Merge master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36 #include "internal.h"
37
38 /*
39 * FIXME: remove all knowledge of the buffer layer from the core VM
40 */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42
43 #include <asm/mman.h>
44
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 loff_t offset, unsigned long nr_segs);
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 * ->zone.lock
69 *
70 * ->i_mutex
71 * ->i_mmap_lock (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_lock
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_file_buffered_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * ->i_mutex
85 * ->i_alloc_sem (various)
86 *
87 * ->inode_lock
88 * ->sb_lock (fs/fs-writeback.c)
89 * ->mapping->tree_lock (__sync_single_inode)
90 *
91 * ->i_mmap_lock
92 * ->anon_vma.lock (vma_adjust)
93 *
94 * ->anon_vma.lock
95 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
96 *
97 * ->page_table_lock or pte_lock
98 * ->swap_lock (try_to_unmap_one)
99 * ->private_lock (try_to_unmap_one)
100 * ->tree_lock (try_to_unmap_one)
101 * ->zone.lru_lock (follow_page->mark_page_accessed)
102 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
103 * ->private_lock (page_remove_rmap->set_page_dirty)
104 * ->tree_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (page_remove_rmap->set_page_dirty)
106 * ->inode_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->task->proc_lock
110 * ->dcache_lock (proc_pid_lookup)
111 */
112
113 /*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
117 */
118 void __remove_from_page_cache(struct page *page)
119 {
120 struct address_space *mapping = page->mapping;
121
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 BUG_ON(page_mapped(page));
127 }
128
129 void remove_from_page_cache(struct page *page)
130 {
131 struct address_space *mapping = page->mapping;
132
133 BUG_ON(!PageLocked(page));
134
135 write_lock_irq(&mapping->tree_lock);
136 __remove_from_page_cache(page);
137 write_unlock_irq(&mapping->tree_lock);
138 }
139
140 static int sync_page(void *word)
141 {
142 struct address_space *mapping;
143 struct page *page;
144
145 page = container_of((unsigned long *)word, struct page, flags);
146
147 /*
148 * page_mapping() is being called without PG_locked held.
149 * Some knowledge of the state and use of the page is used to
150 * reduce the requirements down to a memory barrier.
151 * The danger here is of a stale page_mapping() return value
152 * indicating a struct address_space different from the one it's
153 * associated with when it is associated with one.
154 * After smp_mb(), it's either the correct page_mapping() for
155 * the page, or an old page_mapping() and the page's own
156 * page_mapping() has gone NULL.
157 * The ->sync_page() address_space operation must tolerate
158 * page_mapping() going NULL. By an amazing coincidence,
159 * this comes about because none of the users of the page
160 * in the ->sync_page() methods make essential use of the
161 * page_mapping(), merely passing the page down to the backing
162 * device's unplug functions when it's non-NULL, which in turn
163 * ignore it for all cases but swap, where only page_private(page) is
164 * of interest. When page_mapping() does go NULL, the entire
165 * call stack gracefully ignores the page and returns.
166 * -- wli
167 */
168 smp_mb();
169 mapping = page_mapping(page);
170 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
171 mapping->a_ops->sync_page(page);
172 io_schedule();
173 return 0;
174 }
175
176 /**
177 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
178 * @mapping: address space structure to write
179 * @start: offset in bytes where the range starts
180 * @end: offset in bytes where the range ends (inclusive)
181 * @sync_mode: enable synchronous operation
182 *
183 * Start writeback against all of a mapping's dirty pages that lie
184 * within the byte offsets <start, end> inclusive.
185 *
186 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
187 * opposed to a regular memory cleansing writeback. The difference between
188 * these two operations is that if a dirty page/buffer is encountered, it must
189 * be waited upon, and not just skipped over.
190 */
191 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
192 loff_t end, int sync_mode)
193 {
194 int ret;
195 struct writeback_control wbc = {
196 .sync_mode = sync_mode,
197 .nr_to_write = mapping->nrpages * 2,
198 .range_start = start,
199 .range_end = end,
200 };
201
202 if (!mapping_cap_writeback_dirty(mapping))
203 return 0;
204
205 ret = do_writepages(mapping, &wbc);
206 return ret;
207 }
208
209 static inline int __filemap_fdatawrite(struct address_space *mapping,
210 int sync_mode)
211 {
212 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
213 }
214
215 int filemap_fdatawrite(struct address_space *mapping)
216 {
217 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
218 }
219 EXPORT_SYMBOL(filemap_fdatawrite);
220
221 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
222 loff_t end)
223 {
224 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
225 }
226
227 /**
228 * filemap_flush - mostly a non-blocking flush
229 * @mapping: target address_space
230 *
231 * This is a mostly non-blocking flush. Not suitable for data-integrity
232 * purposes - I/O may not be started against all dirty pages.
233 */
234 int filemap_flush(struct address_space *mapping)
235 {
236 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
237 }
238 EXPORT_SYMBOL(filemap_flush);
239
240 /**
241 * wait_on_page_writeback_range - wait for writeback to complete
242 * @mapping: target address_space
243 * @start: beginning page index
244 * @end: ending page index
245 *
246 * Wait for writeback to complete against pages indexed by start->end
247 * inclusive
248 */
249 int wait_on_page_writeback_range(struct address_space *mapping,
250 pgoff_t start, pgoff_t end)
251 {
252 struct pagevec pvec;
253 int nr_pages;
254 int ret = 0;
255 pgoff_t index;
256
257 if (end < start)
258 return 0;
259
260 pagevec_init(&pvec, 0);
261 index = start;
262 while ((index <= end) &&
263 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
264 PAGECACHE_TAG_WRITEBACK,
265 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
266 unsigned i;
267
268 for (i = 0; i < nr_pages; i++) {
269 struct page *page = pvec.pages[i];
270
271 /* until radix tree lookup accepts end_index */
272 if (page->index > end)
273 continue;
274
275 wait_on_page_writeback(page);
276 if (PageError(page))
277 ret = -EIO;
278 }
279 pagevec_release(&pvec);
280 cond_resched();
281 }
282
283 /* Check for outstanding write errors */
284 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
285 ret = -ENOSPC;
286 if (test_and_clear_bit(AS_EIO, &mapping->flags))
287 ret = -EIO;
288
289 return ret;
290 }
291
292 /**
293 * sync_page_range - write and wait on all pages in the passed range
294 * @inode: target inode
295 * @mapping: target address_space
296 * @pos: beginning offset in pages to write
297 * @count: number of bytes to write
298 *
299 * Write and wait upon all the pages in the passed range. This is a "data
300 * integrity" operation. It waits upon in-flight writeout before starting and
301 * waiting upon new writeout. If there was an IO error, return it.
302 *
303 * We need to re-take i_mutex during the generic_osync_inode list walk because
304 * it is otherwise livelockable.
305 */
306 int sync_page_range(struct inode *inode, struct address_space *mapping,
307 loff_t pos, loff_t count)
308 {
309 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
310 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
311 int ret;
312
313 if (!mapping_cap_writeback_dirty(mapping) || !count)
314 return 0;
315 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
316 if (ret == 0) {
317 mutex_lock(&inode->i_mutex);
318 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
319 mutex_unlock(&inode->i_mutex);
320 }
321 if (ret == 0)
322 ret = wait_on_page_writeback_range(mapping, start, end);
323 return ret;
324 }
325 EXPORT_SYMBOL(sync_page_range);
326
327 /**
328 * sync_page_range_nolock
329 * @inode: target inode
330 * @mapping: target address_space
331 * @pos: beginning offset in pages to write
332 * @count: number of bytes to write
333 *
334 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
335 * as it forces O_SYNC writers to different parts of the same file
336 * to be serialised right until io completion.
337 */
338 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
339 loff_t pos, loff_t count)
340 {
341 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
342 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
343 int ret;
344
345 if (!mapping_cap_writeback_dirty(mapping) || !count)
346 return 0;
347 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
348 if (ret == 0)
349 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
350 if (ret == 0)
351 ret = wait_on_page_writeback_range(mapping, start, end);
352 return ret;
353 }
354 EXPORT_SYMBOL(sync_page_range_nolock);
355
356 /**
357 * filemap_fdatawait - wait for all under-writeback pages to complete
358 * @mapping: address space structure to wait for
359 *
360 * Walk the list of under-writeback pages of the given address space
361 * and wait for all of them.
362 */
363 int filemap_fdatawait(struct address_space *mapping)
364 {
365 loff_t i_size = i_size_read(mapping->host);
366
367 if (i_size == 0)
368 return 0;
369
370 return wait_on_page_writeback_range(mapping, 0,
371 (i_size - 1) >> PAGE_CACHE_SHIFT);
372 }
373 EXPORT_SYMBOL(filemap_fdatawait);
374
375 int filemap_write_and_wait(struct address_space *mapping)
376 {
377 int err = 0;
378
379 if (mapping->nrpages) {
380 err = filemap_fdatawrite(mapping);
381 /*
382 * Even if the above returned error, the pages may be
383 * written partially (e.g. -ENOSPC), so we wait for it.
384 * But the -EIO is special case, it may indicate the worst
385 * thing (e.g. bug) happened, so we avoid waiting for it.
386 */
387 if (err != -EIO) {
388 int err2 = filemap_fdatawait(mapping);
389 if (!err)
390 err = err2;
391 }
392 }
393 return err;
394 }
395 EXPORT_SYMBOL(filemap_write_and_wait);
396
397 /**
398 * filemap_write_and_wait_range - write out & wait on a file range
399 * @mapping: the address_space for the pages
400 * @lstart: offset in bytes where the range starts
401 * @lend: offset in bytes where the range ends (inclusive)
402 *
403 * Write out and wait upon file offsets lstart->lend, inclusive.
404 *
405 * Note that `lend' is inclusive (describes the last byte to be written) so
406 * that this function can be used to write to the very end-of-file (end = -1).
407 */
408 int filemap_write_and_wait_range(struct address_space *mapping,
409 loff_t lstart, loff_t lend)
410 {
411 int err = 0;
412
413 if (mapping->nrpages) {
414 err = __filemap_fdatawrite_range(mapping, lstart, lend,
415 WB_SYNC_ALL);
416 /* See comment of filemap_write_and_wait() */
417 if (err != -EIO) {
418 int err2 = wait_on_page_writeback_range(mapping,
419 lstart >> PAGE_CACHE_SHIFT,
420 lend >> PAGE_CACHE_SHIFT);
421 if (!err)
422 err = err2;
423 }
424 }
425 return err;
426 }
427
428 /**
429 * add_to_page_cache - add newly allocated pagecache pages
430 * @page: page to add
431 * @mapping: the page's address_space
432 * @offset: page index
433 * @gfp_mask: page allocation mode
434 *
435 * This function is used to add newly allocated pagecache pages;
436 * the page is new, so we can just run SetPageLocked() against it.
437 * The other page state flags were set by rmqueue().
438 *
439 * This function does not add the page to the LRU. The caller must do that.
440 */
441 int add_to_page_cache(struct page *page, struct address_space *mapping,
442 pgoff_t offset, gfp_t gfp_mask)
443 {
444 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
445
446 if (error == 0) {
447 write_lock_irq(&mapping->tree_lock);
448 error = radix_tree_insert(&mapping->page_tree, offset, page);
449 if (!error) {
450 page_cache_get(page);
451 SetPageLocked(page);
452 page->mapping = mapping;
453 page->index = offset;
454 mapping->nrpages++;
455 __inc_zone_page_state(page, NR_FILE_PAGES);
456 }
457 write_unlock_irq(&mapping->tree_lock);
458 radix_tree_preload_end();
459 }
460 return error;
461 }
462 EXPORT_SYMBOL(add_to_page_cache);
463
464 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
465 pgoff_t offset, gfp_t gfp_mask)
466 {
467 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
468 if (ret == 0)
469 lru_cache_add(page);
470 return ret;
471 }
472
473 #ifdef CONFIG_NUMA
474 struct page *__page_cache_alloc(gfp_t gfp)
475 {
476 if (cpuset_do_page_mem_spread()) {
477 int n = cpuset_mem_spread_node();
478 return alloc_pages_node(n, gfp, 0);
479 }
480 return alloc_pages(gfp, 0);
481 }
482 EXPORT_SYMBOL(__page_cache_alloc);
483 #endif
484
485 static int __sleep_on_page_lock(void *word)
486 {
487 io_schedule();
488 return 0;
489 }
490
491 /*
492 * In order to wait for pages to become available there must be
493 * waitqueues associated with pages. By using a hash table of
494 * waitqueues where the bucket discipline is to maintain all
495 * waiters on the same queue and wake all when any of the pages
496 * become available, and for the woken contexts to check to be
497 * sure the appropriate page became available, this saves space
498 * at a cost of "thundering herd" phenomena during rare hash
499 * collisions.
500 */
501 static wait_queue_head_t *page_waitqueue(struct page *page)
502 {
503 const struct zone *zone = page_zone(page);
504
505 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
506 }
507
508 static inline void wake_up_page(struct page *page, int bit)
509 {
510 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
511 }
512
513 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
514 {
515 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
516
517 if (test_bit(bit_nr, &page->flags))
518 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
519 TASK_UNINTERRUPTIBLE);
520 }
521 EXPORT_SYMBOL(wait_on_page_bit);
522
523 /**
524 * unlock_page - unlock a locked page
525 * @page: the page
526 *
527 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
528 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
529 * mechananism between PageLocked pages and PageWriteback pages is shared.
530 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
531 *
532 * The first mb is necessary to safely close the critical section opened by the
533 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
534 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
535 * parallel wait_on_page_locked()).
536 */
537 void fastcall unlock_page(struct page *page)
538 {
539 smp_mb__before_clear_bit();
540 if (!TestClearPageLocked(page))
541 BUG();
542 smp_mb__after_clear_bit();
543 wake_up_page(page, PG_locked);
544 }
545 EXPORT_SYMBOL(unlock_page);
546
547 /**
548 * end_page_writeback - end writeback against a page
549 * @page: the page
550 */
551 void end_page_writeback(struct page *page)
552 {
553 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
554 if (!test_clear_page_writeback(page))
555 BUG();
556 }
557 smp_mb__after_clear_bit();
558 wake_up_page(page, PG_writeback);
559 }
560 EXPORT_SYMBOL(end_page_writeback);
561
562 /**
563 * __lock_page - get a lock on the page, assuming we need to sleep to get it
564 * @page: the page to lock
565 *
566 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
567 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
568 * chances are that on the second loop, the block layer's plug list is empty,
569 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
570 */
571 void fastcall __lock_page(struct page *page)
572 {
573 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
574
575 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
576 TASK_UNINTERRUPTIBLE);
577 }
578 EXPORT_SYMBOL(__lock_page);
579
580 /*
581 * Variant of lock_page that does not require the caller to hold a reference
582 * on the page's mapping.
583 */
584 void fastcall __lock_page_nosync(struct page *page)
585 {
586 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
587 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
588 TASK_UNINTERRUPTIBLE);
589 }
590
591 /**
592 * find_get_page - find and get a page reference
593 * @mapping: the address_space to search
594 * @offset: the page index
595 *
596 * Is there a pagecache struct page at the given (mapping, offset) tuple?
597 * If yes, increment its refcount and return it; if no, return NULL.
598 */
599 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
600 {
601 struct page *page;
602
603 read_lock_irq(&mapping->tree_lock);
604 page = radix_tree_lookup(&mapping->page_tree, offset);
605 if (page)
606 page_cache_get(page);
607 read_unlock_irq(&mapping->tree_lock);
608 return page;
609 }
610 EXPORT_SYMBOL(find_get_page);
611
612 /**
613 * find_lock_page - locate, pin and lock a pagecache page
614 * @mapping: the address_space to search
615 * @offset: the page index
616 *
617 * Locates the desired pagecache page, locks it, increments its reference
618 * count and returns its address.
619 *
620 * Returns zero if the page was not present. find_lock_page() may sleep.
621 */
622 struct page *find_lock_page(struct address_space *mapping,
623 pgoff_t offset)
624 {
625 struct page *page;
626
627 repeat:
628 read_lock_irq(&mapping->tree_lock);
629 page = radix_tree_lookup(&mapping->page_tree, offset);
630 if (page) {
631 page_cache_get(page);
632 if (TestSetPageLocked(page)) {
633 read_unlock_irq(&mapping->tree_lock);
634 __lock_page(page);
635
636 /* Has the page been truncated while we slept? */
637 if (unlikely(page->mapping != mapping)) {
638 unlock_page(page);
639 page_cache_release(page);
640 goto repeat;
641 }
642 VM_BUG_ON(page->index != offset);
643 goto out;
644 }
645 }
646 read_unlock_irq(&mapping->tree_lock);
647 out:
648 return page;
649 }
650 EXPORT_SYMBOL(find_lock_page);
651
652 /**
653 * find_or_create_page - locate or add a pagecache page
654 * @mapping: the page's address_space
655 * @index: the page's index into the mapping
656 * @gfp_mask: page allocation mode
657 *
658 * Locates a page in the pagecache. If the page is not present, a new page
659 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
660 * LRU list. The returned page is locked and has its reference count
661 * incremented.
662 *
663 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
664 * allocation!
665 *
666 * find_or_create_page() returns the desired page's address, or zero on
667 * memory exhaustion.
668 */
669 struct page *find_or_create_page(struct address_space *mapping,
670 pgoff_t index, gfp_t gfp_mask)
671 {
672 struct page *page;
673 int err;
674 repeat:
675 page = find_lock_page(mapping, index);
676 if (!page) {
677 page = __page_cache_alloc(gfp_mask);
678 if (!page)
679 return NULL;
680 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
681 if (unlikely(err)) {
682 page_cache_release(page);
683 page = NULL;
684 if (err == -EEXIST)
685 goto repeat;
686 }
687 }
688 return page;
689 }
690 EXPORT_SYMBOL(find_or_create_page);
691
692 /**
693 * find_get_pages - gang pagecache lookup
694 * @mapping: The address_space to search
695 * @start: The starting page index
696 * @nr_pages: The maximum number of pages
697 * @pages: Where the resulting pages are placed
698 *
699 * find_get_pages() will search for and return a group of up to
700 * @nr_pages pages in the mapping. The pages are placed at @pages.
701 * find_get_pages() takes a reference against the returned pages.
702 *
703 * The search returns a group of mapping-contiguous pages with ascending
704 * indexes. There may be holes in the indices due to not-present pages.
705 *
706 * find_get_pages() returns the number of pages which were found.
707 */
708 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
709 unsigned int nr_pages, struct page **pages)
710 {
711 unsigned int i;
712 unsigned int ret;
713
714 read_lock_irq(&mapping->tree_lock);
715 ret = radix_tree_gang_lookup(&mapping->page_tree,
716 (void **)pages, start, nr_pages);
717 for (i = 0; i < ret; i++)
718 page_cache_get(pages[i]);
719 read_unlock_irq(&mapping->tree_lock);
720 return ret;
721 }
722
723 /**
724 * find_get_pages_contig - gang contiguous pagecache lookup
725 * @mapping: The address_space to search
726 * @index: The starting page index
727 * @nr_pages: The maximum number of pages
728 * @pages: Where the resulting pages are placed
729 *
730 * find_get_pages_contig() works exactly like find_get_pages(), except
731 * that the returned number of pages are guaranteed to be contiguous.
732 *
733 * find_get_pages_contig() returns the number of pages which were found.
734 */
735 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
736 unsigned int nr_pages, struct page **pages)
737 {
738 unsigned int i;
739 unsigned int ret;
740
741 read_lock_irq(&mapping->tree_lock);
742 ret = radix_tree_gang_lookup(&mapping->page_tree,
743 (void **)pages, index, nr_pages);
744 for (i = 0; i < ret; i++) {
745 if (pages[i]->mapping == NULL || pages[i]->index != index)
746 break;
747
748 page_cache_get(pages[i]);
749 index++;
750 }
751 read_unlock_irq(&mapping->tree_lock);
752 return i;
753 }
754 EXPORT_SYMBOL(find_get_pages_contig);
755
756 /**
757 * find_get_pages_tag - find and return pages that match @tag
758 * @mapping: the address_space to search
759 * @index: the starting page index
760 * @tag: the tag index
761 * @nr_pages: the maximum number of pages
762 * @pages: where the resulting pages are placed
763 *
764 * Like find_get_pages, except we only return pages which are tagged with
765 * @tag. We update @index to index the next page for the traversal.
766 */
767 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
768 int tag, unsigned int nr_pages, struct page **pages)
769 {
770 unsigned int i;
771 unsigned int ret;
772
773 read_lock_irq(&mapping->tree_lock);
774 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
775 (void **)pages, *index, nr_pages, tag);
776 for (i = 0; i < ret; i++)
777 page_cache_get(pages[i]);
778 if (ret)
779 *index = pages[ret - 1]->index + 1;
780 read_unlock_irq(&mapping->tree_lock);
781 return ret;
782 }
783 EXPORT_SYMBOL(find_get_pages_tag);
784
785 /**
786 * grab_cache_page_nowait - returns locked page at given index in given cache
787 * @mapping: target address_space
788 * @index: the page index
789 *
790 * Same as grab_cache_page(), but do not wait if the page is unavailable.
791 * This is intended for speculative data generators, where the data can
792 * be regenerated if the page couldn't be grabbed. This routine should
793 * be safe to call while holding the lock for another page.
794 *
795 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
796 * and deadlock against the caller's locked page.
797 */
798 struct page *
799 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
800 {
801 struct page *page = find_get_page(mapping, index);
802
803 if (page) {
804 if (!TestSetPageLocked(page))
805 return page;
806 page_cache_release(page);
807 return NULL;
808 }
809 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
810 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
811 page_cache_release(page);
812 page = NULL;
813 }
814 return page;
815 }
816 EXPORT_SYMBOL(grab_cache_page_nowait);
817
818 /*
819 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
820 * a _large_ part of the i/o request. Imagine the worst scenario:
821 *
822 * ---R__________________________________________B__________
823 * ^ reading here ^ bad block(assume 4k)
824 *
825 * read(R) => miss => readahead(R...B) => media error => frustrating retries
826 * => failing the whole request => read(R) => read(R+1) =>
827 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
828 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
829 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
830 *
831 * It is going insane. Fix it by quickly scaling down the readahead size.
832 */
833 static void shrink_readahead_size_eio(struct file *filp,
834 struct file_ra_state *ra)
835 {
836 if (!ra->ra_pages)
837 return;
838
839 ra->ra_pages /= 4;
840 }
841
842 /**
843 * do_generic_mapping_read - generic file read routine
844 * @mapping: address_space to be read
845 * @ra: file's readahead state
846 * @filp: the file to read
847 * @ppos: current file position
848 * @desc: read_descriptor
849 * @actor: read method
850 *
851 * This is a generic file read routine, and uses the
852 * mapping->a_ops->readpage() function for the actual low-level stuff.
853 *
854 * This is really ugly. But the goto's actually try to clarify some
855 * of the logic when it comes to error handling etc.
856 *
857 * Note the struct file* is only passed for the use of readpage.
858 * It may be NULL.
859 */
860 void do_generic_mapping_read(struct address_space *mapping,
861 struct file_ra_state *ra,
862 struct file *filp,
863 loff_t *ppos,
864 read_descriptor_t *desc,
865 read_actor_t actor)
866 {
867 struct inode *inode = mapping->host;
868 pgoff_t index;
869 pgoff_t last_index;
870 pgoff_t prev_index;
871 unsigned long offset; /* offset into pagecache page */
872 unsigned int prev_offset;
873 int error;
874
875 index = *ppos >> PAGE_CACHE_SHIFT;
876 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
877 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
878 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
879 offset = *ppos & ~PAGE_CACHE_MASK;
880
881 for (;;) {
882 struct page *page;
883 pgoff_t end_index;
884 loff_t isize;
885 unsigned long nr, ret;
886
887 cond_resched();
888 find_page:
889 page = find_get_page(mapping, index);
890 if (!page) {
891 page_cache_sync_readahead(mapping,
892 ra, filp,
893 index, last_index - index);
894 page = find_get_page(mapping, index);
895 if (unlikely(page == NULL))
896 goto no_cached_page;
897 }
898 if (PageReadahead(page)) {
899 page_cache_async_readahead(mapping,
900 ra, filp, page,
901 index, last_index - index);
902 }
903 if (!PageUptodate(page))
904 goto page_not_up_to_date;
905 page_ok:
906 /*
907 * i_size must be checked after we know the page is Uptodate.
908 *
909 * Checking i_size after the check allows us to calculate
910 * the correct value for "nr", which means the zero-filled
911 * part of the page is not copied back to userspace (unless
912 * another truncate extends the file - this is desired though).
913 */
914
915 isize = i_size_read(inode);
916 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
917 if (unlikely(!isize || index > end_index)) {
918 page_cache_release(page);
919 goto out;
920 }
921
922 /* nr is the maximum number of bytes to copy from this page */
923 nr = PAGE_CACHE_SIZE;
924 if (index == end_index) {
925 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
926 if (nr <= offset) {
927 page_cache_release(page);
928 goto out;
929 }
930 }
931 nr = nr - offset;
932
933 /* If users can be writing to this page using arbitrary
934 * virtual addresses, take care about potential aliasing
935 * before reading the page on the kernel side.
936 */
937 if (mapping_writably_mapped(mapping))
938 flush_dcache_page(page);
939
940 /*
941 * When a sequential read accesses a page several times,
942 * only mark it as accessed the first time.
943 */
944 if (prev_index != index || offset != prev_offset)
945 mark_page_accessed(page);
946 prev_index = index;
947
948 /*
949 * Ok, we have the page, and it's up-to-date, so
950 * now we can copy it to user space...
951 *
952 * The actor routine returns how many bytes were actually used..
953 * NOTE! This may not be the same as how much of a user buffer
954 * we filled up (we may be padding etc), so we can only update
955 * "pos" here (the actor routine has to update the user buffer
956 * pointers and the remaining count).
957 */
958 ret = actor(desc, page, offset, nr);
959 offset += ret;
960 index += offset >> PAGE_CACHE_SHIFT;
961 offset &= ~PAGE_CACHE_MASK;
962 prev_offset = offset;
963
964 page_cache_release(page);
965 if (ret == nr && desc->count)
966 continue;
967 goto out;
968
969 page_not_up_to_date:
970 /* Get exclusive access to the page ... */
971 lock_page(page);
972
973 /* Did it get truncated before we got the lock? */
974 if (!page->mapping) {
975 unlock_page(page);
976 page_cache_release(page);
977 continue;
978 }
979
980 /* Did somebody else fill it already? */
981 if (PageUptodate(page)) {
982 unlock_page(page);
983 goto page_ok;
984 }
985
986 readpage:
987 /* Start the actual read. The read will unlock the page. */
988 error = mapping->a_ops->readpage(filp, page);
989
990 if (unlikely(error)) {
991 if (error == AOP_TRUNCATED_PAGE) {
992 page_cache_release(page);
993 goto find_page;
994 }
995 goto readpage_error;
996 }
997
998 if (!PageUptodate(page)) {
999 lock_page(page);
1000 if (!PageUptodate(page)) {
1001 if (page->mapping == NULL) {
1002 /*
1003 * invalidate_inode_pages got it
1004 */
1005 unlock_page(page);
1006 page_cache_release(page);
1007 goto find_page;
1008 }
1009 unlock_page(page);
1010 error = -EIO;
1011 shrink_readahead_size_eio(filp, ra);
1012 goto readpage_error;
1013 }
1014 unlock_page(page);
1015 }
1016
1017 goto page_ok;
1018
1019 readpage_error:
1020 /* UHHUH! A synchronous read error occurred. Report it */
1021 desc->error = error;
1022 page_cache_release(page);
1023 goto out;
1024
1025 no_cached_page:
1026 /*
1027 * Ok, it wasn't cached, so we need to create a new
1028 * page..
1029 */
1030 page = page_cache_alloc_cold(mapping);
1031 if (!page) {
1032 desc->error = -ENOMEM;
1033 goto out;
1034 }
1035 error = add_to_page_cache_lru(page, mapping,
1036 index, GFP_KERNEL);
1037 if (error) {
1038 page_cache_release(page);
1039 if (error == -EEXIST)
1040 goto find_page;
1041 desc->error = error;
1042 goto out;
1043 }
1044 goto readpage;
1045 }
1046
1047 out:
1048 ra->prev_pos = prev_index;
1049 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1050 ra->prev_pos |= prev_offset;
1051
1052 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1053 if (filp)
1054 file_accessed(filp);
1055 }
1056 EXPORT_SYMBOL(do_generic_mapping_read);
1057
1058 int file_read_actor(read_descriptor_t *desc, struct page *page,
1059 unsigned long offset, unsigned long size)
1060 {
1061 char *kaddr;
1062 unsigned long left, count = desc->count;
1063
1064 if (size > count)
1065 size = count;
1066
1067 /*
1068 * Faults on the destination of a read are common, so do it before
1069 * taking the kmap.
1070 */
1071 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1072 kaddr = kmap_atomic(page, KM_USER0);
1073 left = __copy_to_user_inatomic(desc->arg.buf,
1074 kaddr + offset, size);
1075 kunmap_atomic(kaddr, KM_USER0);
1076 if (left == 0)
1077 goto success;
1078 }
1079
1080 /* Do it the slow way */
1081 kaddr = kmap(page);
1082 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1083 kunmap(page);
1084
1085 if (left) {
1086 size -= left;
1087 desc->error = -EFAULT;
1088 }
1089 success:
1090 desc->count = count - size;
1091 desc->written += size;
1092 desc->arg.buf += size;
1093 return size;
1094 }
1095
1096 /*
1097 * Performs necessary checks before doing a write
1098 * @iov: io vector request
1099 * @nr_segs: number of segments in the iovec
1100 * @count: number of bytes to write
1101 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1102 *
1103 * Adjust number of segments and amount of bytes to write (nr_segs should be
1104 * properly initialized first). Returns appropriate error code that caller
1105 * should return or zero in case that write should be allowed.
1106 */
1107 int generic_segment_checks(const struct iovec *iov,
1108 unsigned long *nr_segs, size_t *count, int access_flags)
1109 {
1110 unsigned long seg;
1111 size_t cnt = 0;
1112 for (seg = 0; seg < *nr_segs; seg++) {
1113 const struct iovec *iv = &iov[seg];
1114
1115 /*
1116 * If any segment has a negative length, or the cumulative
1117 * length ever wraps negative then return -EINVAL.
1118 */
1119 cnt += iv->iov_len;
1120 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1121 return -EINVAL;
1122 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1123 continue;
1124 if (seg == 0)
1125 return -EFAULT;
1126 *nr_segs = seg;
1127 cnt -= iv->iov_len; /* This segment is no good */
1128 break;
1129 }
1130 *count = cnt;
1131 return 0;
1132 }
1133 EXPORT_SYMBOL(generic_segment_checks);
1134
1135 /**
1136 * generic_file_aio_read - generic filesystem read routine
1137 * @iocb: kernel I/O control block
1138 * @iov: io vector request
1139 * @nr_segs: number of segments in the iovec
1140 * @pos: current file position
1141 *
1142 * This is the "read()" routine for all filesystems
1143 * that can use the page cache directly.
1144 */
1145 ssize_t
1146 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1147 unsigned long nr_segs, loff_t pos)
1148 {
1149 struct file *filp = iocb->ki_filp;
1150 ssize_t retval;
1151 unsigned long seg;
1152 size_t count;
1153 loff_t *ppos = &iocb->ki_pos;
1154
1155 count = 0;
1156 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1157 if (retval)
1158 return retval;
1159
1160 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1161 if (filp->f_flags & O_DIRECT) {
1162 loff_t size;
1163 struct address_space *mapping;
1164 struct inode *inode;
1165
1166 mapping = filp->f_mapping;
1167 inode = mapping->host;
1168 retval = 0;
1169 if (!count)
1170 goto out; /* skip atime */
1171 size = i_size_read(inode);
1172 if (pos < size) {
1173 retval = generic_file_direct_IO(READ, iocb,
1174 iov, pos, nr_segs);
1175 if (retval > 0)
1176 *ppos = pos + retval;
1177 }
1178 if (likely(retval != 0)) {
1179 file_accessed(filp);
1180 goto out;
1181 }
1182 }
1183
1184 retval = 0;
1185 if (count) {
1186 for (seg = 0; seg < nr_segs; seg++) {
1187 read_descriptor_t desc;
1188
1189 desc.written = 0;
1190 desc.arg.buf = iov[seg].iov_base;
1191 desc.count = iov[seg].iov_len;
1192 if (desc.count == 0)
1193 continue;
1194 desc.error = 0;
1195 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1196 retval += desc.written;
1197 if (desc.error) {
1198 retval = retval ?: desc.error;
1199 break;
1200 }
1201 if (desc.count > 0)
1202 break;
1203 }
1204 }
1205 out:
1206 return retval;
1207 }
1208 EXPORT_SYMBOL(generic_file_aio_read);
1209
1210 static ssize_t
1211 do_readahead(struct address_space *mapping, struct file *filp,
1212 pgoff_t index, unsigned long nr)
1213 {
1214 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1215 return -EINVAL;
1216
1217 force_page_cache_readahead(mapping, filp, index,
1218 max_sane_readahead(nr));
1219 return 0;
1220 }
1221
1222 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1223 {
1224 ssize_t ret;
1225 struct file *file;
1226
1227 ret = -EBADF;
1228 file = fget(fd);
1229 if (file) {
1230 if (file->f_mode & FMODE_READ) {
1231 struct address_space *mapping = file->f_mapping;
1232 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1233 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1234 unsigned long len = end - start + 1;
1235 ret = do_readahead(mapping, file, start, len);
1236 }
1237 fput(file);
1238 }
1239 return ret;
1240 }
1241
1242 #ifdef CONFIG_MMU
1243 /**
1244 * page_cache_read - adds requested page to the page cache if not already there
1245 * @file: file to read
1246 * @offset: page index
1247 *
1248 * This adds the requested page to the page cache if it isn't already there,
1249 * and schedules an I/O to read in its contents from disk.
1250 */
1251 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1252 {
1253 struct address_space *mapping = file->f_mapping;
1254 struct page *page;
1255 int ret;
1256
1257 do {
1258 page = page_cache_alloc_cold(mapping);
1259 if (!page)
1260 return -ENOMEM;
1261
1262 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1263 if (ret == 0)
1264 ret = mapping->a_ops->readpage(file, page);
1265 else if (ret == -EEXIST)
1266 ret = 0; /* losing race to add is OK */
1267
1268 page_cache_release(page);
1269
1270 } while (ret == AOP_TRUNCATED_PAGE);
1271
1272 return ret;
1273 }
1274
1275 #define MMAP_LOTSAMISS (100)
1276
1277 /**
1278 * filemap_fault - read in file data for page fault handling
1279 * @vma: vma in which the fault was taken
1280 * @vmf: struct vm_fault containing details of the fault
1281 *
1282 * filemap_fault() is invoked via the vma operations vector for a
1283 * mapped memory region to read in file data during a page fault.
1284 *
1285 * The goto's are kind of ugly, but this streamlines the normal case of having
1286 * it in the page cache, and handles the special cases reasonably without
1287 * having a lot of duplicated code.
1288 */
1289 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1290 {
1291 int error;
1292 struct file *file = vma->vm_file;
1293 struct address_space *mapping = file->f_mapping;
1294 struct file_ra_state *ra = &file->f_ra;
1295 struct inode *inode = mapping->host;
1296 struct page *page;
1297 unsigned long size;
1298 int did_readaround = 0;
1299 int ret = 0;
1300
1301 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1302 if (vmf->pgoff >= size)
1303 return VM_FAULT_SIGBUS;
1304
1305 /* If we don't want any read-ahead, don't bother */
1306 if (VM_RandomReadHint(vma))
1307 goto no_cached_page;
1308
1309 /*
1310 * Do we have something in the page cache already?
1311 */
1312 retry_find:
1313 page = find_lock_page(mapping, vmf->pgoff);
1314 /*
1315 * For sequential accesses, we use the generic readahead logic.
1316 */
1317 if (VM_SequentialReadHint(vma)) {
1318 if (!page) {
1319 page_cache_sync_readahead(mapping, ra, file,
1320 vmf->pgoff, 1);
1321 page = find_lock_page(mapping, vmf->pgoff);
1322 if (!page)
1323 goto no_cached_page;
1324 }
1325 if (PageReadahead(page)) {
1326 page_cache_async_readahead(mapping, ra, file, page,
1327 vmf->pgoff, 1);
1328 }
1329 }
1330
1331 if (!page) {
1332 unsigned long ra_pages;
1333
1334 ra->mmap_miss++;
1335
1336 /*
1337 * Do we miss much more than hit in this file? If so,
1338 * stop bothering with read-ahead. It will only hurt.
1339 */
1340 if (ra->mmap_miss > MMAP_LOTSAMISS)
1341 goto no_cached_page;
1342
1343 /*
1344 * To keep the pgmajfault counter straight, we need to
1345 * check did_readaround, as this is an inner loop.
1346 */
1347 if (!did_readaround) {
1348 ret = VM_FAULT_MAJOR;
1349 count_vm_event(PGMAJFAULT);
1350 }
1351 did_readaround = 1;
1352 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1353 if (ra_pages) {
1354 pgoff_t start = 0;
1355
1356 if (vmf->pgoff > ra_pages / 2)
1357 start = vmf->pgoff - ra_pages / 2;
1358 do_page_cache_readahead(mapping, file, start, ra_pages);
1359 }
1360 page = find_lock_page(mapping, vmf->pgoff);
1361 if (!page)
1362 goto no_cached_page;
1363 }
1364
1365 if (!did_readaround)
1366 ra->mmap_miss--;
1367
1368 /*
1369 * We have a locked page in the page cache, now we need to check
1370 * that it's up-to-date. If not, it is going to be due to an error.
1371 */
1372 if (unlikely(!PageUptodate(page)))
1373 goto page_not_uptodate;
1374
1375 /* Must recheck i_size under page lock */
1376 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1377 if (unlikely(vmf->pgoff >= size)) {
1378 unlock_page(page);
1379 page_cache_release(page);
1380 return VM_FAULT_SIGBUS;
1381 }
1382
1383 /*
1384 * Found the page and have a reference on it.
1385 */
1386 mark_page_accessed(page);
1387 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1388 vmf->page = page;
1389 return ret | VM_FAULT_LOCKED;
1390
1391 no_cached_page:
1392 /*
1393 * We're only likely to ever get here if MADV_RANDOM is in
1394 * effect.
1395 */
1396 error = page_cache_read(file, vmf->pgoff);
1397
1398 /*
1399 * The page we want has now been added to the page cache.
1400 * In the unlikely event that someone removed it in the
1401 * meantime, we'll just come back here and read it again.
1402 */
1403 if (error >= 0)
1404 goto retry_find;
1405
1406 /*
1407 * An error return from page_cache_read can result if the
1408 * system is low on memory, or a problem occurs while trying
1409 * to schedule I/O.
1410 */
1411 if (error == -ENOMEM)
1412 return VM_FAULT_OOM;
1413 return VM_FAULT_SIGBUS;
1414
1415 page_not_uptodate:
1416 /* IO error path */
1417 if (!did_readaround) {
1418 ret = VM_FAULT_MAJOR;
1419 count_vm_event(PGMAJFAULT);
1420 }
1421
1422 /*
1423 * Umm, take care of errors if the page isn't up-to-date.
1424 * Try to re-read it _once_. We do this synchronously,
1425 * because there really aren't any performance issues here
1426 * and we need to check for errors.
1427 */
1428 ClearPageError(page);
1429 error = mapping->a_ops->readpage(file, page);
1430 page_cache_release(page);
1431
1432 if (!error || error == AOP_TRUNCATED_PAGE)
1433 goto retry_find;
1434
1435 /* Things didn't work out. Return zero to tell the mm layer so. */
1436 shrink_readahead_size_eio(file, ra);
1437 return VM_FAULT_SIGBUS;
1438 }
1439 EXPORT_SYMBOL(filemap_fault);
1440
1441 struct vm_operations_struct generic_file_vm_ops = {
1442 .fault = filemap_fault,
1443 };
1444
1445 /* This is used for a general mmap of a disk file */
1446
1447 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1448 {
1449 struct address_space *mapping = file->f_mapping;
1450
1451 if (!mapping->a_ops->readpage)
1452 return -ENOEXEC;
1453 file_accessed(file);
1454 vma->vm_ops = &generic_file_vm_ops;
1455 vma->vm_flags |= VM_CAN_NONLINEAR;
1456 return 0;
1457 }
1458
1459 /*
1460 * This is for filesystems which do not implement ->writepage.
1461 */
1462 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1463 {
1464 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1465 return -EINVAL;
1466 return generic_file_mmap(file, vma);
1467 }
1468 #else
1469 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1470 {
1471 return -ENOSYS;
1472 }
1473 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1474 {
1475 return -ENOSYS;
1476 }
1477 #endif /* CONFIG_MMU */
1478
1479 EXPORT_SYMBOL(generic_file_mmap);
1480 EXPORT_SYMBOL(generic_file_readonly_mmap);
1481
1482 static struct page *__read_cache_page(struct address_space *mapping,
1483 pgoff_t index,
1484 int (*filler)(void *,struct page*),
1485 void *data)
1486 {
1487 struct page *page;
1488 int err;
1489 repeat:
1490 page = find_get_page(mapping, index);
1491 if (!page) {
1492 page = page_cache_alloc_cold(mapping);
1493 if (!page)
1494 return ERR_PTR(-ENOMEM);
1495 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1496 if (unlikely(err)) {
1497 page_cache_release(page);
1498 if (err == -EEXIST)
1499 goto repeat;
1500 /* Presumably ENOMEM for radix tree node */
1501 return ERR_PTR(err);
1502 }
1503 err = filler(data, page);
1504 if (err < 0) {
1505 page_cache_release(page);
1506 page = ERR_PTR(err);
1507 }
1508 }
1509 return page;
1510 }
1511
1512 /*
1513 * Same as read_cache_page, but don't wait for page to become unlocked
1514 * after submitting it to the filler.
1515 */
1516 struct page *read_cache_page_async(struct address_space *mapping,
1517 pgoff_t index,
1518 int (*filler)(void *,struct page*),
1519 void *data)
1520 {
1521 struct page *page;
1522 int err;
1523
1524 retry:
1525 page = __read_cache_page(mapping, index, filler, data);
1526 if (IS_ERR(page))
1527 return page;
1528 if (PageUptodate(page))
1529 goto out;
1530
1531 lock_page(page);
1532 if (!page->mapping) {
1533 unlock_page(page);
1534 page_cache_release(page);
1535 goto retry;
1536 }
1537 if (PageUptodate(page)) {
1538 unlock_page(page);
1539 goto out;
1540 }
1541 err = filler(data, page);
1542 if (err < 0) {
1543 page_cache_release(page);
1544 return ERR_PTR(err);
1545 }
1546 out:
1547 mark_page_accessed(page);
1548 return page;
1549 }
1550 EXPORT_SYMBOL(read_cache_page_async);
1551
1552 /**
1553 * read_cache_page - read into page cache, fill it if needed
1554 * @mapping: the page's address_space
1555 * @index: the page index
1556 * @filler: function to perform the read
1557 * @data: destination for read data
1558 *
1559 * Read into the page cache. If a page already exists, and PageUptodate() is
1560 * not set, try to fill the page then wait for it to become unlocked.
1561 *
1562 * If the page does not get brought uptodate, return -EIO.
1563 */
1564 struct page *read_cache_page(struct address_space *mapping,
1565 pgoff_t index,
1566 int (*filler)(void *,struct page*),
1567 void *data)
1568 {
1569 struct page *page;
1570
1571 page = read_cache_page_async(mapping, index, filler, data);
1572 if (IS_ERR(page))
1573 goto out;
1574 wait_on_page_locked(page);
1575 if (!PageUptodate(page)) {
1576 page_cache_release(page);
1577 page = ERR_PTR(-EIO);
1578 }
1579 out:
1580 return page;
1581 }
1582 EXPORT_SYMBOL(read_cache_page);
1583
1584 /*
1585 * The logic we want is
1586 *
1587 * if suid or (sgid and xgrp)
1588 * remove privs
1589 */
1590 int should_remove_suid(struct dentry *dentry)
1591 {
1592 mode_t mode = dentry->d_inode->i_mode;
1593 int kill = 0;
1594
1595 /* suid always must be killed */
1596 if (unlikely(mode & S_ISUID))
1597 kill = ATTR_KILL_SUID;
1598
1599 /*
1600 * sgid without any exec bits is just a mandatory locking mark; leave
1601 * it alone. If some exec bits are set, it's a real sgid; kill it.
1602 */
1603 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1604 kill |= ATTR_KILL_SGID;
1605
1606 if (unlikely(kill && !capable(CAP_FSETID)))
1607 return kill;
1608
1609 return 0;
1610 }
1611 EXPORT_SYMBOL(should_remove_suid);
1612
1613 int __remove_suid(struct dentry *dentry, int kill)
1614 {
1615 struct iattr newattrs;
1616
1617 newattrs.ia_valid = ATTR_FORCE | kill;
1618 return notify_change(dentry, &newattrs);
1619 }
1620
1621 int remove_suid(struct dentry *dentry)
1622 {
1623 int killsuid = should_remove_suid(dentry);
1624 int killpriv = security_inode_need_killpriv(dentry);
1625 int error = 0;
1626
1627 if (killpriv < 0)
1628 return killpriv;
1629 if (killpriv)
1630 error = security_inode_killpriv(dentry);
1631 if (!error && killsuid)
1632 error = __remove_suid(dentry, killsuid);
1633
1634 return error;
1635 }
1636 EXPORT_SYMBOL(remove_suid);
1637
1638 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1639 const struct iovec *iov, size_t base, size_t bytes)
1640 {
1641 size_t copied = 0, left = 0;
1642
1643 while (bytes) {
1644 char __user *buf = iov->iov_base + base;
1645 int copy = min(bytes, iov->iov_len - base);
1646
1647 base = 0;
1648 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1649 copied += copy;
1650 bytes -= copy;
1651 vaddr += copy;
1652 iov++;
1653
1654 if (unlikely(left))
1655 break;
1656 }
1657 return copied - left;
1658 }
1659
1660 /*
1661 * Copy as much as we can into the page and return the number of bytes which
1662 * were sucessfully copied. If a fault is encountered then return the number of
1663 * bytes which were copied.
1664 */
1665 size_t iov_iter_copy_from_user_atomic(struct page *page,
1666 struct iov_iter *i, unsigned long offset, size_t bytes)
1667 {
1668 char *kaddr;
1669 size_t copied;
1670
1671 BUG_ON(!in_atomic());
1672 kaddr = kmap_atomic(page, KM_USER0);
1673 if (likely(i->nr_segs == 1)) {
1674 int left;
1675 char __user *buf = i->iov->iov_base + i->iov_offset;
1676 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1677 buf, bytes);
1678 copied = bytes - left;
1679 } else {
1680 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1681 i->iov, i->iov_offset, bytes);
1682 }
1683 kunmap_atomic(kaddr, KM_USER0);
1684
1685 return copied;
1686 }
1687 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1688
1689 /*
1690 * This has the same sideeffects and return value as
1691 * iov_iter_copy_from_user_atomic().
1692 * The difference is that it attempts to resolve faults.
1693 * Page must not be locked.
1694 */
1695 size_t iov_iter_copy_from_user(struct page *page,
1696 struct iov_iter *i, unsigned long offset, size_t bytes)
1697 {
1698 char *kaddr;
1699 size_t copied;
1700
1701 kaddr = kmap(page);
1702 if (likely(i->nr_segs == 1)) {
1703 int left;
1704 char __user *buf = i->iov->iov_base + i->iov_offset;
1705 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1706 copied = bytes - left;
1707 } else {
1708 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1709 i->iov, i->iov_offset, bytes);
1710 }
1711 kunmap(page);
1712 return copied;
1713 }
1714 EXPORT_SYMBOL(iov_iter_copy_from_user);
1715
1716 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1717 {
1718 if (likely(i->nr_segs == 1)) {
1719 i->iov_offset += bytes;
1720 } else {
1721 const struct iovec *iov = i->iov;
1722 size_t base = i->iov_offset;
1723
1724 while (bytes) {
1725 int copy = min(bytes, iov->iov_len - base);
1726
1727 bytes -= copy;
1728 base += copy;
1729 if (iov->iov_len == base) {
1730 iov++;
1731 base = 0;
1732 }
1733 }
1734 i->iov = iov;
1735 i->iov_offset = base;
1736 }
1737 }
1738
1739 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1740 {
1741 BUG_ON(i->count < bytes);
1742
1743 __iov_iter_advance_iov(i, bytes);
1744 i->count -= bytes;
1745 }
1746 EXPORT_SYMBOL(iov_iter_advance);
1747
1748 /*
1749 * Fault in the first iovec of the given iov_iter, to a maximum length
1750 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1751 * accessed (ie. because it is an invalid address).
1752 *
1753 * writev-intensive code may want this to prefault several iovecs -- that
1754 * would be possible (callers must not rely on the fact that _only_ the
1755 * first iovec will be faulted with the current implementation).
1756 */
1757 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1758 {
1759 char __user *buf = i->iov->iov_base + i->iov_offset;
1760 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1761 return fault_in_pages_readable(buf, bytes);
1762 }
1763 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1764
1765 /*
1766 * Return the count of just the current iov_iter segment.
1767 */
1768 size_t iov_iter_single_seg_count(struct iov_iter *i)
1769 {
1770 const struct iovec *iov = i->iov;
1771 if (i->nr_segs == 1)
1772 return i->count;
1773 else
1774 return min(i->count, iov->iov_len - i->iov_offset);
1775 }
1776 EXPORT_SYMBOL(iov_iter_single_seg_count);
1777
1778 /*
1779 * Performs necessary checks before doing a write
1780 *
1781 * Can adjust writing position or amount of bytes to write.
1782 * Returns appropriate error code that caller should return or
1783 * zero in case that write should be allowed.
1784 */
1785 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1786 {
1787 struct inode *inode = file->f_mapping->host;
1788 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1789
1790 if (unlikely(*pos < 0))
1791 return -EINVAL;
1792
1793 if (!isblk) {
1794 /* FIXME: this is for backwards compatibility with 2.4 */
1795 if (file->f_flags & O_APPEND)
1796 *pos = i_size_read(inode);
1797
1798 if (limit != RLIM_INFINITY) {
1799 if (*pos >= limit) {
1800 send_sig(SIGXFSZ, current, 0);
1801 return -EFBIG;
1802 }
1803 if (*count > limit - (typeof(limit))*pos) {
1804 *count = limit - (typeof(limit))*pos;
1805 }
1806 }
1807 }
1808
1809 /*
1810 * LFS rule
1811 */
1812 if (unlikely(*pos + *count > MAX_NON_LFS &&
1813 !(file->f_flags & O_LARGEFILE))) {
1814 if (*pos >= MAX_NON_LFS) {
1815 return -EFBIG;
1816 }
1817 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1818 *count = MAX_NON_LFS - (unsigned long)*pos;
1819 }
1820 }
1821
1822 /*
1823 * Are we about to exceed the fs block limit ?
1824 *
1825 * If we have written data it becomes a short write. If we have
1826 * exceeded without writing data we send a signal and return EFBIG.
1827 * Linus frestrict idea will clean these up nicely..
1828 */
1829 if (likely(!isblk)) {
1830 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1831 if (*count || *pos > inode->i_sb->s_maxbytes) {
1832 return -EFBIG;
1833 }
1834 /* zero-length writes at ->s_maxbytes are OK */
1835 }
1836
1837 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1838 *count = inode->i_sb->s_maxbytes - *pos;
1839 } else {
1840 #ifdef CONFIG_BLOCK
1841 loff_t isize;
1842 if (bdev_read_only(I_BDEV(inode)))
1843 return -EPERM;
1844 isize = i_size_read(inode);
1845 if (*pos >= isize) {
1846 if (*count || *pos > isize)
1847 return -ENOSPC;
1848 }
1849
1850 if (*pos + *count > isize)
1851 *count = isize - *pos;
1852 #else
1853 return -EPERM;
1854 #endif
1855 }
1856 return 0;
1857 }
1858 EXPORT_SYMBOL(generic_write_checks);
1859
1860 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1861 loff_t pos, unsigned len, unsigned flags,
1862 struct page **pagep, void **fsdata)
1863 {
1864 const struct address_space_operations *aops = mapping->a_ops;
1865
1866 if (aops->write_begin) {
1867 return aops->write_begin(file, mapping, pos, len, flags,
1868 pagep, fsdata);
1869 } else {
1870 int ret;
1871 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1872 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1873 struct inode *inode = mapping->host;
1874 struct page *page;
1875 again:
1876 page = __grab_cache_page(mapping, index);
1877 *pagep = page;
1878 if (!page)
1879 return -ENOMEM;
1880
1881 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1882 /*
1883 * There is no way to resolve a short write situation
1884 * for a !Uptodate page (except by double copying in
1885 * the caller done by generic_perform_write_2copy).
1886 *
1887 * Instead, we have to bring it uptodate here.
1888 */
1889 ret = aops->readpage(file, page);
1890 page_cache_release(page);
1891 if (ret) {
1892 if (ret == AOP_TRUNCATED_PAGE)
1893 goto again;
1894 return ret;
1895 }
1896 goto again;
1897 }
1898
1899 ret = aops->prepare_write(file, page, offset, offset+len);
1900 if (ret) {
1901 unlock_page(page);
1902 page_cache_release(page);
1903 if (pos + len > inode->i_size)
1904 vmtruncate(inode, inode->i_size);
1905 }
1906 return ret;
1907 }
1908 }
1909 EXPORT_SYMBOL(pagecache_write_begin);
1910
1911 int pagecache_write_end(struct file *file, struct address_space *mapping,
1912 loff_t pos, unsigned len, unsigned copied,
1913 struct page *page, void *fsdata)
1914 {
1915 const struct address_space_operations *aops = mapping->a_ops;
1916 int ret;
1917
1918 if (aops->write_end) {
1919 mark_page_accessed(page);
1920 ret = aops->write_end(file, mapping, pos, len, copied,
1921 page, fsdata);
1922 } else {
1923 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1924 struct inode *inode = mapping->host;
1925
1926 flush_dcache_page(page);
1927 ret = aops->commit_write(file, page, offset, offset+len);
1928 unlock_page(page);
1929 mark_page_accessed(page);
1930 page_cache_release(page);
1931
1932 if (ret < 0) {
1933 if (pos + len > inode->i_size)
1934 vmtruncate(inode, inode->i_size);
1935 } else if (ret > 0)
1936 ret = min_t(size_t, copied, ret);
1937 else
1938 ret = copied;
1939 }
1940
1941 return ret;
1942 }
1943 EXPORT_SYMBOL(pagecache_write_end);
1944
1945 ssize_t
1946 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1947 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1948 size_t count, size_t ocount)
1949 {
1950 struct file *file = iocb->ki_filp;
1951 struct address_space *mapping = file->f_mapping;
1952 struct inode *inode = mapping->host;
1953 ssize_t written;
1954
1955 if (count != ocount)
1956 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1957
1958 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1959 if (written > 0) {
1960 loff_t end = pos + written;
1961 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1962 i_size_write(inode, end);
1963 mark_inode_dirty(inode);
1964 }
1965 *ppos = end;
1966 }
1967
1968 /*
1969 * Sync the fs metadata but not the minor inode changes and
1970 * of course not the data as we did direct DMA for the IO.
1971 * i_mutex is held, which protects generic_osync_inode() from
1972 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1973 */
1974 if ((written >= 0 || written == -EIOCBQUEUED) &&
1975 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1976 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1977 if (err < 0)
1978 written = err;
1979 }
1980 return written;
1981 }
1982 EXPORT_SYMBOL(generic_file_direct_write);
1983
1984 /*
1985 * Find or create a page at the given pagecache position. Return the locked
1986 * page. This function is specifically for buffered writes.
1987 */
1988 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
1989 {
1990 int status;
1991 struct page *page;
1992 repeat:
1993 page = find_lock_page(mapping, index);
1994 if (likely(page))
1995 return page;
1996
1997 page = page_cache_alloc(mapping);
1998 if (!page)
1999 return NULL;
2000 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2001 if (unlikely(status)) {
2002 page_cache_release(page);
2003 if (status == -EEXIST)
2004 goto repeat;
2005 return NULL;
2006 }
2007 return page;
2008 }
2009 EXPORT_SYMBOL(__grab_cache_page);
2010
2011 static ssize_t generic_perform_write_2copy(struct file *file,
2012 struct iov_iter *i, loff_t pos)
2013 {
2014 struct address_space *mapping = file->f_mapping;
2015 const struct address_space_operations *a_ops = mapping->a_ops;
2016 struct inode *inode = mapping->host;
2017 long status = 0;
2018 ssize_t written = 0;
2019
2020 do {
2021 struct page *src_page;
2022 struct page *page;
2023 pgoff_t index; /* Pagecache index for current page */
2024 unsigned long offset; /* Offset into pagecache page */
2025 unsigned long bytes; /* Bytes to write to page */
2026 size_t copied; /* Bytes copied from user */
2027
2028 offset = (pos & (PAGE_CACHE_SIZE - 1));
2029 index = pos >> PAGE_CACHE_SHIFT;
2030 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2031 iov_iter_count(i));
2032
2033 /*
2034 * a non-NULL src_page indicates that we're doing the
2035 * copy via get_user_pages and kmap.
2036 */
2037 src_page = NULL;
2038
2039 /*
2040 * Bring in the user page that we will copy from _first_.
2041 * Otherwise there's a nasty deadlock on copying from the
2042 * same page as we're writing to, without it being marked
2043 * up-to-date.
2044 *
2045 * Not only is this an optimisation, but it is also required
2046 * to check that the address is actually valid, when atomic
2047 * usercopies are used, below.
2048 */
2049 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2050 status = -EFAULT;
2051 break;
2052 }
2053
2054 page = __grab_cache_page(mapping, index);
2055 if (!page) {
2056 status = -ENOMEM;
2057 break;
2058 }
2059
2060 /*
2061 * non-uptodate pages cannot cope with short copies, and we
2062 * cannot take a pagefault with the destination page locked.
2063 * So pin the source page to copy it.
2064 */
2065 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2066 unlock_page(page);
2067
2068 src_page = alloc_page(GFP_KERNEL);
2069 if (!src_page) {
2070 page_cache_release(page);
2071 status = -ENOMEM;
2072 break;
2073 }
2074
2075 /*
2076 * Cannot get_user_pages with a page locked for the
2077 * same reason as we can't take a page fault with a
2078 * page locked (as explained below).
2079 */
2080 copied = iov_iter_copy_from_user(src_page, i,
2081 offset, bytes);
2082 if (unlikely(copied == 0)) {
2083 status = -EFAULT;
2084 page_cache_release(page);
2085 page_cache_release(src_page);
2086 break;
2087 }
2088 bytes = copied;
2089
2090 lock_page(page);
2091 /*
2092 * Can't handle the page going uptodate here, because
2093 * that means we would use non-atomic usercopies, which
2094 * zero out the tail of the page, which can cause
2095 * zeroes to become transiently visible. We could just
2096 * use a non-zeroing copy, but the APIs aren't too
2097 * consistent.
2098 */
2099 if (unlikely(!page->mapping || PageUptodate(page))) {
2100 unlock_page(page);
2101 page_cache_release(page);
2102 page_cache_release(src_page);
2103 continue;
2104 }
2105 }
2106
2107 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2108 if (unlikely(status))
2109 goto fs_write_aop_error;
2110
2111 if (!src_page) {
2112 /*
2113 * Must not enter the pagefault handler here, because
2114 * we hold the page lock, so we might recursively
2115 * deadlock on the same lock, or get an ABBA deadlock
2116 * against a different lock, or against the mmap_sem
2117 * (which nests outside the page lock). So increment
2118 * preempt count, and use _atomic usercopies.
2119 *
2120 * The page is uptodate so we are OK to encounter a
2121 * short copy: if unmodified parts of the page are
2122 * marked dirty and written out to disk, it doesn't
2123 * really matter.
2124 */
2125 pagefault_disable();
2126 copied = iov_iter_copy_from_user_atomic(page, i,
2127 offset, bytes);
2128 pagefault_enable();
2129 } else {
2130 void *src, *dst;
2131 src = kmap_atomic(src_page, KM_USER0);
2132 dst = kmap_atomic(page, KM_USER1);
2133 memcpy(dst + offset, src + offset, bytes);
2134 kunmap_atomic(dst, KM_USER1);
2135 kunmap_atomic(src, KM_USER0);
2136 copied = bytes;
2137 }
2138 flush_dcache_page(page);
2139
2140 status = a_ops->commit_write(file, page, offset, offset+bytes);
2141 if (unlikely(status < 0))
2142 goto fs_write_aop_error;
2143 if (unlikely(status > 0)) /* filesystem did partial write */
2144 copied = min_t(size_t, copied, status);
2145
2146 unlock_page(page);
2147 mark_page_accessed(page);
2148 page_cache_release(page);
2149 if (src_page)
2150 page_cache_release(src_page);
2151
2152 iov_iter_advance(i, copied);
2153 pos += copied;
2154 written += copied;
2155
2156 balance_dirty_pages_ratelimited(mapping);
2157 cond_resched();
2158 continue;
2159
2160 fs_write_aop_error:
2161 unlock_page(page);
2162 page_cache_release(page);
2163 if (src_page)
2164 page_cache_release(src_page);
2165
2166 /*
2167 * prepare_write() may have instantiated a few blocks
2168 * outside i_size. Trim these off again. Don't need
2169 * i_size_read because we hold i_mutex.
2170 */
2171 if (pos + bytes > inode->i_size)
2172 vmtruncate(inode, inode->i_size);
2173 break;
2174 } while (iov_iter_count(i));
2175
2176 return written ? written : status;
2177 }
2178
2179 static ssize_t generic_perform_write(struct file *file,
2180 struct iov_iter *i, loff_t pos)
2181 {
2182 struct address_space *mapping = file->f_mapping;
2183 const struct address_space_operations *a_ops = mapping->a_ops;
2184 long status = 0;
2185 ssize_t written = 0;
2186 unsigned int flags = 0;
2187
2188 /*
2189 * Copies from kernel address space cannot fail (NFSD is a big user).
2190 */
2191 if (segment_eq(get_fs(), KERNEL_DS))
2192 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2193
2194 do {
2195 struct page *page;
2196 pgoff_t index; /* Pagecache index for current page */
2197 unsigned long offset; /* Offset into pagecache page */
2198 unsigned long bytes; /* Bytes to write to page */
2199 size_t copied; /* Bytes copied from user */
2200 void *fsdata;
2201
2202 offset = (pos & (PAGE_CACHE_SIZE - 1));
2203 index = pos >> PAGE_CACHE_SHIFT;
2204 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2205 iov_iter_count(i));
2206
2207 again:
2208
2209 /*
2210 * Bring in the user page that we will copy from _first_.
2211 * Otherwise there's a nasty deadlock on copying from the
2212 * same page as we're writing to, without it being marked
2213 * up-to-date.
2214 *
2215 * Not only is this an optimisation, but it is also required
2216 * to check that the address is actually valid, when atomic
2217 * usercopies are used, below.
2218 */
2219 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2220 status = -EFAULT;
2221 break;
2222 }
2223
2224 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2225 &page, &fsdata);
2226 if (unlikely(status))
2227 break;
2228
2229 pagefault_disable();
2230 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2231 pagefault_enable();
2232 flush_dcache_page(page);
2233
2234 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2235 page, fsdata);
2236 if (unlikely(status < 0))
2237 break;
2238 copied = status;
2239
2240 cond_resched();
2241
2242 if (unlikely(copied == 0)) {
2243 /*
2244 * If we were unable to copy any data at all, we must
2245 * fall back to a single segment length write.
2246 *
2247 * If we didn't fallback here, we could livelock
2248 * because not all segments in the iov can be copied at
2249 * once without a pagefault.
2250 */
2251 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2252 iov_iter_single_seg_count(i));
2253 goto again;
2254 }
2255 iov_iter_advance(i, copied);
2256 pos += copied;
2257 written += copied;
2258
2259 balance_dirty_pages_ratelimited(mapping);
2260
2261 } while (iov_iter_count(i));
2262
2263 return written ? written : status;
2264 }
2265
2266 ssize_t
2267 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2268 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2269 size_t count, ssize_t written)
2270 {
2271 struct file *file = iocb->ki_filp;
2272 struct address_space *mapping = file->f_mapping;
2273 const struct address_space_operations *a_ops = mapping->a_ops;
2274 struct inode *inode = mapping->host;
2275 ssize_t status;
2276 struct iov_iter i;
2277
2278 iov_iter_init(&i, iov, nr_segs, count, written);
2279 if (a_ops->write_begin)
2280 status = generic_perform_write(file, &i, pos);
2281 else
2282 status = generic_perform_write_2copy(file, &i, pos);
2283
2284 if (likely(status >= 0)) {
2285 written += status;
2286 *ppos = pos + status;
2287
2288 /*
2289 * For now, when the user asks for O_SYNC, we'll actually give
2290 * O_DSYNC
2291 */
2292 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2293 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2294 status = generic_osync_inode(inode, mapping,
2295 OSYNC_METADATA|OSYNC_DATA);
2296 }
2297 }
2298
2299 /*
2300 * If we get here for O_DIRECT writes then we must have fallen through
2301 * to buffered writes (block instantiation inside i_size). So we sync
2302 * the file data here, to try to honour O_DIRECT expectations.
2303 */
2304 if (unlikely(file->f_flags & O_DIRECT) && written)
2305 status = filemap_write_and_wait(mapping);
2306
2307 return written ? written : status;
2308 }
2309 EXPORT_SYMBOL(generic_file_buffered_write);
2310
2311 static ssize_t
2312 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2313 unsigned long nr_segs, loff_t *ppos)
2314 {
2315 struct file *file = iocb->ki_filp;
2316 struct address_space * mapping = file->f_mapping;
2317 size_t ocount; /* original count */
2318 size_t count; /* after file limit checks */
2319 struct inode *inode = mapping->host;
2320 loff_t pos;
2321 ssize_t written;
2322 ssize_t err;
2323
2324 ocount = 0;
2325 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2326 if (err)
2327 return err;
2328
2329 count = ocount;
2330 pos = *ppos;
2331
2332 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2333
2334 /* We can write back this queue in page reclaim */
2335 current->backing_dev_info = mapping->backing_dev_info;
2336 written = 0;
2337
2338 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2339 if (err)
2340 goto out;
2341
2342 if (count == 0)
2343 goto out;
2344
2345 err = remove_suid(file->f_path.dentry);
2346 if (err)
2347 goto out;
2348
2349 file_update_time(file);
2350
2351 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2352 if (unlikely(file->f_flags & O_DIRECT)) {
2353 loff_t endbyte;
2354 ssize_t written_buffered;
2355
2356 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2357 ppos, count, ocount);
2358 if (written < 0 || written == count)
2359 goto out;
2360 /*
2361 * direct-io write to a hole: fall through to buffered I/O
2362 * for completing the rest of the request.
2363 */
2364 pos += written;
2365 count -= written;
2366 written_buffered = generic_file_buffered_write(iocb, iov,
2367 nr_segs, pos, ppos, count,
2368 written);
2369 /*
2370 * If generic_file_buffered_write() retuned a synchronous error
2371 * then we want to return the number of bytes which were
2372 * direct-written, or the error code if that was zero. Note
2373 * that this differs from normal direct-io semantics, which
2374 * will return -EFOO even if some bytes were written.
2375 */
2376 if (written_buffered < 0) {
2377 err = written_buffered;
2378 goto out;
2379 }
2380
2381 /*
2382 * We need to ensure that the page cache pages are written to
2383 * disk and invalidated to preserve the expected O_DIRECT
2384 * semantics.
2385 */
2386 endbyte = pos + written_buffered - written - 1;
2387 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2388 SYNC_FILE_RANGE_WAIT_BEFORE|
2389 SYNC_FILE_RANGE_WRITE|
2390 SYNC_FILE_RANGE_WAIT_AFTER);
2391 if (err == 0) {
2392 written = written_buffered;
2393 invalidate_mapping_pages(mapping,
2394 pos >> PAGE_CACHE_SHIFT,
2395 endbyte >> PAGE_CACHE_SHIFT);
2396 } else {
2397 /*
2398 * We don't know how much we wrote, so just return
2399 * the number of bytes which were direct-written
2400 */
2401 }
2402 } else {
2403 written = generic_file_buffered_write(iocb, iov, nr_segs,
2404 pos, ppos, count, written);
2405 }
2406 out:
2407 current->backing_dev_info = NULL;
2408 return written ? written : err;
2409 }
2410
2411 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2412 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2413 {
2414 struct file *file = iocb->ki_filp;
2415 struct address_space *mapping = file->f_mapping;
2416 struct inode *inode = mapping->host;
2417 ssize_t ret;
2418
2419 BUG_ON(iocb->ki_pos != pos);
2420
2421 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2422 &iocb->ki_pos);
2423
2424 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2425 ssize_t err;
2426
2427 err = sync_page_range_nolock(inode, mapping, pos, ret);
2428 if (err < 0)
2429 ret = err;
2430 }
2431 return ret;
2432 }
2433 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2434
2435 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2436 unsigned long nr_segs, loff_t pos)
2437 {
2438 struct file *file = iocb->ki_filp;
2439 struct address_space *mapping = file->f_mapping;
2440 struct inode *inode = mapping->host;
2441 ssize_t ret;
2442
2443 BUG_ON(iocb->ki_pos != pos);
2444
2445 mutex_lock(&inode->i_mutex);
2446 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2447 &iocb->ki_pos);
2448 mutex_unlock(&inode->i_mutex);
2449
2450 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2451 ssize_t err;
2452
2453 err = sync_page_range(inode, mapping, pos, ret);
2454 if (err < 0)
2455 ret = err;
2456 }
2457 return ret;
2458 }
2459 EXPORT_SYMBOL(generic_file_aio_write);
2460
2461 /*
2462 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2463 * went wrong during pagecache shootdown.
2464 */
2465 static ssize_t
2466 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2467 loff_t offset, unsigned long nr_segs)
2468 {
2469 struct file *file = iocb->ki_filp;
2470 struct address_space *mapping = file->f_mapping;
2471 ssize_t retval;
2472 size_t write_len;
2473 pgoff_t end = 0; /* silence gcc */
2474
2475 /*
2476 * If it's a write, unmap all mmappings of the file up-front. This
2477 * will cause any pte dirty bits to be propagated into the pageframes
2478 * for the subsequent filemap_write_and_wait().
2479 */
2480 if (rw == WRITE) {
2481 write_len = iov_length(iov, nr_segs);
2482 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2483 if (mapping_mapped(mapping))
2484 unmap_mapping_range(mapping, offset, write_len, 0);
2485 }
2486
2487 retval = filemap_write_and_wait(mapping);
2488 if (retval)
2489 goto out;
2490
2491 /*
2492 * After a write we want buffered reads to be sure to go to disk to get
2493 * the new data. We invalidate clean cached page from the region we're
2494 * about to write. We do this *before* the write so that we can return
2495 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2496 */
2497 if (rw == WRITE && mapping->nrpages) {
2498 retval = invalidate_inode_pages2_range(mapping,
2499 offset >> PAGE_CACHE_SHIFT, end);
2500 if (retval)
2501 goto out;
2502 }
2503
2504 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2505
2506 /*
2507 * Finally, try again to invalidate clean pages which might have been
2508 * cached by non-direct readahead, or faulted in by get_user_pages()
2509 * if the source of the write was an mmap'ed region of the file
2510 * we're writing. Either one is a pretty crazy thing to do,
2511 * so we don't support it 100%. If this invalidation
2512 * fails, tough, the write still worked...
2513 */
2514 if (rw == WRITE && mapping->nrpages) {
2515 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2516 }
2517 out:
2518 return retval;
2519 }
2520
2521 /**
2522 * try_to_release_page() - release old fs-specific metadata on a page
2523 *
2524 * @page: the page which the kernel is trying to free
2525 * @gfp_mask: memory allocation flags (and I/O mode)
2526 *
2527 * The address_space is to try to release any data against the page
2528 * (presumably at page->private). If the release was successful, return `1'.
2529 * Otherwise return zero.
2530 *
2531 * The @gfp_mask argument specifies whether I/O may be performed to release
2532 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2533 *
2534 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2535 */
2536 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2537 {
2538 struct address_space * const mapping = page->mapping;
2539
2540 BUG_ON(!PageLocked(page));
2541 if (PageWriteback(page))
2542 return 0;
2543
2544 if (mapping && mapping->a_ops->releasepage)
2545 return mapping->a_ops->releasepage(page, gfp_mask);
2546 return try_to_free_buffers(page);
2547 }
2548
2549 EXPORT_SYMBOL(try_to_release_page);
This page took 0.079611 seconds and 6 git commands to generate.