Merge tag 'devicetree-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
43 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47 #endif
48
49 .bottom_up = false,
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51 };
52
53 int memblock_debug __initdata_memblock;
54 #ifdef CONFIG_MOVABLE_NODE
55 bool movable_node_enabled __initdata_memblock = false;
56 #endif
57 static bool system_has_some_mirror __initdata_memblock = false;
58 static int memblock_can_resize __initdata_memblock;
59 static int memblock_memory_in_slab __initdata_memblock = 0;
60 static int memblock_reserved_in_slab __initdata_memblock = 0;
61
62 ulong __init_memblock choose_memblock_flags(void)
63 {
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65 }
66
67 /* inline so we don't get a warning when pr_debug is compiled out */
68 static __init_memblock const char *
69 memblock_type_name(struct memblock_type *type)
70 {
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
77 }
78
79 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81 {
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83 }
84
85 /*
86 * Address comparison utilities
87 */
88 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
89 phys_addr_t base2, phys_addr_t size2)
90 {
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92 }
93
94 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
95 phys_addr_t base, phys_addr_t size)
96 {
97 unsigned long i;
98
99 for (i = 0; i < type->cnt; i++) {
100 phys_addr_t rgnbase = type->regions[i].base;
101 phys_addr_t rgnsize = type->regions[i].size;
102 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
103 break;
104 }
105
106 return (i < type->cnt) ? i : -1;
107 }
108
109 /*
110 * __memblock_find_range_bottom_up - find free area utility in bottom-up
111 * @start: start of candidate range
112 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
113 * @size: size of free area to find
114 * @align: alignment of free area to find
115 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
116 * @flags: pick from blocks based on memory attributes
117 *
118 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
119 *
120 * RETURNS:
121 * Found address on success, 0 on failure.
122 */
123 static phys_addr_t __init_memblock
124 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
125 phys_addr_t size, phys_addr_t align, int nid,
126 ulong flags)
127 {
128 phys_addr_t this_start, this_end, cand;
129 u64 i;
130
131 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
132 this_start = clamp(this_start, start, end);
133 this_end = clamp(this_end, start, end);
134
135 cand = round_up(this_start, align);
136 if (cand < this_end && this_end - cand >= size)
137 return cand;
138 }
139
140 return 0;
141 }
142
143 /**
144 * __memblock_find_range_top_down - find free area utility, in top-down
145 * @start: start of candidate range
146 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
147 * @size: size of free area to find
148 * @align: alignment of free area to find
149 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
150 * @flags: pick from blocks based on memory attributes
151 *
152 * Utility called from memblock_find_in_range_node(), find free area top-down.
153 *
154 * RETURNS:
155 * Found address on success, 0 on failure.
156 */
157 static phys_addr_t __init_memblock
158 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
159 phys_addr_t size, phys_addr_t align, int nid,
160 ulong flags)
161 {
162 phys_addr_t this_start, this_end, cand;
163 u64 i;
164
165 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
166 NULL) {
167 this_start = clamp(this_start, start, end);
168 this_end = clamp(this_end, start, end);
169
170 if (this_end < size)
171 continue;
172
173 cand = round_down(this_end - size, align);
174 if (cand >= this_start)
175 return cand;
176 }
177
178 return 0;
179 }
180
181 /**
182 * memblock_find_in_range_node - find free area in given range and node
183 * @size: size of free area to find
184 * @align: alignment of free area to find
185 * @start: start of candidate range
186 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
187 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
188 * @flags: pick from blocks based on memory attributes
189 *
190 * Find @size free area aligned to @align in the specified range and node.
191 *
192 * When allocation direction is bottom-up, the @start should be greater
193 * than the end of the kernel image. Otherwise, it will be trimmed. The
194 * reason is that we want the bottom-up allocation just near the kernel
195 * image so it is highly likely that the allocated memory and the kernel
196 * will reside in the same node.
197 *
198 * If bottom-up allocation failed, will try to allocate memory top-down.
199 *
200 * RETURNS:
201 * Found address on success, 0 on failure.
202 */
203 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
204 phys_addr_t align, phys_addr_t start,
205 phys_addr_t end, int nid, ulong flags)
206 {
207 phys_addr_t kernel_end, ret;
208
209 /* pump up @end */
210 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
211 end = memblock.current_limit;
212
213 /* avoid allocating the first page */
214 start = max_t(phys_addr_t, start, PAGE_SIZE);
215 end = max(start, end);
216 kernel_end = __pa_symbol(_end);
217
218 /*
219 * try bottom-up allocation only when bottom-up mode
220 * is set and @end is above the kernel image.
221 */
222 if (memblock_bottom_up() && end > kernel_end) {
223 phys_addr_t bottom_up_start;
224
225 /* make sure we will allocate above the kernel */
226 bottom_up_start = max(start, kernel_end);
227
228 /* ok, try bottom-up allocation first */
229 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
230 size, align, nid, flags);
231 if (ret)
232 return ret;
233
234 /*
235 * we always limit bottom-up allocation above the kernel,
236 * but top-down allocation doesn't have the limit, so
237 * retrying top-down allocation may succeed when bottom-up
238 * allocation failed.
239 *
240 * bottom-up allocation is expected to be fail very rarely,
241 * so we use WARN_ONCE() here to see the stack trace if
242 * fail happens.
243 */
244 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
245 "memory hotunplug may be affected\n");
246 }
247
248 return __memblock_find_range_top_down(start, end, size, align, nid,
249 flags);
250 }
251
252 /**
253 * memblock_find_in_range - find free area in given range
254 * @start: start of candidate range
255 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
256 * @size: size of free area to find
257 * @align: alignment of free area to find
258 *
259 * Find @size free area aligned to @align in the specified range.
260 *
261 * RETURNS:
262 * Found address on success, 0 on failure.
263 */
264 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
265 phys_addr_t end, phys_addr_t size,
266 phys_addr_t align)
267 {
268 phys_addr_t ret;
269 ulong flags = choose_memblock_flags();
270
271 again:
272 ret = memblock_find_in_range_node(size, align, start, end,
273 NUMA_NO_NODE, flags);
274
275 if (!ret && (flags & MEMBLOCK_MIRROR)) {
276 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
277 &size);
278 flags &= ~MEMBLOCK_MIRROR;
279 goto again;
280 }
281
282 return ret;
283 }
284
285 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
286 {
287 type->total_size -= type->regions[r].size;
288 memmove(&type->regions[r], &type->regions[r + 1],
289 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
290 type->cnt--;
291
292 /* Special case for empty arrays */
293 if (type->cnt == 0) {
294 WARN_ON(type->total_size != 0);
295 type->cnt = 1;
296 type->regions[0].base = 0;
297 type->regions[0].size = 0;
298 type->regions[0].flags = 0;
299 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
300 }
301 }
302
303 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
304
305 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
306 phys_addr_t *addr)
307 {
308 if (memblock.reserved.regions == memblock_reserved_init_regions)
309 return 0;
310
311 *addr = __pa(memblock.reserved.regions);
312
313 return PAGE_ALIGN(sizeof(struct memblock_region) *
314 memblock.reserved.max);
315 }
316
317 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
318 phys_addr_t *addr)
319 {
320 if (memblock.memory.regions == memblock_memory_init_regions)
321 return 0;
322
323 *addr = __pa(memblock.memory.regions);
324
325 return PAGE_ALIGN(sizeof(struct memblock_region) *
326 memblock.memory.max);
327 }
328
329 #endif
330
331 /**
332 * memblock_double_array - double the size of the memblock regions array
333 * @type: memblock type of the regions array being doubled
334 * @new_area_start: starting address of memory range to avoid overlap with
335 * @new_area_size: size of memory range to avoid overlap with
336 *
337 * Double the size of the @type regions array. If memblock is being used to
338 * allocate memory for a new reserved regions array and there is a previously
339 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
340 * waiting to be reserved, ensure the memory used by the new array does
341 * not overlap.
342 *
343 * RETURNS:
344 * 0 on success, -1 on failure.
345 */
346 static int __init_memblock memblock_double_array(struct memblock_type *type,
347 phys_addr_t new_area_start,
348 phys_addr_t new_area_size)
349 {
350 struct memblock_region *new_array, *old_array;
351 phys_addr_t old_alloc_size, new_alloc_size;
352 phys_addr_t old_size, new_size, addr;
353 int use_slab = slab_is_available();
354 int *in_slab;
355
356 /* We don't allow resizing until we know about the reserved regions
357 * of memory that aren't suitable for allocation
358 */
359 if (!memblock_can_resize)
360 return -1;
361
362 /* Calculate new doubled size */
363 old_size = type->max * sizeof(struct memblock_region);
364 new_size = old_size << 1;
365 /*
366 * We need to allocated new one align to PAGE_SIZE,
367 * so we can free them completely later.
368 */
369 old_alloc_size = PAGE_ALIGN(old_size);
370 new_alloc_size = PAGE_ALIGN(new_size);
371
372 /* Retrieve the slab flag */
373 if (type == &memblock.memory)
374 in_slab = &memblock_memory_in_slab;
375 else
376 in_slab = &memblock_reserved_in_slab;
377
378 /* Try to find some space for it.
379 *
380 * WARNING: We assume that either slab_is_available() and we use it or
381 * we use MEMBLOCK for allocations. That means that this is unsafe to
382 * use when bootmem is currently active (unless bootmem itself is
383 * implemented on top of MEMBLOCK which isn't the case yet)
384 *
385 * This should however not be an issue for now, as we currently only
386 * call into MEMBLOCK while it's still active, or much later when slab
387 * is active for memory hotplug operations
388 */
389 if (use_slab) {
390 new_array = kmalloc(new_size, GFP_KERNEL);
391 addr = new_array ? __pa(new_array) : 0;
392 } else {
393 /* only exclude range when trying to double reserved.regions */
394 if (type != &memblock.reserved)
395 new_area_start = new_area_size = 0;
396
397 addr = memblock_find_in_range(new_area_start + new_area_size,
398 memblock.current_limit,
399 new_alloc_size, PAGE_SIZE);
400 if (!addr && new_area_size)
401 addr = memblock_find_in_range(0,
402 min(new_area_start, memblock.current_limit),
403 new_alloc_size, PAGE_SIZE);
404
405 new_array = addr ? __va(addr) : NULL;
406 }
407 if (!addr) {
408 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
409 memblock_type_name(type), type->max, type->max * 2);
410 return -1;
411 }
412
413 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
414 memblock_type_name(type), type->max * 2, (u64)addr,
415 (u64)addr + new_size - 1);
416
417 /*
418 * Found space, we now need to move the array over before we add the
419 * reserved region since it may be our reserved array itself that is
420 * full.
421 */
422 memcpy(new_array, type->regions, old_size);
423 memset(new_array + type->max, 0, old_size);
424 old_array = type->regions;
425 type->regions = new_array;
426 type->max <<= 1;
427
428 /* Free old array. We needn't free it if the array is the static one */
429 if (*in_slab)
430 kfree(old_array);
431 else if (old_array != memblock_memory_init_regions &&
432 old_array != memblock_reserved_init_regions)
433 memblock_free(__pa(old_array), old_alloc_size);
434
435 /*
436 * Reserve the new array if that comes from the memblock. Otherwise, we
437 * needn't do it
438 */
439 if (!use_slab)
440 BUG_ON(memblock_reserve(addr, new_alloc_size));
441
442 /* Update slab flag */
443 *in_slab = use_slab;
444
445 return 0;
446 }
447
448 /**
449 * memblock_merge_regions - merge neighboring compatible regions
450 * @type: memblock type to scan
451 *
452 * Scan @type and merge neighboring compatible regions.
453 */
454 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
455 {
456 int i = 0;
457
458 /* cnt never goes below 1 */
459 while (i < type->cnt - 1) {
460 struct memblock_region *this = &type->regions[i];
461 struct memblock_region *next = &type->regions[i + 1];
462
463 if (this->base + this->size != next->base ||
464 memblock_get_region_node(this) !=
465 memblock_get_region_node(next) ||
466 this->flags != next->flags) {
467 BUG_ON(this->base + this->size > next->base);
468 i++;
469 continue;
470 }
471
472 this->size += next->size;
473 /* move forward from next + 1, index of which is i + 2 */
474 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
475 type->cnt--;
476 }
477 }
478
479 /**
480 * memblock_insert_region - insert new memblock region
481 * @type: memblock type to insert into
482 * @idx: index for the insertion point
483 * @base: base address of the new region
484 * @size: size of the new region
485 * @nid: node id of the new region
486 * @flags: flags of the new region
487 *
488 * Insert new memblock region [@base,@base+@size) into @type at @idx.
489 * @type must already have extra room to accomodate the new region.
490 */
491 static void __init_memblock memblock_insert_region(struct memblock_type *type,
492 int idx, phys_addr_t base,
493 phys_addr_t size,
494 int nid, unsigned long flags)
495 {
496 struct memblock_region *rgn = &type->regions[idx];
497
498 BUG_ON(type->cnt >= type->max);
499 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
500 rgn->base = base;
501 rgn->size = size;
502 rgn->flags = flags;
503 memblock_set_region_node(rgn, nid);
504 type->cnt++;
505 type->total_size += size;
506 }
507
508 /**
509 * memblock_add_range - add new memblock region
510 * @type: memblock type to add new region into
511 * @base: base address of the new region
512 * @size: size of the new region
513 * @nid: nid of the new region
514 * @flags: flags of the new region
515 *
516 * Add new memblock region [@base,@base+@size) into @type. The new region
517 * is allowed to overlap with existing ones - overlaps don't affect already
518 * existing regions. @type is guaranteed to be minimal (all neighbouring
519 * compatible regions are merged) after the addition.
520 *
521 * RETURNS:
522 * 0 on success, -errno on failure.
523 */
524 int __init_memblock memblock_add_range(struct memblock_type *type,
525 phys_addr_t base, phys_addr_t size,
526 int nid, unsigned long flags)
527 {
528 bool insert = false;
529 phys_addr_t obase = base;
530 phys_addr_t end = base + memblock_cap_size(base, &size);
531 int i, nr_new;
532
533 if (!size)
534 return 0;
535
536 /* special case for empty array */
537 if (type->regions[0].size == 0) {
538 WARN_ON(type->cnt != 1 || type->total_size);
539 type->regions[0].base = base;
540 type->regions[0].size = size;
541 type->regions[0].flags = flags;
542 memblock_set_region_node(&type->regions[0], nid);
543 type->total_size = size;
544 return 0;
545 }
546 repeat:
547 /*
548 * The following is executed twice. Once with %false @insert and
549 * then with %true. The first counts the number of regions needed
550 * to accomodate the new area. The second actually inserts them.
551 */
552 base = obase;
553 nr_new = 0;
554
555 for (i = 0; i < type->cnt; i++) {
556 struct memblock_region *rgn = &type->regions[i];
557 phys_addr_t rbase = rgn->base;
558 phys_addr_t rend = rbase + rgn->size;
559
560 if (rbase >= end)
561 break;
562 if (rend <= base)
563 continue;
564 /*
565 * @rgn overlaps. If it separates the lower part of new
566 * area, insert that portion.
567 */
568 if (rbase > base) {
569 nr_new++;
570 if (insert)
571 memblock_insert_region(type, i++, base,
572 rbase - base, nid,
573 flags);
574 }
575 /* area below @rend is dealt with, forget about it */
576 base = min(rend, end);
577 }
578
579 /* insert the remaining portion */
580 if (base < end) {
581 nr_new++;
582 if (insert)
583 memblock_insert_region(type, i, base, end - base,
584 nid, flags);
585 }
586
587 /*
588 * If this was the first round, resize array and repeat for actual
589 * insertions; otherwise, merge and return.
590 */
591 if (!insert) {
592 while (type->cnt + nr_new > type->max)
593 if (memblock_double_array(type, obase, size) < 0)
594 return -ENOMEM;
595 insert = true;
596 goto repeat;
597 } else {
598 memblock_merge_regions(type);
599 return 0;
600 }
601 }
602
603 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
604 int nid)
605 {
606 return memblock_add_range(&memblock.memory, base, size, nid, 0);
607 }
608
609 static int __init_memblock memblock_add_region(phys_addr_t base,
610 phys_addr_t size,
611 int nid,
612 unsigned long flags)
613 {
614 struct memblock_type *_rgn = &memblock.memory;
615
616 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
617 (unsigned long long)base,
618 (unsigned long long)base + size - 1,
619 flags, (void *)_RET_IP_);
620
621 return memblock_add_range(_rgn, base, size, nid, flags);
622 }
623
624 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
625 {
626 return memblock_add_region(base, size, MAX_NUMNODES, 0);
627 }
628
629 /**
630 * memblock_isolate_range - isolate given range into disjoint memblocks
631 * @type: memblock type to isolate range for
632 * @base: base of range to isolate
633 * @size: size of range to isolate
634 * @start_rgn: out parameter for the start of isolated region
635 * @end_rgn: out parameter for the end of isolated region
636 *
637 * Walk @type and ensure that regions don't cross the boundaries defined by
638 * [@base,@base+@size). Crossing regions are split at the boundaries,
639 * which may create at most two more regions. The index of the first
640 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
641 *
642 * RETURNS:
643 * 0 on success, -errno on failure.
644 */
645 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
646 phys_addr_t base, phys_addr_t size,
647 int *start_rgn, int *end_rgn)
648 {
649 phys_addr_t end = base + memblock_cap_size(base, &size);
650 int i;
651
652 *start_rgn = *end_rgn = 0;
653
654 if (!size)
655 return 0;
656
657 /* we'll create at most two more regions */
658 while (type->cnt + 2 > type->max)
659 if (memblock_double_array(type, base, size) < 0)
660 return -ENOMEM;
661
662 for (i = 0; i < type->cnt; i++) {
663 struct memblock_region *rgn = &type->regions[i];
664 phys_addr_t rbase = rgn->base;
665 phys_addr_t rend = rbase + rgn->size;
666
667 if (rbase >= end)
668 break;
669 if (rend <= base)
670 continue;
671
672 if (rbase < base) {
673 /*
674 * @rgn intersects from below. Split and continue
675 * to process the next region - the new top half.
676 */
677 rgn->base = base;
678 rgn->size -= base - rbase;
679 type->total_size -= base - rbase;
680 memblock_insert_region(type, i, rbase, base - rbase,
681 memblock_get_region_node(rgn),
682 rgn->flags);
683 } else if (rend > end) {
684 /*
685 * @rgn intersects from above. Split and redo the
686 * current region - the new bottom half.
687 */
688 rgn->base = end;
689 rgn->size -= end - rbase;
690 type->total_size -= end - rbase;
691 memblock_insert_region(type, i--, rbase, end - rbase,
692 memblock_get_region_node(rgn),
693 rgn->flags);
694 } else {
695 /* @rgn is fully contained, record it */
696 if (!*end_rgn)
697 *start_rgn = i;
698 *end_rgn = i + 1;
699 }
700 }
701
702 return 0;
703 }
704
705 int __init_memblock memblock_remove_range(struct memblock_type *type,
706 phys_addr_t base, phys_addr_t size)
707 {
708 int start_rgn, end_rgn;
709 int i, ret;
710
711 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
712 if (ret)
713 return ret;
714
715 for (i = end_rgn - 1; i >= start_rgn; i--)
716 memblock_remove_region(type, i);
717 return 0;
718 }
719
720 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
721 {
722 return memblock_remove_range(&memblock.memory, base, size);
723 }
724
725
726 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
727 {
728 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
729 (unsigned long long)base,
730 (unsigned long long)base + size - 1,
731 (void *)_RET_IP_);
732
733 kmemleak_free_part(__va(base), size);
734 return memblock_remove_range(&memblock.reserved, base, size);
735 }
736
737 static int __init_memblock memblock_reserve_region(phys_addr_t base,
738 phys_addr_t size,
739 int nid,
740 unsigned long flags)
741 {
742 struct memblock_type *type = &memblock.reserved;
743
744 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
745 (unsigned long long)base,
746 (unsigned long long)base + size - 1,
747 flags, (void *)_RET_IP_);
748
749 return memblock_add_range(type, base, size, nid, flags);
750 }
751
752 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
753 {
754 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
755 }
756
757 /**
758 *
759 * This function isolates region [@base, @base + @size), and sets/clears flag
760 *
761 * Return 0 on succees, -errno on failure.
762 */
763 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
764 phys_addr_t size, int set, int flag)
765 {
766 struct memblock_type *type = &memblock.memory;
767 int i, ret, start_rgn, end_rgn;
768
769 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
770 if (ret)
771 return ret;
772
773 for (i = start_rgn; i < end_rgn; i++)
774 if (set)
775 memblock_set_region_flags(&type->regions[i], flag);
776 else
777 memblock_clear_region_flags(&type->regions[i], flag);
778
779 memblock_merge_regions(type);
780 return 0;
781 }
782
783 /**
784 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
785 * @base: the base phys addr of the region
786 * @size: the size of the region
787 *
788 * Return 0 on succees, -errno on failure.
789 */
790 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
791 {
792 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
793 }
794
795 /**
796 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
797 * @base: the base phys addr of the region
798 * @size: the size of the region
799 *
800 * Return 0 on succees, -errno on failure.
801 */
802 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
803 {
804 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
805 }
806
807 /**
808 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
809 * @base: the base phys addr of the region
810 * @size: the size of the region
811 *
812 * Return 0 on succees, -errno on failure.
813 */
814 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
815 {
816 system_has_some_mirror = true;
817
818 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
819 }
820
821
822 /**
823 * __next_reserved_mem_region - next function for for_each_reserved_region()
824 * @idx: pointer to u64 loop variable
825 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
826 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
827 *
828 * Iterate over all reserved memory regions.
829 */
830 void __init_memblock __next_reserved_mem_region(u64 *idx,
831 phys_addr_t *out_start,
832 phys_addr_t *out_end)
833 {
834 struct memblock_type *rsv = &memblock.reserved;
835
836 if (*idx >= 0 && *idx < rsv->cnt) {
837 struct memblock_region *r = &rsv->regions[*idx];
838 phys_addr_t base = r->base;
839 phys_addr_t size = r->size;
840
841 if (out_start)
842 *out_start = base;
843 if (out_end)
844 *out_end = base + size - 1;
845
846 *idx += 1;
847 return;
848 }
849
850 /* signal end of iteration */
851 *idx = ULLONG_MAX;
852 }
853
854 /**
855 * __next__mem_range - next function for for_each_free_mem_range() etc.
856 * @idx: pointer to u64 loop variable
857 * @nid: node selector, %NUMA_NO_NODE for all nodes
858 * @flags: pick from blocks based on memory attributes
859 * @type_a: pointer to memblock_type from where the range is taken
860 * @type_b: pointer to memblock_type which excludes memory from being taken
861 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
862 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
863 * @out_nid: ptr to int for nid of the range, can be %NULL
864 *
865 * Find the first area from *@idx which matches @nid, fill the out
866 * parameters, and update *@idx for the next iteration. The lower 32bit of
867 * *@idx contains index into type_a and the upper 32bit indexes the
868 * areas before each region in type_b. For example, if type_b regions
869 * look like the following,
870 *
871 * 0:[0-16), 1:[32-48), 2:[128-130)
872 *
873 * The upper 32bit indexes the following regions.
874 *
875 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
876 *
877 * As both region arrays are sorted, the function advances the two indices
878 * in lockstep and returns each intersection.
879 */
880 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
881 struct memblock_type *type_a,
882 struct memblock_type *type_b,
883 phys_addr_t *out_start,
884 phys_addr_t *out_end, int *out_nid)
885 {
886 int idx_a = *idx & 0xffffffff;
887 int idx_b = *idx >> 32;
888
889 if (WARN_ONCE(nid == MAX_NUMNODES,
890 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
891 nid = NUMA_NO_NODE;
892
893 for (; idx_a < type_a->cnt; idx_a++) {
894 struct memblock_region *m = &type_a->regions[idx_a];
895
896 phys_addr_t m_start = m->base;
897 phys_addr_t m_end = m->base + m->size;
898 int m_nid = memblock_get_region_node(m);
899
900 /* only memory regions are associated with nodes, check it */
901 if (nid != NUMA_NO_NODE && nid != m_nid)
902 continue;
903
904 /* skip hotpluggable memory regions if needed */
905 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
906 continue;
907
908 /* if we want mirror memory skip non-mirror memory regions */
909 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
910 continue;
911
912 if (!type_b) {
913 if (out_start)
914 *out_start = m_start;
915 if (out_end)
916 *out_end = m_end;
917 if (out_nid)
918 *out_nid = m_nid;
919 idx_a++;
920 *idx = (u32)idx_a | (u64)idx_b << 32;
921 return;
922 }
923
924 /* scan areas before each reservation */
925 for (; idx_b < type_b->cnt + 1; idx_b++) {
926 struct memblock_region *r;
927 phys_addr_t r_start;
928 phys_addr_t r_end;
929
930 r = &type_b->regions[idx_b];
931 r_start = idx_b ? r[-1].base + r[-1].size : 0;
932 r_end = idx_b < type_b->cnt ?
933 r->base : ULLONG_MAX;
934
935 /*
936 * if idx_b advanced past idx_a,
937 * break out to advance idx_a
938 */
939 if (r_start >= m_end)
940 break;
941 /* if the two regions intersect, we're done */
942 if (m_start < r_end) {
943 if (out_start)
944 *out_start =
945 max(m_start, r_start);
946 if (out_end)
947 *out_end = min(m_end, r_end);
948 if (out_nid)
949 *out_nid = m_nid;
950 /*
951 * The region which ends first is
952 * advanced for the next iteration.
953 */
954 if (m_end <= r_end)
955 idx_a++;
956 else
957 idx_b++;
958 *idx = (u32)idx_a | (u64)idx_b << 32;
959 return;
960 }
961 }
962 }
963
964 /* signal end of iteration */
965 *idx = ULLONG_MAX;
966 }
967
968 /**
969 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
970 *
971 * Finds the next range from type_a which is not marked as unsuitable
972 * in type_b.
973 *
974 * @idx: pointer to u64 loop variable
975 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
976 * @flags: pick from blocks based on memory attributes
977 * @type_a: pointer to memblock_type from where the range is taken
978 * @type_b: pointer to memblock_type which excludes memory from being taken
979 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
980 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
981 * @out_nid: ptr to int for nid of the range, can be %NULL
982 *
983 * Reverse of __next_mem_range().
984 */
985 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
986 struct memblock_type *type_a,
987 struct memblock_type *type_b,
988 phys_addr_t *out_start,
989 phys_addr_t *out_end, int *out_nid)
990 {
991 int idx_a = *idx & 0xffffffff;
992 int idx_b = *idx >> 32;
993
994 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
995 nid = NUMA_NO_NODE;
996
997 if (*idx == (u64)ULLONG_MAX) {
998 idx_a = type_a->cnt - 1;
999 idx_b = type_b->cnt;
1000 }
1001
1002 for (; idx_a >= 0; idx_a--) {
1003 struct memblock_region *m = &type_a->regions[idx_a];
1004
1005 phys_addr_t m_start = m->base;
1006 phys_addr_t m_end = m->base + m->size;
1007 int m_nid = memblock_get_region_node(m);
1008
1009 /* only memory regions are associated with nodes, check it */
1010 if (nid != NUMA_NO_NODE && nid != m_nid)
1011 continue;
1012
1013 /* skip hotpluggable memory regions if needed */
1014 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1015 continue;
1016
1017 /* if we want mirror memory skip non-mirror memory regions */
1018 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1019 continue;
1020
1021 if (!type_b) {
1022 if (out_start)
1023 *out_start = m_start;
1024 if (out_end)
1025 *out_end = m_end;
1026 if (out_nid)
1027 *out_nid = m_nid;
1028 idx_a++;
1029 *idx = (u32)idx_a | (u64)idx_b << 32;
1030 return;
1031 }
1032
1033 /* scan areas before each reservation */
1034 for (; idx_b >= 0; idx_b--) {
1035 struct memblock_region *r;
1036 phys_addr_t r_start;
1037 phys_addr_t r_end;
1038
1039 r = &type_b->regions[idx_b];
1040 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1041 r_end = idx_b < type_b->cnt ?
1042 r->base : ULLONG_MAX;
1043 /*
1044 * if idx_b advanced past idx_a,
1045 * break out to advance idx_a
1046 */
1047
1048 if (r_end <= m_start)
1049 break;
1050 /* if the two regions intersect, we're done */
1051 if (m_end > r_start) {
1052 if (out_start)
1053 *out_start = max(m_start, r_start);
1054 if (out_end)
1055 *out_end = min(m_end, r_end);
1056 if (out_nid)
1057 *out_nid = m_nid;
1058 if (m_start >= r_start)
1059 idx_a--;
1060 else
1061 idx_b--;
1062 *idx = (u32)idx_a | (u64)idx_b << 32;
1063 return;
1064 }
1065 }
1066 }
1067 /* signal end of iteration */
1068 *idx = ULLONG_MAX;
1069 }
1070
1071 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1072 /*
1073 * Common iterator interface used to define for_each_mem_range().
1074 */
1075 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1076 unsigned long *out_start_pfn,
1077 unsigned long *out_end_pfn, int *out_nid)
1078 {
1079 struct memblock_type *type = &memblock.memory;
1080 struct memblock_region *r;
1081
1082 while (++*idx < type->cnt) {
1083 r = &type->regions[*idx];
1084
1085 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1086 continue;
1087 if (nid == MAX_NUMNODES || nid == r->nid)
1088 break;
1089 }
1090 if (*idx >= type->cnt) {
1091 *idx = -1;
1092 return;
1093 }
1094
1095 if (out_start_pfn)
1096 *out_start_pfn = PFN_UP(r->base);
1097 if (out_end_pfn)
1098 *out_end_pfn = PFN_DOWN(r->base + r->size);
1099 if (out_nid)
1100 *out_nid = r->nid;
1101 }
1102
1103 /**
1104 * memblock_set_node - set node ID on memblock regions
1105 * @base: base of area to set node ID for
1106 * @size: size of area to set node ID for
1107 * @type: memblock type to set node ID for
1108 * @nid: node ID to set
1109 *
1110 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1111 * Regions which cross the area boundaries are split as necessary.
1112 *
1113 * RETURNS:
1114 * 0 on success, -errno on failure.
1115 */
1116 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1117 struct memblock_type *type, int nid)
1118 {
1119 int start_rgn, end_rgn;
1120 int i, ret;
1121
1122 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1123 if (ret)
1124 return ret;
1125
1126 for (i = start_rgn; i < end_rgn; i++)
1127 memblock_set_region_node(&type->regions[i], nid);
1128
1129 memblock_merge_regions(type);
1130 return 0;
1131 }
1132 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1133
1134 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1135 phys_addr_t align, phys_addr_t start,
1136 phys_addr_t end, int nid, ulong flags)
1137 {
1138 phys_addr_t found;
1139
1140 if (!align)
1141 align = SMP_CACHE_BYTES;
1142
1143 found = memblock_find_in_range_node(size, align, start, end, nid,
1144 flags);
1145 if (found && !memblock_reserve(found, size)) {
1146 /*
1147 * The min_count is set to 0 so that memblock allocations are
1148 * never reported as leaks.
1149 */
1150 kmemleak_alloc(__va(found), size, 0, 0);
1151 return found;
1152 }
1153 return 0;
1154 }
1155
1156 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1157 phys_addr_t start, phys_addr_t end,
1158 ulong flags)
1159 {
1160 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1161 flags);
1162 }
1163
1164 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1165 phys_addr_t align, phys_addr_t max_addr,
1166 int nid, ulong flags)
1167 {
1168 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1169 }
1170
1171 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1172 {
1173 ulong flags = choose_memblock_flags();
1174 phys_addr_t ret;
1175
1176 again:
1177 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1178 nid, flags);
1179
1180 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1181 flags &= ~MEMBLOCK_MIRROR;
1182 goto again;
1183 }
1184 return ret;
1185 }
1186
1187 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1188 {
1189 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1190 MEMBLOCK_NONE);
1191 }
1192
1193 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1194 {
1195 phys_addr_t alloc;
1196
1197 alloc = __memblock_alloc_base(size, align, max_addr);
1198
1199 if (alloc == 0)
1200 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1201 (unsigned long long) size, (unsigned long long) max_addr);
1202
1203 return alloc;
1204 }
1205
1206 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1207 {
1208 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1209 }
1210
1211 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1212 {
1213 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1214
1215 if (res)
1216 return res;
1217 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1218 }
1219
1220 /**
1221 * memblock_virt_alloc_internal - allocate boot memory block
1222 * @size: size of memory block to be allocated in bytes
1223 * @align: alignment of the region and block's size
1224 * @min_addr: the lower bound of the memory region to allocate (phys address)
1225 * @max_addr: the upper bound of the memory region to allocate (phys address)
1226 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1227 *
1228 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1229 * will fall back to memory below @min_addr. Also, allocation may fall back
1230 * to any node in the system if the specified node can not
1231 * hold the requested memory.
1232 *
1233 * The allocation is performed from memory region limited by
1234 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1235 *
1236 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1237 *
1238 * The phys address of allocated boot memory block is converted to virtual and
1239 * allocated memory is reset to 0.
1240 *
1241 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1242 * allocated boot memory block, so that it is never reported as leaks.
1243 *
1244 * RETURNS:
1245 * Virtual address of allocated memory block on success, NULL on failure.
1246 */
1247 static void * __init memblock_virt_alloc_internal(
1248 phys_addr_t size, phys_addr_t align,
1249 phys_addr_t min_addr, phys_addr_t max_addr,
1250 int nid)
1251 {
1252 phys_addr_t alloc;
1253 void *ptr;
1254 ulong flags = choose_memblock_flags();
1255
1256 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1257 nid = NUMA_NO_NODE;
1258
1259 /*
1260 * Detect any accidental use of these APIs after slab is ready, as at
1261 * this moment memblock may be deinitialized already and its
1262 * internal data may be destroyed (after execution of free_all_bootmem)
1263 */
1264 if (WARN_ON_ONCE(slab_is_available()))
1265 return kzalloc_node(size, GFP_NOWAIT, nid);
1266
1267 if (!align)
1268 align = SMP_CACHE_BYTES;
1269
1270 if (max_addr > memblock.current_limit)
1271 max_addr = memblock.current_limit;
1272
1273 again:
1274 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1275 nid, flags);
1276 if (alloc)
1277 goto done;
1278
1279 if (nid != NUMA_NO_NODE) {
1280 alloc = memblock_find_in_range_node(size, align, min_addr,
1281 max_addr, NUMA_NO_NODE,
1282 flags);
1283 if (alloc)
1284 goto done;
1285 }
1286
1287 if (min_addr) {
1288 min_addr = 0;
1289 goto again;
1290 }
1291
1292 if (flags & MEMBLOCK_MIRROR) {
1293 flags &= ~MEMBLOCK_MIRROR;
1294 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1295 &size);
1296 goto again;
1297 }
1298
1299 return NULL;
1300 done:
1301 memblock_reserve(alloc, size);
1302 ptr = phys_to_virt(alloc);
1303 memset(ptr, 0, size);
1304
1305 /*
1306 * The min_count is set to 0 so that bootmem allocated blocks
1307 * are never reported as leaks. This is because many of these blocks
1308 * are only referred via the physical address which is not
1309 * looked up by kmemleak.
1310 */
1311 kmemleak_alloc(ptr, size, 0, 0);
1312
1313 return ptr;
1314 }
1315
1316 /**
1317 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 * is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 * allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1328 * additional debug information (including caller info), if enabled.
1329 *
1330 * RETURNS:
1331 * Virtual address of allocated memory block on success, NULL on failure.
1332 */
1333 void * __init memblock_virt_alloc_try_nid_nopanic(
1334 phys_addr_t size, phys_addr_t align,
1335 phys_addr_t min_addr, phys_addr_t max_addr,
1336 int nid)
1337 {
1338 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1339 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1340 (u64)max_addr, (void *)_RET_IP_);
1341 return memblock_virt_alloc_internal(size, align, min_addr,
1342 max_addr, nid);
1343 }
1344
1345 /**
1346 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1347 * @size: size of memory block to be allocated in bytes
1348 * @align: alignment of the region and block's size
1349 * @min_addr: the lower bound of the memory region from where the allocation
1350 * is preferred (phys address)
1351 * @max_addr: the upper bound of the memory region from where the allocation
1352 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1353 * allocate only from memory limited by memblock.current_limit value
1354 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1355 *
1356 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1357 * which provides debug information (including caller info), if enabled,
1358 * and panics if the request can not be satisfied.
1359 *
1360 * RETURNS:
1361 * Virtual address of allocated memory block on success, NULL on failure.
1362 */
1363 void * __init memblock_virt_alloc_try_nid(
1364 phys_addr_t size, phys_addr_t align,
1365 phys_addr_t min_addr, phys_addr_t max_addr,
1366 int nid)
1367 {
1368 void *ptr;
1369
1370 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1371 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1372 (u64)max_addr, (void *)_RET_IP_);
1373 ptr = memblock_virt_alloc_internal(size, align,
1374 min_addr, max_addr, nid);
1375 if (ptr)
1376 return ptr;
1377
1378 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1379 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380 (u64)max_addr);
1381 return NULL;
1382 }
1383
1384 /**
1385 * __memblock_free_early - free boot memory block
1386 * @base: phys starting address of the boot memory block
1387 * @size: size of the boot memory block in bytes
1388 *
1389 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1390 * The freeing memory will not be released to the buddy allocator.
1391 */
1392 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1393 {
1394 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1395 __func__, (u64)base, (u64)base + size - 1,
1396 (void *)_RET_IP_);
1397 kmemleak_free_part(__va(base), size);
1398 memblock_remove_range(&memblock.reserved, base, size);
1399 }
1400
1401 /*
1402 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1403 * @addr: phys starting address of the boot memory block
1404 * @size: size of the boot memory block in bytes
1405 *
1406 * This is only useful when the bootmem allocator has already been torn
1407 * down, but we are still initializing the system. Pages are released directly
1408 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1409 */
1410 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1411 {
1412 u64 cursor, end;
1413
1414 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1415 __func__, (u64)base, (u64)base + size - 1,
1416 (void *)_RET_IP_);
1417 kmemleak_free_part(__va(base), size);
1418 cursor = PFN_UP(base);
1419 end = PFN_DOWN(base + size);
1420
1421 for (; cursor < end; cursor++) {
1422 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1423 totalram_pages++;
1424 }
1425 }
1426
1427 /*
1428 * Remaining API functions
1429 */
1430
1431 phys_addr_t __init memblock_phys_mem_size(void)
1432 {
1433 return memblock.memory.total_size;
1434 }
1435
1436 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1437 {
1438 unsigned long pages = 0;
1439 struct memblock_region *r;
1440 unsigned long start_pfn, end_pfn;
1441
1442 for_each_memblock(memory, r) {
1443 start_pfn = memblock_region_memory_base_pfn(r);
1444 end_pfn = memblock_region_memory_end_pfn(r);
1445 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1446 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1447 pages += end_pfn - start_pfn;
1448 }
1449
1450 return PFN_PHYS(pages);
1451 }
1452
1453 /* lowest address */
1454 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1455 {
1456 return memblock.memory.regions[0].base;
1457 }
1458
1459 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1460 {
1461 int idx = memblock.memory.cnt - 1;
1462
1463 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1464 }
1465
1466 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1467 {
1468 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1469 struct memblock_region *r;
1470
1471 if (!limit)
1472 return;
1473
1474 /* find out max address */
1475 for_each_memblock(memory, r) {
1476 if (limit <= r->size) {
1477 max_addr = r->base + limit;
1478 break;
1479 }
1480 limit -= r->size;
1481 }
1482
1483 /* truncate both memory and reserved regions */
1484 memblock_remove_range(&memblock.memory, max_addr,
1485 (phys_addr_t)ULLONG_MAX);
1486 memblock_remove_range(&memblock.reserved, max_addr,
1487 (phys_addr_t)ULLONG_MAX);
1488 }
1489
1490 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1491 {
1492 unsigned int left = 0, right = type->cnt;
1493
1494 do {
1495 unsigned int mid = (right + left) / 2;
1496
1497 if (addr < type->regions[mid].base)
1498 right = mid;
1499 else if (addr >= (type->regions[mid].base +
1500 type->regions[mid].size))
1501 left = mid + 1;
1502 else
1503 return mid;
1504 } while (left < right);
1505 return -1;
1506 }
1507
1508 int __init memblock_is_reserved(phys_addr_t addr)
1509 {
1510 return memblock_search(&memblock.reserved, addr) != -1;
1511 }
1512
1513 int __init_memblock memblock_is_memory(phys_addr_t addr)
1514 {
1515 return memblock_search(&memblock.memory, addr) != -1;
1516 }
1517
1518 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1519 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1520 unsigned long *start_pfn, unsigned long *end_pfn)
1521 {
1522 struct memblock_type *type = &memblock.memory;
1523 int mid = memblock_search(type, PFN_PHYS(pfn));
1524
1525 if (mid == -1)
1526 return -1;
1527
1528 *start_pfn = PFN_DOWN(type->regions[mid].base);
1529 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1530
1531 return type->regions[mid].nid;
1532 }
1533 #endif
1534
1535 /**
1536 * memblock_is_region_memory - check if a region is a subset of memory
1537 * @base: base of region to check
1538 * @size: size of region to check
1539 *
1540 * Check if the region [@base, @base+@size) is a subset of a memory block.
1541 *
1542 * RETURNS:
1543 * 0 if false, non-zero if true
1544 */
1545 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1546 {
1547 int idx = memblock_search(&memblock.memory, base);
1548 phys_addr_t end = base + memblock_cap_size(base, &size);
1549
1550 if (idx == -1)
1551 return 0;
1552 return memblock.memory.regions[idx].base <= base &&
1553 (memblock.memory.regions[idx].base +
1554 memblock.memory.regions[idx].size) >= end;
1555 }
1556
1557 /**
1558 * memblock_is_region_reserved - check if a region intersects reserved memory
1559 * @base: base of region to check
1560 * @size: size of region to check
1561 *
1562 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1563 *
1564 * RETURNS:
1565 * 0 if false, non-zero if true
1566 */
1567 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1568 {
1569 memblock_cap_size(base, &size);
1570 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1571 }
1572
1573 void __init_memblock memblock_trim_memory(phys_addr_t align)
1574 {
1575 phys_addr_t start, end, orig_start, orig_end;
1576 struct memblock_region *r;
1577
1578 for_each_memblock(memory, r) {
1579 orig_start = r->base;
1580 orig_end = r->base + r->size;
1581 start = round_up(orig_start, align);
1582 end = round_down(orig_end, align);
1583
1584 if (start == orig_start && end == orig_end)
1585 continue;
1586
1587 if (start < end) {
1588 r->base = start;
1589 r->size = end - start;
1590 } else {
1591 memblock_remove_region(&memblock.memory,
1592 r - memblock.memory.regions);
1593 r--;
1594 }
1595 }
1596 }
1597
1598 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1599 {
1600 memblock.current_limit = limit;
1601 }
1602
1603 phys_addr_t __init_memblock memblock_get_current_limit(void)
1604 {
1605 return memblock.current_limit;
1606 }
1607
1608 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1609 {
1610 unsigned long long base, size;
1611 unsigned long flags;
1612 int i;
1613
1614 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1615
1616 for (i = 0; i < type->cnt; i++) {
1617 struct memblock_region *rgn = &type->regions[i];
1618 char nid_buf[32] = "";
1619
1620 base = rgn->base;
1621 size = rgn->size;
1622 flags = rgn->flags;
1623 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1624 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1625 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1626 memblock_get_region_node(rgn));
1627 #endif
1628 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1629 name, i, base, base + size - 1, size, nid_buf, flags);
1630 }
1631 }
1632
1633 void __init_memblock __memblock_dump_all(void)
1634 {
1635 pr_info("MEMBLOCK configuration:\n");
1636 pr_info(" memory size = %#llx reserved size = %#llx\n",
1637 (unsigned long long)memblock.memory.total_size,
1638 (unsigned long long)memblock.reserved.total_size);
1639
1640 memblock_dump(&memblock.memory, "memory");
1641 memblock_dump(&memblock.reserved, "reserved");
1642 }
1643
1644 void __init memblock_allow_resize(void)
1645 {
1646 memblock_can_resize = 1;
1647 }
1648
1649 static int __init early_memblock(char *p)
1650 {
1651 if (p && strstr(p, "debug"))
1652 memblock_debug = 1;
1653 return 0;
1654 }
1655 early_param("memblock", early_memblock);
1656
1657 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1658
1659 static int memblock_debug_show(struct seq_file *m, void *private)
1660 {
1661 struct memblock_type *type = m->private;
1662 struct memblock_region *reg;
1663 int i;
1664
1665 for (i = 0; i < type->cnt; i++) {
1666 reg = &type->regions[i];
1667 seq_printf(m, "%4d: ", i);
1668 if (sizeof(phys_addr_t) == 4)
1669 seq_printf(m, "0x%08lx..0x%08lx\n",
1670 (unsigned long)reg->base,
1671 (unsigned long)(reg->base + reg->size - 1));
1672 else
1673 seq_printf(m, "0x%016llx..0x%016llx\n",
1674 (unsigned long long)reg->base,
1675 (unsigned long long)(reg->base + reg->size - 1));
1676
1677 }
1678 return 0;
1679 }
1680
1681 static int memblock_debug_open(struct inode *inode, struct file *file)
1682 {
1683 return single_open(file, memblock_debug_show, inode->i_private);
1684 }
1685
1686 static const struct file_operations memblock_debug_fops = {
1687 .open = memblock_debug_open,
1688 .read = seq_read,
1689 .llseek = seq_lseek,
1690 .release = single_release,
1691 };
1692
1693 static int __init memblock_init_debugfs(void)
1694 {
1695 struct dentry *root = debugfs_create_dir("memblock", NULL);
1696 if (!root)
1697 return -ENXIO;
1698 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1699 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1700 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1701 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1702 #endif
1703
1704 return 0;
1705 }
1706 __initcall(memblock_init_debugfs);
1707
1708 #endif /* CONFIG_DEBUG_FS */
This page took 0.102005 seconds and 6 git commands to generate.