Merge tag 'mac80211-for-davem-2015-09-22' of git://git.kernel.org/pub/scm/linux/kerne...
[deliverable/linux.git] / mm / hugetlb.c
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
46 */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
59 */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
65 */
66 static int num_fault_mutexes;
67 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76 spin_unlock(&spool->lock);
77
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
86 }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
91 {
92 struct hugepage_subpool *spool;
93
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
97
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
103
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
107 }
108 spool->rsv_hpages = min_hpages;
109
110 return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
119 }
120
121 /*
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
128 */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
131 {
132 long ret = delta;
133
134 if (!spool)
135 return ret;
136
137 spin_lock(&spool->lock);
138
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
145 }
146 }
147
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
150 /*
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
153 */
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
159 }
160 }
161
162 unlock_ret:
163 spin_unlock(&spool->lock);
164 return ret;
165 }
166
167 /*
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
172 */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 long delta)
175 {
176 long ret = delta;
177
178 if (!spool)
179 return delta;
180
181 spin_lock(&spool->lock);
182
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
185
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
195 }
196
197 /*
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
200 */
201 unlock_or_release_subpool(spool);
202
203 return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208 return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213 return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
219 *
220 * The region data structures are embedded into a resv_map and protected
221 * by a resv_map's lock. The set of regions within the resv_map represent
222 * reservations for huge pages, or huge pages that have already been
223 * instantiated within the map. The from and to elements are huge page
224 * indicies into the associated mapping. from indicates the starting index
225 * of the region. to represents the first index past the end of the region.
226 *
227 * For example, a file region structure with from == 0 and to == 4 represents
228 * four huge pages in a mapping. It is important to note that the to element
229 * represents the first element past the end of the region. This is used in
230 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231 *
232 * Interval notation of the form [from, to) will be used to indicate that
233 * the endpoint from is inclusive and to is exclusive.
234 */
235 struct file_region {
236 struct list_head link;
237 long from;
238 long to;
239 };
240
241 /*
242 * Add the huge page range represented by [f, t) to the reserve
243 * map. In the normal case, existing regions will be expanded
244 * to accommodate the specified range. Sufficient regions should
245 * exist for expansion due to the previous call to region_chg
246 * with the same range. However, it is possible that region_del
247 * could have been called after region_chg and modifed the map
248 * in such a way that no region exists to be expanded. In this
249 * case, pull a region descriptor from the cache associated with
250 * the map and use that for the new range.
251 *
252 * Return the number of new huge pages added to the map. This
253 * number is greater than or equal to zero.
254 */
255 static long region_add(struct resv_map *resv, long f, long t)
256 {
257 struct list_head *head = &resv->regions;
258 struct file_region *rg, *nrg, *trg;
259 long add = 0;
260
261 spin_lock(&resv->lock);
262 /* Locate the region we are either in or before. */
263 list_for_each_entry(rg, head, link)
264 if (f <= rg->to)
265 break;
266
267 /*
268 * If no region exists which can be expanded to include the
269 * specified range, the list must have been modified by an
270 * interleving call to region_del(). Pull a region descriptor
271 * from the cache and use it for this range.
272 */
273 if (&rg->link == head || t < rg->from) {
274 VM_BUG_ON(resv->region_cache_count <= 0);
275
276 resv->region_cache_count--;
277 nrg = list_first_entry(&resv->region_cache, struct file_region,
278 link);
279 list_del(&nrg->link);
280
281 nrg->from = f;
282 nrg->to = t;
283 list_add(&nrg->link, rg->link.prev);
284
285 add += t - f;
286 goto out_locked;
287 }
288
289 /* Round our left edge to the current segment if it encloses us. */
290 if (f > rg->from)
291 f = rg->from;
292
293 /* Check for and consume any regions we now overlap with. */
294 nrg = rg;
295 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
296 if (&rg->link == head)
297 break;
298 if (rg->from > t)
299 break;
300
301 /* If this area reaches higher then extend our area to
302 * include it completely. If this is not the first area
303 * which we intend to reuse, free it. */
304 if (rg->to > t)
305 t = rg->to;
306 if (rg != nrg) {
307 /* Decrement return value by the deleted range.
308 * Another range will span this area so that by
309 * end of routine add will be >= zero
310 */
311 add -= (rg->to - rg->from);
312 list_del(&rg->link);
313 kfree(rg);
314 }
315 }
316
317 add += (nrg->from - f); /* Added to beginning of region */
318 nrg->from = f;
319 add += t - nrg->to; /* Added to end of region */
320 nrg->to = t;
321
322 out_locked:
323 resv->adds_in_progress--;
324 spin_unlock(&resv->lock);
325 VM_BUG_ON(add < 0);
326 return add;
327 }
328
329 /*
330 * Examine the existing reserve map and determine how many
331 * huge pages in the specified range [f, t) are NOT currently
332 * represented. This routine is called before a subsequent
333 * call to region_add that will actually modify the reserve
334 * map to add the specified range [f, t). region_chg does
335 * not change the number of huge pages represented by the
336 * map. However, if the existing regions in the map can not
337 * be expanded to represent the new range, a new file_region
338 * structure is added to the map as a placeholder. This is
339 * so that the subsequent region_add call will have all the
340 * regions it needs and will not fail.
341 *
342 * Upon entry, region_chg will also examine the cache of region descriptors
343 * associated with the map. If there are not enough descriptors cached, one
344 * will be allocated for the in progress add operation.
345 *
346 * Returns the number of huge pages that need to be added to the existing
347 * reservation map for the range [f, t). This number is greater or equal to
348 * zero. -ENOMEM is returned if a new file_region structure or cache entry
349 * is needed and can not be allocated.
350 */
351 static long region_chg(struct resv_map *resv, long f, long t)
352 {
353 struct list_head *head = &resv->regions;
354 struct file_region *rg, *nrg = NULL;
355 long chg = 0;
356
357 retry:
358 spin_lock(&resv->lock);
359 retry_locked:
360 resv->adds_in_progress++;
361
362 /*
363 * Check for sufficient descriptors in the cache to accommodate
364 * the number of in progress add operations.
365 */
366 if (resv->adds_in_progress > resv->region_cache_count) {
367 struct file_region *trg;
368
369 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
370 /* Must drop lock to allocate a new descriptor. */
371 resv->adds_in_progress--;
372 spin_unlock(&resv->lock);
373
374 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
375 if (!trg)
376 return -ENOMEM;
377
378 spin_lock(&resv->lock);
379 list_add(&trg->link, &resv->region_cache);
380 resv->region_cache_count++;
381 goto retry_locked;
382 }
383
384 /* Locate the region we are before or in. */
385 list_for_each_entry(rg, head, link)
386 if (f <= rg->to)
387 break;
388
389 /* If we are below the current region then a new region is required.
390 * Subtle, allocate a new region at the position but make it zero
391 * size such that we can guarantee to record the reservation. */
392 if (&rg->link == head || t < rg->from) {
393 if (!nrg) {
394 resv->adds_in_progress--;
395 spin_unlock(&resv->lock);
396 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
397 if (!nrg)
398 return -ENOMEM;
399
400 nrg->from = f;
401 nrg->to = f;
402 INIT_LIST_HEAD(&nrg->link);
403 goto retry;
404 }
405
406 list_add(&nrg->link, rg->link.prev);
407 chg = t - f;
408 goto out_nrg;
409 }
410
411 /* Round our left edge to the current segment if it encloses us. */
412 if (f > rg->from)
413 f = rg->from;
414 chg = t - f;
415
416 /* Check for and consume any regions we now overlap with. */
417 list_for_each_entry(rg, rg->link.prev, link) {
418 if (&rg->link == head)
419 break;
420 if (rg->from > t)
421 goto out;
422
423 /* We overlap with this area, if it extends further than
424 * us then we must extend ourselves. Account for its
425 * existing reservation. */
426 if (rg->to > t) {
427 chg += rg->to - t;
428 t = rg->to;
429 }
430 chg -= rg->to - rg->from;
431 }
432
433 out:
434 spin_unlock(&resv->lock);
435 /* We already know we raced and no longer need the new region */
436 kfree(nrg);
437 return chg;
438 out_nrg:
439 spin_unlock(&resv->lock);
440 return chg;
441 }
442
443 /*
444 * Abort the in progress add operation. The adds_in_progress field
445 * of the resv_map keeps track of the operations in progress between
446 * calls to region_chg and region_add. Operations are sometimes
447 * aborted after the call to region_chg. In such cases, region_abort
448 * is called to decrement the adds_in_progress counter.
449 *
450 * NOTE: The range arguments [f, t) are not needed or used in this
451 * routine. They are kept to make reading the calling code easier as
452 * arguments will match the associated region_chg call.
453 */
454 static void region_abort(struct resv_map *resv, long f, long t)
455 {
456 spin_lock(&resv->lock);
457 VM_BUG_ON(!resv->region_cache_count);
458 resv->adds_in_progress--;
459 spin_unlock(&resv->lock);
460 }
461
462 /*
463 * Delete the specified range [f, t) from the reserve map. If the
464 * t parameter is LONG_MAX, this indicates that ALL regions after f
465 * should be deleted. Locate the regions which intersect [f, t)
466 * and either trim, delete or split the existing regions.
467 *
468 * Returns the number of huge pages deleted from the reserve map.
469 * In the normal case, the return value is zero or more. In the
470 * case where a region must be split, a new region descriptor must
471 * be allocated. If the allocation fails, -ENOMEM will be returned.
472 * NOTE: If the parameter t == LONG_MAX, then we will never split
473 * a region and possibly return -ENOMEM. Callers specifying
474 * t == LONG_MAX do not need to check for -ENOMEM error.
475 */
476 static long region_del(struct resv_map *resv, long f, long t)
477 {
478 struct list_head *head = &resv->regions;
479 struct file_region *rg, *trg;
480 struct file_region *nrg = NULL;
481 long del = 0;
482
483 retry:
484 spin_lock(&resv->lock);
485 list_for_each_entry_safe(rg, trg, head, link) {
486 if (rg->to <= f)
487 continue;
488 if (rg->from >= t)
489 break;
490
491 if (f > rg->from && t < rg->to) { /* Must split region */
492 /*
493 * Check for an entry in the cache before dropping
494 * lock and attempting allocation.
495 */
496 if (!nrg &&
497 resv->region_cache_count > resv->adds_in_progress) {
498 nrg = list_first_entry(&resv->region_cache,
499 struct file_region,
500 link);
501 list_del(&nrg->link);
502 resv->region_cache_count--;
503 }
504
505 if (!nrg) {
506 spin_unlock(&resv->lock);
507 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
508 if (!nrg)
509 return -ENOMEM;
510 goto retry;
511 }
512
513 del += t - f;
514
515 /* New entry for end of split region */
516 nrg->from = t;
517 nrg->to = rg->to;
518 INIT_LIST_HEAD(&nrg->link);
519
520 /* Original entry is trimmed */
521 rg->to = f;
522
523 list_add(&nrg->link, &rg->link);
524 nrg = NULL;
525 break;
526 }
527
528 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
529 del += rg->to - rg->from;
530 list_del(&rg->link);
531 kfree(rg);
532 continue;
533 }
534
535 if (f <= rg->from) { /* Trim beginning of region */
536 del += t - rg->from;
537 rg->from = t;
538 } else { /* Trim end of region */
539 del += rg->to - f;
540 rg->to = f;
541 }
542 }
543
544 spin_unlock(&resv->lock);
545 kfree(nrg);
546 return del;
547 }
548
549 /*
550 * A rare out of memory error was encountered which prevented removal of
551 * the reserve map region for a page. The huge page itself was free'ed
552 * and removed from the page cache. This routine will adjust the subpool
553 * usage count, and the global reserve count if needed. By incrementing
554 * these counts, the reserve map entry which could not be deleted will
555 * appear as a "reserved" entry instead of simply dangling with incorrect
556 * counts.
557 */
558 void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
559 {
560 struct hugepage_subpool *spool = subpool_inode(inode);
561 long rsv_adjust;
562
563 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
564 if (restore_reserve && rsv_adjust) {
565 struct hstate *h = hstate_inode(inode);
566
567 hugetlb_acct_memory(h, 1);
568 }
569 }
570
571 /*
572 * Count and return the number of huge pages in the reserve map
573 * that intersect with the range [f, t).
574 */
575 static long region_count(struct resv_map *resv, long f, long t)
576 {
577 struct list_head *head = &resv->regions;
578 struct file_region *rg;
579 long chg = 0;
580
581 spin_lock(&resv->lock);
582 /* Locate each segment we overlap with, and count that overlap. */
583 list_for_each_entry(rg, head, link) {
584 long seg_from;
585 long seg_to;
586
587 if (rg->to <= f)
588 continue;
589 if (rg->from >= t)
590 break;
591
592 seg_from = max(rg->from, f);
593 seg_to = min(rg->to, t);
594
595 chg += seg_to - seg_from;
596 }
597 spin_unlock(&resv->lock);
598
599 return chg;
600 }
601
602 /*
603 * Convert the address within this vma to the page offset within
604 * the mapping, in pagecache page units; huge pages here.
605 */
606 static pgoff_t vma_hugecache_offset(struct hstate *h,
607 struct vm_area_struct *vma, unsigned long address)
608 {
609 return ((address - vma->vm_start) >> huge_page_shift(h)) +
610 (vma->vm_pgoff >> huge_page_order(h));
611 }
612
613 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
614 unsigned long address)
615 {
616 return vma_hugecache_offset(hstate_vma(vma), vma, address);
617 }
618
619 /*
620 * Return the size of the pages allocated when backing a VMA. In the majority
621 * cases this will be same size as used by the page table entries.
622 */
623 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
624 {
625 struct hstate *hstate;
626
627 if (!is_vm_hugetlb_page(vma))
628 return PAGE_SIZE;
629
630 hstate = hstate_vma(vma);
631
632 return 1UL << huge_page_shift(hstate);
633 }
634 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
635
636 /*
637 * Return the page size being used by the MMU to back a VMA. In the majority
638 * of cases, the page size used by the kernel matches the MMU size. On
639 * architectures where it differs, an architecture-specific version of this
640 * function is required.
641 */
642 #ifndef vma_mmu_pagesize
643 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
644 {
645 return vma_kernel_pagesize(vma);
646 }
647 #endif
648
649 /*
650 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
651 * bits of the reservation map pointer, which are always clear due to
652 * alignment.
653 */
654 #define HPAGE_RESV_OWNER (1UL << 0)
655 #define HPAGE_RESV_UNMAPPED (1UL << 1)
656 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
657
658 /*
659 * These helpers are used to track how many pages are reserved for
660 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
661 * is guaranteed to have their future faults succeed.
662 *
663 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
664 * the reserve counters are updated with the hugetlb_lock held. It is safe
665 * to reset the VMA at fork() time as it is not in use yet and there is no
666 * chance of the global counters getting corrupted as a result of the values.
667 *
668 * The private mapping reservation is represented in a subtly different
669 * manner to a shared mapping. A shared mapping has a region map associated
670 * with the underlying file, this region map represents the backing file
671 * pages which have ever had a reservation assigned which this persists even
672 * after the page is instantiated. A private mapping has a region map
673 * associated with the original mmap which is attached to all VMAs which
674 * reference it, this region map represents those offsets which have consumed
675 * reservation ie. where pages have been instantiated.
676 */
677 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
678 {
679 return (unsigned long)vma->vm_private_data;
680 }
681
682 static void set_vma_private_data(struct vm_area_struct *vma,
683 unsigned long value)
684 {
685 vma->vm_private_data = (void *)value;
686 }
687
688 struct resv_map *resv_map_alloc(void)
689 {
690 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
691 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
692
693 if (!resv_map || !rg) {
694 kfree(resv_map);
695 kfree(rg);
696 return NULL;
697 }
698
699 kref_init(&resv_map->refs);
700 spin_lock_init(&resv_map->lock);
701 INIT_LIST_HEAD(&resv_map->regions);
702
703 resv_map->adds_in_progress = 0;
704
705 INIT_LIST_HEAD(&resv_map->region_cache);
706 list_add(&rg->link, &resv_map->region_cache);
707 resv_map->region_cache_count = 1;
708
709 return resv_map;
710 }
711
712 void resv_map_release(struct kref *ref)
713 {
714 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
715 struct list_head *head = &resv_map->region_cache;
716 struct file_region *rg, *trg;
717
718 /* Clear out any active regions before we release the map. */
719 region_del(resv_map, 0, LONG_MAX);
720
721 /* ... and any entries left in the cache */
722 list_for_each_entry_safe(rg, trg, head, link) {
723 list_del(&rg->link);
724 kfree(rg);
725 }
726
727 VM_BUG_ON(resv_map->adds_in_progress);
728
729 kfree(resv_map);
730 }
731
732 static inline struct resv_map *inode_resv_map(struct inode *inode)
733 {
734 return inode->i_mapping->private_data;
735 }
736
737 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
738 {
739 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
740 if (vma->vm_flags & VM_MAYSHARE) {
741 struct address_space *mapping = vma->vm_file->f_mapping;
742 struct inode *inode = mapping->host;
743
744 return inode_resv_map(inode);
745
746 } else {
747 return (struct resv_map *)(get_vma_private_data(vma) &
748 ~HPAGE_RESV_MASK);
749 }
750 }
751
752 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
753 {
754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
755 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
756
757 set_vma_private_data(vma, (get_vma_private_data(vma) &
758 HPAGE_RESV_MASK) | (unsigned long)map);
759 }
760
761 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
762 {
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
765
766 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
767 }
768
769 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
770 {
771 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
772
773 return (get_vma_private_data(vma) & flag) != 0;
774 }
775
776 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
777 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
778 {
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 if (!(vma->vm_flags & VM_MAYSHARE))
781 vma->vm_private_data = (void *)0;
782 }
783
784 /* Returns true if the VMA has associated reserve pages */
785 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
786 {
787 if (vma->vm_flags & VM_NORESERVE) {
788 /*
789 * This address is already reserved by other process(chg == 0),
790 * so, we should decrement reserved count. Without decrementing,
791 * reserve count remains after releasing inode, because this
792 * allocated page will go into page cache and is regarded as
793 * coming from reserved pool in releasing step. Currently, we
794 * don't have any other solution to deal with this situation
795 * properly, so add work-around here.
796 */
797 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
798 return true;
799 else
800 return false;
801 }
802
803 /* Shared mappings always use reserves */
804 if (vma->vm_flags & VM_MAYSHARE) {
805 /*
806 * We know VM_NORESERVE is not set. Therefore, there SHOULD
807 * be a region map for all pages. The only situation where
808 * there is no region map is if a hole was punched via
809 * fallocate. In this case, there really are no reverves to
810 * use. This situation is indicated if chg != 0.
811 */
812 if (chg)
813 return false;
814 else
815 return true;
816 }
817
818 /*
819 * Only the process that called mmap() has reserves for
820 * private mappings.
821 */
822 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
823 return true;
824
825 return false;
826 }
827
828 static void enqueue_huge_page(struct hstate *h, struct page *page)
829 {
830 int nid = page_to_nid(page);
831 list_move(&page->lru, &h->hugepage_freelists[nid]);
832 h->free_huge_pages++;
833 h->free_huge_pages_node[nid]++;
834 }
835
836 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
837 {
838 struct page *page;
839
840 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
841 if (!is_migrate_isolate_page(page))
842 break;
843 /*
844 * if 'non-isolated free hugepage' not found on the list,
845 * the allocation fails.
846 */
847 if (&h->hugepage_freelists[nid] == &page->lru)
848 return NULL;
849 list_move(&page->lru, &h->hugepage_activelist);
850 set_page_refcounted(page);
851 h->free_huge_pages--;
852 h->free_huge_pages_node[nid]--;
853 return page;
854 }
855
856 /* Movability of hugepages depends on migration support. */
857 static inline gfp_t htlb_alloc_mask(struct hstate *h)
858 {
859 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
860 return GFP_HIGHUSER_MOVABLE;
861 else
862 return GFP_HIGHUSER;
863 }
864
865 static struct page *dequeue_huge_page_vma(struct hstate *h,
866 struct vm_area_struct *vma,
867 unsigned long address, int avoid_reserve,
868 long chg)
869 {
870 struct page *page = NULL;
871 struct mempolicy *mpol;
872 nodemask_t *nodemask;
873 struct zonelist *zonelist;
874 struct zone *zone;
875 struct zoneref *z;
876 unsigned int cpuset_mems_cookie;
877
878 /*
879 * A child process with MAP_PRIVATE mappings created by their parent
880 * have no page reserves. This check ensures that reservations are
881 * not "stolen". The child may still get SIGKILLed
882 */
883 if (!vma_has_reserves(vma, chg) &&
884 h->free_huge_pages - h->resv_huge_pages == 0)
885 goto err;
886
887 /* If reserves cannot be used, ensure enough pages are in the pool */
888 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
889 goto err;
890
891 retry_cpuset:
892 cpuset_mems_cookie = read_mems_allowed_begin();
893 zonelist = huge_zonelist(vma, address,
894 htlb_alloc_mask(h), &mpol, &nodemask);
895
896 for_each_zone_zonelist_nodemask(zone, z, zonelist,
897 MAX_NR_ZONES - 1, nodemask) {
898 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
899 page = dequeue_huge_page_node(h, zone_to_nid(zone));
900 if (page) {
901 if (avoid_reserve)
902 break;
903 if (!vma_has_reserves(vma, chg))
904 break;
905
906 SetPagePrivate(page);
907 h->resv_huge_pages--;
908 break;
909 }
910 }
911 }
912
913 mpol_cond_put(mpol);
914 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
915 goto retry_cpuset;
916 return page;
917
918 err:
919 return NULL;
920 }
921
922 /*
923 * common helper functions for hstate_next_node_to_{alloc|free}.
924 * We may have allocated or freed a huge page based on a different
925 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
926 * be outside of *nodes_allowed. Ensure that we use an allowed
927 * node for alloc or free.
928 */
929 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
930 {
931 nid = next_node(nid, *nodes_allowed);
932 if (nid == MAX_NUMNODES)
933 nid = first_node(*nodes_allowed);
934 VM_BUG_ON(nid >= MAX_NUMNODES);
935
936 return nid;
937 }
938
939 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
940 {
941 if (!node_isset(nid, *nodes_allowed))
942 nid = next_node_allowed(nid, nodes_allowed);
943 return nid;
944 }
945
946 /*
947 * returns the previously saved node ["this node"] from which to
948 * allocate a persistent huge page for the pool and advance the
949 * next node from which to allocate, handling wrap at end of node
950 * mask.
951 */
952 static int hstate_next_node_to_alloc(struct hstate *h,
953 nodemask_t *nodes_allowed)
954 {
955 int nid;
956
957 VM_BUG_ON(!nodes_allowed);
958
959 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
960 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
961
962 return nid;
963 }
964
965 /*
966 * helper for free_pool_huge_page() - return the previously saved
967 * node ["this node"] from which to free a huge page. Advance the
968 * next node id whether or not we find a free huge page to free so
969 * that the next attempt to free addresses the next node.
970 */
971 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
972 {
973 int nid;
974
975 VM_BUG_ON(!nodes_allowed);
976
977 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
978 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
979
980 return nid;
981 }
982
983 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
984 for (nr_nodes = nodes_weight(*mask); \
985 nr_nodes > 0 && \
986 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
987 nr_nodes--)
988
989 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
990 for (nr_nodes = nodes_weight(*mask); \
991 nr_nodes > 0 && \
992 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
993 nr_nodes--)
994
995 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
996 static void destroy_compound_gigantic_page(struct page *page,
997 unsigned long order)
998 {
999 int i;
1000 int nr_pages = 1 << order;
1001 struct page *p = page + 1;
1002
1003 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1004 __ClearPageTail(p);
1005 set_page_refcounted(p);
1006 p->first_page = NULL;
1007 }
1008
1009 set_compound_order(page, 0);
1010 __ClearPageHead(page);
1011 }
1012
1013 static void free_gigantic_page(struct page *page, unsigned order)
1014 {
1015 free_contig_range(page_to_pfn(page), 1 << order);
1016 }
1017
1018 static int __alloc_gigantic_page(unsigned long start_pfn,
1019 unsigned long nr_pages)
1020 {
1021 unsigned long end_pfn = start_pfn + nr_pages;
1022 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1023 }
1024
1025 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1026 unsigned long nr_pages)
1027 {
1028 unsigned long i, end_pfn = start_pfn + nr_pages;
1029 struct page *page;
1030
1031 for (i = start_pfn; i < end_pfn; i++) {
1032 if (!pfn_valid(i))
1033 return false;
1034
1035 page = pfn_to_page(i);
1036
1037 if (PageReserved(page))
1038 return false;
1039
1040 if (page_count(page) > 0)
1041 return false;
1042
1043 if (PageHuge(page))
1044 return false;
1045 }
1046
1047 return true;
1048 }
1049
1050 static bool zone_spans_last_pfn(const struct zone *zone,
1051 unsigned long start_pfn, unsigned long nr_pages)
1052 {
1053 unsigned long last_pfn = start_pfn + nr_pages - 1;
1054 return zone_spans_pfn(zone, last_pfn);
1055 }
1056
1057 static struct page *alloc_gigantic_page(int nid, unsigned order)
1058 {
1059 unsigned long nr_pages = 1 << order;
1060 unsigned long ret, pfn, flags;
1061 struct zone *z;
1062
1063 z = NODE_DATA(nid)->node_zones;
1064 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1065 spin_lock_irqsave(&z->lock, flags);
1066
1067 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1068 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1069 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1070 /*
1071 * We release the zone lock here because
1072 * alloc_contig_range() will also lock the zone
1073 * at some point. If there's an allocation
1074 * spinning on this lock, it may win the race
1075 * and cause alloc_contig_range() to fail...
1076 */
1077 spin_unlock_irqrestore(&z->lock, flags);
1078 ret = __alloc_gigantic_page(pfn, nr_pages);
1079 if (!ret)
1080 return pfn_to_page(pfn);
1081 spin_lock_irqsave(&z->lock, flags);
1082 }
1083 pfn += nr_pages;
1084 }
1085
1086 spin_unlock_irqrestore(&z->lock, flags);
1087 }
1088
1089 return NULL;
1090 }
1091
1092 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1093 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
1094
1095 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1096 {
1097 struct page *page;
1098
1099 page = alloc_gigantic_page(nid, huge_page_order(h));
1100 if (page) {
1101 prep_compound_gigantic_page(page, huge_page_order(h));
1102 prep_new_huge_page(h, page, nid);
1103 }
1104
1105 return page;
1106 }
1107
1108 static int alloc_fresh_gigantic_page(struct hstate *h,
1109 nodemask_t *nodes_allowed)
1110 {
1111 struct page *page = NULL;
1112 int nr_nodes, node;
1113
1114 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1115 page = alloc_fresh_gigantic_page_node(h, node);
1116 if (page)
1117 return 1;
1118 }
1119
1120 return 0;
1121 }
1122
1123 static inline bool gigantic_page_supported(void) { return true; }
1124 #else
1125 static inline bool gigantic_page_supported(void) { return false; }
1126 static inline void free_gigantic_page(struct page *page, unsigned order) { }
1127 static inline void destroy_compound_gigantic_page(struct page *page,
1128 unsigned long order) { }
1129 static inline int alloc_fresh_gigantic_page(struct hstate *h,
1130 nodemask_t *nodes_allowed) { return 0; }
1131 #endif
1132
1133 static void update_and_free_page(struct hstate *h, struct page *page)
1134 {
1135 int i;
1136
1137 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1138 return;
1139
1140 h->nr_huge_pages--;
1141 h->nr_huge_pages_node[page_to_nid(page)]--;
1142 for (i = 0; i < pages_per_huge_page(h); i++) {
1143 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1144 1 << PG_referenced | 1 << PG_dirty |
1145 1 << PG_active | 1 << PG_private |
1146 1 << PG_writeback);
1147 }
1148 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1149 set_compound_page_dtor(page, NULL);
1150 set_page_refcounted(page);
1151 if (hstate_is_gigantic(h)) {
1152 destroy_compound_gigantic_page(page, huge_page_order(h));
1153 free_gigantic_page(page, huge_page_order(h));
1154 } else {
1155 __free_pages(page, huge_page_order(h));
1156 }
1157 }
1158
1159 struct hstate *size_to_hstate(unsigned long size)
1160 {
1161 struct hstate *h;
1162
1163 for_each_hstate(h) {
1164 if (huge_page_size(h) == size)
1165 return h;
1166 }
1167 return NULL;
1168 }
1169
1170 /*
1171 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1172 * to hstate->hugepage_activelist.)
1173 *
1174 * This function can be called for tail pages, but never returns true for them.
1175 */
1176 bool page_huge_active(struct page *page)
1177 {
1178 VM_BUG_ON_PAGE(!PageHuge(page), page);
1179 return PageHead(page) && PagePrivate(&page[1]);
1180 }
1181
1182 /* never called for tail page */
1183 static void set_page_huge_active(struct page *page)
1184 {
1185 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1186 SetPagePrivate(&page[1]);
1187 }
1188
1189 static void clear_page_huge_active(struct page *page)
1190 {
1191 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1192 ClearPagePrivate(&page[1]);
1193 }
1194
1195 void free_huge_page(struct page *page)
1196 {
1197 /*
1198 * Can't pass hstate in here because it is called from the
1199 * compound page destructor.
1200 */
1201 struct hstate *h = page_hstate(page);
1202 int nid = page_to_nid(page);
1203 struct hugepage_subpool *spool =
1204 (struct hugepage_subpool *)page_private(page);
1205 bool restore_reserve;
1206
1207 set_page_private(page, 0);
1208 page->mapping = NULL;
1209 BUG_ON(page_count(page));
1210 BUG_ON(page_mapcount(page));
1211 restore_reserve = PagePrivate(page);
1212 ClearPagePrivate(page);
1213
1214 /*
1215 * A return code of zero implies that the subpool will be under its
1216 * minimum size if the reservation is not restored after page is free.
1217 * Therefore, force restore_reserve operation.
1218 */
1219 if (hugepage_subpool_put_pages(spool, 1) == 0)
1220 restore_reserve = true;
1221
1222 spin_lock(&hugetlb_lock);
1223 clear_page_huge_active(page);
1224 hugetlb_cgroup_uncharge_page(hstate_index(h),
1225 pages_per_huge_page(h), page);
1226 if (restore_reserve)
1227 h->resv_huge_pages++;
1228
1229 if (h->surplus_huge_pages_node[nid]) {
1230 /* remove the page from active list */
1231 list_del(&page->lru);
1232 update_and_free_page(h, page);
1233 h->surplus_huge_pages--;
1234 h->surplus_huge_pages_node[nid]--;
1235 } else {
1236 arch_clear_hugepage_flags(page);
1237 enqueue_huge_page(h, page);
1238 }
1239 spin_unlock(&hugetlb_lock);
1240 }
1241
1242 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1243 {
1244 INIT_LIST_HEAD(&page->lru);
1245 set_compound_page_dtor(page, free_huge_page);
1246 spin_lock(&hugetlb_lock);
1247 set_hugetlb_cgroup(page, NULL);
1248 h->nr_huge_pages++;
1249 h->nr_huge_pages_node[nid]++;
1250 spin_unlock(&hugetlb_lock);
1251 put_page(page); /* free it into the hugepage allocator */
1252 }
1253
1254 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1255 {
1256 int i;
1257 int nr_pages = 1 << order;
1258 struct page *p = page + 1;
1259
1260 /* we rely on prep_new_huge_page to set the destructor */
1261 set_compound_order(page, order);
1262 __SetPageHead(page);
1263 __ClearPageReserved(page);
1264 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1265 /*
1266 * For gigantic hugepages allocated through bootmem at
1267 * boot, it's safer to be consistent with the not-gigantic
1268 * hugepages and clear the PG_reserved bit from all tail pages
1269 * too. Otherwse drivers using get_user_pages() to access tail
1270 * pages may get the reference counting wrong if they see
1271 * PG_reserved set on a tail page (despite the head page not
1272 * having PG_reserved set). Enforcing this consistency between
1273 * head and tail pages allows drivers to optimize away a check
1274 * on the head page when they need know if put_page() is needed
1275 * after get_user_pages().
1276 */
1277 __ClearPageReserved(p);
1278 set_page_count(p, 0);
1279 p->first_page = page;
1280 /* Make sure p->first_page is always valid for PageTail() */
1281 smp_wmb();
1282 __SetPageTail(p);
1283 }
1284 }
1285
1286 /*
1287 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1288 * transparent huge pages. See the PageTransHuge() documentation for more
1289 * details.
1290 */
1291 int PageHuge(struct page *page)
1292 {
1293 if (!PageCompound(page))
1294 return 0;
1295
1296 page = compound_head(page);
1297 return get_compound_page_dtor(page) == free_huge_page;
1298 }
1299 EXPORT_SYMBOL_GPL(PageHuge);
1300
1301 /*
1302 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1303 * normal or transparent huge pages.
1304 */
1305 int PageHeadHuge(struct page *page_head)
1306 {
1307 if (!PageHead(page_head))
1308 return 0;
1309
1310 return get_compound_page_dtor(page_head) == free_huge_page;
1311 }
1312
1313 pgoff_t __basepage_index(struct page *page)
1314 {
1315 struct page *page_head = compound_head(page);
1316 pgoff_t index = page_index(page_head);
1317 unsigned long compound_idx;
1318
1319 if (!PageHuge(page_head))
1320 return page_index(page);
1321
1322 if (compound_order(page_head) >= MAX_ORDER)
1323 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1324 else
1325 compound_idx = page - page_head;
1326
1327 return (index << compound_order(page_head)) + compound_idx;
1328 }
1329
1330 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1331 {
1332 struct page *page;
1333
1334 page = __alloc_pages_node(nid,
1335 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1336 __GFP_REPEAT|__GFP_NOWARN,
1337 huge_page_order(h));
1338 if (page) {
1339 prep_new_huge_page(h, page, nid);
1340 }
1341
1342 return page;
1343 }
1344
1345 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1346 {
1347 struct page *page;
1348 int nr_nodes, node;
1349 int ret = 0;
1350
1351 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1352 page = alloc_fresh_huge_page_node(h, node);
1353 if (page) {
1354 ret = 1;
1355 break;
1356 }
1357 }
1358
1359 if (ret)
1360 count_vm_event(HTLB_BUDDY_PGALLOC);
1361 else
1362 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1363
1364 return ret;
1365 }
1366
1367 /*
1368 * Free huge page from pool from next node to free.
1369 * Attempt to keep persistent huge pages more or less
1370 * balanced over allowed nodes.
1371 * Called with hugetlb_lock locked.
1372 */
1373 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1374 bool acct_surplus)
1375 {
1376 int nr_nodes, node;
1377 int ret = 0;
1378
1379 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1380 /*
1381 * If we're returning unused surplus pages, only examine
1382 * nodes with surplus pages.
1383 */
1384 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1385 !list_empty(&h->hugepage_freelists[node])) {
1386 struct page *page =
1387 list_entry(h->hugepage_freelists[node].next,
1388 struct page, lru);
1389 list_del(&page->lru);
1390 h->free_huge_pages--;
1391 h->free_huge_pages_node[node]--;
1392 if (acct_surplus) {
1393 h->surplus_huge_pages--;
1394 h->surplus_huge_pages_node[node]--;
1395 }
1396 update_and_free_page(h, page);
1397 ret = 1;
1398 break;
1399 }
1400 }
1401
1402 return ret;
1403 }
1404
1405 /*
1406 * Dissolve a given free hugepage into free buddy pages. This function does
1407 * nothing for in-use (including surplus) hugepages.
1408 */
1409 static void dissolve_free_huge_page(struct page *page)
1410 {
1411 spin_lock(&hugetlb_lock);
1412 if (PageHuge(page) && !page_count(page)) {
1413 struct hstate *h = page_hstate(page);
1414 int nid = page_to_nid(page);
1415 list_del(&page->lru);
1416 h->free_huge_pages--;
1417 h->free_huge_pages_node[nid]--;
1418 update_and_free_page(h, page);
1419 }
1420 spin_unlock(&hugetlb_lock);
1421 }
1422
1423 /*
1424 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1425 * make specified memory blocks removable from the system.
1426 * Note that start_pfn should aligned with (minimum) hugepage size.
1427 */
1428 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1429 {
1430 unsigned long pfn;
1431
1432 if (!hugepages_supported())
1433 return;
1434
1435 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1436 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1437 dissolve_free_huge_page(pfn_to_page(pfn));
1438 }
1439
1440 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1441 {
1442 struct page *page;
1443 unsigned int r_nid;
1444
1445 if (hstate_is_gigantic(h))
1446 return NULL;
1447
1448 /*
1449 * Assume we will successfully allocate the surplus page to
1450 * prevent racing processes from causing the surplus to exceed
1451 * overcommit
1452 *
1453 * This however introduces a different race, where a process B
1454 * tries to grow the static hugepage pool while alloc_pages() is
1455 * called by process A. B will only examine the per-node
1456 * counters in determining if surplus huge pages can be
1457 * converted to normal huge pages in adjust_pool_surplus(). A
1458 * won't be able to increment the per-node counter, until the
1459 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1460 * no more huge pages can be converted from surplus to normal
1461 * state (and doesn't try to convert again). Thus, we have a
1462 * case where a surplus huge page exists, the pool is grown, and
1463 * the surplus huge page still exists after, even though it
1464 * should just have been converted to a normal huge page. This
1465 * does not leak memory, though, as the hugepage will be freed
1466 * once it is out of use. It also does not allow the counters to
1467 * go out of whack in adjust_pool_surplus() as we don't modify
1468 * the node values until we've gotten the hugepage and only the
1469 * per-node value is checked there.
1470 */
1471 spin_lock(&hugetlb_lock);
1472 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1473 spin_unlock(&hugetlb_lock);
1474 return NULL;
1475 } else {
1476 h->nr_huge_pages++;
1477 h->surplus_huge_pages++;
1478 }
1479 spin_unlock(&hugetlb_lock);
1480
1481 if (nid == NUMA_NO_NODE)
1482 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1483 __GFP_REPEAT|__GFP_NOWARN,
1484 huge_page_order(h));
1485 else
1486 page = __alloc_pages_node(nid,
1487 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1488 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1489
1490 spin_lock(&hugetlb_lock);
1491 if (page) {
1492 INIT_LIST_HEAD(&page->lru);
1493 r_nid = page_to_nid(page);
1494 set_compound_page_dtor(page, free_huge_page);
1495 set_hugetlb_cgroup(page, NULL);
1496 /*
1497 * We incremented the global counters already
1498 */
1499 h->nr_huge_pages_node[r_nid]++;
1500 h->surplus_huge_pages_node[r_nid]++;
1501 __count_vm_event(HTLB_BUDDY_PGALLOC);
1502 } else {
1503 h->nr_huge_pages--;
1504 h->surplus_huge_pages--;
1505 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1506 }
1507 spin_unlock(&hugetlb_lock);
1508
1509 return page;
1510 }
1511
1512 /*
1513 * This allocation function is useful in the context where vma is irrelevant.
1514 * E.g. soft-offlining uses this function because it only cares physical
1515 * address of error page.
1516 */
1517 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1518 {
1519 struct page *page = NULL;
1520
1521 spin_lock(&hugetlb_lock);
1522 if (h->free_huge_pages - h->resv_huge_pages > 0)
1523 page = dequeue_huge_page_node(h, nid);
1524 spin_unlock(&hugetlb_lock);
1525
1526 if (!page)
1527 page = alloc_buddy_huge_page(h, nid);
1528
1529 return page;
1530 }
1531
1532 /*
1533 * Increase the hugetlb pool such that it can accommodate a reservation
1534 * of size 'delta'.
1535 */
1536 static int gather_surplus_pages(struct hstate *h, int delta)
1537 {
1538 struct list_head surplus_list;
1539 struct page *page, *tmp;
1540 int ret, i;
1541 int needed, allocated;
1542 bool alloc_ok = true;
1543
1544 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1545 if (needed <= 0) {
1546 h->resv_huge_pages += delta;
1547 return 0;
1548 }
1549
1550 allocated = 0;
1551 INIT_LIST_HEAD(&surplus_list);
1552
1553 ret = -ENOMEM;
1554 retry:
1555 spin_unlock(&hugetlb_lock);
1556 for (i = 0; i < needed; i++) {
1557 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1558 if (!page) {
1559 alloc_ok = false;
1560 break;
1561 }
1562 list_add(&page->lru, &surplus_list);
1563 }
1564 allocated += i;
1565
1566 /*
1567 * After retaking hugetlb_lock, we need to recalculate 'needed'
1568 * because either resv_huge_pages or free_huge_pages may have changed.
1569 */
1570 spin_lock(&hugetlb_lock);
1571 needed = (h->resv_huge_pages + delta) -
1572 (h->free_huge_pages + allocated);
1573 if (needed > 0) {
1574 if (alloc_ok)
1575 goto retry;
1576 /*
1577 * We were not able to allocate enough pages to
1578 * satisfy the entire reservation so we free what
1579 * we've allocated so far.
1580 */
1581 goto free;
1582 }
1583 /*
1584 * The surplus_list now contains _at_least_ the number of extra pages
1585 * needed to accommodate the reservation. Add the appropriate number
1586 * of pages to the hugetlb pool and free the extras back to the buddy
1587 * allocator. Commit the entire reservation here to prevent another
1588 * process from stealing the pages as they are added to the pool but
1589 * before they are reserved.
1590 */
1591 needed += allocated;
1592 h->resv_huge_pages += delta;
1593 ret = 0;
1594
1595 /* Free the needed pages to the hugetlb pool */
1596 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1597 if ((--needed) < 0)
1598 break;
1599 /*
1600 * This page is now managed by the hugetlb allocator and has
1601 * no users -- drop the buddy allocator's reference.
1602 */
1603 put_page_testzero(page);
1604 VM_BUG_ON_PAGE(page_count(page), page);
1605 enqueue_huge_page(h, page);
1606 }
1607 free:
1608 spin_unlock(&hugetlb_lock);
1609
1610 /* Free unnecessary surplus pages to the buddy allocator */
1611 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1612 put_page(page);
1613 spin_lock(&hugetlb_lock);
1614
1615 return ret;
1616 }
1617
1618 /*
1619 * When releasing a hugetlb pool reservation, any surplus pages that were
1620 * allocated to satisfy the reservation must be explicitly freed if they were
1621 * never used.
1622 * Called with hugetlb_lock held.
1623 */
1624 static void return_unused_surplus_pages(struct hstate *h,
1625 unsigned long unused_resv_pages)
1626 {
1627 unsigned long nr_pages;
1628
1629 /* Uncommit the reservation */
1630 h->resv_huge_pages -= unused_resv_pages;
1631
1632 /* Cannot return gigantic pages currently */
1633 if (hstate_is_gigantic(h))
1634 return;
1635
1636 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1637
1638 /*
1639 * We want to release as many surplus pages as possible, spread
1640 * evenly across all nodes with memory. Iterate across these nodes
1641 * until we can no longer free unreserved surplus pages. This occurs
1642 * when the nodes with surplus pages have no free pages.
1643 * free_pool_huge_page() will balance the the freed pages across the
1644 * on-line nodes with memory and will handle the hstate accounting.
1645 */
1646 while (nr_pages--) {
1647 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1648 break;
1649 cond_resched_lock(&hugetlb_lock);
1650 }
1651 }
1652
1653
1654 /*
1655 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
1656 * are used by the huge page allocation routines to manage reservations.
1657 *
1658 * vma_needs_reservation is called to determine if the huge page at addr
1659 * within the vma has an associated reservation. If a reservation is
1660 * needed, the value 1 is returned. The caller is then responsible for
1661 * managing the global reservation and subpool usage counts. After
1662 * the huge page has been allocated, vma_commit_reservation is called
1663 * to add the page to the reservation map. If the page allocation fails,
1664 * the reservation must be ended instead of committed. vma_end_reservation
1665 * is called in such cases.
1666 *
1667 * In the normal case, vma_commit_reservation returns the same value
1668 * as the preceding vma_needs_reservation call. The only time this
1669 * is not the case is if a reserve map was changed between calls. It
1670 * is the responsibility of the caller to notice the difference and
1671 * take appropriate action.
1672 */
1673 enum vma_resv_mode {
1674 VMA_NEEDS_RESV,
1675 VMA_COMMIT_RESV,
1676 VMA_END_RESV,
1677 };
1678 static long __vma_reservation_common(struct hstate *h,
1679 struct vm_area_struct *vma, unsigned long addr,
1680 enum vma_resv_mode mode)
1681 {
1682 struct resv_map *resv;
1683 pgoff_t idx;
1684 long ret;
1685
1686 resv = vma_resv_map(vma);
1687 if (!resv)
1688 return 1;
1689
1690 idx = vma_hugecache_offset(h, vma, addr);
1691 switch (mode) {
1692 case VMA_NEEDS_RESV:
1693 ret = region_chg(resv, idx, idx + 1);
1694 break;
1695 case VMA_COMMIT_RESV:
1696 ret = region_add(resv, idx, idx + 1);
1697 break;
1698 case VMA_END_RESV:
1699 region_abort(resv, idx, idx + 1);
1700 ret = 0;
1701 break;
1702 default:
1703 BUG();
1704 }
1705
1706 if (vma->vm_flags & VM_MAYSHARE)
1707 return ret;
1708 else
1709 return ret < 0 ? ret : 0;
1710 }
1711
1712 static long vma_needs_reservation(struct hstate *h,
1713 struct vm_area_struct *vma, unsigned long addr)
1714 {
1715 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
1716 }
1717
1718 static long vma_commit_reservation(struct hstate *h,
1719 struct vm_area_struct *vma, unsigned long addr)
1720 {
1721 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1722 }
1723
1724 static void vma_end_reservation(struct hstate *h,
1725 struct vm_area_struct *vma, unsigned long addr)
1726 {
1727 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
1728 }
1729
1730 struct page *alloc_huge_page(struct vm_area_struct *vma,
1731 unsigned long addr, int avoid_reserve)
1732 {
1733 struct hugepage_subpool *spool = subpool_vma(vma);
1734 struct hstate *h = hstate_vma(vma);
1735 struct page *page;
1736 long map_chg, map_commit;
1737 long gbl_chg;
1738 int ret, idx;
1739 struct hugetlb_cgroup *h_cg;
1740
1741 idx = hstate_index(h);
1742 /*
1743 * Examine the region/reserve map to determine if the process
1744 * has a reservation for the page to be allocated. A return
1745 * code of zero indicates a reservation exists (no change).
1746 */
1747 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1748 if (map_chg < 0)
1749 return ERR_PTR(-ENOMEM);
1750
1751 /*
1752 * Processes that did not create the mapping will have no
1753 * reserves as indicated by the region/reserve map. Check
1754 * that the allocation will not exceed the subpool limit.
1755 * Allocations for MAP_NORESERVE mappings also need to be
1756 * checked against any subpool limit.
1757 */
1758 if (map_chg || avoid_reserve) {
1759 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1760 if (gbl_chg < 0) {
1761 vma_end_reservation(h, vma, addr);
1762 return ERR_PTR(-ENOSPC);
1763 }
1764
1765 /*
1766 * Even though there was no reservation in the region/reserve
1767 * map, there could be reservations associated with the
1768 * subpool that can be used. This would be indicated if the
1769 * return value of hugepage_subpool_get_pages() is zero.
1770 * However, if avoid_reserve is specified we still avoid even
1771 * the subpool reservations.
1772 */
1773 if (avoid_reserve)
1774 gbl_chg = 1;
1775 }
1776
1777 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1778 if (ret)
1779 goto out_subpool_put;
1780
1781 spin_lock(&hugetlb_lock);
1782 /*
1783 * glb_chg is passed to indicate whether or not a page must be taken
1784 * from the global free pool (global change). gbl_chg == 0 indicates
1785 * a reservation exists for the allocation.
1786 */
1787 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
1788 if (!page) {
1789 spin_unlock(&hugetlb_lock);
1790 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1791 if (!page)
1792 goto out_uncharge_cgroup;
1793
1794 spin_lock(&hugetlb_lock);
1795 list_move(&page->lru, &h->hugepage_activelist);
1796 /* Fall through */
1797 }
1798 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1799 spin_unlock(&hugetlb_lock);
1800
1801 set_page_private(page, (unsigned long)spool);
1802
1803 map_commit = vma_commit_reservation(h, vma, addr);
1804 if (unlikely(map_chg > map_commit)) {
1805 /*
1806 * The page was added to the reservation map between
1807 * vma_needs_reservation and vma_commit_reservation.
1808 * This indicates a race with hugetlb_reserve_pages.
1809 * Adjust for the subpool count incremented above AND
1810 * in hugetlb_reserve_pages for the same page. Also,
1811 * the reservation count added in hugetlb_reserve_pages
1812 * no longer applies.
1813 */
1814 long rsv_adjust;
1815
1816 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1817 hugetlb_acct_memory(h, -rsv_adjust);
1818 }
1819 return page;
1820
1821 out_uncharge_cgroup:
1822 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1823 out_subpool_put:
1824 if (map_chg || avoid_reserve)
1825 hugepage_subpool_put_pages(spool, 1);
1826 vma_end_reservation(h, vma, addr);
1827 return ERR_PTR(-ENOSPC);
1828 }
1829
1830 /*
1831 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1832 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1833 * where no ERR_VALUE is expected to be returned.
1834 */
1835 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1836 unsigned long addr, int avoid_reserve)
1837 {
1838 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1839 if (IS_ERR(page))
1840 page = NULL;
1841 return page;
1842 }
1843
1844 int __weak alloc_bootmem_huge_page(struct hstate *h)
1845 {
1846 struct huge_bootmem_page *m;
1847 int nr_nodes, node;
1848
1849 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1850 void *addr;
1851
1852 addr = memblock_virt_alloc_try_nid_nopanic(
1853 huge_page_size(h), huge_page_size(h),
1854 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1855 if (addr) {
1856 /*
1857 * Use the beginning of the huge page to store the
1858 * huge_bootmem_page struct (until gather_bootmem
1859 * puts them into the mem_map).
1860 */
1861 m = addr;
1862 goto found;
1863 }
1864 }
1865 return 0;
1866
1867 found:
1868 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1869 /* Put them into a private list first because mem_map is not up yet */
1870 list_add(&m->list, &huge_boot_pages);
1871 m->hstate = h;
1872 return 1;
1873 }
1874
1875 static void __init prep_compound_huge_page(struct page *page, int order)
1876 {
1877 if (unlikely(order > (MAX_ORDER - 1)))
1878 prep_compound_gigantic_page(page, order);
1879 else
1880 prep_compound_page(page, order);
1881 }
1882
1883 /* Put bootmem huge pages into the standard lists after mem_map is up */
1884 static void __init gather_bootmem_prealloc(void)
1885 {
1886 struct huge_bootmem_page *m;
1887
1888 list_for_each_entry(m, &huge_boot_pages, list) {
1889 struct hstate *h = m->hstate;
1890 struct page *page;
1891
1892 #ifdef CONFIG_HIGHMEM
1893 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1894 memblock_free_late(__pa(m),
1895 sizeof(struct huge_bootmem_page));
1896 #else
1897 page = virt_to_page(m);
1898 #endif
1899 WARN_ON(page_count(page) != 1);
1900 prep_compound_huge_page(page, h->order);
1901 WARN_ON(PageReserved(page));
1902 prep_new_huge_page(h, page, page_to_nid(page));
1903 /*
1904 * If we had gigantic hugepages allocated at boot time, we need
1905 * to restore the 'stolen' pages to totalram_pages in order to
1906 * fix confusing memory reports from free(1) and another
1907 * side-effects, like CommitLimit going negative.
1908 */
1909 if (hstate_is_gigantic(h))
1910 adjust_managed_page_count(page, 1 << h->order);
1911 }
1912 }
1913
1914 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1915 {
1916 unsigned long i;
1917
1918 for (i = 0; i < h->max_huge_pages; ++i) {
1919 if (hstate_is_gigantic(h)) {
1920 if (!alloc_bootmem_huge_page(h))
1921 break;
1922 } else if (!alloc_fresh_huge_page(h,
1923 &node_states[N_MEMORY]))
1924 break;
1925 }
1926 h->max_huge_pages = i;
1927 }
1928
1929 static void __init hugetlb_init_hstates(void)
1930 {
1931 struct hstate *h;
1932
1933 for_each_hstate(h) {
1934 if (minimum_order > huge_page_order(h))
1935 minimum_order = huge_page_order(h);
1936
1937 /* oversize hugepages were init'ed in early boot */
1938 if (!hstate_is_gigantic(h))
1939 hugetlb_hstate_alloc_pages(h);
1940 }
1941 VM_BUG_ON(minimum_order == UINT_MAX);
1942 }
1943
1944 static char * __init memfmt(char *buf, unsigned long n)
1945 {
1946 if (n >= (1UL << 30))
1947 sprintf(buf, "%lu GB", n >> 30);
1948 else if (n >= (1UL << 20))
1949 sprintf(buf, "%lu MB", n >> 20);
1950 else
1951 sprintf(buf, "%lu KB", n >> 10);
1952 return buf;
1953 }
1954
1955 static void __init report_hugepages(void)
1956 {
1957 struct hstate *h;
1958
1959 for_each_hstate(h) {
1960 char buf[32];
1961 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1962 memfmt(buf, huge_page_size(h)),
1963 h->free_huge_pages);
1964 }
1965 }
1966
1967 #ifdef CONFIG_HIGHMEM
1968 static void try_to_free_low(struct hstate *h, unsigned long count,
1969 nodemask_t *nodes_allowed)
1970 {
1971 int i;
1972
1973 if (hstate_is_gigantic(h))
1974 return;
1975
1976 for_each_node_mask(i, *nodes_allowed) {
1977 struct page *page, *next;
1978 struct list_head *freel = &h->hugepage_freelists[i];
1979 list_for_each_entry_safe(page, next, freel, lru) {
1980 if (count >= h->nr_huge_pages)
1981 return;
1982 if (PageHighMem(page))
1983 continue;
1984 list_del(&page->lru);
1985 update_and_free_page(h, page);
1986 h->free_huge_pages--;
1987 h->free_huge_pages_node[page_to_nid(page)]--;
1988 }
1989 }
1990 }
1991 #else
1992 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1993 nodemask_t *nodes_allowed)
1994 {
1995 }
1996 #endif
1997
1998 /*
1999 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2000 * balanced by operating on them in a round-robin fashion.
2001 * Returns 1 if an adjustment was made.
2002 */
2003 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2004 int delta)
2005 {
2006 int nr_nodes, node;
2007
2008 VM_BUG_ON(delta != -1 && delta != 1);
2009
2010 if (delta < 0) {
2011 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2012 if (h->surplus_huge_pages_node[node])
2013 goto found;
2014 }
2015 } else {
2016 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2017 if (h->surplus_huge_pages_node[node] <
2018 h->nr_huge_pages_node[node])
2019 goto found;
2020 }
2021 }
2022 return 0;
2023
2024 found:
2025 h->surplus_huge_pages += delta;
2026 h->surplus_huge_pages_node[node] += delta;
2027 return 1;
2028 }
2029
2030 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2031 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2032 nodemask_t *nodes_allowed)
2033 {
2034 unsigned long min_count, ret;
2035
2036 if (hstate_is_gigantic(h) && !gigantic_page_supported())
2037 return h->max_huge_pages;
2038
2039 /*
2040 * Increase the pool size
2041 * First take pages out of surplus state. Then make up the
2042 * remaining difference by allocating fresh huge pages.
2043 *
2044 * We might race with alloc_buddy_huge_page() here and be unable
2045 * to convert a surplus huge page to a normal huge page. That is
2046 * not critical, though, it just means the overall size of the
2047 * pool might be one hugepage larger than it needs to be, but
2048 * within all the constraints specified by the sysctls.
2049 */
2050 spin_lock(&hugetlb_lock);
2051 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2052 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2053 break;
2054 }
2055
2056 while (count > persistent_huge_pages(h)) {
2057 /*
2058 * If this allocation races such that we no longer need the
2059 * page, free_huge_page will handle it by freeing the page
2060 * and reducing the surplus.
2061 */
2062 spin_unlock(&hugetlb_lock);
2063 if (hstate_is_gigantic(h))
2064 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2065 else
2066 ret = alloc_fresh_huge_page(h, nodes_allowed);
2067 spin_lock(&hugetlb_lock);
2068 if (!ret)
2069 goto out;
2070
2071 /* Bail for signals. Probably ctrl-c from user */
2072 if (signal_pending(current))
2073 goto out;
2074 }
2075
2076 /*
2077 * Decrease the pool size
2078 * First return free pages to the buddy allocator (being careful
2079 * to keep enough around to satisfy reservations). Then place
2080 * pages into surplus state as needed so the pool will shrink
2081 * to the desired size as pages become free.
2082 *
2083 * By placing pages into the surplus state independent of the
2084 * overcommit value, we are allowing the surplus pool size to
2085 * exceed overcommit. There are few sane options here. Since
2086 * alloc_buddy_huge_page() is checking the global counter,
2087 * though, we'll note that we're not allowed to exceed surplus
2088 * and won't grow the pool anywhere else. Not until one of the
2089 * sysctls are changed, or the surplus pages go out of use.
2090 */
2091 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2092 min_count = max(count, min_count);
2093 try_to_free_low(h, min_count, nodes_allowed);
2094 while (min_count < persistent_huge_pages(h)) {
2095 if (!free_pool_huge_page(h, nodes_allowed, 0))
2096 break;
2097 cond_resched_lock(&hugetlb_lock);
2098 }
2099 while (count < persistent_huge_pages(h)) {
2100 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2101 break;
2102 }
2103 out:
2104 ret = persistent_huge_pages(h);
2105 spin_unlock(&hugetlb_lock);
2106 return ret;
2107 }
2108
2109 #define HSTATE_ATTR_RO(_name) \
2110 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2111
2112 #define HSTATE_ATTR(_name) \
2113 static struct kobj_attribute _name##_attr = \
2114 __ATTR(_name, 0644, _name##_show, _name##_store)
2115
2116 static struct kobject *hugepages_kobj;
2117 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2118
2119 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2120
2121 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2122 {
2123 int i;
2124
2125 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2126 if (hstate_kobjs[i] == kobj) {
2127 if (nidp)
2128 *nidp = NUMA_NO_NODE;
2129 return &hstates[i];
2130 }
2131
2132 return kobj_to_node_hstate(kobj, nidp);
2133 }
2134
2135 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2136 struct kobj_attribute *attr, char *buf)
2137 {
2138 struct hstate *h;
2139 unsigned long nr_huge_pages;
2140 int nid;
2141
2142 h = kobj_to_hstate(kobj, &nid);
2143 if (nid == NUMA_NO_NODE)
2144 nr_huge_pages = h->nr_huge_pages;
2145 else
2146 nr_huge_pages = h->nr_huge_pages_node[nid];
2147
2148 return sprintf(buf, "%lu\n", nr_huge_pages);
2149 }
2150
2151 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2152 struct hstate *h, int nid,
2153 unsigned long count, size_t len)
2154 {
2155 int err;
2156 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
2157
2158 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
2159 err = -EINVAL;
2160 goto out;
2161 }
2162
2163 if (nid == NUMA_NO_NODE) {
2164 /*
2165 * global hstate attribute
2166 */
2167 if (!(obey_mempolicy &&
2168 init_nodemask_of_mempolicy(nodes_allowed))) {
2169 NODEMASK_FREE(nodes_allowed);
2170 nodes_allowed = &node_states[N_MEMORY];
2171 }
2172 } else if (nodes_allowed) {
2173 /*
2174 * per node hstate attribute: adjust count to global,
2175 * but restrict alloc/free to the specified node.
2176 */
2177 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2178 init_nodemask_of_node(nodes_allowed, nid);
2179 } else
2180 nodes_allowed = &node_states[N_MEMORY];
2181
2182 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
2183
2184 if (nodes_allowed != &node_states[N_MEMORY])
2185 NODEMASK_FREE(nodes_allowed);
2186
2187 return len;
2188 out:
2189 NODEMASK_FREE(nodes_allowed);
2190 return err;
2191 }
2192
2193 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2194 struct kobject *kobj, const char *buf,
2195 size_t len)
2196 {
2197 struct hstate *h;
2198 unsigned long count;
2199 int nid;
2200 int err;
2201
2202 err = kstrtoul(buf, 10, &count);
2203 if (err)
2204 return err;
2205
2206 h = kobj_to_hstate(kobj, &nid);
2207 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2208 }
2209
2210 static ssize_t nr_hugepages_show(struct kobject *kobj,
2211 struct kobj_attribute *attr, char *buf)
2212 {
2213 return nr_hugepages_show_common(kobj, attr, buf);
2214 }
2215
2216 static ssize_t nr_hugepages_store(struct kobject *kobj,
2217 struct kobj_attribute *attr, const char *buf, size_t len)
2218 {
2219 return nr_hugepages_store_common(false, kobj, buf, len);
2220 }
2221 HSTATE_ATTR(nr_hugepages);
2222
2223 #ifdef CONFIG_NUMA
2224
2225 /*
2226 * hstate attribute for optionally mempolicy-based constraint on persistent
2227 * huge page alloc/free.
2228 */
2229 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2230 struct kobj_attribute *attr, char *buf)
2231 {
2232 return nr_hugepages_show_common(kobj, attr, buf);
2233 }
2234
2235 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2236 struct kobj_attribute *attr, const char *buf, size_t len)
2237 {
2238 return nr_hugepages_store_common(true, kobj, buf, len);
2239 }
2240 HSTATE_ATTR(nr_hugepages_mempolicy);
2241 #endif
2242
2243
2244 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2245 struct kobj_attribute *attr, char *buf)
2246 {
2247 struct hstate *h = kobj_to_hstate(kobj, NULL);
2248 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2249 }
2250
2251 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2252 struct kobj_attribute *attr, const char *buf, size_t count)
2253 {
2254 int err;
2255 unsigned long input;
2256 struct hstate *h = kobj_to_hstate(kobj, NULL);
2257
2258 if (hstate_is_gigantic(h))
2259 return -EINVAL;
2260
2261 err = kstrtoul(buf, 10, &input);
2262 if (err)
2263 return err;
2264
2265 spin_lock(&hugetlb_lock);
2266 h->nr_overcommit_huge_pages = input;
2267 spin_unlock(&hugetlb_lock);
2268
2269 return count;
2270 }
2271 HSTATE_ATTR(nr_overcommit_hugepages);
2272
2273 static ssize_t free_hugepages_show(struct kobject *kobj,
2274 struct kobj_attribute *attr, char *buf)
2275 {
2276 struct hstate *h;
2277 unsigned long free_huge_pages;
2278 int nid;
2279
2280 h = kobj_to_hstate(kobj, &nid);
2281 if (nid == NUMA_NO_NODE)
2282 free_huge_pages = h->free_huge_pages;
2283 else
2284 free_huge_pages = h->free_huge_pages_node[nid];
2285
2286 return sprintf(buf, "%lu\n", free_huge_pages);
2287 }
2288 HSTATE_ATTR_RO(free_hugepages);
2289
2290 static ssize_t resv_hugepages_show(struct kobject *kobj,
2291 struct kobj_attribute *attr, char *buf)
2292 {
2293 struct hstate *h = kobj_to_hstate(kobj, NULL);
2294 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2295 }
2296 HSTATE_ATTR_RO(resv_hugepages);
2297
2298 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2299 struct kobj_attribute *attr, char *buf)
2300 {
2301 struct hstate *h;
2302 unsigned long surplus_huge_pages;
2303 int nid;
2304
2305 h = kobj_to_hstate(kobj, &nid);
2306 if (nid == NUMA_NO_NODE)
2307 surplus_huge_pages = h->surplus_huge_pages;
2308 else
2309 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2310
2311 return sprintf(buf, "%lu\n", surplus_huge_pages);
2312 }
2313 HSTATE_ATTR_RO(surplus_hugepages);
2314
2315 static struct attribute *hstate_attrs[] = {
2316 &nr_hugepages_attr.attr,
2317 &nr_overcommit_hugepages_attr.attr,
2318 &free_hugepages_attr.attr,
2319 &resv_hugepages_attr.attr,
2320 &surplus_hugepages_attr.attr,
2321 #ifdef CONFIG_NUMA
2322 &nr_hugepages_mempolicy_attr.attr,
2323 #endif
2324 NULL,
2325 };
2326
2327 static struct attribute_group hstate_attr_group = {
2328 .attrs = hstate_attrs,
2329 };
2330
2331 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2332 struct kobject **hstate_kobjs,
2333 struct attribute_group *hstate_attr_group)
2334 {
2335 int retval;
2336 int hi = hstate_index(h);
2337
2338 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2339 if (!hstate_kobjs[hi])
2340 return -ENOMEM;
2341
2342 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2343 if (retval)
2344 kobject_put(hstate_kobjs[hi]);
2345
2346 return retval;
2347 }
2348
2349 static void __init hugetlb_sysfs_init(void)
2350 {
2351 struct hstate *h;
2352 int err;
2353
2354 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2355 if (!hugepages_kobj)
2356 return;
2357
2358 for_each_hstate(h) {
2359 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2360 hstate_kobjs, &hstate_attr_group);
2361 if (err)
2362 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2363 }
2364 }
2365
2366 #ifdef CONFIG_NUMA
2367
2368 /*
2369 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2370 * with node devices in node_devices[] using a parallel array. The array
2371 * index of a node device or _hstate == node id.
2372 * This is here to avoid any static dependency of the node device driver, in
2373 * the base kernel, on the hugetlb module.
2374 */
2375 struct node_hstate {
2376 struct kobject *hugepages_kobj;
2377 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2378 };
2379 struct node_hstate node_hstates[MAX_NUMNODES];
2380
2381 /*
2382 * A subset of global hstate attributes for node devices
2383 */
2384 static struct attribute *per_node_hstate_attrs[] = {
2385 &nr_hugepages_attr.attr,
2386 &free_hugepages_attr.attr,
2387 &surplus_hugepages_attr.attr,
2388 NULL,
2389 };
2390
2391 static struct attribute_group per_node_hstate_attr_group = {
2392 .attrs = per_node_hstate_attrs,
2393 };
2394
2395 /*
2396 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2397 * Returns node id via non-NULL nidp.
2398 */
2399 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2400 {
2401 int nid;
2402
2403 for (nid = 0; nid < nr_node_ids; nid++) {
2404 struct node_hstate *nhs = &node_hstates[nid];
2405 int i;
2406 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2407 if (nhs->hstate_kobjs[i] == kobj) {
2408 if (nidp)
2409 *nidp = nid;
2410 return &hstates[i];
2411 }
2412 }
2413
2414 BUG();
2415 return NULL;
2416 }
2417
2418 /*
2419 * Unregister hstate attributes from a single node device.
2420 * No-op if no hstate attributes attached.
2421 */
2422 static void hugetlb_unregister_node(struct node *node)
2423 {
2424 struct hstate *h;
2425 struct node_hstate *nhs = &node_hstates[node->dev.id];
2426
2427 if (!nhs->hugepages_kobj)
2428 return; /* no hstate attributes */
2429
2430 for_each_hstate(h) {
2431 int idx = hstate_index(h);
2432 if (nhs->hstate_kobjs[idx]) {
2433 kobject_put(nhs->hstate_kobjs[idx]);
2434 nhs->hstate_kobjs[idx] = NULL;
2435 }
2436 }
2437
2438 kobject_put(nhs->hugepages_kobj);
2439 nhs->hugepages_kobj = NULL;
2440 }
2441
2442 /*
2443 * hugetlb module exit: unregister hstate attributes from node devices
2444 * that have them.
2445 */
2446 static void hugetlb_unregister_all_nodes(void)
2447 {
2448 int nid;
2449
2450 /*
2451 * disable node device registrations.
2452 */
2453 register_hugetlbfs_with_node(NULL, NULL);
2454
2455 /*
2456 * remove hstate attributes from any nodes that have them.
2457 */
2458 for (nid = 0; nid < nr_node_ids; nid++)
2459 hugetlb_unregister_node(node_devices[nid]);
2460 }
2461
2462 /*
2463 * Register hstate attributes for a single node device.
2464 * No-op if attributes already registered.
2465 */
2466 static void hugetlb_register_node(struct node *node)
2467 {
2468 struct hstate *h;
2469 struct node_hstate *nhs = &node_hstates[node->dev.id];
2470 int err;
2471
2472 if (nhs->hugepages_kobj)
2473 return; /* already allocated */
2474
2475 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2476 &node->dev.kobj);
2477 if (!nhs->hugepages_kobj)
2478 return;
2479
2480 for_each_hstate(h) {
2481 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2482 nhs->hstate_kobjs,
2483 &per_node_hstate_attr_group);
2484 if (err) {
2485 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2486 h->name, node->dev.id);
2487 hugetlb_unregister_node(node);
2488 break;
2489 }
2490 }
2491 }
2492
2493 /*
2494 * hugetlb init time: register hstate attributes for all registered node
2495 * devices of nodes that have memory. All on-line nodes should have
2496 * registered their associated device by this time.
2497 */
2498 static void __init hugetlb_register_all_nodes(void)
2499 {
2500 int nid;
2501
2502 for_each_node_state(nid, N_MEMORY) {
2503 struct node *node = node_devices[nid];
2504 if (node->dev.id == nid)
2505 hugetlb_register_node(node);
2506 }
2507
2508 /*
2509 * Let the node device driver know we're here so it can
2510 * [un]register hstate attributes on node hotplug.
2511 */
2512 register_hugetlbfs_with_node(hugetlb_register_node,
2513 hugetlb_unregister_node);
2514 }
2515 #else /* !CONFIG_NUMA */
2516
2517 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2518 {
2519 BUG();
2520 if (nidp)
2521 *nidp = -1;
2522 return NULL;
2523 }
2524
2525 static void hugetlb_unregister_all_nodes(void) { }
2526
2527 static void hugetlb_register_all_nodes(void) { }
2528
2529 #endif
2530
2531 static void __exit hugetlb_exit(void)
2532 {
2533 struct hstate *h;
2534
2535 hugetlb_unregister_all_nodes();
2536
2537 for_each_hstate(h) {
2538 kobject_put(hstate_kobjs[hstate_index(h)]);
2539 }
2540
2541 kobject_put(hugepages_kobj);
2542 kfree(hugetlb_fault_mutex_table);
2543 }
2544 module_exit(hugetlb_exit);
2545
2546 static int __init hugetlb_init(void)
2547 {
2548 int i;
2549
2550 if (!hugepages_supported())
2551 return 0;
2552
2553 if (!size_to_hstate(default_hstate_size)) {
2554 default_hstate_size = HPAGE_SIZE;
2555 if (!size_to_hstate(default_hstate_size))
2556 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2557 }
2558 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2559 if (default_hstate_max_huge_pages)
2560 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2561
2562 hugetlb_init_hstates();
2563 gather_bootmem_prealloc();
2564 report_hugepages();
2565
2566 hugetlb_sysfs_init();
2567 hugetlb_register_all_nodes();
2568 hugetlb_cgroup_file_init();
2569
2570 #ifdef CONFIG_SMP
2571 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2572 #else
2573 num_fault_mutexes = 1;
2574 #endif
2575 hugetlb_fault_mutex_table =
2576 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2577 BUG_ON(!hugetlb_fault_mutex_table);
2578
2579 for (i = 0; i < num_fault_mutexes; i++)
2580 mutex_init(&hugetlb_fault_mutex_table[i]);
2581 return 0;
2582 }
2583 module_init(hugetlb_init);
2584
2585 /* Should be called on processing a hugepagesz=... option */
2586 void __init hugetlb_add_hstate(unsigned order)
2587 {
2588 struct hstate *h;
2589 unsigned long i;
2590
2591 if (size_to_hstate(PAGE_SIZE << order)) {
2592 pr_warning("hugepagesz= specified twice, ignoring\n");
2593 return;
2594 }
2595 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2596 BUG_ON(order == 0);
2597 h = &hstates[hugetlb_max_hstate++];
2598 h->order = order;
2599 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2600 h->nr_huge_pages = 0;
2601 h->free_huge_pages = 0;
2602 for (i = 0; i < MAX_NUMNODES; ++i)
2603 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2604 INIT_LIST_HEAD(&h->hugepage_activelist);
2605 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2606 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2607 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2608 huge_page_size(h)/1024);
2609
2610 parsed_hstate = h;
2611 }
2612
2613 static int __init hugetlb_nrpages_setup(char *s)
2614 {
2615 unsigned long *mhp;
2616 static unsigned long *last_mhp;
2617
2618 /*
2619 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2620 * so this hugepages= parameter goes to the "default hstate".
2621 */
2622 if (!hugetlb_max_hstate)
2623 mhp = &default_hstate_max_huge_pages;
2624 else
2625 mhp = &parsed_hstate->max_huge_pages;
2626
2627 if (mhp == last_mhp) {
2628 pr_warning("hugepages= specified twice without "
2629 "interleaving hugepagesz=, ignoring\n");
2630 return 1;
2631 }
2632
2633 if (sscanf(s, "%lu", mhp) <= 0)
2634 *mhp = 0;
2635
2636 /*
2637 * Global state is always initialized later in hugetlb_init.
2638 * But we need to allocate >= MAX_ORDER hstates here early to still
2639 * use the bootmem allocator.
2640 */
2641 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2642 hugetlb_hstate_alloc_pages(parsed_hstate);
2643
2644 last_mhp = mhp;
2645
2646 return 1;
2647 }
2648 __setup("hugepages=", hugetlb_nrpages_setup);
2649
2650 static int __init hugetlb_default_setup(char *s)
2651 {
2652 default_hstate_size = memparse(s, &s);
2653 return 1;
2654 }
2655 __setup("default_hugepagesz=", hugetlb_default_setup);
2656
2657 static unsigned int cpuset_mems_nr(unsigned int *array)
2658 {
2659 int node;
2660 unsigned int nr = 0;
2661
2662 for_each_node_mask(node, cpuset_current_mems_allowed)
2663 nr += array[node];
2664
2665 return nr;
2666 }
2667
2668 #ifdef CONFIG_SYSCTL
2669 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2670 struct ctl_table *table, int write,
2671 void __user *buffer, size_t *length, loff_t *ppos)
2672 {
2673 struct hstate *h = &default_hstate;
2674 unsigned long tmp = h->max_huge_pages;
2675 int ret;
2676
2677 if (!hugepages_supported())
2678 return -ENOTSUPP;
2679
2680 table->data = &tmp;
2681 table->maxlen = sizeof(unsigned long);
2682 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2683 if (ret)
2684 goto out;
2685
2686 if (write)
2687 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2688 NUMA_NO_NODE, tmp, *length);
2689 out:
2690 return ret;
2691 }
2692
2693 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2694 void __user *buffer, size_t *length, loff_t *ppos)
2695 {
2696
2697 return hugetlb_sysctl_handler_common(false, table, write,
2698 buffer, length, ppos);
2699 }
2700
2701 #ifdef CONFIG_NUMA
2702 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2703 void __user *buffer, size_t *length, loff_t *ppos)
2704 {
2705 return hugetlb_sysctl_handler_common(true, table, write,
2706 buffer, length, ppos);
2707 }
2708 #endif /* CONFIG_NUMA */
2709
2710 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2711 void __user *buffer,
2712 size_t *length, loff_t *ppos)
2713 {
2714 struct hstate *h = &default_hstate;
2715 unsigned long tmp;
2716 int ret;
2717
2718 if (!hugepages_supported())
2719 return -ENOTSUPP;
2720
2721 tmp = h->nr_overcommit_huge_pages;
2722
2723 if (write && hstate_is_gigantic(h))
2724 return -EINVAL;
2725
2726 table->data = &tmp;
2727 table->maxlen = sizeof(unsigned long);
2728 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2729 if (ret)
2730 goto out;
2731
2732 if (write) {
2733 spin_lock(&hugetlb_lock);
2734 h->nr_overcommit_huge_pages = tmp;
2735 spin_unlock(&hugetlb_lock);
2736 }
2737 out:
2738 return ret;
2739 }
2740
2741 #endif /* CONFIG_SYSCTL */
2742
2743 void hugetlb_report_meminfo(struct seq_file *m)
2744 {
2745 struct hstate *h = &default_hstate;
2746 if (!hugepages_supported())
2747 return;
2748 seq_printf(m,
2749 "HugePages_Total: %5lu\n"
2750 "HugePages_Free: %5lu\n"
2751 "HugePages_Rsvd: %5lu\n"
2752 "HugePages_Surp: %5lu\n"
2753 "Hugepagesize: %8lu kB\n",
2754 h->nr_huge_pages,
2755 h->free_huge_pages,
2756 h->resv_huge_pages,
2757 h->surplus_huge_pages,
2758 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2759 }
2760
2761 int hugetlb_report_node_meminfo(int nid, char *buf)
2762 {
2763 struct hstate *h = &default_hstate;
2764 if (!hugepages_supported())
2765 return 0;
2766 return sprintf(buf,
2767 "Node %d HugePages_Total: %5u\n"
2768 "Node %d HugePages_Free: %5u\n"
2769 "Node %d HugePages_Surp: %5u\n",
2770 nid, h->nr_huge_pages_node[nid],
2771 nid, h->free_huge_pages_node[nid],
2772 nid, h->surplus_huge_pages_node[nid]);
2773 }
2774
2775 void hugetlb_show_meminfo(void)
2776 {
2777 struct hstate *h;
2778 int nid;
2779
2780 if (!hugepages_supported())
2781 return;
2782
2783 for_each_node_state(nid, N_MEMORY)
2784 for_each_hstate(h)
2785 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2786 nid,
2787 h->nr_huge_pages_node[nid],
2788 h->free_huge_pages_node[nid],
2789 h->surplus_huge_pages_node[nid],
2790 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2791 }
2792
2793 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2794 unsigned long hugetlb_total_pages(void)
2795 {
2796 struct hstate *h;
2797 unsigned long nr_total_pages = 0;
2798
2799 for_each_hstate(h)
2800 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2801 return nr_total_pages;
2802 }
2803
2804 static int hugetlb_acct_memory(struct hstate *h, long delta)
2805 {
2806 int ret = -ENOMEM;
2807
2808 spin_lock(&hugetlb_lock);
2809 /*
2810 * When cpuset is configured, it breaks the strict hugetlb page
2811 * reservation as the accounting is done on a global variable. Such
2812 * reservation is completely rubbish in the presence of cpuset because
2813 * the reservation is not checked against page availability for the
2814 * current cpuset. Application can still potentially OOM'ed by kernel
2815 * with lack of free htlb page in cpuset that the task is in.
2816 * Attempt to enforce strict accounting with cpuset is almost
2817 * impossible (or too ugly) because cpuset is too fluid that
2818 * task or memory node can be dynamically moved between cpusets.
2819 *
2820 * The change of semantics for shared hugetlb mapping with cpuset is
2821 * undesirable. However, in order to preserve some of the semantics,
2822 * we fall back to check against current free page availability as
2823 * a best attempt and hopefully to minimize the impact of changing
2824 * semantics that cpuset has.
2825 */
2826 if (delta > 0) {
2827 if (gather_surplus_pages(h, delta) < 0)
2828 goto out;
2829
2830 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2831 return_unused_surplus_pages(h, delta);
2832 goto out;
2833 }
2834 }
2835
2836 ret = 0;
2837 if (delta < 0)
2838 return_unused_surplus_pages(h, (unsigned long) -delta);
2839
2840 out:
2841 spin_unlock(&hugetlb_lock);
2842 return ret;
2843 }
2844
2845 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2846 {
2847 struct resv_map *resv = vma_resv_map(vma);
2848
2849 /*
2850 * This new VMA should share its siblings reservation map if present.
2851 * The VMA will only ever have a valid reservation map pointer where
2852 * it is being copied for another still existing VMA. As that VMA
2853 * has a reference to the reservation map it cannot disappear until
2854 * after this open call completes. It is therefore safe to take a
2855 * new reference here without additional locking.
2856 */
2857 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2858 kref_get(&resv->refs);
2859 }
2860
2861 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2862 {
2863 struct hstate *h = hstate_vma(vma);
2864 struct resv_map *resv = vma_resv_map(vma);
2865 struct hugepage_subpool *spool = subpool_vma(vma);
2866 unsigned long reserve, start, end;
2867 long gbl_reserve;
2868
2869 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2870 return;
2871
2872 start = vma_hugecache_offset(h, vma, vma->vm_start);
2873 end = vma_hugecache_offset(h, vma, vma->vm_end);
2874
2875 reserve = (end - start) - region_count(resv, start, end);
2876
2877 kref_put(&resv->refs, resv_map_release);
2878
2879 if (reserve) {
2880 /*
2881 * Decrement reserve counts. The global reserve count may be
2882 * adjusted if the subpool has a minimum size.
2883 */
2884 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2885 hugetlb_acct_memory(h, -gbl_reserve);
2886 }
2887 }
2888
2889 /*
2890 * We cannot handle pagefaults against hugetlb pages at all. They cause
2891 * handle_mm_fault() to try to instantiate regular-sized pages in the
2892 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2893 * this far.
2894 */
2895 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2896 {
2897 BUG();
2898 return 0;
2899 }
2900
2901 const struct vm_operations_struct hugetlb_vm_ops = {
2902 .fault = hugetlb_vm_op_fault,
2903 .open = hugetlb_vm_op_open,
2904 .close = hugetlb_vm_op_close,
2905 };
2906
2907 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2908 int writable)
2909 {
2910 pte_t entry;
2911
2912 if (writable) {
2913 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2914 vma->vm_page_prot)));
2915 } else {
2916 entry = huge_pte_wrprotect(mk_huge_pte(page,
2917 vma->vm_page_prot));
2918 }
2919 entry = pte_mkyoung(entry);
2920 entry = pte_mkhuge(entry);
2921 entry = arch_make_huge_pte(entry, vma, page, writable);
2922
2923 return entry;
2924 }
2925
2926 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2927 unsigned long address, pte_t *ptep)
2928 {
2929 pte_t entry;
2930
2931 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2932 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2933 update_mmu_cache(vma, address, ptep);
2934 }
2935
2936 static int is_hugetlb_entry_migration(pte_t pte)
2937 {
2938 swp_entry_t swp;
2939
2940 if (huge_pte_none(pte) || pte_present(pte))
2941 return 0;
2942 swp = pte_to_swp_entry(pte);
2943 if (non_swap_entry(swp) && is_migration_entry(swp))
2944 return 1;
2945 else
2946 return 0;
2947 }
2948
2949 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2950 {
2951 swp_entry_t swp;
2952
2953 if (huge_pte_none(pte) || pte_present(pte))
2954 return 0;
2955 swp = pte_to_swp_entry(pte);
2956 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2957 return 1;
2958 else
2959 return 0;
2960 }
2961
2962 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2963 struct vm_area_struct *vma)
2964 {
2965 pte_t *src_pte, *dst_pte, entry;
2966 struct page *ptepage;
2967 unsigned long addr;
2968 int cow;
2969 struct hstate *h = hstate_vma(vma);
2970 unsigned long sz = huge_page_size(h);
2971 unsigned long mmun_start; /* For mmu_notifiers */
2972 unsigned long mmun_end; /* For mmu_notifiers */
2973 int ret = 0;
2974
2975 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2976
2977 mmun_start = vma->vm_start;
2978 mmun_end = vma->vm_end;
2979 if (cow)
2980 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2981
2982 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2983 spinlock_t *src_ptl, *dst_ptl;
2984 src_pte = huge_pte_offset(src, addr);
2985 if (!src_pte)
2986 continue;
2987 dst_pte = huge_pte_alloc(dst, addr, sz);
2988 if (!dst_pte) {
2989 ret = -ENOMEM;
2990 break;
2991 }
2992
2993 /* If the pagetables are shared don't copy or take references */
2994 if (dst_pte == src_pte)
2995 continue;
2996
2997 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2998 src_ptl = huge_pte_lockptr(h, src, src_pte);
2999 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3000 entry = huge_ptep_get(src_pte);
3001 if (huge_pte_none(entry)) { /* skip none entry */
3002 ;
3003 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3004 is_hugetlb_entry_hwpoisoned(entry))) {
3005 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3006
3007 if (is_write_migration_entry(swp_entry) && cow) {
3008 /*
3009 * COW mappings require pages in both
3010 * parent and child to be set to read.
3011 */
3012 make_migration_entry_read(&swp_entry);
3013 entry = swp_entry_to_pte(swp_entry);
3014 set_huge_pte_at(src, addr, src_pte, entry);
3015 }
3016 set_huge_pte_at(dst, addr, dst_pte, entry);
3017 } else {
3018 if (cow) {
3019 huge_ptep_set_wrprotect(src, addr, src_pte);
3020 mmu_notifier_invalidate_range(src, mmun_start,
3021 mmun_end);
3022 }
3023 entry = huge_ptep_get(src_pte);
3024 ptepage = pte_page(entry);
3025 get_page(ptepage);
3026 page_dup_rmap(ptepage);
3027 set_huge_pte_at(dst, addr, dst_pte, entry);
3028 }
3029 spin_unlock(src_ptl);
3030 spin_unlock(dst_ptl);
3031 }
3032
3033 if (cow)
3034 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3035
3036 return ret;
3037 }
3038
3039 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3040 unsigned long start, unsigned long end,
3041 struct page *ref_page)
3042 {
3043 int force_flush = 0;
3044 struct mm_struct *mm = vma->vm_mm;
3045 unsigned long address;
3046 pte_t *ptep;
3047 pte_t pte;
3048 spinlock_t *ptl;
3049 struct page *page;
3050 struct hstate *h = hstate_vma(vma);
3051 unsigned long sz = huge_page_size(h);
3052 const unsigned long mmun_start = start; /* For mmu_notifiers */
3053 const unsigned long mmun_end = end; /* For mmu_notifiers */
3054
3055 WARN_ON(!is_vm_hugetlb_page(vma));
3056 BUG_ON(start & ~huge_page_mask(h));
3057 BUG_ON(end & ~huge_page_mask(h));
3058
3059 tlb_start_vma(tlb, vma);
3060 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3061 address = start;
3062 again:
3063 for (; address < end; address += sz) {
3064 ptep = huge_pte_offset(mm, address);
3065 if (!ptep)
3066 continue;
3067
3068 ptl = huge_pte_lock(h, mm, ptep);
3069 if (huge_pmd_unshare(mm, &address, ptep))
3070 goto unlock;
3071
3072 pte = huge_ptep_get(ptep);
3073 if (huge_pte_none(pte))
3074 goto unlock;
3075
3076 /*
3077 * Migrating hugepage or HWPoisoned hugepage is already
3078 * unmapped and its refcount is dropped, so just clear pte here.
3079 */
3080 if (unlikely(!pte_present(pte))) {
3081 huge_pte_clear(mm, address, ptep);
3082 goto unlock;
3083 }
3084
3085 page = pte_page(pte);
3086 /*
3087 * If a reference page is supplied, it is because a specific
3088 * page is being unmapped, not a range. Ensure the page we
3089 * are about to unmap is the actual page of interest.
3090 */
3091 if (ref_page) {
3092 if (page != ref_page)
3093 goto unlock;
3094
3095 /*
3096 * Mark the VMA as having unmapped its page so that
3097 * future faults in this VMA will fail rather than
3098 * looking like data was lost
3099 */
3100 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3101 }
3102
3103 pte = huge_ptep_get_and_clear(mm, address, ptep);
3104 tlb_remove_tlb_entry(tlb, ptep, address);
3105 if (huge_pte_dirty(pte))
3106 set_page_dirty(page);
3107
3108 page_remove_rmap(page);
3109 force_flush = !__tlb_remove_page(tlb, page);
3110 if (force_flush) {
3111 address += sz;
3112 spin_unlock(ptl);
3113 break;
3114 }
3115 /* Bail out after unmapping reference page if supplied */
3116 if (ref_page) {
3117 spin_unlock(ptl);
3118 break;
3119 }
3120 unlock:
3121 spin_unlock(ptl);
3122 }
3123 /*
3124 * mmu_gather ran out of room to batch pages, we break out of
3125 * the PTE lock to avoid doing the potential expensive TLB invalidate
3126 * and page-free while holding it.
3127 */
3128 if (force_flush) {
3129 force_flush = 0;
3130 tlb_flush_mmu(tlb);
3131 if (address < end && !ref_page)
3132 goto again;
3133 }
3134 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3135 tlb_end_vma(tlb, vma);
3136 }
3137
3138 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3139 struct vm_area_struct *vma, unsigned long start,
3140 unsigned long end, struct page *ref_page)
3141 {
3142 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3143
3144 /*
3145 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3146 * test will fail on a vma being torn down, and not grab a page table
3147 * on its way out. We're lucky that the flag has such an appropriate
3148 * name, and can in fact be safely cleared here. We could clear it
3149 * before the __unmap_hugepage_range above, but all that's necessary
3150 * is to clear it before releasing the i_mmap_rwsem. This works
3151 * because in the context this is called, the VMA is about to be
3152 * destroyed and the i_mmap_rwsem is held.
3153 */
3154 vma->vm_flags &= ~VM_MAYSHARE;
3155 }
3156
3157 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3158 unsigned long end, struct page *ref_page)
3159 {
3160 struct mm_struct *mm;
3161 struct mmu_gather tlb;
3162
3163 mm = vma->vm_mm;
3164
3165 tlb_gather_mmu(&tlb, mm, start, end);
3166 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3167 tlb_finish_mmu(&tlb, start, end);
3168 }
3169
3170 /*
3171 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3172 * mappping it owns the reserve page for. The intention is to unmap the page
3173 * from other VMAs and let the children be SIGKILLed if they are faulting the
3174 * same region.
3175 */
3176 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3177 struct page *page, unsigned long address)
3178 {
3179 struct hstate *h = hstate_vma(vma);
3180 struct vm_area_struct *iter_vma;
3181 struct address_space *mapping;
3182 pgoff_t pgoff;
3183
3184 /*
3185 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3186 * from page cache lookup which is in HPAGE_SIZE units.
3187 */
3188 address = address & huge_page_mask(h);
3189 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3190 vma->vm_pgoff;
3191 mapping = file_inode(vma->vm_file)->i_mapping;
3192
3193 /*
3194 * Take the mapping lock for the duration of the table walk. As
3195 * this mapping should be shared between all the VMAs,
3196 * __unmap_hugepage_range() is called as the lock is already held
3197 */
3198 i_mmap_lock_write(mapping);
3199 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
3200 /* Do not unmap the current VMA */
3201 if (iter_vma == vma)
3202 continue;
3203
3204 /*
3205 * Unmap the page from other VMAs without their own reserves.
3206 * They get marked to be SIGKILLed if they fault in these
3207 * areas. This is because a future no-page fault on this VMA
3208 * could insert a zeroed page instead of the data existing
3209 * from the time of fork. This would look like data corruption
3210 */
3211 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
3212 unmap_hugepage_range(iter_vma, address,
3213 address + huge_page_size(h), page);
3214 }
3215 i_mmap_unlock_write(mapping);
3216 }
3217
3218 /*
3219 * Hugetlb_cow() should be called with page lock of the original hugepage held.
3220 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3221 * cannot race with other handlers or page migration.
3222 * Keep the pte_same checks anyway to make transition from the mutex easier.
3223 */
3224 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3225 unsigned long address, pte_t *ptep, pte_t pte,
3226 struct page *pagecache_page, spinlock_t *ptl)
3227 {
3228 struct hstate *h = hstate_vma(vma);
3229 struct page *old_page, *new_page;
3230 int ret = 0, outside_reserve = 0;
3231 unsigned long mmun_start; /* For mmu_notifiers */
3232 unsigned long mmun_end; /* For mmu_notifiers */
3233
3234 old_page = pte_page(pte);
3235
3236 retry_avoidcopy:
3237 /* If no-one else is actually using this page, avoid the copy
3238 * and just make the page writable */
3239 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3240 page_move_anon_rmap(old_page, vma, address);
3241 set_huge_ptep_writable(vma, address, ptep);
3242 return 0;
3243 }
3244
3245 /*
3246 * If the process that created a MAP_PRIVATE mapping is about to
3247 * perform a COW due to a shared page count, attempt to satisfy
3248 * the allocation without using the existing reserves. The pagecache
3249 * page is used to determine if the reserve at this address was
3250 * consumed or not. If reserves were used, a partial faulted mapping
3251 * at the time of fork() could consume its reserves on COW instead
3252 * of the full address range.
3253 */
3254 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3255 old_page != pagecache_page)
3256 outside_reserve = 1;
3257
3258 page_cache_get(old_page);
3259
3260 /*
3261 * Drop page table lock as buddy allocator may be called. It will
3262 * be acquired again before returning to the caller, as expected.
3263 */
3264 spin_unlock(ptl);
3265 new_page = alloc_huge_page(vma, address, outside_reserve);
3266
3267 if (IS_ERR(new_page)) {
3268 /*
3269 * If a process owning a MAP_PRIVATE mapping fails to COW,
3270 * it is due to references held by a child and an insufficient
3271 * huge page pool. To guarantee the original mappers
3272 * reliability, unmap the page from child processes. The child
3273 * may get SIGKILLed if it later faults.
3274 */
3275 if (outside_reserve) {
3276 page_cache_release(old_page);
3277 BUG_ON(huge_pte_none(pte));
3278 unmap_ref_private(mm, vma, old_page, address);
3279 BUG_ON(huge_pte_none(pte));
3280 spin_lock(ptl);
3281 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3282 if (likely(ptep &&
3283 pte_same(huge_ptep_get(ptep), pte)))
3284 goto retry_avoidcopy;
3285 /*
3286 * race occurs while re-acquiring page table
3287 * lock, and our job is done.
3288 */
3289 return 0;
3290 }
3291
3292 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3293 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3294 goto out_release_old;
3295 }
3296
3297 /*
3298 * When the original hugepage is shared one, it does not have
3299 * anon_vma prepared.
3300 */
3301 if (unlikely(anon_vma_prepare(vma))) {
3302 ret = VM_FAULT_OOM;
3303 goto out_release_all;
3304 }
3305
3306 copy_user_huge_page(new_page, old_page, address, vma,
3307 pages_per_huge_page(h));
3308 __SetPageUptodate(new_page);
3309 set_page_huge_active(new_page);
3310
3311 mmun_start = address & huge_page_mask(h);
3312 mmun_end = mmun_start + huge_page_size(h);
3313 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3314
3315 /*
3316 * Retake the page table lock to check for racing updates
3317 * before the page tables are altered
3318 */
3319 spin_lock(ptl);
3320 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3321 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3322 ClearPagePrivate(new_page);
3323
3324 /* Break COW */
3325 huge_ptep_clear_flush(vma, address, ptep);
3326 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3327 set_huge_pte_at(mm, address, ptep,
3328 make_huge_pte(vma, new_page, 1));
3329 page_remove_rmap(old_page);
3330 hugepage_add_new_anon_rmap(new_page, vma, address);
3331 /* Make the old page be freed below */
3332 new_page = old_page;
3333 }
3334 spin_unlock(ptl);
3335 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3336 out_release_all:
3337 page_cache_release(new_page);
3338 out_release_old:
3339 page_cache_release(old_page);
3340
3341 spin_lock(ptl); /* Caller expects lock to be held */
3342 return ret;
3343 }
3344
3345 /* Return the pagecache page at a given address within a VMA */
3346 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3347 struct vm_area_struct *vma, unsigned long address)
3348 {
3349 struct address_space *mapping;
3350 pgoff_t idx;
3351
3352 mapping = vma->vm_file->f_mapping;
3353 idx = vma_hugecache_offset(h, vma, address);
3354
3355 return find_lock_page(mapping, idx);
3356 }
3357
3358 /*
3359 * Return whether there is a pagecache page to back given address within VMA.
3360 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3361 */
3362 static bool hugetlbfs_pagecache_present(struct hstate *h,
3363 struct vm_area_struct *vma, unsigned long address)
3364 {
3365 struct address_space *mapping;
3366 pgoff_t idx;
3367 struct page *page;
3368
3369 mapping = vma->vm_file->f_mapping;
3370 idx = vma_hugecache_offset(h, vma, address);
3371
3372 page = find_get_page(mapping, idx);
3373 if (page)
3374 put_page(page);
3375 return page != NULL;
3376 }
3377
3378 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3379 pgoff_t idx)
3380 {
3381 struct inode *inode = mapping->host;
3382 struct hstate *h = hstate_inode(inode);
3383 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3384
3385 if (err)
3386 return err;
3387 ClearPagePrivate(page);
3388
3389 spin_lock(&inode->i_lock);
3390 inode->i_blocks += blocks_per_huge_page(h);
3391 spin_unlock(&inode->i_lock);
3392 return 0;
3393 }
3394
3395 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3396 struct address_space *mapping, pgoff_t idx,
3397 unsigned long address, pte_t *ptep, unsigned int flags)
3398 {
3399 struct hstate *h = hstate_vma(vma);
3400 int ret = VM_FAULT_SIGBUS;
3401 int anon_rmap = 0;
3402 unsigned long size;
3403 struct page *page;
3404 pte_t new_pte;
3405 spinlock_t *ptl;
3406
3407 /*
3408 * Currently, we are forced to kill the process in the event the
3409 * original mapper has unmapped pages from the child due to a failed
3410 * COW. Warn that such a situation has occurred as it may not be obvious
3411 */
3412 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3413 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3414 current->pid);
3415 return ret;
3416 }
3417
3418 /*
3419 * Use page lock to guard against racing truncation
3420 * before we get page_table_lock.
3421 */
3422 retry:
3423 page = find_lock_page(mapping, idx);
3424 if (!page) {
3425 size = i_size_read(mapping->host) >> huge_page_shift(h);
3426 if (idx >= size)
3427 goto out;
3428 page = alloc_huge_page(vma, address, 0);
3429 if (IS_ERR(page)) {
3430 ret = PTR_ERR(page);
3431 if (ret == -ENOMEM)
3432 ret = VM_FAULT_OOM;
3433 else
3434 ret = VM_FAULT_SIGBUS;
3435 goto out;
3436 }
3437 clear_huge_page(page, address, pages_per_huge_page(h));
3438 __SetPageUptodate(page);
3439 set_page_huge_active(page);
3440
3441 if (vma->vm_flags & VM_MAYSHARE) {
3442 int err = huge_add_to_page_cache(page, mapping, idx);
3443 if (err) {
3444 put_page(page);
3445 if (err == -EEXIST)
3446 goto retry;
3447 goto out;
3448 }
3449 } else {
3450 lock_page(page);
3451 if (unlikely(anon_vma_prepare(vma))) {
3452 ret = VM_FAULT_OOM;
3453 goto backout_unlocked;
3454 }
3455 anon_rmap = 1;
3456 }
3457 } else {
3458 /*
3459 * If memory error occurs between mmap() and fault, some process
3460 * don't have hwpoisoned swap entry for errored virtual address.
3461 * So we need to block hugepage fault by PG_hwpoison bit check.
3462 */
3463 if (unlikely(PageHWPoison(page))) {
3464 ret = VM_FAULT_HWPOISON |
3465 VM_FAULT_SET_HINDEX(hstate_index(h));
3466 goto backout_unlocked;
3467 }
3468 }
3469
3470 /*
3471 * If we are going to COW a private mapping later, we examine the
3472 * pending reservations for this page now. This will ensure that
3473 * any allocations necessary to record that reservation occur outside
3474 * the spinlock.
3475 */
3476 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3477 if (vma_needs_reservation(h, vma, address) < 0) {
3478 ret = VM_FAULT_OOM;
3479 goto backout_unlocked;
3480 }
3481 /* Just decrements count, does not deallocate */
3482 vma_end_reservation(h, vma, address);
3483 }
3484
3485 ptl = huge_pte_lockptr(h, mm, ptep);
3486 spin_lock(ptl);
3487 size = i_size_read(mapping->host) >> huge_page_shift(h);
3488 if (idx >= size)
3489 goto backout;
3490
3491 ret = 0;
3492 if (!huge_pte_none(huge_ptep_get(ptep)))
3493 goto backout;
3494
3495 if (anon_rmap) {
3496 ClearPagePrivate(page);
3497 hugepage_add_new_anon_rmap(page, vma, address);
3498 } else
3499 page_dup_rmap(page);
3500 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3501 && (vma->vm_flags & VM_SHARED)));
3502 set_huge_pte_at(mm, address, ptep, new_pte);
3503
3504 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3505 /* Optimization, do the COW without a second fault */
3506 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3507 }
3508
3509 spin_unlock(ptl);
3510 unlock_page(page);
3511 out:
3512 return ret;
3513
3514 backout:
3515 spin_unlock(ptl);
3516 backout_unlocked:
3517 unlock_page(page);
3518 put_page(page);
3519 goto out;
3520 }
3521
3522 #ifdef CONFIG_SMP
3523 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3524 struct vm_area_struct *vma,
3525 struct address_space *mapping,
3526 pgoff_t idx, unsigned long address)
3527 {
3528 unsigned long key[2];
3529 u32 hash;
3530
3531 if (vma->vm_flags & VM_SHARED) {
3532 key[0] = (unsigned long) mapping;
3533 key[1] = idx;
3534 } else {
3535 key[0] = (unsigned long) mm;
3536 key[1] = address >> huge_page_shift(h);
3537 }
3538
3539 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3540
3541 return hash & (num_fault_mutexes - 1);
3542 }
3543 #else
3544 /*
3545 * For uniprocesor systems we always use a single mutex, so just
3546 * return 0 and avoid the hashing overhead.
3547 */
3548 u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3549 struct vm_area_struct *vma,
3550 struct address_space *mapping,
3551 pgoff_t idx, unsigned long address)
3552 {
3553 return 0;
3554 }
3555 #endif
3556
3557 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3558 unsigned long address, unsigned int flags)
3559 {
3560 pte_t *ptep, entry;
3561 spinlock_t *ptl;
3562 int ret;
3563 u32 hash;
3564 pgoff_t idx;
3565 struct page *page = NULL;
3566 struct page *pagecache_page = NULL;
3567 struct hstate *h = hstate_vma(vma);
3568 struct address_space *mapping;
3569 int need_wait_lock = 0;
3570
3571 address &= huge_page_mask(h);
3572
3573 ptep = huge_pte_offset(mm, address);
3574 if (ptep) {
3575 entry = huge_ptep_get(ptep);
3576 if (unlikely(is_hugetlb_entry_migration(entry))) {
3577 migration_entry_wait_huge(vma, mm, ptep);
3578 return 0;
3579 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3580 return VM_FAULT_HWPOISON_LARGE |
3581 VM_FAULT_SET_HINDEX(hstate_index(h));
3582 }
3583
3584 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3585 if (!ptep)
3586 return VM_FAULT_OOM;
3587
3588 mapping = vma->vm_file->f_mapping;
3589 idx = vma_hugecache_offset(h, vma, address);
3590
3591 /*
3592 * Serialize hugepage allocation and instantiation, so that we don't
3593 * get spurious allocation failures if two CPUs race to instantiate
3594 * the same page in the page cache.
3595 */
3596 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3597 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3598
3599 entry = huge_ptep_get(ptep);
3600 if (huge_pte_none(entry)) {
3601 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3602 goto out_mutex;
3603 }
3604
3605 ret = 0;
3606
3607 /*
3608 * entry could be a migration/hwpoison entry at this point, so this
3609 * check prevents the kernel from going below assuming that we have
3610 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3611 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3612 * handle it.
3613 */
3614 if (!pte_present(entry))
3615 goto out_mutex;
3616
3617 /*
3618 * If we are going to COW the mapping later, we examine the pending
3619 * reservations for this page now. This will ensure that any
3620 * allocations necessary to record that reservation occur outside the
3621 * spinlock. For private mappings, we also lookup the pagecache
3622 * page now as it is used to determine if a reservation has been
3623 * consumed.
3624 */
3625 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3626 if (vma_needs_reservation(h, vma, address) < 0) {
3627 ret = VM_FAULT_OOM;
3628 goto out_mutex;
3629 }
3630 /* Just decrements count, does not deallocate */
3631 vma_end_reservation(h, vma, address);
3632
3633 if (!(vma->vm_flags & VM_MAYSHARE))
3634 pagecache_page = hugetlbfs_pagecache_page(h,
3635 vma, address);
3636 }
3637
3638 ptl = huge_pte_lock(h, mm, ptep);
3639
3640 /* Check for a racing update before calling hugetlb_cow */
3641 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3642 goto out_ptl;
3643
3644 /*
3645 * hugetlb_cow() requires page locks of pte_page(entry) and
3646 * pagecache_page, so here we need take the former one
3647 * when page != pagecache_page or !pagecache_page.
3648 */
3649 page = pte_page(entry);
3650 if (page != pagecache_page)
3651 if (!trylock_page(page)) {
3652 need_wait_lock = 1;
3653 goto out_ptl;
3654 }
3655
3656 get_page(page);
3657
3658 if (flags & FAULT_FLAG_WRITE) {
3659 if (!huge_pte_write(entry)) {
3660 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3661 pagecache_page, ptl);
3662 goto out_put_page;
3663 }
3664 entry = huge_pte_mkdirty(entry);
3665 }
3666 entry = pte_mkyoung(entry);
3667 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3668 flags & FAULT_FLAG_WRITE))
3669 update_mmu_cache(vma, address, ptep);
3670 out_put_page:
3671 if (page != pagecache_page)
3672 unlock_page(page);
3673 put_page(page);
3674 out_ptl:
3675 spin_unlock(ptl);
3676
3677 if (pagecache_page) {
3678 unlock_page(pagecache_page);
3679 put_page(pagecache_page);
3680 }
3681 out_mutex:
3682 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3683 /*
3684 * Generally it's safe to hold refcount during waiting page lock. But
3685 * here we just wait to defer the next page fault to avoid busy loop and
3686 * the page is not used after unlocked before returning from the current
3687 * page fault. So we are safe from accessing freed page, even if we wait
3688 * here without taking refcount.
3689 */
3690 if (need_wait_lock)
3691 wait_on_page_locked(page);
3692 return ret;
3693 }
3694
3695 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3696 struct page **pages, struct vm_area_struct **vmas,
3697 unsigned long *position, unsigned long *nr_pages,
3698 long i, unsigned int flags)
3699 {
3700 unsigned long pfn_offset;
3701 unsigned long vaddr = *position;
3702 unsigned long remainder = *nr_pages;
3703 struct hstate *h = hstate_vma(vma);
3704
3705 while (vaddr < vma->vm_end && remainder) {
3706 pte_t *pte;
3707 spinlock_t *ptl = NULL;
3708 int absent;
3709 struct page *page;
3710
3711 /*
3712 * If we have a pending SIGKILL, don't keep faulting pages and
3713 * potentially allocating memory.
3714 */
3715 if (unlikely(fatal_signal_pending(current))) {
3716 remainder = 0;
3717 break;
3718 }
3719
3720 /*
3721 * Some archs (sparc64, sh*) have multiple pte_ts to
3722 * each hugepage. We have to make sure we get the
3723 * first, for the page indexing below to work.
3724 *
3725 * Note that page table lock is not held when pte is null.
3726 */
3727 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3728 if (pte)
3729 ptl = huge_pte_lock(h, mm, pte);
3730 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3731
3732 /*
3733 * When coredumping, it suits get_dump_page if we just return
3734 * an error where there's an empty slot with no huge pagecache
3735 * to back it. This way, we avoid allocating a hugepage, and
3736 * the sparse dumpfile avoids allocating disk blocks, but its
3737 * huge holes still show up with zeroes where they need to be.
3738 */
3739 if (absent && (flags & FOLL_DUMP) &&
3740 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3741 if (pte)
3742 spin_unlock(ptl);
3743 remainder = 0;
3744 break;
3745 }
3746
3747 /*
3748 * We need call hugetlb_fault for both hugepages under migration
3749 * (in which case hugetlb_fault waits for the migration,) and
3750 * hwpoisoned hugepages (in which case we need to prevent the
3751 * caller from accessing to them.) In order to do this, we use
3752 * here is_swap_pte instead of is_hugetlb_entry_migration and
3753 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3754 * both cases, and because we can't follow correct pages
3755 * directly from any kind of swap entries.
3756 */
3757 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3758 ((flags & FOLL_WRITE) &&
3759 !huge_pte_write(huge_ptep_get(pte)))) {
3760 int ret;
3761
3762 if (pte)
3763 spin_unlock(ptl);
3764 ret = hugetlb_fault(mm, vma, vaddr,
3765 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3766 if (!(ret & VM_FAULT_ERROR))
3767 continue;
3768
3769 remainder = 0;
3770 break;
3771 }
3772
3773 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3774 page = pte_page(huge_ptep_get(pte));
3775 same_page:
3776 if (pages) {
3777 pages[i] = mem_map_offset(page, pfn_offset);
3778 get_page_foll(pages[i]);
3779 }
3780
3781 if (vmas)
3782 vmas[i] = vma;
3783
3784 vaddr += PAGE_SIZE;
3785 ++pfn_offset;
3786 --remainder;
3787 ++i;
3788 if (vaddr < vma->vm_end && remainder &&
3789 pfn_offset < pages_per_huge_page(h)) {
3790 /*
3791 * We use pfn_offset to avoid touching the pageframes
3792 * of this compound page.
3793 */
3794 goto same_page;
3795 }
3796 spin_unlock(ptl);
3797 }
3798 *nr_pages = remainder;
3799 *position = vaddr;
3800
3801 return i ? i : -EFAULT;
3802 }
3803
3804 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3805 unsigned long address, unsigned long end, pgprot_t newprot)
3806 {
3807 struct mm_struct *mm = vma->vm_mm;
3808 unsigned long start = address;
3809 pte_t *ptep;
3810 pte_t pte;
3811 struct hstate *h = hstate_vma(vma);
3812 unsigned long pages = 0;
3813
3814 BUG_ON(address >= end);
3815 flush_cache_range(vma, address, end);
3816
3817 mmu_notifier_invalidate_range_start(mm, start, end);
3818 i_mmap_lock_write(vma->vm_file->f_mapping);
3819 for (; address < end; address += huge_page_size(h)) {
3820 spinlock_t *ptl;
3821 ptep = huge_pte_offset(mm, address);
3822 if (!ptep)
3823 continue;
3824 ptl = huge_pte_lock(h, mm, ptep);
3825 if (huge_pmd_unshare(mm, &address, ptep)) {
3826 pages++;
3827 spin_unlock(ptl);
3828 continue;
3829 }
3830 pte = huge_ptep_get(ptep);
3831 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3832 spin_unlock(ptl);
3833 continue;
3834 }
3835 if (unlikely(is_hugetlb_entry_migration(pte))) {
3836 swp_entry_t entry = pte_to_swp_entry(pte);
3837
3838 if (is_write_migration_entry(entry)) {
3839 pte_t newpte;
3840
3841 make_migration_entry_read(&entry);
3842 newpte = swp_entry_to_pte(entry);
3843 set_huge_pte_at(mm, address, ptep, newpte);
3844 pages++;
3845 }
3846 spin_unlock(ptl);
3847 continue;
3848 }
3849 if (!huge_pte_none(pte)) {
3850 pte = huge_ptep_get_and_clear(mm, address, ptep);
3851 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3852 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3853 set_huge_pte_at(mm, address, ptep, pte);
3854 pages++;
3855 }
3856 spin_unlock(ptl);
3857 }
3858 /*
3859 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3860 * may have cleared our pud entry and done put_page on the page table:
3861 * once we release i_mmap_rwsem, another task can do the final put_page
3862 * and that page table be reused and filled with junk.
3863 */
3864 flush_tlb_range(vma, start, end);
3865 mmu_notifier_invalidate_range(mm, start, end);
3866 i_mmap_unlock_write(vma->vm_file->f_mapping);
3867 mmu_notifier_invalidate_range_end(mm, start, end);
3868
3869 return pages << h->order;
3870 }
3871
3872 int hugetlb_reserve_pages(struct inode *inode,
3873 long from, long to,
3874 struct vm_area_struct *vma,
3875 vm_flags_t vm_flags)
3876 {
3877 long ret, chg;
3878 struct hstate *h = hstate_inode(inode);
3879 struct hugepage_subpool *spool = subpool_inode(inode);
3880 struct resv_map *resv_map;
3881 long gbl_reserve;
3882
3883 /*
3884 * Only apply hugepage reservation if asked. At fault time, an
3885 * attempt will be made for VM_NORESERVE to allocate a page
3886 * without using reserves
3887 */
3888 if (vm_flags & VM_NORESERVE)
3889 return 0;
3890
3891 /*
3892 * Shared mappings base their reservation on the number of pages that
3893 * are already allocated on behalf of the file. Private mappings need
3894 * to reserve the full area even if read-only as mprotect() may be
3895 * called to make the mapping read-write. Assume !vma is a shm mapping
3896 */
3897 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3898 resv_map = inode_resv_map(inode);
3899
3900 chg = region_chg(resv_map, from, to);
3901
3902 } else {
3903 resv_map = resv_map_alloc();
3904 if (!resv_map)
3905 return -ENOMEM;
3906
3907 chg = to - from;
3908
3909 set_vma_resv_map(vma, resv_map);
3910 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3911 }
3912
3913 if (chg < 0) {
3914 ret = chg;
3915 goto out_err;
3916 }
3917
3918 /*
3919 * There must be enough pages in the subpool for the mapping. If
3920 * the subpool has a minimum size, there may be some global
3921 * reservations already in place (gbl_reserve).
3922 */
3923 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3924 if (gbl_reserve < 0) {
3925 ret = -ENOSPC;
3926 goto out_err;
3927 }
3928
3929 /*
3930 * Check enough hugepages are available for the reservation.
3931 * Hand the pages back to the subpool if there are not
3932 */
3933 ret = hugetlb_acct_memory(h, gbl_reserve);
3934 if (ret < 0) {
3935 /* put back original number of pages, chg */
3936 (void)hugepage_subpool_put_pages(spool, chg);
3937 goto out_err;
3938 }
3939
3940 /*
3941 * Account for the reservations made. Shared mappings record regions
3942 * that have reservations as they are shared by multiple VMAs.
3943 * When the last VMA disappears, the region map says how much
3944 * the reservation was and the page cache tells how much of
3945 * the reservation was consumed. Private mappings are per-VMA and
3946 * only the consumed reservations are tracked. When the VMA
3947 * disappears, the original reservation is the VMA size and the
3948 * consumed reservations are stored in the map. Hence, nothing
3949 * else has to be done for private mappings here
3950 */
3951 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3952 long add = region_add(resv_map, from, to);
3953
3954 if (unlikely(chg > add)) {
3955 /*
3956 * pages in this range were added to the reserve
3957 * map between region_chg and region_add. This
3958 * indicates a race with alloc_huge_page. Adjust
3959 * the subpool and reserve counts modified above
3960 * based on the difference.
3961 */
3962 long rsv_adjust;
3963
3964 rsv_adjust = hugepage_subpool_put_pages(spool,
3965 chg - add);
3966 hugetlb_acct_memory(h, -rsv_adjust);
3967 }
3968 }
3969 return 0;
3970 out_err:
3971 if (!vma || vma->vm_flags & VM_MAYSHARE)
3972 region_abort(resv_map, from, to);
3973 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3974 kref_put(&resv_map->refs, resv_map_release);
3975 return ret;
3976 }
3977
3978 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
3979 long freed)
3980 {
3981 struct hstate *h = hstate_inode(inode);
3982 struct resv_map *resv_map = inode_resv_map(inode);
3983 long chg = 0;
3984 struct hugepage_subpool *spool = subpool_inode(inode);
3985 long gbl_reserve;
3986
3987 if (resv_map) {
3988 chg = region_del(resv_map, start, end);
3989 /*
3990 * region_del() can fail in the rare case where a region
3991 * must be split and another region descriptor can not be
3992 * allocated. If end == LONG_MAX, it will not fail.
3993 */
3994 if (chg < 0)
3995 return chg;
3996 }
3997
3998 spin_lock(&inode->i_lock);
3999 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
4000 spin_unlock(&inode->i_lock);
4001
4002 /*
4003 * If the subpool has a minimum size, the number of global
4004 * reservations to be released may be adjusted.
4005 */
4006 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4007 hugetlb_acct_memory(h, -gbl_reserve);
4008
4009 return 0;
4010 }
4011
4012 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4013 static unsigned long page_table_shareable(struct vm_area_struct *svma,
4014 struct vm_area_struct *vma,
4015 unsigned long addr, pgoff_t idx)
4016 {
4017 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4018 svma->vm_start;
4019 unsigned long sbase = saddr & PUD_MASK;
4020 unsigned long s_end = sbase + PUD_SIZE;
4021
4022 /* Allow segments to share if only one is marked locked */
4023 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
4024 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
4025
4026 /*
4027 * match the virtual addresses, permission and the alignment of the
4028 * page table page.
4029 */
4030 if (pmd_index(addr) != pmd_index(saddr) ||
4031 vm_flags != svm_flags ||
4032 sbase < svma->vm_start || svma->vm_end < s_end)
4033 return 0;
4034
4035 return saddr;
4036 }
4037
4038 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
4039 {
4040 unsigned long base = addr & PUD_MASK;
4041 unsigned long end = base + PUD_SIZE;
4042
4043 /*
4044 * check on proper vm_flags and page table alignment
4045 */
4046 if (vma->vm_flags & VM_MAYSHARE &&
4047 vma->vm_start <= base && end <= vma->vm_end)
4048 return true;
4049 return false;
4050 }
4051
4052 /*
4053 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4054 * and returns the corresponding pte. While this is not necessary for the
4055 * !shared pmd case because we can allocate the pmd later as well, it makes the
4056 * code much cleaner. pmd allocation is essential for the shared case because
4057 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
4058 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4059 * bad pmd for sharing.
4060 */
4061 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4062 {
4063 struct vm_area_struct *vma = find_vma(mm, addr);
4064 struct address_space *mapping = vma->vm_file->f_mapping;
4065 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4066 vma->vm_pgoff;
4067 struct vm_area_struct *svma;
4068 unsigned long saddr;
4069 pte_t *spte = NULL;
4070 pte_t *pte;
4071 spinlock_t *ptl;
4072
4073 if (!vma_shareable(vma, addr))
4074 return (pte_t *)pmd_alloc(mm, pud, addr);
4075
4076 i_mmap_lock_write(mapping);
4077 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4078 if (svma == vma)
4079 continue;
4080
4081 saddr = page_table_shareable(svma, vma, addr, idx);
4082 if (saddr) {
4083 spte = huge_pte_offset(svma->vm_mm, saddr);
4084 if (spte) {
4085 mm_inc_nr_pmds(mm);
4086 get_page(virt_to_page(spte));
4087 break;
4088 }
4089 }
4090 }
4091
4092 if (!spte)
4093 goto out;
4094
4095 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4096 spin_lock(ptl);
4097 if (pud_none(*pud)) {
4098 pud_populate(mm, pud,
4099 (pmd_t *)((unsigned long)spte & PAGE_MASK));
4100 } else {
4101 put_page(virt_to_page(spte));
4102 mm_inc_nr_pmds(mm);
4103 }
4104 spin_unlock(ptl);
4105 out:
4106 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4107 i_mmap_unlock_write(mapping);
4108 return pte;
4109 }
4110
4111 /*
4112 * unmap huge page backed by shared pte.
4113 *
4114 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4115 * indicated by page_count > 1, unmap is achieved by clearing pud and
4116 * decrementing the ref count. If count == 1, the pte page is not shared.
4117 *
4118 * called with page table lock held.
4119 *
4120 * returns: 1 successfully unmapped a shared pte page
4121 * 0 the underlying pte page is not shared, or it is the last user
4122 */
4123 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4124 {
4125 pgd_t *pgd = pgd_offset(mm, *addr);
4126 pud_t *pud = pud_offset(pgd, *addr);
4127
4128 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4129 if (page_count(virt_to_page(ptep)) == 1)
4130 return 0;
4131
4132 pud_clear(pud);
4133 put_page(virt_to_page(ptep));
4134 mm_dec_nr_pmds(mm);
4135 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4136 return 1;
4137 }
4138 #define want_pmd_share() (1)
4139 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4140 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4141 {
4142 return NULL;
4143 }
4144
4145 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4146 {
4147 return 0;
4148 }
4149 #define want_pmd_share() (0)
4150 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4151
4152 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4153 pte_t *huge_pte_alloc(struct mm_struct *mm,
4154 unsigned long addr, unsigned long sz)
4155 {
4156 pgd_t *pgd;
4157 pud_t *pud;
4158 pte_t *pte = NULL;
4159
4160 pgd = pgd_offset(mm, addr);
4161 pud = pud_alloc(mm, pgd, addr);
4162 if (pud) {
4163 if (sz == PUD_SIZE) {
4164 pte = (pte_t *)pud;
4165 } else {
4166 BUG_ON(sz != PMD_SIZE);
4167 if (want_pmd_share() && pud_none(*pud))
4168 pte = huge_pmd_share(mm, addr, pud);
4169 else
4170 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4171 }
4172 }
4173 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4174
4175 return pte;
4176 }
4177
4178 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4179 {
4180 pgd_t *pgd;
4181 pud_t *pud;
4182 pmd_t *pmd = NULL;
4183
4184 pgd = pgd_offset(mm, addr);
4185 if (pgd_present(*pgd)) {
4186 pud = pud_offset(pgd, addr);
4187 if (pud_present(*pud)) {
4188 if (pud_huge(*pud))
4189 return (pte_t *)pud;
4190 pmd = pmd_offset(pud, addr);
4191 }
4192 }
4193 return (pte_t *) pmd;
4194 }
4195
4196 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4197
4198 /*
4199 * These functions are overwritable if your architecture needs its own
4200 * behavior.
4201 */
4202 struct page * __weak
4203 follow_huge_addr(struct mm_struct *mm, unsigned long address,
4204 int write)
4205 {
4206 return ERR_PTR(-EINVAL);
4207 }
4208
4209 struct page * __weak
4210 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
4211 pmd_t *pmd, int flags)
4212 {
4213 struct page *page = NULL;
4214 spinlock_t *ptl;
4215 retry:
4216 ptl = pmd_lockptr(mm, pmd);
4217 spin_lock(ptl);
4218 /*
4219 * make sure that the address range covered by this pmd is not
4220 * unmapped from other threads.
4221 */
4222 if (!pmd_huge(*pmd))
4223 goto out;
4224 if (pmd_present(*pmd)) {
4225 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
4226 if (flags & FOLL_GET)
4227 get_page(page);
4228 } else {
4229 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4230 spin_unlock(ptl);
4231 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4232 goto retry;
4233 }
4234 /*
4235 * hwpoisoned entry is treated as no_page_table in
4236 * follow_page_mask().
4237 */
4238 }
4239 out:
4240 spin_unlock(ptl);
4241 return page;
4242 }
4243
4244 struct page * __weak
4245 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4246 pud_t *pud, int flags)
4247 {
4248 if (flags & FOLL_GET)
4249 return NULL;
4250
4251 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4252 }
4253
4254 #ifdef CONFIG_MEMORY_FAILURE
4255
4256 /*
4257 * This function is called from memory failure code.
4258 * Assume the caller holds page lock of the head page.
4259 */
4260 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4261 {
4262 struct hstate *h = page_hstate(hpage);
4263 int nid = page_to_nid(hpage);
4264 int ret = -EBUSY;
4265
4266 spin_lock(&hugetlb_lock);
4267 /*
4268 * Just checking !page_huge_active is not enough, because that could be
4269 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4270 */
4271 if (!page_huge_active(hpage) && !page_count(hpage)) {
4272 /*
4273 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4274 * but dangling hpage->lru can trigger list-debug warnings
4275 * (this happens when we call unpoison_memory() on it),
4276 * so let it point to itself with list_del_init().
4277 */
4278 list_del_init(&hpage->lru);
4279 set_page_refcounted(hpage);
4280 h->free_huge_pages--;
4281 h->free_huge_pages_node[nid]--;
4282 ret = 0;
4283 }
4284 spin_unlock(&hugetlb_lock);
4285 return ret;
4286 }
4287 #endif
4288
4289 bool isolate_huge_page(struct page *page, struct list_head *list)
4290 {
4291 bool ret = true;
4292
4293 VM_BUG_ON_PAGE(!PageHead(page), page);
4294 spin_lock(&hugetlb_lock);
4295 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4296 ret = false;
4297 goto unlock;
4298 }
4299 clear_page_huge_active(page);
4300 list_move_tail(&page->lru, list);
4301 unlock:
4302 spin_unlock(&hugetlb_lock);
4303 return ret;
4304 }
4305
4306 void putback_active_hugepage(struct page *page)
4307 {
4308 VM_BUG_ON_PAGE(!PageHead(page), page);
4309 spin_lock(&hugetlb_lock);
4310 set_page_huge_active(page);
4311 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4312 spin_unlock(&hugetlb_lock);
4313 put_page(page);
4314 }
This page took 0.131707 seconds and 6 git commands to generate.