hugetlb: fix hugepage allocation with memoryless nodes
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/cpuset.h>
16 #include <linux/mutex.h>
17
18 #include <asm/page.h>
19 #include <asm/pgtable.h>
20
21 #include <linux/hugetlb.h>
22 #include "internal.h"
23
24 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
25 static unsigned long nr_huge_pages, free_huge_pages, resv_huge_pages;
26 static unsigned long surplus_huge_pages;
27 unsigned long max_huge_pages;
28 static struct list_head hugepage_freelists[MAX_NUMNODES];
29 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
30 static unsigned int free_huge_pages_node[MAX_NUMNODES];
31 static unsigned int surplus_huge_pages_node[MAX_NUMNODES];
32 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
33 unsigned long hugepages_treat_as_movable;
34 int hugetlb_dynamic_pool;
35 static int hugetlb_next_nid;
36
37 /*
38 * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
39 */
40 static DEFINE_SPINLOCK(hugetlb_lock);
41
42 static void clear_huge_page(struct page *page, unsigned long addr)
43 {
44 int i;
45
46 might_sleep();
47 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); i++) {
48 cond_resched();
49 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
50 }
51 }
52
53 static void copy_huge_page(struct page *dst, struct page *src,
54 unsigned long addr, struct vm_area_struct *vma)
55 {
56 int i;
57
58 might_sleep();
59 for (i = 0; i < HPAGE_SIZE/PAGE_SIZE; i++) {
60 cond_resched();
61 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
62 }
63 }
64
65 static void enqueue_huge_page(struct page *page)
66 {
67 int nid = page_to_nid(page);
68 list_add(&page->lru, &hugepage_freelists[nid]);
69 free_huge_pages++;
70 free_huge_pages_node[nid]++;
71 }
72
73 static struct page *dequeue_huge_page(struct vm_area_struct *vma,
74 unsigned long address)
75 {
76 int nid;
77 struct page *page = NULL;
78 struct mempolicy *mpol;
79 struct zonelist *zonelist = huge_zonelist(vma, address,
80 htlb_alloc_mask, &mpol);
81 struct zone **z;
82
83 for (z = zonelist->zones; *z; z++) {
84 nid = zone_to_nid(*z);
85 if (cpuset_zone_allowed_softwall(*z, htlb_alloc_mask) &&
86 !list_empty(&hugepage_freelists[nid])) {
87 page = list_entry(hugepage_freelists[nid].next,
88 struct page, lru);
89 list_del(&page->lru);
90 free_huge_pages--;
91 free_huge_pages_node[nid]--;
92 if (vma && vma->vm_flags & VM_MAYSHARE)
93 resv_huge_pages--;
94 break;
95 }
96 }
97 mpol_free(mpol); /* unref if mpol !NULL */
98 return page;
99 }
100
101 static void update_and_free_page(struct page *page)
102 {
103 int i;
104 nr_huge_pages--;
105 nr_huge_pages_node[page_to_nid(page)]--;
106 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
107 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
108 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
109 1 << PG_private | 1<< PG_writeback);
110 }
111 set_compound_page_dtor(page, NULL);
112 set_page_refcounted(page);
113 __free_pages(page, HUGETLB_PAGE_ORDER);
114 }
115
116 static void free_huge_page(struct page *page)
117 {
118 int nid = page_to_nid(page);
119
120 BUG_ON(page_count(page));
121 INIT_LIST_HEAD(&page->lru);
122
123 spin_lock(&hugetlb_lock);
124 if (surplus_huge_pages_node[nid]) {
125 update_and_free_page(page);
126 surplus_huge_pages--;
127 surplus_huge_pages_node[nid]--;
128 } else {
129 enqueue_huge_page(page);
130 }
131 spin_unlock(&hugetlb_lock);
132 }
133
134 /*
135 * Increment or decrement surplus_huge_pages. Keep node-specific counters
136 * balanced by operating on them in a round-robin fashion.
137 * Returns 1 if an adjustment was made.
138 */
139 static int adjust_pool_surplus(int delta)
140 {
141 static int prev_nid;
142 int nid = prev_nid;
143 int ret = 0;
144
145 VM_BUG_ON(delta != -1 && delta != 1);
146 do {
147 nid = next_node(nid, node_online_map);
148 if (nid == MAX_NUMNODES)
149 nid = first_node(node_online_map);
150
151 /* To shrink on this node, there must be a surplus page */
152 if (delta < 0 && !surplus_huge_pages_node[nid])
153 continue;
154 /* Surplus cannot exceed the total number of pages */
155 if (delta > 0 && surplus_huge_pages_node[nid] >=
156 nr_huge_pages_node[nid])
157 continue;
158
159 surplus_huge_pages += delta;
160 surplus_huge_pages_node[nid] += delta;
161 ret = 1;
162 break;
163 } while (nid != prev_nid);
164
165 prev_nid = nid;
166 return ret;
167 }
168
169 static struct page *alloc_fresh_huge_page_node(int nid)
170 {
171 struct page *page;
172
173 page = alloc_pages_node(nid,
174 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|__GFP_NOWARN,
175 HUGETLB_PAGE_ORDER);
176 if (page) {
177 set_compound_page_dtor(page, free_huge_page);
178 spin_lock(&hugetlb_lock);
179 nr_huge_pages++;
180 nr_huge_pages_node[nid]++;
181 spin_unlock(&hugetlb_lock);
182 put_page(page); /* free it into the hugepage allocator */
183 }
184
185 return page;
186 }
187
188 static int alloc_fresh_huge_page(void)
189 {
190 struct page *page;
191 int start_nid;
192 int next_nid;
193 int ret = 0;
194
195 start_nid = hugetlb_next_nid;
196
197 do {
198 page = alloc_fresh_huge_page_node(hugetlb_next_nid);
199 if (page)
200 ret = 1;
201 /*
202 * Use a helper variable to find the next node and then
203 * copy it back to hugetlb_next_nid afterwards:
204 * otherwise there's a window in which a racer might
205 * pass invalid nid MAX_NUMNODES to alloc_pages_node.
206 * But we don't need to use a spin_lock here: it really
207 * doesn't matter if occasionally a racer chooses the
208 * same nid as we do. Move nid forward in the mask even
209 * if we just successfully allocated a hugepage so that
210 * the next caller gets hugepages on the next node.
211 */
212 next_nid = next_node(hugetlb_next_nid, node_online_map);
213 if (next_nid == MAX_NUMNODES)
214 next_nid = first_node(node_online_map);
215 hugetlb_next_nid = next_nid;
216 } while (!page && hugetlb_next_nid != start_nid);
217
218 return ret;
219 }
220
221 static struct page *alloc_buddy_huge_page(struct vm_area_struct *vma,
222 unsigned long address)
223 {
224 struct page *page;
225
226 /* Check if the dynamic pool is enabled */
227 if (!hugetlb_dynamic_pool)
228 return NULL;
229
230 page = alloc_pages(htlb_alloc_mask|__GFP_COMP|__GFP_NOWARN,
231 HUGETLB_PAGE_ORDER);
232 if (page) {
233 set_compound_page_dtor(page, free_huge_page);
234 spin_lock(&hugetlb_lock);
235 nr_huge_pages++;
236 nr_huge_pages_node[page_to_nid(page)]++;
237 surplus_huge_pages++;
238 surplus_huge_pages_node[page_to_nid(page)]++;
239 spin_unlock(&hugetlb_lock);
240 }
241
242 return page;
243 }
244
245 /*
246 * Increase the hugetlb pool such that it can accomodate a reservation
247 * of size 'delta'.
248 */
249 static int gather_surplus_pages(int delta)
250 {
251 struct list_head surplus_list;
252 struct page *page, *tmp;
253 int ret, i;
254 int needed, allocated;
255
256 needed = (resv_huge_pages + delta) - free_huge_pages;
257 if (needed <= 0)
258 return 0;
259
260 allocated = 0;
261 INIT_LIST_HEAD(&surplus_list);
262
263 ret = -ENOMEM;
264 retry:
265 spin_unlock(&hugetlb_lock);
266 for (i = 0; i < needed; i++) {
267 page = alloc_buddy_huge_page(NULL, 0);
268 if (!page) {
269 /*
270 * We were not able to allocate enough pages to
271 * satisfy the entire reservation so we free what
272 * we've allocated so far.
273 */
274 spin_lock(&hugetlb_lock);
275 needed = 0;
276 goto free;
277 }
278
279 list_add(&page->lru, &surplus_list);
280 }
281 allocated += needed;
282
283 /*
284 * After retaking hugetlb_lock, we need to recalculate 'needed'
285 * because either resv_huge_pages or free_huge_pages may have changed.
286 */
287 spin_lock(&hugetlb_lock);
288 needed = (resv_huge_pages + delta) - (free_huge_pages + allocated);
289 if (needed > 0)
290 goto retry;
291
292 /*
293 * The surplus_list now contains _at_least_ the number of extra pages
294 * needed to accomodate the reservation. Add the appropriate number
295 * of pages to the hugetlb pool and free the extras back to the buddy
296 * allocator.
297 */
298 needed += allocated;
299 ret = 0;
300 free:
301 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
302 list_del(&page->lru);
303 if ((--needed) >= 0)
304 enqueue_huge_page(page);
305 else
306 update_and_free_page(page);
307 }
308
309 return ret;
310 }
311
312 /*
313 * When releasing a hugetlb pool reservation, any surplus pages that were
314 * allocated to satisfy the reservation must be explicitly freed if they were
315 * never used.
316 */
317 void return_unused_surplus_pages(unsigned long unused_resv_pages)
318 {
319 static int nid = -1;
320 struct page *page;
321 unsigned long nr_pages;
322
323 nr_pages = min(unused_resv_pages, surplus_huge_pages);
324
325 while (nr_pages) {
326 nid = next_node(nid, node_online_map);
327 if (nid == MAX_NUMNODES)
328 nid = first_node(node_online_map);
329
330 if (!surplus_huge_pages_node[nid])
331 continue;
332
333 if (!list_empty(&hugepage_freelists[nid])) {
334 page = list_entry(hugepage_freelists[nid].next,
335 struct page, lru);
336 list_del(&page->lru);
337 update_and_free_page(page);
338 free_huge_pages--;
339 free_huge_pages_node[nid]--;
340 surplus_huge_pages--;
341 surplus_huge_pages_node[nid]--;
342 nr_pages--;
343 }
344 }
345 }
346
347 static struct page *alloc_huge_page(struct vm_area_struct *vma,
348 unsigned long addr)
349 {
350 struct page *page = NULL;
351 int use_reserved_page = vma->vm_flags & VM_MAYSHARE;
352
353 spin_lock(&hugetlb_lock);
354 if (!use_reserved_page && (free_huge_pages <= resv_huge_pages))
355 goto fail;
356
357 page = dequeue_huge_page(vma, addr);
358 if (!page)
359 goto fail;
360
361 spin_unlock(&hugetlb_lock);
362 set_page_refcounted(page);
363 return page;
364
365 fail:
366 spin_unlock(&hugetlb_lock);
367
368 /*
369 * Private mappings do not use reserved huge pages so the allocation
370 * may have failed due to an undersized hugetlb pool. Try to grab a
371 * surplus huge page from the buddy allocator.
372 */
373 if (!use_reserved_page)
374 page = alloc_buddy_huge_page(vma, addr);
375
376 return page;
377 }
378
379 static int __init hugetlb_init(void)
380 {
381 unsigned long i;
382
383 if (HPAGE_SHIFT == 0)
384 return 0;
385
386 for (i = 0; i < MAX_NUMNODES; ++i)
387 INIT_LIST_HEAD(&hugepage_freelists[i]);
388
389 hugetlb_next_nid = first_node(node_online_map);
390
391 for (i = 0; i < max_huge_pages; ++i) {
392 if (!alloc_fresh_huge_page())
393 break;
394 }
395 max_huge_pages = free_huge_pages = nr_huge_pages = i;
396 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
397 return 0;
398 }
399 module_init(hugetlb_init);
400
401 static int __init hugetlb_setup(char *s)
402 {
403 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
404 max_huge_pages = 0;
405 return 1;
406 }
407 __setup("hugepages=", hugetlb_setup);
408
409 static unsigned int cpuset_mems_nr(unsigned int *array)
410 {
411 int node;
412 unsigned int nr = 0;
413
414 for_each_node_mask(node, cpuset_current_mems_allowed)
415 nr += array[node];
416
417 return nr;
418 }
419
420 #ifdef CONFIG_SYSCTL
421 #ifdef CONFIG_HIGHMEM
422 static void try_to_free_low(unsigned long count)
423 {
424 int i;
425
426 for (i = 0; i < MAX_NUMNODES; ++i) {
427 struct page *page, *next;
428 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
429 if (count >= nr_huge_pages)
430 return;
431 if (PageHighMem(page))
432 continue;
433 list_del(&page->lru);
434 update_and_free_page(page);
435 free_huge_pages--;
436 free_huge_pages_node[page_to_nid(page)]--;
437 }
438 }
439 }
440 #else
441 static inline void try_to_free_low(unsigned long count)
442 {
443 }
444 #endif
445
446 #define persistent_huge_pages (nr_huge_pages - surplus_huge_pages)
447 static unsigned long set_max_huge_pages(unsigned long count)
448 {
449 unsigned long min_count, ret;
450
451 /*
452 * Increase the pool size
453 * First take pages out of surplus state. Then make up the
454 * remaining difference by allocating fresh huge pages.
455 */
456 spin_lock(&hugetlb_lock);
457 while (surplus_huge_pages && count > persistent_huge_pages) {
458 if (!adjust_pool_surplus(-1))
459 break;
460 }
461
462 while (count > persistent_huge_pages) {
463 int ret;
464 /*
465 * If this allocation races such that we no longer need the
466 * page, free_huge_page will handle it by freeing the page
467 * and reducing the surplus.
468 */
469 spin_unlock(&hugetlb_lock);
470 ret = alloc_fresh_huge_page();
471 spin_lock(&hugetlb_lock);
472 if (!ret)
473 goto out;
474
475 }
476
477 /*
478 * Decrease the pool size
479 * First return free pages to the buddy allocator (being careful
480 * to keep enough around to satisfy reservations). Then place
481 * pages into surplus state as needed so the pool will shrink
482 * to the desired size as pages become free.
483 */
484 min_count = resv_huge_pages + nr_huge_pages - free_huge_pages;
485 min_count = max(count, min_count);
486 try_to_free_low(min_count);
487 while (min_count < persistent_huge_pages) {
488 struct page *page = dequeue_huge_page(NULL, 0);
489 if (!page)
490 break;
491 update_and_free_page(page);
492 }
493 while (count < persistent_huge_pages) {
494 if (!adjust_pool_surplus(1))
495 break;
496 }
497 out:
498 ret = persistent_huge_pages;
499 spin_unlock(&hugetlb_lock);
500 return ret;
501 }
502
503 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
504 struct file *file, void __user *buffer,
505 size_t *length, loff_t *ppos)
506 {
507 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
508 max_huge_pages = set_max_huge_pages(max_huge_pages);
509 return 0;
510 }
511
512 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
513 struct file *file, void __user *buffer,
514 size_t *length, loff_t *ppos)
515 {
516 proc_dointvec(table, write, file, buffer, length, ppos);
517 if (hugepages_treat_as_movable)
518 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
519 else
520 htlb_alloc_mask = GFP_HIGHUSER;
521 return 0;
522 }
523
524 #endif /* CONFIG_SYSCTL */
525
526 int hugetlb_report_meminfo(char *buf)
527 {
528 return sprintf(buf,
529 "HugePages_Total: %5lu\n"
530 "HugePages_Free: %5lu\n"
531 "HugePages_Rsvd: %5lu\n"
532 "HugePages_Surp: %5lu\n"
533 "Hugepagesize: %5lu kB\n",
534 nr_huge_pages,
535 free_huge_pages,
536 resv_huge_pages,
537 surplus_huge_pages,
538 HPAGE_SIZE/1024);
539 }
540
541 int hugetlb_report_node_meminfo(int nid, char *buf)
542 {
543 return sprintf(buf,
544 "Node %d HugePages_Total: %5u\n"
545 "Node %d HugePages_Free: %5u\n",
546 nid, nr_huge_pages_node[nid],
547 nid, free_huge_pages_node[nid]);
548 }
549
550 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
551 unsigned long hugetlb_total_pages(void)
552 {
553 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
554 }
555
556 /*
557 * We cannot handle pagefaults against hugetlb pages at all. They cause
558 * handle_mm_fault() to try to instantiate regular-sized pages in the
559 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
560 * this far.
561 */
562 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
563 {
564 BUG();
565 return 0;
566 }
567
568 struct vm_operations_struct hugetlb_vm_ops = {
569 .fault = hugetlb_vm_op_fault,
570 };
571
572 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
573 int writable)
574 {
575 pte_t entry;
576
577 if (writable) {
578 entry =
579 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
580 } else {
581 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
582 }
583 entry = pte_mkyoung(entry);
584 entry = pte_mkhuge(entry);
585
586 return entry;
587 }
588
589 static void set_huge_ptep_writable(struct vm_area_struct *vma,
590 unsigned long address, pte_t *ptep)
591 {
592 pte_t entry;
593
594 entry = pte_mkwrite(pte_mkdirty(*ptep));
595 if (ptep_set_access_flags(vma, address, ptep, entry, 1)) {
596 update_mmu_cache(vma, address, entry);
597 }
598 }
599
600
601 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
602 struct vm_area_struct *vma)
603 {
604 pte_t *src_pte, *dst_pte, entry;
605 struct page *ptepage;
606 unsigned long addr;
607 int cow;
608
609 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
610
611 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
612 src_pte = huge_pte_offset(src, addr);
613 if (!src_pte)
614 continue;
615 dst_pte = huge_pte_alloc(dst, addr);
616 if (!dst_pte)
617 goto nomem;
618 spin_lock(&dst->page_table_lock);
619 spin_lock(&src->page_table_lock);
620 if (!pte_none(*src_pte)) {
621 if (cow)
622 ptep_set_wrprotect(src, addr, src_pte);
623 entry = *src_pte;
624 ptepage = pte_page(entry);
625 get_page(ptepage);
626 set_huge_pte_at(dst, addr, dst_pte, entry);
627 }
628 spin_unlock(&src->page_table_lock);
629 spin_unlock(&dst->page_table_lock);
630 }
631 return 0;
632
633 nomem:
634 return -ENOMEM;
635 }
636
637 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
638 unsigned long end)
639 {
640 struct mm_struct *mm = vma->vm_mm;
641 unsigned long address;
642 pte_t *ptep;
643 pte_t pte;
644 struct page *page;
645 struct page *tmp;
646 /*
647 * A page gathering list, protected by per file i_mmap_lock. The
648 * lock is used to avoid list corruption from multiple unmapping
649 * of the same page since we are using page->lru.
650 */
651 LIST_HEAD(page_list);
652
653 WARN_ON(!is_vm_hugetlb_page(vma));
654 BUG_ON(start & ~HPAGE_MASK);
655 BUG_ON(end & ~HPAGE_MASK);
656
657 spin_lock(&mm->page_table_lock);
658 for (address = start; address < end; address += HPAGE_SIZE) {
659 ptep = huge_pte_offset(mm, address);
660 if (!ptep)
661 continue;
662
663 if (huge_pmd_unshare(mm, &address, ptep))
664 continue;
665
666 pte = huge_ptep_get_and_clear(mm, address, ptep);
667 if (pte_none(pte))
668 continue;
669
670 page = pte_page(pte);
671 if (pte_dirty(pte))
672 set_page_dirty(page);
673 list_add(&page->lru, &page_list);
674 }
675 spin_unlock(&mm->page_table_lock);
676 flush_tlb_range(vma, start, end);
677 list_for_each_entry_safe(page, tmp, &page_list, lru) {
678 list_del(&page->lru);
679 put_page(page);
680 }
681 }
682
683 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
684 unsigned long end)
685 {
686 /*
687 * It is undesirable to test vma->vm_file as it should be non-null
688 * for valid hugetlb area. However, vm_file will be NULL in the error
689 * cleanup path of do_mmap_pgoff. When hugetlbfs ->mmap method fails,
690 * do_mmap_pgoff() nullifies vma->vm_file before calling this function
691 * to clean up. Since no pte has actually been setup, it is safe to
692 * do nothing in this case.
693 */
694 if (vma->vm_file) {
695 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
696 __unmap_hugepage_range(vma, start, end);
697 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
698 }
699 }
700
701 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
702 unsigned long address, pte_t *ptep, pte_t pte)
703 {
704 struct page *old_page, *new_page;
705 int avoidcopy;
706
707 old_page = pte_page(pte);
708
709 /* If no-one else is actually using this page, avoid the copy
710 * and just make the page writable */
711 avoidcopy = (page_count(old_page) == 1);
712 if (avoidcopy) {
713 set_huge_ptep_writable(vma, address, ptep);
714 return 0;
715 }
716
717 page_cache_get(old_page);
718 new_page = alloc_huge_page(vma, address);
719
720 if (!new_page) {
721 page_cache_release(old_page);
722 return VM_FAULT_OOM;
723 }
724
725 spin_unlock(&mm->page_table_lock);
726 copy_huge_page(new_page, old_page, address, vma);
727 spin_lock(&mm->page_table_lock);
728
729 ptep = huge_pte_offset(mm, address & HPAGE_MASK);
730 if (likely(pte_same(*ptep, pte))) {
731 /* Break COW */
732 set_huge_pte_at(mm, address, ptep,
733 make_huge_pte(vma, new_page, 1));
734 /* Make the old page be freed below */
735 new_page = old_page;
736 }
737 page_cache_release(new_page);
738 page_cache_release(old_page);
739 return 0;
740 }
741
742 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
743 unsigned long address, pte_t *ptep, int write_access)
744 {
745 int ret = VM_FAULT_SIGBUS;
746 unsigned long idx;
747 unsigned long size;
748 struct page *page;
749 struct address_space *mapping;
750 pte_t new_pte;
751
752 mapping = vma->vm_file->f_mapping;
753 idx = ((address - vma->vm_start) >> HPAGE_SHIFT)
754 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
755
756 /*
757 * Use page lock to guard against racing truncation
758 * before we get page_table_lock.
759 */
760 retry:
761 page = find_lock_page(mapping, idx);
762 if (!page) {
763 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
764 if (idx >= size)
765 goto out;
766 if (hugetlb_get_quota(mapping))
767 goto out;
768 page = alloc_huge_page(vma, address);
769 if (!page) {
770 hugetlb_put_quota(mapping);
771 ret = VM_FAULT_OOM;
772 goto out;
773 }
774 clear_huge_page(page, address);
775
776 if (vma->vm_flags & VM_SHARED) {
777 int err;
778
779 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
780 if (err) {
781 put_page(page);
782 hugetlb_put_quota(mapping);
783 if (err == -EEXIST)
784 goto retry;
785 goto out;
786 }
787 } else
788 lock_page(page);
789 }
790
791 spin_lock(&mm->page_table_lock);
792 size = i_size_read(mapping->host) >> HPAGE_SHIFT;
793 if (idx >= size)
794 goto backout;
795
796 ret = 0;
797 if (!pte_none(*ptep))
798 goto backout;
799
800 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
801 && (vma->vm_flags & VM_SHARED)));
802 set_huge_pte_at(mm, address, ptep, new_pte);
803
804 if (write_access && !(vma->vm_flags & VM_SHARED)) {
805 /* Optimization, do the COW without a second fault */
806 ret = hugetlb_cow(mm, vma, address, ptep, new_pte);
807 }
808
809 spin_unlock(&mm->page_table_lock);
810 unlock_page(page);
811 out:
812 return ret;
813
814 backout:
815 spin_unlock(&mm->page_table_lock);
816 hugetlb_put_quota(mapping);
817 unlock_page(page);
818 put_page(page);
819 goto out;
820 }
821
822 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
823 unsigned long address, int write_access)
824 {
825 pte_t *ptep;
826 pte_t entry;
827 int ret;
828 static DEFINE_MUTEX(hugetlb_instantiation_mutex);
829
830 ptep = huge_pte_alloc(mm, address);
831 if (!ptep)
832 return VM_FAULT_OOM;
833
834 /*
835 * Serialize hugepage allocation and instantiation, so that we don't
836 * get spurious allocation failures if two CPUs race to instantiate
837 * the same page in the page cache.
838 */
839 mutex_lock(&hugetlb_instantiation_mutex);
840 entry = *ptep;
841 if (pte_none(entry)) {
842 ret = hugetlb_no_page(mm, vma, address, ptep, write_access);
843 mutex_unlock(&hugetlb_instantiation_mutex);
844 return ret;
845 }
846
847 ret = 0;
848
849 spin_lock(&mm->page_table_lock);
850 /* Check for a racing update before calling hugetlb_cow */
851 if (likely(pte_same(entry, *ptep)))
852 if (write_access && !pte_write(entry))
853 ret = hugetlb_cow(mm, vma, address, ptep, entry);
854 spin_unlock(&mm->page_table_lock);
855 mutex_unlock(&hugetlb_instantiation_mutex);
856
857 return ret;
858 }
859
860 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
861 struct page **pages, struct vm_area_struct **vmas,
862 unsigned long *position, int *length, int i)
863 {
864 unsigned long pfn_offset;
865 unsigned long vaddr = *position;
866 int remainder = *length;
867
868 spin_lock(&mm->page_table_lock);
869 while (vaddr < vma->vm_end && remainder) {
870 pte_t *pte;
871 struct page *page;
872
873 /*
874 * Some archs (sparc64, sh*) have multiple pte_ts to
875 * each hugepage. We have to make * sure we get the
876 * first, for the page indexing below to work.
877 */
878 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
879
880 if (!pte || pte_none(*pte)) {
881 int ret;
882
883 spin_unlock(&mm->page_table_lock);
884 ret = hugetlb_fault(mm, vma, vaddr, 0);
885 spin_lock(&mm->page_table_lock);
886 if (!(ret & VM_FAULT_ERROR))
887 continue;
888
889 remainder = 0;
890 if (!i)
891 i = -EFAULT;
892 break;
893 }
894
895 pfn_offset = (vaddr & ~HPAGE_MASK) >> PAGE_SHIFT;
896 page = pte_page(*pte);
897 same_page:
898 if (pages) {
899 get_page(page);
900 pages[i] = page + pfn_offset;
901 }
902
903 if (vmas)
904 vmas[i] = vma;
905
906 vaddr += PAGE_SIZE;
907 ++pfn_offset;
908 --remainder;
909 ++i;
910 if (vaddr < vma->vm_end && remainder &&
911 pfn_offset < HPAGE_SIZE/PAGE_SIZE) {
912 /*
913 * We use pfn_offset to avoid touching the pageframes
914 * of this compound page.
915 */
916 goto same_page;
917 }
918 }
919 spin_unlock(&mm->page_table_lock);
920 *length = remainder;
921 *position = vaddr;
922
923 return i;
924 }
925
926 void hugetlb_change_protection(struct vm_area_struct *vma,
927 unsigned long address, unsigned long end, pgprot_t newprot)
928 {
929 struct mm_struct *mm = vma->vm_mm;
930 unsigned long start = address;
931 pte_t *ptep;
932 pte_t pte;
933
934 BUG_ON(address >= end);
935 flush_cache_range(vma, address, end);
936
937 spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
938 spin_lock(&mm->page_table_lock);
939 for (; address < end; address += HPAGE_SIZE) {
940 ptep = huge_pte_offset(mm, address);
941 if (!ptep)
942 continue;
943 if (huge_pmd_unshare(mm, &address, ptep))
944 continue;
945 if (!pte_none(*ptep)) {
946 pte = huge_ptep_get_and_clear(mm, address, ptep);
947 pte = pte_mkhuge(pte_modify(pte, newprot));
948 set_huge_pte_at(mm, address, ptep, pte);
949 }
950 }
951 spin_unlock(&mm->page_table_lock);
952 spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
953
954 flush_tlb_range(vma, start, end);
955 }
956
957 struct file_region {
958 struct list_head link;
959 long from;
960 long to;
961 };
962
963 static long region_add(struct list_head *head, long f, long t)
964 {
965 struct file_region *rg, *nrg, *trg;
966
967 /* Locate the region we are either in or before. */
968 list_for_each_entry(rg, head, link)
969 if (f <= rg->to)
970 break;
971
972 /* Round our left edge to the current segment if it encloses us. */
973 if (f > rg->from)
974 f = rg->from;
975
976 /* Check for and consume any regions we now overlap with. */
977 nrg = rg;
978 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
979 if (&rg->link == head)
980 break;
981 if (rg->from > t)
982 break;
983
984 /* If this area reaches higher then extend our area to
985 * include it completely. If this is not the first area
986 * which we intend to reuse, free it. */
987 if (rg->to > t)
988 t = rg->to;
989 if (rg != nrg) {
990 list_del(&rg->link);
991 kfree(rg);
992 }
993 }
994 nrg->from = f;
995 nrg->to = t;
996 return 0;
997 }
998
999 static long region_chg(struct list_head *head, long f, long t)
1000 {
1001 struct file_region *rg, *nrg;
1002 long chg = 0;
1003
1004 /* Locate the region we are before or in. */
1005 list_for_each_entry(rg, head, link)
1006 if (f <= rg->to)
1007 break;
1008
1009 /* If we are below the current region then a new region is required.
1010 * Subtle, allocate a new region at the position but make it zero
1011 * size such that we can guarentee to record the reservation. */
1012 if (&rg->link == head || t < rg->from) {
1013 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
1014 if (nrg == 0)
1015 return -ENOMEM;
1016 nrg->from = f;
1017 nrg->to = f;
1018 INIT_LIST_HEAD(&nrg->link);
1019 list_add(&nrg->link, rg->link.prev);
1020
1021 return t - f;
1022 }
1023
1024 /* Round our left edge to the current segment if it encloses us. */
1025 if (f > rg->from)
1026 f = rg->from;
1027 chg = t - f;
1028
1029 /* Check for and consume any regions we now overlap with. */
1030 list_for_each_entry(rg, rg->link.prev, link) {
1031 if (&rg->link == head)
1032 break;
1033 if (rg->from > t)
1034 return chg;
1035
1036 /* We overlap with this area, if it extends futher than
1037 * us then we must extend ourselves. Account for its
1038 * existing reservation. */
1039 if (rg->to > t) {
1040 chg += rg->to - t;
1041 t = rg->to;
1042 }
1043 chg -= rg->to - rg->from;
1044 }
1045 return chg;
1046 }
1047
1048 static long region_truncate(struct list_head *head, long end)
1049 {
1050 struct file_region *rg, *trg;
1051 long chg = 0;
1052
1053 /* Locate the region we are either in or before. */
1054 list_for_each_entry(rg, head, link)
1055 if (end <= rg->to)
1056 break;
1057 if (&rg->link == head)
1058 return 0;
1059
1060 /* If we are in the middle of a region then adjust it. */
1061 if (end > rg->from) {
1062 chg = rg->to - end;
1063 rg->to = end;
1064 rg = list_entry(rg->link.next, typeof(*rg), link);
1065 }
1066
1067 /* Drop any remaining regions. */
1068 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
1069 if (&rg->link == head)
1070 break;
1071 chg += rg->to - rg->from;
1072 list_del(&rg->link);
1073 kfree(rg);
1074 }
1075 return chg;
1076 }
1077
1078 static int hugetlb_acct_memory(long delta)
1079 {
1080 int ret = -ENOMEM;
1081
1082 spin_lock(&hugetlb_lock);
1083 /*
1084 * When cpuset is configured, it breaks the strict hugetlb page
1085 * reservation as the accounting is done on a global variable. Such
1086 * reservation is completely rubbish in the presence of cpuset because
1087 * the reservation is not checked against page availability for the
1088 * current cpuset. Application can still potentially OOM'ed by kernel
1089 * with lack of free htlb page in cpuset that the task is in.
1090 * Attempt to enforce strict accounting with cpuset is almost
1091 * impossible (or too ugly) because cpuset is too fluid that
1092 * task or memory node can be dynamically moved between cpusets.
1093 *
1094 * The change of semantics for shared hugetlb mapping with cpuset is
1095 * undesirable. However, in order to preserve some of the semantics,
1096 * we fall back to check against current free page availability as
1097 * a best attempt and hopefully to minimize the impact of changing
1098 * semantics that cpuset has.
1099 */
1100 if (delta > 0) {
1101 if (gather_surplus_pages(delta) < 0)
1102 goto out;
1103
1104 if (delta > cpuset_mems_nr(free_huge_pages_node))
1105 goto out;
1106 }
1107
1108 ret = 0;
1109 resv_huge_pages += delta;
1110 if (delta < 0)
1111 return_unused_surplus_pages((unsigned long) -delta);
1112
1113 out:
1114 spin_unlock(&hugetlb_lock);
1115 return ret;
1116 }
1117
1118 int hugetlb_reserve_pages(struct inode *inode, long from, long to)
1119 {
1120 long ret, chg;
1121
1122 chg = region_chg(&inode->i_mapping->private_list, from, to);
1123 if (chg < 0)
1124 return chg;
1125
1126 ret = hugetlb_acct_memory(chg);
1127 if (ret < 0)
1128 return ret;
1129 region_add(&inode->i_mapping->private_list, from, to);
1130 return 0;
1131 }
1132
1133 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
1134 {
1135 long chg = region_truncate(&inode->i_mapping->private_list, offset);
1136 hugetlb_acct_memory(freed - chg);
1137 }
This page took 0.052354 seconds and 6 git commands to generate.