hugetlb: split alloc_huge_page into private and shared components
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35 static int hugetlb_next_nid;
36
37 /*
38 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39 */
40 static DEFINE_SPINLOCK(hugetlb_lock);
41
42 static void clear_huge_page(struct page *page, unsigned long addr)
43 {
44 int i;
45
46 might_sleep();
47 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48 cond_resched();
49 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
50 }
51 }
52
53 static void copy_huge_page(struct page *dst, struct page *src,
54 unsigned long addr, struct vm_area_struct *vma)
55 {
56 int i;
57
58 might_sleep();
59 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60 cond_resched();
61 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
62 }
63 }
64
65 static void enqueue_huge_page(struct page *page)
66 {
67 int nid = page_to_nid(page);
68 list_add(&page->lru, &hugepage_freelists[nid]);
69 free_huge_pages++;
70 free_huge_pages_node[nid]++;
71 }
72
73 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74 unsigned long address)
75 {
76 int nid;
77 struct page *page = NULL;
78 struct mempolicy *mpol;
79 struct zonelist *zonelist = huge_zonelist(vma, address,
80 htlb_alloc_mask, &mpol);
81 struct zone **z;
82
83 for (z = zonelist->zones; *z; z++) {
84 nid = zone_to_nid(*z);
85 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86 !list_empty(&hugepage_freelists[nid])) {
87 page = list_entry(hugepage_freelists[nid].next,
88 struct page, lru);
89 list_del(&page->lru);
90 free_huge_pages--;
91 free_huge_pages_node[nid]--;
92 if (vma && vma->vm_flags & VM_MAYSHARE)
93 resv_huge_pages--;
94 break;
95 }
96 }
97 mpol_free(mpol); /* unref if mpol !NULL */
98 return page;
99 }
100
101 static void update_and_free_page(struct page *page)
102 {
103 int i;
104 nr_huge_pages--;
105 nr_huge_pages_node[page_to_nid(page)]--;
106 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109 1 << PG_private | 1<< PG_writeback);
110 }
111 set_compound_page_dtor(page, NULL);
112 set_page_refcounted(page);
113 __free_pages(page, HUGETLB_PAGE_ORDER);
114 }
115
116 static void free_huge_page(struct page *page)
117 {
118 int nid = page_to_nid(page);
119
120 BUG_ON(page_count(page));
121 INIT_LIST_HEAD(&page->lru);
122
123 spin_lock(&hugetlb_lock);
124 if (surplus_huge_pages_node[nid]) {
125 update_and_free_page(page);
126 surplus_huge_pages--;
127 surplus_huge_pages_node[nid]--;
128 } else {
129 enqueue_huge_page(page);
130 }
131 spin_unlock(&hugetlb_lock);
132 }
133
134 /*
135 * Increment or decrement surplus_huge_pages. Keep node-specific counters
136 * balanced by operating on them in a round-robin fashion.
137 * Returns 1 if an adjustment was made.
138 */
139 static int adjust_pool_surplus(int delta)
140 {
141 static int prev_nid;
142 int nid = prev_nid;
143 int ret = 0;
144
145 VM_BUG_ON(delta != -1 && delta != 1);
146 do {
147 nid = next_node(nid, node_online_map);
148 if (nid == MAX_NUMNODES)
149 nid = first_node(node_online_map);
150
151 /* To shrink on this node, there must be a surplus page */
152 if (delta < 0 && !surplus_huge_pages_node[nid])
153 continue;
154 /* Surplus cannot exceed the total number of pages */
155 if (delta > 0 && surplus_huge_pages_node[nid] >=
156 nr_huge_pages_node[nid])
157 continue;
158
159 surplus_huge_pages += delta;
160 surplus_huge_pages_node[nid] += delta;
161 ret = 1;
162 break;
163 } while (nid != prev_nid);
164
165 prev_nid = nid;
166 return ret;
167 }
168
169 static struct page *alloc_fresh_huge_page_node(int nid)
170 {
171 struct page *page;
172
173 page = alloc_pages_node(nid,
174 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
175 HUGETLB_PAGE_ORDER);
176 if (page) {
177 set_compound_page_dtor(page, free_huge_page);
178 spin_lock(&hugetlb_lock);
179 nr_huge_pages++;
180 nr_huge_pages_node[nid]++;
181 spin_unlock(&hugetlb_lock);
182 put_page(page); /* free it into the hugepage allocator */
183 }
184
185 return page;
186 }
187
188 static int alloc_fresh_huge_page(void)
189 {
190 struct page *page;
191 int start_nid;
192 int next_nid;
193 int ret = 0;
194
195 start_nid = hugetlb_next_nid;
196
197 do {
198 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
199 if (page)
200 ret = 1;
201 /*
202 * Use a helper variable to find the next node and then
203 * copy it back to hugetlb_next_nid afterwards:
204 * otherwise there's a window in which a racer might
205 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
206 * But we don't need to use a spin_lock here: it really
207 * doesn't matter if occasionally a racer chooses the
208 * same nid as we do. Move nid forward in the mask even
209 * if we just successfully allocated a hugepage so that
210 * the next caller gets hugepages on the next node.
211 */
212 next_nid = next_node(hugetlb_next_nid, node_online_map);
213 if (next_nid == MAX_NUMNODES)
214 next_nid = first_node(node_online_map);
215 hugetlb_next_nid = next_nid;
216 } while (!page && hugetlb_next_nid != start_nid);
217
218 return ret;
219 }
220
221 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
222 unsigned long address)
223 {
224 struct page *page;
225
226 /* Check if the dynamic pool is enabled */
227 if (!hugetlb_dynamic_pool)
228 return NULL;
229
230 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
231 HUGETLB_PAGE_ORDER);
232 if (page) {
233 set_compound_page_dtor(page, free_huge_page);
234 spin_lock(&hugetlb_lock);
235 nr_huge_pages++;
236 nr_huge_pages_node[page_to_nid(page)]++;
237 surplus_huge_pages++;
238 surplus_huge_pages_node[page_to_nid(page)]++;
239 spin_unlock(&hugetlb_lock);
240 }
241
242 return page;
243 }
244
245 /*
246 * Increase the hugetlb pool such that it can accomodate a reservation
247 * of size 'delta'.
248 */
249 static int gather_surplus_pages(int delta)
250 {
251 struct list_head surplus_list;
252 struct page *page, *tmp;
253 int ret, i;
254 int needed, allocated;
255
256 needed = (resv_huge_pages + delta) - free_huge_pages;
257 if (needed <= 0)
258 return 0;
259
260 allocated = 0;
261 INIT_LIST_HEAD(&surplus_list);
262
263 ret = -ENOMEM;
264 retry:
265 spin_unlock(&hugetlb_lock);
266 for (i = 0; i < needed; i++) {
267 page = alloc_buddy_huge_page(NULL, 0);
268 if (!page) {
269 /*
270 * We were not able to allocate enough pages to
271 * satisfy the entire reservation so we free what
272 * we've allocated so far.
273 */
274 spin_lock(&hugetlb_lock);
275 needed = 0;
276 goto free;
277 }
278
279 list_add(&page->lru, &surplus_list);
280 }
281 allocated += needed;
282
283 /*
284 * After retaking hugetlb_lock, we need to recalculate 'needed'
285 * because either resv_huge_pages or free_huge_pages may have changed.
286 */
287 spin_lock(&hugetlb_lock);
288 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
289 if (needed > 0)
290 goto retry;
291
292 /*
293 * The surplus_list now contains _at_least_ the number of extra pages
294 * needed to accomodate the reservation. Add the appropriate number
295 * of pages to the hugetlb pool and free the extras back to the buddy
296 * allocator.
297 */
298 needed += allocated;
299 ret = 0;
300 free:
301 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
302 list_del(&page->lru);
303 if ((--needed) >= 0)
304 enqueue_huge_page(page);
305 else {
306 /*
307 * Decrement the refcount and free the page using its
308 * destructor. This must be done with hugetlb_lock
309 * unlocked which is safe because free_huge_page takes
310 * hugetlb_lock before deciding how to free the page.
311 */
312 spin_unlock(&hugetlb_lock);
313 put_page(page);
314 spin_lock(&hugetlb_lock);
315 }
316 }
317
318 return ret;
319 }
320
321 /*
322 * When releasing a hugetlb pool reservation, any surplus pages that were
323 * allocated to satisfy the reservation must be explicitly freed if they were
324 * never used.
325 */
326 void return_unused_surplus_pages(unsigned long unused_resv_pages)
327 {
328 static int nid = -1;
329 struct page *page;
330 unsigned long nr_pages;
331
332 nr_pages = min(unused_resv_pages, surplus_huge_pages);
333
334 while (nr_pages) {
335 nid = next_node(nid, node_online_map);
336 if (nid == MAX_NUMNODES)
337 nid = first_node(node_online_map);
338
339 if (!surplus_huge_pages_node[nid])
340 continue;
341
342 if (!list_empty(&hugepage_freelists[nid])) {
343 page = list_entry(hugepage_freelists[nid].next,
344 struct page, lru);
345 list_del(&page->lru);
346 update_and_free_page(page);
347 free_huge_pages--;
348 free_huge_pages_node[nid]--;
349 surplus_huge_pages--;
350 surplus_huge_pages_node[nid]--;
351 nr_pages--;
352 }
353 }
354 }
355
356
357 static struct page *alloc_huge_page_shared(struct vm_area_struct *vma,
358 unsigned long addr)
359 {
360 struct page *page;
361
362 spin_lock(&hugetlb_lock);
363 page = dequeue_huge_page(vma, addr);
364 spin_unlock(&hugetlb_lock);
365 return page;
366 }
367
368 static struct page *alloc_huge_page_private(struct vm_area_struct *vma,
369 unsigned long addr)
370 {
371 struct page *page = NULL;
372
373 spin_lock(&hugetlb_lock);
374 if (free_huge_pages > resv_huge_pages)
375 page = dequeue_huge_page(vma, addr);
376 spin_unlock(&hugetlb_lock);
377 if (!page)
378 page = alloc_buddy_huge_page(vma, addr);
379 return page;
380 }
381
382 static struct page *alloc_huge_page(struct vm_area_struct *vma,
383 unsigned long addr)
384 {
385 struct page *page;
386
387 if (vma->vm_flags & VM_MAYSHARE)
388 page = alloc_huge_page_shared(vma, addr);
389 else
390 page = alloc_huge_page_private(vma, addr);
391 if (page)
392 set_page_refcounted(page);
393 return page;
394 }
395
396 static int __init hugetlb_init(void)
397 {
398 unsigned long i;
399
400 if (HPAGE_SHIFT == 0)
401 return 0;
402
403 for (i = 0; i < MAX_NUMNODES; ++i)
404 INIT_LIST_HEAD(&hugepage_freelists[i]);
405
406 hugetlb_next_nid = first_node(node_online_map);
407
408 for (i = 0; i < max_huge_pages; ++i) {
409 if (!alloc_fresh_huge_page())
410 break;
411 }
412 max_huge_pages = free_huge_pages = nr_huge_pages = i;
413 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
414 return 0;
415 }
416 module_init(hugetlb_init);
417
418 static int __init hugetlb_setup(char *s)
419 {
420 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
421 max_huge_pages = 0;
422 return 1;
423 }
424 __setup("hugepages=", hugetlb_setup);
425
426 static unsigned int cpuset_mems_nr(unsigned int *array)
427 {
428 int node;
429 unsigned int nr = 0;
430
431 for_each_node_mask(node, cpuset_current_mems_allowed)
432 nr += array[node];
433
434 return nr;
435 }
436
437 #ifdef CONFIG_SYSCTL
438 #ifdef CONFIG_HIGHMEM
439 static void try_to_free_low(unsigned long count)
440 {
441 int i;
442
443 for (i = 0; i < MAX_NUMNODES; ++i) {
444 struct page *page, *next;
445 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
446 if (count >= nr_huge_pages)
447 return;
448 if (PageHighMem(page))
449 continue;
450 list_del(&page->lru);
451 update_and_free_page(page);
452 free_huge_pages--;
453 free_huge_pages_node[page_to_nid(page)]--;
454 }
455 }
456 }
457 #else
458 static inline void try_to_free_low(unsigned long count)
459 {
460 }
461 #endif
462
463 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
464 static unsigned long set_max_huge_pages(unsigned long count)
465 {
466 unsigned long min_count, ret;
467
468 /*
469 * Increase the pool size
470 * First take pages out of surplus state. Then make up the
471 * remaining difference by allocating fresh huge pages.
472 */
473 spin_lock(&hugetlb_lock);
474 while (surplus_huge_pages && count > persistent_huge_pages) {
475 if (!adjust_pool_surplus(-1))
476 break;
477 }
478
479 while (count > persistent_huge_pages) {
480 int ret;
481 /*
482 * If this allocation races such that we no longer need the
483 * page, free_huge_page will handle it by freeing the page
484 * and reducing the surplus.
485 */
486 spin_unlock(&hugetlb_lock);
487 ret = alloc_fresh_huge_page();
488 spin_lock(&hugetlb_lock);
489 if (!ret)
490 goto out;
491
492 }
493
494 /*
495 * Decrease the pool size
496 * First return free pages to the buddy allocator (being careful
497 * to keep enough around to satisfy reservations). Then place
498 * pages into surplus state as needed so the pool will shrink
499 * to the desired size as pages become free.
500 */
501 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
502 min_count = max(count, min_count);
503 try_to_free_low(min_count);
504 while (min_count < persistent_huge_pages) {
505 struct page *page = dequeue_huge_page(NULL, 0);
506 if (!page)
507 break;
508 update_and_free_page(page);
509 }
510 while (count < persistent_huge_pages) {
511 if (!adjust_pool_surplus(1))
512 break;
513 }
514 out:
515 ret = persistent_huge_pages;
516 spin_unlock(&hugetlb_lock);
517 return ret;
518 }
519
520 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
521 struct file *file, void __user *buffer,
522 size_t *length, loff_t *ppos)
523 {
524 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
525 max_huge_pages = set_max_huge_pages(max_huge_pages);
526 return 0;
527 }
528
529 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
530 struct file *file, void __user *buffer,
531 size_t *length, loff_t *ppos)
532 {
533 proc_dointvec(table, write, file, buffer, length, ppos);
534 if (hugepages_treat_as_movable)
535 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
536 else
537 htlb_alloc_mask = GFP_HIGHUSER;
538 return 0;
539 }
540
541 #endif /* CONFIG_SYSCTL */
542
543 int hugetlb_report_meminfo(char *buf)
544 {
545 return sprintf(buf,
546 "HugePages_Total: %5lu\n"
547 "HugePages_Free: %5lu\n"
548 "HugePages_Rsvd: %5lu\n"
549 "HugePages_Surp: %5lu\n"
550 "Hugepagesize: %5lu kB\n",
551 nr_huge_pages,
552 free_huge_pages,
553 resv_huge_pages,
554 surplus_huge_pages,
555 HPAGE_SIZE/1024);
556 }
557
558 int hugetlb_report_node_meminfo(int nid, char *buf)
559 {
560 return sprintf(buf,
561 "Node %d HugePages_Total: %5u\n"
562 "Node %d HugePages_Free: %5u\n",
563 nid, nr_huge_pages_node[nid],
564 nid, free_huge_pages_node[nid]);
565 }
566
567 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
568 unsigned long hugetlb_total_pages(void)
569 {
570 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
571 }
572
573 /*
574 * We cannot handle pagefaults against hugetlb pages at all. They cause
575 * handle_mm_fault() to try to instantiate regular-sized pages in the
576 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
577 * this far.
578 */
579 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
580 {
581 BUG();
582 return 0;
583 }
584
585 struct vm_operations_struct hugetlb_vm_ops = {
586 .fault = hugetlb_vm_op_fault,
587 };
588
589 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
590 int writable)
591 {
592 pte_t entry;
593
594 if (writable) {
595 entry =
596 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
597 } else {
598 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
599 }
600 entry = pte_mkyoung(entry);
601 entry = pte_mkhuge(entry);
602
603 return entry;
604 }
605
606 static void set_huge_ptep_writable(struct vm_area_struct *vma,
607 unsigned long address, pte_t *ptep)
608 {
609 pte_t entry;
610
611 entry = pte_mkwrite(pte_mkdirty(*ptep));
612 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
613 update_mmu_cache(vma, address, entry);
614 }
615 }
616
617
618 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
619 struct vm_area_struct *vma)
620 {
621 pte_t *src_pte, *dst_pte, entry;
622 struct page *ptepage;
623 unsigned long addr;
624 int cow;
625
626 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
627
628 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
629 src_pte = huge_pte_offset(src, addr);
630 if (!src_pte)
631 continue;
632 dst_pte = huge_pte_alloc(dst, addr);
633 if (!dst_pte)
634 goto nomem;
635 spin_lock(&dst->page_table_lock);
636 spin_lock(&src->page_table_lock);
637 if (!pte_none(*src_pte)) {
638 if (cow)
639 ptep_set_wrprotect(src, addr, src_pte);
640 entry = *src_pte;
641 ptepage = pte_page(entry);
642 get_page(ptepage);
643 set_huge_pte_at(dst, addr, dst_pte, entry);
644 }
645 spin_unlock(&src->page_table_lock);
646 spin_unlock(&dst->page_table_lock);
647 }
648 return 0;
649
650 nomem:
651 return -ENOMEM;
652 }
653
654 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
655 unsigned long end)
656 {
657 struct mm_struct *mm = vma->vm_mm;
658 unsigned long address;
659 pte_t *ptep;
660 pte_t pte;
661 struct page *page;
662 struct page *tmp;
663 /*
664 * A page gathering list, protected by per file i_mmap_lock. The
665 * lock is used to avoid list corruption from multiple unmapping
666 * of the same page since we are using page->lru.
667 */
668 LIST_HEAD(page_list);
669
670 WARN_ON(!is_vm_hugetlb_page(vma));
671 BUG_ON(start & ~HPAGE_MASK);
672 BUG_ON(end & ~HPAGE_MASK);
673
674 spin_lock(&mm->page_table_lock);
675 for (address = start; address < end; address += HPAGE_SIZE) {
676 ptep = huge_pte_offset(mm, address);
677 if (!ptep)
678 continue;
679
680 if (huge_pmd_unshare(mm, &address, ptep))
681 continue;
682
683 pte = huge_ptep_get_and_clear(mm, address, ptep);
684 if (pte_none(pte))
685 continue;
686
687 page = pte_page(pte);
688 if (pte_dirty(pte))
689 set_page_dirty(page);
690 list_add(&page->lru, &page_list);
691 }
692 spin_unlock(&mm->page_table_lock);
693 flush_tlb_range(vma, start, end);
694 list_for_each_entry_safe(page, tmp, &page_list, lru) {
695 list_del(&page->lru);
696 put_page(page);
697 }
698 }
699
700 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
701 unsigned long end)
702 {
703 /*
704 * It is undesirable to test vma->vm_file as it should be non-null
705 * for valid hugetlb area. However, vm_file will be NULL in the error
706 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
707 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
708 * to clean up. Since no pte has actually been setup, it is safe to
709 * do nothing in this case.
710 */
711 if (vma->vm_file) {
712 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
713 __unmap_hugepage_range(vma, start, end);
714 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
715 }
716 }
717
718 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
719 unsigned long address, pte_t *ptep, pte_t pte)
720 {
721 struct page *old_page, *new_page;
722 int avoidcopy;
723
724 old_page = pte_page(pte);
725
726 /* If no-one else is actually using this page, avoid the copy
727 * and just make the page writable */
728 avoidcopy = (page_count(old_page) == 1);
729 if (avoidcopy) {
730 set_huge_ptep_writable(vma, address, ptep);
731 return 0;
732 }
733
734 page_cache_get(old_page);
735 new_page = alloc_huge_page(vma, address);
736
737 if (!new_page) {
738 page_cache_release(old_page);
739 return VM_FAULT_OOM;
740 }
741
742 spin_unlock(&mm->page_table_lock);
743 copy_huge_page(new_page, old_page, address, vma);
744 spin_lock(&mm->page_table_lock);
745
746 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
747 if (likely(pte_same(*ptep, pte))) {
748 /* Break COW */
749 set_huge_pte_at(mm, address, ptep,
750 make_huge_pte(vma, new_page, 1));
751 /* Make the old page be freed below */
752 new_page = old_page;
753 }
754 page_cache_release(new_page);
755 page_cache_release(old_page);
756 return 0;
757 }
758
759 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
760 unsigned long address, pte_t *ptep, int write_access)
761 {
762 int ret = VM_FAULT_SIGBUS;
763 unsigned long idx;
764 unsigned long size;
765 struct page *page;
766 struct address_space *mapping;
767 pte_t new_pte;
768
769 mapping = vma->vm_file->f_mapping;
770 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
771 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
772
773 /*
774 * Use page lock to guard against racing truncation
775 * before we get page_table_lock.
776 */
777 retry:
778 page = find_lock_page(mapping, idx);
779 if (!page) {
780 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
781 if (idx >= size)
782 goto out;
783 if (hugetlb_get_quota(mapping))
784 goto out;
785 page = alloc_huge_page(vma, address);
786 if (!page) {
787 hugetlb_put_quota(mapping);
788 ret = VM_FAULT_OOM;
789 goto out;
790 }
791 clear_huge_page(page, address);
792
793 if (vma->vm_flags & VM_SHARED) {
794 int err;
795
796 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
797 if (err) {
798 put_page(page);
799 hugetlb_put_quota(mapping);
800 if (err == -EEXIST)
801 goto retry;
802 goto out;
803 }
804 } else
805 lock_page(page);
806 }
807
808 spin_lock(&mm->page_table_lock);
809 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
810 if (idx >= size)
811 goto backout;
812
813 ret = 0;
814 if (!pte_none(*ptep))
815 goto backout;
816
817 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
818 && (vma->vm_flags & VM_SHARED)));
819 set_huge_pte_at(mm, address, ptep, new_pte);
820
821 if (write_access && !(vma->vm_flags & VM_SHARED)) {
822 /* Optimization, do the COW without a second fault */
823 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
824 }
825
826 spin_unlock(&mm->page_table_lock);
827 unlock_page(page);
828 out:
829 return ret;
830
831 backout:
832 spin_unlock(&mm->page_table_lock);
833 hugetlb_put_quota(mapping);
834 unlock_page(page);
835 put_page(page);
836 goto out;
837 }
838
839 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
840 unsigned long address, int write_access)
841 {
842 pte_t *ptep;
843 pte_t entry;
844 int ret;
845 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
846
847 ptep = huge_pte_alloc(mm, address);
848 if (!ptep)
849 return VM_FAULT_OOM;
850
851 /*
852 * Serialize hugepage allocation and instantiation, so that we don't
853 * get spurious allocation failures if two CPUs race to instantiate
854 * the same page in the page cache.
855 */
856 mutex_lock(&hugetlb_instantiation_mutex);
857 entry = *ptep;
858 if (pte_none(entry)) {
859 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
860 mutex_unlock(&hugetlb_instantiation_mutex);
861 return ret;
862 }
863
864 ret = 0;
865
866 spin_lock(&mm->page_table_lock);
867 /* Check for a racing update before calling hugetlb_cow */
868 if (likely(pte_same(entry, *ptep)))
869 if (write_access && !pte_write(entry))
870 ret = hugetlb_cow(mm, vma, address, ptep, entry);
871 spin_unlock(&mm->page_table_lock);
872 mutex_unlock(&hugetlb_instantiation_mutex);
873
874 return ret;
875 }
876
877 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
878 struct page **pages, struct vm_area_struct **vmas,
879 unsigned long *position, int *length, int i,
880 int write)
881 {
882 unsigned long pfn_offset;
883 unsigned long vaddr = *position;
884 int remainder = *length;
885
886 spin_lock(&mm->page_table_lock);
887 while (vaddr < vma->vm_end && remainder) {
888 pte_t *pte;
889 struct page *page;
890
891 /*
892 * Some archs (sparc64, sh*) have multiple pte_ts to
893 * each hugepage. We have to make * sure we get the
894 * first, for the page indexing below to work.
895 */
896 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
897
898 if (!pte || pte_none(*pte)) {
899 int ret;
900
901 spin_unlock(&mm->page_table_lock);
902 ret = hugetlb_fault(mm, vma, vaddr, write);
903 spin_lock(&mm->page_table_lock);
904 if (!(ret & VM_FAULT_ERROR))
905 continue;
906
907 remainder = 0;
908 if (!i)
909 i = -EFAULT;
910 break;
911 }
912
913 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
914 page = pte_page(*pte);
915 same_page:
916 if (pages) {
917 get_page(page);
918 pages[i] = page + pfn_offset;
919 }
920
921 if (vmas)
922 vmas[i] = vma;
923
924 vaddr += PAGE_SIZE;
925 ++pfn_offset;
926 --remainder;
927 ++i;
928 if (vaddr < vma->vm_end && remainder &&
929 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
930 /*
931 * We use pfn_offset to avoid touching the pageframes
932 * of this compound page.
933 */
934 goto same_page;
935 }
936 }
937 spin_unlock(&mm->page_table_lock);
938 *length = remainder;
939 *position = vaddr;
940
941 return i;
942 }
943
944 void hugetlb_change_protection(struct vm_area_struct *vma,
945 unsigned long address, unsigned long end, pgprot_t newprot)
946 {
947 struct mm_struct *mm = vma->vm_mm;
948 unsigned long start = address;
949 pte_t *ptep;
950 pte_t pte;
951
952 BUG_ON(address >= end);
953 flush_cache_range(vma, address, end);
954
955 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
956 spin_lock(&mm->page_table_lock);
957 for (; address < end; address += HPAGE_SIZE) {
958 ptep = huge_pte_offset(mm, address);
959 if (!ptep)
960 continue;
961 if (huge_pmd_unshare(mm, &address, ptep))
962 continue;
963 if (!pte_none(*ptep)) {
964 pte = huge_ptep_get_and_clear(mm, address, ptep);
965 pte = pte_mkhuge(pte_modify(pte, newprot));
966 set_huge_pte_at(mm, address, ptep, pte);
967 }
968 }
969 spin_unlock(&mm->page_table_lock);
970 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
971
972 flush_tlb_range(vma, start, end);
973 }
974
975 struct file_region {
976 struct list_head link;
977 long from;
978 long to;
979 };
980
981 static long region_add(struct list_head *head, long f, long t)
982 {
983 struct file_region *rg, *nrg, *trg;
984
985 /* Locate the region we are either in or before. */
986 list_for_each_entry(rg, head, link)
987 if (f <= rg->to)
988 break;
989
990 /* Round our left edge to the current segment if it encloses us. */
991 if (f > rg->from)
992 f = rg->from;
993
994 /* Check for and consume any regions we now overlap with. */
995 nrg = rg;
996 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
997 if (&rg->link == head)
998 break;
999 if (rg->from > t)
1000 break;
1001
1002 /* If this area reaches higher then extend our area to
1003 * include it completely. If this is not the first area
1004 * which we intend to reuse, free it. */
1005 if (rg->to > t)
1006 t = rg->to;
1007 if (rg != nrg) {
1008 list_del(&rg->link);
1009 kfree(rg);
1010 }
1011 }
1012 nrg->from = f;
1013 nrg->to = t;
1014 return 0;
1015 }
1016
1017 static long region_chg(struct list_head *head, long f, long t)
1018 {
1019 struct file_region *rg, *nrg;
1020 long chg = 0;
1021
1022 /* Locate the region we are before or in. */
1023 list_for_each_entry(rg, head, link)
1024 if (f <= rg->to)
1025 break;
1026
1027 /* If we are below the current region then a new region is required.
1028 * Subtle, allocate a new region at the position but make it zero
1029 * size such that we can guarantee to record the reservation. */
1030 if (&rg->link == head || t < rg->from) {
1031 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1032 if (!nrg)
1033 return -ENOMEM;
1034 nrg->from = f;
1035 nrg->to = f;
1036 INIT_LIST_HEAD(&nrg->link);
1037 list_add(&nrg->link, rg->link.prev);
1038
1039 return t - f;
1040 }
1041
1042 /* Round our left edge to the current segment if it encloses us. */
1043 if (f > rg->from)
1044 f = rg->from;
1045 chg = t - f;
1046
1047 /* Check for and consume any regions we now overlap with. */
1048 list_for_each_entry(rg, rg->link.prev, link) {
1049 if (&rg->link == head)
1050 break;
1051 if (rg->from > t)
1052 return chg;
1053
1054 /* We overlap with this area, if it extends futher than
1055 * us then we must extend ourselves. Account for its
1056 * existing reservation. */
1057 if (rg->to > t) {
1058 chg += rg->to - t;
1059 t = rg->to;
1060 }
1061 chg -= rg->to - rg->from;
1062 }
1063 return chg;
1064 }
1065
1066 static long region_truncate(struct list_head *head, long end)
1067 {
1068 struct file_region *rg, *trg;
1069 long chg = 0;
1070
1071 /* Locate the region we are either in or before. */
1072 list_for_each_entry(rg, head, link)
1073 if (end <= rg->to)
1074 break;
1075 if (&rg->link == head)
1076 return 0;
1077
1078 /* If we are in the middle of a region then adjust it. */
1079 if (end > rg->from) {
1080 chg = rg->to - end;
1081 rg->to = end;
1082 rg = list_entry(rg->link.next, typeof(*rg), link);
1083 }
1084
1085 /* Drop any remaining regions. */
1086 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1087 if (&rg->link == head)
1088 break;
1089 chg += rg->to - rg->from;
1090 list_del(&rg->link);
1091 kfree(rg);
1092 }
1093 return chg;
1094 }
1095
1096 static int hugetlb_acct_memory(long delta)
1097 {
1098 int ret = -ENOMEM;
1099
1100 spin_lock(&hugetlb_lock);
1101 /*
1102 * When cpuset is configured, it breaks the strict hugetlb page
1103 * reservation as the accounting is done on a global variable. Such
1104 * reservation is completely rubbish in the presence of cpuset because
1105 * the reservation is not checked against page availability for the
1106 * current cpuset. Application can still potentially OOM'ed by kernel
1107 * with lack of free htlb page in cpuset that the task is in.
1108 * Attempt to enforce strict accounting with cpuset is almost
1109 * impossible (or too ugly) because cpuset is too fluid that
1110 * task or memory node can be dynamically moved between cpusets.
1111 *
1112 * The change of semantics for shared hugetlb mapping with cpuset is
1113 * undesirable. However, in order to preserve some of the semantics,
1114 * we fall back to check against current free page availability as
1115 * a best attempt and hopefully to minimize the impact of changing
1116 * semantics that cpuset has.
1117 */
1118 if (delta > 0) {
1119 if (gather_surplus_pages(delta) < 0)
1120 goto out;
1121
1122 if (delta > cpuset_mems_nr(free_huge_pages_node))
1123 goto out;
1124 }
1125
1126 ret = 0;
1127 resv_huge_pages += delta;
1128 if (delta < 0)
1129 return_unused_surplus_pages((unsigned long) -delta);
1130
1131 out:
1132 spin_unlock(&hugetlb_lock);
1133 return ret;
1134 }
1135
1136 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1137 {
1138 long ret, chg;
1139
1140 chg = region_chg(&inode->i_mapping->private_list, from, to);
1141 if (chg < 0)
1142 return chg;
1143
1144 ret = hugetlb_acct_memory(chg);
1145 if (ret < 0)
1146 return ret;
1147 region_add(&inode->i_mapping->private_list, from, to);
1148 return 0;
1149 }
1150
1151 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1152 {
1153 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1154 hugetlb_acct_memory(freed - chg);
1155 }
This page took 0.06351 seconds and 6 git commands to generate.