ksm: cleanup: introduce find_mergeable_vma()
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <linux/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49 for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53 */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57 * Region tracking -- allows tracking of reservations and instantiated pages
58 * across the pages in a mapping.
59 *
60 * The region data structures are protected by a combination of the mmap_sem
61 * and the hugetlb_instantion_mutex. To access or modify a region the caller
62 * must either hold the mmap_sem for write, or the mmap_sem for read and
63 * the hugetlb_instantiation mutex:
64 *
65 * down_write(&mm->mmap_sem);
66 * or
67 * down_read(&mm->mmap_sem);
68 * mutex_lock(&hugetlb_instantiation_mutex);
69 */
70 struct file_region {
71 struct list_head link;
72 long from;
73 long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78 struct file_region *rg, *nrg, *trg;
79
80 /* Locate the region we are either in or before. */
81 list_for_each_entry(rg, head, link)
82 if (f <= rg->to)
83 break;
84
85 /* Round our left edge to the current segment if it encloses us. */
86 if (f > rg->from)
87 f = rg->from;
88
89 /* Check for and consume any regions we now overlap with. */
90 nrg = rg;
91 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92 if (&rg->link == head)
93 break;
94 if (rg->from > t)
95 break;
96
97 /* If this area reaches higher then extend our area to
98 * include it completely. If this is not the first area
99 * which we intend to reuse, free it. */
100 if (rg->to > t)
101 t = rg->to;
102 if (rg != nrg) {
103 list_del(&rg->link);
104 kfree(rg);
105 }
106 }
107 nrg->from = f;
108 nrg->to = t;
109 return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114 struct file_region *rg, *nrg;
115 long chg = 0;
116
117 /* Locate the region we are before or in. */
118 list_for_each_entry(rg, head, link)
119 if (f <= rg->to)
120 break;
121
122 /* If we are below the current region then a new region is required.
123 * Subtle, allocate a new region at the position but make it zero
124 * size such that we can guarantee to record the reservation. */
125 if (&rg->link == head || t < rg->from) {
126 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127 if (!nrg)
128 return -ENOMEM;
129 nrg->from = f;
130 nrg->to = f;
131 INIT_LIST_HEAD(&nrg->link);
132 list_add(&nrg->link, rg->link.prev);
133
134 return t - f;
135 }
136
137 /* Round our left edge to the current segment if it encloses us. */
138 if (f > rg->from)
139 f = rg->from;
140 chg = t - f;
141
142 /* Check for and consume any regions we now overlap with. */
143 list_for_each_entry(rg, rg->link.prev, link) {
144 if (&rg->link == head)
145 break;
146 if (rg->from > t)
147 return chg;
148
149 /* We overlap with this area, if it extends further than
150 * us then we must extend ourselves. Account for its
151 * existing reservation. */
152 if (rg->to > t) {
153 chg += rg->to - t;
154 t = rg->to;
155 }
156 chg -= rg->to - rg->from;
157 }
158 return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163 struct file_region *rg, *trg;
164 long chg = 0;
165
166 /* Locate the region we are either in or before. */
167 list_for_each_entry(rg, head, link)
168 if (end <= rg->to)
169 break;
170 if (&rg->link == head)
171 return 0;
172
173 /* If we are in the middle of a region then adjust it. */
174 if (end > rg->from) {
175 chg = rg->to - end;
176 rg->to = end;
177 rg = list_entry(rg->link.next, typeof(*rg), link);
178 }
179
180 /* Drop any remaining regions. */
181 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182 if (&rg->link == head)
183 break;
184 chg += rg->to - rg->from;
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193 struct file_region *rg;
194 long chg = 0;
195
196 /* Locate each segment we overlap with, and count that overlap. */
197 list_for_each_entry(rg, head, link) {
198 int seg_from;
199 int seg_to;
200
201 if (rg->to <= f)
202 continue;
203 if (rg->from >= t)
204 break;
205
206 seg_from = max(rg->from, f);
207 seg_to = min(rg->to, t);
208
209 chg += seg_to - seg_from;
210 }
211
212 return chg;
213 }
214
215 /*
216 * Convert the address within this vma to the page offset within
217 * the mapping, in pagecache page units; huge pages here.
218 */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220 struct vm_area_struct *vma, unsigned long address)
221 {
222 return ((address - vma->vm_start) >> huge_page_shift(h)) +
223 (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227 unsigned long address)
228 {
229 return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233 * Return the size of the pages allocated when backing a VMA. In the majority
234 * cases this will be same size as used by the page table entries.
235 */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238 struct hstate *hstate;
239
240 if (!is_vm_hugetlb_page(vma))
241 return PAGE_SIZE;
242
243 hstate = hstate_vma(vma);
244
245 return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250 * Return the page size being used by the MMU to back a VMA. In the majority
251 * of cases, the page size used by the kernel matches the MMU size. On
252 * architectures where it differs, an architecture-specific version of this
253 * function is required.
254 */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258 return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
264 * bits of the reservation map pointer, which are always clear due to
265 * alignment.
266 */
267 #define HPAGE_RESV_OWNER (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272 * These helpers are used to track how many pages are reserved for
273 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274 * is guaranteed to have their future faults succeed.
275 *
276 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277 * the reserve counters are updated with the hugetlb_lock held. It is safe
278 * to reset the VMA at fork() time as it is not in use yet and there is no
279 * chance of the global counters getting corrupted as a result of the values.
280 *
281 * The private mapping reservation is represented in a subtly different
282 * manner to a shared mapping. A shared mapping has a region map associated
283 * with the underlying file, this region map represents the backing file
284 * pages which have ever had a reservation assigned which this persists even
285 * after the page is instantiated. A private mapping has a region map
286 * associated with the original mmap which is attached to all VMAs which
287 * reference it, this region map represents those offsets which have consumed
288 * reservation ie. where pages have been instantiated.
289 */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292 return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296 unsigned long value)
297 {
298 vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302 struct kref refs;
303 struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309 if (!resv_map)
310 return NULL;
311
312 kref_init(&resv_map->refs);
313 INIT_LIST_HEAD(&resv_map->regions);
314
315 return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322 /* Clear out any active regions before we release the map. */
323 region_truncate(&resv_map->regions, 0);
324 kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329 VM_BUG_ON(!is_vm_hugetlb_page(vma));
330 if (!(vma->vm_flags & VM_MAYSHARE))
331 return (struct resv_map *)(get_vma_private_data(vma) &
332 ~HPAGE_RESV_MASK);
333 return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338 VM_BUG_ON(!is_vm_hugetlb_page(vma));
339 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341 set_vma_private_data(vma, (get_vma_private_data(vma) &
342 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347 VM_BUG_ON(!is_vm_hugetlb_page(vma));
348 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355 VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357 return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362 struct vm_area_struct *vma)
363 {
364 if (vma->vm_flags & VM_NORESERVE)
365 return;
366
367 if (vma->vm_flags & VM_MAYSHARE) {
368 /* Shared mappings always use reserves */
369 h->resv_huge_pages--;
370 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371 /*
372 * Only the process that called mmap() has reserves for
373 * private mappings.
374 */
375 h->resv_huge_pages--;
376 }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382 VM_BUG_ON(!is_vm_hugetlb_page(vma));
383 if (!(vma->vm_flags & VM_MAYSHARE))
384 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390 if (vma->vm_flags & VM_MAYSHARE)
391 return 1;
392 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393 return 1;
394 return 0;
395 }
396
397 static void copy_gigantic_page(struct page *dst, struct page *src)
398 {
399 int i;
400 struct hstate *h = page_hstate(src);
401 struct page *dst_base = dst;
402 struct page *src_base = src;
403
404 for (i = 0; i < pages_per_huge_page(h); ) {
405 cond_resched();
406 copy_highpage(dst, src);
407
408 i++;
409 dst = mem_map_next(dst, dst_base, i);
410 src = mem_map_next(src, src_base, i);
411 }
412 }
413
414 void copy_huge_page(struct page *dst, struct page *src)
415 {
416 int i;
417 struct hstate *h = page_hstate(src);
418
419 if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
420 copy_gigantic_page(dst, src);
421 return;
422 }
423
424 might_sleep();
425 for (i = 0; i < pages_per_huge_page(h); i++) {
426 cond_resched();
427 copy_highpage(dst + i, src + i);
428 }
429 }
430
431 static void enqueue_huge_page(struct hstate *h, struct page *page)
432 {
433 int nid = page_to_nid(page);
434 list_add(&page->lru, &h->hugepage_freelists[nid]);
435 h->free_huge_pages++;
436 h->free_huge_pages_node[nid]++;
437 }
438
439 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
440 {
441 struct page *page;
442
443 if (list_empty(&h->hugepage_freelists[nid]))
444 return NULL;
445 page = list_entry(h->hugepage_freelists[nid].next, struct page, lru);
446 list_del(&page->lru);
447 set_page_refcounted(page);
448 h->free_huge_pages--;
449 h->free_huge_pages_node[nid]--;
450 return page;
451 }
452
453 static struct page *dequeue_huge_page_vma(struct hstate *h,
454 struct vm_area_struct *vma,
455 unsigned long address, int avoid_reserve)
456 {
457 struct page *page;
458 struct mempolicy *mpol;
459 nodemask_t *nodemask;
460 struct zonelist *zonelist;
461 struct zone *zone;
462 struct zoneref *z;
463 unsigned int cpuset_mems_cookie;
464
465 retry_cpuset:
466 cpuset_mems_cookie = get_mems_allowed();
467 zonelist = huge_zonelist(vma, address,
468 htlb_alloc_mask, &mpol, &nodemask);
469 /*
470 * A child process with MAP_PRIVATE mappings created by their parent
471 * have no page reserves. This check ensures that reservations are
472 * not "stolen". The child may still get SIGKILLed
473 */
474 if (!vma_has_reserves(vma) &&
475 h->free_huge_pages - h->resv_huge_pages == 0)
476 goto err;
477
478 /* If reserves cannot be used, ensure enough pages are in the pool */
479 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
480 goto err;
481
482 for_each_zone_zonelist_nodemask(zone, z, zonelist,
483 MAX_NR_ZONES - 1, nodemask) {
484 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask)) {
485 page = dequeue_huge_page_node(h, zone_to_nid(zone));
486 if (page) {
487 if (!avoid_reserve)
488 decrement_hugepage_resv_vma(h, vma);
489 break;
490 }
491 }
492 }
493
494 mpol_cond_put(mpol);
495 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
496 goto retry_cpuset;
497 return page;
498
499 err:
500 mpol_cond_put(mpol);
501 return NULL;
502 }
503
504 static void update_and_free_page(struct hstate *h, struct page *page)
505 {
506 int i;
507
508 VM_BUG_ON(h->order >= MAX_ORDER);
509
510 h->nr_huge_pages--;
511 h->nr_huge_pages_node[page_to_nid(page)]--;
512 for (i = 0; i < pages_per_huge_page(h); i++) {
513 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
514 1 << PG_referenced | 1 << PG_dirty |
515 1 << PG_active | 1 << PG_reserved |
516 1 << PG_private | 1 << PG_writeback);
517 }
518 set_compound_page_dtor(page, NULL);
519 set_page_refcounted(page);
520 arch_release_hugepage(page);
521 __free_pages(page, huge_page_order(h));
522 }
523
524 struct hstate *size_to_hstate(unsigned long size)
525 {
526 struct hstate *h;
527
528 for_each_hstate(h) {
529 if (huge_page_size(h) == size)
530 return h;
531 }
532 return NULL;
533 }
534
535 static void free_huge_page(struct page *page)
536 {
537 /*
538 * Can't pass hstate in here because it is called from the
539 * compound page destructor.
540 */
541 struct hstate *h = page_hstate(page);
542 int nid = page_to_nid(page);
543 struct address_space *mapping;
544
545 mapping = (struct address_space *) page_private(page);
546 set_page_private(page, 0);
547 page->mapping = NULL;
548 BUG_ON(page_count(page));
549 BUG_ON(page_mapcount(page));
550 INIT_LIST_HEAD(&page->lru);
551
552 spin_lock(&hugetlb_lock);
553 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
554 update_and_free_page(h, page);
555 h->surplus_huge_pages--;
556 h->surplus_huge_pages_node[nid]--;
557 } else {
558 enqueue_huge_page(h, page);
559 }
560 spin_unlock(&hugetlb_lock);
561 if (mapping)
562 hugetlb_put_quota(mapping, 1);
563 }
564
565 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
566 {
567 set_compound_page_dtor(page, free_huge_page);
568 spin_lock(&hugetlb_lock);
569 h->nr_huge_pages++;
570 h->nr_huge_pages_node[nid]++;
571 spin_unlock(&hugetlb_lock);
572 put_page(page); /* free it into the hugepage allocator */
573 }
574
575 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
576 {
577 int i;
578 int nr_pages = 1 << order;
579 struct page *p = page + 1;
580
581 /* we rely on prep_new_huge_page to set the destructor */
582 set_compound_order(page, order);
583 __SetPageHead(page);
584 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
585 __SetPageTail(p);
586 set_page_count(p, 0);
587 p->first_page = page;
588 }
589 }
590
591 int PageHuge(struct page *page)
592 {
593 compound_page_dtor *dtor;
594
595 if (!PageCompound(page))
596 return 0;
597
598 page = compound_head(page);
599 dtor = get_compound_page_dtor(page);
600
601 return dtor == free_huge_page;
602 }
603 EXPORT_SYMBOL_GPL(PageHuge);
604
605 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
606 {
607 struct page *page;
608
609 if (h->order >= MAX_ORDER)
610 return NULL;
611
612 page = alloc_pages_exact_node(nid,
613 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
614 __GFP_REPEAT|__GFP_NOWARN,
615 huge_page_order(h));
616 if (page) {
617 if (arch_prepare_hugepage(page)) {
618 __free_pages(page, huge_page_order(h));
619 return NULL;
620 }
621 prep_new_huge_page(h, page, nid);
622 }
623
624 return page;
625 }
626
627 /*
628 * common helper functions for hstate_next_node_to_{alloc|free}.
629 * We may have allocated or freed a huge page based on a different
630 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
631 * be outside of *nodes_allowed. Ensure that we use an allowed
632 * node for alloc or free.
633 */
634 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
635 {
636 nid = next_node(nid, *nodes_allowed);
637 if (nid == MAX_NUMNODES)
638 nid = first_node(*nodes_allowed);
639 VM_BUG_ON(nid >= MAX_NUMNODES);
640
641 return nid;
642 }
643
644 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
645 {
646 if (!node_isset(nid, *nodes_allowed))
647 nid = next_node_allowed(nid, nodes_allowed);
648 return nid;
649 }
650
651 /*
652 * returns the previously saved node ["this node"] from which to
653 * allocate a persistent huge page for the pool and advance the
654 * next node from which to allocate, handling wrap at end of node
655 * mask.
656 */
657 static int hstate_next_node_to_alloc(struct hstate *h,
658 nodemask_t *nodes_allowed)
659 {
660 int nid;
661
662 VM_BUG_ON(!nodes_allowed);
663
664 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
665 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
666
667 return nid;
668 }
669
670 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
671 {
672 struct page *page;
673 int start_nid;
674 int next_nid;
675 int ret = 0;
676
677 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
678 next_nid = start_nid;
679
680 do {
681 page = alloc_fresh_huge_page_node(h, next_nid);
682 if (page) {
683 ret = 1;
684 break;
685 }
686 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
687 } while (next_nid != start_nid);
688
689 if (ret)
690 count_vm_event(HTLB_BUDDY_PGALLOC);
691 else
692 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
693
694 return ret;
695 }
696
697 /*
698 * helper for free_pool_huge_page() - return the previously saved
699 * node ["this node"] from which to free a huge page. Advance the
700 * next node id whether or not we find a free huge page to free so
701 * that the next attempt to free addresses the next node.
702 */
703 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
704 {
705 int nid;
706
707 VM_BUG_ON(!nodes_allowed);
708
709 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
710 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
711
712 return nid;
713 }
714
715 /*
716 * Free huge page from pool from next node to free.
717 * Attempt to keep persistent huge pages more or less
718 * balanced over allowed nodes.
719 * Called with hugetlb_lock locked.
720 */
721 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
722 bool acct_surplus)
723 {
724 int start_nid;
725 int next_nid;
726 int ret = 0;
727
728 start_nid = hstate_next_node_to_free(h, nodes_allowed);
729 next_nid = start_nid;
730
731 do {
732 /*
733 * If we're returning unused surplus pages, only examine
734 * nodes with surplus pages.
735 */
736 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
737 !list_empty(&h->hugepage_freelists[next_nid])) {
738 struct page *page =
739 list_entry(h->hugepage_freelists[next_nid].next,
740 struct page, lru);
741 list_del(&page->lru);
742 h->free_huge_pages--;
743 h->free_huge_pages_node[next_nid]--;
744 if (acct_surplus) {
745 h->surplus_huge_pages--;
746 h->surplus_huge_pages_node[next_nid]--;
747 }
748 update_and_free_page(h, page);
749 ret = 1;
750 break;
751 }
752 next_nid = hstate_next_node_to_free(h, nodes_allowed);
753 } while (next_nid != start_nid);
754
755 return ret;
756 }
757
758 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
759 {
760 struct page *page;
761 unsigned int r_nid;
762
763 if (h->order >= MAX_ORDER)
764 return NULL;
765
766 /*
767 * Assume we will successfully allocate the surplus page to
768 * prevent racing processes from causing the surplus to exceed
769 * overcommit
770 *
771 * This however introduces a different race, where a process B
772 * tries to grow the static hugepage pool while alloc_pages() is
773 * called by process A. B will only examine the per-node
774 * counters in determining if surplus huge pages can be
775 * converted to normal huge pages in adjust_pool_surplus(). A
776 * won't be able to increment the per-node counter, until the
777 * lock is dropped by B, but B doesn't drop hugetlb_lock until
778 * no more huge pages can be converted from surplus to normal
779 * state (and doesn't try to convert again). Thus, we have a
780 * case where a surplus huge page exists, the pool is grown, and
781 * the surplus huge page still exists after, even though it
782 * should just have been converted to a normal huge page. This
783 * does not leak memory, though, as the hugepage will be freed
784 * once it is out of use. It also does not allow the counters to
785 * go out of whack in adjust_pool_surplus() as we don't modify
786 * the node values until we've gotten the hugepage and only the
787 * per-node value is checked there.
788 */
789 spin_lock(&hugetlb_lock);
790 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
791 spin_unlock(&hugetlb_lock);
792 return NULL;
793 } else {
794 h->nr_huge_pages++;
795 h->surplus_huge_pages++;
796 }
797 spin_unlock(&hugetlb_lock);
798
799 if (nid == NUMA_NO_NODE)
800 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
801 __GFP_REPEAT|__GFP_NOWARN,
802 huge_page_order(h));
803 else
804 page = alloc_pages_exact_node(nid,
805 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
806 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
807
808 if (page && arch_prepare_hugepage(page)) {
809 __free_pages(page, huge_page_order(h));
810 page = NULL;
811 }
812
813 spin_lock(&hugetlb_lock);
814 if (page) {
815 r_nid = page_to_nid(page);
816 set_compound_page_dtor(page, free_huge_page);
817 /*
818 * We incremented the global counters already
819 */
820 h->nr_huge_pages_node[r_nid]++;
821 h->surplus_huge_pages_node[r_nid]++;
822 __count_vm_event(HTLB_BUDDY_PGALLOC);
823 } else {
824 h->nr_huge_pages--;
825 h->surplus_huge_pages--;
826 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
827 }
828 spin_unlock(&hugetlb_lock);
829
830 return page;
831 }
832
833 /*
834 * This allocation function is useful in the context where vma is irrelevant.
835 * E.g. soft-offlining uses this function because it only cares physical
836 * address of error page.
837 */
838 struct page *alloc_huge_page_node(struct hstate *h, int nid)
839 {
840 struct page *page;
841
842 spin_lock(&hugetlb_lock);
843 page = dequeue_huge_page_node(h, nid);
844 spin_unlock(&hugetlb_lock);
845
846 if (!page)
847 page = alloc_buddy_huge_page(h, nid);
848
849 return page;
850 }
851
852 /*
853 * Increase the hugetlb pool such that it can accommodate a reservation
854 * of size 'delta'.
855 */
856 static int gather_surplus_pages(struct hstate *h, int delta)
857 {
858 struct list_head surplus_list;
859 struct page *page, *tmp;
860 int ret, i;
861 int needed, allocated;
862 bool alloc_ok = true;
863
864 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
865 if (needed <= 0) {
866 h->resv_huge_pages += delta;
867 return 0;
868 }
869
870 allocated = 0;
871 INIT_LIST_HEAD(&surplus_list);
872
873 ret = -ENOMEM;
874 retry:
875 spin_unlock(&hugetlb_lock);
876 for (i = 0; i < needed; i++) {
877 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
878 if (!page) {
879 alloc_ok = false;
880 break;
881 }
882 list_add(&page->lru, &surplus_list);
883 }
884 allocated += i;
885
886 /*
887 * After retaking hugetlb_lock, we need to recalculate 'needed'
888 * because either resv_huge_pages or free_huge_pages may have changed.
889 */
890 spin_lock(&hugetlb_lock);
891 needed = (h->resv_huge_pages + delta) -
892 (h->free_huge_pages + allocated);
893 if (needed > 0) {
894 if (alloc_ok)
895 goto retry;
896 /*
897 * We were not able to allocate enough pages to
898 * satisfy the entire reservation so we free what
899 * we've allocated so far.
900 */
901 goto free;
902 }
903 /*
904 * The surplus_list now contains _at_least_ the number of extra pages
905 * needed to accommodate the reservation. Add the appropriate number
906 * of pages to the hugetlb pool and free the extras back to the buddy
907 * allocator. Commit the entire reservation here to prevent another
908 * process from stealing the pages as they are added to the pool but
909 * before they are reserved.
910 */
911 needed += allocated;
912 h->resv_huge_pages += delta;
913 ret = 0;
914
915 /* Free the needed pages to the hugetlb pool */
916 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
917 if ((--needed) < 0)
918 break;
919 list_del(&page->lru);
920 /*
921 * This page is now managed by the hugetlb allocator and has
922 * no users -- drop the buddy allocator's reference.
923 */
924 put_page_testzero(page);
925 VM_BUG_ON(page_count(page));
926 enqueue_huge_page(h, page);
927 }
928 free:
929 spin_unlock(&hugetlb_lock);
930
931 /* Free unnecessary surplus pages to the buddy allocator */
932 if (!list_empty(&surplus_list)) {
933 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
934 list_del(&page->lru);
935 put_page(page);
936 }
937 }
938 spin_lock(&hugetlb_lock);
939
940 return ret;
941 }
942
943 /*
944 * When releasing a hugetlb pool reservation, any surplus pages that were
945 * allocated to satisfy the reservation must be explicitly freed if they were
946 * never used.
947 * Called with hugetlb_lock held.
948 */
949 static void return_unused_surplus_pages(struct hstate *h,
950 unsigned long unused_resv_pages)
951 {
952 unsigned long nr_pages;
953
954 /* Uncommit the reservation */
955 h->resv_huge_pages -= unused_resv_pages;
956
957 /* Cannot return gigantic pages currently */
958 if (h->order >= MAX_ORDER)
959 return;
960
961 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
962
963 /*
964 * We want to release as many surplus pages as possible, spread
965 * evenly across all nodes with memory. Iterate across these nodes
966 * until we can no longer free unreserved surplus pages. This occurs
967 * when the nodes with surplus pages have no free pages.
968 * free_pool_huge_page() will balance the the freed pages across the
969 * on-line nodes with memory and will handle the hstate accounting.
970 */
971 while (nr_pages--) {
972 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
973 break;
974 }
975 }
976
977 /*
978 * Determine if the huge page at addr within the vma has an associated
979 * reservation. Where it does not we will need to logically increase
980 * reservation and actually increase quota before an allocation can occur.
981 * Where any new reservation would be required the reservation change is
982 * prepared, but not committed. Once the page has been quota'd allocated
983 * an instantiated the change should be committed via vma_commit_reservation.
984 * No action is required on failure.
985 */
986 static long vma_needs_reservation(struct hstate *h,
987 struct vm_area_struct *vma, unsigned long addr)
988 {
989 struct address_space *mapping = vma->vm_file->f_mapping;
990 struct inode *inode = mapping->host;
991
992 if (vma->vm_flags & VM_MAYSHARE) {
993 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
994 return region_chg(&inode->i_mapping->private_list,
995 idx, idx + 1);
996
997 } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
998 return 1;
999
1000 } else {
1001 long err;
1002 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1003 struct resv_map *reservations = vma_resv_map(vma);
1004
1005 err = region_chg(&reservations->regions, idx, idx + 1);
1006 if (err < 0)
1007 return err;
1008 return 0;
1009 }
1010 }
1011 static void vma_commit_reservation(struct hstate *h,
1012 struct vm_area_struct *vma, unsigned long addr)
1013 {
1014 struct address_space *mapping = vma->vm_file->f_mapping;
1015 struct inode *inode = mapping->host;
1016
1017 if (vma->vm_flags & VM_MAYSHARE) {
1018 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1019 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1020
1021 } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1022 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1023 struct resv_map *reservations = vma_resv_map(vma);
1024
1025 /* Mark this page used in the map. */
1026 region_add(&reservations->regions, idx, idx + 1);
1027 }
1028 }
1029
1030 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1031 unsigned long addr, int avoid_reserve)
1032 {
1033 struct hstate *h = hstate_vma(vma);
1034 struct page *page;
1035 struct address_space *mapping = vma->vm_file->f_mapping;
1036 struct inode *inode = mapping->host;
1037 long chg;
1038
1039 /*
1040 * Processes that did not create the mapping will have no reserves and
1041 * will not have accounted against quota. Check that the quota can be
1042 * made before satisfying the allocation
1043 * MAP_NORESERVE mappings may also need pages and quota allocated
1044 * if no reserve mapping overlaps.
1045 */
1046 chg = vma_needs_reservation(h, vma, addr);
1047 if (chg < 0)
1048 return ERR_PTR(-VM_FAULT_OOM);
1049 if (chg)
1050 if (hugetlb_get_quota(inode->i_mapping, chg))
1051 return ERR_PTR(-VM_FAULT_SIGBUS);
1052
1053 spin_lock(&hugetlb_lock);
1054 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1055 spin_unlock(&hugetlb_lock);
1056
1057 if (!page) {
1058 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1059 if (!page) {
1060 hugetlb_put_quota(inode->i_mapping, chg);
1061 return ERR_PTR(-VM_FAULT_SIGBUS);
1062 }
1063 }
1064
1065 set_page_private(page, (unsigned long) mapping);
1066
1067 vma_commit_reservation(h, vma, addr);
1068
1069 return page;
1070 }
1071
1072 int __weak alloc_bootmem_huge_page(struct hstate *h)
1073 {
1074 struct huge_bootmem_page *m;
1075 int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1076
1077 while (nr_nodes) {
1078 void *addr;
1079
1080 addr = __alloc_bootmem_node_nopanic(
1081 NODE_DATA(hstate_next_node_to_alloc(h,
1082 &node_states[N_HIGH_MEMORY])),
1083 huge_page_size(h), huge_page_size(h), 0);
1084
1085 if (addr) {
1086 /*
1087 * Use the beginning of the huge page to store the
1088 * huge_bootmem_page struct (until gather_bootmem
1089 * puts them into the mem_map).
1090 */
1091 m = addr;
1092 goto found;
1093 }
1094 nr_nodes--;
1095 }
1096 return 0;
1097
1098 found:
1099 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1100 /* Put them into a private list first because mem_map is not up yet */
1101 list_add(&m->list, &huge_boot_pages);
1102 m->hstate = h;
1103 return 1;
1104 }
1105
1106 static void prep_compound_huge_page(struct page *page, int order)
1107 {
1108 if (unlikely(order > (MAX_ORDER - 1)))
1109 prep_compound_gigantic_page(page, order);
1110 else
1111 prep_compound_page(page, order);
1112 }
1113
1114 /* Put bootmem huge pages into the standard lists after mem_map is up */
1115 static void __init gather_bootmem_prealloc(void)
1116 {
1117 struct huge_bootmem_page *m;
1118
1119 list_for_each_entry(m, &huge_boot_pages, list) {
1120 struct hstate *h = m->hstate;
1121 struct page *page;
1122
1123 #ifdef CONFIG_HIGHMEM
1124 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1125 free_bootmem_late((unsigned long)m,
1126 sizeof(struct huge_bootmem_page));
1127 #else
1128 page = virt_to_page(m);
1129 #endif
1130 __ClearPageReserved(page);
1131 WARN_ON(page_count(page) != 1);
1132 prep_compound_huge_page(page, h->order);
1133 prep_new_huge_page(h, page, page_to_nid(page));
1134 /*
1135 * If we had gigantic hugepages allocated at boot time, we need
1136 * to restore the 'stolen' pages to totalram_pages in order to
1137 * fix confusing memory reports from free(1) and another
1138 * side-effects, like CommitLimit going negative.
1139 */
1140 if (h->order > (MAX_ORDER - 1))
1141 totalram_pages += 1 << h->order;
1142 }
1143 }
1144
1145 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1146 {
1147 unsigned long i;
1148
1149 for (i = 0; i < h->max_huge_pages; ++i) {
1150 if (h->order >= MAX_ORDER) {
1151 if (!alloc_bootmem_huge_page(h))
1152 break;
1153 } else if (!alloc_fresh_huge_page(h,
1154 &node_states[N_HIGH_MEMORY]))
1155 break;
1156 }
1157 h->max_huge_pages = i;
1158 }
1159
1160 static void __init hugetlb_init_hstates(void)
1161 {
1162 struct hstate *h;
1163
1164 for_each_hstate(h) {
1165 /* oversize hugepages were init'ed in early boot */
1166 if (h->order < MAX_ORDER)
1167 hugetlb_hstate_alloc_pages(h);
1168 }
1169 }
1170
1171 static char * __init memfmt(char *buf, unsigned long n)
1172 {
1173 if (n >= (1UL << 30))
1174 sprintf(buf, "%lu GB", n >> 30);
1175 else if (n >= (1UL << 20))
1176 sprintf(buf, "%lu MB", n >> 20);
1177 else
1178 sprintf(buf, "%lu KB", n >> 10);
1179 return buf;
1180 }
1181
1182 static void __init report_hugepages(void)
1183 {
1184 struct hstate *h;
1185
1186 for_each_hstate(h) {
1187 char buf[32];
1188 printk(KERN_INFO "HugeTLB registered %s page size, "
1189 "pre-allocated %ld pages\n",
1190 memfmt(buf, huge_page_size(h)),
1191 h->free_huge_pages);
1192 }
1193 }
1194
1195 #ifdef CONFIG_HIGHMEM
1196 static void try_to_free_low(struct hstate *h, unsigned long count,
1197 nodemask_t *nodes_allowed)
1198 {
1199 int i;
1200
1201 if (h->order >= MAX_ORDER)
1202 return;
1203
1204 for_each_node_mask(i, *nodes_allowed) {
1205 struct page *page, *next;
1206 struct list_head *freel = &h->hugepage_freelists[i];
1207 list_for_each_entry_safe(page, next, freel, lru) {
1208 if (count >= h->nr_huge_pages)
1209 return;
1210 if (PageHighMem(page))
1211 continue;
1212 list_del(&page->lru);
1213 update_and_free_page(h, page);
1214 h->free_huge_pages--;
1215 h->free_huge_pages_node[page_to_nid(page)]--;
1216 }
1217 }
1218 }
1219 #else
1220 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1221 nodemask_t *nodes_allowed)
1222 {
1223 }
1224 #endif
1225
1226 /*
1227 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1228 * balanced by operating on them in a round-robin fashion.
1229 * Returns 1 if an adjustment was made.
1230 */
1231 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1232 int delta)
1233 {
1234 int start_nid, next_nid;
1235 int ret = 0;
1236
1237 VM_BUG_ON(delta != -1 && delta != 1);
1238
1239 if (delta < 0)
1240 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1241 else
1242 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1243 next_nid = start_nid;
1244
1245 do {
1246 int nid = next_nid;
1247 if (delta < 0) {
1248 /*
1249 * To shrink on this node, there must be a surplus page
1250 */
1251 if (!h->surplus_huge_pages_node[nid]) {
1252 next_nid = hstate_next_node_to_alloc(h,
1253 nodes_allowed);
1254 continue;
1255 }
1256 }
1257 if (delta > 0) {
1258 /*
1259 * Surplus cannot exceed the total number of pages
1260 */
1261 if (h->surplus_huge_pages_node[nid] >=
1262 h->nr_huge_pages_node[nid]) {
1263 next_nid = hstate_next_node_to_free(h,
1264 nodes_allowed);
1265 continue;
1266 }
1267 }
1268
1269 h->surplus_huge_pages += delta;
1270 h->surplus_huge_pages_node[nid] += delta;
1271 ret = 1;
1272 break;
1273 } while (next_nid != start_nid);
1274
1275 return ret;
1276 }
1277
1278 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1279 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1280 nodemask_t *nodes_allowed)
1281 {
1282 unsigned long min_count, ret;
1283
1284 if (h->order >= MAX_ORDER)
1285 return h->max_huge_pages;
1286
1287 /*
1288 * Increase the pool size
1289 * First take pages out of surplus state. Then make up the
1290 * remaining difference by allocating fresh huge pages.
1291 *
1292 * We might race with alloc_buddy_huge_page() here and be unable
1293 * to convert a surplus huge page to a normal huge page. That is
1294 * not critical, though, it just means the overall size of the
1295 * pool might be one hugepage larger than it needs to be, but
1296 * within all the constraints specified by the sysctls.
1297 */
1298 spin_lock(&hugetlb_lock);
1299 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1300 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1301 break;
1302 }
1303
1304 while (count > persistent_huge_pages(h)) {
1305 /*
1306 * If this allocation races such that we no longer need the
1307 * page, free_huge_page will handle it by freeing the page
1308 * and reducing the surplus.
1309 */
1310 spin_unlock(&hugetlb_lock);
1311 ret = alloc_fresh_huge_page(h, nodes_allowed);
1312 spin_lock(&hugetlb_lock);
1313 if (!ret)
1314 goto out;
1315
1316 /* Bail for signals. Probably ctrl-c from user */
1317 if (signal_pending(current))
1318 goto out;
1319 }
1320
1321 /*
1322 * Decrease the pool size
1323 * First return free pages to the buddy allocator (being careful
1324 * to keep enough around to satisfy reservations). Then place
1325 * pages into surplus state as needed so the pool will shrink
1326 * to the desired size as pages become free.
1327 *
1328 * By placing pages into the surplus state independent of the
1329 * overcommit value, we are allowing the surplus pool size to
1330 * exceed overcommit. There are few sane options here. Since
1331 * alloc_buddy_huge_page() is checking the global counter,
1332 * though, we'll note that we're not allowed to exceed surplus
1333 * and won't grow the pool anywhere else. Not until one of the
1334 * sysctls are changed, or the surplus pages go out of use.
1335 */
1336 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1337 min_count = max(count, min_count);
1338 try_to_free_low(h, min_count, nodes_allowed);
1339 while (min_count < persistent_huge_pages(h)) {
1340 if (!free_pool_huge_page(h, nodes_allowed, 0))
1341 break;
1342 }
1343 while (count < persistent_huge_pages(h)) {
1344 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1345 break;
1346 }
1347 out:
1348 ret = persistent_huge_pages(h);
1349 spin_unlock(&hugetlb_lock);
1350 return ret;
1351 }
1352
1353 #define HSTATE_ATTR_RO(_name) \
1354 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1355
1356 #define HSTATE_ATTR(_name) \
1357 static struct kobj_attribute _name##_attr = \
1358 __ATTR(_name, 0644, _name##_show, _name##_store)
1359
1360 static struct kobject *hugepages_kobj;
1361 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1362
1363 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1364
1365 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1366 {
1367 int i;
1368
1369 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1370 if (hstate_kobjs[i] == kobj) {
1371 if (nidp)
1372 *nidp = NUMA_NO_NODE;
1373 return &hstates[i];
1374 }
1375
1376 return kobj_to_node_hstate(kobj, nidp);
1377 }
1378
1379 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1380 struct kobj_attribute *attr, char *buf)
1381 {
1382 struct hstate *h;
1383 unsigned long nr_huge_pages;
1384 int nid;
1385
1386 h = kobj_to_hstate(kobj, &nid);
1387 if (nid == NUMA_NO_NODE)
1388 nr_huge_pages = h->nr_huge_pages;
1389 else
1390 nr_huge_pages = h->nr_huge_pages_node[nid];
1391
1392 return sprintf(buf, "%lu\n", nr_huge_pages);
1393 }
1394
1395 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1396 struct kobject *kobj, struct kobj_attribute *attr,
1397 const char *buf, size_t len)
1398 {
1399 int err;
1400 int nid;
1401 unsigned long count;
1402 struct hstate *h;
1403 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1404
1405 err = strict_strtoul(buf, 10, &count);
1406 if (err)
1407 goto out;
1408
1409 h = kobj_to_hstate(kobj, &nid);
1410 if (h->order >= MAX_ORDER) {
1411 err = -EINVAL;
1412 goto out;
1413 }
1414
1415 if (nid == NUMA_NO_NODE) {
1416 /*
1417 * global hstate attribute
1418 */
1419 if (!(obey_mempolicy &&
1420 init_nodemask_of_mempolicy(nodes_allowed))) {
1421 NODEMASK_FREE(nodes_allowed);
1422 nodes_allowed = &node_states[N_HIGH_MEMORY];
1423 }
1424 } else if (nodes_allowed) {
1425 /*
1426 * per node hstate attribute: adjust count to global,
1427 * but restrict alloc/free to the specified node.
1428 */
1429 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1430 init_nodemask_of_node(nodes_allowed, nid);
1431 } else
1432 nodes_allowed = &node_states[N_HIGH_MEMORY];
1433
1434 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1435
1436 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1437 NODEMASK_FREE(nodes_allowed);
1438
1439 return len;
1440 out:
1441 NODEMASK_FREE(nodes_allowed);
1442 return err;
1443 }
1444
1445 static ssize_t nr_hugepages_show(struct kobject *kobj,
1446 struct kobj_attribute *attr, char *buf)
1447 {
1448 return nr_hugepages_show_common(kobj, attr, buf);
1449 }
1450
1451 static ssize_t nr_hugepages_store(struct kobject *kobj,
1452 struct kobj_attribute *attr, const char *buf, size_t len)
1453 {
1454 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1455 }
1456 HSTATE_ATTR(nr_hugepages);
1457
1458 #ifdef CONFIG_NUMA
1459
1460 /*
1461 * hstate attribute for optionally mempolicy-based constraint on persistent
1462 * huge page alloc/free.
1463 */
1464 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1465 struct kobj_attribute *attr, char *buf)
1466 {
1467 return nr_hugepages_show_common(kobj, attr, buf);
1468 }
1469
1470 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1471 struct kobj_attribute *attr, const char *buf, size_t len)
1472 {
1473 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1474 }
1475 HSTATE_ATTR(nr_hugepages_mempolicy);
1476 #endif
1477
1478
1479 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1480 struct kobj_attribute *attr, char *buf)
1481 {
1482 struct hstate *h = kobj_to_hstate(kobj, NULL);
1483 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1484 }
1485
1486 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1487 struct kobj_attribute *attr, const char *buf, size_t count)
1488 {
1489 int err;
1490 unsigned long input;
1491 struct hstate *h = kobj_to_hstate(kobj, NULL);
1492
1493 if (h->order >= MAX_ORDER)
1494 return -EINVAL;
1495
1496 err = strict_strtoul(buf, 10, &input);
1497 if (err)
1498 return err;
1499
1500 spin_lock(&hugetlb_lock);
1501 h->nr_overcommit_huge_pages = input;
1502 spin_unlock(&hugetlb_lock);
1503
1504 return count;
1505 }
1506 HSTATE_ATTR(nr_overcommit_hugepages);
1507
1508 static ssize_t free_hugepages_show(struct kobject *kobj,
1509 struct kobj_attribute *attr, char *buf)
1510 {
1511 struct hstate *h;
1512 unsigned long free_huge_pages;
1513 int nid;
1514
1515 h = kobj_to_hstate(kobj, &nid);
1516 if (nid == NUMA_NO_NODE)
1517 free_huge_pages = h->free_huge_pages;
1518 else
1519 free_huge_pages = h->free_huge_pages_node[nid];
1520
1521 return sprintf(buf, "%lu\n", free_huge_pages);
1522 }
1523 HSTATE_ATTR_RO(free_hugepages);
1524
1525 static ssize_t resv_hugepages_show(struct kobject *kobj,
1526 struct kobj_attribute *attr, char *buf)
1527 {
1528 struct hstate *h = kobj_to_hstate(kobj, NULL);
1529 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1530 }
1531 HSTATE_ATTR_RO(resv_hugepages);
1532
1533 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1534 struct kobj_attribute *attr, char *buf)
1535 {
1536 struct hstate *h;
1537 unsigned long surplus_huge_pages;
1538 int nid;
1539
1540 h = kobj_to_hstate(kobj, &nid);
1541 if (nid == NUMA_NO_NODE)
1542 surplus_huge_pages = h->surplus_huge_pages;
1543 else
1544 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1545
1546 return sprintf(buf, "%lu\n", surplus_huge_pages);
1547 }
1548 HSTATE_ATTR_RO(surplus_hugepages);
1549
1550 static struct attribute *hstate_attrs[] = {
1551 &nr_hugepages_attr.attr,
1552 &nr_overcommit_hugepages_attr.attr,
1553 &free_hugepages_attr.attr,
1554 &resv_hugepages_attr.attr,
1555 &surplus_hugepages_attr.attr,
1556 #ifdef CONFIG_NUMA
1557 &nr_hugepages_mempolicy_attr.attr,
1558 #endif
1559 NULL,
1560 };
1561
1562 static struct attribute_group hstate_attr_group = {
1563 .attrs = hstate_attrs,
1564 };
1565
1566 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1567 struct kobject **hstate_kobjs,
1568 struct attribute_group *hstate_attr_group)
1569 {
1570 int retval;
1571 int hi = h - hstates;
1572
1573 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1574 if (!hstate_kobjs[hi])
1575 return -ENOMEM;
1576
1577 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1578 if (retval)
1579 kobject_put(hstate_kobjs[hi]);
1580
1581 return retval;
1582 }
1583
1584 static void __init hugetlb_sysfs_init(void)
1585 {
1586 struct hstate *h;
1587 int err;
1588
1589 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1590 if (!hugepages_kobj)
1591 return;
1592
1593 for_each_hstate(h) {
1594 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1595 hstate_kobjs, &hstate_attr_group);
1596 if (err)
1597 printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1598 h->name);
1599 }
1600 }
1601
1602 #ifdef CONFIG_NUMA
1603
1604 /*
1605 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1606 * with node devices in node_devices[] using a parallel array. The array
1607 * index of a node device or _hstate == node id.
1608 * This is here to avoid any static dependency of the node device driver, in
1609 * the base kernel, on the hugetlb module.
1610 */
1611 struct node_hstate {
1612 struct kobject *hugepages_kobj;
1613 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1614 };
1615 struct node_hstate node_hstates[MAX_NUMNODES];
1616
1617 /*
1618 * A subset of global hstate attributes for node devices
1619 */
1620 static struct attribute *per_node_hstate_attrs[] = {
1621 &nr_hugepages_attr.attr,
1622 &free_hugepages_attr.attr,
1623 &surplus_hugepages_attr.attr,
1624 NULL,
1625 };
1626
1627 static struct attribute_group per_node_hstate_attr_group = {
1628 .attrs = per_node_hstate_attrs,
1629 };
1630
1631 /*
1632 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1633 * Returns node id via non-NULL nidp.
1634 */
1635 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1636 {
1637 int nid;
1638
1639 for (nid = 0; nid < nr_node_ids; nid++) {
1640 struct node_hstate *nhs = &node_hstates[nid];
1641 int i;
1642 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1643 if (nhs->hstate_kobjs[i] == kobj) {
1644 if (nidp)
1645 *nidp = nid;
1646 return &hstates[i];
1647 }
1648 }
1649
1650 BUG();
1651 return NULL;
1652 }
1653
1654 /*
1655 * Unregister hstate attributes from a single node device.
1656 * No-op if no hstate attributes attached.
1657 */
1658 void hugetlb_unregister_node(struct node *node)
1659 {
1660 struct hstate *h;
1661 struct node_hstate *nhs = &node_hstates[node->dev.id];
1662
1663 if (!nhs->hugepages_kobj)
1664 return; /* no hstate attributes */
1665
1666 for_each_hstate(h)
1667 if (nhs->hstate_kobjs[h - hstates]) {
1668 kobject_put(nhs->hstate_kobjs[h - hstates]);
1669 nhs->hstate_kobjs[h - hstates] = NULL;
1670 }
1671
1672 kobject_put(nhs->hugepages_kobj);
1673 nhs->hugepages_kobj = NULL;
1674 }
1675
1676 /*
1677 * hugetlb module exit: unregister hstate attributes from node devices
1678 * that have them.
1679 */
1680 static void hugetlb_unregister_all_nodes(void)
1681 {
1682 int nid;
1683
1684 /*
1685 * disable node device registrations.
1686 */
1687 register_hugetlbfs_with_node(NULL, NULL);
1688
1689 /*
1690 * remove hstate attributes from any nodes that have them.
1691 */
1692 for (nid = 0; nid < nr_node_ids; nid++)
1693 hugetlb_unregister_node(&node_devices[nid]);
1694 }
1695
1696 /*
1697 * Register hstate attributes for a single node device.
1698 * No-op if attributes already registered.
1699 */
1700 void hugetlb_register_node(struct node *node)
1701 {
1702 struct hstate *h;
1703 struct node_hstate *nhs = &node_hstates[node->dev.id];
1704 int err;
1705
1706 if (nhs->hugepages_kobj)
1707 return; /* already allocated */
1708
1709 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1710 &node->dev.kobj);
1711 if (!nhs->hugepages_kobj)
1712 return;
1713
1714 for_each_hstate(h) {
1715 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1716 nhs->hstate_kobjs,
1717 &per_node_hstate_attr_group);
1718 if (err) {
1719 printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1720 " for node %d\n",
1721 h->name, node->dev.id);
1722 hugetlb_unregister_node(node);
1723 break;
1724 }
1725 }
1726 }
1727
1728 /*
1729 * hugetlb init time: register hstate attributes for all registered node
1730 * devices of nodes that have memory. All on-line nodes should have
1731 * registered their associated device by this time.
1732 */
1733 static void hugetlb_register_all_nodes(void)
1734 {
1735 int nid;
1736
1737 for_each_node_state(nid, N_HIGH_MEMORY) {
1738 struct node *node = &node_devices[nid];
1739 if (node->dev.id == nid)
1740 hugetlb_register_node(node);
1741 }
1742
1743 /*
1744 * Let the node device driver know we're here so it can
1745 * [un]register hstate attributes on node hotplug.
1746 */
1747 register_hugetlbfs_with_node(hugetlb_register_node,
1748 hugetlb_unregister_node);
1749 }
1750 #else /* !CONFIG_NUMA */
1751
1752 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1753 {
1754 BUG();
1755 if (nidp)
1756 *nidp = -1;
1757 return NULL;
1758 }
1759
1760 static void hugetlb_unregister_all_nodes(void) { }
1761
1762 static void hugetlb_register_all_nodes(void) { }
1763
1764 #endif
1765
1766 static void __exit hugetlb_exit(void)
1767 {
1768 struct hstate *h;
1769
1770 hugetlb_unregister_all_nodes();
1771
1772 for_each_hstate(h) {
1773 kobject_put(hstate_kobjs[h - hstates]);
1774 }
1775
1776 kobject_put(hugepages_kobj);
1777 }
1778 module_exit(hugetlb_exit);
1779
1780 static int __init hugetlb_init(void)
1781 {
1782 /* Some platform decide whether they support huge pages at boot
1783 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1784 * there is no such support
1785 */
1786 if (HPAGE_SHIFT == 0)
1787 return 0;
1788
1789 if (!size_to_hstate(default_hstate_size)) {
1790 default_hstate_size = HPAGE_SIZE;
1791 if (!size_to_hstate(default_hstate_size))
1792 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1793 }
1794 default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1795 if (default_hstate_max_huge_pages)
1796 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1797
1798 hugetlb_init_hstates();
1799
1800 gather_bootmem_prealloc();
1801
1802 report_hugepages();
1803
1804 hugetlb_sysfs_init();
1805
1806 hugetlb_register_all_nodes();
1807
1808 return 0;
1809 }
1810 module_init(hugetlb_init);
1811
1812 /* Should be called on processing a hugepagesz=... option */
1813 void __init hugetlb_add_hstate(unsigned order)
1814 {
1815 struct hstate *h;
1816 unsigned long i;
1817
1818 if (size_to_hstate(PAGE_SIZE << order)) {
1819 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1820 return;
1821 }
1822 BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1823 BUG_ON(order == 0);
1824 h = &hstates[max_hstate++];
1825 h->order = order;
1826 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1827 h->nr_huge_pages = 0;
1828 h->free_huge_pages = 0;
1829 for (i = 0; i < MAX_NUMNODES; ++i)
1830 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1831 h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1832 h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1833 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1834 huge_page_size(h)/1024);
1835
1836 parsed_hstate = h;
1837 }
1838
1839 static int __init hugetlb_nrpages_setup(char *s)
1840 {
1841 unsigned long *mhp;
1842 static unsigned long *last_mhp;
1843
1844 /*
1845 * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1846 * so this hugepages= parameter goes to the "default hstate".
1847 */
1848 if (!max_hstate)
1849 mhp = &default_hstate_max_huge_pages;
1850 else
1851 mhp = &parsed_hstate->max_huge_pages;
1852
1853 if (mhp == last_mhp) {
1854 printk(KERN_WARNING "hugepages= specified twice without "
1855 "interleaving hugepagesz=, ignoring\n");
1856 return 1;
1857 }
1858
1859 if (sscanf(s, "%lu", mhp) <= 0)
1860 *mhp = 0;
1861
1862 /*
1863 * Global state is always initialized later in hugetlb_init.
1864 * But we need to allocate >= MAX_ORDER hstates here early to still
1865 * use the bootmem allocator.
1866 */
1867 if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1868 hugetlb_hstate_alloc_pages(parsed_hstate);
1869
1870 last_mhp = mhp;
1871
1872 return 1;
1873 }
1874 __setup("hugepages=", hugetlb_nrpages_setup);
1875
1876 static int __init hugetlb_default_setup(char *s)
1877 {
1878 default_hstate_size = memparse(s, &s);
1879 return 1;
1880 }
1881 __setup("default_hugepagesz=", hugetlb_default_setup);
1882
1883 static unsigned int cpuset_mems_nr(unsigned int *array)
1884 {
1885 int node;
1886 unsigned int nr = 0;
1887
1888 for_each_node_mask(node, cpuset_current_mems_allowed)
1889 nr += array[node];
1890
1891 return nr;
1892 }
1893
1894 #ifdef CONFIG_SYSCTL
1895 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1896 struct ctl_table *table, int write,
1897 void __user *buffer, size_t *length, loff_t *ppos)
1898 {
1899 struct hstate *h = &default_hstate;
1900 unsigned long tmp;
1901 int ret;
1902
1903 tmp = h->max_huge_pages;
1904
1905 if (write && h->order >= MAX_ORDER)
1906 return -EINVAL;
1907
1908 table->data = &tmp;
1909 table->maxlen = sizeof(unsigned long);
1910 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1911 if (ret)
1912 goto out;
1913
1914 if (write) {
1915 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1916 GFP_KERNEL | __GFP_NORETRY);
1917 if (!(obey_mempolicy &&
1918 init_nodemask_of_mempolicy(nodes_allowed))) {
1919 NODEMASK_FREE(nodes_allowed);
1920 nodes_allowed = &node_states[N_HIGH_MEMORY];
1921 }
1922 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1923
1924 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1925 NODEMASK_FREE(nodes_allowed);
1926 }
1927 out:
1928 return ret;
1929 }
1930
1931 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1932 void __user *buffer, size_t *length, loff_t *ppos)
1933 {
1934
1935 return hugetlb_sysctl_handler_common(false, table, write,
1936 buffer, length, ppos);
1937 }
1938
1939 #ifdef CONFIG_NUMA
1940 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1941 void __user *buffer, size_t *length, loff_t *ppos)
1942 {
1943 return hugetlb_sysctl_handler_common(true, table, write,
1944 buffer, length, ppos);
1945 }
1946 #endif /* CONFIG_NUMA */
1947
1948 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1949 void __user *buffer,
1950 size_t *length, loff_t *ppos)
1951 {
1952 proc_dointvec(table, write, buffer, length, ppos);
1953 if (hugepages_treat_as_movable)
1954 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1955 else
1956 htlb_alloc_mask = GFP_HIGHUSER;
1957 return 0;
1958 }
1959
1960 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1961 void __user *buffer,
1962 size_t *length, loff_t *ppos)
1963 {
1964 struct hstate *h = &default_hstate;
1965 unsigned long tmp;
1966 int ret;
1967
1968 tmp = h->nr_overcommit_huge_pages;
1969
1970 if (write && h->order >= MAX_ORDER)
1971 return -EINVAL;
1972
1973 table->data = &tmp;
1974 table->maxlen = sizeof(unsigned long);
1975 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
1976 if (ret)
1977 goto out;
1978
1979 if (write) {
1980 spin_lock(&hugetlb_lock);
1981 h->nr_overcommit_huge_pages = tmp;
1982 spin_unlock(&hugetlb_lock);
1983 }
1984 out:
1985 return ret;
1986 }
1987
1988 #endif /* CONFIG_SYSCTL */
1989
1990 void hugetlb_report_meminfo(struct seq_file *m)
1991 {
1992 struct hstate *h = &default_hstate;
1993 seq_printf(m,
1994 "HugePages_Total: %5lu\n"
1995 "HugePages_Free: %5lu\n"
1996 "HugePages_Rsvd: %5lu\n"
1997 "HugePages_Surp: %5lu\n"
1998 "Hugepagesize: %8lu kB\n",
1999 h->nr_huge_pages,
2000 h->free_huge_pages,
2001 h->resv_huge_pages,
2002 h->surplus_huge_pages,
2003 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2004 }
2005
2006 int hugetlb_report_node_meminfo(int nid, char *buf)
2007 {
2008 struct hstate *h = &default_hstate;
2009 return sprintf(buf,
2010 "Node %d HugePages_Total: %5u\n"
2011 "Node %d HugePages_Free: %5u\n"
2012 "Node %d HugePages_Surp: %5u\n",
2013 nid, h->nr_huge_pages_node[nid],
2014 nid, h->free_huge_pages_node[nid],
2015 nid, h->surplus_huge_pages_node[nid]);
2016 }
2017
2018 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2019 unsigned long hugetlb_total_pages(void)
2020 {
2021 struct hstate *h = &default_hstate;
2022 return h->nr_huge_pages * pages_per_huge_page(h);
2023 }
2024
2025 static int hugetlb_acct_memory(struct hstate *h, long delta)
2026 {
2027 int ret = -ENOMEM;
2028
2029 spin_lock(&hugetlb_lock);
2030 /*
2031 * When cpuset is configured, it breaks the strict hugetlb page
2032 * reservation as the accounting is done on a global variable. Such
2033 * reservation is completely rubbish in the presence of cpuset because
2034 * the reservation is not checked against page availability for the
2035 * current cpuset. Application can still potentially OOM'ed by kernel
2036 * with lack of free htlb page in cpuset that the task is in.
2037 * Attempt to enforce strict accounting with cpuset is almost
2038 * impossible (or too ugly) because cpuset is too fluid that
2039 * task or memory node can be dynamically moved between cpusets.
2040 *
2041 * The change of semantics for shared hugetlb mapping with cpuset is
2042 * undesirable. However, in order to preserve some of the semantics,
2043 * we fall back to check against current free page availability as
2044 * a best attempt and hopefully to minimize the impact of changing
2045 * semantics that cpuset has.
2046 */
2047 if (delta > 0) {
2048 if (gather_surplus_pages(h, delta) < 0)
2049 goto out;
2050
2051 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2052 return_unused_surplus_pages(h, delta);
2053 goto out;
2054 }
2055 }
2056
2057 ret = 0;
2058 if (delta < 0)
2059 return_unused_surplus_pages(h, (unsigned long) -delta);
2060
2061 out:
2062 spin_unlock(&hugetlb_lock);
2063 return ret;
2064 }
2065
2066 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2067 {
2068 struct resv_map *reservations = vma_resv_map(vma);
2069
2070 /*
2071 * This new VMA should share its siblings reservation map if present.
2072 * The VMA will only ever have a valid reservation map pointer where
2073 * it is being copied for another still existing VMA. As that VMA
2074 * has a reference to the reservation map it cannot disappear until
2075 * after this open call completes. It is therefore safe to take a
2076 * new reference here without additional locking.
2077 */
2078 if (reservations)
2079 kref_get(&reservations->refs);
2080 }
2081
2082 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2083 {
2084 struct hstate *h = hstate_vma(vma);
2085 struct resv_map *reservations = vma_resv_map(vma);
2086 unsigned long reserve;
2087 unsigned long start;
2088 unsigned long end;
2089
2090 if (reservations) {
2091 start = vma_hugecache_offset(h, vma, vma->vm_start);
2092 end = vma_hugecache_offset(h, vma, vma->vm_end);
2093
2094 reserve = (end - start) -
2095 region_count(&reservations->regions, start, end);
2096
2097 kref_put(&reservations->refs, resv_map_release);
2098
2099 if (reserve) {
2100 hugetlb_acct_memory(h, -reserve);
2101 hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2102 }
2103 }
2104 }
2105
2106 /*
2107 * We cannot handle pagefaults against hugetlb pages at all. They cause
2108 * handle_mm_fault() to try to instantiate regular-sized pages in the
2109 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2110 * this far.
2111 */
2112 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2113 {
2114 BUG();
2115 return 0;
2116 }
2117
2118 const struct vm_operations_struct hugetlb_vm_ops = {
2119 .fault = hugetlb_vm_op_fault,
2120 .open = hugetlb_vm_op_open,
2121 .close = hugetlb_vm_op_close,
2122 };
2123
2124 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2125 int writable)
2126 {
2127 pte_t entry;
2128
2129 if (writable) {
2130 entry =
2131 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2132 } else {
2133 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2134 }
2135 entry = pte_mkyoung(entry);
2136 entry = pte_mkhuge(entry);
2137
2138 return entry;
2139 }
2140
2141 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2142 unsigned long address, pte_t *ptep)
2143 {
2144 pte_t entry;
2145
2146 entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2147 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2148 update_mmu_cache(vma, address, ptep);
2149 }
2150
2151
2152 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2153 struct vm_area_struct *vma)
2154 {
2155 pte_t *src_pte, *dst_pte, entry;
2156 struct page *ptepage;
2157 unsigned long addr;
2158 int cow;
2159 struct hstate *h = hstate_vma(vma);
2160 unsigned long sz = huge_page_size(h);
2161
2162 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2163
2164 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2165 src_pte = huge_pte_offset(src, addr);
2166 if (!src_pte)
2167 continue;
2168 dst_pte = huge_pte_alloc(dst, addr, sz);
2169 if (!dst_pte)
2170 goto nomem;
2171
2172 /* If the pagetables are shared don't copy or take references */
2173 if (dst_pte == src_pte)
2174 continue;
2175
2176 spin_lock(&dst->page_table_lock);
2177 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2178 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2179 if (cow)
2180 huge_ptep_set_wrprotect(src, addr, src_pte);
2181 entry = huge_ptep_get(src_pte);
2182 ptepage = pte_page(entry);
2183 get_page(ptepage);
2184 page_dup_rmap(ptepage);
2185 set_huge_pte_at(dst, addr, dst_pte, entry);
2186 }
2187 spin_unlock(&src->page_table_lock);
2188 spin_unlock(&dst->page_table_lock);
2189 }
2190 return 0;
2191
2192 nomem:
2193 return -ENOMEM;
2194 }
2195
2196 static int is_hugetlb_entry_migration(pte_t pte)
2197 {
2198 swp_entry_t swp;
2199
2200 if (huge_pte_none(pte) || pte_present(pte))
2201 return 0;
2202 swp = pte_to_swp_entry(pte);
2203 if (non_swap_entry(swp) && is_migration_entry(swp))
2204 return 1;
2205 else
2206 return 0;
2207 }
2208
2209 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2210 {
2211 swp_entry_t swp;
2212
2213 if (huge_pte_none(pte) || pte_present(pte))
2214 return 0;
2215 swp = pte_to_swp_entry(pte);
2216 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2217 return 1;
2218 else
2219 return 0;
2220 }
2221
2222 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2223 unsigned long end, struct page *ref_page)
2224 {
2225 struct mm_struct *mm = vma->vm_mm;
2226 unsigned long address;
2227 pte_t *ptep;
2228 pte_t pte;
2229 struct page *page;
2230 struct page *tmp;
2231 struct hstate *h = hstate_vma(vma);
2232 unsigned long sz = huge_page_size(h);
2233
2234 /*
2235 * A page gathering list, protected by per file i_mmap_mutex. The
2236 * lock is used to avoid list corruption from multiple unmapping
2237 * of the same page since we are using page->lru.
2238 */
2239 LIST_HEAD(page_list);
2240
2241 WARN_ON(!is_vm_hugetlb_page(vma));
2242 BUG_ON(start & ~huge_page_mask(h));
2243 BUG_ON(end & ~huge_page_mask(h));
2244
2245 mmu_notifier_invalidate_range_start(mm, start, end);
2246 spin_lock(&mm->page_table_lock);
2247 for (address = start; address < end; address += sz) {
2248 ptep = huge_pte_offset(mm, address);
2249 if (!ptep)
2250 continue;
2251
2252 if (huge_pmd_unshare(mm, &address, ptep))
2253 continue;
2254
2255 /*
2256 * If a reference page is supplied, it is because a specific
2257 * page is being unmapped, not a range. Ensure the page we
2258 * are about to unmap is the actual page of interest.
2259 */
2260 if (ref_page) {
2261 pte = huge_ptep_get(ptep);
2262 if (huge_pte_none(pte))
2263 continue;
2264 page = pte_page(pte);
2265 if (page != ref_page)
2266 continue;
2267
2268 /*
2269 * Mark the VMA as having unmapped its page so that
2270 * future faults in this VMA will fail rather than
2271 * looking like data was lost
2272 */
2273 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2274 }
2275
2276 pte = huge_ptep_get_and_clear(mm, address, ptep);
2277 if (huge_pte_none(pte))
2278 continue;
2279
2280 /*
2281 * HWPoisoned hugepage is already unmapped and dropped reference
2282 */
2283 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2284 continue;
2285
2286 page = pte_page(pte);
2287 if (pte_dirty(pte))
2288 set_page_dirty(page);
2289 list_add(&page->lru, &page_list);
2290
2291 /* Bail out after unmapping reference page if supplied */
2292 if (ref_page)
2293 break;
2294 }
2295 flush_tlb_range(vma, start, end);
2296 spin_unlock(&mm->page_table_lock);
2297 mmu_notifier_invalidate_range_end(mm, start, end);
2298 list_for_each_entry_safe(page, tmp, &page_list, lru) {
2299 page_remove_rmap(page);
2300 list_del(&page->lru);
2301 put_page(page);
2302 }
2303 }
2304
2305 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2306 unsigned long end, struct page *ref_page)
2307 {
2308 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2309 __unmap_hugepage_range(vma, start, end, ref_page);
2310 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2311 }
2312
2313 /*
2314 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2315 * mappping it owns the reserve page for. The intention is to unmap the page
2316 * from other VMAs and let the children be SIGKILLed if they are faulting the
2317 * same region.
2318 */
2319 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2320 struct page *page, unsigned long address)
2321 {
2322 struct hstate *h = hstate_vma(vma);
2323 struct vm_area_struct *iter_vma;
2324 struct address_space *mapping;
2325 struct prio_tree_iter iter;
2326 pgoff_t pgoff;
2327
2328 /*
2329 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2330 * from page cache lookup which is in HPAGE_SIZE units.
2331 */
2332 address = address & huge_page_mask(h);
2333 pgoff = vma_hugecache_offset(h, vma, address);
2334 mapping = (struct address_space *)page_private(page);
2335
2336 /*
2337 * Take the mapping lock for the duration of the table walk. As
2338 * this mapping should be shared between all the VMAs,
2339 * __unmap_hugepage_range() is called as the lock is already held
2340 */
2341 mutex_lock(&mapping->i_mmap_mutex);
2342 vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2343 /* Do not unmap the current VMA */
2344 if (iter_vma == vma)
2345 continue;
2346
2347 /*
2348 * Unmap the page from other VMAs without their own reserves.
2349 * They get marked to be SIGKILLed if they fault in these
2350 * areas. This is because a future no-page fault on this VMA
2351 * could insert a zeroed page instead of the data existing
2352 * from the time of fork. This would look like data corruption
2353 */
2354 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2355 __unmap_hugepage_range(iter_vma,
2356 address, address + huge_page_size(h),
2357 page);
2358 }
2359 mutex_unlock(&mapping->i_mmap_mutex);
2360
2361 return 1;
2362 }
2363
2364 /*
2365 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2366 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2367 * cannot race with other handlers or page migration.
2368 * Keep the pte_same checks anyway to make transition from the mutex easier.
2369 */
2370 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2371 unsigned long address, pte_t *ptep, pte_t pte,
2372 struct page *pagecache_page)
2373 {
2374 struct hstate *h = hstate_vma(vma);
2375 struct page *old_page, *new_page;
2376 int avoidcopy;
2377 int outside_reserve = 0;
2378
2379 old_page = pte_page(pte);
2380
2381 retry_avoidcopy:
2382 /* If no-one else is actually using this page, avoid the copy
2383 * and just make the page writable */
2384 avoidcopy = (page_mapcount(old_page) == 1);
2385 if (avoidcopy) {
2386 if (PageAnon(old_page))
2387 page_move_anon_rmap(old_page, vma, address);
2388 set_huge_ptep_writable(vma, address, ptep);
2389 return 0;
2390 }
2391
2392 /*
2393 * If the process that created a MAP_PRIVATE mapping is about to
2394 * perform a COW due to a shared page count, attempt to satisfy
2395 * the allocation without using the existing reserves. The pagecache
2396 * page is used to determine if the reserve at this address was
2397 * consumed or not. If reserves were used, a partial faulted mapping
2398 * at the time of fork() could consume its reserves on COW instead
2399 * of the full address range.
2400 */
2401 if (!(vma->vm_flags & VM_MAYSHARE) &&
2402 is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2403 old_page != pagecache_page)
2404 outside_reserve = 1;
2405
2406 page_cache_get(old_page);
2407
2408 /* Drop page_table_lock as buddy allocator may be called */
2409 spin_unlock(&mm->page_table_lock);
2410 new_page = alloc_huge_page(vma, address, outside_reserve);
2411
2412 if (IS_ERR(new_page)) {
2413 page_cache_release(old_page);
2414
2415 /*
2416 * If a process owning a MAP_PRIVATE mapping fails to COW,
2417 * it is due to references held by a child and an insufficient
2418 * huge page pool. To guarantee the original mappers
2419 * reliability, unmap the page from child processes. The child
2420 * may get SIGKILLed if it later faults.
2421 */
2422 if (outside_reserve) {
2423 BUG_ON(huge_pte_none(pte));
2424 if (unmap_ref_private(mm, vma, old_page, address)) {
2425 BUG_ON(page_count(old_page) != 1);
2426 BUG_ON(huge_pte_none(pte));
2427 spin_lock(&mm->page_table_lock);
2428 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2429 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2430 goto retry_avoidcopy;
2431 /*
2432 * race occurs while re-acquiring page_table_lock, and
2433 * our job is done.
2434 */
2435 return 0;
2436 }
2437 WARN_ON_ONCE(1);
2438 }
2439
2440 /* Caller expects lock to be held */
2441 spin_lock(&mm->page_table_lock);
2442 return -PTR_ERR(new_page);
2443 }
2444
2445 /*
2446 * When the original hugepage is shared one, it does not have
2447 * anon_vma prepared.
2448 */
2449 if (unlikely(anon_vma_prepare(vma))) {
2450 page_cache_release(new_page);
2451 page_cache_release(old_page);
2452 /* Caller expects lock to be held */
2453 spin_lock(&mm->page_table_lock);
2454 return VM_FAULT_OOM;
2455 }
2456
2457 copy_user_huge_page(new_page, old_page, address, vma,
2458 pages_per_huge_page(h));
2459 __SetPageUptodate(new_page);
2460
2461 /*
2462 * Retake the page_table_lock to check for racing updates
2463 * before the page tables are altered
2464 */
2465 spin_lock(&mm->page_table_lock);
2466 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2467 if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2468 /* Break COW */
2469 mmu_notifier_invalidate_range_start(mm,
2470 address & huge_page_mask(h),
2471 (address & huge_page_mask(h)) + huge_page_size(h));
2472 huge_ptep_clear_flush(vma, address, ptep);
2473 set_huge_pte_at(mm, address, ptep,
2474 make_huge_pte(vma, new_page, 1));
2475 page_remove_rmap(old_page);
2476 hugepage_add_new_anon_rmap(new_page, vma, address);
2477 /* Make the old page be freed below */
2478 new_page = old_page;
2479 mmu_notifier_invalidate_range_end(mm,
2480 address & huge_page_mask(h),
2481 (address & huge_page_mask(h)) + huge_page_size(h));
2482 }
2483 page_cache_release(new_page);
2484 page_cache_release(old_page);
2485 return 0;
2486 }
2487
2488 /* Return the pagecache page at a given address within a VMA */
2489 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2490 struct vm_area_struct *vma, unsigned long address)
2491 {
2492 struct address_space *mapping;
2493 pgoff_t idx;
2494
2495 mapping = vma->vm_file->f_mapping;
2496 idx = vma_hugecache_offset(h, vma, address);
2497
2498 return find_lock_page(mapping, idx);
2499 }
2500
2501 /*
2502 * Return whether there is a pagecache page to back given address within VMA.
2503 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2504 */
2505 static bool hugetlbfs_pagecache_present(struct hstate *h,
2506 struct vm_area_struct *vma, unsigned long address)
2507 {
2508 struct address_space *mapping;
2509 pgoff_t idx;
2510 struct page *page;
2511
2512 mapping = vma->vm_file->f_mapping;
2513 idx = vma_hugecache_offset(h, vma, address);
2514
2515 page = find_get_page(mapping, idx);
2516 if (page)
2517 put_page(page);
2518 return page != NULL;
2519 }
2520
2521 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2522 unsigned long address, pte_t *ptep, unsigned int flags)
2523 {
2524 struct hstate *h = hstate_vma(vma);
2525 int ret = VM_FAULT_SIGBUS;
2526 int anon_rmap = 0;
2527 pgoff_t idx;
2528 unsigned long size;
2529 struct page *page;
2530 struct address_space *mapping;
2531 pte_t new_pte;
2532
2533 /*
2534 * Currently, we are forced to kill the process in the event the
2535 * original mapper has unmapped pages from the child due to a failed
2536 * COW. Warn that such a situation has occurred as it may not be obvious
2537 */
2538 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2539 printk(KERN_WARNING
2540 "PID %d killed due to inadequate hugepage pool\n",
2541 current->pid);
2542 return ret;
2543 }
2544
2545 mapping = vma->vm_file->f_mapping;
2546 idx = vma_hugecache_offset(h, vma, address);
2547
2548 /*
2549 * Use page lock to guard against racing truncation
2550 * before we get page_table_lock.
2551 */
2552 retry:
2553 page = find_lock_page(mapping, idx);
2554 if (!page) {
2555 size = i_size_read(mapping->host) >> huge_page_shift(h);
2556 if (idx >= size)
2557 goto out;
2558 page = alloc_huge_page(vma, address, 0);
2559 if (IS_ERR(page)) {
2560 ret = -PTR_ERR(page);
2561 goto out;
2562 }
2563 clear_huge_page(page, address, pages_per_huge_page(h));
2564 __SetPageUptodate(page);
2565
2566 if (vma->vm_flags & VM_MAYSHARE) {
2567 int err;
2568 struct inode *inode = mapping->host;
2569
2570 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2571 if (err) {
2572 put_page(page);
2573 if (err == -EEXIST)
2574 goto retry;
2575 goto out;
2576 }
2577
2578 spin_lock(&inode->i_lock);
2579 inode->i_blocks += blocks_per_huge_page(h);
2580 spin_unlock(&inode->i_lock);
2581 } else {
2582 lock_page(page);
2583 if (unlikely(anon_vma_prepare(vma))) {
2584 ret = VM_FAULT_OOM;
2585 goto backout_unlocked;
2586 }
2587 anon_rmap = 1;
2588 }
2589 } else {
2590 /*
2591 * If memory error occurs between mmap() and fault, some process
2592 * don't have hwpoisoned swap entry for errored virtual address.
2593 * So we need to block hugepage fault by PG_hwpoison bit check.
2594 */
2595 if (unlikely(PageHWPoison(page))) {
2596 ret = VM_FAULT_HWPOISON |
2597 VM_FAULT_SET_HINDEX(h - hstates);
2598 goto backout_unlocked;
2599 }
2600 }
2601
2602 /*
2603 * If we are going to COW a private mapping later, we examine the
2604 * pending reservations for this page now. This will ensure that
2605 * any allocations necessary to record that reservation occur outside
2606 * the spinlock.
2607 */
2608 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2609 if (vma_needs_reservation(h, vma, address) < 0) {
2610 ret = VM_FAULT_OOM;
2611 goto backout_unlocked;
2612 }
2613
2614 spin_lock(&mm->page_table_lock);
2615 size = i_size_read(mapping->host) >> huge_page_shift(h);
2616 if (idx >= size)
2617 goto backout;
2618
2619 ret = 0;
2620 if (!huge_pte_none(huge_ptep_get(ptep)))
2621 goto backout;
2622
2623 if (anon_rmap)
2624 hugepage_add_new_anon_rmap(page, vma, address);
2625 else
2626 page_dup_rmap(page);
2627 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2628 && (vma->vm_flags & VM_SHARED)));
2629 set_huge_pte_at(mm, address, ptep, new_pte);
2630
2631 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2632 /* Optimization, do the COW without a second fault */
2633 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2634 }
2635
2636 spin_unlock(&mm->page_table_lock);
2637 unlock_page(page);
2638 out:
2639 return ret;
2640
2641 backout:
2642 spin_unlock(&mm->page_table_lock);
2643 backout_unlocked:
2644 unlock_page(page);
2645 put_page(page);
2646 goto out;
2647 }
2648
2649 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2650 unsigned long address, unsigned int flags)
2651 {
2652 pte_t *ptep;
2653 pte_t entry;
2654 int ret;
2655 struct page *page = NULL;
2656 struct page *pagecache_page = NULL;
2657 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2658 struct hstate *h = hstate_vma(vma);
2659
2660 address &= huge_page_mask(h);
2661
2662 ptep = huge_pte_offset(mm, address);
2663 if (ptep) {
2664 entry = huge_ptep_get(ptep);
2665 if (unlikely(is_hugetlb_entry_migration(entry))) {
2666 migration_entry_wait(mm, (pmd_t *)ptep, address);
2667 return 0;
2668 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2669 return VM_FAULT_HWPOISON_LARGE |
2670 VM_FAULT_SET_HINDEX(h - hstates);
2671 }
2672
2673 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2674 if (!ptep)
2675 return VM_FAULT_OOM;
2676
2677 /*
2678 * Serialize hugepage allocation and instantiation, so that we don't
2679 * get spurious allocation failures if two CPUs race to instantiate
2680 * the same page in the page cache.
2681 */
2682 mutex_lock(&hugetlb_instantiation_mutex);
2683 entry = huge_ptep_get(ptep);
2684 if (huge_pte_none(entry)) {
2685 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2686 goto out_mutex;
2687 }
2688
2689 ret = 0;
2690
2691 /*
2692 * If we are going to COW the mapping later, we examine the pending
2693 * reservations for this page now. This will ensure that any
2694 * allocations necessary to record that reservation occur outside the
2695 * spinlock. For private mappings, we also lookup the pagecache
2696 * page now as it is used to determine if a reservation has been
2697 * consumed.
2698 */
2699 if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2700 if (vma_needs_reservation(h, vma, address) < 0) {
2701 ret = VM_FAULT_OOM;
2702 goto out_mutex;
2703 }
2704
2705 if (!(vma->vm_flags & VM_MAYSHARE))
2706 pagecache_page = hugetlbfs_pagecache_page(h,
2707 vma, address);
2708 }
2709
2710 /*
2711 * hugetlb_cow() requires page locks of pte_page(entry) and
2712 * pagecache_page, so here we need take the former one
2713 * when page != pagecache_page or !pagecache_page.
2714 * Note that locking order is always pagecache_page -> page,
2715 * so no worry about deadlock.
2716 */
2717 page = pte_page(entry);
2718 if (page != pagecache_page)
2719 lock_page(page);
2720
2721 spin_lock(&mm->page_table_lock);
2722 /* Check for a racing update before calling hugetlb_cow */
2723 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2724 goto out_page_table_lock;
2725
2726
2727 if (flags & FAULT_FLAG_WRITE) {
2728 if (!pte_write(entry)) {
2729 ret = hugetlb_cow(mm, vma, address, ptep, entry,
2730 pagecache_page);
2731 goto out_page_table_lock;
2732 }
2733 entry = pte_mkdirty(entry);
2734 }
2735 entry = pte_mkyoung(entry);
2736 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2737 flags & FAULT_FLAG_WRITE))
2738 update_mmu_cache(vma, address, ptep);
2739
2740 out_page_table_lock:
2741 spin_unlock(&mm->page_table_lock);
2742
2743 if (pagecache_page) {
2744 unlock_page(pagecache_page);
2745 put_page(pagecache_page);
2746 }
2747 if (page != pagecache_page)
2748 unlock_page(page);
2749
2750 out_mutex:
2751 mutex_unlock(&hugetlb_instantiation_mutex);
2752
2753 return ret;
2754 }
2755
2756 /* Can be overriden by architectures */
2757 __attribute__((weak)) struct page *
2758 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2759 pud_t *pud, int write)
2760 {
2761 BUG();
2762 return NULL;
2763 }
2764
2765 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2766 struct page **pages, struct vm_area_struct **vmas,
2767 unsigned long *position, int *length, int i,
2768 unsigned int flags)
2769 {
2770 unsigned long pfn_offset;
2771 unsigned long vaddr = *position;
2772 int remainder = *length;
2773 struct hstate *h = hstate_vma(vma);
2774
2775 spin_lock(&mm->page_table_lock);
2776 while (vaddr < vma->vm_end && remainder) {
2777 pte_t *pte;
2778 int absent;
2779 struct page *page;
2780
2781 /*
2782 * Some archs (sparc64, sh*) have multiple pte_ts to
2783 * each hugepage. We have to make sure we get the
2784 * first, for the page indexing below to work.
2785 */
2786 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2787 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2788
2789 /*
2790 * When coredumping, it suits get_dump_page if we just return
2791 * an error where there's an empty slot with no huge pagecache
2792 * to back it. This way, we avoid allocating a hugepage, and
2793 * the sparse dumpfile avoids allocating disk blocks, but its
2794 * huge holes still show up with zeroes where they need to be.
2795 */
2796 if (absent && (flags & FOLL_DUMP) &&
2797 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2798 remainder = 0;
2799 break;
2800 }
2801
2802 if (absent ||
2803 ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2804 int ret;
2805
2806 spin_unlock(&mm->page_table_lock);
2807 ret = hugetlb_fault(mm, vma, vaddr,
2808 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2809 spin_lock(&mm->page_table_lock);
2810 if (!(ret & VM_FAULT_ERROR))
2811 continue;
2812
2813 remainder = 0;
2814 break;
2815 }
2816
2817 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2818 page = pte_page(huge_ptep_get(pte));
2819 same_page:
2820 if (pages) {
2821 pages[i] = mem_map_offset(page, pfn_offset);
2822 get_page(pages[i]);
2823 }
2824
2825 if (vmas)
2826 vmas[i] = vma;
2827
2828 vaddr += PAGE_SIZE;
2829 ++pfn_offset;
2830 --remainder;
2831 ++i;
2832 if (vaddr < vma->vm_end && remainder &&
2833 pfn_offset < pages_per_huge_page(h)) {
2834 /*
2835 * We use pfn_offset to avoid touching the pageframes
2836 * of this compound page.
2837 */
2838 goto same_page;
2839 }
2840 }
2841 spin_unlock(&mm->page_table_lock);
2842 *length = remainder;
2843 *position = vaddr;
2844
2845 return i ? i : -EFAULT;
2846 }
2847
2848 void hugetlb_change_protection(struct vm_area_struct *vma,
2849 unsigned long address, unsigned long end, pgprot_t newprot)
2850 {
2851 struct mm_struct *mm = vma->vm_mm;
2852 unsigned long start = address;
2853 pte_t *ptep;
2854 pte_t pte;
2855 struct hstate *h = hstate_vma(vma);
2856
2857 BUG_ON(address >= end);
2858 flush_cache_range(vma, address, end);
2859
2860 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
2861 spin_lock(&mm->page_table_lock);
2862 for (; address < end; address += huge_page_size(h)) {
2863 ptep = huge_pte_offset(mm, address);
2864 if (!ptep)
2865 continue;
2866 if (huge_pmd_unshare(mm, &address, ptep))
2867 continue;
2868 if (!huge_pte_none(huge_ptep_get(ptep))) {
2869 pte = huge_ptep_get_and_clear(mm, address, ptep);
2870 pte = pte_mkhuge(pte_modify(pte, newprot));
2871 set_huge_pte_at(mm, address, ptep, pte);
2872 }
2873 }
2874 spin_unlock(&mm->page_table_lock);
2875 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
2876
2877 flush_tlb_range(vma, start, end);
2878 }
2879
2880 int hugetlb_reserve_pages(struct inode *inode,
2881 long from, long to,
2882 struct vm_area_struct *vma,
2883 vm_flags_t vm_flags)
2884 {
2885 long ret, chg;
2886 struct hstate *h = hstate_inode(inode);
2887
2888 /*
2889 * Only apply hugepage reservation if asked. At fault time, an
2890 * attempt will be made for VM_NORESERVE to allocate a page
2891 * and filesystem quota without using reserves
2892 */
2893 if (vm_flags & VM_NORESERVE)
2894 return 0;
2895
2896 /*
2897 * Shared mappings base their reservation on the number of pages that
2898 * are already allocated on behalf of the file. Private mappings need
2899 * to reserve the full area even if read-only as mprotect() may be
2900 * called to make the mapping read-write. Assume !vma is a shm mapping
2901 */
2902 if (!vma || vma->vm_flags & VM_MAYSHARE)
2903 chg = region_chg(&inode->i_mapping->private_list, from, to);
2904 else {
2905 struct resv_map *resv_map = resv_map_alloc();
2906 if (!resv_map)
2907 return -ENOMEM;
2908
2909 chg = to - from;
2910
2911 set_vma_resv_map(vma, resv_map);
2912 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2913 }
2914
2915 if (chg < 0)
2916 return chg;
2917
2918 /* There must be enough filesystem quota for the mapping */
2919 if (hugetlb_get_quota(inode->i_mapping, chg))
2920 return -ENOSPC;
2921
2922 /*
2923 * Check enough hugepages are available for the reservation.
2924 * Hand back the quota if there are not
2925 */
2926 ret = hugetlb_acct_memory(h, chg);
2927 if (ret < 0) {
2928 hugetlb_put_quota(inode->i_mapping, chg);
2929 return ret;
2930 }
2931
2932 /*
2933 * Account for the reservations made. Shared mappings record regions
2934 * that have reservations as they are shared by multiple VMAs.
2935 * When the last VMA disappears, the region map says how much
2936 * the reservation was and the page cache tells how much of
2937 * the reservation was consumed. Private mappings are per-VMA and
2938 * only the consumed reservations are tracked. When the VMA
2939 * disappears, the original reservation is the VMA size and the
2940 * consumed reservations are stored in the map. Hence, nothing
2941 * else has to be done for private mappings here
2942 */
2943 if (!vma || vma->vm_flags & VM_MAYSHARE)
2944 region_add(&inode->i_mapping->private_list, from, to);
2945 return 0;
2946 }
2947
2948 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2949 {
2950 struct hstate *h = hstate_inode(inode);
2951 long chg = region_truncate(&inode->i_mapping->private_list, offset);
2952
2953 spin_lock(&inode->i_lock);
2954 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2955 spin_unlock(&inode->i_lock);
2956
2957 hugetlb_put_quota(inode->i_mapping, (chg - freed));
2958 hugetlb_acct_memory(h, -(chg - freed));
2959 }
2960
2961 #ifdef CONFIG_MEMORY_FAILURE
2962
2963 /* Should be called in hugetlb_lock */
2964 static int is_hugepage_on_freelist(struct page *hpage)
2965 {
2966 struct page *page;
2967 struct page *tmp;
2968 struct hstate *h = page_hstate(hpage);
2969 int nid = page_to_nid(hpage);
2970
2971 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
2972 if (page == hpage)
2973 return 1;
2974 return 0;
2975 }
2976
2977 /*
2978 * This function is called from memory failure code.
2979 * Assume the caller holds page lock of the head page.
2980 */
2981 int dequeue_hwpoisoned_huge_page(struct page *hpage)
2982 {
2983 struct hstate *h = page_hstate(hpage);
2984 int nid = page_to_nid(hpage);
2985 int ret = -EBUSY;
2986
2987 spin_lock(&hugetlb_lock);
2988 if (is_hugepage_on_freelist(hpage)) {
2989 list_del(&hpage->lru);
2990 set_page_refcounted(hpage);
2991 h->free_huge_pages--;
2992 h->free_huge_pages_node[nid]--;
2993 ret = 0;
2994 }
2995 spin_unlock(&hugetlb_lock);
2996 return ret;
2997 }
2998 #endif
This page took 0.455945 seconds and 5 git commands to generate.