Merge branch 'agp-patches' of git://git.kernel.org/pub/scm/linux/kernel/git/airlied...
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/backing-dev.h>
32 #include <linux/security.h>
33 #include <linux/syscalls.h>
34 #include <linux/cpuset.h>
35 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
36 #include "internal.h"
37
38 /*
39 * FIXME: remove all knowledge of the buffer layer from the core VM
40 */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42
43 #include <asm/mman.h>
44
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 loff_t offset, unsigned long nr_segs);
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_lock (vmtruncate)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_lock (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_lock
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * ->i_mutex
84 * ->i_alloc_sem (various)
85 *
86 * ->inode_lock
87 * ->sb_lock (fs/fs-writeback.c)
88 * ->mapping->tree_lock (__sync_single_inode)
89 *
90 * ->i_mmap_lock
91 * ->anon_vma.lock (vma_adjust)
92 *
93 * ->anon_vma.lock
94 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
95 *
96 * ->page_table_lock or pte_lock
97 * ->swap_lock (try_to_unmap_one)
98 * ->private_lock (try_to_unmap_one)
99 * ->tree_lock (try_to_unmap_one)
100 * ->zone.lru_lock (follow_page->mark_page_accessed)
101 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
102 * ->private_lock (page_remove_rmap->set_page_dirty)
103 * ->tree_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (page_remove_rmap->set_page_dirty)
105 * ->inode_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
108 * ->task->proc_lock
109 * ->dcache_lock (proc_pid_lookup)
110 */
111
112 /*
113 * Remove a page from the page cache and free it. Caller has to make
114 * sure the page is locked and that nobody else uses it - or that usage
115 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
116 */
117 void __remove_from_page_cache(struct page *page)
118 {
119 struct address_space *mapping = page->mapping;
120
121 radix_tree_delete(&mapping->page_tree, page->index);
122 page->mapping = NULL;
123 mapping->nrpages--;
124 __dec_zone_page_state(page, NR_FILE_PAGES);
125 BUG_ON(page_mapped(page));
126
127 /*
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
130 *
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
133 */
134 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 dec_zone_page_state(page, NR_FILE_DIRTY);
136 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 }
138 }
139
140 void remove_from_page_cache(struct page *page)
141 {
142 struct address_space *mapping = page->mapping;
143
144 BUG_ON(!PageLocked(page));
145
146 write_lock_irq(&mapping->tree_lock);
147 __remove_from_page_cache(page);
148 write_unlock_irq(&mapping->tree_lock);
149 }
150
151 static int sync_page(void *word)
152 {
153 struct address_space *mapping;
154 struct page *page;
155
156 page = container_of((unsigned long *)word, struct page, flags);
157
158 /*
159 * page_mapping() is being called without PG_locked held.
160 * Some knowledge of the state and use of the page is used to
161 * reduce the requirements down to a memory barrier.
162 * The danger here is of a stale page_mapping() return value
163 * indicating a struct address_space different from the one it's
164 * associated with when it is associated with one.
165 * After smp_mb(), it's either the correct page_mapping() for
166 * the page, or an old page_mapping() and the page's own
167 * page_mapping() has gone NULL.
168 * The ->sync_page() address_space operation must tolerate
169 * page_mapping() going NULL. By an amazing coincidence,
170 * this comes about because none of the users of the page
171 * in the ->sync_page() methods make essential use of the
172 * page_mapping(), merely passing the page down to the backing
173 * device's unplug functions when it's non-NULL, which in turn
174 * ignore it for all cases but swap, where only page_private(page) is
175 * of interest. When page_mapping() does go NULL, the entire
176 * call stack gracefully ignores the page and returns.
177 * -- wli
178 */
179 smp_mb();
180 mapping = page_mapping(page);
181 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
182 mapping->a_ops->sync_page(page);
183 io_schedule();
184 return 0;
185 }
186
187 static int sync_page_killable(void *word)
188 {
189 sync_page(word);
190 return fatal_signal_pending(current) ? -EINTR : 0;
191 }
192
193 /**
194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195 * @mapping: address space structure to write
196 * @start: offset in bytes where the range starts
197 * @end: offset in bytes where the range ends (inclusive)
198 * @sync_mode: enable synchronous operation
199 *
200 * Start writeback against all of a mapping's dirty pages that lie
201 * within the byte offsets <start, end> inclusive.
202 *
203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204 * opposed to a regular memory cleansing writeback. The difference between
205 * these two operations is that if a dirty page/buffer is encountered, it must
206 * be waited upon, and not just skipped over.
207 */
208 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
209 loff_t end, int sync_mode)
210 {
211 int ret;
212 struct writeback_control wbc = {
213 .sync_mode = sync_mode,
214 .nr_to_write = mapping->nrpages * 2,
215 .range_start = start,
216 .range_end = end,
217 };
218
219 if (!mapping_cap_writeback_dirty(mapping))
220 return 0;
221
222 ret = do_writepages(mapping, &wbc);
223 return ret;
224 }
225
226 static inline int __filemap_fdatawrite(struct address_space *mapping,
227 int sync_mode)
228 {
229 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
230 }
231
232 int filemap_fdatawrite(struct address_space *mapping)
233 {
234 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 }
236 EXPORT_SYMBOL(filemap_fdatawrite);
237
238 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
239 loff_t end)
240 {
241 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 }
243
244 /**
245 * filemap_flush - mostly a non-blocking flush
246 * @mapping: target address_space
247 *
248 * This is a mostly non-blocking flush. Not suitable for data-integrity
249 * purposes - I/O may not be started against all dirty pages.
250 */
251 int filemap_flush(struct address_space *mapping)
252 {
253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256
257 /**
258 * wait_on_page_writeback_range - wait for writeback to complete
259 * @mapping: target address_space
260 * @start: beginning page index
261 * @end: ending page index
262 *
263 * Wait for writeback to complete against pages indexed by start->end
264 * inclusive
265 */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 pgoff_t start, pgoff_t end)
268 {
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
272 pgoff_t index;
273
274 if (end < start)
275 return 0;
276
277 pagevec_init(&pvec, 0);
278 index = start;
279 while ((index <= end) &&
280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 PAGECACHE_TAG_WRITEBACK,
282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 unsigned i;
284
285 for (i = 0; i < nr_pages; i++) {
286 struct page *page = pvec.pages[i];
287
288 /* until radix tree lookup accepts end_index */
289 if (page->index > end)
290 continue;
291
292 wait_on_page_writeback(page);
293 if (PageError(page))
294 ret = -EIO;
295 }
296 pagevec_release(&pvec);
297 cond_resched();
298 }
299
300 /* Check for outstanding write errors */
301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 ret = -ENOSPC;
303 if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 ret = -EIO;
305
306 return ret;
307 }
308
309 /**
310 * sync_page_range - write and wait on all pages in the passed range
311 * @inode: target inode
312 * @mapping: target address_space
313 * @pos: beginning offset in pages to write
314 * @count: number of bytes to write
315 *
316 * Write and wait upon all the pages in the passed range. This is a "data
317 * integrity" operation. It waits upon in-flight writeout before starting and
318 * waiting upon new writeout. If there was an IO error, return it.
319 *
320 * We need to re-take i_mutex during the generic_osync_inode list walk because
321 * it is otherwise livelockable.
322 */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 loff_t pos, loff_t count)
325 {
326 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 int ret;
329
330 if (!mapping_cap_writeback_dirty(mapping) || !count)
331 return 0;
332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 if (ret == 0) {
334 mutex_lock(&inode->i_mutex);
335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 mutex_unlock(&inode->i_mutex);
337 }
338 if (ret == 0)
339 ret = wait_on_page_writeback_range(mapping, start, end);
340 return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343
344 /**
345 * sync_page_range_nolock
346 * @inode: target inode
347 * @mapping: target address_space
348 * @pos: beginning offset in pages to write
349 * @count: number of bytes to write
350 *
351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352 * as it forces O_SYNC writers to different parts of the same file
353 * to be serialised right until io completion.
354 */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 loff_t pos, loff_t count)
357 {
358 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 int ret;
361
362 if (!mapping_cap_writeback_dirty(mapping) || !count)
363 return 0;
364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 if (ret == 0)
366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 if (ret == 0)
368 ret = wait_on_page_writeback_range(mapping, start, end);
369 return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372
373 /**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return wait_on_page_writeback_range(mapping, 0,
388 (i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 int err = 0;
395
396 if (mapping->nrpages) {
397 err = filemap_fdatawrite(mapping);
398 /*
399 * Even if the above returned error, the pages may be
400 * written partially (e.g. -ENOSPC), so we wait for it.
401 * But the -EIO is special case, it may indicate the worst
402 * thing (e.g. bug) happened, so we avoid waiting for it.
403 */
404 if (err != -EIO) {
405 int err2 = filemap_fdatawait(mapping);
406 if (!err)
407 err = err2;
408 }
409 }
410 return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413
414 /**
415 * filemap_write_and_wait_range - write out & wait on a file range
416 * @mapping: the address_space for the pages
417 * @lstart: offset in bytes where the range starts
418 * @lend: offset in bytes where the range ends (inclusive)
419 *
420 * Write out and wait upon file offsets lstart->lend, inclusive.
421 *
422 * Note that `lend' is inclusive (describes the last byte to be written) so
423 * that this function can be used to write to the very end-of-file (end = -1).
424 */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 loff_t lstart, loff_t lend)
427 {
428 int err = 0;
429
430 if (mapping->nrpages) {
431 err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 WB_SYNC_ALL);
433 /* See comment of filemap_write_and_wait() */
434 if (err != -EIO) {
435 int err2 = wait_on_page_writeback_range(mapping,
436 lstart >> PAGE_CACHE_SHIFT,
437 lend >> PAGE_CACHE_SHIFT);
438 if (!err)
439 err = err2;
440 }
441 }
442 return err;
443 }
444
445 /**
446 * add_to_page_cache - add newly allocated pagecache pages
447 * @page: page to add
448 * @mapping: the page's address_space
449 * @offset: page index
450 * @gfp_mask: page allocation mode
451 *
452 * This function is used to add newly allocated pagecache pages;
453 * the page is new, so we can just run SetPageLocked() against it.
454 * The other page state flags were set by rmqueue().
455 *
456 * This function does not add the page to the LRU. The caller must do that.
457 */
458 int add_to_page_cache(struct page *page, struct address_space *mapping,
459 pgoff_t offset, gfp_t gfp_mask)
460 {
461 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
462
463 if (error == 0) {
464 write_lock_irq(&mapping->tree_lock);
465 error = radix_tree_insert(&mapping->page_tree, offset, page);
466 if (!error) {
467 page_cache_get(page);
468 SetPageLocked(page);
469 page->mapping = mapping;
470 page->index = offset;
471 mapping->nrpages++;
472 __inc_zone_page_state(page, NR_FILE_PAGES);
473 }
474 write_unlock_irq(&mapping->tree_lock);
475 radix_tree_preload_end();
476 }
477 return error;
478 }
479 EXPORT_SYMBOL(add_to_page_cache);
480
481 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
482 pgoff_t offset, gfp_t gfp_mask)
483 {
484 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
485 if (ret == 0)
486 lru_cache_add(page);
487 return ret;
488 }
489
490 #ifdef CONFIG_NUMA
491 struct page *__page_cache_alloc(gfp_t gfp)
492 {
493 if (cpuset_do_page_mem_spread()) {
494 int n = cpuset_mem_spread_node();
495 return alloc_pages_node(n, gfp, 0);
496 }
497 return alloc_pages(gfp, 0);
498 }
499 EXPORT_SYMBOL(__page_cache_alloc);
500 #endif
501
502 static int __sleep_on_page_lock(void *word)
503 {
504 io_schedule();
505 return 0;
506 }
507
508 /*
509 * In order to wait for pages to become available there must be
510 * waitqueues associated with pages. By using a hash table of
511 * waitqueues where the bucket discipline is to maintain all
512 * waiters on the same queue and wake all when any of the pages
513 * become available, and for the woken contexts to check to be
514 * sure the appropriate page became available, this saves space
515 * at a cost of "thundering herd" phenomena during rare hash
516 * collisions.
517 */
518 static wait_queue_head_t *page_waitqueue(struct page *page)
519 {
520 const struct zone *zone = page_zone(page);
521
522 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
523 }
524
525 static inline void wake_up_page(struct page *page, int bit)
526 {
527 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
528 }
529
530 void wait_on_page_bit(struct page *page, int bit_nr)
531 {
532 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
533
534 if (test_bit(bit_nr, &page->flags))
535 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
536 TASK_UNINTERRUPTIBLE);
537 }
538 EXPORT_SYMBOL(wait_on_page_bit);
539
540 /**
541 * unlock_page - unlock a locked page
542 * @page: the page
543 *
544 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
545 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
546 * mechananism between PageLocked pages and PageWriteback pages is shared.
547 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
548 *
549 * The first mb is necessary to safely close the critical section opened by the
550 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
551 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
552 * parallel wait_on_page_locked()).
553 */
554 void unlock_page(struct page *page)
555 {
556 smp_mb__before_clear_bit();
557 if (!TestClearPageLocked(page))
558 BUG();
559 smp_mb__after_clear_bit();
560 wake_up_page(page, PG_locked);
561 }
562 EXPORT_SYMBOL(unlock_page);
563
564 /**
565 * end_page_writeback - end writeback against a page
566 * @page: the page
567 */
568 void end_page_writeback(struct page *page)
569 {
570 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
571 if (!test_clear_page_writeback(page))
572 BUG();
573 }
574 smp_mb__after_clear_bit();
575 wake_up_page(page, PG_writeback);
576 }
577 EXPORT_SYMBOL(end_page_writeback);
578
579 /**
580 * __lock_page - get a lock on the page, assuming we need to sleep to get it
581 * @page: the page to lock
582 *
583 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
584 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
585 * chances are that on the second loop, the block layer's plug list is empty,
586 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
587 */
588 void __lock_page(struct page *page)
589 {
590 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
591
592 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
593 TASK_UNINTERRUPTIBLE);
594 }
595 EXPORT_SYMBOL(__lock_page);
596
597 int fastcall __lock_page_killable(struct page *page)
598 {
599 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
600
601 return __wait_on_bit_lock(page_waitqueue(page), &wait,
602 sync_page_killable, TASK_KILLABLE);
603 }
604
605 /*
606 * Variant of lock_page that does not require the caller to hold a reference
607 * on the page's mapping.
608 */
609 void __lock_page_nosync(struct page *page)
610 {
611 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
612 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
613 TASK_UNINTERRUPTIBLE);
614 }
615
616 /**
617 * find_get_page - find and get a page reference
618 * @mapping: the address_space to search
619 * @offset: the page index
620 *
621 * Is there a pagecache struct page at the given (mapping, offset) tuple?
622 * If yes, increment its refcount and return it; if no, return NULL.
623 */
624 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
625 {
626 struct page *page;
627
628 read_lock_irq(&mapping->tree_lock);
629 page = radix_tree_lookup(&mapping->page_tree, offset);
630 if (page)
631 page_cache_get(page);
632 read_unlock_irq(&mapping->tree_lock);
633 return page;
634 }
635 EXPORT_SYMBOL(find_get_page);
636
637 /**
638 * find_lock_page - locate, pin and lock a pagecache page
639 * @mapping: the address_space to search
640 * @offset: the page index
641 *
642 * Locates the desired pagecache page, locks it, increments its reference
643 * count and returns its address.
644 *
645 * Returns zero if the page was not present. find_lock_page() may sleep.
646 */
647 struct page *find_lock_page(struct address_space *mapping,
648 pgoff_t offset)
649 {
650 struct page *page;
651
652 repeat:
653 read_lock_irq(&mapping->tree_lock);
654 page = radix_tree_lookup(&mapping->page_tree, offset);
655 if (page) {
656 page_cache_get(page);
657 if (TestSetPageLocked(page)) {
658 read_unlock_irq(&mapping->tree_lock);
659 __lock_page(page);
660
661 /* Has the page been truncated while we slept? */
662 if (unlikely(page->mapping != mapping)) {
663 unlock_page(page);
664 page_cache_release(page);
665 goto repeat;
666 }
667 VM_BUG_ON(page->index != offset);
668 goto out;
669 }
670 }
671 read_unlock_irq(&mapping->tree_lock);
672 out:
673 return page;
674 }
675 EXPORT_SYMBOL(find_lock_page);
676
677 /**
678 * find_or_create_page - locate or add a pagecache page
679 * @mapping: the page's address_space
680 * @index: the page's index into the mapping
681 * @gfp_mask: page allocation mode
682 *
683 * Locates a page in the pagecache. If the page is not present, a new page
684 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
685 * LRU list. The returned page is locked and has its reference count
686 * incremented.
687 *
688 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
689 * allocation!
690 *
691 * find_or_create_page() returns the desired page's address, or zero on
692 * memory exhaustion.
693 */
694 struct page *find_or_create_page(struct address_space *mapping,
695 pgoff_t index, gfp_t gfp_mask)
696 {
697 struct page *page;
698 int err;
699 repeat:
700 page = find_lock_page(mapping, index);
701 if (!page) {
702 page = __page_cache_alloc(gfp_mask);
703 if (!page)
704 return NULL;
705 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
706 if (unlikely(err)) {
707 page_cache_release(page);
708 page = NULL;
709 if (err == -EEXIST)
710 goto repeat;
711 }
712 }
713 return page;
714 }
715 EXPORT_SYMBOL(find_or_create_page);
716
717 /**
718 * find_get_pages - gang pagecache lookup
719 * @mapping: The address_space to search
720 * @start: The starting page index
721 * @nr_pages: The maximum number of pages
722 * @pages: Where the resulting pages are placed
723 *
724 * find_get_pages() will search for and return a group of up to
725 * @nr_pages pages in the mapping. The pages are placed at @pages.
726 * find_get_pages() takes a reference against the returned pages.
727 *
728 * The search returns a group of mapping-contiguous pages with ascending
729 * indexes. There may be holes in the indices due to not-present pages.
730 *
731 * find_get_pages() returns the number of pages which were found.
732 */
733 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
734 unsigned int nr_pages, struct page **pages)
735 {
736 unsigned int i;
737 unsigned int ret;
738
739 read_lock_irq(&mapping->tree_lock);
740 ret = radix_tree_gang_lookup(&mapping->page_tree,
741 (void **)pages, start, nr_pages);
742 for (i = 0; i < ret; i++)
743 page_cache_get(pages[i]);
744 read_unlock_irq(&mapping->tree_lock);
745 return ret;
746 }
747
748 /**
749 * find_get_pages_contig - gang contiguous pagecache lookup
750 * @mapping: The address_space to search
751 * @index: The starting page index
752 * @nr_pages: The maximum number of pages
753 * @pages: Where the resulting pages are placed
754 *
755 * find_get_pages_contig() works exactly like find_get_pages(), except
756 * that the returned number of pages are guaranteed to be contiguous.
757 *
758 * find_get_pages_contig() returns the number of pages which were found.
759 */
760 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
761 unsigned int nr_pages, struct page **pages)
762 {
763 unsigned int i;
764 unsigned int ret;
765
766 read_lock_irq(&mapping->tree_lock);
767 ret = radix_tree_gang_lookup(&mapping->page_tree,
768 (void **)pages, index, nr_pages);
769 for (i = 0; i < ret; i++) {
770 if (pages[i]->mapping == NULL || pages[i]->index != index)
771 break;
772
773 page_cache_get(pages[i]);
774 index++;
775 }
776 read_unlock_irq(&mapping->tree_lock);
777 return i;
778 }
779 EXPORT_SYMBOL(find_get_pages_contig);
780
781 /**
782 * find_get_pages_tag - find and return pages that match @tag
783 * @mapping: the address_space to search
784 * @index: the starting page index
785 * @tag: the tag index
786 * @nr_pages: the maximum number of pages
787 * @pages: where the resulting pages are placed
788 *
789 * Like find_get_pages, except we only return pages which are tagged with
790 * @tag. We update @index to index the next page for the traversal.
791 */
792 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
793 int tag, unsigned int nr_pages, struct page **pages)
794 {
795 unsigned int i;
796 unsigned int ret;
797
798 read_lock_irq(&mapping->tree_lock);
799 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
800 (void **)pages, *index, nr_pages, tag);
801 for (i = 0; i < ret; i++)
802 page_cache_get(pages[i]);
803 if (ret)
804 *index = pages[ret - 1]->index + 1;
805 read_unlock_irq(&mapping->tree_lock);
806 return ret;
807 }
808 EXPORT_SYMBOL(find_get_pages_tag);
809
810 /**
811 * grab_cache_page_nowait - returns locked page at given index in given cache
812 * @mapping: target address_space
813 * @index: the page index
814 *
815 * Same as grab_cache_page(), but do not wait if the page is unavailable.
816 * This is intended for speculative data generators, where the data can
817 * be regenerated if the page couldn't be grabbed. This routine should
818 * be safe to call while holding the lock for another page.
819 *
820 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
821 * and deadlock against the caller's locked page.
822 */
823 struct page *
824 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
825 {
826 struct page *page = find_get_page(mapping, index);
827
828 if (page) {
829 if (!TestSetPageLocked(page))
830 return page;
831 page_cache_release(page);
832 return NULL;
833 }
834 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
835 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
836 page_cache_release(page);
837 page = NULL;
838 }
839 return page;
840 }
841 EXPORT_SYMBOL(grab_cache_page_nowait);
842
843 /*
844 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
845 * a _large_ part of the i/o request. Imagine the worst scenario:
846 *
847 * ---R__________________________________________B__________
848 * ^ reading here ^ bad block(assume 4k)
849 *
850 * read(R) => miss => readahead(R...B) => media error => frustrating retries
851 * => failing the whole request => read(R) => read(R+1) =>
852 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
853 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
854 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
855 *
856 * It is going insane. Fix it by quickly scaling down the readahead size.
857 */
858 static void shrink_readahead_size_eio(struct file *filp,
859 struct file_ra_state *ra)
860 {
861 if (!ra->ra_pages)
862 return;
863
864 ra->ra_pages /= 4;
865 }
866
867 /**
868 * do_generic_mapping_read - generic file read routine
869 * @mapping: address_space to be read
870 * @ra: file's readahead state
871 * @filp: the file to read
872 * @ppos: current file position
873 * @desc: read_descriptor
874 * @actor: read method
875 *
876 * This is a generic file read routine, and uses the
877 * mapping->a_ops->readpage() function for the actual low-level stuff.
878 *
879 * This is really ugly. But the goto's actually try to clarify some
880 * of the logic when it comes to error handling etc.
881 *
882 * Note the struct file* is only passed for the use of readpage.
883 * It may be NULL.
884 */
885 void do_generic_mapping_read(struct address_space *mapping,
886 struct file_ra_state *ra,
887 struct file *filp,
888 loff_t *ppos,
889 read_descriptor_t *desc,
890 read_actor_t actor)
891 {
892 struct inode *inode = mapping->host;
893 pgoff_t index;
894 pgoff_t last_index;
895 pgoff_t prev_index;
896 unsigned long offset; /* offset into pagecache page */
897 unsigned int prev_offset;
898 int error;
899
900 index = *ppos >> PAGE_CACHE_SHIFT;
901 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
902 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
903 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
904 offset = *ppos & ~PAGE_CACHE_MASK;
905
906 for (;;) {
907 struct page *page;
908 pgoff_t end_index;
909 loff_t isize;
910 unsigned long nr, ret;
911
912 cond_resched();
913 find_page:
914 page = find_get_page(mapping, index);
915 if (!page) {
916 page_cache_sync_readahead(mapping,
917 ra, filp,
918 index, last_index - index);
919 page = find_get_page(mapping, index);
920 if (unlikely(page == NULL))
921 goto no_cached_page;
922 }
923 if (PageReadahead(page)) {
924 page_cache_async_readahead(mapping,
925 ra, filp, page,
926 index, last_index - index);
927 }
928 if (!PageUptodate(page))
929 goto page_not_up_to_date;
930 page_ok:
931 /*
932 * i_size must be checked after we know the page is Uptodate.
933 *
934 * Checking i_size after the check allows us to calculate
935 * the correct value for "nr", which means the zero-filled
936 * part of the page is not copied back to userspace (unless
937 * another truncate extends the file - this is desired though).
938 */
939
940 isize = i_size_read(inode);
941 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
942 if (unlikely(!isize || index > end_index)) {
943 page_cache_release(page);
944 goto out;
945 }
946
947 /* nr is the maximum number of bytes to copy from this page */
948 nr = PAGE_CACHE_SIZE;
949 if (index == end_index) {
950 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
951 if (nr <= offset) {
952 page_cache_release(page);
953 goto out;
954 }
955 }
956 nr = nr - offset;
957
958 /* If users can be writing to this page using arbitrary
959 * virtual addresses, take care about potential aliasing
960 * before reading the page on the kernel side.
961 */
962 if (mapping_writably_mapped(mapping))
963 flush_dcache_page(page);
964
965 /*
966 * When a sequential read accesses a page several times,
967 * only mark it as accessed the first time.
968 */
969 if (prev_index != index || offset != prev_offset)
970 mark_page_accessed(page);
971 prev_index = index;
972
973 /*
974 * Ok, we have the page, and it's up-to-date, so
975 * now we can copy it to user space...
976 *
977 * The actor routine returns how many bytes were actually used..
978 * NOTE! This may not be the same as how much of a user buffer
979 * we filled up (we may be padding etc), so we can only update
980 * "pos" here (the actor routine has to update the user buffer
981 * pointers and the remaining count).
982 */
983 ret = actor(desc, page, offset, nr);
984 offset += ret;
985 index += offset >> PAGE_CACHE_SHIFT;
986 offset &= ~PAGE_CACHE_MASK;
987 prev_offset = offset;
988
989 page_cache_release(page);
990 if (ret == nr && desc->count)
991 continue;
992 goto out;
993
994 page_not_up_to_date:
995 /* Get exclusive access to the page ... */
996 if (lock_page_killable(page))
997 goto readpage_eio;
998
999 /* Did it get truncated before we got the lock? */
1000 if (!page->mapping) {
1001 unlock_page(page);
1002 page_cache_release(page);
1003 continue;
1004 }
1005
1006 /* Did somebody else fill it already? */
1007 if (PageUptodate(page)) {
1008 unlock_page(page);
1009 goto page_ok;
1010 }
1011
1012 readpage:
1013 /* Start the actual read. The read will unlock the page. */
1014 error = mapping->a_ops->readpage(filp, page);
1015
1016 if (unlikely(error)) {
1017 if (error == AOP_TRUNCATED_PAGE) {
1018 page_cache_release(page);
1019 goto find_page;
1020 }
1021 goto readpage_error;
1022 }
1023
1024 if (!PageUptodate(page)) {
1025 if (lock_page_killable(page))
1026 goto readpage_eio;
1027 if (!PageUptodate(page)) {
1028 if (page->mapping == NULL) {
1029 /*
1030 * invalidate_inode_pages got it
1031 */
1032 unlock_page(page);
1033 page_cache_release(page);
1034 goto find_page;
1035 }
1036 unlock_page(page);
1037 shrink_readahead_size_eio(filp, ra);
1038 goto readpage_eio;
1039 }
1040 unlock_page(page);
1041 }
1042
1043 goto page_ok;
1044
1045 readpage_eio:
1046 error = -EIO;
1047 readpage_error:
1048 /* UHHUH! A synchronous read error occurred. Report it */
1049 desc->error = error;
1050 page_cache_release(page);
1051 goto out;
1052
1053 no_cached_page:
1054 /*
1055 * Ok, it wasn't cached, so we need to create a new
1056 * page..
1057 */
1058 page = page_cache_alloc_cold(mapping);
1059 if (!page) {
1060 desc->error = -ENOMEM;
1061 goto out;
1062 }
1063 error = add_to_page_cache_lru(page, mapping,
1064 index, GFP_KERNEL);
1065 if (error) {
1066 page_cache_release(page);
1067 if (error == -EEXIST)
1068 goto find_page;
1069 desc->error = error;
1070 goto out;
1071 }
1072 goto readpage;
1073 }
1074
1075 out:
1076 ra->prev_pos = prev_index;
1077 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1078 ra->prev_pos |= prev_offset;
1079
1080 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1081 if (filp)
1082 file_accessed(filp);
1083 }
1084 EXPORT_SYMBOL(do_generic_mapping_read);
1085
1086 int file_read_actor(read_descriptor_t *desc, struct page *page,
1087 unsigned long offset, unsigned long size)
1088 {
1089 char *kaddr;
1090 unsigned long left, count = desc->count;
1091
1092 if (size > count)
1093 size = count;
1094
1095 /*
1096 * Faults on the destination of a read are common, so do it before
1097 * taking the kmap.
1098 */
1099 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1100 kaddr = kmap_atomic(page, KM_USER0);
1101 left = __copy_to_user_inatomic(desc->arg.buf,
1102 kaddr + offset, size);
1103 kunmap_atomic(kaddr, KM_USER0);
1104 if (left == 0)
1105 goto success;
1106 }
1107
1108 /* Do it the slow way */
1109 kaddr = kmap(page);
1110 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1111 kunmap(page);
1112
1113 if (left) {
1114 size -= left;
1115 desc->error = -EFAULT;
1116 }
1117 success:
1118 desc->count = count - size;
1119 desc->written += size;
1120 desc->arg.buf += size;
1121 return size;
1122 }
1123
1124 /*
1125 * Performs necessary checks before doing a write
1126 * @iov: io vector request
1127 * @nr_segs: number of segments in the iovec
1128 * @count: number of bytes to write
1129 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1130 *
1131 * Adjust number of segments and amount of bytes to write (nr_segs should be
1132 * properly initialized first). Returns appropriate error code that caller
1133 * should return or zero in case that write should be allowed.
1134 */
1135 int generic_segment_checks(const struct iovec *iov,
1136 unsigned long *nr_segs, size_t *count, int access_flags)
1137 {
1138 unsigned long seg;
1139 size_t cnt = 0;
1140 for (seg = 0; seg < *nr_segs; seg++) {
1141 const struct iovec *iv = &iov[seg];
1142
1143 /*
1144 * If any segment has a negative length, or the cumulative
1145 * length ever wraps negative then return -EINVAL.
1146 */
1147 cnt += iv->iov_len;
1148 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1149 return -EINVAL;
1150 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1151 continue;
1152 if (seg == 0)
1153 return -EFAULT;
1154 *nr_segs = seg;
1155 cnt -= iv->iov_len; /* This segment is no good */
1156 break;
1157 }
1158 *count = cnt;
1159 return 0;
1160 }
1161 EXPORT_SYMBOL(generic_segment_checks);
1162
1163 /**
1164 * generic_file_aio_read - generic filesystem read routine
1165 * @iocb: kernel I/O control block
1166 * @iov: io vector request
1167 * @nr_segs: number of segments in the iovec
1168 * @pos: current file position
1169 *
1170 * This is the "read()" routine for all filesystems
1171 * that can use the page cache directly.
1172 */
1173 ssize_t
1174 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1175 unsigned long nr_segs, loff_t pos)
1176 {
1177 struct file *filp = iocb->ki_filp;
1178 ssize_t retval;
1179 unsigned long seg;
1180 size_t count;
1181 loff_t *ppos = &iocb->ki_pos;
1182
1183 count = 0;
1184 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1185 if (retval)
1186 return retval;
1187
1188 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1189 if (filp->f_flags & O_DIRECT) {
1190 loff_t size;
1191 struct address_space *mapping;
1192 struct inode *inode;
1193
1194 mapping = filp->f_mapping;
1195 inode = mapping->host;
1196 retval = 0;
1197 if (!count)
1198 goto out; /* skip atime */
1199 size = i_size_read(inode);
1200 if (pos < size) {
1201 retval = generic_file_direct_IO(READ, iocb,
1202 iov, pos, nr_segs);
1203 if (retval > 0)
1204 *ppos = pos + retval;
1205 }
1206 if (likely(retval != 0)) {
1207 file_accessed(filp);
1208 goto out;
1209 }
1210 }
1211
1212 retval = 0;
1213 if (count) {
1214 for (seg = 0; seg < nr_segs; seg++) {
1215 read_descriptor_t desc;
1216
1217 desc.written = 0;
1218 desc.arg.buf = iov[seg].iov_base;
1219 desc.count = iov[seg].iov_len;
1220 if (desc.count == 0)
1221 continue;
1222 desc.error = 0;
1223 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1224 retval += desc.written;
1225 if (desc.error) {
1226 retval = retval ?: desc.error;
1227 break;
1228 }
1229 if (desc.count > 0)
1230 break;
1231 }
1232 }
1233 out:
1234 return retval;
1235 }
1236 EXPORT_SYMBOL(generic_file_aio_read);
1237
1238 static ssize_t
1239 do_readahead(struct address_space *mapping, struct file *filp,
1240 pgoff_t index, unsigned long nr)
1241 {
1242 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1243 return -EINVAL;
1244
1245 force_page_cache_readahead(mapping, filp, index,
1246 max_sane_readahead(nr));
1247 return 0;
1248 }
1249
1250 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1251 {
1252 ssize_t ret;
1253 struct file *file;
1254
1255 ret = -EBADF;
1256 file = fget(fd);
1257 if (file) {
1258 if (file->f_mode & FMODE_READ) {
1259 struct address_space *mapping = file->f_mapping;
1260 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1261 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1262 unsigned long len = end - start + 1;
1263 ret = do_readahead(mapping, file, start, len);
1264 }
1265 fput(file);
1266 }
1267 return ret;
1268 }
1269
1270 #ifdef CONFIG_MMU
1271 /**
1272 * page_cache_read - adds requested page to the page cache if not already there
1273 * @file: file to read
1274 * @offset: page index
1275 *
1276 * This adds the requested page to the page cache if it isn't already there,
1277 * and schedules an I/O to read in its contents from disk.
1278 */
1279 static int page_cache_read(struct file *file, pgoff_t offset)
1280 {
1281 struct address_space *mapping = file->f_mapping;
1282 struct page *page;
1283 int ret;
1284
1285 do {
1286 page = page_cache_alloc_cold(mapping);
1287 if (!page)
1288 return -ENOMEM;
1289
1290 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1291 if (ret == 0)
1292 ret = mapping->a_ops->readpage(file, page);
1293 else if (ret == -EEXIST)
1294 ret = 0; /* losing race to add is OK */
1295
1296 page_cache_release(page);
1297
1298 } while (ret == AOP_TRUNCATED_PAGE);
1299
1300 return ret;
1301 }
1302
1303 #define MMAP_LOTSAMISS (100)
1304
1305 /**
1306 * filemap_fault - read in file data for page fault handling
1307 * @vma: vma in which the fault was taken
1308 * @vmf: struct vm_fault containing details of the fault
1309 *
1310 * filemap_fault() is invoked via the vma operations vector for a
1311 * mapped memory region to read in file data during a page fault.
1312 *
1313 * The goto's are kind of ugly, but this streamlines the normal case of having
1314 * it in the page cache, and handles the special cases reasonably without
1315 * having a lot of duplicated code.
1316 */
1317 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1318 {
1319 int error;
1320 struct file *file = vma->vm_file;
1321 struct address_space *mapping = file->f_mapping;
1322 struct file_ra_state *ra = &file->f_ra;
1323 struct inode *inode = mapping->host;
1324 struct page *page;
1325 unsigned long size;
1326 int did_readaround = 0;
1327 int ret = 0;
1328
1329 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1330 if (vmf->pgoff >= size)
1331 return VM_FAULT_SIGBUS;
1332
1333 /* If we don't want any read-ahead, don't bother */
1334 if (VM_RandomReadHint(vma))
1335 goto no_cached_page;
1336
1337 /*
1338 * Do we have something in the page cache already?
1339 */
1340 retry_find:
1341 page = find_lock_page(mapping, vmf->pgoff);
1342 /*
1343 * For sequential accesses, we use the generic readahead logic.
1344 */
1345 if (VM_SequentialReadHint(vma)) {
1346 if (!page) {
1347 page_cache_sync_readahead(mapping, ra, file,
1348 vmf->pgoff, 1);
1349 page = find_lock_page(mapping, vmf->pgoff);
1350 if (!page)
1351 goto no_cached_page;
1352 }
1353 if (PageReadahead(page)) {
1354 page_cache_async_readahead(mapping, ra, file, page,
1355 vmf->pgoff, 1);
1356 }
1357 }
1358
1359 if (!page) {
1360 unsigned long ra_pages;
1361
1362 ra->mmap_miss++;
1363
1364 /*
1365 * Do we miss much more than hit in this file? If so,
1366 * stop bothering with read-ahead. It will only hurt.
1367 */
1368 if (ra->mmap_miss > MMAP_LOTSAMISS)
1369 goto no_cached_page;
1370
1371 /*
1372 * To keep the pgmajfault counter straight, we need to
1373 * check did_readaround, as this is an inner loop.
1374 */
1375 if (!did_readaround) {
1376 ret = VM_FAULT_MAJOR;
1377 count_vm_event(PGMAJFAULT);
1378 }
1379 did_readaround = 1;
1380 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1381 if (ra_pages) {
1382 pgoff_t start = 0;
1383
1384 if (vmf->pgoff > ra_pages / 2)
1385 start = vmf->pgoff - ra_pages / 2;
1386 do_page_cache_readahead(mapping, file, start, ra_pages);
1387 }
1388 page = find_lock_page(mapping, vmf->pgoff);
1389 if (!page)
1390 goto no_cached_page;
1391 }
1392
1393 if (!did_readaround)
1394 ra->mmap_miss--;
1395
1396 /*
1397 * We have a locked page in the page cache, now we need to check
1398 * that it's up-to-date. If not, it is going to be due to an error.
1399 */
1400 if (unlikely(!PageUptodate(page)))
1401 goto page_not_uptodate;
1402
1403 /* Must recheck i_size under page lock */
1404 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1405 if (unlikely(vmf->pgoff >= size)) {
1406 unlock_page(page);
1407 page_cache_release(page);
1408 return VM_FAULT_SIGBUS;
1409 }
1410
1411 /*
1412 * Found the page and have a reference on it.
1413 */
1414 mark_page_accessed(page);
1415 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1416 vmf->page = page;
1417 return ret | VM_FAULT_LOCKED;
1418
1419 no_cached_page:
1420 /*
1421 * We're only likely to ever get here if MADV_RANDOM is in
1422 * effect.
1423 */
1424 error = page_cache_read(file, vmf->pgoff);
1425
1426 /*
1427 * The page we want has now been added to the page cache.
1428 * In the unlikely event that someone removed it in the
1429 * meantime, we'll just come back here and read it again.
1430 */
1431 if (error >= 0)
1432 goto retry_find;
1433
1434 /*
1435 * An error return from page_cache_read can result if the
1436 * system is low on memory, or a problem occurs while trying
1437 * to schedule I/O.
1438 */
1439 if (error == -ENOMEM)
1440 return VM_FAULT_OOM;
1441 return VM_FAULT_SIGBUS;
1442
1443 page_not_uptodate:
1444 /* IO error path */
1445 if (!did_readaround) {
1446 ret = VM_FAULT_MAJOR;
1447 count_vm_event(PGMAJFAULT);
1448 }
1449
1450 /*
1451 * Umm, take care of errors if the page isn't up-to-date.
1452 * Try to re-read it _once_. We do this synchronously,
1453 * because there really aren't any performance issues here
1454 * and we need to check for errors.
1455 */
1456 ClearPageError(page);
1457 error = mapping->a_ops->readpage(file, page);
1458 page_cache_release(page);
1459
1460 if (!error || error == AOP_TRUNCATED_PAGE)
1461 goto retry_find;
1462
1463 /* Things didn't work out. Return zero to tell the mm layer so. */
1464 shrink_readahead_size_eio(file, ra);
1465 return VM_FAULT_SIGBUS;
1466 }
1467 EXPORT_SYMBOL(filemap_fault);
1468
1469 struct vm_operations_struct generic_file_vm_ops = {
1470 .fault = filemap_fault,
1471 };
1472
1473 /* This is used for a general mmap of a disk file */
1474
1475 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1476 {
1477 struct address_space *mapping = file->f_mapping;
1478
1479 if (!mapping->a_ops->readpage)
1480 return -ENOEXEC;
1481 file_accessed(file);
1482 vma->vm_ops = &generic_file_vm_ops;
1483 vma->vm_flags |= VM_CAN_NONLINEAR;
1484 return 0;
1485 }
1486
1487 /*
1488 * This is for filesystems which do not implement ->writepage.
1489 */
1490 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1491 {
1492 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1493 return -EINVAL;
1494 return generic_file_mmap(file, vma);
1495 }
1496 #else
1497 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1498 {
1499 return -ENOSYS;
1500 }
1501 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1502 {
1503 return -ENOSYS;
1504 }
1505 #endif /* CONFIG_MMU */
1506
1507 EXPORT_SYMBOL(generic_file_mmap);
1508 EXPORT_SYMBOL(generic_file_readonly_mmap);
1509
1510 static struct page *__read_cache_page(struct address_space *mapping,
1511 pgoff_t index,
1512 int (*filler)(void *,struct page*),
1513 void *data)
1514 {
1515 struct page *page;
1516 int err;
1517 repeat:
1518 page = find_get_page(mapping, index);
1519 if (!page) {
1520 page = page_cache_alloc_cold(mapping);
1521 if (!page)
1522 return ERR_PTR(-ENOMEM);
1523 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1524 if (unlikely(err)) {
1525 page_cache_release(page);
1526 if (err == -EEXIST)
1527 goto repeat;
1528 /* Presumably ENOMEM for radix tree node */
1529 return ERR_PTR(err);
1530 }
1531 err = filler(data, page);
1532 if (err < 0) {
1533 page_cache_release(page);
1534 page = ERR_PTR(err);
1535 }
1536 }
1537 return page;
1538 }
1539
1540 /*
1541 * Same as read_cache_page, but don't wait for page to become unlocked
1542 * after submitting it to the filler.
1543 */
1544 struct page *read_cache_page_async(struct address_space *mapping,
1545 pgoff_t index,
1546 int (*filler)(void *,struct page*),
1547 void *data)
1548 {
1549 struct page *page;
1550 int err;
1551
1552 retry:
1553 page = __read_cache_page(mapping, index, filler, data);
1554 if (IS_ERR(page))
1555 return page;
1556 if (PageUptodate(page))
1557 goto out;
1558
1559 lock_page(page);
1560 if (!page->mapping) {
1561 unlock_page(page);
1562 page_cache_release(page);
1563 goto retry;
1564 }
1565 if (PageUptodate(page)) {
1566 unlock_page(page);
1567 goto out;
1568 }
1569 err = filler(data, page);
1570 if (err < 0) {
1571 page_cache_release(page);
1572 return ERR_PTR(err);
1573 }
1574 out:
1575 mark_page_accessed(page);
1576 return page;
1577 }
1578 EXPORT_SYMBOL(read_cache_page_async);
1579
1580 /**
1581 * read_cache_page - read into page cache, fill it if needed
1582 * @mapping: the page's address_space
1583 * @index: the page index
1584 * @filler: function to perform the read
1585 * @data: destination for read data
1586 *
1587 * Read into the page cache. If a page already exists, and PageUptodate() is
1588 * not set, try to fill the page then wait for it to become unlocked.
1589 *
1590 * If the page does not get brought uptodate, return -EIO.
1591 */
1592 struct page *read_cache_page(struct address_space *mapping,
1593 pgoff_t index,
1594 int (*filler)(void *,struct page*),
1595 void *data)
1596 {
1597 struct page *page;
1598
1599 page = read_cache_page_async(mapping, index, filler, data);
1600 if (IS_ERR(page))
1601 goto out;
1602 wait_on_page_locked(page);
1603 if (!PageUptodate(page)) {
1604 page_cache_release(page);
1605 page = ERR_PTR(-EIO);
1606 }
1607 out:
1608 return page;
1609 }
1610 EXPORT_SYMBOL(read_cache_page);
1611
1612 /*
1613 * The logic we want is
1614 *
1615 * if suid or (sgid and xgrp)
1616 * remove privs
1617 */
1618 int should_remove_suid(struct dentry *dentry)
1619 {
1620 mode_t mode = dentry->d_inode->i_mode;
1621 int kill = 0;
1622
1623 /* suid always must be killed */
1624 if (unlikely(mode & S_ISUID))
1625 kill = ATTR_KILL_SUID;
1626
1627 /*
1628 * sgid without any exec bits is just a mandatory locking mark; leave
1629 * it alone. If some exec bits are set, it's a real sgid; kill it.
1630 */
1631 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1632 kill |= ATTR_KILL_SGID;
1633
1634 if (unlikely(kill && !capable(CAP_FSETID)))
1635 return kill;
1636
1637 return 0;
1638 }
1639 EXPORT_SYMBOL(should_remove_suid);
1640
1641 int __remove_suid(struct dentry *dentry, int kill)
1642 {
1643 struct iattr newattrs;
1644
1645 newattrs.ia_valid = ATTR_FORCE | kill;
1646 return notify_change(dentry, &newattrs);
1647 }
1648
1649 int remove_suid(struct dentry *dentry)
1650 {
1651 int killsuid = should_remove_suid(dentry);
1652 int killpriv = security_inode_need_killpriv(dentry);
1653 int error = 0;
1654
1655 if (killpriv < 0)
1656 return killpriv;
1657 if (killpriv)
1658 error = security_inode_killpriv(dentry);
1659 if (!error && killsuid)
1660 error = __remove_suid(dentry, killsuid);
1661
1662 return error;
1663 }
1664 EXPORT_SYMBOL(remove_suid);
1665
1666 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1667 const struct iovec *iov, size_t base, size_t bytes)
1668 {
1669 size_t copied = 0, left = 0;
1670
1671 while (bytes) {
1672 char __user *buf = iov->iov_base + base;
1673 int copy = min(bytes, iov->iov_len - base);
1674
1675 base = 0;
1676 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1677 copied += copy;
1678 bytes -= copy;
1679 vaddr += copy;
1680 iov++;
1681
1682 if (unlikely(left))
1683 break;
1684 }
1685 return copied - left;
1686 }
1687
1688 /*
1689 * Copy as much as we can into the page and return the number of bytes which
1690 * were sucessfully copied. If a fault is encountered then return the number of
1691 * bytes which were copied.
1692 */
1693 size_t iov_iter_copy_from_user_atomic(struct page *page,
1694 struct iov_iter *i, unsigned long offset, size_t bytes)
1695 {
1696 char *kaddr;
1697 size_t copied;
1698
1699 BUG_ON(!in_atomic());
1700 kaddr = kmap_atomic(page, KM_USER0);
1701 if (likely(i->nr_segs == 1)) {
1702 int left;
1703 char __user *buf = i->iov->iov_base + i->iov_offset;
1704 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1705 buf, bytes);
1706 copied = bytes - left;
1707 } else {
1708 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1709 i->iov, i->iov_offset, bytes);
1710 }
1711 kunmap_atomic(kaddr, KM_USER0);
1712
1713 return copied;
1714 }
1715 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1716
1717 /*
1718 * This has the same sideeffects and return value as
1719 * iov_iter_copy_from_user_atomic().
1720 * The difference is that it attempts to resolve faults.
1721 * Page must not be locked.
1722 */
1723 size_t iov_iter_copy_from_user(struct page *page,
1724 struct iov_iter *i, unsigned long offset, size_t bytes)
1725 {
1726 char *kaddr;
1727 size_t copied;
1728
1729 kaddr = kmap(page);
1730 if (likely(i->nr_segs == 1)) {
1731 int left;
1732 char __user *buf = i->iov->iov_base + i->iov_offset;
1733 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1734 copied = bytes - left;
1735 } else {
1736 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1737 i->iov, i->iov_offset, bytes);
1738 }
1739 kunmap(page);
1740 return copied;
1741 }
1742 EXPORT_SYMBOL(iov_iter_copy_from_user);
1743
1744 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1745 {
1746 if (likely(i->nr_segs == 1)) {
1747 i->iov_offset += bytes;
1748 } else {
1749 const struct iovec *iov = i->iov;
1750 size_t base = i->iov_offset;
1751
1752 /*
1753 * The !iov->iov_len check ensures we skip over unlikely
1754 * zero-length segments.
1755 */
1756 while (bytes || !iov->iov_len) {
1757 int copy = min(bytes, iov->iov_len - base);
1758
1759 bytes -= copy;
1760 base += copy;
1761 if (iov->iov_len == base) {
1762 iov++;
1763 base = 0;
1764 }
1765 }
1766 i->iov = iov;
1767 i->iov_offset = base;
1768 }
1769 }
1770
1771 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1772 {
1773 BUG_ON(i->count < bytes);
1774
1775 __iov_iter_advance_iov(i, bytes);
1776 i->count -= bytes;
1777 }
1778 EXPORT_SYMBOL(iov_iter_advance);
1779
1780 /*
1781 * Fault in the first iovec of the given iov_iter, to a maximum length
1782 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1783 * accessed (ie. because it is an invalid address).
1784 *
1785 * writev-intensive code may want this to prefault several iovecs -- that
1786 * would be possible (callers must not rely on the fact that _only_ the
1787 * first iovec will be faulted with the current implementation).
1788 */
1789 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1790 {
1791 char __user *buf = i->iov->iov_base + i->iov_offset;
1792 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1793 return fault_in_pages_readable(buf, bytes);
1794 }
1795 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1796
1797 /*
1798 * Return the count of just the current iov_iter segment.
1799 */
1800 size_t iov_iter_single_seg_count(struct iov_iter *i)
1801 {
1802 const struct iovec *iov = i->iov;
1803 if (i->nr_segs == 1)
1804 return i->count;
1805 else
1806 return min(i->count, iov->iov_len - i->iov_offset);
1807 }
1808 EXPORT_SYMBOL(iov_iter_single_seg_count);
1809
1810 /*
1811 * Performs necessary checks before doing a write
1812 *
1813 * Can adjust writing position or amount of bytes to write.
1814 * Returns appropriate error code that caller should return or
1815 * zero in case that write should be allowed.
1816 */
1817 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1818 {
1819 struct inode *inode = file->f_mapping->host;
1820 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1821
1822 if (unlikely(*pos < 0))
1823 return -EINVAL;
1824
1825 if (!isblk) {
1826 /* FIXME: this is for backwards compatibility with 2.4 */
1827 if (file->f_flags & O_APPEND)
1828 *pos = i_size_read(inode);
1829
1830 if (limit != RLIM_INFINITY) {
1831 if (*pos >= limit) {
1832 send_sig(SIGXFSZ, current, 0);
1833 return -EFBIG;
1834 }
1835 if (*count > limit - (typeof(limit))*pos) {
1836 *count = limit - (typeof(limit))*pos;
1837 }
1838 }
1839 }
1840
1841 /*
1842 * LFS rule
1843 */
1844 if (unlikely(*pos + *count > MAX_NON_LFS &&
1845 !(file->f_flags & O_LARGEFILE))) {
1846 if (*pos >= MAX_NON_LFS) {
1847 return -EFBIG;
1848 }
1849 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1850 *count = MAX_NON_LFS - (unsigned long)*pos;
1851 }
1852 }
1853
1854 /*
1855 * Are we about to exceed the fs block limit ?
1856 *
1857 * If we have written data it becomes a short write. If we have
1858 * exceeded without writing data we send a signal and return EFBIG.
1859 * Linus frestrict idea will clean these up nicely..
1860 */
1861 if (likely(!isblk)) {
1862 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1863 if (*count || *pos > inode->i_sb->s_maxbytes) {
1864 return -EFBIG;
1865 }
1866 /* zero-length writes at ->s_maxbytes are OK */
1867 }
1868
1869 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1870 *count = inode->i_sb->s_maxbytes - *pos;
1871 } else {
1872 #ifdef CONFIG_BLOCK
1873 loff_t isize;
1874 if (bdev_read_only(I_BDEV(inode)))
1875 return -EPERM;
1876 isize = i_size_read(inode);
1877 if (*pos >= isize) {
1878 if (*count || *pos > isize)
1879 return -ENOSPC;
1880 }
1881
1882 if (*pos + *count > isize)
1883 *count = isize - *pos;
1884 #else
1885 return -EPERM;
1886 #endif
1887 }
1888 return 0;
1889 }
1890 EXPORT_SYMBOL(generic_write_checks);
1891
1892 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1893 loff_t pos, unsigned len, unsigned flags,
1894 struct page **pagep, void **fsdata)
1895 {
1896 const struct address_space_operations *aops = mapping->a_ops;
1897
1898 if (aops->write_begin) {
1899 return aops->write_begin(file, mapping, pos, len, flags,
1900 pagep, fsdata);
1901 } else {
1902 int ret;
1903 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1904 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1905 struct inode *inode = mapping->host;
1906 struct page *page;
1907 again:
1908 page = __grab_cache_page(mapping, index);
1909 *pagep = page;
1910 if (!page)
1911 return -ENOMEM;
1912
1913 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1914 /*
1915 * There is no way to resolve a short write situation
1916 * for a !Uptodate page (except by double copying in
1917 * the caller done by generic_perform_write_2copy).
1918 *
1919 * Instead, we have to bring it uptodate here.
1920 */
1921 ret = aops->readpage(file, page);
1922 page_cache_release(page);
1923 if (ret) {
1924 if (ret == AOP_TRUNCATED_PAGE)
1925 goto again;
1926 return ret;
1927 }
1928 goto again;
1929 }
1930
1931 ret = aops->prepare_write(file, page, offset, offset+len);
1932 if (ret) {
1933 unlock_page(page);
1934 page_cache_release(page);
1935 if (pos + len > inode->i_size)
1936 vmtruncate(inode, inode->i_size);
1937 }
1938 return ret;
1939 }
1940 }
1941 EXPORT_SYMBOL(pagecache_write_begin);
1942
1943 int pagecache_write_end(struct file *file, struct address_space *mapping,
1944 loff_t pos, unsigned len, unsigned copied,
1945 struct page *page, void *fsdata)
1946 {
1947 const struct address_space_operations *aops = mapping->a_ops;
1948 int ret;
1949
1950 if (aops->write_end) {
1951 mark_page_accessed(page);
1952 ret = aops->write_end(file, mapping, pos, len, copied,
1953 page, fsdata);
1954 } else {
1955 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1956 struct inode *inode = mapping->host;
1957
1958 flush_dcache_page(page);
1959 ret = aops->commit_write(file, page, offset, offset+len);
1960 unlock_page(page);
1961 mark_page_accessed(page);
1962 page_cache_release(page);
1963
1964 if (ret < 0) {
1965 if (pos + len > inode->i_size)
1966 vmtruncate(inode, inode->i_size);
1967 } else if (ret > 0)
1968 ret = min_t(size_t, copied, ret);
1969 else
1970 ret = copied;
1971 }
1972
1973 return ret;
1974 }
1975 EXPORT_SYMBOL(pagecache_write_end);
1976
1977 ssize_t
1978 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1979 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1980 size_t count, size_t ocount)
1981 {
1982 struct file *file = iocb->ki_filp;
1983 struct address_space *mapping = file->f_mapping;
1984 struct inode *inode = mapping->host;
1985 ssize_t written;
1986
1987 if (count != ocount)
1988 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1989
1990 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1991 if (written > 0) {
1992 loff_t end = pos + written;
1993 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1994 i_size_write(inode, end);
1995 mark_inode_dirty(inode);
1996 }
1997 *ppos = end;
1998 }
1999
2000 /*
2001 * Sync the fs metadata but not the minor inode changes and
2002 * of course not the data as we did direct DMA for the IO.
2003 * i_mutex is held, which protects generic_osync_inode() from
2004 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2005 */
2006 if ((written >= 0 || written == -EIOCBQUEUED) &&
2007 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2008 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2009 if (err < 0)
2010 written = err;
2011 }
2012 return written;
2013 }
2014 EXPORT_SYMBOL(generic_file_direct_write);
2015
2016 /*
2017 * Find or create a page at the given pagecache position. Return the locked
2018 * page. This function is specifically for buffered writes.
2019 */
2020 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2021 {
2022 int status;
2023 struct page *page;
2024 repeat:
2025 page = find_lock_page(mapping, index);
2026 if (likely(page))
2027 return page;
2028
2029 page = page_cache_alloc(mapping);
2030 if (!page)
2031 return NULL;
2032 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2033 if (unlikely(status)) {
2034 page_cache_release(page);
2035 if (status == -EEXIST)
2036 goto repeat;
2037 return NULL;
2038 }
2039 return page;
2040 }
2041 EXPORT_SYMBOL(__grab_cache_page);
2042
2043 static ssize_t generic_perform_write_2copy(struct file *file,
2044 struct iov_iter *i, loff_t pos)
2045 {
2046 struct address_space *mapping = file->f_mapping;
2047 const struct address_space_operations *a_ops = mapping->a_ops;
2048 struct inode *inode = mapping->host;
2049 long status = 0;
2050 ssize_t written = 0;
2051
2052 do {
2053 struct page *src_page;
2054 struct page *page;
2055 pgoff_t index; /* Pagecache index for current page */
2056 unsigned long offset; /* Offset into pagecache page */
2057 unsigned long bytes; /* Bytes to write to page */
2058 size_t copied; /* Bytes copied from user */
2059
2060 offset = (pos & (PAGE_CACHE_SIZE - 1));
2061 index = pos >> PAGE_CACHE_SHIFT;
2062 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2063 iov_iter_count(i));
2064
2065 /*
2066 * a non-NULL src_page indicates that we're doing the
2067 * copy via get_user_pages and kmap.
2068 */
2069 src_page = NULL;
2070
2071 /*
2072 * Bring in the user page that we will copy from _first_.
2073 * Otherwise there's a nasty deadlock on copying from the
2074 * same page as we're writing to, without it being marked
2075 * up-to-date.
2076 *
2077 * Not only is this an optimisation, but it is also required
2078 * to check that the address is actually valid, when atomic
2079 * usercopies are used, below.
2080 */
2081 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2082 status = -EFAULT;
2083 break;
2084 }
2085
2086 page = __grab_cache_page(mapping, index);
2087 if (!page) {
2088 status = -ENOMEM;
2089 break;
2090 }
2091
2092 /*
2093 * non-uptodate pages cannot cope with short copies, and we
2094 * cannot take a pagefault with the destination page locked.
2095 * So pin the source page to copy it.
2096 */
2097 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2098 unlock_page(page);
2099
2100 src_page = alloc_page(GFP_KERNEL);
2101 if (!src_page) {
2102 page_cache_release(page);
2103 status = -ENOMEM;
2104 break;
2105 }
2106
2107 /*
2108 * Cannot get_user_pages with a page locked for the
2109 * same reason as we can't take a page fault with a
2110 * page locked (as explained below).
2111 */
2112 copied = iov_iter_copy_from_user(src_page, i,
2113 offset, bytes);
2114 if (unlikely(copied == 0)) {
2115 status = -EFAULT;
2116 page_cache_release(page);
2117 page_cache_release(src_page);
2118 break;
2119 }
2120 bytes = copied;
2121
2122 lock_page(page);
2123 /*
2124 * Can't handle the page going uptodate here, because
2125 * that means we would use non-atomic usercopies, which
2126 * zero out the tail of the page, which can cause
2127 * zeroes to become transiently visible. We could just
2128 * use a non-zeroing copy, but the APIs aren't too
2129 * consistent.
2130 */
2131 if (unlikely(!page->mapping || PageUptodate(page))) {
2132 unlock_page(page);
2133 page_cache_release(page);
2134 page_cache_release(src_page);
2135 continue;
2136 }
2137 }
2138
2139 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2140 if (unlikely(status))
2141 goto fs_write_aop_error;
2142
2143 if (!src_page) {
2144 /*
2145 * Must not enter the pagefault handler here, because
2146 * we hold the page lock, so we might recursively
2147 * deadlock on the same lock, or get an ABBA deadlock
2148 * against a different lock, or against the mmap_sem
2149 * (which nests outside the page lock). So increment
2150 * preempt count, and use _atomic usercopies.
2151 *
2152 * The page is uptodate so we are OK to encounter a
2153 * short copy: if unmodified parts of the page are
2154 * marked dirty and written out to disk, it doesn't
2155 * really matter.
2156 */
2157 pagefault_disable();
2158 copied = iov_iter_copy_from_user_atomic(page, i,
2159 offset, bytes);
2160 pagefault_enable();
2161 } else {
2162 void *src, *dst;
2163 src = kmap_atomic(src_page, KM_USER0);
2164 dst = kmap_atomic(page, KM_USER1);
2165 memcpy(dst + offset, src + offset, bytes);
2166 kunmap_atomic(dst, KM_USER1);
2167 kunmap_atomic(src, KM_USER0);
2168 copied = bytes;
2169 }
2170 flush_dcache_page(page);
2171
2172 status = a_ops->commit_write(file, page, offset, offset+bytes);
2173 if (unlikely(status < 0))
2174 goto fs_write_aop_error;
2175 if (unlikely(status > 0)) /* filesystem did partial write */
2176 copied = min_t(size_t, copied, status);
2177
2178 unlock_page(page);
2179 mark_page_accessed(page);
2180 page_cache_release(page);
2181 if (src_page)
2182 page_cache_release(src_page);
2183
2184 iov_iter_advance(i, copied);
2185 pos += copied;
2186 written += copied;
2187
2188 balance_dirty_pages_ratelimited(mapping);
2189 cond_resched();
2190 continue;
2191
2192 fs_write_aop_error:
2193 unlock_page(page);
2194 page_cache_release(page);
2195 if (src_page)
2196 page_cache_release(src_page);
2197
2198 /*
2199 * prepare_write() may have instantiated a few blocks
2200 * outside i_size. Trim these off again. Don't need
2201 * i_size_read because we hold i_mutex.
2202 */
2203 if (pos + bytes > inode->i_size)
2204 vmtruncate(inode, inode->i_size);
2205 break;
2206 } while (iov_iter_count(i));
2207
2208 return written ? written : status;
2209 }
2210
2211 static ssize_t generic_perform_write(struct file *file,
2212 struct iov_iter *i, loff_t pos)
2213 {
2214 struct address_space *mapping = file->f_mapping;
2215 const struct address_space_operations *a_ops = mapping->a_ops;
2216 long status = 0;
2217 ssize_t written = 0;
2218 unsigned int flags = 0;
2219
2220 /*
2221 * Copies from kernel address space cannot fail (NFSD is a big user).
2222 */
2223 if (segment_eq(get_fs(), KERNEL_DS))
2224 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2225
2226 do {
2227 struct page *page;
2228 pgoff_t index; /* Pagecache index for current page */
2229 unsigned long offset; /* Offset into pagecache page */
2230 unsigned long bytes; /* Bytes to write to page */
2231 size_t copied; /* Bytes copied from user */
2232 void *fsdata;
2233
2234 offset = (pos & (PAGE_CACHE_SIZE - 1));
2235 index = pos >> PAGE_CACHE_SHIFT;
2236 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2237 iov_iter_count(i));
2238
2239 again:
2240
2241 /*
2242 * Bring in the user page that we will copy from _first_.
2243 * Otherwise there's a nasty deadlock on copying from the
2244 * same page as we're writing to, without it being marked
2245 * up-to-date.
2246 *
2247 * Not only is this an optimisation, but it is also required
2248 * to check that the address is actually valid, when atomic
2249 * usercopies are used, below.
2250 */
2251 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2252 status = -EFAULT;
2253 break;
2254 }
2255
2256 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2257 &page, &fsdata);
2258 if (unlikely(status))
2259 break;
2260
2261 pagefault_disable();
2262 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2263 pagefault_enable();
2264 flush_dcache_page(page);
2265
2266 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2267 page, fsdata);
2268 if (unlikely(status < 0))
2269 break;
2270 copied = status;
2271
2272 cond_resched();
2273
2274 iov_iter_advance(i, copied);
2275 if (unlikely(copied == 0)) {
2276 /*
2277 * If we were unable to copy any data at all, we must
2278 * fall back to a single segment length write.
2279 *
2280 * If we didn't fallback here, we could livelock
2281 * because not all segments in the iov can be copied at
2282 * once without a pagefault.
2283 */
2284 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2285 iov_iter_single_seg_count(i));
2286 goto again;
2287 }
2288 pos += copied;
2289 written += copied;
2290
2291 balance_dirty_pages_ratelimited(mapping);
2292
2293 } while (iov_iter_count(i));
2294
2295 return written ? written : status;
2296 }
2297
2298 ssize_t
2299 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2300 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2301 size_t count, ssize_t written)
2302 {
2303 struct file *file = iocb->ki_filp;
2304 struct address_space *mapping = file->f_mapping;
2305 const struct address_space_operations *a_ops = mapping->a_ops;
2306 struct inode *inode = mapping->host;
2307 ssize_t status;
2308 struct iov_iter i;
2309
2310 iov_iter_init(&i, iov, nr_segs, count, written);
2311 if (a_ops->write_begin)
2312 status = generic_perform_write(file, &i, pos);
2313 else
2314 status = generic_perform_write_2copy(file, &i, pos);
2315
2316 if (likely(status >= 0)) {
2317 written += status;
2318 *ppos = pos + status;
2319
2320 /*
2321 * For now, when the user asks for O_SYNC, we'll actually give
2322 * O_DSYNC
2323 */
2324 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2325 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2326 status = generic_osync_inode(inode, mapping,
2327 OSYNC_METADATA|OSYNC_DATA);
2328 }
2329 }
2330
2331 /*
2332 * If we get here for O_DIRECT writes then we must have fallen through
2333 * to buffered writes (block instantiation inside i_size). So we sync
2334 * the file data here, to try to honour O_DIRECT expectations.
2335 */
2336 if (unlikely(file->f_flags & O_DIRECT) && written)
2337 status = filemap_write_and_wait(mapping);
2338
2339 return written ? written : status;
2340 }
2341 EXPORT_SYMBOL(generic_file_buffered_write);
2342
2343 static ssize_t
2344 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2345 unsigned long nr_segs, loff_t *ppos)
2346 {
2347 struct file *file = iocb->ki_filp;
2348 struct address_space * mapping = file->f_mapping;
2349 size_t ocount; /* original count */
2350 size_t count; /* after file limit checks */
2351 struct inode *inode = mapping->host;
2352 loff_t pos;
2353 ssize_t written;
2354 ssize_t err;
2355
2356 ocount = 0;
2357 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2358 if (err)
2359 return err;
2360
2361 count = ocount;
2362 pos = *ppos;
2363
2364 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2365
2366 /* We can write back this queue in page reclaim */
2367 current->backing_dev_info = mapping->backing_dev_info;
2368 written = 0;
2369
2370 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2371 if (err)
2372 goto out;
2373
2374 if (count == 0)
2375 goto out;
2376
2377 err = remove_suid(file->f_path.dentry);
2378 if (err)
2379 goto out;
2380
2381 file_update_time(file);
2382
2383 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2384 if (unlikely(file->f_flags & O_DIRECT)) {
2385 loff_t endbyte;
2386 ssize_t written_buffered;
2387
2388 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2389 ppos, count, ocount);
2390 if (written < 0 || written == count)
2391 goto out;
2392 /*
2393 * direct-io write to a hole: fall through to buffered I/O
2394 * for completing the rest of the request.
2395 */
2396 pos += written;
2397 count -= written;
2398 written_buffered = generic_file_buffered_write(iocb, iov,
2399 nr_segs, pos, ppos, count,
2400 written);
2401 /*
2402 * If generic_file_buffered_write() retuned a synchronous error
2403 * then we want to return the number of bytes which were
2404 * direct-written, or the error code if that was zero. Note
2405 * that this differs from normal direct-io semantics, which
2406 * will return -EFOO even if some bytes were written.
2407 */
2408 if (written_buffered < 0) {
2409 err = written_buffered;
2410 goto out;
2411 }
2412
2413 /*
2414 * We need to ensure that the page cache pages are written to
2415 * disk and invalidated to preserve the expected O_DIRECT
2416 * semantics.
2417 */
2418 endbyte = pos + written_buffered - written - 1;
2419 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2420 SYNC_FILE_RANGE_WAIT_BEFORE|
2421 SYNC_FILE_RANGE_WRITE|
2422 SYNC_FILE_RANGE_WAIT_AFTER);
2423 if (err == 0) {
2424 written = written_buffered;
2425 invalidate_mapping_pages(mapping,
2426 pos >> PAGE_CACHE_SHIFT,
2427 endbyte >> PAGE_CACHE_SHIFT);
2428 } else {
2429 /*
2430 * We don't know how much we wrote, so just return
2431 * the number of bytes which were direct-written
2432 */
2433 }
2434 } else {
2435 written = generic_file_buffered_write(iocb, iov, nr_segs,
2436 pos, ppos, count, written);
2437 }
2438 out:
2439 current->backing_dev_info = NULL;
2440 return written ? written : err;
2441 }
2442
2443 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2444 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2445 {
2446 struct file *file = iocb->ki_filp;
2447 struct address_space *mapping = file->f_mapping;
2448 struct inode *inode = mapping->host;
2449 ssize_t ret;
2450
2451 BUG_ON(iocb->ki_pos != pos);
2452
2453 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2454 &iocb->ki_pos);
2455
2456 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2457 ssize_t err;
2458
2459 err = sync_page_range_nolock(inode, mapping, pos, ret);
2460 if (err < 0)
2461 ret = err;
2462 }
2463 return ret;
2464 }
2465 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2466
2467 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2468 unsigned long nr_segs, loff_t pos)
2469 {
2470 struct file *file = iocb->ki_filp;
2471 struct address_space *mapping = file->f_mapping;
2472 struct inode *inode = mapping->host;
2473 ssize_t ret;
2474
2475 BUG_ON(iocb->ki_pos != pos);
2476
2477 mutex_lock(&inode->i_mutex);
2478 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2479 &iocb->ki_pos);
2480 mutex_unlock(&inode->i_mutex);
2481
2482 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2483 ssize_t err;
2484
2485 err = sync_page_range(inode, mapping, pos, ret);
2486 if (err < 0)
2487 ret = err;
2488 }
2489 return ret;
2490 }
2491 EXPORT_SYMBOL(generic_file_aio_write);
2492
2493 /*
2494 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2495 * went wrong during pagecache shootdown.
2496 */
2497 static ssize_t
2498 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2499 loff_t offset, unsigned long nr_segs)
2500 {
2501 struct file *file = iocb->ki_filp;
2502 struct address_space *mapping = file->f_mapping;
2503 ssize_t retval;
2504 size_t write_len;
2505 pgoff_t end = 0; /* silence gcc */
2506
2507 /*
2508 * If it's a write, unmap all mmappings of the file up-front. This
2509 * will cause any pte dirty bits to be propagated into the pageframes
2510 * for the subsequent filemap_write_and_wait().
2511 */
2512 if (rw == WRITE) {
2513 write_len = iov_length(iov, nr_segs);
2514 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2515 if (mapping_mapped(mapping))
2516 unmap_mapping_range(mapping, offset, write_len, 0);
2517 }
2518
2519 retval = filemap_write_and_wait(mapping);
2520 if (retval)
2521 goto out;
2522
2523 /*
2524 * After a write we want buffered reads to be sure to go to disk to get
2525 * the new data. We invalidate clean cached page from the region we're
2526 * about to write. We do this *before* the write so that we can return
2527 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2528 */
2529 if (rw == WRITE && mapping->nrpages) {
2530 retval = invalidate_inode_pages2_range(mapping,
2531 offset >> PAGE_CACHE_SHIFT, end);
2532 if (retval)
2533 goto out;
2534 }
2535
2536 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2537
2538 /*
2539 * Finally, try again to invalidate clean pages which might have been
2540 * cached by non-direct readahead, or faulted in by get_user_pages()
2541 * if the source of the write was an mmap'ed region of the file
2542 * we're writing. Either one is a pretty crazy thing to do,
2543 * so we don't support it 100%. If this invalidation
2544 * fails, tough, the write still worked...
2545 */
2546 if (rw == WRITE && mapping->nrpages) {
2547 invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2548 }
2549 out:
2550 return retval;
2551 }
2552
2553 /**
2554 * try_to_release_page() - release old fs-specific metadata on a page
2555 *
2556 * @page: the page which the kernel is trying to free
2557 * @gfp_mask: memory allocation flags (and I/O mode)
2558 *
2559 * The address_space is to try to release any data against the page
2560 * (presumably at page->private). If the release was successful, return `1'.
2561 * Otherwise return zero.
2562 *
2563 * The @gfp_mask argument specifies whether I/O may be performed to release
2564 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2565 *
2566 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2567 */
2568 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2569 {
2570 struct address_space * const mapping = page->mapping;
2571
2572 BUG_ON(!PageLocked(page));
2573 if (PageWriteback(page))
2574 return 0;
2575
2576 if (mapping && mapping->a_ops->releasepage)
2577 return mapping->a_ops->releasepage(page, gfp_mask);
2578 return try_to_free_buffers(page);
2579 }
2580
2581 EXPORT_SYMBOL(try_to_release_page);
This page took 0.082141 seconds and 6 git commands to generate.