fs_enet: check for phydev existence in the ethtool handlers
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 unsigned long nr_overcommit_huge_pages;
35 static int hugetlb_next_nid;
36
37 /*
38 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39 */
40 static DEFINE_SPINLOCK(hugetlb_lock);
41
42 static void clear_huge_page(struct page *page, unsigned long addr)
43 {
44 int i;
45
46 might_sleep();
47 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48 cond_resched();
49 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
50 }
51 }
52
53 static void copy_huge_page(struct page *dst, struct page *src,
54 unsigned long addr, struct vm_area_struct *vma)
55 {
56 int i;
57
58 might_sleep();
59 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60 cond_resched();
61 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
62 }
63 }
64
65 static void enqueue_huge_page(struct page *page)
66 {
67 int nid = page_to_nid(page);
68 list_add(&page->lru, &hugepage_freelists[nid]);
69 free_huge_pages++;
70 free_huge_pages_node[nid]++;
71 }
72
73 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74 unsigned long address)
75 {
76 int nid;
77 struct page *page = NULL;
78 struct mempolicy *mpol;
79 struct zonelist *zonelist = huge_zonelist(vma, address,
80 htlb_alloc_mask, &mpol);
81 struct zone **z;
82
83 for (z = zonelist->zones; *z; z++) {
84 nid = zone_to_nid(*z);
85 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86 !list_empty(&hugepage_freelists[nid])) {
87 page = list_entry(hugepage_freelists[nid].next,
88 struct page, lru);
89 list_del(&page->lru);
90 free_huge_pages--;
91 free_huge_pages_node[nid]--;
92 if (vma && vma->vm_flags & VM_MAYSHARE)
93 resv_huge_pages--;
94 break;
95 }
96 }
97 mpol_free(mpol); /* unref if mpol !NULL */
98 return page;
99 }
100
101 static void update_and_free_page(struct page *page)
102 {
103 int i;
104 nr_huge_pages--;
105 nr_huge_pages_node[page_to_nid(page)]--;
106 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109 1 << PG_private | 1<< PG_writeback);
110 }
111 set_compound_page_dtor(page, NULL);
112 set_page_refcounted(page);
113 __free_pages(page, HUGETLB_PAGE_ORDER);
114 }
115
116 static void free_huge_page(struct page *page)
117 {
118 int nid = page_to_nid(page);
119 struct address_space *mapping;
120
121 mapping = (struct address_space *) page_private(page);
122 BUG_ON(page_count(page));
123 INIT_LIST_HEAD(&page->lru);
124
125 spin_lock(&hugetlb_lock);
126 if (surplus_huge_pages_node[nid]) {
127 update_and_free_page(page);
128 surplus_huge_pages--;
129 surplus_huge_pages_node[nid]--;
130 } else {
131 enqueue_huge_page(page);
132 }
133 spin_unlock(&hugetlb_lock);
134 if (mapping)
135 hugetlb_put_quota(mapping, 1);
136 set_page_private(page, 0);
137 }
138
139 /*
140 * Increment or decrement surplus_huge_pages. Keep node-specific counters
141 * balanced by operating on them in a round-robin fashion.
142 * Returns 1 if an adjustment was made.
143 */
144 static int adjust_pool_surplus(int delta)
145 {
146 static int prev_nid;
147 int nid = prev_nid;
148 int ret = 0;
149
150 VM_BUG_ON(delta != -1 && delta != 1);
151 do {
152 nid = next_node(nid, node_online_map);
153 if (nid == MAX_NUMNODES)
154 nid = first_node(node_online_map);
155
156 /* To shrink on this node, there must be a surplus page */
157 if (delta < 0 && !surplus_huge_pages_node[nid])
158 continue;
159 /* Surplus cannot exceed the total number of pages */
160 if (delta > 0 && surplus_huge_pages_node[nid] >=
161 nr_huge_pages_node[nid])
162 continue;
163
164 surplus_huge_pages += delta;
165 surplus_huge_pages_node[nid] += delta;
166 ret = 1;
167 break;
168 } while (nid != prev_nid);
169
170 prev_nid = nid;
171 return ret;
172 }
173
174 static struct page *alloc_fresh_huge_page_node(int nid)
175 {
176 struct page *page;
177
178 page = alloc_pages_node(nid,
179 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
180 HUGETLB_PAGE_ORDER);
181 if (page) {
182 set_compound_page_dtor(page, free_huge_page);
183 spin_lock(&hugetlb_lock);
184 nr_huge_pages++;
185 nr_huge_pages_node[nid]++;
186 spin_unlock(&hugetlb_lock);
187 put_page(page); /* free it into the hugepage allocator */
188 }
189
190 return page;
191 }
192
193 static int alloc_fresh_huge_page(void)
194 {
195 struct page *page;
196 int start_nid;
197 int next_nid;
198 int ret = 0;
199
200 start_nid = hugetlb_next_nid;
201
202 do {
203 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
204 if (page)
205 ret = 1;
206 /*
207 * Use a helper variable to find the next node and then
208 * copy it back to hugetlb_next_nid afterwards:
209 * otherwise there's a window in which a racer might
210 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
211 * But we don't need to use a spin_lock here: it really
212 * doesn't matter if occasionally a racer chooses the
213 * same nid as we do. Move nid forward in the mask even
214 * if we just successfully allocated a hugepage so that
215 * the next caller gets hugepages on the next node.
216 */
217 next_nid = next_node(hugetlb_next_nid, node_online_map);
218 if (next_nid == MAX_NUMNODES)
219 next_nid = first_node(node_online_map);
220 hugetlb_next_nid = next_nid;
221 } while (!page && hugetlb_next_nid != start_nid);
222
223 return ret;
224 }
225
226 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
227 unsigned long address)
228 {
229 struct page *page;
230 unsigned int nid;
231
232 /*
233 * Assume we will successfully allocate the surplus page to
234 * prevent racing processes from causing the surplus to exceed
235 * overcommit
236 *
237 * This however introduces a different race, where a process B
238 * tries to grow the static hugepage pool while alloc_pages() is
239 * called by process A. B will only examine the per-node
240 * counters in determining if surplus huge pages can be
241 * converted to normal huge pages in adjust_pool_surplus(). A
242 * won't be able to increment the per-node counter, until the
243 * lock is dropped by B, but B doesn't drop hugetlb_lock until
244 * no more huge pages can be converted from surplus to normal
245 * state (and doesn't try to convert again). Thus, we have a
246 * case where a surplus huge page exists, the pool is grown, and
247 * the surplus huge page still exists after, even though it
248 * should just have been converted to a normal huge page. This
249 * does not leak memory, though, as the hugepage will be freed
250 * once it is out of use. It also does not allow the counters to
251 * go out of whack in adjust_pool_surplus() as we don't modify
252 * the node values until we've gotten the hugepage and only the
253 * per-node value is checked there.
254 */
255 spin_lock(&hugetlb_lock);
256 if (surplus_huge_pages >= nr_overcommit_huge_pages) {
257 spin_unlock(&hugetlb_lock);
258 return NULL;
259 } else {
260 nr_huge_pages++;
261 surplus_huge_pages++;
262 }
263 spin_unlock(&hugetlb_lock);
264
265 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
266 HUGETLB_PAGE_ORDER);
267
268 spin_lock(&hugetlb_lock);
269 if (page) {
270 nid = page_to_nid(page);
271 set_compound_page_dtor(page, free_huge_page);
272 /*
273 * We incremented the global counters already
274 */
275 nr_huge_pages_node[nid]++;
276 surplus_huge_pages_node[nid]++;
277 } else {
278 nr_huge_pages--;
279 surplus_huge_pages--;
280 }
281 spin_unlock(&hugetlb_lock);
282
283 return page;
284 }
285
286 /*
287 * Increase the hugetlb pool such that it can accomodate a reservation
288 * of size 'delta'.
289 */
290 static int gather_surplus_pages(int delta)
291 {
292 struct list_head surplus_list;
293 struct page *page, *tmp;
294 int ret, i;
295 int needed, allocated;
296
297 needed = (resv_huge_pages + delta) - free_huge_pages;
298 if (needed <= 0)
299 return 0;
300
301 allocated = 0;
302 INIT_LIST_HEAD(&surplus_list);
303
304 ret = -ENOMEM;
305 retry:
306 spin_unlock(&hugetlb_lock);
307 for (i = 0; i < needed; i++) {
308 page = alloc_buddy_huge_page(NULL, 0);
309 if (!page) {
310 /*
311 * We were not able to allocate enough pages to
312 * satisfy the entire reservation so we free what
313 * we've allocated so far.
314 */
315 spin_lock(&hugetlb_lock);
316 needed = 0;
317 goto free;
318 }
319
320 list_add(&page->lru, &surplus_list);
321 }
322 allocated += needed;
323
324 /*
325 * After retaking hugetlb_lock, we need to recalculate 'needed'
326 * because either resv_huge_pages or free_huge_pages may have changed.
327 */
328 spin_lock(&hugetlb_lock);
329 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
330 if (needed > 0)
331 goto retry;
332
333 /*
334 * The surplus_list now contains _at_least_ the number of extra pages
335 * needed to accomodate the reservation. Add the appropriate number
336 * of pages to the hugetlb pool and free the extras back to the buddy
337 * allocator.
338 */
339 needed += allocated;
340 ret = 0;
341 free:
342 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
343 list_del(&page->lru);
344 if ((--needed) >= 0)
345 enqueue_huge_page(page);
346 else {
347 /*
348 * Decrement the refcount and free the page using its
349 * destructor. This must be done with hugetlb_lock
350 * unlocked which is safe because free_huge_page takes
351 * hugetlb_lock before deciding how to free the page.
352 */
353 spin_unlock(&hugetlb_lock);
354 put_page(page);
355 spin_lock(&hugetlb_lock);
356 }
357 }
358
359 return ret;
360 }
361
362 /*
363 * When releasing a hugetlb pool reservation, any surplus pages that were
364 * allocated to satisfy the reservation must be explicitly freed if they were
365 * never used.
366 */
367 static void return_unused_surplus_pages(unsigned long unused_resv_pages)
368 {
369 static int nid = -1;
370 struct page *page;
371 unsigned long nr_pages;
372
373 nr_pages = min(unused_resv_pages, surplus_huge_pages);
374
375 while (nr_pages) {
376 nid = next_node(nid, node_online_map);
377 if (nid == MAX_NUMNODES)
378 nid = first_node(node_online_map);
379
380 if (!surplus_huge_pages_node[nid])
381 continue;
382
383 if (!list_empty(&hugepage_freelists[nid])) {
384 page = list_entry(hugepage_freelists[nid].next,
385 struct page, lru);
386 list_del(&page->lru);
387 update_and_free_page(page);
388 free_huge_pages--;
389 free_huge_pages_node[nid]--;
390 surplus_huge_pages--;
391 surplus_huge_pages_node[nid]--;
392 nr_pages--;
393 }
394 }
395 }
396
397
398 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
399 unsigned long addr)
400 {
401 struct page *page;
402
403 spin_lock(&hugetlb_lock);
404 page = dequeue_huge_page(vma, addr);
405 spin_unlock(&hugetlb_lock);
406 return page ? page : ERR_PTR(-VM_FAULT_OOM);
407 }
408
409 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
410 unsigned long addr)
411 {
412 struct page *page = NULL;
413
414 if (hugetlb_get_quota(vma->vm_file->f_mapping, 1))
415 return ERR_PTR(-VM_FAULT_SIGBUS);
416
417 spin_lock(&hugetlb_lock);
418 if (free_huge_pages > resv_huge_pages)
419 page = dequeue_huge_page(vma, addr);
420 spin_unlock(&hugetlb_lock);
421 if (!page)
422 page = alloc_buddy_huge_page(vma, addr);
423 return page ? page : ERR_PTR(-VM_FAULT_OOM);
424 }
425
426 static struct page *alloc_huge_page(struct vm_area_struct *vma,
427 unsigned long addr)
428 {
429 struct page *page;
430 struct address_space *mapping = vma->vm_file->f_mapping;
431
432 if (vma->vm_flags & VM_MAYSHARE)
433 page = alloc_huge_page_shared(vma, addr);
434 else
435 page = alloc_huge_page_private(vma, addr);
436
437 if (!IS_ERR(page)) {
438 set_page_refcounted(page);
439 set_page_private(page, (unsigned long) mapping);
440 }
441 return page;
442 }
443
444 static int __init hugetlb_init(void)
445 {
446 unsigned long i;
447
448 if (HPAGE_SHIFT == 0)
449 return 0;
450
451 for (i = 0; i < MAX_NUMNODES; ++i)
452 INIT_LIST_HEAD(&hugepage_freelists[i]);
453
454 hugetlb_next_nid = first_node(node_online_map);
455
456 for (i = 0; i < max_huge_pages; ++i) {
457 if (!alloc_fresh_huge_page())
458 break;
459 }
460 max_huge_pages = free_huge_pages = nr_huge_pages = i;
461 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
462 return 0;
463 }
464 module_init(hugetlb_init);
465
466 static int __init hugetlb_setup(char *s)
467 {
468 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
469 max_huge_pages = 0;
470 return 1;
471 }
472 __setup("hugepages=", hugetlb_setup);
473
474 static unsigned int cpuset_mems_nr(unsigned int *array)
475 {
476 int node;
477 unsigned int nr = 0;
478
479 for_each_node_mask(node, cpuset_current_mems_allowed)
480 nr += array[node];
481
482 return nr;
483 }
484
485 #ifdef CONFIG_SYSCTL
486 #ifdef CONFIG_HIGHMEM
487 static void try_to_free_low(unsigned long count)
488 {
489 int i;
490
491 for (i = 0; i < MAX_NUMNODES; ++i) {
492 struct page *page, *next;
493 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
494 if (count >= nr_huge_pages)
495 return;
496 if (PageHighMem(page))
497 continue;
498 list_del(&page->lru);
499 update_and_free_page(page);
500 free_huge_pages--;
501 free_huge_pages_node[page_to_nid(page)]--;
502 }
503 }
504 }
505 #else
506 static inline void try_to_free_low(unsigned long count)
507 {
508 }
509 #endif
510
511 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
512 static unsigned long set_max_huge_pages(unsigned long count)
513 {
514 unsigned long min_count, ret;
515
516 /*
517 * Increase the pool size
518 * First take pages out of surplus state. Then make up the
519 * remaining difference by allocating fresh huge pages.
520 *
521 * We might race with alloc_buddy_huge_page() here and be unable
522 * to convert a surplus huge page to a normal huge page. That is
523 * not critical, though, it just means the overall size of the
524 * pool might be one hugepage larger than it needs to be, but
525 * within all the constraints specified by the sysctls.
526 */
527 spin_lock(&hugetlb_lock);
528 while (surplus_huge_pages && count > persistent_huge_pages) {
529 if (!adjust_pool_surplus(-1))
530 break;
531 }
532
533 while (count > persistent_huge_pages) {
534 int ret;
535 /*
536 * If this allocation races such that we no longer need the
537 * page, free_huge_page will handle it by freeing the page
538 * and reducing the surplus.
539 */
540 spin_unlock(&hugetlb_lock);
541 ret = alloc_fresh_huge_page();
542 spin_lock(&hugetlb_lock);
543 if (!ret)
544 goto out;
545
546 }
547
548 /*
549 * Decrease the pool size
550 * First return free pages to the buddy allocator (being careful
551 * to keep enough around to satisfy reservations). Then place
552 * pages into surplus state as needed so the pool will shrink
553 * to the desired size as pages become free.
554 *
555 * By placing pages into the surplus state independent of the
556 * overcommit value, we are allowing the surplus pool size to
557 * exceed overcommit. There are few sane options here. Since
558 * alloc_buddy_huge_page() is checking the global counter,
559 * though, we'll note that we're not allowed to exceed surplus
560 * and won't grow the pool anywhere else. Not until one of the
561 * sysctls are changed, or the surplus pages go out of use.
562 */
563 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
564 min_count = max(count, min_count);
565 try_to_free_low(min_count);
566 while (min_count < persistent_huge_pages) {
567 struct page *page = dequeue_huge_page(NULL, 0);
568 if (!page)
569 break;
570 update_and_free_page(page);
571 }
572 while (count < persistent_huge_pages) {
573 if (!adjust_pool_surplus(1))
574 break;
575 }
576 out:
577 ret = persistent_huge_pages;
578 spin_unlock(&hugetlb_lock);
579 return ret;
580 }
581
582 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
583 struct file *file, void __user *buffer,
584 size_t *length, loff_t *ppos)
585 {
586 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
587 max_huge_pages = set_max_huge_pages(max_huge_pages);
588 return 0;
589 }
590
591 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
592 struct file *file, void __user *buffer,
593 size_t *length, loff_t *ppos)
594 {
595 proc_dointvec(table, write, file, buffer, length, ppos);
596 if (hugepages_treat_as_movable)
597 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
598 else
599 htlb_alloc_mask = GFP_HIGHUSER;
600 return 0;
601 }
602
603 #endif /* CONFIG_SYSCTL */
604
605 int hugetlb_report_meminfo(char *buf)
606 {
607 return sprintf(buf,
608 "HugePages_Total: %5lu\n"
609 "HugePages_Free: %5lu\n"
610 "HugePages_Rsvd: %5lu\n"
611 "HugePages_Surp: %5lu\n"
612 "Hugepagesize: %5lu kB\n",
613 nr_huge_pages,
614 free_huge_pages,
615 resv_huge_pages,
616 surplus_huge_pages,
617 HPAGE_SIZE/1024);
618 }
619
620 int hugetlb_report_node_meminfo(int nid, char *buf)
621 {
622 return sprintf(buf,
623 "Node %d HugePages_Total: %5u\n"
624 "Node %d HugePages_Free: %5u\n",
625 nid, nr_huge_pages_node[nid],
626 nid, free_huge_pages_node[nid]);
627 }
628
629 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
630 unsigned long hugetlb_total_pages(void)
631 {
632 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
633 }
634
635 /*
636 * We cannot handle pagefaults against hugetlb pages at all. They cause
637 * handle_mm_fault() to try to instantiate regular-sized pages in the
638 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
639 * this far.
640 */
641 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
642 {
643 BUG();
644 return 0;
645 }
646
647 struct vm_operations_struct hugetlb_vm_ops = {
648 .fault = hugetlb_vm_op_fault,
649 };
650
651 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
652 int writable)
653 {
654 pte_t entry;
655
656 if (writable) {
657 entry =
658 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
659 } else {
660 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
661 }
662 entry = pte_mkyoung(entry);
663 entry = pte_mkhuge(entry);
664
665 return entry;
666 }
667
668 static void set_huge_ptep_writable(struct vm_area_struct *vma,
669 unsigned long address, pte_t *ptep)
670 {
671 pte_t entry;
672
673 entry = pte_mkwrite(pte_mkdirty(*ptep));
674 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
675 update_mmu_cache(vma, address, entry);
676 }
677 }
678
679
680 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
681 struct vm_area_struct *vma)
682 {
683 pte_t *src_pte, *dst_pte, entry;
684 struct page *ptepage;
685 unsigned long addr;
686 int cow;
687
688 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
689
690 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
691 src_pte = huge_pte_offset(src, addr);
692 if (!src_pte)
693 continue;
694 dst_pte = huge_pte_alloc(dst, addr);
695 if (!dst_pte)
696 goto nomem;
697 spin_lock(&dst->page_table_lock);
698 spin_lock(&src->page_table_lock);
699 if (!pte_none(*src_pte)) {
700 if (cow)
701 ptep_set_wrprotect(src, addr, src_pte);
702 entry = *src_pte;
703 ptepage = pte_page(entry);
704 get_page(ptepage);
705 set_huge_pte_at(dst, addr, dst_pte, entry);
706 }
707 spin_unlock(&src->page_table_lock);
708 spin_unlock(&dst->page_table_lock);
709 }
710 return 0;
711
712 nomem:
713 return -ENOMEM;
714 }
715
716 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
717 unsigned long end)
718 {
719 struct mm_struct *mm = vma->vm_mm;
720 unsigned long address;
721 pte_t *ptep;
722 pte_t pte;
723 struct page *page;
724 struct page *tmp;
725 /*
726 * A page gathering list, protected by per file i_mmap_lock. The
727 * lock is used to avoid list corruption from multiple unmapping
728 * of the same page since we are using page->lru.
729 */
730 LIST_HEAD(page_list);
731
732 WARN_ON(!is_vm_hugetlb_page(vma));
733 BUG_ON(start & ~HPAGE_MASK);
734 BUG_ON(end & ~HPAGE_MASK);
735
736 spin_lock(&mm->page_table_lock);
737 for (address = start; address < end; address += HPAGE_SIZE) {
738 ptep = huge_pte_offset(mm, address);
739 if (!ptep)
740 continue;
741
742 if (huge_pmd_unshare(mm, &address, ptep))
743 continue;
744
745 pte = huge_ptep_get_and_clear(mm, address, ptep);
746 if (pte_none(pte))
747 continue;
748
749 page = pte_page(pte);
750 if (pte_dirty(pte))
751 set_page_dirty(page);
752 list_add(&page->lru, &page_list);
753 }
754 spin_unlock(&mm->page_table_lock);
755 flush_tlb_range(vma, start, end);
756 list_for_each_entry_safe(page, tmp, &page_list, lru) {
757 list_del(&page->lru);
758 put_page(page);
759 }
760 }
761
762 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
763 unsigned long end)
764 {
765 /*
766 * It is undesirable to test vma->vm_file as it should be non-null
767 * for valid hugetlb area. However, vm_file will be NULL in the error
768 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
769 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
770 * to clean up. Since no pte has actually been setup, it is safe to
771 * do nothing in this case.
772 */
773 if (vma->vm_file) {
774 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
775 __unmap_hugepage_range(vma, start, end);
776 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
777 }
778 }
779
780 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pte_t *ptep, pte_t pte)
782 {
783 struct page *old_page, *new_page;
784 int avoidcopy;
785
786 old_page = pte_page(pte);
787
788 /* If no-one else is actually using this page, avoid the copy
789 * and just make the page writable */
790 avoidcopy = (page_count(old_page) == 1);
791 if (avoidcopy) {
792 set_huge_ptep_writable(vma, address, ptep);
793 return 0;
794 }
795
796 page_cache_get(old_page);
797 new_page = alloc_huge_page(vma, address);
798
799 if (IS_ERR(new_page)) {
800 page_cache_release(old_page);
801 return -PTR_ERR(new_page);
802 }
803
804 spin_unlock(&mm->page_table_lock);
805 copy_huge_page(new_page, old_page, address, vma);
806 spin_lock(&mm->page_table_lock);
807
808 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
809 if (likely(pte_same(*ptep, pte))) {
810 /* Break COW */
811 set_huge_pte_at(mm, address, ptep,
812 make_huge_pte(vma, new_page, 1));
813 /* Make the old page be freed below */
814 new_page = old_page;
815 }
816 page_cache_release(new_page);
817 page_cache_release(old_page);
818 return 0;
819 }
820
821 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
822 unsigned long address, pte_t *ptep, int write_access)
823 {
824 int ret = VM_FAULT_SIGBUS;
825 unsigned long idx;
826 unsigned long size;
827 struct page *page;
828 struct address_space *mapping;
829 pte_t new_pte;
830
831 mapping = vma->vm_file->f_mapping;
832 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
833 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
834
835 /*
836 * Use page lock to guard against racing truncation
837 * before we get page_table_lock.
838 */
839 retry:
840 page = find_lock_page(mapping, idx);
841 if (!page) {
842 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
843 if (idx >= size)
844 goto out;
845 page = alloc_huge_page(vma, address);
846 if (IS_ERR(page)) {
847 ret = -PTR_ERR(page);
848 goto out;
849 }
850 clear_huge_page(page, address);
851
852 if (vma->vm_flags & VM_SHARED) {
853 int err;
854 struct inode *inode = mapping->host;
855
856 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
857 if (err) {
858 put_page(page);
859 if (err == -EEXIST)
860 goto retry;
861 goto out;
862 }
863
864 spin_lock(&inode->i_lock);
865 inode->i_blocks += BLOCKS_PER_HUGEPAGE;
866 spin_unlock(&inode->i_lock);
867 } else
868 lock_page(page);
869 }
870
871 spin_lock(&mm->page_table_lock);
872 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
873 if (idx >= size)
874 goto backout;
875
876 ret = 0;
877 if (!pte_none(*ptep))
878 goto backout;
879
880 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
881 && (vma->vm_flags & VM_SHARED)));
882 set_huge_pte_at(mm, address, ptep, new_pte);
883
884 if (write_access && !(vma->vm_flags & VM_SHARED)) {
885 /* Optimization, do the COW without a second fault */
886 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
887 }
888
889 spin_unlock(&mm->page_table_lock);
890 unlock_page(page);
891 out:
892 return ret;
893
894 backout:
895 spin_unlock(&mm->page_table_lock);
896 unlock_page(page);
897 put_page(page);
898 goto out;
899 }
900
901 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
902 unsigned long address, int write_access)
903 {
904 pte_t *ptep;
905 pte_t entry;
906 int ret;
907 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
908
909 ptep = huge_pte_alloc(mm, address);
910 if (!ptep)
911 return VM_FAULT_OOM;
912
913 /*
914 * Serialize hugepage allocation and instantiation, so that we don't
915 * get spurious allocation failures if two CPUs race to instantiate
916 * the same page in the page cache.
917 */
918 mutex_lock(&hugetlb_instantiation_mutex);
919 entry = *ptep;
920 if (pte_none(entry)) {
921 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
922 mutex_unlock(&hugetlb_instantiation_mutex);
923 return ret;
924 }
925
926 ret = 0;
927
928 spin_lock(&mm->page_table_lock);
929 /* Check for a racing update before calling hugetlb_cow */
930 if (likely(pte_same(entry, *ptep)))
931 if (write_access && !pte_write(entry))
932 ret = hugetlb_cow(mm, vma, address, ptep, entry);
933 spin_unlock(&mm->page_table_lock);
934 mutex_unlock(&hugetlb_instantiation_mutex);
935
936 return ret;
937 }
938
939 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
940 struct page **pages, struct vm_area_struct **vmas,
941 unsigned long *position, int *length, int i,
942 int write)
943 {
944 unsigned long pfn_offset;
945 unsigned long vaddr = *position;
946 int remainder = *length;
947
948 spin_lock(&mm->page_table_lock);
949 while (vaddr < vma->vm_end && remainder) {
950 pte_t *pte;
951 struct page *page;
952
953 /*
954 * Some archs (sparc64, sh*) have multiple pte_ts to
955 * each hugepage. We have to make * sure we get the
956 * first, for the page indexing below to work.
957 */
958 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
959
960 if (!pte || pte_none(*pte) || (write && !pte_write(*pte))) {
961 int ret;
962
963 spin_unlock(&mm->page_table_lock);
964 ret = hugetlb_fault(mm, vma, vaddr, write);
965 spin_lock(&mm->page_table_lock);
966 if (!(ret & VM_FAULT_ERROR))
967 continue;
968
969 remainder = 0;
970 if (!i)
971 i = -EFAULT;
972 break;
973 }
974
975 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
976 page = pte_page(*pte);
977 same_page:
978 if (pages) {
979 get_page(page);
980 pages[i] = page + pfn_offset;
981 }
982
983 if (vmas)
984 vmas[i] = vma;
985
986 vaddr += PAGE_SIZE;
987 ++pfn_offset;
988 --remainder;
989 ++i;
990 if (vaddr < vma->vm_end && remainder &&
991 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
992 /*
993 * We use pfn_offset to avoid touching the pageframes
994 * of this compound page.
995 */
996 goto same_page;
997 }
998 }
999 spin_unlock(&mm->page_table_lock);
1000 *length = remainder;
1001 *position = vaddr;
1002
1003 return i;
1004 }
1005
1006 void hugetlb_change_protection(struct vm_area_struct *vma,
1007 unsigned long address, unsigned long end, pgprot_t newprot)
1008 {
1009 struct mm_struct *mm = vma->vm_mm;
1010 unsigned long start = address;
1011 pte_t *ptep;
1012 pte_t pte;
1013
1014 BUG_ON(address >= end);
1015 flush_cache_range(vma, address, end);
1016
1017 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
1018 spin_lock(&mm->page_table_lock);
1019 for (; address < end; address += HPAGE_SIZE) {
1020 ptep = huge_pte_offset(mm, address);
1021 if (!ptep)
1022 continue;
1023 if (huge_pmd_unshare(mm, &address, ptep))
1024 continue;
1025 if (!pte_none(*ptep)) {
1026 pte = huge_ptep_get_and_clear(mm, address, ptep);
1027 pte = pte_mkhuge(pte_modify(pte, newprot));
1028 set_huge_pte_at(mm, address, ptep, pte);
1029 }
1030 }
1031 spin_unlock(&mm->page_table_lock);
1032 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
1033
1034 flush_tlb_range(vma, start, end);
1035 }
1036
1037 struct file_region {
1038 struct list_head link;
1039 long from;
1040 long to;
1041 };
1042
1043 static long region_add(struct list_head *head, long f, long t)
1044 {
1045 struct file_region *rg, *nrg, *trg;
1046
1047 /* Locate the region we are either in or before. */
1048 list_for_each_entry(rg, head, link)
1049 if (f <= rg->to)
1050 break;
1051
1052 /* Round our left edge to the current segment if it encloses us. */
1053 if (f > rg->from)
1054 f = rg->from;
1055
1056 /* Check for and consume any regions we now overlap with. */
1057 nrg = rg;
1058 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1059 if (&rg->link == head)
1060 break;
1061 if (rg->from > t)
1062 break;
1063
1064 /* If this area reaches higher then extend our area to
1065 * include it completely. If this is not the first area
1066 * which we intend to reuse, free it. */
1067 if (rg->to > t)
1068 t = rg->to;
1069 if (rg != nrg) {
1070 list_del(&rg->link);
1071 kfree(rg);
1072 }
1073 }
1074 nrg->from = f;
1075 nrg->to = t;
1076 return 0;
1077 }
1078
1079 static long region_chg(struct list_head *head, long f, long t)
1080 {
1081 struct file_region *rg, *nrg;
1082 long chg = 0;
1083
1084 /* Locate the region we are before or in. */
1085 list_for_each_entry(rg, head, link)
1086 if (f <= rg->to)
1087 break;
1088
1089 /* If we are below the current region then a new region is required.
1090 * Subtle, allocate a new region at the position but make it zero
1091 * size such that we can guarantee to record the reservation. */
1092 if (&rg->link == head || t < rg->from) {
1093 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1094 if (!nrg)
1095 return -ENOMEM;
1096 nrg->from = f;
1097 nrg->to = f;
1098 INIT_LIST_HEAD(&nrg->link);
1099 list_add(&nrg->link, rg->link.prev);
1100
1101 return t - f;
1102 }
1103
1104 /* Round our left edge to the current segment if it encloses us. */
1105 if (f > rg->from)
1106 f = rg->from;
1107 chg = t - f;
1108
1109 /* Check for and consume any regions we now overlap with. */
1110 list_for_each_entry(rg, rg->link.prev, link) {
1111 if (&rg->link == head)
1112 break;
1113 if (rg->from > t)
1114 return chg;
1115
1116 /* We overlap with this area, if it extends futher than
1117 * us then we must extend ourselves. Account for its
1118 * existing reservation. */
1119 if (rg->to > t) {
1120 chg += rg->to - t;
1121 t = rg->to;
1122 }
1123 chg -= rg->to - rg->from;
1124 }
1125 return chg;
1126 }
1127
1128 static long region_truncate(struct list_head *head, long end)
1129 {
1130 struct file_region *rg, *trg;
1131 long chg = 0;
1132
1133 /* Locate the region we are either in or before. */
1134 list_for_each_entry(rg, head, link)
1135 if (end <= rg->to)
1136 break;
1137 if (&rg->link == head)
1138 return 0;
1139
1140 /* If we are in the middle of a region then adjust it. */
1141 if (end > rg->from) {
1142 chg = rg->to - end;
1143 rg->to = end;
1144 rg = list_entry(rg->link.next, typeof(*rg), link);
1145 }
1146
1147 /* Drop any remaining regions. */
1148 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1149 if (&rg->link == head)
1150 break;
1151 chg += rg->to - rg->from;
1152 list_del(&rg->link);
1153 kfree(rg);
1154 }
1155 return chg;
1156 }
1157
1158 static int hugetlb_acct_memory(long delta)
1159 {
1160 int ret = -ENOMEM;
1161
1162 spin_lock(&hugetlb_lock);
1163 /*
1164 * When cpuset is configured, it breaks the strict hugetlb page
1165 * reservation as the accounting is done on a global variable. Such
1166 * reservation is completely rubbish in the presence of cpuset because
1167 * the reservation is not checked against page availability for the
1168 * current cpuset. Application can still potentially OOM'ed by kernel
1169 * with lack of free htlb page in cpuset that the task is in.
1170 * Attempt to enforce strict accounting with cpuset is almost
1171 * impossible (or too ugly) because cpuset is too fluid that
1172 * task or memory node can be dynamically moved between cpusets.
1173 *
1174 * The change of semantics for shared hugetlb mapping with cpuset is
1175 * undesirable. However, in order to preserve some of the semantics,
1176 * we fall back to check against current free page availability as
1177 * a best attempt and hopefully to minimize the impact of changing
1178 * semantics that cpuset has.
1179 */
1180 if (delta > 0) {
1181 if (gather_surplus_pages(delta) < 0)
1182 goto out;
1183
1184 if (delta > cpuset_mems_nr(free_huge_pages_node))
1185 goto out;
1186 }
1187
1188 ret = 0;
1189 resv_huge_pages += delta;
1190 if (delta < 0)
1191 return_unused_surplus_pages((unsigned long) -delta);
1192
1193 out:
1194 spin_unlock(&hugetlb_lock);
1195 return ret;
1196 }
1197
1198 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1199 {
1200 long ret, chg;
1201
1202 chg = region_chg(&inode->i_mapping->private_list, from, to);
1203 if (chg < 0)
1204 return chg;
1205
1206 if (hugetlb_get_quota(inode->i_mapping, chg))
1207 return -ENOSPC;
1208 ret = hugetlb_acct_memory(chg);
1209 if (ret < 0)
1210 return ret;
1211 region_add(&inode->i_mapping->private_list, from, to);
1212 return 0;
1213 }
1214
1215 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1216 {
1217 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1218
1219 spin_lock(&inode->i_lock);
1220 inode->i_blocks -= BLOCKS_PER_HUGEPAGE * freed;
1221 spin_unlock(&inode->i_lock);
1222
1223 hugetlb_put_quota(inode->i_mapping, (chg - freed));
1224 hugetlb_acct_memory(-(chg - freed));
1225 }
This page took 0.059561 seconds and 5 git commands to generate.