Merge branch 'fixes-davem' of master.kernel.org:/pub/scm/linux/kernel/git/linville...
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include "internal.h"
35
36 /*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 * ->zone.lock
67 *
68 * ->i_mutex
69 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 *
71 * ->mmap_sem
72 * ->i_mmap_lock
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 *
82 * ->i_mutex
83 * ->i_alloc_sem (various)
84 *
85 * ->inode_lock
86 * ->sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_lock
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone.lru_lock (follow_page->mark_page_accessed)
100 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->task->proc_lock
108 * ->dcache_lock (proc_pid_lookup)
109 */
110
111 /*
112 * Remove a page from the page cache and free it. Caller has to make
113 * sure the page is locked and that nobody else uses it - or that usage
114 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 */
116 void __remove_from_page_cache(struct page *page)
117 {
118 struct address_space *mapping = page->mapping;
119
120 radix_tree_delete(&mapping->page_tree, page->index);
121 page->mapping = NULL;
122 mapping->nrpages--;
123 __dec_zone_page_state(page, NR_FILE_PAGES);
124 BUG_ON(page_mapped(page));
125 }
126
127 void remove_from_page_cache(struct page *page)
128 {
129 struct address_space *mapping = page->mapping;
130
131 BUG_ON(!PageLocked(page));
132
133 write_lock_irq(&mapping->tree_lock);
134 __remove_from_page_cache(page);
135 write_unlock_irq(&mapping->tree_lock);
136 }
137
138 static int sync_page(void *word)
139 {
140 struct address_space *mapping;
141 struct page *page;
142
143 page = container_of((unsigned long *)word, struct page, flags);
144
145 /*
146 * page_mapping() is being called without PG_locked held.
147 * Some knowledge of the state and use of the page is used to
148 * reduce the requirements down to a memory barrier.
149 * The danger here is of a stale page_mapping() return value
150 * indicating a struct address_space different from the one it's
151 * associated with when it is associated with one.
152 * After smp_mb(), it's either the correct page_mapping() for
153 * the page, or an old page_mapping() and the page's own
154 * page_mapping() has gone NULL.
155 * The ->sync_page() address_space operation must tolerate
156 * page_mapping() going NULL. By an amazing coincidence,
157 * this comes about because none of the users of the page
158 * in the ->sync_page() methods make essential use of the
159 * page_mapping(), merely passing the page down to the backing
160 * device's unplug functions when it's non-NULL, which in turn
161 * ignore it for all cases but swap, where only page_private(page) is
162 * of interest. When page_mapping() does go NULL, the entire
163 * call stack gracefully ignores the page and returns.
164 * -- wli
165 */
166 smp_mb();
167 mapping = page_mapping(page);
168 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
169 mapping->a_ops->sync_page(page);
170 io_schedule();
171 return 0;
172 }
173
174 /**
175 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
176 * @mapping: address space structure to write
177 * @start: offset in bytes where the range starts
178 * @end: offset in bytes where the range ends (inclusive)
179 * @sync_mode: enable synchronous operation
180 *
181 * Start writeback against all of a mapping's dirty pages that lie
182 * within the byte offsets <start, end> inclusive.
183 *
184 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
185 * opposed to a regular memory cleansing writeback. The difference between
186 * these two operations is that if a dirty page/buffer is encountered, it must
187 * be waited upon, and not just skipped over.
188 */
189 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
190 loff_t end, int sync_mode)
191 {
192 int ret;
193 struct writeback_control wbc = {
194 .sync_mode = sync_mode,
195 .nr_to_write = mapping->nrpages * 2,
196 .range_start = start,
197 .range_end = end,
198 };
199
200 if (!mapping_cap_writeback_dirty(mapping))
201 return 0;
202
203 ret = do_writepages(mapping, &wbc);
204 return ret;
205 }
206
207 static inline int __filemap_fdatawrite(struct address_space *mapping,
208 int sync_mode)
209 {
210 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
211 }
212
213 int filemap_fdatawrite(struct address_space *mapping)
214 {
215 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
216 }
217 EXPORT_SYMBOL(filemap_fdatawrite);
218
219 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
220 loff_t end)
221 {
222 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
223 }
224
225 /**
226 * filemap_flush - mostly a non-blocking flush
227 * @mapping: target address_space
228 *
229 * This is a mostly non-blocking flush. Not suitable for data-integrity
230 * purposes - I/O may not be started against all dirty pages.
231 */
232 int filemap_flush(struct address_space *mapping)
233 {
234 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
235 }
236 EXPORT_SYMBOL(filemap_flush);
237
238 /**
239 * wait_on_page_writeback_range - wait for writeback to complete
240 * @mapping: target address_space
241 * @start: beginning page index
242 * @end: ending page index
243 *
244 * Wait for writeback to complete against pages indexed by start->end
245 * inclusive
246 */
247 int wait_on_page_writeback_range(struct address_space *mapping,
248 pgoff_t start, pgoff_t end)
249 {
250 struct pagevec pvec;
251 int nr_pages;
252 int ret = 0;
253 pgoff_t index;
254
255 if (end < start)
256 return 0;
257
258 pagevec_init(&pvec, 0);
259 index = start;
260 while ((index <= end) &&
261 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
262 PAGECACHE_TAG_WRITEBACK,
263 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
264 unsigned i;
265
266 for (i = 0; i < nr_pages; i++) {
267 struct page *page = pvec.pages[i];
268
269 /* until radix tree lookup accepts end_index */
270 if (page->index > end)
271 continue;
272
273 wait_on_page_writeback(page);
274 if (PageError(page))
275 ret = -EIO;
276 }
277 pagevec_release(&pvec);
278 cond_resched();
279 }
280
281 /* Check for outstanding write errors */
282 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
283 ret = -ENOSPC;
284 if (test_and_clear_bit(AS_EIO, &mapping->flags))
285 ret = -EIO;
286
287 return ret;
288 }
289
290 /**
291 * sync_page_range - write and wait on all pages in the passed range
292 * @inode: target inode
293 * @mapping: target address_space
294 * @pos: beginning offset in pages to write
295 * @count: number of bytes to write
296 *
297 * Write and wait upon all the pages in the passed range. This is a "data
298 * integrity" operation. It waits upon in-flight writeout before starting and
299 * waiting upon new writeout. If there was an IO error, return it.
300 *
301 * We need to re-take i_mutex during the generic_osync_inode list walk because
302 * it is otherwise livelockable.
303 */
304 int sync_page_range(struct inode *inode, struct address_space *mapping,
305 loff_t pos, loff_t count)
306 {
307 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
308 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
309 int ret;
310
311 if (!mapping_cap_writeback_dirty(mapping) || !count)
312 return 0;
313 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
314 if (ret == 0) {
315 mutex_lock(&inode->i_mutex);
316 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
317 mutex_unlock(&inode->i_mutex);
318 }
319 if (ret == 0)
320 ret = wait_on_page_writeback_range(mapping, start, end);
321 return ret;
322 }
323 EXPORT_SYMBOL(sync_page_range);
324
325 /**
326 * sync_page_range_nolock
327 * @inode: target inode
328 * @mapping: target address_space
329 * @pos: beginning offset in pages to write
330 * @count: number of bytes to write
331 *
332 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
333 * as it forces O_SYNC writers to different parts of the same file
334 * to be serialised right until io completion.
335 */
336 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
337 loff_t pos, loff_t count)
338 {
339 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
340 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
341 int ret;
342
343 if (!mapping_cap_writeback_dirty(mapping) || !count)
344 return 0;
345 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
346 if (ret == 0)
347 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
348 if (ret == 0)
349 ret = wait_on_page_writeback_range(mapping, start, end);
350 return ret;
351 }
352 EXPORT_SYMBOL(sync_page_range_nolock);
353
354 /**
355 * filemap_fdatawait - wait for all under-writeback pages to complete
356 * @mapping: address space structure to wait for
357 *
358 * Walk the list of under-writeback pages of the given address space
359 * and wait for all of them.
360 */
361 int filemap_fdatawait(struct address_space *mapping)
362 {
363 loff_t i_size = i_size_read(mapping->host);
364
365 if (i_size == 0)
366 return 0;
367
368 return wait_on_page_writeback_range(mapping, 0,
369 (i_size - 1) >> PAGE_CACHE_SHIFT);
370 }
371 EXPORT_SYMBOL(filemap_fdatawait);
372
373 int filemap_write_and_wait(struct address_space *mapping)
374 {
375 int err = 0;
376
377 if (mapping->nrpages) {
378 err = filemap_fdatawrite(mapping);
379 /*
380 * Even if the above returned error, the pages may be
381 * written partially (e.g. -ENOSPC), so we wait for it.
382 * But the -EIO is special case, it may indicate the worst
383 * thing (e.g. bug) happened, so we avoid waiting for it.
384 */
385 if (err != -EIO) {
386 int err2 = filemap_fdatawait(mapping);
387 if (!err)
388 err = err2;
389 }
390 }
391 return err;
392 }
393 EXPORT_SYMBOL(filemap_write_and_wait);
394
395 /**
396 * filemap_write_and_wait_range - write out & wait on a file range
397 * @mapping: the address_space for the pages
398 * @lstart: offset in bytes where the range starts
399 * @lend: offset in bytes where the range ends (inclusive)
400 *
401 * Write out and wait upon file offsets lstart->lend, inclusive.
402 *
403 * Note that `lend' is inclusive (describes the last byte to be written) so
404 * that this function can be used to write to the very end-of-file (end = -1).
405 */
406 int filemap_write_and_wait_range(struct address_space *mapping,
407 loff_t lstart, loff_t lend)
408 {
409 int err = 0;
410
411 if (mapping->nrpages) {
412 err = __filemap_fdatawrite_range(mapping, lstart, lend,
413 WB_SYNC_ALL);
414 /* See comment of filemap_write_and_wait() */
415 if (err != -EIO) {
416 int err2 = wait_on_page_writeback_range(mapping,
417 lstart >> PAGE_CACHE_SHIFT,
418 lend >> PAGE_CACHE_SHIFT);
419 if (!err)
420 err = err2;
421 }
422 }
423 return err;
424 }
425
426 /**
427 * add_to_page_cache - add newly allocated pagecache pages
428 * @page: page to add
429 * @mapping: the page's address_space
430 * @offset: page index
431 * @gfp_mask: page allocation mode
432 *
433 * This function is used to add newly allocated pagecache pages;
434 * the page is new, so we can just run SetPageLocked() against it.
435 * The other page state flags were set by rmqueue().
436 *
437 * This function does not add the page to the LRU. The caller must do that.
438 */
439 int add_to_page_cache(struct page *page, struct address_space *mapping,
440 pgoff_t offset, gfp_t gfp_mask)
441 {
442 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
443
444 if (error == 0) {
445 write_lock_irq(&mapping->tree_lock);
446 error = radix_tree_insert(&mapping->page_tree, offset, page);
447 if (!error) {
448 page_cache_get(page);
449 SetPageLocked(page);
450 page->mapping = mapping;
451 page->index = offset;
452 mapping->nrpages++;
453 __inc_zone_page_state(page, NR_FILE_PAGES);
454 }
455 write_unlock_irq(&mapping->tree_lock);
456 radix_tree_preload_end();
457 }
458 return error;
459 }
460 EXPORT_SYMBOL(add_to_page_cache);
461
462 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
463 pgoff_t offset, gfp_t gfp_mask)
464 {
465 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
466 if (ret == 0)
467 lru_cache_add(page);
468 return ret;
469 }
470
471 #ifdef CONFIG_NUMA
472 struct page *__page_cache_alloc(gfp_t gfp)
473 {
474 if (cpuset_do_page_mem_spread()) {
475 int n = cpuset_mem_spread_node();
476 return alloc_pages_node(n, gfp, 0);
477 }
478 return alloc_pages(gfp, 0);
479 }
480 EXPORT_SYMBOL(__page_cache_alloc);
481 #endif
482
483 static int __sleep_on_page_lock(void *word)
484 {
485 io_schedule();
486 return 0;
487 }
488
489 /*
490 * In order to wait for pages to become available there must be
491 * waitqueues associated with pages. By using a hash table of
492 * waitqueues where the bucket discipline is to maintain all
493 * waiters on the same queue and wake all when any of the pages
494 * become available, and for the woken contexts to check to be
495 * sure the appropriate page became available, this saves space
496 * at a cost of "thundering herd" phenomena during rare hash
497 * collisions.
498 */
499 static wait_queue_head_t *page_waitqueue(struct page *page)
500 {
501 const struct zone *zone = page_zone(page);
502
503 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
504 }
505
506 static inline void wake_up_page(struct page *page, int bit)
507 {
508 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
509 }
510
511 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
512 {
513 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
514
515 if (test_bit(bit_nr, &page->flags))
516 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
517 TASK_UNINTERRUPTIBLE);
518 }
519 EXPORT_SYMBOL(wait_on_page_bit);
520
521 /**
522 * unlock_page - unlock a locked page
523 * @page: the page
524 *
525 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
526 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
527 * mechananism between PageLocked pages and PageWriteback pages is shared.
528 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
529 *
530 * The first mb is necessary to safely close the critical section opened by the
531 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
532 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
533 * parallel wait_on_page_locked()).
534 */
535 void fastcall unlock_page(struct page *page)
536 {
537 smp_mb__before_clear_bit();
538 if (!TestClearPageLocked(page))
539 BUG();
540 smp_mb__after_clear_bit();
541 wake_up_page(page, PG_locked);
542 }
543 EXPORT_SYMBOL(unlock_page);
544
545 /**
546 * end_page_writeback - end writeback against a page
547 * @page: the page
548 */
549 void end_page_writeback(struct page *page)
550 {
551 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
552 if (!test_clear_page_writeback(page))
553 BUG();
554 }
555 smp_mb__after_clear_bit();
556 wake_up_page(page, PG_writeback);
557 }
558 EXPORT_SYMBOL(end_page_writeback);
559
560 /**
561 * __lock_page - get a lock on the page, assuming we need to sleep to get it
562 * @page: the page to lock
563 *
564 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
565 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
566 * chances are that on the second loop, the block layer's plug list is empty,
567 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
568 */
569 void fastcall __lock_page(struct page *page)
570 {
571 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
572
573 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
574 TASK_UNINTERRUPTIBLE);
575 }
576 EXPORT_SYMBOL(__lock_page);
577
578 /*
579 * Variant of lock_page that does not require the caller to hold a reference
580 * on the page's mapping.
581 */
582 void fastcall __lock_page_nosync(struct page *page)
583 {
584 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
585 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
586 TASK_UNINTERRUPTIBLE);
587 }
588
589 /**
590 * find_get_page - find and get a page reference
591 * @mapping: the address_space to search
592 * @offset: the page index
593 *
594 * Is there a pagecache struct page at the given (mapping, offset) tuple?
595 * If yes, increment its refcount and return it; if no, return NULL.
596 */
597 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
598 {
599 struct page *page;
600
601 read_lock_irq(&mapping->tree_lock);
602 page = radix_tree_lookup(&mapping->page_tree, offset);
603 if (page)
604 page_cache_get(page);
605 read_unlock_irq(&mapping->tree_lock);
606 return page;
607 }
608 EXPORT_SYMBOL(find_get_page);
609
610 /**
611 * find_lock_page - locate, pin and lock a pagecache page
612 * @mapping: the address_space to search
613 * @offset: the page index
614 *
615 * Locates the desired pagecache page, locks it, increments its reference
616 * count and returns its address.
617 *
618 * Returns zero if the page was not present. find_lock_page() may sleep.
619 */
620 struct page *find_lock_page(struct address_space *mapping,
621 pgoff_t offset)
622 {
623 struct page *page;
624
625 repeat:
626 read_lock_irq(&mapping->tree_lock);
627 page = radix_tree_lookup(&mapping->page_tree, offset);
628 if (page) {
629 page_cache_get(page);
630 if (TestSetPageLocked(page)) {
631 read_unlock_irq(&mapping->tree_lock);
632 __lock_page(page);
633
634 /* Has the page been truncated while we slept? */
635 if (unlikely(page->mapping != mapping)) {
636 unlock_page(page);
637 page_cache_release(page);
638 goto repeat;
639 }
640 VM_BUG_ON(page->index != offset);
641 goto out;
642 }
643 }
644 read_unlock_irq(&mapping->tree_lock);
645 out:
646 return page;
647 }
648 EXPORT_SYMBOL(find_lock_page);
649
650 /**
651 * find_or_create_page - locate or add a pagecache page
652 * @mapping: the page's address_space
653 * @index: the page's index into the mapping
654 * @gfp_mask: page allocation mode
655 *
656 * Locates a page in the pagecache. If the page is not present, a new page
657 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
658 * LRU list. The returned page is locked and has its reference count
659 * incremented.
660 *
661 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
662 * allocation!
663 *
664 * find_or_create_page() returns the desired page's address, or zero on
665 * memory exhaustion.
666 */
667 struct page *find_or_create_page(struct address_space *mapping,
668 pgoff_t index, gfp_t gfp_mask)
669 {
670 struct page *page;
671 int err;
672 repeat:
673 page = find_lock_page(mapping, index);
674 if (!page) {
675 page = __page_cache_alloc(gfp_mask);
676 if (!page)
677 return NULL;
678 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
679 if (unlikely(err)) {
680 page_cache_release(page);
681 page = NULL;
682 if (err == -EEXIST)
683 goto repeat;
684 }
685 }
686 return page;
687 }
688 EXPORT_SYMBOL(find_or_create_page);
689
690 /**
691 * find_get_pages - gang pagecache lookup
692 * @mapping: The address_space to search
693 * @start: The starting page index
694 * @nr_pages: The maximum number of pages
695 * @pages: Where the resulting pages are placed
696 *
697 * find_get_pages() will search for and return a group of up to
698 * @nr_pages pages in the mapping. The pages are placed at @pages.
699 * find_get_pages() takes a reference against the returned pages.
700 *
701 * The search returns a group of mapping-contiguous pages with ascending
702 * indexes. There may be holes in the indices due to not-present pages.
703 *
704 * find_get_pages() returns the number of pages which were found.
705 */
706 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
707 unsigned int nr_pages, struct page **pages)
708 {
709 unsigned int i;
710 unsigned int ret;
711
712 read_lock_irq(&mapping->tree_lock);
713 ret = radix_tree_gang_lookup(&mapping->page_tree,
714 (void **)pages, start, nr_pages);
715 for (i = 0; i < ret; i++)
716 page_cache_get(pages[i]);
717 read_unlock_irq(&mapping->tree_lock);
718 return ret;
719 }
720
721 /**
722 * find_get_pages_contig - gang contiguous pagecache lookup
723 * @mapping: The address_space to search
724 * @index: The starting page index
725 * @nr_pages: The maximum number of pages
726 * @pages: Where the resulting pages are placed
727 *
728 * find_get_pages_contig() works exactly like find_get_pages(), except
729 * that the returned number of pages are guaranteed to be contiguous.
730 *
731 * find_get_pages_contig() returns the number of pages which were found.
732 */
733 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
734 unsigned int nr_pages, struct page **pages)
735 {
736 unsigned int i;
737 unsigned int ret;
738
739 read_lock_irq(&mapping->tree_lock);
740 ret = radix_tree_gang_lookup(&mapping->page_tree,
741 (void **)pages, index, nr_pages);
742 for (i = 0; i < ret; i++) {
743 if (pages[i]->mapping == NULL || pages[i]->index != index)
744 break;
745
746 page_cache_get(pages[i]);
747 index++;
748 }
749 read_unlock_irq(&mapping->tree_lock);
750 return i;
751 }
752 EXPORT_SYMBOL(find_get_pages_contig);
753
754 /**
755 * find_get_pages_tag - find and return pages that match @tag
756 * @mapping: the address_space to search
757 * @index: the starting page index
758 * @tag: the tag index
759 * @nr_pages: the maximum number of pages
760 * @pages: where the resulting pages are placed
761 *
762 * Like find_get_pages, except we only return pages which are tagged with
763 * @tag. We update @index to index the next page for the traversal.
764 */
765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766 int tag, unsigned int nr_pages, struct page **pages)
767 {
768 unsigned int i;
769 unsigned int ret;
770
771 read_lock_irq(&mapping->tree_lock);
772 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773 (void **)pages, *index, nr_pages, tag);
774 for (i = 0; i < ret; i++)
775 page_cache_get(pages[i]);
776 if (ret)
777 *index = pages[ret - 1]->index + 1;
778 read_unlock_irq(&mapping->tree_lock);
779 return ret;
780 }
781 EXPORT_SYMBOL(find_get_pages_tag);
782
783 /**
784 * grab_cache_page_nowait - returns locked page at given index in given cache
785 * @mapping: target address_space
786 * @index: the page index
787 *
788 * Same as grab_cache_page(), but do not wait if the page is unavailable.
789 * This is intended for speculative data generators, where the data can
790 * be regenerated if the page couldn't be grabbed. This routine should
791 * be safe to call while holding the lock for another page.
792 *
793 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
794 * and deadlock against the caller's locked page.
795 */
796 struct page *
797 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
798 {
799 struct page *page = find_get_page(mapping, index);
800
801 if (page) {
802 if (!TestSetPageLocked(page))
803 return page;
804 page_cache_release(page);
805 return NULL;
806 }
807 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
808 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
809 page_cache_release(page);
810 page = NULL;
811 }
812 return page;
813 }
814 EXPORT_SYMBOL(grab_cache_page_nowait);
815
816 /*
817 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
818 * a _large_ part of the i/o request. Imagine the worst scenario:
819 *
820 * ---R__________________________________________B__________
821 * ^ reading here ^ bad block(assume 4k)
822 *
823 * read(R) => miss => readahead(R...B) => media error => frustrating retries
824 * => failing the whole request => read(R) => read(R+1) =>
825 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
826 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
827 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
828 *
829 * It is going insane. Fix it by quickly scaling down the readahead size.
830 */
831 static void shrink_readahead_size_eio(struct file *filp,
832 struct file_ra_state *ra)
833 {
834 if (!ra->ra_pages)
835 return;
836
837 ra->ra_pages /= 4;
838 }
839
840 /**
841 * do_generic_mapping_read - generic file read routine
842 * @mapping: address_space to be read
843 * @_ra: file's readahead state
844 * @filp: the file to read
845 * @ppos: current file position
846 * @desc: read_descriptor
847 * @actor: read method
848 *
849 * This is a generic file read routine, and uses the
850 * mapping->a_ops->readpage() function for the actual low-level stuff.
851 *
852 * This is really ugly. But the goto's actually try to clarify some
853 * of the logic when it comes to error handling etc.
854 *
855 * Note the struct file* is only passed for the use of readpage.
856 * It may be NULL.
857 */
858 void do_generic_mapping_read(struct address_space *mapping,
859 struct file_ra_state *ra,
860 struct file *filp,
861 loff_t *ppos,
862 read_descriptor_t *desc,
863 read_actor_t actor)
864 {
865 struct inode *inode = mapping->host;
866 pgoff_t index;
867 pgoff_t last_index;
868 pgoff_t prev_index;
869 unsigned long offset; /* offset into pagecache page */
870 unsigned int prev_offset;
871 int error;
872
873 index = *ppos >> PAGE_CACHE_SHIFT;
874 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
875 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
876 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
877 offset = *ppos & ~PAGE_CACHE_MASK;
878
879 for (;;) {
880 struct page *page;
881 pgoff_t end_index;
882 loff_t isize;
883 unsigned long nr, ret;
884
885 cond_resched();
886 find_page:
887 page = find_get_page(mapping, index);
888 if (!page) {
889 page_cache_sync_readahead(mapping,
890 ra, filp,
891 index, last_index - index);
892 page = find_get_page(mapping, index);
893 if (unlikely(page == NULL))
894 goto no_cached_page;
895 }
896 if (PageReadahead(page)) {
897 page_cache_async_readahead(mapping,
898 ra, filp, page,
899 index, last_index - index);
900 }
901 if (!PageUptodate(page))
902 goto page_not_up_to_date;
903 page_ok:
904 /*
905 * i_size must be checked after we know the page is Uptodate.
906 *
907 * Checking i_size after the check allows us to calculate
908 * the correct value for "nr", which means the zero-filled
909 * part of the page is not copied back to userspace (unless
910 * another truncate extends the file - this is desired though).
911 */
912
913 isize = i_size_read(inode);
914 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
915 if (unlikely(!isize || index > end_index)) {
916 page_cache_release(page);
917 goto out;
918 }
919
920 /* nr is the maximum number of bytes to copy from this page */
921 nr = PAGE_CACHE_SIZE;
922 if (index == end_index) {
923 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
924 if (nr <= offset) {
925 page_cache_release(page);
926 goto out;
927 }
928 }
929 nr = nr - offset;
930
931 /* If users can be writing to this page using arbitrary
932 * virtual addresses, take care about potential aliasing
933 * before reading the page on the kernel side.
934 */
935 if (mapping_writably_mapped(mapping))
936 flush_dcache_page(page);
937
938 /*
939 * When a sequential read accesses a page several times,
940 * only mark it as accessed the first time.
941 */
942 if (prev_index != index || offset != prev_offset)
943 mark_page_accessed(page);
944 prev_index = index;
945
946 /*
947 * Ok, we have the page, and it's up-to-date, so
948 * now we can copy it to user space...
949 *
950 * The actor routine returns how many bytes were actually used..
951 * NOTE! This may not be the same as how much of a user buffer
952 * we filled up (we may be padding etc), so we can only update
953 * "pos" here (the actor routine has to update the user buffer
954 * pointers and the remaining count).
955 */
956 ret = actor(desc, page, offset, nr);
957 offset += ret;
958 index += offset >> PAGE_CACHE_SHIFT;
959 offset &= ~PAGE_CACHE_MASK;
960 prev_offset = offset;
961
962 page_cache_release(page);
963 if (ret == nr && desc->count)
964 continue;
965 goto out;
966
967 page_not_up_to_date:
968 /* Get exclusive access to the page ... */
969 lock_page(page);
970
971 /* Did it get truncated before we got the lock? */
972 if (!page->mapping) {
973 unlock_page(page);
974 page_cache_release(page);
975 continue;
976 }
977
978 /* Did somebody else fill it already? */
979 if (PageUptodate(page)) {
980 unlock_page(page);
981 goto page_ok;
982 }
983
984 readpage:
985 /* Start the actual read. The read will unlock the page. */
986 error = mapping->a_ops->readpage(filp, page);
987
988 if (unlikely(error)) {
989 if (error == AOP_TRUNCATED_PAGE) {
990 page_cache_release(page);
991 goto find_page;
992 }
993 goto readpage_error;
994 }
995
996 if (!PageUptodate(page)) {
997 lock_page(page);
998 if (!PageUptodate(page)) {
999 if (page->mapping == NULL) {
1000 /*
1001 * invalidate_inode_pages got it
1002 */
1003 unlock_page(page);
1004 page_cache_release(page);
1005 goto find_page;
1006 }
1007 unlock_page(page);
1008 error = -EIO;
1009 shrink_readahead_size_eio(filp, ra);
1010 goto readpage_error;
1011 }
1012 unlock_page(page);
1013 }
1014
1015 goto page_ok;
1016
1017 readpage_error:
1018 /* UHHUH! A synchronous read error occurred. Report it */
1019 desc->error = error;
1020 page_cache_release(page);
1021 goto out;
1022
1023 no_cached_page:
1024 /*
1025 * Ok, it wasn't cached, so we need to create a new
1026 * page..
1027 */
1028 page = page_cache_alloc_cold(mapping);
1029 if (!page) {
1030 desc->error = -ENOMEM;
1031 goto out;
1032 }
1033 error = add_to_page_cache_lru(page, mapping,
1034 index, GFP_KERNEL);
1035 if (error) {
1036 page_cache_release(page);
1037 if (error == -EEXIST)
1038 goto find_page;
1039 desc->error = error;
1040 goto out;
1041 }
1042 goto readpage;
1043 }
1044
1045 out:
1046 ra->prev_pos = prev_index;
1047 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1048 ra->prev_pos |= prev_offset;
1049
1050 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1051 if (filp)
1052 file_accessed(filp);
1053 }
1054 EXPORT_SYMBOL(do_generic_mapping_read);
1055
1056 int file_read_actor(read_descriptor_t *desc, struct page *page,
1057 unsigned long offset, unsigned long size)
1058 {
1059 char *kaddr;
1060 unsigned long left, count = desc->count;
1061
1062 if (size > count)
1063 size = count;
1064
1065 /*
1066 * Faults on the destination of a read are common, so do it before
1067 * taking the kmap.
1068 */
1069 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1070 kaddr = kmap_atomic(page, KM_USER0);
1071 left = __copy_to_user_inatomic(desc->arg.buf,
1072 kaddr + offset, size);
1073 kunmap_atomic(kaddr, KM_USER0);
1074 if (left == 0)
1075 goto success;
1076 }
1077
1078 /* Do it the slow way */
1079 kaddr = kmap(page);
1080 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1081 kunmap(page);
1082
1083 if (left) {
1084 size -= left;
1085 desc->error = -EFAULT;
1086 }
1087 success:
1088 desc->count = count - size;
1089 desc->written += size;
1090 desc->arg.buf += size;
1091 return size;
1092 }
1093
1094 /*
1095 * Performs necessary checks before doing a write
1096 * @iov: io vector request
1097 * @nr_segs: number of segments in the iovec
1098 * @count: number of bytes to write
1099 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1100 *
1101 * Adjust number of segments and amount of bytes to write (nr_segs should be
1102 * properly initialized first). Returns appropriate error code that caller
1103 * should return or zero in case that write should be allowed.
1104 */
1105 int generic_segment_checks(const struct iovec *iov,
1106 unsigned long *nr_segs, size_t *count, int access_flags)
1107 {
1108 unsigned long seg;
1109 size_t cnt = 0;
1110 for (seg = 0; seg < *nr_segs; seg++) {
1111 const struct iovec *iv = &iov[seg];
1112
1113 /*
1114 * If any segment has a negative length, or the cumulative
1115 * length ever wraps negative then return -EINVAL.
1116 */
1117 cnt += iv->iov_len;
1118 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1119 return -EINVAL;
1120 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1121 continue;
1122 if (seg == 0)
1123 return -EFAULT;
1124 *nr_segs = seg;
1125 cnt -= iv->iov_len; /* This segment is no good */
1126 break;
1127 }
1128 *count = cnt;
1129 return 0;
1130 }
1131 EXPORT_SYMBOL(generic_segment_checks);
1132
1133 /**
1134 * generic_file_aio_read - generic filesystem read routine
1135 * @iocb: kernel I/O control block
1136 * @iov: io vector request
1137 * @nr_segs: number of segments in the iovec
1138 * @pos: current file position
1139 *
1140 * This is the "read()" routine for all filesystems
1141 * that can use the page cache directly.
1142 */
1143 ssize_t
1144 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1145 unsigned long nr_segs, loff_t pos)
1146 {
1147 struct file *filp = iocb->ki_filp;
1148 ssize_t retval;
1149 unsigned long seg;
1150 size_t count;
1151 loff_t *ppos = &iocb->ki_pos;
1152
1153 count = 0;
1154 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1155 if (retval)
1156 return retval;
1157
1158 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1159 if (filp->f_flags & O_DIRECT) {
1160 loff_t size;
1161 struct address_space *mapping;
1162 struct inode *inode;
1163
1164 mapping = filp->f_mapping;
1165 inode = mapping->host;
1166 retval = 0;
1167 if (!count)
1168 goto out; /* skip atime */
1169 size = i_size_read(inode);
1170 if (pos < size) {
1171 retval = generic_file_direct_IO(READ, iocb,
1172 iov, pos, nr_segs);
1173 if (retval > 0)
1174 *ppos = pos + retval;
1175 }
1176 if (likely(retval != 0)) {
1177 file_accessed(filp);
1178 goto out;
1179 }
1180 }
1181
1182 retval = 0;
1183 if (count) {
1184 for (seg = 0; seg < nr_segs; seg++) {
1185 read_descriptor_t desc;
1186
1187 desc.written = 0;
1188 desc.arg.buf = iov[seg].iov_base;
1189 desc.count = iov[seg].iov_len;
1190 if (desc.count == 0)
1191 continue;
1192 desc.error = 0;
1193 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1194 retval += desc.written;
1195 if (desc.error) {
1196 retval = retval ?: desc.error;
1197 break;
1198 }
1199 if (desc.count > 0)
1200 break;
1201 }
1202 }
1203 out:
1204 return retval;
1205 }
1206 EXPORT_SYMBOL(generic_file_aio_read);
1207
1208 static ssize_t
1209 do_readahead(struct address_space *mapping, struct file *filp,
1210 pgoff_t index, unsigned long nr)
1211 {
1212 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1213 return -EINVAL;
1214
1215 force_page_cache_readahead(mapping, filp, index,
1216 max_sane_readahead(nr));
1217 return 0;
1218 }
1219
1220 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1221 {
1222 ssize_t ret;
1223 struct file *file;
1224
1225 ret = -EBADF;
1226 file = fget(fd);
1227 if (file) {
1228 if (file->f_mode & FMODE_READ) {
1229 struct address_space *mapping = file->f_mapping;
1230 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1231 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1232 unsigned long len = end - start + 1;
1233 ret = do_readahead(mapping, file, start, len);
1234 }
1235 fput(file);
1236 }
1237 return ret;
1238 }
1239
1240 #ifdef CONFIG_MMU
1241 /**
1242 * page_cache_read - adds requested page to the page cache if not already there
1243 * @file: file to read
1244 * @offset: page index
1245 *
1246 * This adds the requested page to the page cache if it isn't already there,
1247 * and schedules an I/O to read in its contents from disk.
1248 */
1249 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1250 {
1251 struct address_space *mapping = file->f_mapping;
1252 struct page *page;
1253 int ret;
1254
1255 do {
1256 page = page_cache_alloc_cold(mapping);
1257 if (!page)
1258 return -ENOMEM;
1259
1260 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1261 if (ret == 0)
1262 ret = mapping->a_ops->readpage(file, page);
1263 else if (ret == -EEXIST)
1264 ret = 0; /* losing race to add is OK */
1265
1266 page_cache_release(page);
1267
1268 } while (ret == AOP_TRUNCATED_PAGE);
1269
1270 return ret;
1271 }
1272
1273 #define MMAP_LOTSAMISS (100)
1274
1275 /**
1276 * filemap_fault - read in file data for page fault handling
1277 * @vma: vma in which the fault was taken
1278 * @vmf: struct vm_fault containing details of the fault
1279 *
1280 * filemap_fault() is invoked via the vma operations vector for a
1281 * mapped memory region to read in file data during a page fault.
1282 *
1283 * The goto's are kind of ugly, but this streamlines the normal case of having
1284 * it in the page cache, and handles the special cases reasonably without
1285 * having a lot of duplicated code.
1286 */
1287 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1288 {
1289 int error;
1290 struct file *file = vma->vm_file;
1291 struct address_space *mapping = file->f_mapping;
1292 struct file_ra_state *ra = &file->f_ra;
1293 struct inode *inode = mapping->host;
1294 struct page *page;
1295 unsigned long size;
1296 int did_readaround = 0;
1297 int ret = 0;
1298
1299 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1300 if (vmf->pgoff >= size)
1301 goto outside_data_content;
1302
1303 /* If we don't want any read-ahead, don't bother */
1304 if (VM_RandomReadHint(vma))
1305 goto no_cached_page;
1306
1307 /*
1308 * Do we have something in the page cache already?
1309 */
1310 retry_find:
1311 page = find_lock_page(mapping, vmf->pgoff);
1312 /*
1313 * For sequential accesses, we use the generic readahead logic.
1314 */
1315 if (VM_SequentialReadHint(vma)) {
1316 if (!page) {
1317 page_cache_sync_readahead(mapping, ra, file,
1318 vmf->pgoff, 1);
1319 page = find_lock_page(mapping, vmf->pgoff);
1320 if (!page)
1321 goto no_cached_page;
1322 }
1323 if (PageReadahead(page)) {
1324 page_cache_async_readahead(mapping, ra, file, page,
1325 vmf->pgoff, 1);
1326 }
1327 }
1328
1329 if (!page) {
1330 unsigned long ra_pages;
1331
1332 ra->mmap_miss++;
1333
1334 /*
1335 * Do we miss much more than hit in this file? If so,
1336 * stop bothering with read-ahead. It will only hurt.
1337 */
1338 if (ra->mmap_miss > MMAP_LOTSAMISS)
1339 goto no_cached_page;
1340
1341 /*
1342 * To keep the pgmajfault counter straight, we need to
1343 * check did_readaround, as this is an inner loop.
1344 */
1345 if (!did_readaround) {
1346 ret = VM_FAULT_MAJOR;
1347 count_vm_event(PGMAJFAULT);
1348 }
1349 did_readaround = 1;
1350 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1351 if (ra_pages) {
1352 pgoff_t start = 0;
1353
1354 if (vmf->pgoff > ra_pages / 2)
1355 start = vmf->pgoff - ra_pages / 2;
1356 do_page_cache_readahead(mapping, file, start, ra_pages);
1357 }
1358 page = find_lock_page(mapping, vmf->pgoff);
1359 if (!page)
1360 goto no_cached_page;
1361 }
1362
1363 if (!did_readaround)
1364 ra->mmap_miss--;
1365
1366 /*
1367 * We have a locked page in the page cache, now we need to check
1368 * that it's up-to-date. If not, it is going to be due to an error.
1369 */
1370 if (unlikely(!PageUptodate(page)))
1371 goto page_not_uptodate;
1372
1373 /* Must recheck i_size under page lock */
1374 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1375 if (unlikely(vmf->pgoff >= size)) {
1376 unlock_page(page);
1377 page_cache_release(page);
1378 goto outside_data_content;
1379 }
1380
1381 /*
1382 * Found the page and have a reference on it.
1383 */
1384 mark_page_accessed(page);
1385 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1386 vmf->page = page;
1387 return ret | VM_FAULT_LOCKED;
1388
1389 outside_data_content:
1390 /*
1391 * An external ptracer can access pages that normally aren't
1392 * accessible..
1393 */
1394 if (vma->vm_mm == current->mm)
1395 return VM_FAULT_SIGBUS;
1396
1397 /* Fall through to the non-read-ahead case */
1398 no_cached_page:
1399 /*
1400 * We're only likely to ever get here if MADV_RANDOM is in
1401 * effect.
1402 */
1403 error = page_cache_read(file, vmf->pgoff);
1404
1405 /*
1406 * The page we want has now been added to the page cache.
1407 * In the unlikely event that someone removed it in the
1408 * meantime, we'll just come back here and read it again.
1409 */
1410 if (error >= 0)
1411 goto retry_find;
1412
1413 /*
1414 * An error return from page_cache_read can result if the
1415 * system is low on memory, or a problem occurs while trying
1416 * to schedule I/O.
1417 */
1418 if (error == -ENOMEM)
1419 return VM_FAULT_OOM;
1420 return VM_FAULT_SIGBUS;
1421
1422 page_not_uptodate:
1423 /* IO error path */
1424 if (!did_readaround) {
1425 ret = VM_FAULT_MAJOR;
1426 count_vm_event(PGMAJFAULT);
1427 }
1428
1429 /*
1430 * Umm, take care of errors if the page isn't up-to-date.
1431 * Try to re-read it _once_. We do this synchronously,
1432 * because there really aren't any performance issues here
1433 * and we need to check for errors.
1434 */
1435 ClearPageError(page);
1436 error = mapping->a_ops->readpage(file, page);
1437 page_cache_release(page);
1438
1439 if (!error || error == AOP_TRUNCATED_PAGE)
1440 goto retry_find;
1441
1442 /* Things didn't work out. Return zero to tell the mm layer so. */
1443 shrink_readahead_size_eio(file, ra);
1444 return VM_FAULT_SIGBUS;
1445 }
1446 EXPORT_SYMBOL(filemap_fault);
1447
1448 struct vm_operations_struct generic_file_vm_ops = {
1449 .fault = filemap_fault,
1450 };
1451
1452 /* This is used for a general mmap of a disk file */
1453
1454 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1455 {
1456 struct address_space *mapping = file->f_mapping;
1457
1458 if (!mapping->a_ops->readpage)
1459 return -ENOEXEC;
1460 file_accessed(file);
1461 vma->vm_ops = &generic_file_vm_ops;
1462 vma->vm_flags |= VM_CAN_NONLINEAR;
1463 return 0;
1464 }
1465
1466 /*
1467 * This is for filesystems which do not implement ->writepage.
1468 */
1469 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1470 {
1471 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1472 return -EINVAL;
1473 return generic_file_mmap(file, vma);
1474 }
1475 #else
1476 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1477 {
1478 return -ENOSYS;
1479 }
1480 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1481 {
1482 return -ENOSYS;
1483 }
1484 #endif /* CONFIG_MMU */
1485
1486 EXPORT_SYMBOL(generic_file_mmap);
1487 EXPORT_SYMBOL(generic_file_readonly_mmap);
1488
1489 static struct page *__read_cache_page(struct address_space *mapping,
1490 pgoff_t index,
1491 int (*filler)(void *,struct page*),
1492 void *data)
1493 {
1494 struct page *page;
1495 int err;
1496 repeat:
1497 page = find_get_page(mapping, index);
1498 if (!page) {
1499 page = page_cache_alloc_cold(mapping);
1500 if (!page)
1501 return ERR_PTR(-ENOMEM);
1502 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1503 if (unlikely(err)) {
1504 page_cache_release(page);
1505 if (err == -EEXIST)
1506 goto repeat;
1507 /* Presumably ENOMEM for radix tree node */
1508 return ERR_PTR(err);
1509 }
1510 err = filler(data, page);
1511 if (err < 0) {
1512 page_cache_release(page);
1513 page = ERR_PTR(err);
1514 }
1515 }
1516 return page;
1517 }
1518
1519 /*
1520 * Same as read_cache_page, but don't wait for page to become unlocked
1521 * after submitting it to the filler.
1522 */
1523 struct page *read_cache_page_async(struct address_space *mapping,
1524 pgoff_t index,
1525 int (*filler)(void *,struct page*),
1526 void *data)
1527 {
1528 struct page *page;
1529 int err;
1530
1531 retry:
1532 page = __read_cache_page(mapping, index, filler, data);
1533 if (IS_ERR(page))
1534 return page;
1535 if (PageUptodate(page))
1536 goto out;
1537
1538 lock_page(page);
1539 if (!page->mapping) {
1540 unlock_page(page);
1541 page_cache_release(page);
1542 goto retry;
1543 }
1544 if (PageUptodate(page)) {
1545 unlock_page(page);
1546 goto out;
1547 }
1548 err = filler(data, page);
1549 if (err < 0) {
1550 page_cache_release(page);
1551 return ERR_PTR(err);
1552 }
1553 out:
1554 mark_page_accessed(page);
1555 return page;
1556 }
1557 EXPORT_SYMBOL(read_cache_page_async);
1558
1559 /**
1560 * read_cache_page - read into page cache, fill it if needed
1561 * @mapping: the page's address_space
1562 * @index: the page index
1563 * @filler: function to perform the read
1564 * @data: destination for read data
1565 *
1566 * Read into the page cache. If a page already exists, and PageUptodate() is
1567 * not set, try to fill the page then wait for it to become unlocked.
1568 *
1569 * If the page does not get brought uptodate, return -EIO.
1570 */
1571 struct page *read_cache_page(struct address_space *mapping,
1572 pgoff_t index,
1573 int (*filler)(void *,struct page*),
1574 void *data)
1575 {
1576 struct page *page;
1577
1578 page = read_cache_page_async(mapping, index, filler, data);
1579 if (IS_ERR(page))
1580 goto out;
1581 wait_on_page_locked(page);
1582 if (!PageUptodate(page)) {
1583 page_cache_release(page);
1584 page = ERR_PTR(-EIO);
1585 }
1586 out:
1587 return page;
1588 }
1589 EXPORT_SYMBOL(read_cache_page);
1590
1591 /*
1592 * The logic we want is
1593 *
1594 * if suid or (sgid and xgrp)
1595 * remove privs
1596 */
1597 int should_remove_suid(struct dentry *dentry)
1598 {
1599 mode_t mode = dentry->d_inode->i_mode;
1600 int kill = 0;
1601
1602 /* suid always must be killed */
1603 if (unlikely(mode & S_ISUID))
1604 kill = ATTR_KILL_SUID;
1605
1606 /*
1607 * sgid without any exec bits is just a mandatory locking mark; leave
1608 * it alone. If some exec bits are set, it's a real sgid; kill it.
1609 */
1610 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1611 kill |= ATTR_KILL_SGID;
1612
1613 if (unlikely(kill && !capable(CAP_FSETID)))
1614 return kill;
1615
1616 return 0;
1617 }
1618 EXPORT_SYMBOL(should_remove_suid);
1619
1620 int __remove_suid(struct dentry *dentry, int kill)
1621 {
1622 struct iattr newattrs;
1623
1624 newattrs.ia_valid = ATTR_FORCE | kill;
1625 return notify_change(dentry, &newattrs);
1626 }
1627
1628 int remove_suid(struct dentry *dentry)
1629 {
1630 int killsuid = should_remove_suid(dentry);
1631 int killpriv = security_inode_need_killpriv(dentry);
1632 int error = 0;
1633
1634 if (killpriv < 0)
1635 return killpriv;
1636 if (killpriv)
1637 error = security_inode_killpriv(dentry);
1638 if (!error && killsuid)
1639 error = __remove_suid(dentry, killsuid);
1640
1641 return error;
1642 }
1643 EXPORT_SYMBOL(remove_suid);
1644
1645 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1646 const struct iovec *iov, size_t base, size_t bytes)
1647 {
1648 size_t copied = 0, left = 0;
1649
1650 while (bytes) {
1651 char __user *buf = iov->iov_base + base;
1652 int copy = min(bytes, iov->iov_len - base);
1653
1654 base = 0;
1655 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1656 copied += copy;
1657 bytes -= copy;
1658 vaddr += copy;
1659 iov++;
1660
1661 if (unlikely(left))
1662 break;
1663 }
1664 return copied - left;
1665 }
1666
1667 /*
1668 * Copy as much as we can into the page and return the number of bytes which
1669 * were sucessfully copied. If a fault is encountered then return the number of
1670 * bytes which were copied.
1671 */
1672 size_t iov_iter_copy_from_user_atomic(struct page *page,
1673 struct iov_iter *i, unsigned long offset, size_t bytes)
1674 {
1675 char *kaddr;
1676 size_t copied;
1677
1678 BUG_ON(!in_atomic());
1679 kaddr = kmap_atomic(page, KM_USER0);
1680 if (likely(i->nr_segs == 1)) {
1681 int left;
1682 char __user *buf = i->iov->iov_base + i->iov_offset;
1683 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1684 buf, bytes);
1685 copied = bytes - left;
1686 } else {
1687 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1688 i->iov, i->iov_offset, bytes);
1689 }
1690 kunmap_atomic(kaddr, KM_USER0);
1691
1692 return copied;
1693 }
1694 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1695
1696 /*
1697 * This has the same sideeffects and return value as
1698 * iov_iter_copy_from_user_atomic().
1699 * The difference is that it attempts to resolve faults.
1700 * Page must not be locked.
1701 */
1702 size_t iov_iter_copy_from_user(struct page *page,
1703 struct iov_iter *i, unsigned long offset, size_t bytes)
1704 {
1705 char *kaddr;
1706 size_t copied;
1707
1708 kaddr = kmap(page);
1709 if (likely(i->nr_segs == 1)) {
1710 int left;
1711 char __user *buf = i->iov->iov_base + i->iov_offset;
1712 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1713 copied = bytes - left;
1714 } else {
1715 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1716 i->iov, i->iov_offset, bytes);
1717 }
1718 kunmap(page);
1719 return copied;
1720 }
1721 EXPORT_SYMBOL(iov_iter_copy_from_user);
1722
1723 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1724 {
1725 if (likely(i->nr_segs == 1)) {
1726 i->iov_offset += bytes;
1727 } else {
1728 const struct iovec *iov = i->iov;
1729 size_t base = i->iov_offset;
1730
1731 while (bytes) {
1732 int copy = min(bytes, iov->iov_len - base);
1733
1734 bytes -= copy;
1735 base += copy;
1736 if (iov->iov_len == base) {
1737 iov++;
1738 base = 0;
1739 }
1740 }
1741 i->iov = iov;
1742 i->iov_offset = base;
1743 }
1744 }
1745
1746 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1747 {
1748 BUG_ON(i->count < bytes);
1749
1750 __iov_iter_advance_iov(i, bytes);
1751 i->count -= bytes;
1752 }
1753 EXPORT_SYMBOL(iov_iter_advance);
1754
1755 /*
1756 * Fault in the first iovec of the given iov_iter, to a maximum length
1757 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1758 * accessed (ie. because it is an invalid address).
1759 *
1760 * writev-intensive code may want this to prefault several iovecs -- that
1761 * would be possible (callers must not rely on the fact that _only_ the
1762 * first iovec will be faulted with the current implementation).
1763 */
1764 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1765 {
1766 char __user *buf = i->iov->iov_base + i->iov_offset;
1767 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1768 return fault_in_pages_readable(buf, bytes);
1769 }
1770 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1771
1772 /*
1773 * Return the count of just the current iov_iter segment.
1774 */
1775 size_t iov_iter_single_seg_count(struct iov_iter *i)
1776 {
1777 const struct iovec *iov = i->iov;
1778 if (i->nr_segs == 1)
1779 return i->count;
1780 else
1781 return min(i->count, iov->iov_len - i->iov_offset);
1782 }
1783 EXPORT_SYMBOL(iov_iter_single_seg_count);
1784
1785 /*
1786 * Performs necessary checks before doing a write
1787 *
1788 * Can adjust writing position or amount of bytes to write.
1789 * Returns appropriate error code that caller should return or
1790 * zero in case that write should be allowed.
1791 */
1792 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1793 {
1794 struct inode *inode = file->f_mapping->host;
1795 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1796
1797 if (unlikely(*pos < 0))
1798 return -EINVAL;
1799
1800 if (!isblk) {
1801 /* FIXME: this is for backwards compatibility with 2.4 */
1802 if (file->f_flags & O_APPEND)
1803 *pos = i_size_read(inode);
1804
1805 if (limit != RLIM_INFINITY) {
1806 if (*pos >= limit) {
1807 send_sig(SIGXFSZ, current, 0);
1808 return -EFBIG;
1809 }
1810 if (*count > limit - (typeof(limit))*pos) {
1811 *count = limit - (typeof(limit))*pos;
1812 }
1813 }
1814 }
1815
1816 /*
1817 * LFS rule
1818 */
1819 if (unlikely(*pos + *count > MAX_NON_LFS &&
1820 !(file->f_flags & O_LARGEFILE))) {
1821 if (*pos >= MAX_NON_LFS) {
1822 return -EFBIG;
1823 }
1824 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1825 *count = MAX_NON_LFS - (unsigned long)*pos;
1826 }
1827 }
1828
1829 /*
1830 * Are we about to exceed the fs block limit ?
1831 *
1832 * If we have written data it becomes a short write. If we have
1833 * exceeded without writing data we send a signal and return EFBIG.
1834 * Linus frestrict idea will clean these up nicely..
1835 */
1836 if (likely(!isblk)) {
1837 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1838 if (*count || *pos > inode->i_sb->s_maxbytes) {
1839 return -EFBIG;
1840 }
1841 /* zero-length writes at ->s_maxbytes are OK */
1842 }
1843
1844 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1845 *count = inode->i_sb->s_maxbytes - *pos;
1846 } else {
1847 #ifdef CONFIG_BLOCK
1848 loff_t isize;
1849 if (bdev_read_only(I_BDEV(inode)))
1850 return -EPERM;
1851 isize = i_size_read(inode);
1852 if (*pos >= isize) {
1853 if (*count || *pos > isize)
1854 return -ENOSPC;
1855 }
1856
1857 if (*pos + *count > isize)
1858 *count = isize - *pos;
1859 #else
1860 return -EPERM;
1861 #endif
1862 }
1863 return 0;
1864 }
1865 EXPORT_SYMBOL(generic_write_checks);
1866
1867 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1868 loff_t pos, unsigned len, unsigned flags,
1869 struct page **pagep, void **fsdata)
1870 {
1871 const struct address_space_operations *aops = mapping->a_ops;
1872
1873 if (aops->write_begin) {
1874 return aops->write_begin(file, mapping, pos, len, flags,
1875 pagep, fsdata);
1876 } else {
1877 int ret;
1878 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1879 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1880 struct inode *inode = mapping->host;
1881 struct page *page;
1882 again:
1883 page = __grab_cache_page(mapping, index);
1884 *pagep = page;
1885 if (!page)
1886 return -ENOMEM;
1887
1888 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1889 /*
1890 * There is no way to resolve a short write situation
1891 * for a !Uptodate page (except by double copying in
1892 * the caller done by generic_perform_write_2copy).
1893 *
1894 * Instead, we have to bring it uptodate here.
1895 */
1896 ret = aops->readpage(file, page);
1897 page_cache_release(page);
1898 if (ret) {
1899 if (ret == AOP_TRUNCATED_PAGE)
1900 goto again;
1901 return ret;
1902 }
1903 goto again;
1904 }
1905
1906 ret = aops->prepare_write(file, page, offset, offset+len);
1907 if (ret) {
1908 unlock_page(page);
1909 page_cache_release(page);
1910 if (pos + len > inode->i_size)
1911 vmtruncate(inode, inode->i_size);
1912 }
1913 return ret;
1914 }
1915 }
1916 EXPORT_SYMBOL(pagecache_write_begin);
1917
1918 int pagecache_write_end(struct file *file, struct address_space *mapping,
1919 loff_t pos, unsigned len, unsigned copied,
1920 struct page *page, void *fsdata)
1921 {
1922 const struct address_space_operations *aops = mapping->a_ops;
1923 int ret;
1924
1925 if (aops->write_end) {
1926 mark_page_accessed(page);
1927 ret = aops->write_end(file, mapping, pos, len, copied,
1928 page, fsdata);
1929 } else {
1930 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1931 struct inode *inode = mapping->host;
1932
1933 flush_dcache_page(page);
1934 ret = aops->commit_write(file, page, offset, offset+len);
1935 unlock_page(page);
1936 mark_page_accessed(page);
1937 page_cache_release(page);
1938
1939 if (ret < 0) {
1940 if (pos + len > inode->i_size)
1941 vmtruncate(inode, inode->i_size);
1942 } else if (ret > 0)
1943 ret = min_t(size_t, copied, ret);
1944 else
1945 ret = copied;
1946 }
1947
1948 return ret;
1949 }
1950 EXPORT_SYMBOL(pagecache_write_end);
1951
1952 ssize_t
1953 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1954 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1955 size_t count, size_t ocount)
1956 {
1957 struct file *file = iocb->ki_filp;
1958 struct address_space *mapping = file->f_mapping;
1959 struct inode *inode = mapping->host;
1960 ssize_t written;
1961
1962 if (count != ocount)
1963 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1964
1965 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1966 if (written > 0) {
1967 loff_t end = pos + written;
1968 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1969 i_size_write(inode, end);
1970 mark_inode_dirty(inode);
1971 }
1972 *ppos = end;
1973 }
1974
1975 /*
1976 * Sync the fs metadata but not the minor inode changes and
1977 * of course not the data as we did direct DMA for the IO.
1978 * i_mutex is held, which protects generic_osync_inode() from
1979 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1980 */
1981 if ((written >= 0 || written == -EIOCBQUEUED) &&
1982 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1983 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1984 if (err < 0)
1985 written = err;
1986 }
1987 return written;
1988 }
1989 EXPORT_SYMBOL(generic_file_direct_write);
1990
1991 /*
1992 * Find or create a page at the given pagecache position. Return the locked
1993 * page. This function is specifically for buffered writes.
1994 */
1995 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
1996 {
1997 int status;
1998 struct page *page;
1999 repeat:
2000 page = find_lock_page(mapping, index);
2001 if (likely(page))
2002 return page;
2003
2004 page = page_cache_alloc(mapping);
2005 if (!page)
2006 return NULL;
2007 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2008 if (unlikely(status)) {
2009 page_cache_release(page);
2010 if (status == -EEXIST)
2011 goto repeat;
2012 return NULL;
2013 }
2014 return page;
2015 }
2016 EXPORT_SYMBOL(__grab_cache_page);
2017
2018 static ssize_t generic_perform_write_2copy(struct file *file,
2019 struct iov_iter *i, loff_t pos)
2020 {
2021 struct address_space *mapping = file->f_mapping;
2022 const struct address_space_operations *a_ops = mapping->a_ops;
2023 struct inode *inode = mapping->host;
2024 long status = 0;
2025 ssize_t written = 0;
2026
2027 do {
2028 struct page *src_page;
2029 struct page *page;
2030 pgoff_t index; /* Pagecache index for current page */
2031 unsigned long offset; /* Offset into pagecache page */
2032 unsigned long bytes; /* Bytes to write to page */
2033 size_t copied; /* Bytes copied from user */
2034
2035 offset = (pos & (PAGE_CACHE_SIZE - 1));
2036 index = pos >> PAGE_CACHE_SHIFT;
2037 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2038 iov_iter_count(i));
2039
2040 /*
2041 * a non-NULL src_page indicates that we're doing the
2042 * copy via get_user_pages and kmap.
2043 */
2044 src_page = NULL;
2045
2046 /*
2047 * Bring in the user page that we will copy from _first_.
2048 * Otherwise there's a nasty deadlock on copying from the
2049 * same page as we're writing to, without it being marked
2050 * up-to-date.
2051 *
2052 * Not only is this an optimisation, but it is also required
2053 * to check that the address is actually valid, when atomic
2054 * usercopies are used, below.
2055 */
2056 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2057 status = -EFAULT;
2058 break;
2059 }
2060
2061 page = __grab_cache_page(mapping, index);
2062 if (!page) {
2063 status = -ENOMEM;
2064 break;
2065 }
2066
2067 /*
2068 * non-uptodate pages cannot cope with short copies, and we
2069 * cannot take a pagefault with the destination page locked.
2070 * So pin the source page to copy it.
2071 */
2072 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2073 unlock_page(page);
2074
2075 src_page = alloc_page(GFP_KERNEL);
2076 if (!src_page) {
2077 page_cache_release(page);
2078 status = -ENOMEM;
2079 break;
2080 }
2081
2082 /*
2083 * Cannot get_user_pages with a page locked for the
2084 * same reason as we can't take a page fault with a
2085 * page locked (as explained below).
2086 */
2087 copied = iov_iter_copy_from_user(src_page, i,
2088 offset, bytes);
2089 if (unlikely(copied == 0)) {
2090 status = -EFAULT;
2091 page_cache_release(page);
2092 page_cache_release(src_page);
2093 break;
2094 }
2095 bytes = copied;
2096
2097 lock_page(page);
2098 /*
2099 * Can't handle the page going uptodate here, because
2100 * that means we would use non-atomic usercopies, which
2101 * zero out the tail of the page, which can cause
2102 * zeroes to become transiently visible. We could just
2103 * use a non-zeroing copy, but the APIs aren't too
2104 * consistent.
2105 */
2106 if (unlikely(!page->mapping || PageUptodate(page))) {
2107 unlock_page(page);
2108 page_cache_release(page);
2109 page_cache_release(src_page);
2110 continue;
2111 }
2112 }
2113
2114 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2115 if (unlikely(status))
2116 goto fs_write_aop_error;
2117
2118 if (!src_page) {
2119 /*
2120 * Must not enter the pagefault handler here, because
2121 * we hold the page lock, so we might recursively
2122 * deadlock on the same lock, or get an ABBA deadlock
2123 * against a different lock, or against the mmap_sem
2124 * (which nests outside the page lock). So increment
2125 * preempt count, and use _atomic usercopies.
2126 *
2127 * The page is uptodate so we are OK to encounter a
2128 * short copy: if unmodified parts of the page are
2129 * marked dirty and written out to disk, it doesn't
2130 * really matter.
2131 */
2132 pagefault_disable();
2133 copied = iov_iter_copy_from_user_atomic(page, i,
2134 offset, bytes);
2135 pagefault_enable();
2136 } else {
2137 void *src, *dst;
2138 src = kmap_atomic(src_page, KM_USER0);
2139 dst = kmap_atomic(page, KM_USER1);
2140 memcpy(dst + offset, src + offset, bytes);
2141 kunmap_atomic(dst, KM_USER1);
2142 kunmap_atomic(src, KM_USER0);
2143 copied = bytes;
2144 }
2145 flush_dcache_page(page);
2146
2147 status = a_ops->commit_write(file, page, offset, offset+bytes);
2148 if (unlikely(status < 0))
2149 goto fs_write_aop_error;
2150 if (unlikely(status > 0)) /* filesystem did partial write */
2151 copied = min_t(size_t, copied, status);
2152
2153 unlock_page(page);
2154 mark_page_accessed(page);
2155 page_cache_release(page);
2156 if (src_page)
2157 page_cache_release(src_page);
2158
2159 iov_iter_advance(i, copied);
2160 pos += copied;
2161 written += copied;
2162
2163 balance_dirty_pages_ratelimited(mapping);
2164 cond_resched();
2165 continue;
2166
2167 fs_write_aop_error:
2168 unlock_page(page);
2169 page_cache_release(page);
2170 if (src_page)
2171 page_cache_release(src_page);
2172
2173 /*
2174 * prepare_write() may have instantiated a few blocks
2175 * outside i_size. Trim these off again. Don't need
2176 * i_size_read because we hold i_mutex.
2177 */
2178 if (pos + bytes > inode->i_size)
2179 vmtruncate(inode, inode->i_size);
2180 break;
2181 } while (iov_iter_count(i));
2182
2183 return written ? written : status;
2184 }
2185
2186 static ssize_t generic_perform_write(struct file *file,
2187 struct iov_iter *i, loff_t pos)
2188 {
2189 struct address_space *mapping = file->f_mapping;
2190 const struct address_space_operations *a_ops = mapping->a_ops;
2191 long status = 0;
2192 ssize_t written = 0;
2193 unsigned int flags = 0;
2194
2195 /*
2196 * Copies from kernel address space cannot fail (NFSD is a big user).
2197 */
2198 if (segment_eq(get_fs(), KERNEL_DS))
2199 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2200
2201 do {
2202 struct page *page;
2203 pgoff_t index; /* Pagecache index for current page */
2204 unsigned long offset; /* Offset into pagecache page */
2205 unsigned long bytes; /* Bytes to write to page */
2206 size_t copied; /* Bytes copied from user */
2207 void *fsdata;
2208
2209 offset = (pos & (PAGE_CACHE_SIZE - 1));
2210 index = pos >> PAGE_CACHE_SHIFT;
2211 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2212 iov_iter_count(i));
2213
2214 again:
2215
2216 /*
2217 * Bring in the user page that we will copy from _first_.
2218 * Otherwise there's a nasty deadlock on copying from the
2219 * same page as we're writing to, without it being marked
2220 * up-to-date.
2221 *
2222 * Not only is this an optimisation, but it is also required
2223 * to check that the address is actually valid, when atomic
2224 * usercopies are used, below.
2225 */
2226 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2227 status = -EFAULT;
2228 break;
2229 }
2230
2231 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2232 &page, &fsdata);
2233 if (unlikely(status))
2234 break;
2235
2236 pagefault_disable();
2237 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2238 pagefault_enable();
2239 flush_dcache_page(page);
2240
2241 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2242 page, fsdata);
2243 if (unlikely(status < 0))
2244 break;
2245 copied = status;
2246
2247 cond_resched();
2248
2249 if (unlikely(copied == 0)) {
2250 /*
2251 * If we were unable to copy any data at all, we must
2252 * fall back to a single segment length write.
2253 *
2254 * If we didn't fallback here, we could livelock
2255 * because not all segments in the iov can be copied at
2256 * once without a pagefault.
2257 */
2258 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2259 iov_iter_single_seg_count(i));
2260 goto again;
2261 }
2262 iov_iter_advance(i, copied);
2263 pos += copied;
2264 written += copied;
2265
2266 balance_dirty_pages_ratelimited(mapping);
2267
2268 } while (iov_iter_count(i));
2269
2270 return written ? written : status;
2271 }
2272
2273 ssize_t
2274 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2275 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2276 size_t count, ssize_t written)
2277 {
2278 struct file *file = iocb->ki_filp;
2279 struct address_space *mapping = file->f_mapping;
2280 const struct address_space_operations *a_ops = mapping->a_ops;
2281 struct inode *inode = mapping->host;
2282 ssize_t status;
2283 struct iov_iter i;
2284
2285 iov_iter_init(&i, iov, nr_segs, count, written);
2286 if (a_ops->write_begin)
2287 status = generic_perform_write(file, &i, pos);
2288 else
2289 status = generic_perform_write_2copy(file, &i, pos);
2290
2291 if (likely(status >= 0)) {
2292 written += status;
2293 *ppos = pos + status;
2294
2295 /*
2296 * For now, when the user asks for O_SYNC, we'll actually give
2297 * O_DSYNC
2298 */
2299 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2300 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2301 status = generic_osync_inode(inode, mapping,
2302 OSYNC_METADATA|OSYNC_DATA);
2303 }
2304 }
2305
2306 /*
2307 * If we get here for O_DIRECT writes then we must have fallen through
2308 * to buffered writes (block instantiation inside i_size). So we sync
2309 * the file data here, to try to honour O_DIRECT expectations.
2310 */
2311 if (unlikely(file->f_flags & O_DIRECT) && written)
2312 status = filemap_write_and_wait(mapping);
2313
2314 return written ? written : status;
2315 }
2316 EXPORT_SYMBOL(generic_file_buffered_write);
2317
2318 static ssize_t
2319 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2320 unsigned long nr_segs, loff_t *ppos)
2321 {
2322 struct file *file = iocb->ki_filp;
2323 struct address_space * mapping = file->f_mapping;
2324 size_t ocount; /* original count */
2325 size_t count; /* after file limit checks */
2326 struct inode *inode = mapping->host;
2327 loff_t pos;
2328 ssize_t written;
2329 ssize_t err;
2330
2331 ocount = 0;
2332 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2333 if (err)
2334 return err;
2335
2336 count = ocount;
2337 pos = *ppos;
2338
2339 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2340
2341 /* We can write back this queue in page reclaim */
2342 current->backing_dev_info = mapping->backing_dev_info;
2343 written = 0;
2344
2345 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2346 if (err)
2347 goto out;
2348
2349 if (count == 0)
2350 goto out;
2351
2352 err = remove_suid(file->f_path.dentry);
2353 if (err)
2354 goto out;
2355
2356 file_update_time(file);
2357
2358 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2359 if (unlikely(file->f_flags & O_DIRECT)) {
2360 loff_t endbyte;
2361 ssize_t written_buffered;
2362
2363 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2364 ppos, count, ocount);
2365 if (written < 0 || written == count)
2366 goto out;
2367 /*
2368 * direct-io write to a hole: fall through to buffered I/O
2369 * for completing the rest of the request.
2370 */
2371 pos += written;
2372 count -= written;
2373 written_buffered = generic_file_buffered_write(iocb, iov,
2374 nr_segs, pos, ppos, count,
2375 written);
2376 /*
2377 * If generic_file_buffered_write() retuned a synchronous error
2378 * then we want to return the number of bytes which were
2379 * direct-written, or the error code if that was zero. Note
2380 * that this differs from normal direct-io semantics, which
2381 * will return -EFOO even if some bytes were written.
2382 */
2383 if (written_buffered < 0) {
2384 err = written_buffered;
2385 goto out;
2386 }
2387
2388 /*
2389 * We need to ensure that the page cache pages are written to
2390 * disk and invalidated to preserve the expected O_DIRECT
2391 * semantics.
2392 */
2393 endbyte = pos + written_buffered - written - 1;
2394 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2395 SYNC_FILE_RANGE_WAIT_BEFORE|
2396 SYNC_FILE_RANGE_WRITE|
2397 SYNC_FILE_RANGE_WAIT_AFTER);
2398 if (err == 0) {
2399 written = written_buffered;
2400 invalidate_mapping_pages(mapping,
2401 pos >> PAGE_CACHE_SHIFT,
2402 endbyte >> PAGE_CACHE_SHIFT);
2403 } else {
2404 /*
2405 * We don't know how much we wrote, so just return
2406 * the number of bytes which were direct-written
2407 */
2408 }
2409 } else {
2410 written = generic_file_buffered_write(iocb, iov, nr_segs,
2411 pos, ppos, count, written);
2412 }
2413 out:
2414 current->backing_dev_info = NULL;
2415 return written ? written : err;
2416 }
2417
2418 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2419 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2420 {
2421 struct file *file = iocb->ki_filp;
2422 struct address_space *mapping = file->f_mapping;
2423 struct inode *inode = mapping->host;
2424 ssize_t ret;
2425
2426 BUG_ON(iocb->ki_pos != pos);
2427
2428 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2429 &iocb->ki_pos);
2430
2431 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2432 ssize_t err;
2433
2434 err = sync_page_range_nolock(inode, mapping, pos, ret);
2435 if (err < 0)
2436 ret = err;
2437 }
2438 return ret;
2439 }
2440 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2441
2442 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2443 unsigned long nr_segs, loff_t pos)
2444 {
2445 struct file *file = iocb->ki_filp;
2446 struct address_space *mapping = file->f_mapping;
2447 struct inode *inode = mapping->host;
2448 ssize_t ret;
2449
2450 BUG_ON(iocb->ki_pos != pos);
2451
2452 mutex_lock(&inode->i_mutex);
2453 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2454 &iocb->ki_pos);
2455 mutex_unlock(&inode->i_mutex);
2456
2457 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2458 ssize_t err;
2459
2460 err = sync_page_range(inode, mapping, pos, ret);
2461 if (err < 0)
2462 ret = err;
2463 }
2464 return ret;
2465 }
2466 EXPORT_SYMBOL(generic_file_aio_write);
2467
2468 /*
2469 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2470 * went wrong during pagecache shootdown.
2471 */
2472 static ssize_t
2473 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2474 loff_t offset, unsigned long nr_segs)
2475 {
2476 struct file *file = iocb->ki_filp;
2477 struct address_space *mapping = file->f_mapping;
2478 ssize_t retval;
2479 size_t write_len;
2480 pgoff_t end = 0; /* silence gcc */
2481
2482 /*
2483 * If it's a write, unmap all mmappings of the file up-front. This
2484 * will cause any pte dirty bits to be propagated into the pageframes
2485 * for the subsequent filemap_write_and_wait().
2486 */
2487 if (rw == WRITE) {
2488 write_len = iov_length(iov, nr_segs);
2489 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2490 if (mapping_mapped(mapping))
2491 unmap_mapping_range(mapping, offset, write_len, 0);
2492 }
2493
2494 retval = filemap_write_and_wait(mapping);
2495 if (retval)
2496 goto out;
2497
2498 /*
2499 * After a write we want buffered reads to be sure to go to disk to get
2500 * the new data. We invalidate clean cached page from the region we're
2501 * about to write. We do this *before* the write so that we can return
2502 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2503 */
2504 if (rw == WRITE && mapping->nrpages) {
2505 retval = invalidate_inode_pages2_range(mapping,
2506 offset >> PAGE_CACHE_SHIFT, end);
2507 if (retval)
2508 goto out;
2509 }
2510
2511 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2512 if (retval)
2513 goto out;
2514
2515 /*
2516 * Finally, try again to invalidate clean pages which might have been
2517 * faulted in by get_user_pages() if the source of the write was an
2518 * mmap()ed region of the file we're writing. That's a pretty crazy
2519 * thing to do, so we don't support it 100%. If this invalidation
2520 * fails and we have -EIOCBQUEUED we ignore the failure.
2521 */
2522 if (rw == WRITE && mapping->nrpages) {
2523 int err = invalidate_inode_pages2_range(mapping,
2524 offset >> PAGE_CACHE_SHIFT, end);
2525 if (err && retval >= 0)
2526 retval = err;
2527 }
2528 out:
2529 return retval;
2530 }
2531
2532 /**
2533 * try_to_release_page() - release old fs-specific metadata on a page
2534 *
2535 * @page: the page which the kernel is trying to free
2536 * @gfp_mask: memory allocation flags (and I/O mode)
2537 *
2538 * The address_space is to try to release any data against the page
2539 * (presumably at page->private). If the release was successful, return `1'.
2540 * Otherwise return zero.
2541 *
2542 * The @gfp_mask argument specifies whether I/O may be performed to release
2543 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2544 *
2545 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2546 */
2547 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2548 {
2549 struct address_space * const mapping = page->mapping;
2550
2551 BUG_ON(!PageLocked(page));
2552 if (PageWriteback(page))
2553 return 0;
2554
2555 if (mapping && mapping->a_ops->releasepage)
2556 return mapping->a_ops->releasepage(page, gfp_mask);
2557 return try_to_free_buffers(page);
2558 }
2559
2560 EXPORT_SYMBOL(try_to_release_page);
This page took 0.080396 seconds and 6 git commands to generate.