saw tagged.
1478 *
1479 * Skip over it.
1480 */
1481 continue;
1482 }
1483
1484 if (!page_cache_get_speculative(page))
1485 goto repeat;
1486
1487 /* Has the page moved? */
1488 if (unlikely(page != *slot)) {
1489 put_page(page);
1490 goto repeat;
1491 }
1492
1493 pages[ret] = page;
1494 if (++ret == nr_pages)
1495 break;
1496 }
1497
1498 rcu_read_unlock();
1499
1500 if (ret)
1501 *index = pages[ret - 1]->index + 1;
1502
1503 return ret;
1504 }
1505 EXPORT_SYMBOL(find_get_pages_tag);
1506
1507 /**
1508 * find_get_entries_tag - find and return entries that match @tag
1509 * @mapping: the address_space to search
1510 * @start: the starting page cache index
1511 * @tag: the tag index
1512 * @nr_entries: the maximum number of entries
1513 * @entries: where the resulting entries are placed
1514 * @indices: the cache indices corresponding to the entries in @entries
1515 *
1516 * Like find_get_entries, except we only return entries which are tagged with
1517 * @tag.
1518 */
1519 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1520 int tag, unsigned int nr_entries,
1521 struct page **entries, pgoff_t *indices)
1522 {
1523 void **slot;
1524 unsigned int ret = 0;
1525 struct radix_tree_iter iter;
1526
1527 if (!nr_entries)
1528 return 0;
1529
1530 rcu_read_lock();
1531 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1532 &iter, start, tag) {
1533 struct page *page;
1534 repeat:
1535 page = radix_tree_deref_slot(slot);
1536 if (unlikely(!page))
1537 continue;
1538 if (radix_tree_exception(page)) {
1539 if (radix_tree_deref_retry(page)) {
1540 slot = radix_tree_iter_retry(&iter);
1541 continue;
1542 }
1543
1544 /*
1545 * A shadow entry of a recently evicted page, a swap
1546 * entry from shmem/tmpfs or a DAX entry. Return it
1547 * without attempting to raise page count.
1548 */
1549 goto export;
1550 }
1551 if (!page_cache_get_speculative(page))
1552 goto repeat;
1553
1554 /* Has the page moved? */
1555 if (unlikely(page != *slot)) {
1556 put_page(page);
1557 goto repeat;
1558 }
1559 export:
1560 indices[ret] = iter.index;
1561 entries[ret] = page;
1562 if (++ret == nr_entries)
1563 break;
1564 }
1565 rcu_read_unlock();
1566 return ret;
1567 }
1568 EXPORT_SYMBOL(find_get_entries_tag);
1569
1570 /*
1571 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1572 * a _large_ part of the i/o request. Imagine the worst scenario:
1573 *
1574 * ---R__________________________________________B__________
1575 * ^ reading here ^ bad block(assume 4k)
1576 *
1577 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1578 * => failing the whole request => read(R) => read(R+1) =>
1579 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1580 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1581 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1582 *
1583 * It is going insane. Fix it by quickly scaling down the readahead size.
1584 */
1585 static void shrink_readahead_size_eio(struct file *filp,
1586 struct file_ra_state *ra)
1587 {
1588 ra->ra_pages /= 4;
1589 }
1590
1591 /**
1592 * do_generic_file_read - generic file read routine
1593 * @filp: the file to read
1594 * @ppos: current file position
1595 * @iter: data destination
1596 * @written: already copied
1597 *
1598 * This is a generic file read routine, and uses the
1599 * mapping->a_ops->readpage() function for the actual low-level stuff.
1600 *
1601 * This is really ugly. But the goto's actually try to clarify some
1602 * of the logic when it comes to error handling etc.
1603 */
1604 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1605 struct iov_iter *iter, ssize_t written)
1606 {
1607 struct address_space *mapping = filp->f_mapping;
1608 struct inode *inode = mapping->host;
1609 struct file_ra_state *ra = &filp->f_ra;
1610 pgoff_t index;
1611 pgoff_t last_index;
1612 pgoff_t prev_index;
1613 unsigned long offset; /* offset into pagecache page */
1614 unsigned int prev_offset;
1615 int error = 0;
1616
1617 index = *ppos >> PAGE_SHIFT;
1618 prev_index = ra->prev_pos >> PAGE_SHIFT;
1619 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1620 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1621 offset = *ppos & ~PAGE_MASK;
1622
1623 for (;;) {
1624 struct page *page;
1625 pgoff_t end_index;
1626 loff_t isize;
1627 unsigned long nr, ret;
1628
1629 cond_resched();
1630 find_page:
1631 page = find_get_page(mapping, index);
1632 if (!page) {
1633 page_cache_sync_readahead(mapping,
1634 ra, filp,
1635 index, last_index - index);
1636 page = find_get_page(mapping, index);
1637 if (unlikely(page == NULL))
1638 goto no_cached_page;
1639 }
1640 if (PageReadahead(page)) {
1641 page_cache_async_readahead(mapping,
1642 ra, filp, page,
1643 index, last_index - index);
1644 }
1645 if (!PageUptodate(page)) {
1646 /*
1647 * See comment in do_read_cache_page on why
1648 * wait_on_page_locked is used to avoid unnecessarily
1649 * serialisations and why it's safe.
1650 */
1651 wait_on_page_locked_killable(page);
1652 if (PageUptodate(page))
1653 goto page_ok;
1654
1655 if (inode->i_blkbits == PAGE_SHIFT ||
1656 !mapping->a_ops->is_partially_uptodate)
1657 goto page_not_up_to_date;
1658 if (!trylock_page(page))
1659 goto page_not_up_to_date;
1660 /* Did it get truncated before we got the lock? */
1661 if (!page->mapping)
1662 goto page_not_up_to_date_locked;
1663 if (!mapping->a_ops->is_partially_uptodate(page,
1664 offset, iter->count))
1665 goto page_not_up_to_date_locked;
1666 unlock_page(page);
1667 }
1668 page_ok:
1669 /*
1670 * i_size must be checked after we know the page is Uptodate.
1671 *
1672 * Checking i_size after the check allows us to calculate
1673 * the correct value for "nr", which means the zero-filled
1674 * part of the page is not copied back to userspace (unless
1675 * another truncate extends the file - this is desired though).
1676 */
1677
1678 isize = i_size_read(inode);
1679 end_index = (isize - 1) >> PAGE_SHIFT;
1680 if (unlikely(!isize || index > end_index)) {
1681 put_page(page);
1682 goto out;
1683 }
1684
1685 /* nr is the maximum number of bytes to copy from this page */
1686 nr = PAGE_SIZE;
1687 if (index == end_index) {
1688 nr = ((isize - 1) & ~PAGE_MASK) + 1;
1689 if (nr <= offset) {
1690 put_page(page);
1691 goto out;
1692 }
1693 }
1694 nr = nr - offset;
1695
1696 /* If users can be writing to this page using arbitrary
1697 * virtual addresses, take care about potential aliasing
1698 * before reading the page on the kernel side.
1699 */
1700 if (mapping_writably_mapped(mapping))
1701 flush_dcache_page(page);
1702
1703 /*
1704 * When a sequential read accesses a page several times,
1705 * only mark it as accessed the first time.
1706 */
1707 if (prev_index != index || offset != prev_offset)
1708 mark_page_accessed(page);
1709 prev_index = index;
1710
1711 /*
1712 * Ok, we have the page, and it's up-to-date, so
1713 * now we can copy it to user space...
1714 */
1715
1716 ret = copy_page_to_iter(page, offset, nr, iter);
1717 offset += ret;
1718 index += offset >> PAGE_SHIFT;
1719 offset &= ~PAGE_MASK;
1720 prev_offset = offset;
1721
1722 put_page(page);
1723 written += ret;
1724 if (!iov_iter_count(iter))
1725 goto out;
1726 if (ret < nr) {
1727 error = -EFAULT;
1728 goto out;
1729 }
1730 continue;
1731
1732 page_not_up_to_date:
1733 /* Get exclusive access to the page ... */
1734 error = lock_page_killable(page);
1735 if (unlikely(error))
1736 goto readpage_error;
1737
1738 page_not_up_to_date_locked:
1739 /* Did it get truncated before we got the lock? */
1740 if (!page->mapping) {
1741 unlock_page(page);
1742 put_page(page);
1743 continue;
1744 }
1745
1746 /* Did somebody else fill it already? */
1747 if (PageUptodate(page)) {
1748 unlock_page(page);
1749 goto page_ok;
1750 }
1751
1752 readpage:
1753 /*
1754 * A previous I/O error may have been due to temporary
1755 * failures, eg. multipath errors.
1756 * PG_error will be set again if readpage fails.
1757 */
1758 ClearPageError(page);
1759 /* Start the actual read. The read will unlock the page. */
1760 error = mapping->a_ops->readpage(filp, page);
1761
1762 if (unlikely(error)) {
1763 if (error == AOP_TRUNCATED_PAGE) {
1764 put_page(page);
1765 error = 0;
1766 goto find_page;
1767 }
1768 goto readpage_error;
1769 }
1770
1771 if (!PageUptodate(page)) {
1772 error = lock_page_killable(page);
1773 if (unlikely(error))
1774 goto readpage_error;
1775 if (!PageUptodate(page)) {
1776 if (page->mapping == NULL) {
1777 /*
1778 * invalidate_mapping_pages got it
1779 */
1780 unlock_page(page);
1781 put_page(page);
1782 goto find_page;
1783 }
1784 unlock_page(page);
1785 shrink_readahead_size_eio(filp, ra);
1786 error = -EIO;
1787 goto readpage_error;
1788 }
1789 unlock_page(page);
1790 }
1791
1792 goto page_ok;
1793
1794 readpage_error:
1795 /* UHHUH! A synchronous read error occurred. Report it */
1796 put_page(page);
1797 goto out;
1798
1799 no_cached_page:
1800 /*
1801 * Ok, it wasn't cached, so we need to create a new
1802 * page..
1803 */
1804 page = page_cache_alloc_cold(mapping);
1805 if (!page) {
1806 error = -ENOMEM;
1807 goto out;
1808 }
1809 error = add_to_page_cache_lru(page, mapping, index,
1810 mapping_gfp_constraint(mapping, GFP_KERNEL));
1811 if (error) {
1812 put_page(page);
1813 if (error == -EEXIST) {
1814 error = 0;
1815 goto find_page;
1816 }
1817 goto out;
1818 }
1819 goto readpage;
1820 }
1821
1822 out:
1823 ra->prev_pos = prev_index;
1824 ra->prev_pos <<= PAGE_SHIFT;
1825 ra->prev_pos |= prev_offset;
1826
1827 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1828 file_accessed(filp);
1829 return written ? written : error;
1830 }
1831
1832 /**
1833 * generic_file_read_iter - generic filesystem read routine
1834 * @iocb: kernel I/O control block
1835 * @iter: destination for the data read
1836 *
1837 * This is the "read_iter()" routine for all filesystems
1838 * that can use the page cache directly.
1839 */
1840 ssize_t
1841 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1842 {
1843 struct file *file = iocb->ki_filp;
1844 ssize_t retval = 0;
1845 size_t count = iov_iter_count(iter);
1846
1847 if (!count)
1848 goto out; /* skip atime */
1849
1850 if (iocb->ki_flags & IOCB_DIRECT) {
1851 struct address_space *mapping = file->f_mapping;
1852 struct inode *inode = mapping->host;
1853 loff_t size;
1854
1855 size = i_size_read(inode);
1856 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1857 iocb->ki_pos + count - 1);
1858 if (!retval) {
1859 struct iov_iter data = *iter;
1860 retval = mapping->a_ops->direct_IO(iocb, &data);
1861 }
1862
1863 if (retval > 0) {
1864 iocb->ki_pos += retval;
1865 iov_iter_advance(iter, retval);
1866 }
1867
1868 /*
1869 * Btrfs can have a short DIO read if we encounter
1870 * compressed extents, so if there was an error, or if
1871 * we've already read everything we wanted to, or if
1872 * there was a short read because we hit EOF, go ahead
1873 * and return. Otherwise fallthrough to buffered io for
1874 * the rest of the read. Buffered reads will not work for
1875 * DAX files, so don't bother trying.
1876 */
1877 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1878 IS_DAX(inode)) {
1879 file_accessed(file);
1880 goto out;
1881 }
1882 }
1883
1884 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1885 out:
1886 return retval;
1887 }
1888 EXPORT_SYMBOL(generic_file_read_iter);
1889
1890 #ifdef CONFIG_MMU
1891 /**
1892 * page_cache_read - adds requested page to the page cache if not already there
1893 * @file: file to read
1894 * @offset: page index
1895 * @gfp_mask: memory allocation flags
1896 *
1897 * This adds the requested page to the page cache if it isn't already there,
1898 * and schedules an I/O to read in its contents from disk.
1899 */
1900 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1901 {
1902 struct address_space *mapping = file->f_mapping;
1903 struct page *page;
1904 int ret;
1905
1906 do {
1907 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1908 if (!page)
1909 return -ENOMEM;
1910
1911 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1912 if (ret == 0)
1913 ret = mapping->a_ops->readpage(file, page);
1914 else if (ret == -EEXIST)
1915 ret = 0; /* losing race to add is OK */
1916
1917 put_page(page);
1918
1919 } while (ret == AOP_TRUNCATED_PAGE);
1920
1921 return ret;
1922 }
1923
1924 #define MMAP_LOTSAMISS (100)
1925
1926 /*
1927 * Synchronous readahead happens when we don't even find
1928 * a page in the page cache at all.
1929 */
1930 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1931 struct file_ra_state *ra,
1932 struct file *file,
1933 pgoff_t offset)
1934 {
1935 struct address_space *mapping = file->f_mapping;
1936
1937 /* If we don't want any read-ahead, don't bother */
1938 if (vma->vm_flags & VM_RAND_READ)
1939 return;
1940 if (!ra->ra_pages)
1941 return;
1942
1943 if (vma->vm_flags & VM_SEQ_READ) {
1944 page_cache_sync_readahead(mapping, ra, file, offset,
1945 ra->ra_pages);
1946 return;
1947 }
1948
1949 /* Avoid banging the cache line if not needed */
1950 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1951 ra->mmap_miss++;
1952
1953 /*
1954 * Do we miss much more than hit in this file? If so,
1955 * stop bothering with read-ahead. It will only hurt.
1956 */
1957 if (ra->mmap_miss > MMAP_LOTSAMISS)
1958 return;
1959
1960 /*
1961 * mmap read-around
1962 */
1963 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1964 ra->size = ra->ra_pages;
1965 ra->async_size = ra->ra_pages / 4;
1966 ra_submit(ra, mapping, file);
1967 }
1968
1969 /*
1970 * Asynchronous readahead happens when we find the page and PG_readahead,
1971 * so we want to possibly extend the readahead further..
1972 */
1973 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1974 struct file_ra_state *ra,
1975 struct file *file,
1976 struct page *page,
1977 pgoff_t offset)
1978 {
1979 struct address_space *mapping = file->f_mapping;
1980
1981 /* If we don't want any read-ahead, don't bother */
1982 if (vma->vm_flags & VM_RAND_READ)
1983 return;
1984 if (ra->mmap_miss > 0)
1985 ra->mmap_miss--;
1986 if (PageReadahead(page))
1987 page_cache_async_readahead(mapping, ra, file,
1988 page, offset, ra->ra_pages);
1989 }
1990
1991 /**
1992 * filemap_fault - read in file data for page fault handling
1993 * @vma: vma in which the fault was taken
1994 * @vmf: struct vm_fault containing details of the fault
1995 *
1996 * filemap_fault() is invoked via the vma operations vector for a
1997 * mapped memory region to read in file data during a page fault.
1998 *
1999 * The goto's are kind of ugly, but this streamlines the normal case of having
2000 * it in the page cache, and handles the special cases reasonably without
2001 * having a lot of duplicated code.
2002 *
2003 * vma->vm_mm->mmap_sem must be held on entry.
2004 *
2005 * If our return value has VM_FAULT_RETRY set, it's because
2006 * lock_page_or_retry() returned 0.
2007 * The mmap_sem has usually been released in this case.
2008 * See __lock_page_or_retry() for the exception.
2009 *
2010 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2011 * has not been released.
2012 *
2013 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2014 */
2015 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2016 {
2017 int error;
2018 struct file *file = vma->vm_file;
2019 struct address_space *mapping = file->f_mapping;
2020 struct file_ra_state *ra = &file->f_ra;
2021 struct inode *inode = mapping->host;
2022 pgoff_t offset = vmf->pgoff;
2023 struct page *page;
2024 loff_t size;
2025 int ret = 0;
2026
2027 size = round_up(i_size_read(inode), PAGE_SIZE);
2028 if (offset >= size >> PAGE_SHIFT)
2029 return VM_FAULT_SIGBUS;
2030
2031 /*
2032 * Do we have something in the page cache already?
2033 */
2034 page = find_get_page(mapping, offset);
2035 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2036 /*
2037 * We found the page, so try async readahead before
2038 * waiting for the lock.
2039 */
2040 do_async_mmap_readahead(vma, ra, file, page, offset);
2041 } else if (!page) {
2042 /* No page in the page cache at all */
2043 do_sync_mmap_readahead(vma, ra, file, offset);
2044 count_vm_event(PGMAJFAULT);
2045 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2046 ret = VM_FAULT_MAJOR;
2047 retry_find:
2048 page = find_get_page(mapping, offset);
2049 if (!page)
2050 goto no_cached_page;
2051 }
2052
2053 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2054 put_page(page);
2055 return ret | VM_FAULT_RETRY;
2056 }
2057
2058 /* Did it get truncated? */
2059 if (unlikely(page->mapping != mapping)) {
2060 unlock_page(page);
2061 put_page(page);
2062 goto retry_find;
2063 }
2064 VM_BUG_ON_PAGE(page->index != offset, page);
2065
2066 /*
2067 * We have a locked page in the page cache, now we need to check
2068 * that it's up-to-date. If not, it is going to be due to an error.
2069 */
2070 if (unlikely(!PageUptodate(page)))
2071 goto page_not_uptodate;
2072
2073 /*
2074 * Found the page and have a reference on it.
2075 * We must recheck i_size under page lock.
2076 */
2077 size = round_up(i_size_read(inode), PAGE_SIZE);
2078 if (unlikely(offset >= size >> PAGE_SHIFT)) {
2079 unlock_page(page);
2080 put_page(page);
2081 return VM_FAULT_SIGBUS;
2082 }
2083
2084 vmf->page = page;
2085 return ret | VM_FAULT_LOCKED;
2086
2087 no_cached_page:
2088 /*
2089 * We're only likely to ever get here if MADV_RANDOM is in
2090 * effect.
2091 */
2092 error = page_cache_read(file, offset, vmf->gfp_mask);
2093
2094 /*
2095 * The page we want has now been added to the page cache.
2096 * In the unlikely event that someone removed it in the
2097 * meantime, we'll just come back here and read it again.
2098 */
2099 if (error >= 0)
2100 goto retry_find;
2101
2102 /*
2103 * An error return from page_cache_read can result if the
2104 * system is low on memory, or a problem occurs while trying
2105 * to schedule I/O.
2106 */
2107 if (error == -ENOMEM)
2108 return VM_FAULT_OOM;
2109 return VM_FAULT_SIGBUS;
2110
2111 page_not_uptodate:
2112 /*
2113 * Umm, take care of errors if the page isn't up-to-date.
2114 * Try to re-read it _once_. We do this synchronously,
2115 * because there really aren't any performance issues here
2116 * and we need to check for errors.
2117 */
2118 ClearPageError(page);
2119 error = mapping->a_ops->readpage(file, page);
2120 if (!error) {
2121 wait_on_page_locked(page);
2122 if (!PageUptodate(page))
2123 error = -EIO;
2124 }
2125 put_page(page);
2126
2127 if (!error || error == AOP_TRUNCATED_PAGE)
2128 goto retry_find;
2129
2130 /* Things didn't work out. Return zero to tell the mm layer so. */
2131 shrink_readahead_size_eio(file, ra);
2132 return VM_FAULT_SIGBUS;
2133 }
2134 EXPORT_SYMBOL(filemap_fault);
2135
2136 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2137 {
2138 struct radix_tree_iter iter;
2139 void **slot;
2140 struct file *file = vma->vm_file;
2141 struct address_space *mapping = file->f_mapping;
2142 loff_t size;
2143 struct page *page;
2144 unsigned long address = (unsigned long) vmf->virtual_address;
2145 unsigned long addr;
2146 pte_t *pte;
2147
2148 rcu_read_lock();
2149 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2150 if (iter.index > vmf->max_pgoff)
2151 break;
2152 repeat:
2153 page = radix_tree_deref_slot(slot);
2154 if (unlikely(!page))
2155 goto next;
2156 if (radix_tree_exception(page)) {
2157 if (radix_tree_deref_retry(page)) {
2158 slot = radix_tree_iter_retry(&iter);
2159 continue;
2160 }
2161 goto next;
2162 }
2163
2164 if (!page_cache_get_speculative(page))
2165 goto repeat;
2166
2167 /* Has the page moved? */
2168 if (unlikely(page != *slot)) {
2169 put_page(page);
2170 goto repeat;
2171 }
2172
2173 if (!PageUptodate(page) ||
2174 PageReadahead(page) ||
2175 PageHWPoison(page))
2176 goto skip;
2177 if (!trylock_page(page))
2178 goto skip;
2179
2180 if (page->mapping != mapping || !PageUptodate(page))
2181 goto unlock;
2182
2183 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2184 if (page->index >= size >> PAGE_SHIFT)
2185 goto unlock;
2186
2187 pte = vmf->pte + page->index - vmf->pgoff;
2188 if (!pte_none(*pte))
2189 goto unlock;
2190
2191 if (file->f_ra.mmap_miss > 0)
2192 file->f_ra.mmap_miss--;
2193 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2194 do_set_pte(vma, addr, page, pte, false, false, true);
2195 unlock_page(page);
2196 goto next;
2197 unlock:
2198 unlock_page(page);
2199 skip:
2200 put_page(page);
2201 next:
2202 if (iter.index == vmf->max_pgoff)
2203 break;
2204 }
2205 rcu_read_unlock();
2206 }
2207 EXPORT_SYMBOL(filemap_map_pages);
2208
2209 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2210 {
2211 struct page *page = vmf->page;
2212 struct inode *inode = file_inode(vma->vm_file);
2213 int ret = VM_FAULT_LOCKED;
2214
2215 sb_start_pagefault(inode->i_sb);
2216 file_update_time(vma->vm_file);
2217 lock_page(page);
2218 if (page->mapping != inode->i_mapping) {
2219 unlock_page(page);
2220 ret = VM_FAULT_NOPAGE;
2221 goto out;
2222 }
2223 /*
2224 * We mark the page dirty already here so that when freeze is in
2225 * progress, we are guaranteed that writeback during freezing will
2226 * see the dirty page and writeprotect it again.
2227 */
2228 set_page_dirty(page);
2229 wait_for_stable_page(page);
2230 out:
2231 sb_end_pagefault(inode->i_sb);
2232 return ret;
2233 }
2234 EXPORT_SYMBOL(filemap_page_mkwrite);
2235
2236 const struct vm_operations_struct generic_file_vm_ops = {
2237 .fault = filemap_fault,
2238 .map_pages = filemap_map_pages,
2239 .page_mkwrite = filemap_page_mkwrite,
2240 };
2241
2242 /* This is used for a general mmap of a disk file */
2243
2244 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2245 {
2246 struct address_space *mapping = file->f_mapping;
2247
2248 if (!mapping->a_ops->readpage)
2249 return -ENOEXEC;
2250 file_accessed(file);
2251 vma->vm_ops = &generic_file_vm_ops;
2252 return 0;
2253 }
2254
2255 /*
2256 * This is for filesystems which do not implement ->writepage.
2257 */
2258 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2259 {
2260 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2261 return -EINVAL;
2262 return generic_file_mmap(file, vma);
2263 }
2264 #else
2265 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2266 {
2267 return -ENOSYS;
2268 }
2269 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2270 {
2271 return -ENOSYS;
2272 }
2273 #endif /* CONFIG_MMU */
2274
2275 EXPORT_SYMBOL(generic_file_mmap);
2276 EXPORT_SYMBOL(generic_file_readonly_mmap);
2277
2278 static struct page *wait_on_page_read(struct page *page)
2279 {
2280 if (!IS_ERR(page)) {
2281 wait_on_page_locked(page);
2282 if (!PageUptodate(page)) {
2283 put_page(page);
2284 page = ERR_PTR(-EIO);
2285 }
2286 }
2287 return page;
2288 }
2289
2290 static struct page *do_read_cache_page(struct address_space *mapping,
2291 pgoff_t index,
2292 int (*filler)(void *, struct page *),
2293 void *data,
2294 gfp_t gfp)
2295 {
2296 struct page *page;
2297 int err;
2298 repeat:
2299 page = find_get_page(mapping, index);
2300 if (!page) {
2301 page = __page_cache_alloc(gfp | __GFP_COLD);
2302 if (!page)
2303 return ERR_PTR(-ENOMEM);
2304 err = add_to_page_cache_lru(page, mapping, index, gfp);
2305 if (unlikely(err)) {
2306 put_page(page);
2307 if (err == -EEXIST)
2308 goto repeat;
2309 /* Presumably ENOMEM for radix tree node */
2310 return ERR_PTR(err);
2311 }
2312
2313 filler:
2314 err = filler(data, page);
2315 if (err < 0) {
2316 put_page(page);
2317 return ERR_PTR(err);
2318 }
2319
2320 page = wait_on_page_read(page);
2321 if (IS_ERR(page))
2322 return page;
2323 goto out;
2324 }
2325 if (PageUptodate(page))
2326 goto out;
2327
2328 /*
2329 * Page is not up to date and may be locked due one of the following
2330 * case a: Page is being filled and the page lock is held
2331 * case b: Read/write error clearing the page uptodate status
2332 * case c: Truncation in progress (page locked)
2333 * case d: Reclaim in progress
2334 *
2335 * Case a, the page will be up to date when the page is unlocked.
2336 * There is no need to serialise on the page lock here as the page
2337 * is pinned so the lock gives no additional protection. Even if the
2338 * the page is truncated, the data is still valid if PageUptodate as
2339 * it's a race vs truncate race.
2340 * Case b, the page will not be up to date
2341 * Case c, the page may be truncated but in itself, the data may still
2342 * be valid after IO completes as it's a read vs truncate race. The
2343 * operation must restart if the page is not uptodate on unlock but
2344 * otherwise serialising on page lock to stabilise the mapping gives
2345 * no additional guarantees to the caller as the page lock is
2346 * released before return.
2347 * Case d, similar to truncation. If reclaim holds the page lock, it
2348 * will be a race with remove_mapping that determines if the mapping
2349 * is valid on unlock but otherwise the data is valid and there is
2350 * no need to serialise with page lock.
2351 *
2352 * As the page lock gives no additional guarantee, we optimistically
2353 * wait on the page to be unlocked and check if it's up to date and
2354 * use the page if it is. Otherwise, the page lock is required to
2355 * distinguish between the different cases. The motivation is that we
2356 * avoid spurious serialisations and wakeups when multiple processes
2357 * wait on the same page for IO to complete.
2358 */
2359 wait_on_page_locked(page);
2360 if (PageUptodate(page))
2361 goto out;
2362
2363 /* Distinguish between all the cases under the safety of the lock */
2364 lock_page(page);
2365
2366 /* Case c or d, restart the operation */
2367 if (!page->mapping) {
2368 unlock_page(page);
2369 put_page(page);
2370 goto repeat;
2371 }
2372
2373 /* Someone else locked and filled the page in a very small window */
2374 if (PageUptodate(page)) {
2375 unlock_page(page);
2376 goto out;
2377 }
2378 goto filler;
2379
2380 out:
2381 mark_page_accessed(page);
2382 return page;
2383 }
2384
2385 /**
2386 * read_cache_page - read into page cache, fill it if needed
2387 * @mapping: the page's address_space
2388 * @index: the page index
2389 * @filler: function to perform the read
2390 * @data: first arg to filler(data, page) function, often left as NULL
2391 *
2392 * Read into the page cache. If a page already exists, and PageUptodate() is
2393 * not set, try to fill the page and wait for it to become unlocked.
2394 *
2395 * If the page does not get brought uptodate, return -EIO.
2396 */
2397 struct page *read_cache_page(struct address_space *mapping,
2398 pgoff_t index,
2399 int (*filler)(void *, struct page *),
2400 void *data)
2401 {
2402 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2403 }
2404 EXPORT_SYMBOL(read_cache_page);
2405
2406 /**
2407 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2408 * @mapping: the page's address_space
2409 * @index: the page index
2410 * @gfp: the page allocator flags to use if allocating
2411 *
2412 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2413 * any new page allocations done using the specified allocation flags.
2414 *
2415 * If the page does not get brought uptodate, return -EIO.
2416 */
2417 struct page *read_cache_page_gfp(struct address_space *mapping,
2418 pgoff_t index,
2419 gfp_t gfp)
2420 {
2421 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2422
2423 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2424 }
2425 EXPORT_SYMBOL(read_cache_page_gfp);
2426
2427 /*
2428 * Performs necessary checks before doing a write
2429 *
2430 * Can adjust writing position or amount of bytes to write.
2431 * Returns appropriate error code that caller should return or
2432 * zero in case that write should be allowed.
2433 */
2434 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2435 {
2436 struct file *file = iocb->ki_filp;
2437 struct inode *inode = file->f_mapping->host;
2438 unsigned long limit = rlimit(RLIMIT_FSIZE);
2439 loff_t pos;
2440
2441 if (!iov_iter_count(from))
2442 return 0;
2443
2444 /* FIXME: this is for backwards compatibility with 2.4 */
2445 if (iocb->ki_flags & IOCB_APPEND)
2446 iocb->ki_pos = i_size_read(inode);
2447
2448 pos = iocb->ki_pos;
2449
2450 if (limit != RLIM_INFINITY) {
2451 if (iocb->ki_pos >= limit) {
2452 send_sig(SIGXFSZ, current, 0);
2453 return -EFBIG;
2454 }
2455 iov_iter_truncate(from, limit - (unsigned long)pos);
2456 }
2457
2458 /*
2459 * LFS rule
2460 */
2461 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2462 !(file->f_flags & O_LARGEFILE))) {
2463 if (pos >= MAX_NON_LFS)
2464 return -EFBIG;
2465 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2466 }
2467
2468 /*
2469 * Are we about to exceed the fs block limit ?
2470 *
2471 * If we have written data it becomes a short write. If we have
2472 * exceeded without writing data we send a signal and return EFBIG.
2473 * Linus frestrict idea will clean these up nicely..
2474 */
2475 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2476 return -EFBIG;
2477
2478 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2479 return iov_iter_count(from);
2480 }
2481 EXPORT_SYMBOL(generic_write_checks);
2482
2483 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2484 loff_t pos, unsigned len, unsigned flags,
2485 struct page **pagep, void **fsdata)
2486 {
2487 const struct address_space_operations *aops = mapping->a_ops;
2488
2489 return aops->write_begin(file, mapping, pos, len, flags,
2490 pagep, fsdata);
2491 }
2492 EXPORT_SYMBOL(pagecache_write_begin);
2493
2494 int pagecache_write_end(struct file *file, struct address_space *mapping,
2495 loff_t pos, unsigned len, unsigned copied,
2496 struct page *page, void *fsdata)
2497 {
2498 const struct address_space_operations *aops = mapping->a_ops;
2499
2500 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2501 }
2502 EXPORT_SYMBOL(pagecache_write_end);
2503
2504 ssize_t
2505 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2506 {
2507 struct file *file = iocb->ki_filp;
2508 struct address_space *mapping = file->f_mapping;
2509 struct inode *inode = mapping->host;
2510 loff_t pos = iocb->ki_pos;
2511 ssize_t written;
2512 size_t write_len;
2513 pgoff_t end;
2514 struct iov_iter data;
2515
2516 write_len = iov_iter_count(from);
2517 end = (pos + write_len - 1) >> PAGE_SHIFT;
2518
2519 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2520 if (written)
2521 goto out;
2522
2523 /*
2524 * After a write we want buffered reads to be sure to go to disk to get
2525 * the new data. We invalidate clean cached page from the region we're
2526 * about to write. We do this *before* the write so that we can return
2527 * without clobbering -EIOCBQUEUED from ->direct_IO().
2528 */
2529 if (mapping->nrpages) {
2530 written = invalidate_inode_pages2_range(mapping,
2531 pos >> PAGE_SHIFT, end);
2532 /*
2533 * If a page can not be invalidated, return 0 to fall back
2534 * to buffered write.
2535 */
2536 if (written) {
2537 if (written == -EBUSY)
2538 return 0;
2539 goto out;
2540 }
2541 }
2542
2543 data = *from;
2544 written = mapping->a_ops->direct_IO(iocb, &data);
2545
2546 /*
2547 * Finally, try again to invalidate clean pages which might have been
2548 * cached by non-direct readahead, or faulted in by get_user_pages()
2549 * if the source of the write was an mmap'ed region of the file
2550 * we're writing. Either one is a pretty crazy thing to do,
2551 * so we don't support it 100%. If this invalidation
2552 * fails, tough, the write still worked...
2553 */
2554 if (mapping->nrpages) {
2555 invalidate_inode_pages2_range(mapping,
2556 pos >> PAGE_SHIFT, end);
2557 }
2558
2559 if (written > 0) {
2560 pos += written;
2561 iov_iter_advance(from, written);
2562 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2563 i_size_write(inode, pos);
2564 mark_inode_dirty(inode);
2565 }
2566 iocb->ki_pos = pos;
2567 }
2568 out:
2569 return written;
2570 }
2571 EXPORT_SYMBOL(generic_file_direct_write);
2572
2573 /*
2574 * Find or create a page at the given pagecache position. Return the locked
2575 * page. This function is specifically for buffered writes.
2576 */
2577 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2578 pgoff_t index, unsigned flags)
2579 {
2580 struct page *page;
2581 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2582
2583 if (flags & AOP_FLAG_NOFS)
2584 fgp_flags |= FGP_NOFS;
2585
2586 page = pagecache_get_page(mapping, index, fgp_flags,
2587 mapping_gfp_mask(mapping));
2588 if (page)
2589 wait_for_stable_page(page);
2590
2591 return page;
2592 }
2593 EXPORT_SYMBOL(grab_cache_page_write_begin);
2594
2595 ssize_t generic_perform_write(struct file *file,
2596 struct iov_iter *i, loff_t pos)
2597 {
2598 struct address_space *mapping = file->f_mapping;
2599 const struct address_space_operations *a_ops = mapping->a_ops;
2600 long status = 0;
2601 ssize_t written = 0;
2602 unsigned int flags = 0;
2603
2604 /*
2605 * Copies from kernel address space cannot fail (NFSD is a big user).
2606 */
2607 if (!iter_is_iovec(i))
2608 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2609
2610 do {
2611 struct page *page;
2612 unsigned long offset; /* Offset into pagecache page */
2613 unsigned long bytes; /* Bytes to write to page */
2614 size_t copied; /* Bytes copied from user */
2615 void *fsdata;
2616
2617 offset = (pos & (PAGE_SIZE - 1));
2618 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2619 iov_iter_count(i));
2620
2621 again:
2622 /*
2623 * Bring in the user page that we will copy from _first_.
2624 * Otherwise there's a nasty deadlock on copying from the
2625 * same page as we're writing to, without it being marked
2626 * up-to-date.
2627 *
2628 * Not only is this an optimisation, but it is also required
2629 * to check that the address is actually valid, when atomic
2630 * usercopies are used, below.
2631 */
2632 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2633 status = -EFAULT;
2634 break;
2635 }
2636
2637 if (fatal_signal_pending(current)) {
2638 status = -EINTR;
2639 break;
2640 }
2641
2642 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2643 &page, &fsdata);
2644 if (unlikely(status < 0))
2645 break;
2646
2647 if (mapping_writably_mapped(mapping))
2648 flush_dcache_page(page);
2649
2650 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2651 flush_dcache_page(page);
2652
2653 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2654 page, fsdata);
2655 if (unlikely(status < 0))
2656 break;
2657 copied = status;
2658
2659 cond_resched();
2660
2661 iov_iter_advance(i, copied);
2662 if (unlikely(copied == 0)) {
2663 /*
2664 * If we were unable to copy any data at all, we must
2665 * fall back to a single segment length write.
2666 *
2667 * If we didn't fallback here, we could livelock
2668 * because not all segments in the iov can be copied at
2669 * once without a pagefault.
2670 */
2671 bytes = min_t(unsigned long, PAGE_SIZE - offset,
2672 iov_iter_single_seg_count(i));
2673 goto again;
2674 }
2675 pos += copied;
2676 written += copied;
2677
2678 balance_dirty_pages_ratelimited(mapping);
2679 } while (iov_iter_count(i));
2680
2681 return written ? written : status;
2682 }
2683 EXPORT_SYMBOL(generic_perform_write);
2684
2685 /**
2686 * __generic_file_write_iter - write data to a file
2687 * @iocb: IO state structure (file, offset, etc.)
2688 * @from: iov_iter with data to write
2689 *
2690 * This function does all the work needed for actually writing data to a
2691 * file. It does all basic checks, removes SUID from the file, updates
2692 * modification times and calls proper subroutines depending on whether we
2693 * do direct IO or a standard buffered write.
2694 *
2695 * It expects i_mutex to be grabbed unless we work on a block device or similar
2696 * object which does not need locking at all.
2697 *
2698 * This function does *not* take care of syncing data in case of O_SYNC write.
2699 * A caller has to handle it. This is mainly due to the fact that we want to
2700 * avoid syncing under i_mutex.
2701 */
2702 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2703 {
2704 struct file *file = iocb->ki_filp;
2705 struct address_space * mapping = file->f_mapping;
2706 struct inode *inode = mapping->host;
2707 ssize_t written = 0;
2708 ssize_t err;
2709 ssize_t status;
2710
2711 /* We can write back this queue in page reclaim */
2712 current->backing_dev_info = inode_to_bdi(inode);
2713 err = file_remove_privs(file);
2714 if (err)
2715 goto out;
2716
2717 err = file_update_time(file);
2718 if (err)
2719 goto out;
2720
2721 if (iocb->ki_flags & IOCB_DIRECT) {
2722 loff_t pos, endbyte;
2723
2724 written = generic_file_direct_write(iocb, from);
2725 /*
2726 * If the write stopped short of completing, fall back to
2727 * buffered writes. Some filesystems do this for writes to
2728 * holes, for example. For DAX files, a buffered write will
2729 * not succeed (even if it did, DAX does not handle dirty
2730 * page-cache pages correctly).
2731 */
2732 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2733 goto out;
2734
2735 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2736 /*
2737 * If generic_perform_write() returned a synchronous error
2738 * then we want to return the number of bytes which were
2739 * direct-written, or the error code if that was zero. Note
2740 * that this differs from normal direct-io semantics, which
2741 * will return -EFOO even if some bytes were written.
2742 */
2743 if (unlikely(status < 0)) {
2744 err = status;
2745 goto out;
2746 }
2747 /*
2748 * We need to ensure that the page cache pages are written to
2749 * disk and invalidated to preserve the expected O_DIRECT
2750 * semantics.
2751 */
2752 endbyte = pos + status - 1;
2753 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2754 if (err == 0) {
2755 iocb->ki_pos = endbyte + 1;
2756 written += status;
2757 invalidate_mapping_pages(mapping,
2758 pos >> PAGE_SHIFT,
2759 endbyte >> PAGE_SHIFT);
2760 } else {
2761 /*
2762 * We don't know how much we wrote, so just return
2763 * the number of bytes which were direct-written
2764 */
2765 }
2766 } else {
2767 written = generic_perform_write(file, from, iocb->ki_pos);
2768 if (likely(written > 0))
2769 iocb->ki_pos += written;
2770 }
2771 out:
2772 current->backing_dev_info = NULL;
2773 return written ? written : err;
2774 }
2775 EXPORT_SYMBOL(__generic_file_write_iter);
2776
2777 /**
2778 * generic_file_write_iter - write data to a file
2779 * @iocb: IO state structure
2780 * @from: iov_iter with data to write
2781 *
2782 * This is a wrapper around __generic_file_write_iter() to be used by most
2783 * filesystems. It takes care of syncing the file in case of O_SYNC file
2784 * and acquires i_mutex as needed.
2785 */
2786 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2787 {
2788 struct file *file = iocb->ki_filp;
2789 struct inode *inode = file->f_mapping->host;
2790 ssize_t ret;
2791
2792 inode_lock(inode);
2793 ret = generic_write_checks(iocb, from);
2794 if (ret > 0)
2795 ret = __generic_file_write_iter(iocb, from);
2796 inode_unlock(inode);
2797
2798 if (ret > 0)
2799 ret = generic_write_sync(iocb, ret);
2800 return ret;
2801 }
2802 EXPORT_SYMBOL(generic_file_write_iter);
2803
2804 /**
2805 * try_to_release_page() - release old fs-specific metadata on a page
2806 *
2807 * @page: the page which the kernel is trying to free
2808 * @gfp_mask: memory allocation flags (and I/O mode)
2809 *
2810 * The address_space is to try to release any data against the page
2811 * (presumably at page->private). If the release was successful, return `1'.
2812 * Otherwise return zero.
2813 *
2814 * This may also be called if PG_fscache is set on a page, indicating that the
2815 * page is known to the local caching routines.
2816 *
2817 * The @gfp_mask argument specifies whether I/O may be performed to release
2818 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2819 *
2820 */
2821 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2822 {
2823 struct address_space * const mapping = page->mapping;
2824
2825 BUG_ON(!PageLocked(page));
2826 if (PageWriteback(page))
2827 return 0;
2828
2829 if (mapping && mapping->a_ops->releasepage)
2830 return mapping->a_ops->releasepage(page, gfp_mask);
2831 return try_to_free_buffers(page);
2832 }
2833
2834 EXPORT_SYMBOL(try_to_release_page);
This page took 0.082577 seconds and 4 git commands to generate.