unix: If we happen to find peer NULL when diag dumping, write zero.
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
69 */
70 struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
149 /* We overlap with this area, if it extends further than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213 }
214
215 /*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
221 {
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228 {
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258 return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
289 */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292 return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297 {
298 vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 if (!(vma->vm_flags & VM_MAYSHARE))
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
333 return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357 return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
363 {
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
367 if (vma->vm_flags & VM_MAYSHARE) {
368 /* Shared mappings always use reserves */
369 h->resv_huge_pages--;
370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
375 h->resv_huge_pages--;
376 }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 if (!(vma->vm_flags & VM_MAYSHARE))
384 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390 if (vma->vm_flags & VM_MAYSHARE)
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
395 }
396
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
403
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
407
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
411 }
412 }
413
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416 int i;
417 struct hstate *h = page_hstate(src);
418
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
422 }
423
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
428 }
429 }
430
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433 int nid = page_to_nid(page);
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
437 }
438
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441 struct page *page;
442
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
447 set_page_refcounted(page);
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
451 }
452
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
455 unsigned long address, int avoid_reserve)
456 {
457 struct page *page = NULL;
458 struct mempolicy *mpol;
459 nodemask_t *nodemask;
460 struct zonelist *zonelist;
461 struct zone *zone;
462 struct zoneref *z;
463
464 get_mems_allowed();
465 zonelist = huge_zonelist(vma, address,
466 htlb_alloc_mask, &mpol, &nodemask);
467 /*
468 * A child process with MAP_PRIVATE mappings created by their parent
469 * have no page reserves. This check ensures that reservations are
470 * not "stolen". The child may still get SIGKILLed
471 */
472 if (!vma_has_reserves(vma) &&
473 h->free_huge_pages - h->resv_huge_pages == 0)
474 goto err;
475
476 /* If reserves cannot be used, ensure enough pages are in the pool */
477 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
478 goto err;
479
480 for_each_zone_zonelist_nodemask(zone, z, zonelist,
481 MAX_NR_ZONES - 1, nodemask) {
482 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
483 page = dequeue_huge_page_node(h, zone_to_nid(zone));
484 if (page) {
485 if (!avoid_reserve)
486 decrement_hugepage_resv_vma(h, vma);
487 break;
488 }
489 }
490 }
491 err:
492 mpol_cond_put(mpol);
493 put_mems_allowed();
494 return page;
495 }
496
497 static void update_and_free_page(struct hstate *h, struct page *page)
498 {
499 int i;
500
501 VM_BUG_ON(h->order >= MAX_ORDER);
502
503 h->nr_huge_pages--;
504 h->nr_huge_pages_node[page_to_nid(page)]--;
505 for (i = 0; i < pages_per_huge_page(h); i++) {
506 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
507 1 << PG_referenced | 1 << PG_dirty |
508 1 << PG_active | 1 << PG_reserved |
509 1 << PG_private | 1 << PG_writeback);
510 }
511 set_compound_page_dtor(page, NULL);
512 set_page_refcounted(page);
513 arch_release_hugepage(page);
514 __free_pages(page, huge_page_order(h));
515 }
516
517 struct hstate *size_to_hstate(unsigned long size)
518 {
519 struct hstate *h;
520
521 for_each_hstate(h) {
522 if (huge_page_size(h) == size)
523 return h;
524 }
525 return NULL;
526 }
527
528 static void free_huge_page(struct page *page)
529 {
530 /*
531 * Can't pass hstate in here because it is called from the
532 * compound page destructor.
533 */
534 struct hstate *h = page_hstate(page);
535 int nid = page_to_nid(page);
536 struct address_space *mapping;
537
538 mapping = (struct address_space *) page_private(page);
539 set_page_private(page, 0);
540 page->mapping = NULL;
541 BUG_ON(page_count(page));
542 BUG_ON(page_mapcount(page));
543 INIT_LIST_HEAD(&page->lru);
544
545 spin_lock(&hugetlb_lock);
546 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
547 update_and_free_page(h, page);
548 h->surplus_huge_pages--;
549 h->surplus_huge_pages_node[nid]--;
550 } else {
551 enqueue_huge_page(h, page);
552 }
553 spin_unlock(&hugetlb_lock);
554 if (mapping)
555 hugetlb_put_quota(mapping, 1);
556 }
557
558 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
559 {
560 set_compound_page_dtor(page, free_huge_page);
561 spin_lock(&hugetlb_lock);
562 h->nr_huge_pages++;
563 h->nr_huge_pages_node[nid]++;
564 spin_unlock(&hugetlb_lock);
565 put_page(page); /* free it into the hugepage allocator */
566 }
567
568 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
569 {
570 int i;
571 int nr_pages = 1 << order;
572 struct page *p = page + 1;
573
574 /* we rely on prep_new_huge_page to set the destructor */
575 set_compound_order(page, order);
576 __SetPageHead(page);
577 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
578 __SetPageTail(p);
579 set_page_count(p, 0);
580 p->first_page = page;
581 }
582 }
583
584 int PageHuge(struct page *page)
585 {
586 compound_page_dtor *dtor;
587
588 if (!PageCompound(page))
589 return 0;
590
591 page = compound_head(page);
592 dtor = get_compound_page_dtor(page);
593
594 return dtor == free_huge_page;
595 }
596 EXPORT_SYMBOL_GPL(PageHuge);
597
598 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
599 {
600 struct page *page;
601
602 if (h->order >= MAX_ORDER)
603 return NULL;
604
605 page = alloc_pages_exact_node(nid,
606 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
607 __GFP_REPEAT|__GFP_NOWARN,
608 huge_page_order(h));
609 if (page) {
610 if (arch_prepare_hugepage(page)) {
611 __free_pages(page, huge_page_order(h));
612 return NULL;
613 }
614 prep_new_huge_page(h, page, nid);
615 }
616
617 return page;
618 }
619
620 /*
621 * common helper functions for hstate_next_node_to_{alloc|free}.
622 * We may have allocated or freed a huge page based on a different
623 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
624 * be outside of *nodes_allowed. Ensure that we use an allowed
625 * node for alloc or free.
626 */
627 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
628 {
629 nid = next_node(nid, *nodes_allowed);
630 if (nid == MAX_NUMNODES)
631 nid = first_node(*nodes_allowed);
632 VM_BUG_ON(nid >= MAX_NUMNODES);
633
634 return nid;
635 }
636
637 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
638 {
639 if (!node_isset(nid, *nodes_allowed))
640 nid = next_node_allowed(nid, nodes_allowed);
641 return nid;
642 }
643
644 /*
645 * returns the previously saved node ["this node"] from which to
646 * allocate a persistent huge page for the pool and advance the
647 * next node from which to allocate, handling wrap at end of node
648 * mask.
649 */
650 static int hstate_next_node_to_alloc(struct hstate *h,
651 nodemask_t *nodes_allowed)
652 {
653 int nid;
654
655 VM_BUG_ON(!nodes_allowed);
656
657 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
658 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
659
660 return nid;
661 }
662
663 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
664 {
665 struct page *page;
666 int start_nid;
667 int next_nid;
668 int ret = 0;
669
670 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
671 next_nid = start_nid;
672
673 do {
674 page = alloc_fresh_huge_page_node(h, next_nid);
675 if (page) {
676 ret = 1;
677 break;
678 }
679 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
680 } while (next_nid != start_nid);
681
682 if (ret)
683 count_vm_event(HTLB_BUDDY_PGALLOC);
684 else
685 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
686
687 return ret;
688 }
689
690 /*
691 * helper for free_pool_huge_page() - return the previously saved
692 * node ["this node"] from which to free a huge page. Advance the
693 * next node id whether or not we find a free huge page to free so
694 * that the next attempt to free addresses the next node.
695 */
696 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
697 {
698 int nid;
699
700 VM_BUG_ON(!nodes_allowed);
701
702 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
703 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
704
705 return nid;
706 }
707
708 /*
709 * Free huge page from pool from next node to free.
710 * Attempt to keep persistent huge pages more or less
711 * balanced over allowed nodes.
712 * Called with hugetlb_lock locked.
713 */
714 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
715 bool acct_surplus)
716 {
717 int start_nid;
718 int next_nid;
719 int ret = 0;
720
721 start_nid = hstate_next_node_to_free(h, nodes_allowed);
722 next_nid = start_nid;
723
724 do {
725 /*
726 * If we're returning unused surplus pages, only examine
727 * nodes with surplus pages.
728 */
729 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
730 !list_empty(&h->hugepage_freelists[next_nid])) {
731 struct page *page =
732 list_entry(h->hugepage_freelists[next_nid].next,
733 struct page, lru);
734 list_del(&page->lru);
735 h->free_huge_pages--;
736 h->free_huge_pages_node[next_nid]--;
737 if (acct_surplus) {
738 h->surplus_huge_pages--;
739 h->surplus_huge_pages_node[next_nid]--;
740 }
741 update_and_free_page(h, page);
742 ret = 1;
743 break;
744 }
745 next_nid = hstate_next_node_to_free(h, nodes_allowed);
746 } while (next_nid != start_nid);
747
748 return ret;
749 }
750
751 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
752 {
753 struct page *page;
754 unsigned int r_nid;
755
756 if (h->order >= MAX_ORDER)
757 return NULL;
758
759 /*
760 * Assume we will successfully allocate the surplus page to
761 * prevent racing processes from causing the surplus to exceed
762 * overcommit
763 *
764 * This however introduces a different race, where a process B
765 * tries to grow the static hugepage pool while alloc_pages() is
766 * called by process A. B will only examine the per-node
767 * counters in determining if surplus huge pages can be
768 * converted to normal huge pages in adjust_pool_surplus(). A
769 * won't be able to increment the per-node counter, until the
770 * lock is dropped by B, but B doesn't drop hugetlb_lock until
771 * no more huge pages can be converted from surplus to normal
772 * state (and doesn't try to convert again). Thus, we have a
773 * case where a surplus huge page exists, the pool is grown, and
774 * the surplus huge page still exists after, even though it
775 * should just have been converted to a normal huge page. This
776 * does not leak memory, though, as the hugepage will be freed
777 * once it is out of use. It also does not allow the counters to
778 * go out of whack in adjust_pool_surplus() as we don't modify
779 * the node values until we've gotten the hugepage and only the
780 * per-node value is checked there.
781 */
782 spin_lock(&hugetlb_lock);
783 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
784 spin_unlock(&hugetlb_lock);
785 return NULL;
786 } else {
787 h->nr_huge_pages++;
788 h->surplus_huge_pages++;
789 }
790 spin_unlock(&hugetlb_lock);
791
792 if (nid == NUMA_NO_NODE)
793 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
794 __GFP_REPEAT|__GFP_NOWARN,
795 huge_page_order(h));
796 else
797 page = alloc_pages_exact_node(nid,
798 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
799 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
800
801 if (page && arch_prepare_hugepage(page)) {
802 __free_pages(page, huge_page_order(h));
803 return NULL;
804 }
805
806 spin_lock(&hugetlb_lock);
807 if (page) {
808 r_nid = page_to_nid(page);
809 set_compound_page_dtor(page, free_huge_page);
810 /*
811 * We incremented the global counters already
812 */
813 h->nr_huge_pages_node[r_nid]++;
814 h->surplus_huge_pages_node[r_nid]++;
815 __count_vm_event(HTLB_BUDDY_PGALLOC);
816 } else {
817 h->nr_huge_pages--;
818 h->surplus_huge_pages--;
819 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
820 }
821 spin_unlock(&hugetlb_lock);
822
823 return page;
824 }
825
826 /*
827 * This allocation function is useful in the context where vma is irrelevant.
828 * E.g. soft-offlining uses this function because it only cares physical
829 * address of error page.
830 */
831 struct page *alloc_huge_page_node(struct hstate *h, int nid)
832 {
833 struct page *page;
834
835 spin_lock(&hugetlb_lock);
836 page = dequeue_huge_page_node(h, nid);
837 spin_unlock(&hugetlb_lock);
838
839 if (!page)
840 page = alloc_buddy_huge_page(h, nid);
841
842 return page;
843 }
844
845 /*
846 * Increase the hugetlb pool such that it can accommodate a reservation
847 * of size 'delta'.
848 */
849 static int gather_surplus_pages(struct hstate *h, int delta)
850 {
851 struct list_head surplus_list;
852 struct page *page, *tmp;
853 int ret, i;
854 int needed, allocated;
855
856 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
857 if (needed <= 0) {
858 h->resv_huge_pages += delta;
859 return 0;
860 }
861
862 allocated = 0;
863 INIT_LIST_HEAD(&surplus_list);
864
865 ret = -ENOMEM;
866 retry:
867 spin_unlock(&hugetlb_lock);
868 for (i = 0; i < needed; i++) {
869 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
870 if (!page)
871 /*
872 * We were not able to allocate enough pages to
873 * satisfy the entire reservation so we free what
874 * we've allocated so far.
875 */
876 goto free;
877
878 list_add(&page->lru, &surplus_list);
879 }
880 allocated += needed;
881
882 /*
883 * After retaking hugetlb_lock, we need to recalculate 'needed'
884 * because either resv_huge_pages or free_huge_pages may have changed.
885 */
886 spin_lock(&hugetlb_lock);
887 needed = (h->resv_huge_pages + delta) -
888 (h->free_huge_pages + allocated);
889 if (needed > 0)
890 goto retry;
891
892 /*
893 * The surplus_list now contains _at_least_ the number of extra pages
894 * needed to accommodate the reservation. Add the appropriate number
895 * of pages to the hugetlb pool and free the extras back to the buddy
896 * allocator. Commit the entire reservation here to prevent another
897 * process from stealing the pages as they are added to the pool but
898 * before they are reserved.
899 */
900 needed += allocated;
901 h->resv_huge_pages += delta;
902 ret = 0;
903
904 spin_unlock(&hugetlb_lock);
905 /* Free the needed pages to the hugetlb pool */
906 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
907 if ((--needed) < 0)
908 break;
909 list_del(&page->lru);
910 /*
911 * This page is now managed by the hugetlb allocator and has
912 * no users -- drop the buddy allocator's reference.
913 */
914 put_page_testzero(page);
915 VM_BUG_ON(page_count(page));
916 enqueue_huge_page(h, page);
917 }
918
919 /* Free unnecessary surplus pages to the buddy allocator */
920 free:
921 if (!list_empty(&surplus_list)) {
922 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
923 list_del(&page->lru);
924 put_page(page);
925 }
926 }
927 spin_lock(&hugetlb_lock);
928
929 return ret;
930 }
931
932 /*
933 * When releasing a hugetlb pool reservation, any surplus pages that were
934 * allocated to satisfy the reservation must be explicitly freed if they were
935 * never used.
936 * Called with hugetlb_lock held.
937 */
938 static void return_unused_surplus_pages(struct hstate *h,
939 unsigned long unused_resv_pages)
940 {
941 unsigned long nr_pages;
942
943 /* Uncommit the reservation */
944 h->resv_huge_pages -= unused_resv_pages;
945
946 /* Cannot return gigantic pages currently */
947 if (h->order >= MAX_ORDER)
948 return;
949
950 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
951
952 /*
953 * We want to release as many surplus pages as possible, spread
954 * evenly across all nodes with memory. Iterate across these nodes
955 * until we can no longer free unreserved surplus pages. This occurs
956 * when the nodes with surplus pages have no free pages.
957 * free_pool_huge_page() will balance the the freed pages across the
958 * on-line nodes with memory and will handle the hstate accounting.
959 */
960 while (nr_pages--) {
961 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
962 break;
963 }
964 }
965
966 /*
967 * Determine if the huge page at addr within the vma has an associated
968 * reservation. Where it does not we will need to logically increase
969 * reservation and actually increase quota before an allocation can occur.
970 * Where any new reservation would be required the reservation change is
971 * prepared, but not committed. Once the page has been quota'd allocated
972 * an instantiated the change should be committed via vma_commit_reservation.
973 * No action is required on failure.
974 */
975 static long vma_needs_reservation(struct hstate *h,
976 struct vm_area_struct *vma, unsigned long addr)
977 {
978 struct address_space *mapping = vma->vm_file->f_mapping;
979 struct inode *inode = mapping->host;
980
981 if (vma->vm_flags & VM_MAYSHARE) {
982 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
983 return region_chg(&inode->i_mapping->private_list,
984 idx, idx + 1);
985
986 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
987 return 1;
988
989 } else {
990 long err;
991 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
992 struct resv_map *reservations = vma_resv_map(vma);
993
994 err = region_chg(&reservations->regions, idx, idx + 1);
995 if (err < 0)
996 return err;
997 return 0;
998 }
999 }
1000 static void vma_commit_reservation(struct hstate *h,
1001 struct vm_area_struct *vma, unsigned long addr)
1002 {
1003 struct address_space *mapping = vma->vm_file->f_mapping;
1004 struct inode *inode = mapping->host;
1005
1006 if (vma->vm_flags & VM_MAYSHARE) {
1007 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1008 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1009
1010 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1011 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1012 struct resv_map *reservations = vma_resv_map(vma);
1013
1014 /* Mark this page used in the map. */
1015 region_add(&reservations->regions, idx, idx + 1);
1016 }
1017 }
1018
1019 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1020 unsigned long addr, int avoid_reserve)
1021 {
1022 struct hstate *h = hstate_vma(vma);
1023 struct page *page;
1024 struct address_space *mapping = vma->vm_file->f_mapping;
1025 struct inode *inode = mapping->host;
1026 long chg;
1027
1028 /*
1029 * Processes that did not create the mapping will have no reserves and
1030 * will not have accounted against quota. Check that the quota can be
1031 * made before satisfying the allocation
1032 * MAP_NORESERVE mappings may also need pages and quota allocated
1033 * if no reserve mapping overlaps.
1034 */
1035 chg = vma_needs_reservation(h, vma, addr);
1036 if (chg < 0)
1037 return ERR_PTR(-VM_FAULT_OOM);
1038 if (chg)
1039 if (hugetlb_get_quota(inode->i_mapping, chg))
1040 return ERR_PTR(-VM_FAULT_SIGBUS);
1041
1042 spin_lock(&hugetlb_lock);
1043 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1044 spin_unlock(&hugetlb_lock);
1045
1046 if (!page) {
1047 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1048 if (!page) {
1049 hugetlb_put_quota(inode->i_mapping, chg);
1050 return ERR_PTR(-VM_FAULT_SIGBUS);
1051 }
1052 }
1053
1054 set_page_private(page, (unsigned long) mapping);
1055
1056 vma_commit_reservation(h, vma, addr);
1057
1058 return page;
1059 }
1060
1061 int __weak alloc_bootmem_huge_page(struct hstate *h)
1062 {
1063 struct huge_bootmem_page *m;
1064 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1065
1066 while (nr_nodes) {
1067 void *addr;
1068
1069 addr = __alloc_bootmem_node_nopanic(
1070 NODE_DATA(hstate_next_node_to_alloc(h,
1071 &node_states[N_HIGH_MEMORY])),
1072 huge_page_size(h), huge_page_size(h), 0);
1073
1074 if (addr) {
1075 /*
1076 * Use the beginning of the huge page to store the
1077 * huge_bootmem_page struct (until gather_bootmem
1078 * puts them into the mem_map).
1079 */
1080 m = addr;
1081 goto found;
1082 }
1083 nr_nodes--;
1084 }
1085 return 0;
1086
1087 found:
1088 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1089 /* Put them into a private list first because mem_map is not up yet */
1090 list_add(&m->list, &huge_boot_pages);
1091 m->hstate = h;
1092 return 1;
1093 }
1094
1095 static void prep_compound_huge_page(struct page *page, int order)
1096 {
1097 if (unlikely(order > (MAX_ORDER - 1)))
1098 prep_compound_gigantic_page(page, order);
1099 else
1100 prep_compound_page(page, order);
1101 }
1102
1103 /* Put bootmem huge pages into the standard lists after mem_map is up */
1104 static void __init gather_bootmem_prealloc(void)
1105 {
1106 struct huge_bootmem_page *m;
1107
1108 list_for_each_entry(m, &huge_boot_pages, list) {
1109 struct hstate *h = m->hstate;
1110 struct page *page;
1111
1112 #ifdef CONFIG_HIGHMEM
1113 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1114 free_bootmem_late((unsigned long)m,
1115 sizeof(struct huge_bootmem_page));
1116 #else
1117 page = virt_to_page(m);
1118 #endif
1119 __ClearPageReserved(page);
1120 WARN_ON(page_count(page) != 1);
1121 prep_compound_huge_page(page, h->order);
1122 prep_new_huge_page(h, page, page_to_nid(page));
1123 /*
1124 * If we had gigantic hugepages allocated at boot time, we need
1125 * to restore the 'stolen' pages to totalram_pages in order to
1126 * fix confusing memory reports from free(1) and another
1127 * side-effects, like CommitLimit going negative.
1128 */
1129 if (h->order > (MAX_ORDER - 1))
1130 totalram_pages += 1 << h->order;
1131 }
1132 }
1133
1134 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1135 {
1136 unsigned long i;
1137
1138 for (i = 0; i < h->max_huge_pages; ++i) {
1139 if (h->order >= MAX_ORDER) {
1140 if (!alloc_bootmem_huge_page(h))
1141 break;
1142 } else if (!alloc_fresh_huge_page(h,
1143 &node_states[N_HIGH_MEMORY]))
1144 break;
1145 }
1146 h->max_huge_pages = i;
1147 }
1148
1149 static void __init hugetlb_init_hstates(void)
1150 {
1151 struct hstate *h;
1152
1153 for_each_hstate(h) {
1154 /* oversize hugepages were init'ed in early boot */
1155 if (h->order < MAX_ORDER)
1156 hugetlb_hstate_alloc_pages(h);
1157 }
1158 }
1159
1160 static char * __init memfmt(char *buf, unsigned long n)
1161 {
1162 if (n >= (1UL << 30))
1163 sprintf(buf, "%lu GB", n >> 30);
1164 else if (n >= (1UL << 20))
1165 sprintf(buf, "%lu MB", n >> 20);
1166 else
1167 sprintf(buf, "%lu KB", n >> 10);
1168 return buf;
1169 }
1170
1171 static void __init report_hugepages(void)
1172 {
1173 struct hstate *h;
1174
1175 for_each_hstate(h) {
1176 char buf[32];
1177 printk(KERN_INFO "HugeTLB registered %s page size, "
1178 "pre-allocated %ld pages\n",
1179 memfmt(buf, huge_page_size(h)),
1180 h->free_huge_pages);
1181 }
1182 }
1183
1184 #ifdef CONFIG_HIGHMEM
1185 static void try_to_free_low(struct hstate *h, unsigned long count,
1186 nodemask_t *nodes_allowed)
1187 {
1188 int i;
1189
1190 if (h->order >= MAX_ORDER)
1191 return;
1192
1193 for_each_node_mask(i, *nodes_allowed) {
1194 struct page *page, *next;
1195 struct list_head *freel = &h->hugepage_freelists[i];
1196 list_for_each_entry_safe(page, next, freel, lru) {
1197 if (count >= h->nr_huge_pages)
1198 return;
1199 if (PageHighMem(page))
1200 continue;
1201 list_del(&page->lru);
1202 update_and_free_page(h, page);
1203 h->free_huge_pages--;
1204 h->free_huge_pages_node[page_to_nid(page)]--;
1205 }
1206 }
1207 }
1208 #else
1209 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1210 nodemask_t *nodes_allowed)
1211 {
1212 }
1213 #endif
1214
1215 /*
1216 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1217 * balanced by operating on them in a round-robin fashion.
1218 * Returns 1 if an adjustment was made.
1219 */
1220 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1221 int delta)
1222 {
1223 int start_nid, next_nid;
1224 int ret = 0;
1225
1226 VM_BUG_ON(delta != -1 && delta != 1);
1227
1228 if (delta < 0)
1229 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1230 else
1231 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1232 next_nid = start_nid;
1233
1234 do {
1235 int nid = next_nid;
1236 if (delta < 0) {
1237 /*
1238 * To shrink on this node, there must be a surplus page
1239 */
1240 if (!h->surplus_huge_pages_node[nid]) {
1241 next_nid = hstate_next_node_to_alloc(h,
1242 nodes_allowed);
1243 continue;
1244 }
1245 }
1246 if (delta > 0) {
1247 /*
1248 * Surplus cannot exceed the total number of pages
1249 */
1250 if (h->surplus_huge_pages_node[nid] >=
1251 h->nr_huge_pages_node[nid]) {
1252 next_nid = hstate_next_node_to_free(h,
1253 nodes_allowed);
1254 continue;
1255 }
1256 }
1257
1258 h->surplus_huge_pages += delta;
1259 h->surplus_huge_pages_node[nid] += delta;
1260 ret = 1;
1261 break;
1262 } while (next_nid != start_nid);
1263
1264 return ret;
1265 }
1266
1267 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1268 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1269 nodemask_t *nodes_allowed)
1270 {
1271 unsigned long min_count, ret;
1272
1273 if (h->order >= MAX_ORDER)
1274 return h->max_huge_pages;
1275
1276 /*
1277 * Increase the pool size
1278 * First take pages out of surplus state. Then make up the
1279 * remaining difference by allocating fresh huge pages.
1280 *
1281 * We might race with alloc_buddy_huge_page() here and be unable
1282 * to convert a surplus huge page to a normal huge page. That is
1283 * not critical, though, it just means the overall size of the
1284 * pool might be one hugepage larger than it needs to be, but
1285 * within all the constraints specified by the sysctls.
1286 */
1287 spin_lock(&hugetlb_lock);
1288 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1289 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1290 break;
1291 }
1292
1293 while (count > persistent_huge_pages(h)) {
1294 /*
1295 * If this allocation races such that we no longer need the
1296 * page, free_huge_page will handle it by freeing the page
1297 * and reducing the surplus.
1298 */
1299 spin_unlock(&hugetlb_lock);
1300 ret = alloc_fresh_huge_page(h, nodes_allowed);
1301 spin_lock(&hugetlb_lock);
1302 if (!ret)
1303 goto out;
1304
1305 /* Bail for signals. Probably ctrl-c from user */
1306 if (signal_pending(current))
1307 goto out;
1308 }
1309
1310 /*
1311 * Decrease the pool size
1312 * First return free pages to the buddy allocator (being careful
1313 * to keep enough around to satisfy reservations). Then place
1314 * pages into surplus state as needed so the pool will shrink
1315 * to the desired size as pages become free.
1316 *
1317 * By placing pages into the surplus state independent of the
1318 * overcommit value, we are allowing the surplus pool size to
1319 * exceed overcommit. There are few sane options here. Since
1320 * alloc_buddy_huge_page() is checking the global counter,
1321 * though, we'll note that we're not allowed to exceed surplus
1322 * and won't grow the pool anywhere else. Not until one of the
1323 * sysctls are changed, or the surplus pages go out of use.
1324 */
1325 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1326 min_count = max(count, min_count);
1327 try_to_free_low(h, min_count, nodes_allowed);
1328 while (min_count < persistent_huge_pages(h)) {
1329 if (!free_pool_huge_page(h, nodes_allowed, 0))
1330 break;
1331 }
1332 while (count < persistent_huge_pages(h)) {
1333 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1334 break;
1335 }
1336 out:
1337 ret = persistent_huge_pages(h);
1338 spin_unlock(&hugetlb_lock);
1339 return ret;
1340 }
1341
1342 #define HSTATE_ATTR_RO(_name) \
1343 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1344
1345 #define HSTATE_ATTR(_name) \
1346 static struct kobj_attribute _name##_attr = \
1347 __ATTR(_name, 0644, _name##_show, _name##_store)
1348
1349 static struct kobject *hugepages_kobj;
1350 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1351
1352 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1353
1354 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1355 {
1356 int i;
1357
1358 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1359 if (hstate_kobjs[i] == kobj) {
1360 if (nidp)
1361 *nidp = NUMA_NO_NODE;
1362 return &hstates[i];
1363 }
1364
1365 return kobj_to_node_hstate(kobj, nidp);
1366 }
1367
1368 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1369 struct kobj_attribute *attr, char *buf)
1370 {
1371 struct hstate *h;
1372 unsigned long nr_huge_pages;
1373 int nid;
1374
1375 h = kobj_to_hstate(kobj, &nid);
1376 if (nid == NUMA_NO_NODE)
1377 nr_huge_pages = h->nr_huge_pages;
1378 else
1379 nr_huge_pages = h->nr_huge_pages_node[nid];
1380
1381 return sprintf(buf, "%lu\n", nr_huge_pages);
1382 }
1383
1384 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1385 struct kobject *kobj, struct kobj_attribute *attr,
1386 const char *buf, size_t len)
1387 {
1388 int err;
1389 int nid;
1390 unsigned long count;
1391 struct hstate *h;
1392 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1393
1394 err = strict_strtoul(buf, 10, &count);
1395 if (err)
1396 goto out;
1397
1398 h = kobj_to_hstate(kobj, &nid);
1399 if (h->order >= MAX_ORDER) {
1400 err = -EINVAL;
1401 goto out;
1402 }
1403
1404 if (nid == NUMA_NO_NODE) {
1405 /*
1406 * global hstate attribute
1407 */
1408 if (!(obey_mempolicy &&
1409 init_nodemask_of_mempolicy(nodes_allowed))) {
1410 NODEMASK_FREE(nodes_allowed);
1411 nodes_allowed = &node_states[N_HIGH_MEMORY];
1412 }
1413 } else if (nodes_allowed) {
1414 /*
1415 * per node hstate attribute: adjust count to global,
1416 * but restrict alloc/free to the specified node.
1417 */
1418 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1419 init_nodemask_of_node(nodes_allowed, nid);
1420 } else
1421 nodes_allowed = &node_states[N_HIGH_MEMORY];
1422
1423 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1424
1425 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1426 NODEMASK_FREE(nodes_allowed);
1427
1428 return len;
1429 out:
1430 NODEMASK_FREE(nodes_allowed);
1431 return err;
1432 }
1433
1434 static ssize_t nr_hugepages_show(struct kobject *kobj,
1435 struct kobj_attribute *attr, char *buf)
1436 {
1437 return nr_hugepages_show_common(kobj, attr, buf);
1438 }
1439
1440 static ssize_t nr_hugepages_store(struct kobject *kobj,
1441 struct kobj_attribute *attr, const char *buf, size_t len)
1442 {
1443 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1444 }
1445 HSTATE_ATTR(nr_hugepages);
1446
1447 #ifdef CONFIG_NUMA
1448
1449 /*
1450 * hstate attribute for optionally mempolicy-based constraint on persistent
1451 * huge page alloc/free.
1452 */
1453 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1454 struct kobj_attribute *attr, char *buf)
1455 {
1456 return nr_hugepages_show_common(kobj, attr, buf);
1457 }
1458
1459 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1460 struct kobj_attribute *attr, const char *buf, size_t len)
1461 {
1462 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1463 }
1464 HSTATE_ATTR(nr_hugepages_mempolicy);
1465 #endif
1466
1467
1468 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1469 struct kobj_attribute *attr, char *buf)
1470 {
1471 struct hstate *h = kobj_to_hstate(kobj, NULL);
1472 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1473 }
1474
1475 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1476 struct kobj_attribute *attr, const char *buf, size_t count)
1477 {
1478 int err;
1479 unsigned long input;
1480 struct hstate *h = kobj_to_hstate(kobj, NULL);
1481
1482 if (h->order >= MAX_ORDER)
1483 return -EINVAL;
1484
1485 err = strict_strtoul(buf, 10, &input);
1486 if (err)
1487 return err;
1488
1489 spin_lock(&hugetlb_lock);
1490 h->nr_overcommit_huge_pages = input;
1491 spin_unlock(&hugetlb_lock);
1492
1493 return count;
1494 }
1495 HSTATE_ATTR(nr_overcommit_hugepages);
1496
1497 static ssize_t free_hugepages_show(struct kobject *kobj,
1498 struct kobj_attribute *attr, char *buf)
1499 {
1500 struct hstate *h;
1501 unsigned long free_huge_pages;
1502 int nid;
1503
1504 h = kobj_to_hstate(kobj, &nid);
1505 if (nid == NUMA_NO_NODE)
1506 free_huge_pages = h->free_huge_pages;
1507 else
1508 free_huge_pages = h->free_huge_pages_node[nid];
1509
1510 return sprintf(buf, "%lu\n", free_huge_pages);
1511 }
1512 HSTATE_ATTR_RO(free_hugepages);
1513
1514 static ssize_t resv_hugepages_show(struct kobject *kobj,
1515 struct kobj_attribute *attr, char *buf)
1516 {
1517 struct hstate *h = kobj_to_hstate(kobj, NULL);
1518 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1519 }
1520 HSTATE_ATTR_RO(resv_hugepages);
1521
1522 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1523 struct kobj_attribute *attr, char *buf)
1524 {
1525 struct hstate *h;
1526 unsigned long surplus_huge_pages;
1527 int nid;
1528
1529 h = kobj_to_hstate(kobj, &nid);
1530 if (nid == NUMA_NO_NODE)
1531 surplus_huge_pages = h->surplus_huge_pages;
1532 else
1533 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1534
1535 return sprintf(buf, "%lu\n", surplus_huge_pages);
1536 }
1537 HSTATE_ATTR_RO(surplus_hugepages);
1538
1539 static struct attribute *hstate_attrs[] = {
1540 &nr_hugepages_attr.attr,
1541 &nr_overcommit_hugepages_attr.attr,
1542 &free_hugepages_attr.attr,
1543 &resv_hugepages_attr.attr,
1544 &surplus_hugepages_attr.attr,
1545 #ifdef CONFIG_NUMA
1546 &nr_hugepages_mempolicy_attr.attr,
1547 #endif
1548 NULL,
1549 };
1550
1551 static struct attribute_group hstate_attr_group = {
1552 .attrs = hstate_attrs,
1553 };
1554
1555 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1556 struct kobject **hstate_kobjs,
1557 struct attribute_group *hstate_attr_group)
1558 {
1559 int retval;
1560 int hi = h - hstates;
1561
1562 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1563 if (!hstate_kobjs[hi])
1564 return -ENOMEM;
1565
1566 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1567 if (retval)
1568 kobject_put(hstate_kobjs[hi]);
1569
1570 return retval;
1571 }
1572
1573 static void __init hugetlb_sysfs_init(void)
1574 {
1575 struct hstate *h;
1576 int err;
1577
1578 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1579 if (!hugepages_kobj)
1580 return;
1581
1582 for_each_hstate(h) {
1583 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1584 hstate_kobjs, &hstate_attr_group);
1585 if (err)
1586 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1587 h->name);
1588 }
1589 }
1590
1591 #ifdef CONFIG_NUMA
1592
1593 /*
1594 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1595 * with node sysdevs in node_devices[] using a parallel array. The array
1596 * index of a node sysdev or _hstate == node id.
1597 * This is here to avoid any static dependency of the node sysdev driver, in
1598 * the base kernel, on the hugetlb module.
1599 */
1600 struct node_hstate {
1601 struct kobject *hugepages_kobj;
1602 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1603 };
1604 struct node_hstate node_hstates[MAX_NUMNODES];
1605
1606 /*
1607 * A subset of global hstate attributes for node sysdevs
1608 */
1609 static struct attribute *per_node_hstate_attrs[] = {
1610 &nr_hugepages_attr.attr,
1611 &free_hugepages_attr.attr,
1612 &surplus_hugepages_attr.attr,
1613 NULL,
1614 };
1615
1616 static struct attribute_group per_node_hstate_attr_group = {
1617 .attrs = per_node_hstate_attrs,
1618 };
1619
1620 /*
1621 * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1622 * Returns node id via non-NULL nidp.
1623 */
1624 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1625 {
1626 int nid;
1627
1628 for (nid = 0; nid < nr_node_ids; nid++) {
1629 struct node_hstate *nhs = &node_hstates[nid];
1630 int i;
1631 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1632 if (nhs->hstate_kobjs[i] == kobj) {
1633 if (nidp)
1634 *nidp = nid;
1635 return &hstates[i];
1636 }
1637 }
1638
1639 BUG();
1640 return NULL;
1641 }
1642
1643 /*
1644 * Unregister hstate attributes from a single node sysdev.
1645 * No-op if no hstate attributes attached.
1646 */
1647 void hugetlb_unregister_node(struct node *node)
1648 {
1649 struct hstate *h;
1650 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1651
1652 if (!nhs->hugepages_kobj)
1653 return; /* no hstate attributes */
1654
1655 for_each_hstate(h)
1656 if (nhs->hstate_kobjs[h - hstates]) {
1657 kobject_put(nhs->hstate_kobjs[h - hstates]);
1658 nhs->hstate_kobjs[h - hstates] = NULL;
1659 }
1660
1661 kobject_put(nhs->hugepages_kobj);
1662 nhs->hugepages_kobj = NULL;
1663 }
1664
1665 /*
1666 * hugetlb module exit: unregister hstate attributes from node sysdevs
1667 * that have them.
1668 */
1669 static void hugetlb_unregister_all_nodes(void)
1670 {
1671 int nid;
1672
1673 /*
1674 * disable node sysdev registrations.
1675 */
1676 register_hugetlbfs_with_node(NULL, NULL);
1677
1678 /*
1679 * remove hstate attributes from any nodes that have them.
1680 */
1681 for (nid = 0; nid < nr_node_ids; nid++)
1682 hugetlb_unregister_node(&node_devices[nid]);
1683 }
1684
1685 /*
1686 * Register hstate attributes for a single node sysdev.
1687 * No-op if attributes already registered.
1688 */
1689 void hugetlb_register_node(struct node *node)
1690 {
1691 struct hstate *h;
1692 struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1693 int err;
1694
1695 if (nhs->hugepages_kobj)
1696 return; /* already allocated */
1697
1698 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1699 &node->sysdev.kobj);
1700 if (!nhs->hugepages_kobj)
1701 return;
1702
1703 for_each_hstate(h) {
1704 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1705 nhs->hstate_kobjs,
1706 &per_node_hstate_attr_group);
1707 if (err) {
1708 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1709 " for node %d\n",
1710 h->name, node->sysdev.id);
1711 hugetlb_unregister_node(node);
1712 break;
1713 }
1714 }
1715 }
1716
1717 /*
1718 * hugetlb init time: register hstate attributes for all registered node
1719 * sysdevs of nodes that have memory. All on-line nodes should have
1720 * registered their associated sysdev by this time.
1721 */
1722 static void hugetlb_register_all_nodes(void)
1723 {
1724 int nid;
1725
1726 for_each_node_state(nid, N_HIGH_MEMORY) {
1727 struct node *node = &node_devices[nid];
1728 if (node->sysdev.id == nid)
1729 hugetlb_register_node(node);
1730 }
1731
1732 /*
1733 * Let the node sysdev driver know we're here so it can
1734 * [un]register hstate attributes on node hotplug.
1735 */
1736 register_hugetlbfs_with_node(hugetlb_register_node,
1737 hugetlb_unregister_node);
1738 }
1739 #else /* !CONFIG_NUMA */
1740
1741 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1742 {
1743 BUG();
1744 if (nidp)
1745 *nidp = -1;
1746 return NULL;
1747 }
1748
1749 static void hugetlb_unregister_all_nodes(void) { }
1750
1751 static void hugetlb_register_all_nodes(void) { }
1752
1753 #endif
1754
1755 static void __exit hugetlb_exit(void)
1756 {
1757 struct hstate *h;
1758
1759 hugetlb_unregister_all_nodes();
1760
1761 for_each_hstate(h) {
1762 kobject_put(hstate_kobjs[h - hstates]);
1763 }
1764
1765 kobject_put(hugepages_kobj);
1766 }
1767 module_exit(hugetlb_exit);
1768
1769 static int __init hugetlb_init(void)
1770 {
1771 /* Some platform decide whether they support huge pages at boot
1772 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1773 * there is no such support
1774 */
1775 if (HPAGE_SHIFT == 0)
1776 return 0;
1777
1778 if (!size_to_hstate(default_hstate_size)) {
1779 default_hstate_size = HPAGE_SIZE;
1780 if (!size_to_hstate(default_hstate_size))
1781 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1782 }
1783 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1784 if (default_hstate_max_huge_pages)
1785 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1786
1787 hugetlb_init_hstates();
1788
1789 gather_bootmem_prealloc();
1790
1791 report_hugepages();
1792
1793 hugetlb_sysfs_init();
1794
1795 hugetlb_register_all_nodes();
1796
1797 return 0;
1798 }
1799 module_init(hugetlb_init);
1800
1801 /* Should be called on processing a hugepagesz=... option */
1802 void __init hugetlb_add_hstate(unsigned order)
1803 {
1804 struct hstate *h;
1805 unsigned long i;
1806
1807 if (size_to_hstate(PAGE_SIZE << order)) {
1808 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1809 return;
1810 }
1811 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1812 BUG_ON(order == 0);
1813 h = &hstates[max_hstate++];
1814 h->order = order;
1815 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1816 h->nr_huge_pages = 0;
1817 h->free_huge_pages = 0;
1818 for (i = 0; i < MAX_NUMNODES; ++i)
1819 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1820 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1821 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1822 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1823 huge_page_size(h)/1024);
1824
1825 parsed_hstate = h;
1826 }
1827
1828 static int __init hugetlb_nrpages_setup(char *s)
1829 {
1830 unsigned long *mhp;
1831 static unsigned long *last_mhp;
1832
1833 /*
1834 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1835 * so this hugepages= parameter goes to the "default hstate".
1836 */
1837 if (!max_hstate)
1838 mhp = &default_hstate_max_huge_pages;
1839 else
1840 mhp = &parsed_hstate->max_huge_pages;
1841
1842 if (mhp == last_mhp) {
1843 printk(KERN_WARNING "hugepages= specified twice without "
1844 "interleaving hugepagesz=, ignoring\n");
1845 return 1;
1846 }
1847
1848 if (sscanf(s, "%lu", mhp) <= 0)
1849 *mhp = 0;
1850
1851 /*
1852 * Global state is always initialized later in hugetlb_init.
1853 * But we need to allocate >= MAX_ORDER hstates here early to still
1854 * use the bootmem allocator.
1855 */
1856 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1857 hugetlb_hstate_alloc_pages(parsed_hstate);
1858
1859 last_mhp = mhp;
1860
1861 return 1;
1862 }
1863 __setup("hugepages=", hugetlb_nrpages_setup);
1864
1865 static int __init hugetlb_default_setup(char *s)
1866 {
1867 default_hstate_size = memparse(s, &s);
1868 return 1;
1869 }
1870 __setup("default_hugepagesz=", hugetlb_default_setup);
1871
1872 static unsigned int cpuset_mems_nr(unsigned int *array)
1873 {
1874 int node;
1875 unsigned int nr = 0;
1876
1877 for_each_node_mask(node, cpuset_current_mems_allowed)
1878 nr += array[node];
1879
1880 return nr;
1881 }
1882
1883 #ifdef CONFIG_SYSCTL
1884 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1885 struct ctl_table *table, int write,
1886 void __user *buffer, size_t *length, loff_t *ppos)
1887 {
1888 struct hstate *h = &default_hstate;
1889 unsigned long tmp;
1890 int ret;
1891
1892 tmp = h->max_huge_pages;
1893
1894 if (write && h->order >= MAX_ORDER)
1895 return -EINVAL;
1896
1897 table->data = &tmp;
1898 table->maxlen = sizeof(unsigned long);
1899 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1900 if (ret)
1901 goto out;
1902
1903 if (write) {
1904 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1905 GFP_KERNEL | __GFP_NORETRY);
1906 if (!(obey_mempolicy &&
1907 init_nodemask_of_mempolicy(nodes_allowed))) {
1908 NODEMASK_FREE(nodes_allowed);
1909 nodes_allowed = &node_states[N_HIGH_MEMORY];
1910 }
1911 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1912
1913 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1914 NODEMASK_FREE(nodes_allowed);
1915 }
1916 out:
1917 return ret;
1918 }
1919
1920 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1921 void __user *buffer, size_t *length, loff_t *ppos)
1922 {
1923
1924 return hugetlb_sysctl_handler_common(false, table, write,
1925 buffer, length, ppos);
1926 }
1927
1928 #ifdef CONFIG_NUMA
1929 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1930 void __user *buffer, size_t *length, loff_t *ppos)
1931 {
1932 return hugetlb_sysctl_handler_common(true, table, write,
1933 buffer, length, ppos);
1934 }
1935 #endif /* CONFIG_NUMA */
1936
1937 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1938 void __user *buffer,
1939 size_t *length, loff_t *ppos)
1940 {
1941 proc_dointvec(table, write, buffer, length, ppos);
1942 if (hugepages_treat_as_movable)
1943 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1944 else
1945 htlb_alloc_mask = GFP_HIGHUSER;
1946 return 0;
1947 }
1948
1949 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1950 void __user *buffer,
1951 size_t *length, loff_t *ppos)
1952 {
1953 struct hstate *h = &default_hstate;
1954 unsigned long tmp;
1955 int ret;
1956
1957 tmp = h->nr_overcommit_huge_pages;
1958
1959 if (write && h->order >= MAX_ORDER)
1960 return -EINVAL;
1961
1962 table->data = &tmp;
1963 table->maxlen = sizeof(unsigned long);
1964 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1965 if (ret)
1966 goto out;
1967
1968 if (write) {
1969 spin_lock(&hugetlb_lock);
1970 h->nr_overcommit_huge_pages = tmp;
1971 spin_unlock(&hugetlb_lock);
1972 }
1973 out:
1974 return ret;
1975 }
1976
1977 #endif /* CONFIG_SYSCTL */
1978
1979 void hugetlb_report_meminfo(struct seq_file *m)
1980 {
1981 struct hstate *h = &default_hstate;
1982 seq_printf(m,
1983 "HugePages_Total: %5lu\n"
1984 "HugePages_Free: %5lu\n"
1985 "HugePages_Rsvd: %5lu\n"
1986 "HugePages_Surp: %5lu\n"
1987 "Hugepagesize: %8lu kB\n",
1988 h->nr_huge_pages,
1989 h->free_huge_pages,
1990 h->resv_huge_pages,
1991 h->surplus_huge_pages,
1992 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1993 }
1994
1995 int hugetlb_report_node_meminfo(int nid, char *buf)
1996 {
1997 struct hstate *h = &default_hstate;
1998 return sprintf(buf,
1999 "Node %d HugePages_Total: %5u\n"
2000 "Node %d HugePages_Free: %5u\n"
2001 "Node %d HugePages_Surp: %5u\n",
2002 nid, h->nr_huge_pages_node[nid],
2003 nid, h->free_huge_pages_node[nid],
2004 nid, h->surplus_huge_pages_node[nid]);
2005 }
2006
2007 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2008 unsigned long hugetlb_total_pages(void)
2009 {
2010 struct hstate *h = &default_hstate;
2011 return h->nr_huge_pages * pages_per_huge_page(h);
2012 }
2013
2014 static int hugetlb_acct_memory(struct hstate *h, long delta)
2015 {
2016 int ret = -ENOMEM;
2017
2018 spin_lock(&hugetlb_lock);
2019 /*
2020 * When cpuset is configured, it breaks the strict hugetlb page
2021 * reservation as the accounting is done on a global variable. Such
2022 * reservation is completely rubbish in the presence of cpuset because
2023 * the reservation is not checked against page availability for the
2024 * current cpuset. Application can still potentially OOM'ed by kernel
2025 * with lack of free htlb page in cpuset that the task is in.
2026 * Attempt to enforce strict accounting with cpuset is almost
2027 * impossible (or too ugly) because cpuset is too fluid that
2028 * task or memory node can be dynamically moved between cpusets.
2029 *
2030 * The change of semantics for shared hugetlb mapping with cpuset is
2031 * undesirable. However, in order to preserve some of the semantics,
2032 * we fall back to check against current free page availability as
2033 * a best attempt and hopefully to minimize the impact of changing
2034 * semantics that cpuset has.
2035 */
2036 if (delta > 0) {
2037 if (gather_surplus_pages(h, delta) < 0)
2038 goto out;
2039
2040 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2041 return_unused_surplus_pages(h, delta);
2042 goto out;
2043 }
2044 }
2045
2046 ret = 0;
2047 if (delta < 0)
2048 return_unused_surplus_pages(h, (unsigned long) -delta);
2049
2050 out:
2051 spin_unlock(&hugetlb_lock);
2052 return ret;
2053 }
2054
2055 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2056 {
2057 struct resv_map *reservations = vma_resv_map(vma);
2058
2059 /*
2060 * This new VMA should share its siblings reservation map if present.
2061 * The VMA will only ever have a valid reservation map pointer where
2062 * it is being copied for another still existing VMA. As that VMA
2063 * has a reference to the reservation map it cannot disappear until
2064 * after this open call completes. It is therefore safe to take a
2065 * new reference here without additional locking.
2066 */
2067 if (reservations)
2068 kref_get(&reservations->refs);
2069 }
2070
2071 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2072 {
2073 struct hstate *h = hstate_vma(vma);
2074 struct resv_map *reservations = vma_resv_map(vma);
2075 unsigned long reserve;
2076 unsigned long start;
2077 unsigned long end;
2078
2079 if (reservations) {
2080 start = vma_hugecache_offset(h, vma, vma->vm_start);
2081 end = vma_hugecache_offset(h, vma, vma->vm_end);
2082
2083 reserve = (end - start) -
2084 region_count(&reservations->regions, start, end);
2085
2086 kref_put(&reservations->refs, resv_map_release);
2087
2088 if (reserve) {
2089 hugetlb_acct_memory(h, -reserve);
2090 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2091 }
2092 }
2093 }
2094
2095 /*
2096 * We cannot handle pagefaults against hugetlb pages at all. They cause
2097 * handle_mm_fault() to try to instantiate regular-sized pages in the
2098 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2099 * this far.
2100 */
2101 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2102 {
2103 BUG();
2104 return 0;
2105 }
2106
2107 const struct vm_operations_struct hugetlb_vm_ops = {
2108 .fault = hugetlb_vm_op_fault,
2109 .open = hugetlb_vm_op_open,
2110 .close = hugetlb_vm_op_close,
2111 };
2112
2113 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2114 int writable)
2115 {
2116 pte_t entry;
2117
2118 if (writable) {
2119 entry =
2120 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2121 } else {
2122 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2123 }
2124 entry = pte_mkyoung(entry);
2125 entry = pte_mkhuge(entry);
2126
2127 return entry;
2128 }
2129
2130 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2131 unsigned long address, pte_t *ptep)
2132 {
2133 pte_t entry;
2134
2135 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2136 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2137 update_mmu_cache(vma, address, ptep);
2138 }
2139
2140
2141 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2142 struct vm_area_struct *vma)
2143 {
2144 pte_t *src_pte, *dst_pte, entry;
2145 struct page *ptepage;
2146 unsigned long addr;
2147 int cow;
2148 struct hstate *h = hstate_vma(vma);
2149 unsigned long sz = huge_page_size(h);
2150
2151 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2152
2153 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2154 src_pte = huge_pte_offset(src, addr);
2155 if (!src_pte)
2156 continue;
2157 dst_pte = huge_pte_alloc(dst, addr, sz);
2158 if (!dst_pte)
2159 goto nomem;
2160
2161 /* If the pagetables are shared don't copy or take references */
2162 if (dst_pte == src_pte)
2163 continue;
2164
2165 spin_lock(&dst->page_table_lock);
2166 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2167 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2168 if (cow)
2169 huge_ptep_set_wrprotect(src, addr, src_pte);
2170 entry = huge_ptep_get(src_pte);
2171 ptepage = pte_page(entry);
2172 get_page(ptepage);
2173 page_dup_rmap(ptepage);
2174 set_huge_pte_at(dst, addr, dst_pte, entry);
2175 }
2176 spin_unlock(&src->page_table_lock);
2177 spin_unlock(&dst->page_table_lock);
2178 }
2179 return 0;
2180
2181 nomem:
2182 return -ENOMEM;
2183 }
2184
2185 static int is_hugetlb_entry_migration(pte_t pte)
2186 {
2187 swp_entry_t swp;
2188
2189 if (huge_pte_none(pte) || pte_present(pte))
2190 return 0;
2191 swp = pte_to_swp_entry(pte);
2192 if (non_swap_entry(swp) && is_migration_entry(swp))
2193 return 1;
2194 else
2195 return 0;
2196 }
2197
2198 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2199 {
2200 swp_entry_t swp;
2201
2202 if (huge_pte_none(pte) || pte_present(pte))
2203 return 0;
2204 swp = pte_to_swp_entry(pte);
2205 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2206 return 1;
2207 else
2208 return 0;
2209 }
2210
2211 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2212 unsigned long end, struct page *ref_page)
2213 {
2214 struct mm_struct *mm = vma->vm_mm;
2215 unsigned long address;
2216 pte_t *ptep;
2217 pte_t pte;
2218 struct page *page;
2219 struct page *tmp;
2220 struct hstate *h = hstate_vma(vma);
2221 unsigned long sz = huge_page_size(h);
2222
2223 /*
2224 * A page gathering list, protected by per file i_mmap_mutex. The
2225 * lock is used to avoid list corruption from multiple unmapping
2226 * of the same page since we are using page->lru.
2227 */
2228 LIST_HEAD(page_list);
2229
2230 WARN_ON(!is_vm_hugetlb_page(vma));
2231 BUG_ON(start & ~huge_page_mask(h));
2232 BUG_ON(end & ~huge_page_mask(h));
2233
2234 mmu_notifier_invalidate_range_start(mm, start, end);
2235 spin_lock(&mm->page_table_lock);
2236 for (address = start; address < end; address += sz) {
2237 ptep = huge_pte_offset(mm, address);
2238 if (!ptep)
2239 continue;
2240
2241 if (huge_pmd_unshare(mm, &address, ptep))
2242 continue;
2243
2244 /*
2245 * If a reference page is supplied, it is because a specific
2246 * page is being unmapped, not a range. Ensure the page we
2247 * are about to unmap is the actual page of interest.
2248 */
2249 if (ref_page) {
2250 pte = huge_ptep_get(ptep);
2251 if (huge_pte_none(pte))
2252 continue;
2253 page = pte_page(pte);
2254 if (page != ref_page)
2255 continue;
2256
2257 /*
2258 * Mark the VMA as having unmapped its page so that
2259 * future faults in this VMA will fail rather than
2260 * looking like data was lost
2261 */
2262 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2263 }
2264
2265 pte = huge_ptep_get_and_clear(mm, address, ptep);
2266 if (huge_pte_none(pte))
2267 continue;
2268
2269 /*
2270 * HWPoisoned hugepage is already unmapped and dropped reference
2271 */
2272 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2273 continue;
2274
2275 page = pte_page(pte);
2276 if (pte_dirty(pte))
2277 set_page_dirty(page);
2278 list_add(&page->lru, &page_list);
2279 }
2280 spin_unlock(&mm->page_table_lock);
2281 flush_tlb_range(vma, start, end);
2282 mmu_notifier_invalidate_range_end(mm, start, end);
2283 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2284 page_remove_rmap(page);
2285 list_del(&page->lru);
2286 put_page(page);
2287 }
2288 }
2289
2290 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2291 unsigned long end, struct page *ref_page)
2292 {
2293 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2294 __unmap_hugepage_range(vma, start, end, ref_page);
2295 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2296 }
2297
2298 /*
2299 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2300 * mappping it owns the reserve page for. The intention is to unmap the page
2301 * from other VMAs and let the children be SIGKILLed if they are faulting the
2302 * same region.
2303 */
2304 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2305 struct page *page, unsigned long address)
2306 {
2307 struct hstate *h = hstate_vma(vma);
2308 struct vm_area_struct *iter_vma;
2309 struct address_space *mapping;
2310 struct prio_tree_iter iter;
2311 pgoff_t pgoff;
2312
2313 /*
2314 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2315 * from page cache lookup which is in HPAGE_SIZE units.
2316 */
2317 address = address & huge_page_mask(h);
2318 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2319 + (vma->vm_pgoff >> PAGE_SHIFT);
2320 mapping = (struct address_space *)page_private(page);
2321
2322 /*
2323 * Take the mapping lock for the duration of the table walk. As
2324 * this mapping should be shared between all the VMAs,
2325 * __unmap_hugepage_range() is called as the lock is already held
2326 */
2327 mutex_lock(&mapping->i_mmap_mutex);
2328 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2329 /* Do not unmap the current VMA */
2330 if (iter_vma == vma)
2331 continue;
2332
2333 /*
2334 * Unmap the page from other VMAs without their own reserves.
2335 * They get marked to be SIGKILLed if they fault in these
2336 * areas. This is because a future no-page fault on this VMA
2337 * could insert a zeroed page instead of the data existing
2338 * from the time of fork. This would look like data corruption
2339 */
2340 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2341 __unmap_hugepage_range(iter_vma,
2342 address, address + huge_page_size(h),
2343 page);
2344 }
2345 mutex_unlock(&mapping->i_mmap_mutex);
2346
2347 return 1;
2348 }
2349
2350 /*
2351 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2352 */
2353 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2354 unsigned long address, pte_t *ptep, pte_t pte,
2355 struct page *pagecache_page)
2356 {
2357 struct hstate *h = hstate_vma(vma);
2358 struct page *old_page, *new_page;
2359 int avoidcopy;
2360 int outside_reserve = 0;
2361
2362 old_page = pte_page(pte);
2363
2364 retry_avoidcopy:
2365 /* If no-one else is actually using this page, avoid the copy
2366 * and just make the page writable */
2367 avoidcopy = (page_mapcount(old_page) == 1);
2368 if (avoidcopy) {
2369 if (PageAnon(old_page))
2370 page_move_anon_rmap(old_page, vma, address);
2371 set_huge_ptep_writable(vma, address, ptep);
2372 return 0;
2373 }
2374
2375 /*
2376 * If the process that created a MAP_PRIVATE mapping is about to
2377 * perform a COW due to a shared page count, attempt to satisfy
2378 * the allocation without using the existing reserves. The pagecache
2379 * page is used to determine if the reserve at this address was
2380 * consumed or not. If reserves were used, a partial faulted mapping
2381 * at the time of fork() could consume its reserves on COW instead
2382 * of the full address range.
2383 */
2384 if (!(vma->vm_flags & VM_MAYSHARE) &&
2385 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2386 old_page != pagecache_page)
2387 outside_reserve = 1;
2388
2389 page_cache_get(old_page);
2390
2391 /* Drop page_table_lock as buddy allocator may be called */
2392 spin_unlock(&mm->page_table_lock);
2393 new_page = alloc_huge_page(vma, address, outside_reserve);
2394
2395 if (IS_ERR(new_page)) {
2396 page_cache_release(old_page);
2397
2398 /*
2399 * If a process owning a MAP_PRIVATE mapping fails to COW,
2400 * it is due to references held by a child and an insufficient
2401 * huge page pool. To guarantee the original mappers
2402 * reliability, unmap the page from child processes. The child
2403 * may get SIGKILLed if it later faults.
2404 */
2405 if (outside_reserve) {
2406 BUG_ON(huge_pte_none(pte));
2407 if (unmap_ref_private(mm, vma, old_page, address)) {
2408 BUG_ON(page_count(old_page) != 1);
2409 BUG_ON(huge_pte_none(pte));
2410 spin_lock(&mm->page_table_lock);
2411 goto retry_avoidcopy;
2412 }
2413 WARN_ON_ONCE(1);
2414 }
2415
2416 /* Caller expects lock to be held */
2417 spin_lock(&mm->page_table_lock);
2418 return -PTR_ERR(new_page);
2419 }
2420
2421 /*
2422 * When the original hugepage is shared one, it does not have
2423 * anon_vma prepared.
2424 */
2425 if (unlikely(anon_vma_prepare(vma))) {
2426 page_cache_release(new_page);
2427 page_cache_release(old_page);
2428 /* Caller expects lock to be held */
2429 spin_lock(&mm->page_table_lock);
2430 return VM_FAULT_OOM;
2431 }
2432
2433 copy_user_huge_page(new_page, old_page, address, vma,
2434 pages_per_huge_page(h));
2435 __SetPageUptodate(new_page);
2436
2437 /*
2438 * Retake the page_table_lock to check for racing updates
2439 * before the page tables are altered
2440 */
2441 spin_lock(&mm->page_table_lock);
2442 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2443 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2444 /* Break COW */
2445 mmu_notifier_invalidate_range_start(mm,
2446 address & huge_page_mask(h),
2447 (address & huge_page_mask(h)) + huge_page_size(h));
2448 huge_ptep_clear_flush(vma, address, ptep);
2449 set_huge_pte_at(mm, address, ptep,
2450 make_huge_pte(vma, new_page, 1));
2451 page_remove_rmap(old_page);
2452 hugepage_add_new_anon_rmap(new_page, vma, address);
2453 /* Make the old page be freed below */
2454 new_page = old_page;
2455 mmu_notifier_invalidate_range_end(mm,
2456 address & huge_page_mask(h),
2457 (address & huge_page_mask(h)) + huge_page_size(h));
2458 }
2459 page_cache_release(new_page);
2460 page_cache_release(old_page);
2461 return 0;
2462 }
2463
2464 /* Return the pagecache page at a given address within a VMA */
2465 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2466 struct vm_area_struct *vma, unsigned long address)
2467 {
2468 struct address_space *mapping;
2469 pgoff_t idx;
2470
2471 mapping = vma->vm_file->f_mapping;
2472 idx = vma_hugecache_offset(h, vma, address);
2473
2474 return find_lock_page(mapping, idx);
2475 }
2476
2477 /*
2478 * Return whether there is a pagecache page to back given address within VMA.
2479 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2480 */
2481 static bool hugetlbfs_pagecache_present(struct hstate *h,
2482 struct vm_area_struct *vma, unsigned long address)
2483 {
2484 struct address_space *mapping;
2485 pgoff_t idx;
2486 struct page *page;
2487
2488 mapping = vma->vm_file->f_mapping;
2489 idx = vma_hugecache_offset(h, vma, address);
2490
2491 page = find_get_page(mapping, idx);
2492 if (page)
2493 put_page(page);
2494 return page != NULL;
2495 }
2496
2497 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2498 unsigned long address, pte_t *ptep, unsigned int flags)
2499 {
2500 struct hstate *h = hstate_vma(vma);
2501 int ret = VM_FAULT_SIGBUS;
2502 pgoff_t idx;
2503 unsigned long size;
2504 struct page *page;
2505 struct address_space *mapping;
2506 pte_t new_pte;
2507
2508 /*
2509 * Currently, we are forced to kill the process in the event the
2510 * original mapper has unmapped pages from the child due to a failed
2511 * COW. Warn that such a situation has occurred as it may not be obvious
2512 */
2513 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2514 printk(KERN_WARNING
2515 "PID %d killed due to inadequate hugepage pool\n",
2516 current->pid);
2517 return ret;
2518 }
2519
2520 mapping = vma->vm_file->f_mapping;
2521 idx = vma_hugecache_offset(h, vma, address);
2522
2523 /*
2524 * Use page lock to guard against racing truncation
2525 * before we get page_table_lock.
2526 */
2527 retry:
2528 page = find_lock_page(mapping, idx);
2529 if (!page) {
2530 size = i_size_read(mapping->host) >> huge_page_shift(h);
2531 if (idx >= size)
2532 goto out;
2533 page = alloc_huge_page(vma, address, 0);
2534 if (IS_ERR(page)) {
2535 ret = -PTR_ERR(page);
2536 goto out;
2537 }
2538 clear_huge_page(page, address, pages_per_huge_page(h));
2539 __SetPageUptodate(page);
2540
2541 if (vma->vm_flags & VM_MAYSHARE) {
2542 int err;
2543 struct inode *inode = mapping->host;
2544
2545 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2546 if (err) {
2547 put_page(page);
2548 if (err == -EEXIST)
2549 goto retry;
2550 goto out;
2551 }
2552
2553 spin_lock(&inode->i_lock);
2554 inode->i_blocks += blocks_per_huge_page(h);
2555 spin_unlock(&inode->i_lock);
2556 page_dup_rmap(page);
2557 } else {
2558 lock_page(page);
2559 if (unlikely(anon_vma_prepare(vma))) {
2560 ret = VM_FAULT_OOM;
2561 goto backout_unlocked;
2562 }
2563 hugepage_add_new_anon_rmap(page, vma, address);
2564 }
2565 } else {
2566 /*
2567 * If memory error occurs between mmap() and fault, some process
2568 * don't have hwpoisoned swap entry for errored virtual address.
2569 * So we need to block hugepage fault by PG_hwpoison bit check.
2570 */
2571 if (unlikely(PageHWPoison(page))) {
2572 ret = VM_FAULT_HWPOISON |
2573 VM_FAULT_SET_HINDEX(h - hstates);
2574 goto backout_unlocked;
2575 }
2576 page_dup_rmap(page);
2577 }
2578
2579 /*
2580 * If we are going to COW a private mapping later, we examine the
2581 * pending reservations for this page now. This will ensure that
2582 * any allocations necessary to record that reservation occur outside
2583 * the spinlock.
2584 */
2585 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2586 if (vma_needs_reservation(h, vma, address) < 0) {
2587 ret = VM_FAULT_OOM;
2588 goto backout_unlocked;
2589 }
2590
2591 spin_lock(&mm->page_table_lock);
2592 size = i_size_read(mapping->host) >> huge_page_shift(h);
2593 if (idx >= size)
2594 goto backout;
2595
2596 ret = 0;
2597 if (!huge_pte_none(huge_ptep_get(ptep)))
2598 goto backout;
2599
2600 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2601 && (vma->vm_flags & VM_SHARED)));
2602 set_huge_pte_at(mm, address, ptep, new_pte);
2603
2604 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2605 /* Optimization, do the COW without a second fault */
2606 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2607 }
2608
2609 spin_unlock(&mm->page_table_lock);
2610 unlock_page(page);
2611 out:
2612 return ret;
2613
2614 backout:
2615 spin_unlock(&mm->page_table_lock);
2616 backout_unlocked:
2617 unlock_page(page);
2618 put_page(page);
2619 goto out;
2620 }
2621
2622 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2623 unsigned long address, unsigned int flags)
2624 {
2625 pte_t *ptep;
2626 pte_t entry;
2627 int ret;
2628 struct page *page = NULL;
2629 struct page *pagecache_page = NULL;
2630 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2631 struct hstate *h = hstate_vma(vma);
2632
2633 ptep = huge_pte_offset(mm, address);
2634 if (ptep) {
2635 entry = huge_ptep_get(ptep);
2636 if (unlikely(is_hugetlb_entry_migration(entry))) {
2637 migration_entry_wait(mm, (pmd_t *)ptep, address);
2638 return 0;
2639 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2640 return VM_FAULT_HWPOISON_LARGE |
2641 VM_FAULT_SET_HINDEX(h - hstates);
2642 }
2643
2644 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2645 if (!ptep)
2646 return VM_FAULT_OOM;
2647
2648 /*
2649 * Serialize hugepage allocation and instantiation, so that we don't
2650 * get spurious allocation failures if two CPUs race to instantiate
2651 * the same page in the page cache.
2652 */
2653 mutex_lock(&hugetlb_instantiation_mutex);
2654 entry = huge_ptep_get(ptep);
2655 if (huge_pte_none(entry)) {
2656 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2657 goto out_mutex;
2658 }
2659
2660 ret = 0;
2661
2662 /*
2663 * If we are going to COW the mapping later, we examine the pending
2664 * reservations for this page now. This will ensure that any
2665 * allocations necessary to record that reservation occur outside the
2666 * spinlock. For private mappings, we also lookup the pagecache
2667 * page now as it is used to determine if a reservation has been
2668 * consumed.
2669 */
2670 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2671 if (vma_needs_reservation(h, vma, address) < 0) {
2672 ret = VM_FAULT_OOM;
2673 goto out_mutex;
2674 }
2675
2676 if (!(vma->vm_flags & VM_MAYSHARE))
2677 pagecache_page = hugetlbfs_pagecache_page(h,
2678 vma, address);
2679 }
2680
2681 /*
2682 * hugetlb_cow() requires page locks of pte_page(entry) and
2683 * pagecache_page, so here we need take the former one
2684 * when page != pagecache_page or !pagecache_page.
2685 * Note that locking order is always pagecache_page -> page,
2686 * so no worry about deadlock.
2687 */
2688 page = pte_page(entry);
2689 if (page != pagecache_page)
2690 lock_page(page);
2691
2692 spin_lock(&mm->page_table_lock);
2693 /* Check for a racing update before calling hugetlb_cow */
2694 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2695 goto out_page_table_lock;
2696
2697
2698 if (flags & FAULT_FLAG_WRITE) {
2699 if (!pte_write(entry)) {
2700 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2701 pagecache_page);
2702 goto out_page_table_lock;
2703 }
2704 entry = pte_mkdirty(entry);
2705 }
2706 entry = pte_mkyoung(entry);
2707 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2708 flags & FAULT_FLAG_WRITE))
2709 update_mmu_cache(vma, address, ptep);
2710
2711 out_page_table_lock:
2712 spin_unlock(&mm->page_table_lock);
2713
2714 if (pagecache_page) {
2715 unlock_page(pagecache_page);
2716 put_page(pagecache_page);
2717 }
2718 if (page != pagecache_page)
2719 unlock_page(page);
2720
2721 out_mutex:
2722 mutex_unlock(&hugetlb_instantiation_mutex);
2723
2724 return ret;
2725 }
2726
2727 /* Can be overriden by architectures */
2728 __attribute__((weak)) struct page *
2729 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2730 pud_t *pud, int write)
2731 {
2732 BUG();
2733 return NULL;
2734 }
2735
2736 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2737 struct page **pages, struct vm_area_struct **vmas,
2738 unsigned long *position, int *length, int i,
2739 unsigned int flags)
2740 {
2741 unsigned long pfn_offset;
2742 unsigned long vaddr = *position;
2743 int remainder = *length;
2744 struct hstate *h = hstate_vma(vma);
2745
2746 spin_lock(&mm->page_table_lock);
2747 while (vaddr < vma->vm_end && remainder) {
2748 pte_t *pte;
2749 int absent;
2750 struct page *page;
2751
2752 /*
2753 * Some archs (sparc64, sh*) have multiple pte_ts to
2754 * each hugepage. We have to make sure we get the
2755 * first, for the page indexing below to work.
2756 */
2757 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2758 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2759
2760 /*
2761 * When coredumping, it suits get_dump_page if we just return
2762 * an error where there's an empty slot with no huge pagecache
2763 * to back it. This way, we avoid allocating a hugepage, and
2764 * the sparse dumpfile avoids allocating disk blocks, but its
2765 * huge holes still show up with zeroes where they need to be.
2766 */
2767 if (absent && (flags & FOLL_DUMP) &&
2768 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2769 remainder = 0;
2770 break;
2771 }
2772
2773 if (absent ||
2774 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2775 int ret;
2776
2777 spin_unlock(&mm->page_table_lock);
2778 ret = hugetlb_fault(mm, vma, vaddr,
2779 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2780 spin_lock(&mm->page_table_lock);
2781 if (!(ret & VM_FAULT_ERROR))
2782 continue;
2783
2784 remainder = 0;
2785 break;
2786 }
2787
2788 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2789 page = pte_page(huge_ptep_get(pte));
2790 same_page:
2791 if (pages) {
2792 pages[i] = mem_map_offset(page, pfn_offset);
2793 get_page(pages[i]);
2794 }
2795
2796 if (vmas)
2797 vmas[i] = vma;
2798
2799 vaddr += PAGE_SIZE;
2800 ++pfn_offset;
2801 --remainder;
2802 ++i;
2803 if (vaddr < vma->vm_end && remainder &&
2804 pfn_offset < pages_per_huge_page(h)) {
2805 /*
2806 * We use pfn_offset to avoid touching the pageframes
2807 * of this compound page.
2808 */
2809 goto same_page;
2810 }
2811 }
2812 spin_unlock(&mm->page_table_lock);
2813 *length = remainder;
2814 *position = vaddr;
2815
2816 return i ? i : -EFAULT;
2817 }
2818
2819 void hugetlb_change_protection(struct vm_area_struct *vma,
2820 unsigned long address, unsigned long end, pgprot_t newprot)
2821 {
2822 struct mm_struct *mm = vma->vm_mm;
2823 unsigned long start = address;
2824 pte_t *ptep;
2825 pte_t pte;
2826 struct hstate *h = hstate_vma(vma);
2827
2828 BUG_ON(address >= end);
2829 flush_cache_range(vma, address, end);
2830
2831 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2832 spin_lock(&mm->page_table_lock);
2833 for (; address < end; address += huge_page_size(h)) {
2834 ptep = huge_pte_offset(mm, address);
2835 if (!ptep)
2836 continue;
2837 if (huge_pmd_unshare(mm, &address, ptep))
2838 continue;
2839 if (!huge_pte_none(huge_ptep_get(ptep))) {
2840 pte = huge_ptep_get_and_clear(mm, address, ptep);
2841 pte = pte_mkhuge(pte_modify(pte, newprot));
2842 set_huge_pte_at(mm, address, ptep, pte);
2843 }
2844 }
2845 spin_unlock(&mm->page_table_lock);
2846 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2847
2848 flush_tlb_range(vma, start, end);
2849 }
2850
2851 int hugetlb_reserve_pages(struct inode *inode,
2852 long from, long to,
2853 struct vm_area_struct *vma,
2854 vm_flags_t vm_flags)
2855 {
2856 long ret, chg;
2857 struct hstate *h = hstate_inode(inode);
2858
2859 /*
2860 * Only apply hugepage reservation if asked. At fault time, an
2861 * attempt will be made for VM_NORESERVE to allocate a page
2862 * and filesystem quota without using reserves
2863 */
2864 if (vm_flags & VM_NORESERVE)
2865 return 0;
2866
2867 /*
2868 * Shared mappings base their reservation on the number of pages that
2869 * are already allocated on behalf of the file. Private mappings need
2870 * to reserve the full area even if read-only as mprotect() may be
2871 * called to make the mapping read-write. Assume !vma is a shm mapping
2872 */
2873 if (!vma || vma->vm_flags & VM_MAYSHARE)
2874 chg = region_chg(&inode->i_mapping->private_list, from, to);
2875 else {
2876 struct resv_map *resv_map = resv_map_alloc();
2877 if (!resv_map)
2878 return -ENOMEM;
2879
2880 chg = to - from;
2881
2882 set_vma_resv_map(vma, resv_map);
2883 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2884 }
2885
2886 if (chg < 0)
2887 return chg;
2888
2889 /* There must be enough filesystem quota for the mapping */
2890 if (hugetlb_get_quota(inode->i_mapping, chg))
2891 return -ENOSPC;
2892
2893 /*
2894 * Check enough hugepages are available for the reservation.
2895 * Hand back the quota if there are not
2896 */
2897 ret = hugetlb_acct_memory(h, chg);
2898 if (ret < 0) {
2899 hugetlb_put_quota(inode->i_mapping, chg);
2900 return ret;
2901 }
2902
2903 /*
2904 * Account for the reservations made. Shared mappings record regions
2905 * that have reservations as they are shared by multiple VMAs.
2906 * When the last VMA disappears, the region map says how much
2907 * the reservation was and the page cache tells how much of
2908 * the reservation was consumed. Private mappings are per-VMA and
2909 * only the consumed reservations are tracked. When the VMA
2910 * disappears, the original reservation is the VMA size and the
2911 * consumed reservations are stored in the map. Hence, nothing
2912 * else has to be done for private mappings here
2913 */
2914 if (!vma || vma->vm_flags & VM_MAYSHARE)
2915 region_add(&inode->i_mapping->private_list, from, to);
2916 return 0;
2917 }
2918
2919 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2920 {
2921 struct hstate *h = hstate_inode(inode);
2922 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2923
2924 spin_lock(&inode->i_lock);
2925 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2926 spin_unlock(&inode->i_lock);
2927
2928 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2929 hugetlb_acct_memory(h, -(chg - freed));
2930 }
2931
2932 #ifdef CONFIG_MEMORY_FAILURE
2933
2934 /* Should be called in hugetlb_lock */
2935 static int is_hugepage_on_freelist(struct page *hpage)
2936 {
2937 struct page *page;
2938 struct page *tmp;
2939 struct hstate *h = page_hstate(hpage);
2940 int nid = page_to_nid(hpage);
2941
2942 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2943 if (page == hpage)
2944 return 1;
2945 return 0;
2946 }
2947
2948 /*
2949 * This function is called from memory failure code.
2950 * Assume the caller holds page lock of the head page.
2951 */
2952 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2953 {
2954 struct hstate *h = page_hstate(hpage);
2955 int nid = page_to_nid(hpage);
2956 int ret = -EBUSY;
2957
2958 spin_lock(&hugetlb_lock);
2959 if (is_hugepage_on_freelist(hpage)) {
2960 list_del(&hpage->lru);
2961 set_page_refcounted(hpage);
2962 h->free_huge_pages--;
2963 h->free_huge_pages_node[nid]--;
2964 ret = 0;
2965 }
2966 spin_unlock(&hugetlb_lock);
2967 return ret;
2968 }
2969 #endif
This page took 0.142333 seconds and 5 git commands to generate.