Merge tag 'hwmon-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/groeck...
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39 unsigned long hugepages_treat_as_movable;
40
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
44
45 __initdata LIST_HEAD(huge_boot_pages);
46
47 /* for command line parsing */
48 static struct hstate * __initdata parsed_hstate;
49 static unsigned long __initdata default_hstate_max_huge_pages;
50 static unsigned long __initdata default_hstate_size;
51
52 /*
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
55 */
56 DEFINE_SPINLOCK(hugetlb_lock);
57
58 /*
59 * Serializes faults on the same logical page. This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 */
62 static int num_fault_mutexes;
63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66 {
67 bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69 spin_unlock(&spool->lock);
70
71 /* If no pages are used, and no other handles to the subpool
72 * remain, free the subpool the subpool remain */
73 if (free)
74 kfree(spool);
75 }
76
77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78 {
79 struct hugepage_subpool *spool;
80
81 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82 if (!spool)
83 return NULL;
84
85 spin_lock_init(&spool->lock);
86 spool->count = 1;
87 spool->max_hpages = nr_blocks;
88 spool->used_hpages = 0;
89
90 return spool;
91 }
92
93 void hugepage_put_subpool(struct hugepage_subpool *spool)
94 {
95 spin_lock(&spool->lock);
96 BUG_ON(!spool->count);
97 spool->count--;
98 unlock_or_release_subpool(spool);
99 }
100
101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102 long delta)
103 {
104 int ret = 0;
105
106 if (!spool)
107 return 0;
108
109 spin_lock(&spool->lock);
110 if ((spool->used_hpages + delta) <= spool->max_hpages) {
111 spool->used_hpages += delta;
112 } else {
113 ret = -ENOMEM;
114 }
115 spin_unlock(&spool->lock);
116
117 return ret;
118 }
119
120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121 long delta)
122 {
123 if (!spool)
124 return;
125
126 spin_lock(&spool->lock);
127 spool->used_hpages -= delta;
128 /* If hugetlbfs_put_super couldn't free spool due to
129 * an outstanding quota reference, free it now. */
130 unlock_or_release_subpool(spool);
131 }
132
133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134 {
135 return HUGETLBFS_SB(inode->i_sb)->spool;
136 }
137
138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139 {
140 return subpool_inode(file_inode(vma->vm_file));
141 }
142
143 /*
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 * across the pages in a mapping.
146 *
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
149 */
150 struct file_region {
151 struct list_head link;
152 long from;
153 long to;
154 };
155
156 static long region_add(struct resv_map *resv, long f, long t)
157 {
158 struct list_head *head = &resv->regions;
159 struct file_region *rg, *nrg, *trg;
160
161 spin_lock(&resv->lock);
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (f <= rg->to)
165 break;
166
167 /* Round our left edge to the current segment if it encloses us. */
168 if (f > rg->from)
169 f = rg->from;
170
171 /* Check for and consume any regions we now overlap with. */
172 nrg = rg;
173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174 if (&rg->link == head)
175 break;
176 if (rg->from > t)
177 break;
178
179 /* If this area reaches higher then extend our area to
180 * include it completely. If this is not the first area
181 * which we intend to reuse, free it. */
182 if (rg->to > t)
183 t = rg->to;
184 if (rg != nrg) {
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 }
189 nrg->from = f;
190 nrg->to = t;
191 spin_unlock(&resv->lock);
192 return 0;
193 }
194
195 static long region_chg(struct resv_map *resv, long f, long t)
196 {
197 struct list_head *head = &resv->regions;
198 struct file_region *rg, *nrg = NULL;
199 long chg = 0;
200
201 retry:
202 spin_lock(&resv->lock);
203 /* Locate the region we are before or in. */
204 list_for_each_entry(rg, head, link)
205 if (f <= rg->to)
206 break;
207
208 /* If we are below the current region then a new region is required.
209 * Subtle, allocate a new region at the position but make it zero
210 * size such that we can guarantee to record the reservation. */
211 if (&rg->link == head || t < rg->from) {
212 if (!nrg) {
213 spin_unlock(&resv->lock);
214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215 if (!nrg)
216 return -ENOMEM;
217
218 nrg->from = f;
219 nrg->to = f;
220 INIT_LIST_HEAD(&nrg->link);
221 goto retry;
222 }
223
224 list_add(&nrg->link, rg->link.prev);
225 chg = t - f;
226 goto out_nrg;
227 }
228
229 /* Round our left edge to the current segment if it encloses us. */
230 if (f > rg->from)
231 f = rg->from;
232 chg = t - f;
233
234 /* Check for and consume any regions we now overlap with. */
235 list_for_each_entry(rg, rg->link.prev, link) {
236 if (&rg->link == head)
237 break;
238 if (rg->from > t)
239 goto out;
240
241 /* We overlap with this area, if it extends further than
242 * us then we must extend ourselves. Account for its
243 * existing reservation. */
244 if (rg->to > t) {
245 chg += rg->to - t;
246 t = rg->to;
247 }
248 chg -= rg->to - rg->from;
249 }
250
251 out:
252 spin_unlock(&resv->lock);
253 /* We already know we raced and no longer need the new region */
254 kfree(nrg);
255 return chg;
256 out_nrg:
257 spin_unlock(&resv->lock);
258 return chg;
259 }
260
261 static long region_truncate(struct resv_map *resv, long end)
262 {
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *trg;
265 long chg = 0;
266
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (end <= rg->to)
271 break;
272 if (&rg->link == head)
273 goto out;
274
275 /* If we are in the middle of a region then adjust it. */
276 if (end > rg->from) {
277 chg = rg->to - end;
278 rg->to = end;
279 rg = list_entry(rg->link.next, typeof(*rg), link);
280 }
281
282 /* Drop any remaining regions. */
283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284 if (&rg->link == head)
285 break;
286 chg += rg->to - rg->from;
287 list_del(&rg->link);
288 kfree(rg);
289 }
290
291 out:
292 spin_unlock(&resv->lock);
293 return chg;
294 }
295
296 static long region_count(struct resv_map *resv, long f, long t)
297 {
298 struct list_head *head = &resv->regions;
299 struct file_region *rg;
300 long chg = 0;
301
302 spin_lock(&resv->lock);
303 /* Locate each segment we overlap with, and count that overlap. */
304 list_for_each_entry(rg, head, link) {
305 long seg_from;
306 long seg_to;
307
308 if (rg->to <= f)
309 continue;
310 if (rg->from >= t)
311 break;
312
313 seg_from = max(rg->from, f);
314 seg_to = min(rg->to, t);
315
316 chg += seg_to - seg_from;
317 }
318 spin_unlock(&resv->lock);
319
320 return chg;
321 }
322
323 /*
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
326 */
327 static pgoff_t vma_hugecache_offset(struct hstate *h,
328 struct vm_area_struct *vma, unsigned long address)
329 {
330 return ((address - vma->vm_start) >> huge_page_shift(h)) +
331 (vma->vm_pgoff >> huge_page_order(h));
332 }
333
334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335 unsigned long address)
336 {
337 return vma_hugecache_offset(hstate_vma(vma), vma, address);
338 }
339
340 /*
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
343 */
344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345 {
346 struct hstate *hstate;
347
348 if (!is_vm_hugetlb_page(vma))
349 return PAGE_SIZE;
350
351 hstate = hstate_vma(vma);
352
353 return 1UL << huge_page_shift(hstate);
354 }
355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
356
357 /*
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
362 */
363 #ifndef vma_mmu_pagesize
364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365 {
366 return vma_kernel_pagesize(vma);
367 }
368 #endif
369
370 /*
371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
373 * alignment.
374 */
375 #define HPAGE_RESV_OWNER (1UL << 0)
376 #define HPAGE_RESV_UNMAPPED (1UL << 1)
377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
378
379 /*
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
383 *
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
388 *
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping. A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated. A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
397 */
398 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399 {
400 return (unsigned long)vma->vm_private_data;
401 }
402
403 static void set_vma_private_data(struct vm_area_struct *vma,
404 unsigned long value)
405 {
406 vma->vm_private_data = (void *)value;
407 }
408
409 struct resv_map *resv_map_alloc(void)
410 {
411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412 if (!resv_map)
413 return NULL;
414
415 kref_init(&resv_map->refs);
416 spin_lock_init(&resv_map->lock);
417 INIT_LIST_HEAD(&resv_map->regions);
418
419 return resv_map;
420 }
421
422 void resv_map_release(struct kref *ref)
423 {
424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426 /* Clear out any active regions before we release the map. */
427 region_truncate(resv_map, 0);
428 kfree(resv_map);
429 }
430
431 static inline struct resv_map *inode_resv_map(struct inode *inode)
432 {
433 return inode->i_mapping->private_data;
434 }
435
436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
437 {
438 VM_BUG_ON(!is_vm_hugetlb_page(vma));
439 if (vma->vm_flags & VM_MAYSHARE) {
440 struct address_space *mapping = vma->vm_file->f_mapping;
441 struct inode *inode = mapping->host;
442
443 return inode_resv_map(inode);
444
445 } else {
446 return (struct resv_map *)(get_vma_private_data(vma) &
447 ~HPAGE_RESV_MASK);
448 }
449 }
450
451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
452 {
453 VM_BUG_ON(!is_vm_hugetlb_page(vma));
454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
455
456 set_vma_private_data(vma, (get_vma_private_data(vma) &
457 HPAGE_RESV_MASK) | (unsigned long)map);
458 }
459
460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461 {
462 VM_BUG_ON(!is_vm_hugetlb_page(vma));
463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
464
465 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
466 }
467
468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469 {
470 VM_BUG_ON(!is_vm_hugetlb_page(vma));
471
472 return (get_vma_private_data(vma) & flag) != 0;
473 }
474
475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477 {
478 VM_BUG_ON(!is_vm_hugetlb_page(vma));
479 if (!(vma->vm_flags & VM_MAYSHARE))
480 vma->vm_private_data = (void *)0;
481 }
482
483 /* Returns true if the VMA has associated reserve pages */
484 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
485 {
486 if (vma->vm_flags & VM_NORESERVE) {
487 /*
488 * This address is already reserved by other process(chg == 0),
489 * so, we should decrement reserved count. Without decrementing,
490 * reserve count remains after releasing inode, because this
491 * allocated page will go into page cache and is regarded as
492 * coming from reserved pool in releasing step. Currently, we
493 * don't have any other solution to deal with this situation
494 * properly, so add work-around here.
495 */
496 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497 return 1;
498 else
499 return 0;
500 }
501
502 /* Shared mappings always use reserves */
503 if (vma->vm_flags & VM_MAYSHARE)
504 return 1;
505
506 /*
507 * Only the process that called mmap() has reserves for
508 * private mappings.
509 */
510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511 return 1;
512
513 return 0;
514 }
515
516 static void enqueue_huge_page(struct hstate *h, struct page *page)
517 {
518 int nid = page_to_nid(page);
519 list_move(&page->lru, &h->hugepage_freelists[nid]);
520 h->free_huge_pages++;
521 h->free_huge_pages_node[nid]++;
522 }
523
524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525 {
526 struct page *page;
527
528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529 if (!is_migrate_isolate_page(page))
530 break;
531 /*
532 * if 'non-isolated free hugepage' not found on the list,
533 * the allocation fails.
534 */
535 if (&h->hugepage_freelists[nid] == &page->lru)
536 return NULL;
537 list_move(&page->lru, &h->hugepage_activelist);
538 set_page_refcounted(page);
539 h->free_huge_pages--;
540 h->free_huge_pages_node[nid]--;
541 return page;
542 }
543
544 /* Movability of hugepages depends on migration support. */
545 static inline gfp_t htlb_alloc_mask(struct hstate *h)
546 {
547 if (hugepages_treat_as_movable || hugepage_migration_support(h))
548 return GFP_HIGHUSER_MOVABLE;
549 else
550 return GFP_HIGHUSER;
551 }
552
553 static struct page *dequeue_huge_page_vma(struct hstate *h,
554 struct vm_area_struct *vma,
555 unsigned long address, int avoid_reserve,
556 long chg)
557 {
558 struct page *page = NULL;
559 struct mempolicy *mpol;
560 nodemask_t *nodemask;
561 struct zonelist *zonelist;
562 struct zone *zone;
563 struct zoneref *z;
564 unsigned int cpuset_mems_cookie;
565
566 /*
567 * A child process with MAP_PRIVATE mappings created by their parent
568 * have no page reserves. This check ensures that reservations are
569 * not "stolen". The child may still get SIGKILLed
570 */
571 if (!vma_has_reserves(vma, chg) &&
572 h->free_huge_pages - h->resv_huge_pages == 0)
573 goto err;
574
575 /* If reserves cannot be used, ensure enough pages are in the pool */
576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577 goto err;
578
579 retry_cpuset:
580 cpuset_mems_cookie = read_mems_allowed_begin();
581 zonelist = huge_zonelist(vma, address,
582 htlb_alloc_mask(h), &mpol, &nodemask);
583
584 for_each_zone_zonelist_nodemask(zone, z, zonelist,
585 MAX_NR_ZONES - 1, nodemask) {
586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587 page = dequeue_huge_page_node(h, zone_to_nid(zone));
588 if (page) {
589 if (avoid_reserve)
590 break;
591 if (!vma_has_reserves(vma, chg))
592 break;
593
594 SetPagePrivate(page);
595 h->resv_huge_pages--;
596 break;
597 }
598 }
599 }
600
601 mpol_cond_put(mpol);
602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603 goto retry_cpuset;
604 return page;
605
606 err:
607 return NULL;
608 }
609
610 static void update_and_free_page(struct hstate *h, struct page *page)
611 {
612 int i;
613
614 VM_BUG_ON(h->order >= MAX_ORDER);
615
616 h->nr_huge_pages--;
617 h->nr_huge_pages_node[page_to_nid(page)]--;
618 for (i = 0; i < pages_per_huge_page(h); i++) {
619 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
620 1 << PG_referenced | 1 << PG_dirty |
621 1 << PG_active | 1 << PG_reserved |
622 1 << PG_private | 1 << PG_writeback);
623 }
624 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
625 set_compound_page_dtor(page, NULL);
626 set_page_refcounted(page);
627 arch_release_hugepage(page);
628 __free_pages(page, huge_page_order(h));
629 }
630
631 struct hstate *size_to_hstate(unsigned long size)
632 {
633 struct hstate *h;
634
635 for_each_hstate(h) {
636 if (huge_page_size(h) == size)
637 return h;
638 }
639 return NULL;
640 }
641
642 static void free_huge_page(struct page *page)
643 {
644 /*
645 * Can't pass hstate in here because it is called from the
646 * compound page destructor.
647 */
648 struct hstate *h = page_hstate(page);
649 int nid = page_to_nid(page);
650 struct hugepage_subpool *spool =
651 (struct hugepage_subpool *)page_private(page);
652 bool restore_reserve;
653
654 set_page_private(page, 0);
655 page->mapping = NULL;
656 BUG_ON(page_count(page));
657 BUG_ON(page_mapcount(page));
658 restore_reserve = PagePrivate(page);
659 ClearPagePrivate(page);
660
661 spin_lock(&hugetlb_lock);
662 hugetlb_cgroup_uncharge_page(hstate_index(h),
663 pages_per_huge_page(h), page);
664 if (restore_reserve)
665 h->resv_huge_pages++;
666
667 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
668 /* remove the page from active list */
669 list_del(&page->lru);
670 update_and_free_page(h, page);
671 h->surplus_huge_pages--;
672 h->surplus_huge_pages_node[nid]--;
673 } else {
674 arch_clear_hugepage_flags(page);
675 enqueue_huge_page(h, page);
676 }
677 spin_unlock(&hugetlb_lock);
678 hugepage_subpool_put_pages(spool, 1);
679 }
680
681 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
682 {
683 INIT_LIST_HEAD(&page->lru);
684 set_compound_page_dtor(page, free_huge_page);
685 spin_lock(&hugetlb_lock);
686 set_hugetlb_cgroup(page, NULL);
687 h->nr_huge_pages++;
688 h->nr_huge_pages_node[nid]++;
689 spin_unlock(&hugetlb_lock);
690 put_page(page); /* free it into the hugepage allocator */
691 }
692
693 static void __init prep_compound_gigantic_page(struct page *page,
694 unsigned long order)
695 {
696 int i;
697 int nr_pages = 1 << order;
698 struct page *p = page + 1;
699
700 /* we rely on prep_new_huge_page to set the destructor */
701 set_compound_order(page, order);
702 __SetPageHead(page);
703 __ClearPageReserved(page);
704 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
705 __SetPageTail(p);
706 /*
707 * For gigantic hugepages allocated through bootmem at
708 * boot, it's safer to be consistent with the not-gigantic
709 * hugepages and clear the PG_reserved bit from all tail pages
710 * too. Otherwse drivers using get_user_pages() to access tail
711 * pages may get the reference counting wrong if they see
712 * PG_reserved set on a tail page (despite the head page not
713 * having PG_reserved set). Enforcing this consistency between
714 * head and tail pages allows drivers to optimize away a check
715 * on the head page when they need know if put_page() is needed
716 * after get_user_pages().
717 */
718 __ClearPageReserved(p);
719 set_page_count(p, 0);
720 p->first_page = page;
721 }
722 }
723
724 /*
725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
726 * transparent huge pages. See the PageTransHuge() documentation for more
727 * details.
728 */
729 int PageHuge(struct page *page)
730 {
731 if (!PageCompound(page))
732 return 0;
733
734 page = compound_head(page);
735 return get_compound_page_dtor(page) == free_huge_page;
736 }
737 EXPORT_SYMBOL_GPL(PageHuge);
738
739 /*
740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741 * normal or transparent huge pages.
742 */
743 int PageHeadHuge(struct page *page_head)
744 {
745 if (!PageHead(page_head))
746 return 0;
747
748 return get_compound_page_dtor(page_head) == free_huge_page;
749 }
750
751 pgoff_t __basepage_index(struct page *page)
752 {
753 struct page *page_head = compound_head(page);
754 pgoff_t index = page_index(page_head);
755 unsigned long compound_idx;
756
757 if (!PageHuge(page_head))
758 return page_index(page);
759
760 if (compound_order(page_head) >= MAX_ORDER)
761 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
762 else
763 compound_idx = page - page_head;
764
765 return (index << compound_order(page_head)) + compound_idx;
766 }
767
768 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
769 {
770 struct page *page;
771
772 if (h->order >= MAX_ORDER)
773 return NULL;
774
775 page = alloc_pages_exact_node(nid,
776 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
777 __GFP_REPEAT|__GFP_NOWARN,
778 huge_page_order(h));
779 if (page) {
780 if (arch_prepare_hugepage(page)) {
781 __free_pages(page, huge_page_order(h));
782 return NULL;
783 }
784 prep_new_huge_page(h, page, nid);
785 }
786
787 return page;
788 }
789
790 /*
791 * common helper functions for hstate_next_node_to_{alloc|free}.
792 * We may have allocated or freed a huge page based on a different
793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
794 * be outside of *nodes_allowed. Ensure that we use an allowed
795 * node for alloc or free.
796 */
797 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
798 {
799 nid = next_node(nid, *nodes_allowed);
800 if (nid == MAX_NUMNODES)
801 nid = first_node(*nodes_allowed);
802 VM_BUG_ON(nid >= MAX_NUMNODES);
803
804 return nid;
805 }
806
807 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
808 {
809 if (!node_isset(nid, *nodes_allowed))
810 nid = next_node_allowed(nid, nodes_allowed);
811 return nid;
812 }
813
814 /*
815 * returns the previously saved node ["this node"] from which to
816 * allocate a persistent huge page for the pool and advance the
817 * next node from which to allocate, handling wrap at end of node
818 * mask.
819 */
820 static int hstate_next_node_to_alloc(struct hstate *h,
821 nodemask_t *nodes_allowed)
822 {
823 int nid;
824
825 VM_BUG_ON(!nodes_allowed);
826
827 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
828 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
829
830 return nid;
831 }
832
833 /*
834 * helper for free_pool_huge_page() - return the previously saved
835 * node ["this node"] from which to free a huge page. Advance the
836 * next node id whether or not we find a free huge page to free so
837 * that the next attempt to free addresses the next node.
838 */
839 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
840 {
841 int nid;
842
843 VM_BUG_ON(!nodes_allowed);
844
845 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
846 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
847
848 return nid;
849 }
850
851 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
852 for (nr_nodes = nodes_weight(*mask); \
853 nr_nodes > 0 && \
854 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
855 nr_nodes--)
856
857 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
858 for (nr_nodes = nodes_weight(*mask); \
859 nr_nodes > 0 && \
860 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
861 nr_nodes--)
862
863 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
864 {
865 struct page *page;
866 int nr_nodes, node;
867 int ret = 0;
868
869 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
870 page = alloc_fresh_huge_page_node(h, node);
871 if (page) {
872 ret = 1;
873 break;
874 }
875 }
876
877 if (ret)
878 count_vm_event(HTLB_BUDDY_PGALLOC);
879 else
880 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
881
882 return ret;
883 }
884
885 /*
886 * Free huge page from pool from next node to free.
887 * Attempt to keep persistent huge pages more or less
888 * balanced over allowed nodes.
889 * Called with hugetlb_lock locked.
890 */
891 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
892 bool acct_surplus)
893 {
894 int nr_nodes, node;
895 int ret = 0;
896
897 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
898 /*
899 * If we're returning unused surplus pages, only examine
900 * nodes with surplus pages.
901 */
902 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
903 !list_empty(&h->hugepage_freelists[node])) {
904 struct page *page =
905 list_entry(h->hugepage_freelists[node].next,
906 struct page, lru);
907 list_del(&page->lru);
908 h->free_huge_pages--;
909 h->free_huge_pages_node[node]--;
910 if (acct_surplus) {
911 h->surplus_huge_pages--;
912 h->surplus_huge_pages_node[node]--;
913 }
914 update_and_free_page(h, page);
915 ret = 1;
916 break;
917 }
918 }
919
920 return ret;
921 }
922
923 /*
924 * Dissolve a given free hugepage into free buddy pages. This function does
925 * nothing for in-use (including surplus) hugepages.
926 */
927 static void dissolve_free_huge_page(struct page *page)
928 {
929 spin_lock(&hugetlb_lock);
930 if (PageHuge(page) && !page_count(page)) {
931 struct hstate *h = page_hstate(page);
932 int nid = page_to_nid(page);
933 list_del(&page->lru);
934 h->free_huge_pages--;
935 h->free_huge_pages_node[nid]--;
936 update_and_free_page(h, page);
937 }
938 spin_unlock(&hugetlb_lock);
939 }
940
941 /*
942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
943 * make specified memory blocks removable from the system.
944 * Note that start_pfn should aligned with (minimum) hugepage size.
945 */
946 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
947 {
948 unsigned int order = 8 * sizeof(void *);
949 unsigned long pfn;
950 struct hstate *h;
951
952 /* Set scan step to minimum hugepage size */
953 for_each_hstate(h)
954 if (order > huge_page_order(h))
955 order = huge_page_order(h);
956 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
957 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
958 dissolve_free_huge_page(pfn_to_page(pfn));
959 }
960
961 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
962 {
963 struct page *page;
964 unsigned int r_nid;
965
966 if (h->order >= MAX_ORDER)
967 return NULL;
968
969 /*
970 * Assume we will successfully allocate the surplus page to
971 * prevent racing processes from causing the surplus to exceed
972 * overcommit
973 *
974 * This however introduces a different race, where a process B
975 * tries to grow the static hugepage pool while alloc_pages() is
976 * called by process A. B will only examine the per-node
977 * counters in determining if surplus huge pages can be
978 * converted to normal huge pages in adjust_pool_surplus(). A
979 * won't be able to increment the per-node counter, until the
980 * lock is dropped by B, but B doesn't drop hugetlb_lock until
981 * no more huge pages can be converted from surplus to normal
982 * state (and doesn't try to convert again). Thus, we have a
983 * case where a surplus huge page exists, the pool is grown, and
984 * the surplus huge page still exists after, even though it
985 * should just have been converted to a normal huge page. This
986 * does not leak memory, though, as the hugepage will be freed
987 * once it is out of use. It also does not allow the counters to
988 * go out of whack in adjust_pool_surplus() as we don't modify
989 * the node values until we've gotten the hugepage and only the
990 * per-node value is checked there.
991 */
992 spin_lock(&hugetlb_lock);
993 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
994 spin_unlock(&hugetlb_lock);
995 return NULL;
996 } else {
997 h->nr_huge_pages++;
998 h->surplus_huge_pages++;
999 }
1000 spin_unlock(&hugetlb_lock);
1001
1002 if (nid == NUMA_NO_NODE)
1003 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1004 __GFP_REPEAT|__GFP_NOWARN,
1005 huge_page_order(h));
1006 else
1007 page = alloc_pages_exact_node(nid,
1008 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1009 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1010
1011 if (page && arch_prepare_hugepage(page)) {
1012 __free_pages(page, huge_page_order(h));
1013 page = NULL;
1014 }
1015
1016 spin_lock(&hugetlb_lock);
1017 if (page) {
1018 INIT_LIST_HEAD(&page->lru);
1019 r_nid = page_to_nid(page);
1020 set_compound_page_dtor(page, free_huge_page);
1021 set_hugetlb_cgroup(page, NULL);
1022 /*
1023 * We incremented the global counters already
1024 */
1025 h->nr_huge_pages_node[r_nid]++;
1026 h->surplus_huge_pages_node[r_nid]++;
1027 __count_vm_event(HTLB_BUDDY_PGALLOC);
1028 } else {
1029 h->nr_huge_pages--;
1030 h->surplus_huge_pages--;
1031 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1032 }
1033 spin_unlock(&hugetlb_lock);
1034
1035 return page;
1036 }
1037
1038 /*
1039 * This allocation function is useful in the context where vma is irrelevant.
1040 * E.g. soft-offlining uses this function because it only cares physical
1041 * address of error page.
1042 */
1043 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044 {
1045 struct page *page = NULL;
1046
1047 spin_lock(&hugetlb_lock);
1048 if (h->free_huge_pages - h->resv_huge_pages > 0)
1049 page = dequeue_huge_page_node(h, nid);
1050 spin_unlock(&hugetlb_lock);
1051
1052 if (!page)
1053 page = alloc_buddy_huge_page(h, nid);
1054
1055 return page;
1056 }
1057
1058 /*
1059 * Increase the hugetlb pool such that it can accommodate a reservation
1060 * of size 'delta'.
1061 */
1062 static int gather_surplus_pages(struct hstate *h, int delta)
1063 {
1064 struct list_head surplus_list;
1065 struct page *page, *tmp;
1066 int ret, i;
1067 int needed, allocated;
1068 bool alloc_ok = true;
1069
1070 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1071 if (needed <= 0) {
1072 h->resv_huge_pages += delta;
1073 return 0;
1074 }
1075
1076 allocated = 0;
1077 INIT_LIST_HEAD(&surplus_list);
1078
1079 ret = -ENOMEM;
1080 retry:
1081 spin_unlock(&hugetlb_lock);
1082 for (i = 0; i < needed; i++) {
1083 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1084 if (!page) {
1085 alloc_ok = false;
1086 break;
1087 }
1088 list_add(&page->lru, &surplus_list);
1089 }
1090 allocated += i;
1091
1092 /*
1093 * After retaking hugetlb_lock, we need to recalculate 'needed'
1094 * because either resv_huge_pages or free_huge_pages may have changed.
1095 */
1096 spin_lock(&hugetlb_lock);
1097 needed = (h->resv_huge_pages + delta) -
1098 (h->free_huge_pages + allocated);
1099 if (needed > 0) {
1100 if (alloc_ok)
1101 goto retry;
1102 /*
1103 * We were not able to allocate enough pages to
1104 * satisfy the entire reservation so we free what
1105 * we've allocated so far.
1106 */
1107 goto free;
1108 }
1109 /*
1110 * The surplus_list now contains _at_least_ the number of extra pages
1111 * needed to accommodate the reservation. Add the appropriate number
1112 * of pages to the hugetlb pool and free the extras back to the buddy
1113 * allocator. Commit the entire reservation here to prevent another
1114 * process from stealing the pages as they are added to the pool but
1115 * before they are reserved.
1116 */
1117 needed += allocated;
1118 h->resv_huge_pages += delta;
1119 ret = 0;
1120
1121 /* Free the needed pages to the hugetlb pool */
1122 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1123 if ((--needed) < 0)
1124 break;
1125 /*
1126 * This page is now managed by the hugetlb allocator and has
1127 * no users -- drop the buddy allocator's reference.
1128 */
1129 put_page_testzero(page);
1130 VM_BUG_ON_PAGE(page_count(page), page);
1131 enqueue_huge_page(h, page);
1132 }
1133 free:
1134 spin_unlock(&hugetlb_lock);
1135
1136 /* Free unnecessary surplus pages to the buddy allocator */
1137 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138 put_page(page);
1139 spin_lock(&hugetlb_lock);
1140
1141 return ret;
1142 }
1143
1144 /*
1145 * When releasing a hugetlb pool reservation, any surplus pages that were
1146 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * never used.
1148 * Called with hugetlb_lock held.
1149 */
1150 static void return_unused_surplus_pages(struct hstate *h,
1151 unsigned long unused_resv_pages)
1152 {
1153 unsigned long nr_pages;
1154
1155 /* Uncommit the reservation */
1156 h->resv_huge_pages -= unused_resv_pages;
1157
1158 /* Cannot return gigantic pages currently */
1159 if (h->order >= MAX_ORDER)
1160 return;
1161
1162 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1163
1164 /*
1165 * We want to release as many surplus pages as possible, spread
1166 * evenly across all nodes with memory. Iterate across these nodes
1167 * until we can no longer free unreserved surplus pages. This occurs
1168 * when the nodes with surplus pages have no free pages.
1169 * free_pool_huge_page() will balance the the freed pages across the
1170 * on-line nodes with memory and will handle the hstate accounting.
1171 */
1172 while (nr_pages--) {
1173 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1174 break;
1175 cond_resched_lock(&hugetlb_lock);
1176 }
1177 }
1178
1179 /*
1180 * Determine if the huge page at addr within the vma has an associated
1181 * reservation. Where it does not we will need to logically increase
1182 * reservation and actually increase subpool usage before an allocation
1183 * can occur. Where any new reservation would be required the
1184 * reservation change is prepared, but not committed. Once the page
1185 * has been allocated from the subpool and instantiated the change should
1186 * be committed via vma_commit_reservation. No action is required on
1187 * failure.
1188 */
1189 static long vma_needs_reservation(struct hstate *h,
1190 struct vm_area_struct *vma, unsigned long addr)
1191 {
1192 struct resv_map *resv;
1193 pgoff_t idx;
1194 long chg;
1195
1196 resv = vma_resv_map(vma);
1197 if (!resv)
1198 return 1;
1199
1200 idx = vma_hugecache_offset(h, vma, addr);
1201 chg = region_chg(resv, idx, idx + 1);
1202
1203 if (vma->vm_flags & VM_MAYSHARE)
1204 return chg;
1205 else
1206 return chg < 0 ? chg : 0;
1207 }
1208 static void vma_commit_reservation(struct hstate *h,
1209 struct vm_area_struct *vma, unsigned long addr)
1210 {
1211 struct resv_map *resv;
1212 pgoff_t idx;
1213
1214 resv = vma_resv_map(vma);
1215 if (!resv)
1216 return;
1217
1218 idx = vma_hugecache_offset(h, vma, addr);
1219 region_add(resv, idx, idx + 1);
1220 }
1221
1222 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1223 unsigned long addr, int avoid_reserve)
1224 {
1225 struct hugepage_subpool *spool = subpool_vma(vma);
1226 struct hstate *h = hstate_vma(vma);
1227 struct page *page;
1228 long chg;
1229 int ret, idx;
1230 struct hugetlb_cgroup *h_cg;
1231
1232 idx = hstate_index(h);
1233 /*
1234 * Processes that did not create the mapping will have no
1235 * reserves and will not have accounted against subpool
1236 * limit. Check that the subpool limit can be made before
1237 * satisfying the allocation MAP_NORESERVE mappings may also
1238 * need pages and subpool limit allocated allocated if no reserve
1239 * mapping overlaps.
1240 */
1241 chg = vma_needs_reservation(h, vma, addr);
1242 if (chg < 0)
1243 return ERR_PTR(-ENOMEM);
1244 if (chg || avoid_reserve)
1245 if (hugepage_subpool_get_pages(spool, 1))
1246 return ERR_PTR(-ENOSPC);
1247
1248 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1249 if (ret) {
1250 if (chg || avoid_reserve)
1251 hugepage_subpool_put_pages(spool, 1);
1252 return ERR_PTR(-ENOSPC);
1253 }
1254 spin_lock(&hugetlb_lock);
1255 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1256 if (!page) {
1257 spin_unlock(&hugetlb_lock);
1258 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1259 if (!page) {
1260 hugetlb_cgroup_uncharge_cgroup(idx,
1261 pages_per_huge_page(h),
1262 h_cg);
1263 if (chg || avoid_reserve)
1264 hugepage_subpool_put_pages(spool, 1);
1265 return ERR_PTR(-ENOSPC);
1266 }
1267 spin_lock(&hugetlb_lock);
1268 list_move(&page->lru, &h->hugepage_activelist);
1269 /* Fall through */
1270 }
1271 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1272 spin_unlock(&hugetlb_lock);
1273
1274 set_page_private(page, (unsigned long)spool);
1275
1276 vma_commit_reservation(h, vma, addr);
1277 return page;
1278 }
1279
1280 /*
1281 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1282 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1283 * where no ERR_VALUE is expected to be returned.
1284 */
1285 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1286 unsigned long addr, int avoid_reserve)
1287 {
1288 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1289 if (IS_ERR(page))
1290 page = NULL;
1291 return page;
1292 }
1293
1294 int __weak alloc_bootmem_huge_page(struct hstate *h)
1295 {
1296 struct huge_bootmem_page *m;
1297 int nr_nodes, node;
1298
1299 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1300 void *addr;
1301
1302 addr = memblock_virt_alloc_try_nid_nopanic(
1303 huge_page_size(h), huge_page_size(h),
1304 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1305 if (addr) {
1306 /*
1307 * Use the beginning of the huge page to store the
1308 * huge_bootmem_page struct (until gather_bootmem
1309 * puts them into the mem_map).
1310 */
1311 m = addr;
1312 goto found;
1313 }
1314 }
1315 return 0;
1316
1317 found:
1318 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1319 /* Put them into a private list first because mem_map is not up yet */
1320 list_add(&m->list, &huge_boot_pages);
1321 m->hstate = h;
1322 return 1;
1323 }
1324
1325 static void __init prep_compound_huge_page(struct page *page, int order)
1326 {
1327 if (unlikely(order > (MAX_ORDER - 1)))
1328 prep_compound_gigantic_page(page, order);
1329 else
1330 prep_compound_page(page, order);
1331 }
1332
1333 /* Put bootmem huge pages into the standard lists after mem_map is up */
1334 static void __init gather_bootmem_prealloc(void)
1335 {
1336 struct huge_bootmem_page *m;
1337
1338 list_for_each_entry(m, &huge_boot_pages, list) {
1339 struct hstate *h = m->hstate;
1340 struct page *page;
1341
1342 #ifdef CONFIG_HIGHMEM
1343 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1344 memblock_free_late(__pa(m),
1345 sizeof(struct huge_bootmem_page));
1346 #else
1347 page = virt_to_page(m);
1348 #endif
1349 WARN_ON(page_count(page) != 1);
1350 prep_compound_huge_page(page, h->order);
1351 WARN_ON(PageReserved(page));
1352 prep_new_huge_page(h, page, page_to_nid(page));
1353 /*
1354 * If we had gigantic hugepages allocated at boot time, we need
1355 * to restore the 'stolen' pages to totalram_pages in order to
1356 * fix confusing memory reports from free(1) and another
1357 * side-effects, like CommitLimit going negative.
1358 */
1359 if (h->order > (MAX_ORDER - 1))
1360 adjust_managed_page_count(page, 1 << h->order);
1361 }
1362 }
1363
1364 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1365 {
1366 unsigned long i;
1367
1368 for (i = 0; i < h->max_huge_pages; ++i) {
1369 if (h->order >= MAX_ORDER) {
1370 if (!alloc_bootmem_huge_page(h))
1371 break;
1372 } else if (!alloc_fresh_huge_page(h,
1373 &node_states[N_MEMORY]))
1374 break;
1375 }
1376 h->max_huge_pages = i;
1377 }
1378
1379 static void __init hugetlb_init_hstates(void)
1380 {
1381 struct hstate *h;
1382
1383 for_each_hstate(h) {
1384 /* oversize hugepages were init'ed in early boot */
1385 if (h->order < MAX_ORDER)
1386 hugetlb_hstate_alloc_pages(h);
1387 }
1388 }
1389
1390 static char * __init memfmt(char *buf, unsigned long n)
1391 {
1392 if (n >= (1UL << 30))
1393 sprintf(buf, "%lu GB", n >> 30);
1394 else if (n >= (1UL << 20))
1395 sprintf(buf, "%lu MB", n >> 20);
1396 else
1397 sprintf(buf, "%lu KB", n >> 10);
1398 return buf;
1399 }
1400
1401 static void __init report_hugepages(void)
1402 {
1403 struct hstate *h;
1404
1405 for_each_hstate(h) {
1406 char buf[32];
1407 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1408 memfmt(buf, huge_page_size(h)),
1409 h->free_huge_pages);
1410 }
1411 }
1412
1413 #ifdef CONFIG_HIGHMEM
1414 static void try_to_free_low(struct hstate *h, unsigned long count,
1415 nodemask_t *nodes_allowed)
1416 {
1417 int i;
1418
1419 if (h->order >= MAX_ORDER)
1420 return;
1421
1422 for_each_node_mask(i, *nodes_allowed) {
1423 struct page *page, *next;
1424 struct list_head *freel = &h->hugepage_freelists[i];
1425 list_for_each_entry_safe(page, next, freel, lru) {
1426 if (count >= h->nr_huge_pages)
1427 return;
1428 if (PageHighMem(page))
1429 continue;
1430 list_del(&page->lru);
1431 update_and_free_page(h, page);
1432 h->free_huge_pages--;
1433 h->free_huge_pages_node[page_to_nid(page)]--;
1434 }
1435 }
1436 }
1437 #else
1438 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1439 nodemask_t *nodes_allowed)
1440 {
1441 }
1442 #endif
1443
1444 /*
1445 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1446 * balanced by operating on them in a round-robin fashion.
1447 * Returns 1 if an adjustment was made.
1448 */
1449 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1450 int delta)
1451 {
1452 int nr_nodes, node;
1453
1454 VM_BUG_ON(delta != -1 && delta != 1);
1455
1456 if (delta < 0) {
1457 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1458 if (h->surplus_huge_pages_node[node])
1459 goto found;
1460 }
1461 } else {
1462 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1463 if (h->surplus_huge_pages_node[node] <
1464 h->nr_huge_pages_node[node])
1465 goto found;
1466 }
1467 }
1468 return 0;
1469
1470 found:
1471 h->surplus_huge_pages += delta;
1472 h->surplus_huge_pages_node[node] += delta;
1473 return 1;
1474 }
1475
1476 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1477 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1478 nodemask_t *nodes_allowed)
1479 {
1480 unsigned long min_count, ret;
1481
1482 if (h->order >= MAX_ORDER)
1483 return h->max_huge_pages;
1484
1485 /*
1486 * Increase the pool size
1487 * First take pages out of surplus state. Then make up the
1488 * remaining difference by allocating fresh huge pages.
1489 *
1490 * We might race with alloc_buddy_huge_page() here and be unable
1491 * to convert a surplus huge page to a normal huge page. That is
1492 * not critical, though, it just means the overall size of the
1493 * pool might be one hugepage larger than it needs to be, but
1494 * within all the constraints specified by the sysctls.
1495 */
1496 spin_lock(&hugetlb_lock);
1497 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1498 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1499 break;
1500 }
1501
1502 while (count > persistent_huge_pages(h)) {
1503 /*
1504 * If this allocation races such that we no longer need the
1505 * page, free_huge_page will handle it by freeing the page
1506 * and reducing the surplus.
1507 */
1508 spin_unlock(&hugetlb_lock);
1509 ret = alloc_fresh_huge_page(h, nodes_allowed);
1510 spin_lock(&hugetlb_lock);
1511 if (!ret)
1512 goto out;
1513
1514 /* Bail for signals. Probably ctrl-c from user */
1515 if (signal_pending(current))
1516 goto out;
1517 }
1518
1519 /*
1520 * Decrease the pool size
1521 * First return free pages to the buddy allocator (being careful
1522 * to keep enough around to satisfy reservations). Then place
1523 * pages into surplus state as needed so the pool will shrink
1524 * to the desired size as pages become free.
1525 *
1526 * By placing pages into the surplus state independent of the
1527 * overcommit value, we are allowing the surplus pool size to
1528 * exceed overcommit. There are few sane options here. Since
1529 * alloc_buddy_huge_page() is checking the global counter,
1530 * though, we'll note that we're not allowed to exceed surplus
1531 * and won't grow the pool anywhere else. Not until one of the
1532 * sysctls are changed, or the surplus pages go out of use.
1533 */
1534 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1535 min_count = max(count, min_count);
1536 try_to_free_low(h, min_count, nodes_allowed);
1537 while (min_count < persistent_huge_pages(h)) {
1538 if (!free_pool_huge_page(h, nodes_allowed, 0))
1539 break;
1540 cond_resched_lock(&hugetlb_lock);
1541 }
1542 while (count < persistent_huge_pages(h)) {
1543 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1544 break;
1545 }
1546 out:
1547 ret = persistent_huge_pages(h);
1548 spin_unlock(&hugetlb_lock);
1549 return ret;
1550 }
1551
1552 #define HSTATE_ATTR_RO(_name) \
1553 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1554
1555 #define HSTATE_ATTR(_name) \
1556 static struct kobj_attribute _name##_attr = \
1557 __ATTR(_name, 0644, _name##_show, _name##_store)
1558
1559 static struct kobject *hugepages_kobj;
1560 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1561
1562 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1563
1564 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1565 {
1566 int i;
1567
1568 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1569 if (hstate_kobjs[i] == kobj) {
1570 if (nidp)
1571 *nidp = NUMA_NO_NODE;
1572 return &hstates[i];
1573 }
1574
1575 return kobj_to_node_hstate(kobj, nidp);
1576 }
1577
1578 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1579 struct kobj_attribute *attr, char *buf)
1580 {
1581 struct hstate *h;
1582 unsigned long nr_huge_pages;
1583 int nid;
1584
1585 h = kobj_to_hstate(kobj, &nid);
1586 if (nid == NUMA_NO_NODE)
1587 nr_huge_pages = h->nr_huge_pages;
1588 else
1589 nr_huge_pages = h->nr_huge_pages_node[nid];
1590
1591 return sprintf(buf, "%lu\n", nr_huge_pages);
1592 }
1593
1594 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1595 struct kobject *kobj, struct kobj_attribute *attr,
1596 const char *buf, size_t len)
1597 {
1598 int err;
1599 int nid;
1600 unsigned long count;
1601 struct hstate *h;
1602 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1603
1604 err = kstrtoul(buf, 10, &count);
1605 if (err)
1606 goto out;
1607
1608 h = kobj_to_hstate(kobj, &nid);
1609 if (h->order >= MAX_ORDER) {
1610 err = -EINVAL;
1611 goto out;
1612 }
1613
1614 if (nid == NUMA_NO_NODE) {
1615 /*
1616 * global hstate attribute
1617 */
1618 if (!(obey_mempolicy &&
1619 init_nodemask_of_mempolicy(nodes_allowed))) {
1620 NODEMASK_FREE(nodes_allowed);
1621 nodes_allowed = &node_states[N_MEMORY];
1622 }
1623 } else if (nodes_allowed) {
1624 /*
1625 * per node hstate attribute: adjust count to global,
1626 * but restrict alloc/free to the specified node.
1627 */
1628 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1629 init_nodemask_of_node(nodes_allowed, nid);
1630 } else
1631 nodes_allowed = &node_states[N_MEMORY];
1632
1633 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1634
1635 if (nodes_allowed != &node_states[N_MEMORY])
1636 NODEMASK_FREE(nodes_allowed);
1637
1638 return len;
1639 out:
1640 NODEMASK_FREE(nodes_allowed);
1641 return err;
1642 }
1643
1644 static ssize_t nr_hugepages_show(struct kobject *kobj,
1645 struct kobj_attribute *attr, char *buf)
1646 {
1647 return nr_hugepages_show_common(kobj, attr, buf);
1648 }
1649
1650 static ssize_t nr_hugepages_store(struct kobject *kobj,
1651 struct kobj_attribute *attr, const char *buf, size_t len)
1652 {
1653 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1654 }
1655 HSTATE_ATTR(nr_hugepages);
1656
1657 #ifdef CONFIG_NUMA
1658
1659 /*
1660 * hstate attribute for optionally mempolicy-based constraint on persistent
1661 * huge page alloc/free.
1662 */
1663 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1664 struct kobj_attribute *attr, char *buf)
1665 {
1666 return nr_hugepages_show_common(kobj, attr, buf);
1667 }
1668
1669 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1670 struct kobj_attribute *attr, const char *buf, size_t len)
1671 {
1672 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1673 }
1674 HSTATE_ATTR(nr_hugepages_mempolicy);
1675 #endif
1676
1677
1678 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1679 struct kobj_attribute *attr, char *buf)
1680 {
1681 struct hstate *h = kobj_to_hstate(kobj, NULL);
1682 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1683 }
1684
1685 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1686 struct kobj_attribute *attr, const char *buf, size_t count)
1687 {
1688 int err;
1689 unsigned long input;
1690 struct hstate *h = kobj_to_hstate(kobj, NULL);
1691
1692 if (h->order >= MAX_ORDER)
1693 return -EINVAL;
1694
1695 err = kstrtoul(buf, 10, &input);
1696 if (err)
1697 return err;
1698
1699 spin_lock(&hugetlb_lock);
1700 h->nr_overcommit_huge_pages = input;
1701 spin_unlock(&hugetlb_lock);
1702
1703 return count;
1704 }
1705 HSTATE_ATTR(nr_overcommit_hugepages);
1706
1707 static ssize_t free_hugepages_show(struct kobject *kobj,
1708 struct kobj_attribute *attr, char *buf)
1709 {
1710 struct hstate *h;
1711 unsigned long free_huge_pages;
1712 int nid;
1713
1714 h = kobj_to_hstate(kobj, &nid);
1715 if (nid == NUMA_NO_NODE)
1716 free_huge_pages = h->free_huge_pages;
1717 else
1718 free_huge_pages = h->free_huge_pages_node[nid];
1719
1720 return sprintf(buf, "%lu\n", free_huge_pages);
1721 }
1722 HSTATE_ATTR_RO(free_hugepages);
1723
1724 static ssize_t resv_hugepages_show(struct kobject *kobj,
1725 struct kobj_attribute *attr, char *buf)
1726 {
1727 struct hstate *h = kobj_to_hstate(kobj, NULL);
1728 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1729 }
1730 HSTATE_ATTR_RO(resv_hugepages);
1731
1732 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1733 struct kobj_attribute *attr, char *buf)
1734 {
1735 struct hstate *h;
1736 unsigned long surplus_huge_pages;
1737 int nid;
1738
1739 h = kobj_to_hstate(kobj, &nid);
1740 if (nid == NUMA_NO_NODE)
1741 surplus_huge_pages = h->surplus_huge_pages;
1742 else
1743 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1744
1745 return sprintf(buf, "%lu\n", surplus_huge_pages);
1746 }
1747 HSTATE_ATTR_RO(surplus_hugepages);
1748
1749 static struct attribute *hstate_attrs[] = {
1750 &nr_hugepages_attr.attr,
1751 &nr_overcommit_hugepages_attr.attr,
1752 &free_hugepages_attr.attr,
1753 &resv_hugepages_attr.attr,
1754 &surplus_hugepages_attr.attr,
1755 #ifdef CONFIG_NUMA
1756 &nr_hugepages_mempolicy_attr.attr,
1757 #endif
1758 NULL,
1759 };
1760
1761 static struct attribute_group hstate_attr_group = {
1762 .attrs = hstate_attrs,
1763 };
1764
1765 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1766 struct kobject **hstate_kobjs,
1767 struct attribute_group *hstate_attr_group)
1768 {
1769 int retval;
1770 int hi = hstate_index(h);
1771
1772 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1773 if (!hstate_kobjs[hi])
1774 return -ENOMEM;
1775
1776 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1777 if (retval)
1778 kobject_put(hstate_kobjs[hi]);
1779
1780 return retval;
1781 }
1782
1783 static void __init hugetlb_sysfs_init(void)
1784 {
1785 struct hstate *h;
1786 int err;
1787
1788 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1789 if (!hugepages_kobj)
1790 return;
1791
1792 for_each_hstate(h) {
1793 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1794 hstate_kobjs, &hstate_attr_group);
1795 if (err)
1796 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1797 }
1798 }
1799
1800 #ifdef CONFIG_NUMA
1801
1802 /*
1803 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1804 * with node devices in node_devices[] using a parallel array. The array
1805 * index of a node device or _hstate == node id.
1806 * This is here to avoid any static dependency of the node device driver, in
1807 * the base kernel, on the hugetlb module.
1808 */
1809 struct node_hstate {
1810 struct kobject *hugepages_kobj;
1811 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1812 };
1813 struct node_hstate node_hstates[MAX_NUMNODES];
1814
1815 /*
1816 * A subset of global hstate attributes for node devices
1817 */
1818 static struct attribute *per_node_hstate_attrs[] = {
1819 &nr_hugepages_attr.attr,
1820 &free_hugepages_attr.attr,
1821 &surplus_hugepages_attr.attr,
1822 NULL,
1823 };
1824
1825 static struct attribute_group per_node_hstate_attr_group = {
1826 .attrs = per_node_hstate_attrs,
1827 };
1828
1829 /*
1830 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1831 * Returns node id via non-NULL nidp.
1832 */
1833 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1834 {
1835 int nid;
1836
1837 for (nid = 0; nid < nr_node_ids; nid++) {
1838 struct node_hstate *nhs = &node_hstates[nid];
1839 int i;
1840 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1841 if (nhs->hstate_kobjs[i] == kobj) {
1842 if (nidp)
1843 *nidp = nid;
1844 return &hstates[i];
1845 }
1846 }
1847
1848 BUG();
1849 return NULL;
1850 }
1851
1852 /*
1853 * Unregister hstate attributes from a single node device.
1854 * No-op if no hstate attributes attached.
1855 */
1856 static void hugetlb_unregister_node(struct node *node)
1857 {
1858 struct hstate *h;
1859 struct node_hstate *nhs = &node_hstates[node->dev.id];
1860
1861 if (!nhs->hugepages_kobj)
1862 return; /* no hstate attributes */
1863
1864 for_each_hstate(h) {
1865 int idx = hstate_index(h);
1866 if (nhs->hstate_kobjs[idx]) {
1867 kobject_put(nhs->hstate_kobjs[idx]);
1868 nhs->hstate_kobjs[idx] = NULL;
1869 }
1870 }
1871
1872 kobject_put(nhs->hugepages_kobj);
1873 nhs->hugepages_kobj = NULL;
1874 }
1875
1876 /*
1877 * hugetlb module exit: unregister hstate attributes from node devices
1878 * that have them.
1879 */
1880 static void hugetlb_unregister_all_nodes(void)
1881 {
1882 int nid;
1883
1884 /*
1885 * disable node device registrations.
1886 */
1887 register_hugetlbfs_with_node(NULL, NULL);
1888
1889 /*
1890 * remove hstate attributes from any nodes that have them.
1891 */
1892 for (nid = 0; nid < nr_node_ids; nid++)
1893 hugetlb_unregister_node(node_devices[nid]);
1894 }
1895
1896 /*
1897 * Register hstate attributes for a single node device.
1898 * No-op if attributes already registered.
1899 */
1900 static void hugetlb_register_node(struct node *node)
1901 {
1902 struct hstate *h;
1903 struct node_hstate *nhs = &node_hstates[node->dev.id];
1904 int err;
1905
1906 if (nhs->hugepages_kobj)
1907 return; /* already allocated */
1908
1909 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1910 &node->dev.kobj);
1911 if (!nhs->hugepages_kobj)
1912 return;
1913
1914 for_each_hstate(h) {
1915 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1916 nhs->hstate_kobjs,
1917 &per_node_hstate_attr_group);
1918 if (err) {
1919 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1920 h->name, node->dev.id);
1921 hugetlb_unregister_node(node);
1922 break;
1923 }
1924 }
1925 }
1926
1927 /*
1928 * hugetlb init time: register hstate attributes for all registered node
1929 * devices of nodes that have memory. All on-line nodes should have
1930 * registered their associated device by this time.
1931 */
1932 static void hugetlb_register_all_nodes(void)
1933 {
1934 int nid;
1935
1936 for_each_node_state(nid, N_MEMORY) {
1937 struct node *node = node_devices[nid];
1938 if (node->dev.id == nid)
1939 hugetlb_register_node(node);
1940 }
1941
1942 /*
1943 * Let the node device driver know we're here so it can
1944 * [un]register hstate attributes on node hotplug.
1945 */
1946 register_hugetlbfs_with_node(hugetlb_register_node,
1947 hugetlb_unregister_node);
1948 }
1949 #else /* !CONFIG_NUMA */
1950
1951 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1952 {
1953 BUG();
1954 if (nidp)
1955 *nidp = -1;
1956 return NULL;
1957 }
1958
1959 static void hugetlb_unregister_all_nodes(void) { }
1960
1961 static void hugetlb_register_all_nodes(void) { }
1962
1963 #endif
1964
1965 static void __exit hugetlb_exit(void)
1966 {
1967 struct hstate *h;
1968
1969 hugetlb_unregister_all_nodes();
1970
1971 for_each_hstate(h) {
1972 kobject_put(hstate_kobjs[hstate_index(h)]);
1973 }
1974
1975 kobject_put(hugepages_kobj);
1976 kfree(htlb_fault_mutex_table);
1977 }
1978 module_exit(hugetlb_exit);
1979
1980 static int __init hugetlb_init(void)
1981 {
1982 int i;
1983
1984 /* Some platform decide whether they support huge pages at boot
1985 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1986 * there is no such support
1987 */
1988 if (HPAGE_SHIFT == 0)
1989 return 0;
1990
1991 if (!size_to_hstate(default_hstate_size)) {
1992 default_hstate_size = HPAGE_SIZE;
1993 if (!size_to_hstate(default_hstate_size))
1994 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1995 }
1996 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1997 if (default_hstate_max_huge_pages)
1998 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1999
2000 hugetlb_init_hstates();
2001 gather_bootmem_prealloc();
2002 report_hugepages();
2003
2004 hugetlb_sysfs_init();
2005 hugetlb_register_all_nodes();
2006 hugetlb_cgroup_file_init();
2007
2008 #ifdef CONFIG_SMP
2009 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2010 #else
2011 num_fault_mutexes = 1;
2012 #endif
2013 htlb_fault_mutex_table =
2014 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2015 BUG_ON(!htlb_fault_mutex_table);
2016
2017 for (i = 0; i < num_fault_mutexes; i++)
2018 mutex_init(&htlb_fault_mutex_table[i]);
2019 return 0;
2020 }
2021 module_init(hugetlb_init);
2022
2023 /* Should be called on processing a hugepagesz=... option */
2024 void __init hugetlb_add_hstate(unsigned order)
2025 {
2026 struct hstate *h;
2027 unsigned long i;
2028
2029 if (size_to_hstate(PAGE_SIZE << order)) {
2030 pr_warning("hugepagesz= specified twice, ignoring\n");
2031 return;
2032 }
2033 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2034 BUG_ON(order == 0);
2035 h = &hstates[hugetlb_max_hstate++];
2036 h->order = order;
2037 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2038 h->nr_huge_pages = 0;
2039 h->free_huge_pages = 0;
2040 for (i = 0; i < MAX_NUMNODES; ++i)
2041 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2042 INIT_LIST_HEAD(&h->hugepage_activelist);
2043 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2044 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2045 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2046 huge_page_size(h)/1024);
2047
2048 parsed_hstate = h;
2049 }
2050
2051 static int __init hugetlb_nrpages_setup(char *s)
2052 {
2053 unsigned long *mhp;
2054 static unsigned long *last_mhp;
2055
2056 /*
2057 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2058 * so this hugepages= parameter goes to the "default hstate".
2059 */
2060 if (!hugetlb_max_hstate)
2061 mhp = &default_hstate_max_huge_pages;
2062 else
2063 mhp = &parsed_hstate->max_huge_pages;
2064
2065 if (mhp == last_mhp) {
2066 pr_warning("hugepages= specified twice without "
2067 "interleaving hugepagesz=, ignoring\n");
2068 return 1;
2069 }
2070
2071 if (sscanf(s, "%lu", mhp) <= 0)
2072 *mhp = 0;
2073
2074 /*
2075 * Global state is always initialized later in hugetlb_init.
2076 * But we need to allocate >= MAX_ORDER hstates here early to still
2077 * use the bootmem allocator.
2078 */
2079 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2080 hugetlb_hstate_alloc_pages(parsed_hstate);
2081
2082 last_mhp = mhp;
2083
2084 return 1;
2085 }
2086 __setup("hugepages=", hugetlb_nrpages_setup);
2087
2088 static int __init hugetlb_default_setup(char *s)
2089 {
2090 default_hstate_size = memparse(s, &s);
2091 return 1;
2092 }
2093 __setup("default_hugepagesz=", hugetlb_default_setup);
2094
2095 static unsigned int cpuset_mems_nr(unsigned int *array)
2096 {
2097 int node;
2098 unsigned int nr = 0;
2099
2100 for_each_node_mask(node, cpuset_current_mems_allowed)
2101 nr += array[node];
2102
2103 return nr;
2104 }
2105
2106 #ifdef CONFIG_SYSCTL
2107 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2108 struct ctl_table *table, int write,
2109 void __user *buffer, size_t *length, loff_t *ppos)
2110 {
2111 struct hstate *h = &default_hstate;
2112 unsigned long tmp;
2113 int ret;
2114
2115 tmp = h->max_huge_pages;
2116
2117 if (write && h->order >= MAX_ORDER)
2118 return -EINVAL;
2119
2120 table->data = &tmp;
2121 table->maxlen = sizeof(unsigned long);
2122 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2123 if (ret)
2124 goto out;
2125
2126 if (write) {
2127 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2128 GFP_KERNEL | __GFP_NORETRY);
2129 if (!(obey_mempolicy &&
2130 init_nodemask_of_mempolicy(nodes_allowed))) {
2131 NODEMASK_FREE(nodes_allowed);
2132 nodes_allowed = &node_states[N_MEMORY];
2133 }
2134 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2135
2136 if (nodes_allowed != &node_states[N_MEMORY])
2137 NODEMASK_FREE(nodes_allowed);
2138 }
2139 out:
2140 return ret;
2141 }
2142
2143 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2144 void __user *buffer, size_t *length, loff_t *ppos)
2145 {
2146
2147 return hugetlb_sysctl_handler_common(false, table, write,
2148 buffer, length, ppos);
2149 }
2150
2151 #ifdef CONFIG_NUMA
2152 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2153 void __user *buffer, size_t *length, loff_t *ppos)
2154 {
2155 return hugetlb_sysctl_handler_common(true, table, write,
2156 buffer, length, ppos);
2157 }
2158 #endif /* CONFIG_NUMA */
2159
2160 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2161 void __user *buffer,
2162 size_t *length, loff_t *ppos)
2163 {
2164 struct hstate *h = &default_hstate;
2165 unsigned long tmp;
2166 int ret;
2167
2168 tmp = h->nr_overcommit_huge_pages;
2169
2170 if (write && h->order >= MAX_ORDER)
2171 return -EINVAL;
2172
2173 table->data = &tmp;
2174 table->maxlen = sizeof(unsigned long);
2175 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2176 if (ret)
2177 goto out;
2178
2179 if (write) {
2180 spin_lock(&hugetlb_lock);
2181 h->nr_overcommit_huge_pages = tmp;
2182 spin_unlock(&hugetlb_lock);
2183 }
2184 out:
2185 return ret;
2186 }
2187
2188 #endif /* CONFIG_SYSCTL */
2189
2190 void hugetlb_report_meminfo(struct seq_file *m)
2191 {
2192 struct hstate *h = &default_hstate;
2193 seq_printf(m,
2194 "HugePages_Total: %5lu\n"
2195 "HugePages_Free: %5lu\n"
2196 "HugePages_Rsvd: %5lu\n"
2197 "HugePages_Surp: %5lu\n"
2198 "Hugepagesize: %8lu kB\n",
2199 h->nr_huge_pages,
2200 h->free_huge_pages,
2201 h->resv_huge_pages,
2202 h->surplus_huge_pages,
2203 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2204 }
2205
2206 int hugetlb_report_node_meminfo(int nid, char *buf)
2207 {
2208 struct hstate *h = &default_hstate;
2209 return sprintf(buf,
2210 "Node %d HugePages_Total: %5u\n"
2211 "Node %d HugePages_Free: %5u\n"
2212 "Node %d HugePages_Surp: %5u\n",
2213 nid, h->nr_huge_pages_node[nid],
2214 nid, h->free_huge_pages_node[nid],
2215 nid, h->surplus_huge_pages_node[nid]);
2216 }
2217
2218 void hugetlb_show_meminfo(void)
2219 {
2220 struct hstate *h;
2221 int nid;
2222
2223 for_each_node_state(nid, N_MEMORY)
2224 for_each_hstate(h)
2225 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2226 nid,
2227 h->nr_huge_pages_node[nid],
2228 h->free_huge_pages_node[nid],
2229 h->surplus_huge_pages_node[nid],
2230 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2231 }
2232
2233 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2234 unsigned long hugetlb_total_pages(void)
2235 {
2236 struct hstate *h;
2237 unsigned long nr_total_pages = 0;
2238
2239 for_each_hstate(h)
2240 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2241 return nr_total_pages;
2242 }
2243
2244 static int hugetlb_acct_memory(struct hstate *h, long delta)
2245 {
2246 int ret = -ENOMEM;
2247
2248 spin_lock(&hugetlb_lock);
2249 /*
2250 * When cpuset is configured, it breaks the strict hugetlb page
2251 * reservation as the accounting is done on a global variable. Such
2252 * reservation is completely rubbish in the presence of cpuset because
2253 * the reservation is not checked against page availability for the
2254 * current cpuset. Application can still potentially OOM'ed by kernel
2255 * with lack of free htlb page in cpuset that the task is in.
2256 * Attempt to enforce strict accounting with cpuset is almost
2257 * impossible (or too ugly) because cpuset is too fluid that
2258 * task or memory node can be dynamically moved between cpusets.
2259 *
2260 * The change of semantics for shared hugetlb mapping with cpuset is
2261 * undesirable. However, in order to preserve some of the semantics,
2262 * we fall back to check against current free page availability as
2263 * a best attempt and hopefully to minimize the impact of changing
2264 * semantics that cpuset has.
2265 */
2266 if (delta > 0) {
2267 if (gather_surplus_pages(h, delta) < 0)
2268 goto out;
2269
2270 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2271 return_unused_surplus_pages(h, delta);
2272 goto out;
2273 }
2274 }
2275
2276 ret = 0;
2277 if (delta < 0)
2278 return_unused_surplus_pages(h, (unsigned long) -delta);
2279
2280 out:
2281 spin_unlock(&hugetlb_lock);
2282 return ret;
2283 }
2284
2285 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2286 {
2287 struct resv_map *resv = vma_resv_map(vma);
2288
2289 /*
2290 * This new VMA should share its siblings reservation map if present.
2291 * The VMA will only ever have a valid reservation map pointer where
2292 * it is being copied for another still existing VMA. As that VMA
2293 * has a reference to the reservation map it cannot disappear until
2294 * after this open call completes. It is therefore safe to take a
2295 * new reference here without additional locking.
2296 */
2297 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2298 kref_get(&resv->refs);
2299 }
2300
2301 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2302 {
2303 struct hstate *h = hstate_vma(vma);
2304 struct resv_map *resv = vma_resv_map(vma);
2305 struct hugepage_subpool *spool = subpool_vma(vma);
2306 unsigned long reserve, start, end;
2307
2308 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2309 return;
2310
2311 start = vma_hugecache_offset(h, vma, vma->vm_start);
2312 end = vma_hugecache_offset(h, vma, vma->vm_end);
2313
2314 reserve = (end - start) - region_count(resv, start, end);
2315
2316 kref_put(&resv->refs, resv_map_release);
2317
2318 if (reserve) {
2319 hugetlb_acct_memory(h, -reserve);
2320 hugepage_subpool_put_pages(spool, reserve);
2321 }
2322 }
2323
2324 /*
2325 * We cannot handle pagefaults against hugetlb pages at all. They cause
2326 * handle_mm_fault() to try to instantiate regular-sized pages in the
2327 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2328 * this far.
2329 */
2330 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2331 {
2332 BUG();
2333 return 0;
2334 }
2335
2336 const struct vm_operations_struct hugetlb_vm_ops = {
2337 .fault = hugetlb_vm_op_fault,
2338 .open = hugetlb_vm_op_open,
2339 .close = hugetlb_vm_op_close,
2340 };
2341
2342 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2343 int writable)
2344 {
2345 pte_t entry;
2346
2347 if (writable) {
2348 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2349 vma->vm_page_prot)));
2350 } else {
2351 entry = huge_pte_wrprotect(mk_huge_pte(page,
2352 vma->vm_page_prot));
2353 }
2354 entry = pte_mkyoung(entry);
2355 entry = pte_mkhuge(entry);
2356 entry = arch_make_huge_pte(entry, vma, page, writable);
2357
2358 return entry;
2359 }
2360
2361 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2362 unsigned long address, pte_t *ptep)
2363 {
2364 pte_t entry;
2365
2366 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2367 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2368 update_mmu_cache(vma, address, ptep);
2369 }
2370
2371
2372 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2373 struct vm_area_struct *vma)
2374 {
2375 pte_t *src_pte, *dst_pte, entry;
2376 struct page *ptepage;
2377 unsigned long addr;
2378 int cow;
2379 struct hstate *h = hstate_vma(vma);
2380 unsigned long sz = huge_page_size(h);
2381 unsigned long mmun_start; /* For mmu_notifiers */
2382 unsigned long mmun_end; /* For mmu_notifiers */
2383 int ret = 0;
2384
2385 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2386
2387 mmun_start = vma->vm_start;
2388 mmun_end = vma->vm_end;
2389 if (cow)
2390 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2391
2392 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2393 spinlock_t *src_ptl, *dst_ptl;
2394 src_pte = huge_pte_offset(src, addr);
2395 if (!src_pte)
2396 continue;
2397 dst_pte = huge_pte_alloc(dst, addr, sz);
2398 if (!dst_pte) {
2399 ret = -ENOMEM;
2400 break;
2401 }
2402
2403 /* If the pagetables are shared don't copy or take references */
2404 if (dst_pte == src_pte)
2405 continue;
2406
2407 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2408 src_ptl = huge_pte_lockptr(h, src, src_pte);
2409 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2410 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2411 if (cow)
2412 huge_ptep_set_wrprotect(src, addr, src_pte);
2413 entry = huge_ptep_get(src_pte);
2414 ptepage = pte_page(entry);
2415 get_page(ptepage);
2416 page_dup_rmap(ptepage);
2417 set_huge_pte_at(dst, addr, dst_pte, entry);
2418 }
2419 spin_unlock(src_ptl);
2420 spin_unlock(dst_ptl);
2421 }
2422
2423 if (cow)
2424 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2425
2426 return ret;
2427 }
2428
2429 static int is_hugetlb_entry_migration(pte_t pte)
2430 {
2431 swp_entry_t swp;
2432
2433 if (huge_pte_none(pte) || pte_present(pte))
2434 return 0;
2435 swp = pte_to_swp_entry(pte);
2436 if (non_swap_entry(swp) && is_migration_entry(swp))
2437 return 1;
2438 else
2439 return 0;
2440 }
2441
2442 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2443 {
2444 swp_entry_t swp;
2445
2446 if (huge_pte_none(pte) || pte_present(pte))
2447 return 0;
2448 swp = pte_to_swp_entry(pte);
2449 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2450 return 1;
2451 else
2452 return 0;
2453 }
2454
2455 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2456 unsigned long start, unsigned long end,
2457 struct page *ref_page)
2458 {
2459 int force_flush = 0;
2460 struct mm_struct *mm = vma->vm_mm;
2461 unsigned long address;
2462 pte_t *ptep;
2463 pte_t pte;
2464 spinlock_t *ptl;
2465 struct page *page;
2466 struct hstate *h = hstate_vma(vma);
2467 unsigned long sz = huge_page_size(h);
2468 const unsigned long mmun_start = start; /* For mmu_notifiers */
2469 const unsigned long mmun_end = end; /* For mmu_notifiers */
2470
2471 WARN_ON(!is_vm_hugetlb_page(vma));
2472 BUG_ON(start & ~huge_page_mask(h));
2473 BUG_ON(end & ~huge_page_mask(h));
2474
2475 tlb_start_vma(tlb, vma);
2476 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2477 again:
2478 for (address = start; address < end; address += sz) {
2479 ptep = huge_pte_offset(mm, address);
2480 if (!ptep)
2481 continue;
2482
2483 ptl = huge_pte_lock(h, mm, ptep);
2484 if (huge_pmd_unshare(mm, &address, ptep))
2485 goto unlock;
2486
2487 pte = huge_ptep_get(ptep);
2488 if (huge_pte_none(pte))
2489 goto unlock;
2490
2491 /*
2492 * HWPoisoned hugepage is already unmapped and dropped reference
2493 */
2494 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2495 huge_pte_clear(mm, address, ptep);
2496 goto unlock;
2497 }
2498
2499 page = pte_page(pte);
2500 /*
2501 * If a reference page is supplied, it is because a specific
2502 * page is being unmapped, not a range. Ensure the page we
2503 * are about to unmap is the actual page of interest.
2504 */
2505 if (ref_page) {
2506 if (page != ref_page)
2507 goto unlock;
2508
2509 /*
2510 * Mark the VMA as having unmapped its page so that
2511 * future faults in this VMA will fail rather than
2512 * looking like data was lost
2513 */
2514 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2515 }
2516
2517 pte = huge_ptep_get_and_clear(mm, address, ptep);
2518 tlb_remove_tlb_entry(tlb, ptep, address);
2519 if (huge_pte_dirty(pte))
2520 set_page_dirty(page);
2521
2522 page_remove_rmap(page);
2523 force_flush = !__tlb_remove_page(tlb, page);
2524 if (force_flush) {
2525 spin_unlock(ptl);
2526 break;
2527 }
2528 /* Bail out after unmapping reference page if supplied */
2529 if (ref_page) {
2530 spin_unlock(ptl);
2531 break;
2532 }
2533 unlock:
2534 spin_unlock(ptl);
2535 }
2536 /*
2537 * mmu_gather ran out of room to batch pages, we break out of
2538 * the PTE lock to avoid doing the potential expensive TLB invalidate
2539 * and page-free while holding it.
2540 */
2541 if (force_flush) {
2542 force_flush = 0;
2543 tlb_flush_mmu(tlb);
2544 if (address < end && !ref_page)
2545 goto again;
2546 }
2547 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2548 tlb_end_vma(tlb, vma);
2549 }
2550
2551 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2552 struct vm_area_struct *vma, unsigned long start,
2553 unsigned long end, struct page *ref_page)
2554 {
2555 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2556
2557 /*
2558 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2559 * test will fail on a vma being torn down, and not grab a page table
2560 * on its way out. We're lucky that the flag has such an appropriate
2561 * name, and can in fact be safely cleared here. We could clear it
2562 * before the __unmap_hugepage_range above, but all that's necessary
2563 * is to clear it before releasing the i_mmap_mutex. This works
2564 * because in the context this is called, the VMA is about to be
2565 * destroyed and the i_mmap_mutex is held.
2566 */
2567 vma->vm_flags &= ~VM_MAYSHARE;
2568 }
2569
2570 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2571 unsigned long end, struct page *ref_page)
2572 {
2573 struct mm_struct *mm;
2574 struct mmu_gather tlb;
2575
2576 mm = vma->vm_mm;
2577
2578 tlb_gather_mmu(&tlb, mm, start, end);
2579 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2580 tlb_finish_mmu(&tlb, start, end);
2581 }
2582
2583 /*
2584 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2585 * mappping it owns the reserve page for. The intention is to unmap the page
2586 * from other VMAs and let the children be SIGKILLed if they are faulting the
2587 * same region.
2588 */
2589 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2590 struct page *page, unsigned long address)
2591 {
2592 struct hstate *h = hstate_vma(vma);
2593 struct vm_area_struct *iter_vma;
2594 struct address_space *mapping;
2595 pgoff_t pgoff;
2596
2597 /*
2598 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2599 * from page cache lookup which is in HPAGE_SIZE units.
2600 */
2601 address = address & huge_page_mask(h);
2602 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2603 vma->vm_pgoff;
2604 mapping = file_inode(vma->vm_file)->i_mapping;
2605
2606 /*
2607 * Take the mapping lock for the duration of the table walk. As
2608 * this mapping should be shared between all the VMAs,
2609 * __unmap_hugepage_range() is called as the lock is already held
2610 */
2611 mutex_lock(&mapping->i_mmap_mutex);
2612 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2613 /* Do not unmap the current VMA */
2614 if (iter_vma == vma)
2615 continue;
2616
2617 /*
2618 * Unmap the page from other VMAs without their own reserves.
2619 * They get marked to be SIGKILLed if they fault in these
2620 * areas. This is because a future no-page fault on this VMA
2621 * could insert a zeroed page instead of the data existing
2622 * from the time of fork. This would look like data corruption
2623 */
2624 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2625 unmap_hugepage_range(iter_vma, address,
2626 address + huge_page_size(h), page);
2627 }
2628 mutex_unlock(&mapping->i_mmap_mutex);
2629
2630 return 1;
2631 }
2632
2633 /*
2634 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2635 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2636 * cannot race with other handlers or page migration.
2637 * Keep the pte_same checks anyway to make transition from the mutex easier.
2638 */
2639 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2640 unsigned long address, pte_t *ptep, pte_t pte,
2641 struct page *pagecache_page, spinlock_t *ptl)
2642 {
2643 struct hstate *h = hstate_vma(vma);
2644 struct page *old_page, *new_page;
2645 int outside_reserve = 0;
2646 unsigned long mmun_start; /* For mmu_notifiers */
2647 unsigned long mmun_end; /* For mmu_notifiers */
2648
2649 old_page = pte_page(pte);
2650
2651 retry_avoidcopy:
2652 /* If no-one else is actually using this page, avoid the copy
2653 * and just make the page writable */
2654 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2655 page_move_anon_rmap(old_page, vma, address);
2656 set_huge_ptep_writable(vma, address, ptep);
2657 return 0;
2658 }
2659
2660 /*
2661 * If the process that created a MAP_PRIVATE mapping is about to
2662 * perform a COW due to a shared page count, attempt to satisfy
2663 * the allocation without using the existing reserves. The pagecache
2664 * page is used to determine if the reserve at this address was
2665 * consumed or not. If reserves were used, a partial faulted mapping
2666 * at the time of fork() could consume its reserves on COW instead
2667 * of the full address range.
2668 */
2669 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2670 old_page != pagecache_page)
2671 outside_reserve = 1;
2672
2673 page_cache_get(old_page);
2674
2675 /* Drop page table lock as buddy allocator may be called */
2676 spin_unlock(ptl);
2677 new_page = alloc_huge_page(vma, address, outside_reserve);
2678
2679 if (IS_ERR(new_page)) {
2680 long err = PTR_ERR(new_page);
2681 page_cache_release(old_page);
2682
2683 /*
2684 * If a process owning a MAP_PRIVATE mapping fails to COW,
2685 * it is due to references held by a child and an insufficient
2686 * huge page pool. To guarantee the original mappers
2687 * reliability, unmap the page from child processes. The child
2688 * may get SIGKILLed if it later faults.
2689 */
2690 if (outside_reserve) {
2691 BUG_ON(huge_pte_none(pte));
2692 if (unmap_ref_private(mm, vma, old_page, address)) {
2693 BUG_ON(huge_pte_none(pte));
2694 spin_lock(ptl);
2695 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2696 if (likely(ptep &&
2697 pte_same(huge_ptep_get(ptep), pte)))
2698 goto retry_avoidcopy;
2699 /*
2700 * race occurs while re-acquiring page table
2701 * lock, and our job is done.
2702 */
2703 return 0;
2704 }
2705 WARN_ON_ONCE(1);
2706 }
2707
2708 /* Caller expects lock to be held */
2709 spin_lock(ptl);
2710 if (err == -ENOMEM)
2711 return VM_FAULT_OOM;
2712 else
2713 return VM_FAULT_SIGBUS;
2714 }
2715
2716 /*
2717 * When the original hugepage is shared one, it does not have
2718 * anon_vma prepared.
2719 */
2720 if (unlikely(anon_vma_prepare(vma))) {
2721 page_cache_release(new_page);
2722 page_cache_release(old_page);
2723 /* Caller expects lock to be held */
2724 spin_lock(ptl);
2725 return VM_FAULT_OOM;
2726 }
2727
2728 copy_user_huge_page(new_page, old_page, address, vma,
2729 pages_per_huge_page(h));
2730 __SetPageUptodate(new_page);
2731
2732 mmun_start = address & huge_page_mask(h);
2733 mmun_end = mmun_start + huge_page_size(h);
2734 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2735 /*
2736 * Retake the page table lock to check for racing updates
2737 * before the page tables are altered
2738 */
2739 spin_lock(ptl);
2740 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2741 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2742 ClearPagePrivate(new_page);
2743
2744 /* Break COW */
2745 huge_ptep_clear_flush(vma, address, ptep);
2746 set_huge_pte_at(mm, address, ptep,
2747 make_huge_pte(vma, new_page, 1));
2748 page_remove_rmap(old_page);
2749 hugepage_add_new_anon_rmap(new_page, vma, address);
2750 /* Make the old page be freed below */
2751 new_page = old_page;
2752 }
2753 spin_unlock(ptl);
2754 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2755 page_cache_release(new_page);
2756 page_cache_release(old_page);
2757
2758 /* Caller expects lock to be held */
2759 spin_lock(ptl);
2760 return 0;
2761 }
2762
2763 /* Return the pagecache page at a given address within a VMA */
2764 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2765 struct vm_area_struct *vma, unsigned long address)
2766 {
2767 struct address_space *mapping;
2768 pgoff_t idx;
2769
2770 mapping = vma->vm_file->f_mapping;
2771 idx = vma_hugecache_offset(h, vma, address);
2772
2773 return find_lock_page(mapping, idx);
2774 }
2775
2776 /*
2777 * Return whether there is a pagecache page to back given address within VMA.
2778 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2779 */
2780 static bool hugetlbfs_pagecache_present(struct hstate *h,
2781 struct vm_area_struct *vma, unsigned long address)
2782 {
2783 struct address_space *mapping;
2784 pgoff_t idx;
2785 struct page *page;
2786
2787 mapping = vma->vm_file->f_mapping;
2788 idx = vma_hugecache_offset(h, vma, address);
2789
2790 page = find_get_page(mapping, idx);
2791 if (page)
2792 put_page(page);
2793 return page != NULL;
2794 }
2795
2796 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2797 struct address_space *mapping, pgoff_t idx,
2798 unsigned long address, pte_t *ptep, unsigned int flags)
2799 {
2800 struct hstate *h = hstate_vma(vma);
2801 int ret = VM_FAULT_SIGBUS;
2802 int anon_rmap = 0;
2803 unsigned long size;
2804 struct page *page;
2805 pte_t new_pte;
2806 spinlock_t *ptl;
2807
2808 /*
2809 * Currently, we are forced to kill the process in the event the
2810 * original mapper has unmapped pages from the child due to a failed
2811 * COW. Warn that such a situation has occurred as it may not be obvious
2812 */
2813 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2814 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2815 current->pid);
2816 return ret;
2817 }
2818
2819 /*
2820 * Use page lock to guard against racing truncation
2821 * before we get page_table_lock.
2822 */
2823 retry:
2824 page = find_lock_page(mapping, idx);
2825 if (!page) {
2826 size = i_size_read(mapping->host) >> huge_page_shift(h);
2827 if (idx >= size)
2828 goto out;
2829 page = alloc_huge_page(vma, address, 0);
2830 if (IS_ERR(page)) {
2831 ret = PTR_ERR(page);
2832 if (ret == -ENOMEM)
2833 ret = VM_FAULT_OOM;
2834 else
2835 ret = VM_FAULT_SIGBUS;
2836 goto out;
2837 }
2838 clear_huge_page(page, address, pages_per_huge_page(h));
2839 __SetPageUptodate(page);
2840
2841 if (vma->vm_flags & VM_MAYSHARE) {
2842 int err;
2843 struct inode *inode = mapping->host;
2844
2845 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2846 if (err) {
2847 put_page(page);
2848 if (err == -EEXIST)
2849 goto retry;
2850 goto out;
2851 }
2852 ClearPagePrivate(page);
2853
2854 spin_lock(&inode->i_lock);
2855 inode->i_blocks += blocks_per_huge_page(h);
2856 spin_unlock(&inode->i_lock);
2857 } else {
2858 lock_page(page);
2859 if (unlikely(anon_vma_prepare(vma))) {
2860 ret = VM_FAULT_OOM;
2861 goto backout_unlocked;
2862 }
2863 anon_rmap = 1;
2864 }
2865 } else {
2866 /*
2867 * If memory error occurs between mmap() and fault, some process
2868 * don't have hwpoisoned swap entry for errored virtual address.
2869 * So we need to block hugepage fault by PG_hwpoison bit check.
2870 */
2871 if (unlikely(PageHWPoison(page))) {
2872 ret = VM_FAULT_HWPOISON |
2873 VM_FAULT_SET_HINDEX(hstate_index(h));
2874 goto backout_unlocked;
2875 }
2876 }
2877
2878 /*
2879 * If we are going to COW a private mapping later, we examine the
2880 * pending reservations for this page now. This will ensure that
2881 * any allocations necessary to record that reservation occur outside
2882 * the spinlock.
2883 */
2884 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2885 if (vma_needs_reservation(h, vma, address) < 0) {
2886 ret = VM_FAULT_OOM;
2887 goto backout_unlocked;
2888 }
2889
2890 ptl = huge_pte_lockptr(h, mm, ptep);
2891 spin_lock(ptl);
2892 size = i_size_read(mapping->host) >> huge_page_shift(h);
2893 if (idx >= size)
2894 goto backout;
2895
2896 ret = 0;
2897 if (!huge_pte_none(huge_ptep_get(ptep)))
2898 goto backout;
2899
2900 if (anon_rmap) {
2901 ClearPagePrivate(page);
2902 hugepage_add_new_anon_rmap(page, vma, address);
2903 } else
2904 page_dup_rmap(page);
2905 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2906 && (vma->vm_flags & VM_SHARED)));
2907 set_huge_pte_at(mm, address, ptep, new_pte);
2908
2909 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2910 /* Optimization, do the COW without a second fault */
2911 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2912 }
2913
2914 spin_unlock(ptl);
2915 unlock_page(page);
2916 out:
2917 return ret;
2918
2919 backout:
2920 spin_unlock(ptl);
2921 backout_unlocked:
2922 unlock_page(page);
2923 put_page(page);
2924 goto out;
2925 }
2926
2927 #ifdef CONFIG_SMP
2928 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2929 struct vm_area_struct *vma,
2930 struct address_space *mapping,
2931 pgoff_t idx, unsigned long address)
2932 {
2933 unsigned long key[2];
2934 u32 hash;
2935
2936 if (vma->vm_flags & VM_SHARED) {
2937 key[0] = (unsigned long) mapping;
2938 key[1] = idx;
2939 } else {
2940 key[0] = (unsigned long) mm;
2941 key[1] = address >> huge_page_shift(h);
2942 }
2943
2944 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2945
2946 return hash & (num_fault_mutexes - 1);
2947 }
2948 #else
2949 /*
2950 * For uniprocesor systems we always use a single mutex, so just
2951 * return 0 and avoid the hashing overhead.
2952 */
2953 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2954 struct vm_area_struct *vma,
2955 struct address_space *mapping,
2956 pgoff_t idx, unsigned long address)
2957 {
2958 return 0;
2959 }
2960 #endif
2961
2962 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2963 unsigned long address, unsigned int flags)
2964 {
2965 pte_t *ptep, entry;
2966 spinlock_t *ptl;
2967 int ret;
2968 u32 hash;
2969 pgoff_t idx;
2970 struct page *page = NULL;
2971 struct page *pagecache_page = NULL;
2972 struct hstate *h = hstate_vma(vma);
2973 struct address_space *mapping;
2974
2975 address &= huge_page_mask(h);
2976
2977 ptep = huge_pte_offset(mm, address);
2978 if (ptep) {
2979 entry = huge_ptep_get(ptep);
2980 if (unlikely(is_hugetlb_entry_migration(entry))) {
2981 migration_entry_wait_huge(vma, mm, ptep);
2982 return 0;
2983 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2984 return VM_FAULT_HWPOISON_LARGE |
2985 VM_FAULT_SET_HINDEX(hstate_index(h));
2986 }
2987
2988 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2989 if (!ptep)
2990 return VM_FAULT_OOM;
2991
2992 mapping = vma->vm_file->f_mapping;
2993 idx = vma_hugecache_offset(h, vma, address);
2994
2995 /*
2996 * Serialize hugepage allocation and instantiation, so that we don't
2997 * get spurious allocation failures if two CPUs race to instantiate
2998 * the same page in the page cache.
2999 */
3000 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3001 mutex_lock(&htlb_fault_mutex_table[hash]);
3002
3003 entry = huge_ptep_get(ptep);
3004 if (huge_pte_none(entry)) {
3005 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3006 goto out_mutex;
3007 }
3008
3009 ret = 0;
3010
3011 /*
3012 * If we are going to COW the mapping later, we examine the pending
3013 * reservations for this page now. This will ensure that any
3014 * allocations necessary to record that reservation occur outside the
3015 * spinlock. For private mappings, we also lookup the pagecache
3016 * page now as it is used to determine if a reservation has been
3017 * consumed.
3018 */
3019 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3020 if (vma_needs_reservation(h, vma, address) < 0) {
3021 ret = VM_FAULT_OOM;
3022 goto out_mutex;
3023 }
3024
3025 if (!(vma->vm_flags & VM_MAYSHARE))
3026 pagecache_page = hugetlbfs_pagecache_page(h,
3027 vma, address);
3028 }
3029
3030 /*
3031 * hugetlb_cow() requires page locks of pte_page(entry) and
3032 * pagecache_page, so here we need take the former one
3033 * when page != pagecache_page or !pagecache_page.
3034 * Note that locking order is always pagecache_page -> page,
3035 * so no worry about deadlock.
3036 */
3037 page = pte_page(entry);
3038 get_page(page);
3039 if (page != pagecache_page)
3040 lock_page(page);
3041
3042 ptl = huge_pte_lockptr(h, mm, ptep);
3043 spin_lock(ptl);
3044 /* Check for a racing update before calling hugetlb_cow */
3045 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3046 goto out_ptl;
3047
3048
3049 if (flags & FAULT_FLAG_WRITE) {
3050 if (!huge_pte_write(entry)) {
3051 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3052 pagecache_page, ptl);
3053 goto out_ptl;
3054 }
3055 entry = huge_pte_mkdirty(entry);
3056 }
3057 entry = pte_mkyoung(entry);
3058 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3059 flags & FAULT_FLAG_WRITE))
3060 update_mmu_cache(vma, address, ptep);
3061
3062 out_ptl:
3063 spin_unlock(ptl);
3064
3065 if (pagecache_page) {
3066 unlock_page(pagecache_page);
3067 put_page(pagecache_page);
3068 }
3069 if (page != pagecache_page)
3070 unlock_page(page);
3071 put_page(page);
3072
3073 out_mutex:
3074 mutex_unlock(&htlb_fault_mutex_table[hash]);
3075 return ret;
3076 }
3077
3078 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3079 struct page **pages, struct vm_area_struct **vmas,
3080 unsigned long *position, unsigned long *nr_pages,
3081 long i, unsigned int flags)
3082 {
3083 unsigned long pfn_offset;
3084 unsigned long vaddr = *position;
3085 unsigned long remainder = *nr_pages;
3086 struct hstate *h = hstate_vma(vma);
3087
3088 while (vaddr < vma->vm_end && remainder) {
3089 pte_t *pte;
3090 spinlock_t *ptl = NULL;
3091 int absent;
3092 struct page *page;
3093
3094 /*
3095 * Some archs (sparc64, sh*) have multiple pte_ts to
3096 * each hugepage. We have to make sure we get the
3097 * first, for the page indexing below to work.
3098 *
3099 * Note that page table lock is not held when pte is null.
3100 */
3101 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3102 if (pte)
3103 ptl = huge_pte_lock(h, mm, pte);
3104 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3105
3106 /*
3107 * When coredumping, it suits get_dump_page if we just return
3108 * an error where there's an empty slot with no huge pagecache
3109 * to back it. This way, we avoid allocating a hugepage, and
3110 * the sparse dumpfile avoids allocating disk blocks, but its
3111 * huge holes still show up with zeroes where they need to be.
3112 */
3113 if (absent && (flags & FOLL_DUMP) &&
3114 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3115 if (pte)
3116 spin_unlock(ptl);
3117 remainder = 0;
3118 break;
3119 }
3120
3121 /*
3122 * We need call hugetlb_fault for both hugepages under migration
3123 * (in which case hugetlb_fault waits for the migration,) and
3124 * hwpoisoned hugepages (in which case we need to prevent the
3125 * caller from accessing to them.) In order to do this, we use
3126 * here is_swap_pte instead of is_hugetlb_entry_migration and
3127 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3128 * both cases, and because we can't follow correct pages
3129 * directly from any kind of swap entries.
3130 */
3131 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3132 ((flags & FOLL_WRITE) &&
3133 !huge_pte_write(huge_ptep_get(pte)))) {
3134 int ret;
3135
3136 if (pte)
3137 spin_unlock(ptl);
3138 ret = hugetlb_fault(mm, vma, vaddr,
3139 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3140 if (!(ret & VM_FAULT_ERROR))
3141 continue;
3142
3143 remainder = 0;
3144 break;
3145 }
3146
3147 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3148 page = pte_page(huge_ptep_get(pte));
3149 same_page:
3150 if (pages) {
3151 pages[i] = mem_map_offset(page, pfn_offset);
3152 get_page_foll(pages[i]);
3153 }
3154
3155 if (vmas)
3156 vmas[i] = vma;
3157
3158 vaddr += PAGE_SIZE;
3159 ++pfn_offset;
3160 --remainder;
3161 ++i;
3162 if (vaddr < vma->vm_end && remainder &&
3163 pfn_offset < pages_per_huge_page(h)) {
3164 /*
3165 * We use pfn_offset to avoid touching the pageframes
3166 * of this compound page.
3167 */
3168 goto same_page;
3169 }
3170 spin_unlock(ptl);
3171 }
3172 *nr_pages = remainder;
3173 *position = vaddr;
3174
3175 return i ? i : -EFAULT;
3176 }
3177
3178 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3179 unsigned long address, unsigned long end, pgprot_t newprot)
3180 {
3181 struct mm_struct *mm = vma->vm_mm;
3182 unsigned long start = address;
3183 pte_t *ptep;
3184 pte_t pte;
3185 struct hstate *h = hstate_vma(vma);
3186 unsigned long pages = 0;
3187
3188 BUG_ON(address >= end);
3189 flush_cache_range(vma, address, end);
3190
3191 mmu_notifier_invalidate_range_start(mm, start, end);
3192 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3193 for (; address < end; address += huge_page_size(h)) {
3194 spinlock_t *ptl;
3195 ptep = huge_pte_offset(mm, address);
3196 if (!ptep)
3197 continue;
3198 ptl = huge_pte_lock(h, mm, ptep);
3199 if (huge_pmd_unshare(mm, &address, ptep)) {
3200 pages++;
3201 spin_unlock(ptl);
3202 continue;
3203 }
3204 if (!huge_pte_none(huge_ptep_get(ptep))) {
3205 pte = huge_ptep_get_and_clear(mm, address, ptep);
3206 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3207 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3208 set_huge_pte_at(mm, address, ptep, pte);
3209 pages++;
3210 }
3211 spin_unlock(ptl);
3212 }
3213 /*
3214 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3215 * may have cleared our pud entry and done put_page on the page table:
3216 * once we release i_mmap_mutex, another task can do the final put_page
3217 * and that page table be reused and filled with junk.
3218 */
3219 flush_tlb_range(vma, start, end);
3220 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3221 mmu_notifier_invalidate_range_end(mm, start, end);
3222
3223 return pages << h->order;
3224 }
3225
3226 int hugetlb_reserve_pages(struct inode *inode,
3227 long from, long to,
3228 struct vm_area_struct *vma,
3229 vm_flags_t vm_flags)
3230 {
3231 long ret, chg;
3232 struct hstate *h = hstate_inode(inode);
3233 struct hugepage_subpool *spool = subpool_inode(inode);
3234 struct resv_map *resv_map;
3235
3236 /*
3237 * Only apply hugepage reservation if asked. At fault time, an
3238 * attempt will be made for VM_NORESERVE to allocate a page
3239 * without using reserves
3240 */
3241 if (vm_flags & VM_NORESERVE)
3242 return 0;
3243
3244 /*
3245 * Shared mappings base their reservation on the number of pages that
3246 * are already allocated on behalf of the file. Private mappings need
3247 * to reserve the full area even if read-only as mprotect() may be
3248 * called to make the mapping read-write. Assume !vma is a shm mapping
3249 */
3250 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3251 resv_map = inode_resv_map(inode);
3252
3253 chg = region_chg(resv_map, from, to);
3254
3255 } else {
3256 resv_map = resv_map_alloc();
3257 if (!resv_map)
3258 return -ENOMEM;
3259
3260 chg = to - from;
3261
3262 set_vma_resv_map(vma, resv_map);
3263 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3264 }
3265
3266 if (chg < 0) {
3267 ret = chg;
3268 goto out_err;
3269 }
3270
3271 /* There must be enough pages in the subpool for the mapping */
3272 if (hugepage_subpool_get_pages(spool, chg)) {
3273 ret = -ENOSPC;
3274 goto out_err;
3275 }
3276
3277 /*
3278 * Check enough hugepages are available for the reservation.
3279 * Hand the pages back to the subpool if there are not
3280 */
3281 ret = hugetlb_acct_memory(h, chg);
3282 if (ret < 0) {
3283 hugepage_subpool_put_pages(spool, chg);
3284 goto out_err;
3285 }
3286
3287 /*
3288 * Account for the reservations made. Shared mappings record regions
3289 * that have reservations as they are shared by multiple VMAs.
3290 * When the last VMA disappears, the region map says how much
3291 * the reservation was and the page cache tells how much of
3292 * the reservation was consumed. Private mappings are per-VMA and
3293 * only the consumed reservations are tracked. When the VMA
3294 * disappears, the original reservation is the VMA size and the
3295 * consumed reservations are stored in the map. Hence, nothing
3296 * else has to be done for private mappings here
3297 */
3298 if (!vma || vma->vm_flags & VM_MAYSHARE)
3299 region_add(resv_map, from, to);
3300 return 0;
3301 out_err:
3302 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3303 kref_put(&resv_map->refs, resv_map_release);
3304 return ret;
3305 }
3306
3307 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3308 {
3309 struct hstate *h = hstate_inode(inode);
3310 struct resv_map *resv_map = inode_resv_map(inode);
3311 long chg = 0;
3312 struct hugepage_subpool *spool = subpool_inode(inode);
3313
3314 if (resv_map)
3315 chg = region_truncate(resv_map, offset);
3316 spin_lock(&inode->i_lock);
3317 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3318 spin_unlock(&inode->i_lock);
3319
3320 hugepage_subpool_put_pages(spool, (chg - freed));
3321 hugetlb_acct_memory(h, -(chg - freed));
3322 }
3323
3324 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3325 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3326 struct vm_area_struct *vma,
3327 unsigned long addr, pgoff_t idx)
3328 {
3329 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3330 svma->vm_start;
3331 unsigned long sbase = saddr & PUD_MASK;
3332 unsigned long s_end = sbase + PUD_SIZE;
3333
3334 /* Allow segments to share if only one is marked locked */
3335 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3336 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3337
3338 /*
3339 * match the virtual addresses, permission and the alignment of the
3340 * page table page.
3341 */
3342 if (pmd_index(addr) != pmd_index(saddr) ||
3343 vm_flags != svm_flags ||
3344 sbase < svma->vm_start || svma->vm_end < s_end)
3345 return 0;
3346
3347 return saddr;
3348 }
3349
3350 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3351 {
3352 unsigned long base = addr & PUD_MASK;
3353 unsigned long end = base + PUD_SIZE;
3354
3355 /*
3356 * check on proper vm_flags and page table alignment
3357 */
3358 if (vma->vm_flags & VM_MAYSHARE &&
3359 vma->vm_start <= base && end <= vma->vm_end)
3360 return 1;
3361 return 0;
3362 }
3363
3364 /*
3365 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3366 * and returns the corresponding pte. While this is not necessary for the
3367 * !shared pmd case because we can allocate the pmd later as well, it makes the
3368 * code much cleaner. pmd allocation is essential for the shared case because
3369 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3370 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3371 * bad pmd for sharing.
3372 */
3373 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3374 {
3375 struct vm_area_struct *vma = find_vma(mm, addr);
3376 struct address_space *mapping = vma->vm_file->f_mapping;
3377 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3378 vma->vm_pgoff;
3379 struct vm_area_struct *svma;
3380 unsigned long saddr;
3381 pte_t *spte = NULL;
3382 pte_t *pte;
3383 spinlock_t *ptl;
3384
3385 if (!vma_shareable(vma, addr))
3386 return (pte_t *)pmd_alloc(mm, pud, addr);
3387
3388 mutex_lock(&mapping->i_mmap_mutex);
3389 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3390 if (svma == vma)
3391 continue;
3392
3393 saddr = page_table_shareable(svma, vma, addr, idx);
3394 if (saddr) {
3395 spte = huge_pte_offset(svma->vm_mm, saddr);
3396 if (spte) {
3397 get_page(virt_to_page(spte));
3398 break;
3399 }
3400 }
3401 }
3402
3403 if (!spte)
3404 goto out;
3405
3406 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3407 spin_lock(ptl);
3408 if (pud_none(*pud))
3409 pud_populate(mm, pud,
3410 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3411 else
3412 put_page(virt_to_page(spte));
3413 spin_unlock(ptl);
3414 out:
3415 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3416 mutex_unlock(&mapping->i_mmap_mutex);
3417 return pte;
3418 }
3419
3420 /*
3421 * unmap huge page backed by shared pte.
3422 *
3423 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3424 * indicated by page_count > 1, unmap is achieved by clearing pud and
3425 * decrementing the ref count. If count == 1, the pte page is not shared.
3426 *
3427 * called with page table lock held.
3428 *
3429 * returns: 1 successfully unmapped a shared pte page
3430 * 0 the underlying pte page is not shared, or it is the last user
3431 */
3432 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3433 {
3434 pgd_t *pgd = pgd_offset(mm, *addr);
3435 pud_t *pud = pud_offset(pgd, *addr);
3436
3437 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3438 if (page_count(virt_to_page(ptep)) == 1)
3439 return 0;
3440
3441 pud_clear(pud);
3442 put_page(virt_to_page(ptep));
3443 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3444 return 1;
3445 }
3446 #define want_pmd_share() (1)
3447 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3448 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3449 {
3450 return NULL;
3451 }
3452 #define want_pmd_share() (0)
3453 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3454
3455 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3456 pte_t *huge_pte_alloc(struct mm_struct *mm,
3457 unsigned long addr, unsigned long sz)
3458 {
3459 pgd_t *pgd;
3460 pud_t *pud;
3461 pte_t *pte = NULL;
3462
3463 pgd = pgd_offset(mm, addr);
3464 pud = pud_alloc(mm, pgd, addr);
3465 if (pud) {
3466 if (sz == PUD_SIZE) {
3467 pte = (pte_t *)pud;
3468 } else {
3469 BUG_ON(sz != PMD_SIZE);
3470 if (want_pmd_share() && pud_none(*pud))
3471 pte = huge_pmd_share(mm, addr, pud);
3472 else
3473 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3474 }
3475 }
3476 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3477
3478 return pte;
3479 }
3480
3481 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3482 {
3483 pgd_t *pgd;
3484 pud_t *pud;
3485 pmd_t *pmd = NULL;
3486
3487 pgd = pgd_offset(mm, addr);
3488 if (pgd_present(*pgd)) {
3489 pud = pud_offset(pgd, addr);
3490 if (pud_present(*pud)) {
3491 if (pud_huge(*pud))
3492 return (pte_t *)pud;
3493 pmd = pmd_offset(pud, addr);
3494 }
3495 }
3496 return (pte_t *) pmd;
3497 }
3498
3499 struct page *
3500 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3501 pmd_t *pmd, int write)
3502 {
3503 struct page *page;
3504
3505 page = pte_page(*(pte_t *)pmd);
3506 if (page)
3507 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3508 return page;
3509 }
3510
3511 struct page *
3512 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3513 pud_t *pud, int write)
3514 {
3515 struct page *page;
3516
3517 page = pte_page(*(pte_t *)pud);
3518 if (page)
3519 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3520 return page;
3521 }
3522
3523 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3524
3525 /* Can be overriden by architectures */
3526 struct page * __weak
3527 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3528 pud_t *pud, int write)
3529 {
3530 BUG();
3531 return NULL;
3532 }
3533
3534 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3535
3536 #ifdef CONFIG_MEMORY_FAILURE
3537
3538 /* Should be called in hugetlb_lock */
3539 static int is_hugepage_on_freelist(struct page *hpage)
3540 {
3541 struct page *page;
3542 struct page *tmp;
3543 struct hstate *h = page_hstate(hpage);
3544 int nid = page_to_nid(hpage);
3545
3546 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3547 if (page == hpage)
3548 return 1;
3549 return 0;
3550 }
3551
3552 /*
3553 * This function is called from memory failure code.
3554 * Assume the caller holds page lock of the head page.
3555 */
3556 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3557 {
3558 struct hstate *h = page_hstate(hpage);
3559 int nid = page_to_nid(hpage);
3560 int ret = -EBUSY;
3561
3562 spin_lock(&hugetlb_lock);
3563 if (is_hugepage_on_freelist(hpage)) {
3564 /*
3565 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3566 * but dangling hpage->lru can trigger list-debug warnings
3567 * (this happens when we call unpoison_memory() on it),
3568 * so let it point to itself with list_del_init().
3569 */
3570 list_del_init(&hpage->lru);
3571 set_page_refcounted(hpage);
3572 h->free_huge_pages--;
3573 h->free_huge_pages_node[nid]--;
3574 ret = 0;
3575 }
3576 spin_unlock(&hugetlb_lock);
3577 return ret;
3578 }
3579 #endif
3580
3581 bool isolate_huge_page(struct page *page, struct list_head *list)
3582 {
3583 VM_BUG_ON_PAGE(!PageHead(page), page);
3584 if (!get_page_unless_zero(page))
3585 return false;
3586 spin_lock(&hugetlb_lock);
3587 list_move_tail(&page->lru, list);
3588 spin_unlock(&hugetlb_lock);
3589 return true;
3590 }
3591
3592 void putback_active_hugepage(struct page *page)
3593 {
3594 VM_BUG_ON_PAGE(!PageHead(page), page);
3595 spin_lock(&hugetlb_lock);
3596 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3597 spin_unlock(&hugetlb_lock);
3598 put_page(page);
3599 }
3600
3601 bool is_hugepage_active(struct page *page)
3602 {
3603 VM_BUG_ON_PAGE(!PageHuge(page), page);
3604 /*
3605 * This function can be called for a tail page because the caller,
3606 * scan_movable_pages, scans through a given pfn-range which typically
3607 * covers one memory block. In systems using gigantic hugepage (1GB
3608 * for x86_64,) a hugepage is larger than a memory block, and we don't
3609 * support migrating such large hugepages for now, so return false
3610 * when called for tail pages.
3611 */
3612 if (PageTail(page))
3613 return false;
3614 /*
3615 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3616 * so we should return false for them.
3617 */
3618 if (unlikely(PageHWPoison(page)))
3619 return false;
3620 return page_count(page) > 0;
3621 }
This page took 0.105599 seconds and 5 git commands to generate.