mmap: find_vma: remove the WARN_ON_ONCE(!mm) check
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/sort.h>
49 #include <linux/fs.h>
50 #include <linux/seq_file.h>
51 #include <linux/vmalloc.h>
52 #include <linux/mm_inline.h>
53 #include <linux/page_cgroup.h>
54 #include <linux/cpu.h>
55 #include <linux/oom.h>
56 #include "internal.h"
57 #include <net/sock.h>
58 #include <net/ip.h>
59 #include <net/tcp_memcontrol.h>
60
61 #include <asm/uaccess.h>
62
63 #include <trace/events/vmscan.h>
64
65 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
66 EXPORT_SYMBOL(mem_cgroup_subsys);
67
68 #define MEM_CGROUP_RECLAIM_RETRIES 5
69 static struct mem_cgroup *root_mem_cgroup __read_mostly;
70
71 #ifdef CONFIG_MEMCG_SWAP
72 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
73 int do_swap_account __read_mostly;
74
75 /* for remember boot option*/
76 #ifdef CONFIG_MEMCG_SWAP_ENABLED
77 static int really_do_swap_account __initdata = 1;
78 #else
79 static int really_do_swap_account __initdata = 0;
80 #endif
81
82 #else
83 #define do_swap_account 0
84 #endif
85
86
87 /*
88 * Statistics for memory cgroup.
89 */
90 enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
98 MEM_CGROUP_STAT_NSTATS,
99 };
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106 };
107
108 enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
113 MEM_CGROUP_EVENTS_NSTATS,
114 };
115
116 static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121 };
122
123 static const char * const mem_cgroup_lru_names[] = {
124 "inactive_anon",
125 "active_anon",
126 "inactive_file",
127 "active_file",
128 "unevictable",
129 };
130
131 /*
132 * Per memcg event counter is incremented at every pagein/pageout. With THP,
133 * it will be incremated by the number of pages. This counter is used for
134 * for trigger some periodic events. This is straightforward and better
135 * than using jiffies etc. to handle periodic memcg event.
136 */
137 enum mem_cgroup_events_target {
138 MEM_CGROUP_TARGET_THRESH,
139 MEM_CGROUP_TARGET_SOFTLIMIT,
140 MEM_CGROUP_TARGET_NUMAINFO,
141 MEM_CGROUP_NTARGETS,
142 };
143 #define THRESHOLDS_EVENTS_TARGET 128
144 #define SOFTLIMIT_EVENTS_TARGET 1024
145 #define NUMAINFO_EVENTS_TARGET 1024
146
147 struct mem_cgroup_stat_cpu {
148 long count[MEM_CGROUP_STAT_NSTATS];
149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
150 unsigned long nr_page_events;
151 unsigned long targets[MEM_CGROUP_NTARGETS];
152 };
153
154 struct mem_cgroup_reclaim_iter {
155 /*
156 * last scanned hierarchy member. Valid only if last_dead_count
157 * matches memcg->dead_count of the hierarchy root group.
158 */
159 struct mem_cgroup *last_visited;
160 unsigned long last_dead_count;
161
162 /* scan generation, increased every round-trip */
163 unsigned int generation;
164 };
165
166 /*
167 * per-zone information in memory controller.
168 */
169 struct mem_cgroup_per_zone {
170 struct lruvec lruvec;
171 unsigned long lru_size[NR_LRU_LISTS];
172
173 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
174
175 struct rb_node tree_node; /* RB tree node */
176 unsigned long long usage_in_excess;/* Set to the value by which */
177 /* the soft limit is exceeded*/
178 bool on_tree;
179 struct mem_cgroup *memcg; /* Back pointer, we cannot */
180 /* use container_of */
181 };
182
183 struct mem_cgroup_per_node {
184 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_lru_info {
188 struct mem_cgroup_per_node *nodeinfo[0];
189 };
190
191 /*
192 * Cgroups above their limits are maintained in a RB-Tree, independent of
193 * their hierarchy representation
194 */
195
196 struct mem_cgroup_tree_per_zone {
197 struct rb_root rb_root;
198 spinlock_t lock;
199 };
200
201 struct mem_cgroup_tree_per_node {
202 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
203 };
204
205 struct mem_cgroup_tree {
206 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
207 };
208
209 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
210
211 struct mem_cgroup_threshold {
212 struct eventfd_ctx *eventfd;
213 u64 threshold;
214 };
215
216 /* For threshold */
217 struct mem_cgroup_threshold_ary {
218 /* An array index points to threshold just below or equal to usage. */
219 int current_threshold;
220 /* Size of entries[] */
221 unsigned int size;
222 /* Array of thresholds */
223 struct mem_cgroup_threshold entries[0];
224 };
225
226 struct mem_cgroup_thresholds {
227 /* Primary thresholds array */
228 struct mem_cgroup_threshold_ary *primary;
229 /*
230 * Spare threshold array.
231 * This is needed to make mem_cgroup_unregister_event() "never fail".
232 * It must be able to store at least primary->size - 1 entries.
233 */
234 struct mem_cgroup_threshold_ary *spare;
235 };
236
237 /* for OOM */
238 struct mem_cgroup_eventfd_list {
239 struct list_head list;
240 struct eventfd_ctx *eventfd;
241 };
242
243 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
244 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
245
246 /*
247 * The memory controller data structure. The memory controller controls both
248 * page cache and RSS per cgroup. We would eventually like to provide
249 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
250 * to help the administrator determine what knobs to tune.
251 *
252 * TODO: Add a water mark for the memory controller. Reclaim will begin when
253 * we hit the water mark. May be even add a low water mark, such that
254 * no reclaim occurs from a cgroup at it's low water mark, this is
255 * a feature that will be implemented much later in the future.
256 */
257 struct mem_cgroup {
258 struct cgroup_subsys_state css;
259 /*
260 * the counter to account for memory usage
261 */
262 struct res_counter res;
263
264 union {
265 /*
266 * the counter to account for mem+swap usage.
267 */
268 struct res_counter memsw;
269
270 /*
271 * rcu_freeing is used only when freeing struct mem_cgroup,
272 * so put it into a union to avoid wasting more memory.
273 * It must be disjoint from the css field. It could be
274 * in a union with the res field, but res plays a much
275 * larger part in mem_cgroup life than memsw, and might
276 * be of interest, even at time of free, when debugging.
277 * So share rcu_head with the less interesting memsw.
278 */
279 struct rcu_head rcu_freeing;
280 /*
281 * We also need some space for a worker in deferred freeing.
282 * By the time we call it, rcu_freeing is no longer in use.
283 */
284 struct work_struct work_freeing;
285 };
286
287 /*
288 * the counter to account for kernel memory usage.
289 */
290 struct res_counter kmem;
291 /*
292 * Should the accounting and control be hierarchical, per subtree?
293 */
294 bool use_hierarchy;
295 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
296
297 bool oom_lock;
298 atomic_t under_oom;
299
300 atomic_t refcnt;
301
302 int swappiness;
303 /* OOM-Killer disable */
304 int oom_kill_disable;
305
306 /* set when res.limit == memsw.limit */
307 bool memsw_is_minimum;
308
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
313 struct mem_cgroup_thresholds thresholds;
314
315 /* thresholds for mem+swap usage. RCU-protected */
316 struct mem_cgroup_thresholds memsw_thresholds;
317
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
320
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
325 unsigned long move_charge_at_immigrate;
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
332 /*
333 * percpu counter.
334 */
335 struct mem_cgroup_stat_cpu __percpu *stat;
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
342
343 atomic_t dead_count;
344 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
345 struct tcp_memcontrol tcp_mem;
346 #endif
347 #if defined(CONFIG_MEMCG_KMEM)
348 /* analogous to slab_common's slab_caches list. per-memcg */
349 struct list_head memcg_slab_caches;
350 /* Not a spinlock, we can take a lot of time walking the list */
351 struct mutex slab_caches_mutex;
352 /* Index in the kmem_cache->memcg_params->memcg_caches array */
353 int kmemcg_id;
354 #endif
355
356 int last_scanned_node;
357 #if MAX_NUMNODES > 1
358 nodemask_t scan_nodes;
359 atomic_t numainfo_events;
360 atomic_t numainfo_updating;
361 #endif
362 /*
363 * Per cgroup active and inactive list, similar to the
364 * per zone LRU lists.
365 *
366 * WARNING: This has to be the last element of the struct. Don't
367 * add new fields after this point.
368 */
369 struct mem_cgroup_lru_info info;
370 };
371
372 static size_t memcg_size(void)
373 {
374 return sizeof(struct mem_cgroup) +
375 nr_node_ids * sizeof(struct mem_cgroup_per_node);
376 }
377
378 /* internal only representation about the status of kmem accounting. */
379 enum {
380 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
381 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
382 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
383 };
384
385 /* We account when limit is on, but only after call sites are patched */
386 #define KMEM_ACCOUNTED_MASK \
387 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
388
389 #ifdef CONFIG_MEMCG_KMEM
390 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391 {
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393 }
394
395 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396 {
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
401 {
402 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
403 }
404
405 static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
406 {
407 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
408 }
409
410 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
411 {
412 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
413 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
414 }
415
416 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
417 {
418 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
419 &memcg->kmem_account_flags);
420 }
421 #endif
422
423 /* Stuffs for move charges at task migration. */
424 /*
425 * Types of charges to be moved. "move_charge_at_immitgrate" and
426 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
427 */
428 enum move_type {
429 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
430 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
431 NR_MOVE_TYPE,
432 };
433
434 /* "mc" and its members are protected by cgroup_mutex */
435 static struct move_charge_struct {
436 spinlock_t lock; /* for from, to */
437 struct mem_cgroup *from;
438 struct mem_cgroup *to;
439 unsigned long immigrate_flags;
440 unsigned long precharge;
441 unsigned long moved_charge;
442 unsigned long moved_swap;
443 struct task_struct *moving_task; /* a task moving charges */
444 wait_queue_head_t waitq; /* a waitq for other context */
445 } mc = {
446 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
447 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
448 };
449
450 static bool move_anon(void)
451 {
452 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
453 }
454
455 static bool move_file(void)
456 {
457 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
458 }
459
460 /*
461 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
462 * limit reclaim to prevent infinite loops, if they ever occur.
463 */
464 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
465 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
466
467 enum charge_type {
468 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
469 MEM_CGROUP_CHARGE_TYPE_ANON,
470 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
471 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
472 NR_CHARGE_TYPE,
473 };
474
475 /* for encoding cft->private value on file */
476 enum res_type {
477 _MEM,
478 _MEMSWAP,
479 _OOM_TYPE,
480 _KMEM,
481 };
482
483 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
484 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
485 #define MEMFILE_ATTR(val) ((val) & 0xffff)
486 /* Used for OOM nofiier */
487 #define OOM_CONTROL (0)
488
489 /*
490 * Reclaim flags for mem_cgroup_hierarchical_reclaim
491 */
492 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
493 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
494 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
495 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
496
497 /*
498 * The memcg_create_mutex will be held whenever a new cgroup is created.
499 * As a consequence, any change that needs to protect against new child cgroups
500 * appearing has to hold it as well.
501 */
502 static DEFINE_MUTEX(memcg_create_mutex);
503
504 static void mem_cgroup_get(struct mem_cgroup *memcg);
505 static void mem_cgroup_put(struct mem_cgroup *memcg);
506
507 static inline
508 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
509 {
510 return container_of(s, struct mem_cgroup, css);
511 }
512
513 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
514 {
515 return (memcg == root_mem_cgroup);
516 }
517
518 /* Writing them here to avoid exposing memcg's inner layout */
519 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
520
521 void sock_update_memcg(struct sock *sk)
522 {
523 if (mem_cgroup_sockets_enabled) {
524 struct mem_cgroup *memcg;
525 struct cg_proto *cg_proto;
526
527 BUG_ON(!sk->sk_prot->proto_cgroup);
528
529 /* Socket cloning can throw us here with sk_cgrp already
530 * filled. It won't however, necessarily happen from
531 * process context. So the test for root memcg given
532 * the current task's memcg won't help us in this case.
533 *
534 * Respecting the original socket's memcg is a better
535 * decision in this case.
536 */
537 if (sk->sk_cgrp) {
538 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
539 mem_cgroup_get(sk->sk_cgrp->memcg);
540 return;
541 }
542
543 rcu_read_lock();
544 memcg = mem_cgroup_from_task(current);
545 cg_proto = sk->sk_prot->proto_cgroup(memcg);
546 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
547 mem_cgroup_get(memcg);
548 sk->sk_cgrp = cg_proto;
549 }
550 rcu_read_unlock();
551 }
552 }
553 EXPORT_SYMBOL(sock_update_memcg);
554
555 void sock_release_memcg(struct sock *sk)
556 {
557 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
558 struct mem_cgroup *memcg;
559 WARN_ON(!sk->sk_cgrp->memcg);
560 memcg = sk->sk_cgrp->memcg;
561 mem_cgroup_put(memcg);
562 }
563 }
564
565 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
566 {
567 if (!memcg || mem_cgroup_is_root(memcg))
568 return NULL;
569
570 return &memcg->tcp_mem.cg_proto;
571 }
572 EXPORT_SYMBOL(tcp_proto_cgroup);
573
574 static void disarm_sock_keys(struct mem_cgroup *memcg)
575 {
576 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
577 return;
578 static_key_slow_dec(&memcg_socket_limit_enabled);
579 }
580 #else
581 static void disarm_sock_keys(struct mem_cgroup *memcg)
582 {
583 }
584 #endif
585
586 #ifdef CONFIG_MEMCG_KMEM
587 /*
588 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
589 * There are two main reasons for not using the css_id for this:
590 * 1) this works better in sparse environments, where we have a lot of memcgs,
591 * but only a few kmem-limited. Or also, if we have, for instance, 200
592 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
593 * 200 entry array for that.
594 *
595 * 2) In order not to violate the cgroup API, we would like to do all memory
596 * allocation in ->create(). At that point, we haven't yet allocated the
597 * css_id. Having a separate index prevents us from messing with the cgroup
598 * core for this
599 *
600 * The current size of the caches array is stored in
601 * memcg_limited_groups_array_size. It will double each time we have to
602 * increase it.
603 */
604 static DEFINE_IDA(kmem_limited_groups);
605 int memcg_limited_groups_array_size;
606
607 /*
608 * MIN_SIZE is different than 1, because we would like to avoid going through
609 * the alloc/free process all the time. In a small machine, 4 kmem-limited
610 * cgroups is a reasonable guess. In the future, it could be a parameter or
611 * tunable, but that is strictly not necessary.
612 *
613 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
614 * this constant directly from cgroup, but it is understandable that this is
615 * better kept as an internal representation in cgroup.c. In any case, the
616 * css_id space is not getting any smaller, and we don't have to necessarily
617 * increase ours as well if it increases.
618 */
619 #define MEMCG_CACHES_MIN_SIZE 4
620 #define MEMCG_CACHES_MAX_SIZE 65535
621
622 /*
623 * A lot of the calls to the cache allocation functions are expected to be
624 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
625 * conditional to this static branch, we'll have to allow modules that does
626 * kmem_cache_alloc and the such to see this symbol as well
627 */
628 struct static_key memcg_kmem_enabled_key;
629 EXPORT_SYMBOL(memcg_kmem_enabled_key);
630
631 static void disarm_kmem_keys(struct mem_cgroup *memcg)
632 {
633 if (memcg_kmem_is_active(memcg)) {
634 static_key_slow_dec(&memcg_kmem_enabled_key);
635 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
636 }
637 /*
638 * This check can't live in kmem destruction function,
639 * since the charges will outlive the cgroup
640 */
641 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
642 }
643 #else
644 static void disarm_kmem_keys(struct mem_cgroup *memcg)
645 {
646 }
647 #endif /* CONFIG_MEMCG_KMEM */
648
649 static void disarm_static_keys(struct mem_cgroup *memcg)
650 {
651 disarm_sock_keys(memcg);
652 disarm_kmem_keys(memcg);
653 }
654
655 static void drain_all_stock_async(struct mem_cgroup *memcg);
656
657 static struct mem_cgroup_per_zone *
658 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
659 {
660 VM_BUG_ON((unsigned)nid >= nr_node_ids);
661 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
662 }
663
664 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
665 {
666 return &memcg->css;
667 }
668
669 static struct mem_cgroup_per_zone *
670 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
671 {
672 int nid = page_to_nid(page);
673 int zid = page_zonenum(page);
674
675 return mem_cgroup_zoneinfo(memcg, nid, zid);
676 }
677
678 static struct mem_cgroup_tree_per_zone *
679 soft_limit_tree_node_zone(int nid, int zid)
680 {
681 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
682 }
683
684 static struct mem_cgroup_tree_per_zone *
685 soft_limit_tree_from_page(struct page *page)
686 {
687 int nid = page_to_nid(page);
688 int zid = page_zonenum(page);
689
690 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
691 }
692
693 static void
694 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
695 struct mem_cgroup_per_zone *mz,
696 struct mem_cgroup_tree_per_zone *mctz,
697 unsigned long long new_usage_in_excess)
698 {
699 struct rb_node **p = &mctz->rb_root.rb_node;
700 struct rb_node *parent = NULL;
701 struct mem_cgroup_per_zone *mz_node;
702
703 if (mz->on_tree)
704 return;
705
706 mz->usage_in_excess = new_usage_in_excess;
707 if (!mz->usage_in_excess)
708 return;
709 while (*p) {
710 parent = *p;
711 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
712 tree_node);
713 if (mz->usage_in_excess < mz_node->usage_in_excess)
714 p = &(*p)->rb_left;
715 /*
716 * We can't avoid mem cgroups that are over their soft
717 * limit by the same amount
718 */
719 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
720 p = &(*p)->rb_right;
721 }
722 rb_link_node(&mz->tree_node, parent, p);
723 rb_insert_color(&mz->tree_node, &mctz->rb_root);
724 mz->on_tree = true;
725 }
726
727 static void
728 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
729 struct mem_cgroup_per_zone *mz,
730 struct mem_cgroup_tree_per_zone *mctz)
731 {
732 if (!mz->on_tree)
733 return;
734 rb_erase(&mz->tree_node, &mctz->rb_root);
735 mz->on_tree = false;
736 }
737
738 static void
739 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
740 struct mem_cgroup_per_zone *mz,
741 struct mem_cgroup_tree_per_zone *mctz)
742 {
743 spin_lock(&mctz->lock);
744 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
745 spin_unlock(&mctz->lock);
746 }
747
748
749 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
750 {
751 unsigned long long excess;
752 struct mem_cgroup_per_zone *mz;
753 struct mem_cgroup_tree_per_zone *mctz;
754 int nid = page_to_nid(page);
755 int zid = page_zonenum(page);
756 mctz = soft_limit_tree_from_page(page);
757
758 /*
759 * Necessary to update all ancestors when hierarchy is used.
760 * because their event counter is not touched.
761 */
762 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
763 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
764 excess = res_counter_soft_limit_excess(&memcg->res);
765 /*
766 * We have to update the tree if mz is on RB-tree or
767 * mem is over its softlimit.
768 */
769 if (excess || mz->on_tree) {
770 spin_lock(&mctz->lock);
771 /* if on-tree, remove it */
772 if (mz->on_tree)
773 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
774 /*
775 * Insert again. mz->usage_in_excess will be updated.
776 * If excess is 0, no tree ops.
777 */
778 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
779 spin_unlock(&mctz->lock);
780 }
781 }
782 }
783
784 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
785 {
786 int node, zone;
787 struct mem_cgroup_per_zone *mz;
788 struct mem_cgroup_tree_per_zone *mctz;
789
790 for_each_node(node) {
791 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
792 mz = mem_cgroup_zoneinfo(memcg, node, zone);
793 mctz = soft_limit_tree_node_zone(node, zone);
794 mem_cgroup_remove_exceeded(memcg, mz, mctz);
795 }
796 }
797 }
798
799 static struct mem_cgroup_per_zone *
800 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
801 {
802 struct rb_node *rightmost = NULL;
803 struct mem_cgroup_per_zone *mz;
804
805 retry:
806 mz = NULL;
807 rightmost = rb_last(&mctz->rb_root);
808 if (!rightmost)
809 goto done; /* Nothing to reclaim from */
810
811 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
812 /*
813 * Remove the node now but someone else can add it back,
814 * we will to add it back at the end of reclaim to its correct
815 * position in the tree.
816 */
817 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
818 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
819 !css_tryget(&mz->memcg->css))
820 goto retry;
821 done:
822 return mz;
823 }
824
825 static struct mem_cgroup_per_zone *
826 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
827 {
828 struct mem_cgroup_per_zone *mz;
829
830 spin_lock(&mctz->lock);
831 mz = __mem_cgroup_largest_soft_limit_node(mctz);
832 spin_unlock(&mctz->lock);
833 return mz;
834 }
835
836 /*
837 * Implementation Note: reading percpu statistics for memcg.
838 *
839 * Both of vmstat[] and percpu_counter has threshold and do periodic
840 * synchronization to implement "quick" read. There are trade-off between
841 * reading cost and precision of value. Then, we may have a chance to implement
842 * a periodic synchronizion of counter in memcg's counter.
843 *
844 * But this _read() function is used for user interface now. The user accounts
845 * memory usage by memory cgroup and he _always_ requires exact value because
846 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
847 * have to visit all online cpus and make sum. So, for now, unnecessary
848 * synchronization is not implemented. (just implemented for cpu hotplug)
849 *
850 * If there are kernel internal actions which can make use of some not-exact
851 * value, and reading all cpu value can be performance bottleneck in some
852 * common workload, threashold and synchonization as vmstat[] should be
853 * implemented.
854 */
855 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
856 enum mem_cgroup_stat_index idx)
857 {
858 long val = 0;
859 int cpu;
860
861 get_online_cpus();
862 for_each_online_cpu(cpu)
863 val += per_cpu(memcg->stat->count[idx], cpu);
864 #ifdef CONFIG_HOTPLUG_CPU
865 spin_lock(&memcg->pcp_counter_lock);
866 val += memcg->nocpu_base.count[idx];
867 spin_unlock(&memcg->pcp_counter_lock);
868 #endif
869 put_online_cpus();
870 return val;
871 }
872
873 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
874 bool charge)
875 {
876 int val = (charge) ? 1 : -1;
877 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
878 }
879
880 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
881 enum mem_cgroup_events_index idx)
882 {
883 unsigned long val = 0;
884 int cpu;
885
886 for_each_online_cpu(cpu)
887 val += per_cpu(memcg->stat->events[idx], cpu);
888 #ifdef CONFIG_HOTPLUG_CPU
889 spin_lock(&memcg->pcp_counter_lock);
890 val += memcg->nocpu_base.events[idx];
891 spin_unlock(&memcg->pcp_counter_lock);
892 #endif
893 return val;
894 }
895
896 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
897 bool anon, int nr_pages)
898 {
899 preempt_disable();
900
901 /*
902 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
903 * counted as CACHE even if it's on ANON LRU.
904 */
905 if (anon)
906 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
907 nr_pages);
908 else
909 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
910 nr_pages);
911
912 /* pagein of a big page is an event. So, ignore page size */
913 if (nr_pages > 0)
914 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
915 else {
916 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
917 nr_pages = -nr_pages; /* for event */
918 }
919
920 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
921
922 preempt_enable();
923 }
924
925 unsigned long
926 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
927 {
928 struct mem_cgroup_per_zone *mz;
929
930 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
931 return mz->lru_size[lru];
932 }
933
934 static unsigned long
935 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
936 unsigned int lru_mask)
937 {
938 struct mem_cgroup_per_zone *mz;
939 enum lru_list lru;
940 unsigned long ret = 0;
941
942 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
943
944 for_each_lru(lru) {
945 if (BIT(lru) & lru_mask)
946 ret += mz->lru_size[lru];
947 }
948 return ret;
949 }
950
951 static unsigned long
952 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
953 int nid, unsigned int lru_mask)
954 {
955 u64 total = 0;
956 int zid;
957
958 for (zid = 0; zid < MAX_NR_ZONES; zid++)
959 total += mem_cgroup_zone_nr_lru_pages(memcg,
960 nid, zid, lru_mask);
961
962 return total;
963 }
964
965 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
966 unsigned int lru_mask)
967 {
968 int nid;
969 u64 total = 0;
970
971 for_each_node_state(nid, N_MEMORY)
972 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
973 return total;
974 }
975
976 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
977 enum mem_cgroup_events_target target)
978 {
979 unsigned long val, next;
980
981 val = __this_cpu_read(memcg->stat->nr_page_events);
982 next = __this_cpu_read(memcg->stat->targets[target]);
983 /* from time_after() in jiffies.h */
984 if ((long)next - (long)val < 0) {
985 switch (target) {
986 case MEM_CGROUP_TARGET_THRESH:
987 next = val + THRESHOLDS_EVENTS_TARGET;
988 break;
989 case MEM_CGROUP_TARGET_SOFTLIMIT:
990 next = val + SOFTLIMIT_EVENTS_TARGET;
991 break;
992 case MEM_CGROUP_TARGET_NUMAINFO:
993 next = val + NUMAINFO_EVENTS_TARGET;
994 break;
995 default:
996 break;
997 }
998 __this_cpu_write(memcg->stat->targets[target], next);
999 return true;
1000 }
1001 return false;
1002 }
1003
1004 /*
1005 * Check events in order.
1006 *
1007 */
1008 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1009 {
1010 preempt_disable();
1011 /* threshold event is triggered in finer grain than soft limit */
1012 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1013 MEM_CGROUP_TARGET_THRESH))) {
1014 bool do_softlimit;
1015 bool do_numainfo __maybe_unused;
1016
1017 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1018 MEM_CGROUP_TARGET_SOFTLIMIT);
1019 #if MAX_NUMNODES > 1
1020 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1021 MEM_CGROUP_TARGET_NUMAINFO);
1022 #endif
1023 preempt_enable();
1024
1025 mem_cgroup_threshold(memcg);
1026 if (unlikely(do_softlimit))
1027 mem_cgroup_update_tree(memcg, page);
1028 #if MAX_NUMNODES > 1
1029 if (unlikely(do_numainfo))
1030 atomic_inc(&memcg->numainfo_events);
1031 #endif
1032 } else
1033 preempt_enable();
1034 }
1035
1036 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
1037 {
1038 return mem_cgroup_from_css(
1039 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
1040 }
1041
1042 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1043 {
1044 /*
1045 * mm_update_next_owner() may clear mm->owner to NULL
1046 * if it races with swapoff, page migration, etc.
1047 * So this can be called with p == NULL.
1048 */
1049 if (unlikely(!p))
1050 return NULL;
1051
1052 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
1053 }
1054
1055 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1056 {
1057 struct mem_cgroup *memcg = NULL;
1058
1059 if (!mm)
1060 return NULL;
1061 /*
1062 * Because we have no locks, mm->owner's may be being moved to other
1063 * cgroup. We use css_tryget() here even if this looks
1064 * pessimistic (rather than adding locks here).
1065 */
1066 rcu_read_lock();
1067 do {
1068 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1069 if (unlikely(!memcg))
1070 break;
1071 } while (!css_tryget(&memcg->css));
1072 rcu_read_unlock();
1073 return memcg;
1074 }
1075
1076 /*
1077 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1078 * ref. count) or NULL if the whole root's subtree has been visited.
1079 *
1080 * helper function to be used by mem_cgroup_iter
1081 */
1082 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1083 struct mem_cgroup *last_visited)
1084 {
1085 struct cgroup *prev_cgroup, *next_cgroup;
1086
1087 /*
1088 * Root is not visited by cgroup iterators so it needs an
1089 * explicit visit.
1090 */
1091 if (!last_visited)
1092 return root;
1093
1094 prev_cgroup = (last_visited == root) ? NULL
1095 : last_visited->css.cgroup;
1096 skip_node:
1097 next_cgroup = cgroup_next_descendant_pre(
1098 prev_cgroup, root->css.cgroup);
1099
1100 /*
1101 * Even if we found a group we have to make sure it is
1102 * alive. css && !memcg means that the groups should be
1103 * skipped and we should continue the tree walk.
1104 * last_visited css is safe to use because it is
1105 * protected by css_get and the tree walk is rcu safe.
1106 */
1107 if (next_cgroup) {
1108 struct mem_cgroup *mem = mem_cgroup_from_cont(
1109 next_cgroup);
1110 if (css_tryget(&mem->css))
1111 return mem;
1112 else {
1113 prev_cgroup = next_cgroup;
1114 goto skip_node;
1115 }
1116 }
1117
1118 return NULL;
1119 }
1120
1121 /**
1122 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1123 * @root: hierarchy root
1124 * @prev: previously returned memcg, NULL on first invocation
1125 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1126 *
1127 * Returns references to children of the hierarchy below @root, or
1128 * @root itself, or %NULL after a full round-trip.
1129 *
1130 * Caller must pass the return value in @prev on subsequent
1131 * invocations for reference counting, or use mem_cgroup_iter_break()
1132 * to cancel a hierarchy walk before the round-trip is complete.
1133 *
1134 * Reclaimers can specify a zone and a priority level in @reclaim to
1135 * divide up the memcgs in the hierarchy among all concurrent
1136 * reclaimers operating on the same zone and priority.
1137 */
1138 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1139 struct mem_cgroup *prev,
1140 struct mem_cgroup_reclaim_cookie *reclaim)
1141 {
1142 struct mem_cgroup *memcg = NULL;
1143 struct mem_cgroup *last_visited = NULL;
1144 unsigned long uninitialized_var(dead_count);
1145
1146 if (mem_cgroup_disabled())
1147 return NULL;
1148
1149 if (!root)
1150 root = root_mem_cgroup;
1151
1152 if (prev && !reclaim)
1153 last_visited = prev;
1154
1155 if (!root->use_hierarchy && root != root_mem_cgroup) {
1156 if (prev)
1157 goto out_css_put;
1158 return root;
1159 }
1160
1161 rcu_read_lock();
1162 while (!memcg) {
1163 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1164
1165 if (reclaim) {
1166 int nid = zone_to_nid(reclaim->zone);
1167 int zid = zone_idx(reclaim->zone);
1168 struct mem_cgroup_per_zone *mz;
1169
1170 mz = mem_cgroup_zoneinfo(root, nid, zid);
1171 iter = &mz->reclaim_iter[reclaim->priority];
1172 last_visited = iter->last_visited;
1173 if (prev && reclaim->generation != iter->generation) {
1174 iter->last_visited = NULL;
1175 goto out_unlock;
1176 }
1177
1178 /*
1179 * If the dead_count mismatches, a destruction
1180 * has happened or is happening concurrently.
1181 * If the dead_count matches, a destruction
1182 * might still happen concurrently, but since
1183 * we checked under RCU, that destruction
1184 * won't free the object until we release the
1185 * RCU reader lock. Thus, the dead_count
1186 * check verifies the pointer is still valid,
1187 * css_tryget() verifies the cgroup pointed to
1188 * is alive.
1189 */
1190 dead_count = atomic_read(&root->dead_count);
1191 smp_rmb();
1192 last_visited = iter->last_visited;
1193 if (last_visited) {
1194 if ((dead_count != iter->last_dead_count) ||
1195 !css_tryget(&last_visited->css)) {
1196 last_visited = NULL;
1197 }
1198 }
1199 }
1200
1201 memcg = __mem_cgroup_iter_next(root, last_visited);
1202
1203 if (reclaim) {
1204 if (last_visited)
1205 css_put(&last_visited->css);
1206
1207 iter->last_visited = memcg;
1208 smp_wmb();
1209 iter->last_dead_count = dead_count;
1210
1211 if (!memcg)
1212 iter->generation++;
1213 else if (!prev && memcg)
1214 reclaim->generation = iter->generation;
1215 }
1216
1217 if (prev && !memcg)
1218 goto out_unlock;
1219 }
1220 out_unlock:
1221 rcu_read_unlock();
1222 out_css_put:
1223 if (prev && prev != root)
1224 css_put(&prev->css);
1225
1226 return memcg;
1227 }
1228
1229 /**
1230 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1231 * @root: hierarchy root
1232 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1233 */
1234 void mem_cgroup_iter_break(struct mem_cgroup *root,
1235 struct mem_cgroup *prev)
1236 {
1237 if (!root)
1238 root = root_mem_cgroup;
1239 if (prev && prev != root)
1240 css_put(&prev->css);
1241 }
1242
1243 /*
1244 * Iteration constructs for visiting all cgroups (under a tree). If
1245 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1246 * be used for reference counting.
1247 */
1248 #define for_each_mem_cgroup_tree(iter, root) \
1249 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1250 iter != NULL; \
1251 iter = mem_cgroup_iter(root, iter, NULL))
1252
1253 #define for_each_mem_cgroup(iter) \
1254 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1255 iter != NULL; \
1256 iter = mem_cgroup_iter(NULL, iter, NULL))
1257
1258 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1259 {
1260 struct mem_cgroup *memcg;
1261
1262 rcu_read_lock();
1263 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1264 if (unlikely(!memcg))
1265 goto out;
1266
1267 switch (idx) {
1268 case PGFAULT:
1269 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1270 break;
1271 case PGMAJFAULT:
1272 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1273 break;
1274 default:
1275 BUG();
1276 }
1277 out:
1278 rcu_read_unlock();
1279 }
1280 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1281
1282 /**
1283 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1284 * @zone: zone of the wanted lruvec
1285 * @memcg: memcg of the wanted lruvec
1286 *
1287 * Returns the lru list vector holding pages for the given @zone and
1288 * @mem. This can be the global zone lruvec, if the memory controller
1289 * is disabled.
1290 */
1291 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1292 struct mem_cgroup *memcg)
1293 {
1294 struct mem_cgroup_per_zone *mz;
1295 struct lruvec *lruvec;
1296
1297 if (mem_cgroup_disabled()) {
1298 lruvec = &zone->lruvec;
1299 goto out;
1300 }
1301
1302 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1303 lruvec = &mz->lruvec;
1304 out:
1305 /*
1306 * Since a node can be onlined after the mem_cgroup was created,
1307 * we have to be prepared to initialize lruvec->zone here;
1308 * and if offlined then reonlined, we need to reinitialize it.
1309 */
1310 if (unlikely(lruvec->zone != zone))
1311 lruvec->zone = zone;
1312 return lruvec;
1313 }
1314
1315 /*
1316 * Following LRU functions are allowed to be used without PCG_LOCK.
1317 * Operations are called by routine of global LRU independently from memcg.
1318 * What we have to take care of here is validness of pc->mem_cgroup.
1319 *
1320 * Changes to pc->mem_cgroup happens when
1321 * 1. charge
1322 * 2. moving account
1323 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1324 * It is added to LRU before charge.
1325 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1326 * When moving account, the page is not on LRU. It's isolated.
1327 */
1328
1329 /**
1330 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1331 * @page: the page
1332 * @zone: zone of the page
1333 */
1334 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1335 {
1336 struct mem_cgroup_per_zone *mz;
1337 struct mem_cgroup *memcg;
1338 struct page_cgroup *pc;
1339 struct lruvec *lruvec;
1340
1341 if (mem_cgroup_disabled()) {
1342 lruvec = &zone->lruvec;
1343 goto out;
1344 }
1345
1346 pc = lookup_page_cgroup(page);
1347 memcg = pc->mem_cgroup;
1348
1349 /*
1350 * Surreptitiously switch any uncharged offlist page to root:
1351 * an uncharged page off lru does nothing to secure
1352 * its former mem_cgroup from sudden removal.
1353 *
1354 * Our caller holds lru_lock, and PageCgroupUsed is updated
1355 * under page_cgroup lock: between them, they make all uses
1356 * of pc->mem_cgroup safe.
1357 */
1358 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1359 pc->mem_cgroup = memcg = root_mem_cgroup;
1360
1361 mz = page_cgroup_zoneinfo(memcg, page);
1362 lruvec = &mz->lruvec;
1363 out:
1364 /*
1365 * Since a node can be onlined after the mem_cgroup was created,
1366 * we have to be prepared to initialize lruvec->zone here;
1367 * and if offlined then reonlined, we need to reinitialize it.
1368 */
1369 if (unlikely(lruvec->zone != zone))
1370 lruvec->zone = zone;
1371 return lruvec;
1372 }
1373
1374 /**
1375 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1376 * @lruvec: mem_cgroup per zone lru vector
1377 * @lru: index of lru list the page is sitting on
1378 * @nr_pages: positive when adding or negative when removing
1379 *
1380 * This function must be called when a page is added to or removed from an
1381 * lru list.
1382 */
1383 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1384 int nr_pages)
1385 {
1386 struct mem_cgroup_per_zone *mz;
1387 unsigned long *lru_size;
1388
1389 if (mem_cgroup_disabled())
1390 return;
1391
1392 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1393 lru_size = mz->lru_size + lru;
1394 *lru_size += nr_pages;
1395 VM_BUG_ON((long)(*lru_size) < 0);
1396 }
1397
1398 /*
1399 * Checks whether given mem is same or in the root_mem_cgroup's
1400 * hierarchy subtree
1401 */
1402 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1403 struct mem_cgroup *memcg)
1404 {
1405 if (root_memcg == memcg)
1406 return true;
1407 if (!root_memcg->use_hierarchy || !memcg)
1408 return false;
1409 return css_is_ancestor(&memcg->css, &root_memcg->css);
1410 }
1411
1412 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1413 struct mem_cgroup *memcg)
1414 {
1415 bool ret;
1416
1417 rcu_read_lock();
1418 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1419 rcu_read_unlock();
1420 return ret;
1421 }
1422
1423 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1424 {
1425 int ret;
1426 struct mem_cgroup *curr = NULL;
1427 struct task_struct *p;
1428
1429 p = find_lock_task_mm(task);
1430 if (p) {
1431 curr = try_get_mem_cgroup_from_mm(p->mm);
1432 task_unlock(p);
1433 } else {
1434 /*
1435 * All threads may have already detached their mm's, but the oom
1436 * killer still needs to detect if they have already been oom
1437 * killed to prevent needlessly killing additional tasks.
1438 */
1439 task_lock(task);
1440 curr = mem_cgroup_from_task(task);
1441 if (curr)
1442 css_get(&curr->css);
1443 task_unlock(task);
1444 }
1445 if (!curr)
1446 return 0;
1447 /*
1448 * We should check use_hierarchy of "memcg" not "curr". Because checking
1449 * use_hierarchy of "curr" here make this function true if hierarchy is
1450 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1451 * hierarchy(even if use_hierarchy is disabled in "memcg").
1452 */
1453 ret = mem_cgroup_same_or_subtree(memcg, curr);
1454 css_put(&curr->css);
1455 return ret;
1456 }
1457
1458 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1459 {
1460 unsigned long inactive_ratio;
1461 unsigned long inactive;
1462 unsigned long active;
1463 unsigned long gb;
1464
1465 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1466 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1467
1468 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1469 if (gb)
1470 inactive_ratio = int_sqrt(10 * gb);
1471 else
1472 inactive_ratio = 1;
1473
1474 return inactive * inactive_ratio < active;
1475 }
1476
1477 #define mem_cgroup_from_res_counter(counter, member) \
1478 container_of(counter, struct mem_cgroup, member)
1479
1480 /**
1481 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1482 * @memcg: the memory cgroup
1483 *
1484 * Returns the maximum amount of memory @mem can be charged with, in
1485 * pages.
1486 */
1487 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1488 {
1489 unsigned long long margin;
1490
1491 margin = res_counter_margin(&memcg->res);
1492 if (do_swap_account)
1493 margin = min(margin, res_counter_margin(&memcg->memsw));
1494 return margin >> PAGE_SHIFT;
1495 }
1496
1497 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1498 {
1499 struct cgroup *cgrp = memcg->css.cgroup;
1500
1501 /* root ? */
1502 if (cgrp->parent == NULL)
1503 return vm_swappiness;
1504
1505 return memcg->swappiness;
1506 }
1507
1508 /*
1509 * memcg->moving_account is used for checking possibility that some thread is
1510 * calling move_account(). When a thread on CPU-A starts moving pages under
1511 * a memcg, other threads should check memcg->moving_account under
1512 * rcu_read_lock(), like this:
1513 *
1514 * CPU-A CPU-B
1515 * rcu_read_lock()
1516 * memcg->moving_account+1 if (memcg->mocing_account)
1517 * take heavy locks.
1518 * synchronize_rcu() update something.
1519 * rcu_read_unlock()
1520 * start move here.
1521 */
1522
1523 /* for quick checking without looking up memcg */
1524 atomic_t memcg_moving __read_mostly;
1525
1526 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1527 {
1528 atomic_inc(&memcg_moving);
1529 atomic_inc(&memcg->moving_account);
1530 synchronize_rcu();
1531 }
1532
1533 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1534 {
1535 /*
1536 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1537 * We check NULL in callee rather than caller.
1538 */
1539 if (memcg) {
1540 atomic_dec(&memcg_moving);
1541 atomic_dec(&memcg->moving_account);
1542 }
1543 }
1544
1545 /*
1546 * 2 routines for checking "mem" is under move_account() or not.
1547 *
1548 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1549 * is used for avoiding races in accounting. If true,
1550 * pc->mem_cgroup may be overwritten.
1551 *
1552 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1553 * under hierarchy of moving cgroups. This is for
1554 * waiting at hith-memory prressure caused by "move".
1555 */
1556
1557 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1558 {
1559 VM_BUG_ON(!rcu_read_lock_held());
1560 return atomic_read(&memcg->moving_account) > 0;
1561 }
1562
1563 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1564 {
1565 struct mem_cgroup *from;
1566 struct mem_cgroup *to;
1567 bool ret = false;
1568 /*
1569 * Unlike task_move routines, we access mc.to, mc.from not under
1570 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1571 */
1572 spin_lock(&mc.lock);
1573 from = mc.from;
1574 to = mc.to;
1575 if (!from)
1576 goto unlock;
1577
1578 ret = mem_cgroup_same_or_subtree(memcg, from)
1579 || mem_cgroup_same_or_subtree(memcg, to);
1580 unlock:
1581 spin_unlock(&mc.lock);
1582 return ret;
1583 }
1584
1585 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1586 {
1587 if (mc.moving_task && current != mc.moving_task) {
1588 if (mem_cgroup_under_move(memcg)) {
1589 DEFINE_WAIT(wait);
1590 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1591 /* moving charge context might have finished. */
1592 if (mc.moving_task)
1593 schedule();
1594 finish_wait(&mc.waitq, &wait);
1595 return true;
1596 }
1597 }
1598 return false;
1599 }
1600
1601 /*
1602 * Take this lock when
1603 * - a code tries to modify page's memcg while it's USED.
1604 * - a code tries to modify page state accounting in a memcg.
1605 * see mem_cgroup_stolen(), too.
1606 */
1607 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1608 unsigned long *flags)
1609 {
1610 spin_lock_irqsave(&memcg->move_lock, *flags);
1611 }
1612
1613 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1614 unsigned long *flags)
1615 {
1616 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1617 }
1618
1619 #define K(x) ((x) << (PAGE_SHIFT-10))
1620 /**
1621 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1622 * @memcg: The memory cgroup that went over limit
1623 * @p: Task that is going to be killed
1624 *
1625 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1626 * enabled
1627 */
1628 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1629 {
1630 struct cgroup *task_cgrp;
1631 struct cgroup *mem_cgrp;
1632 /*
1633 * Need a buffer in BSS, can't rely on allocations. The code relies
1634 * on the assumption that OOM is serialized for memory controller.
1635 * If this assumption is broken, revisit this code.
1636 */
1637 static char memcg_name[PATH_MAX];
1638 int ret;
1639 struct mem_cgroup *iter;
1640 unsigned int i;
1641
1642 if (!p)
1643 return;
1644
1645 rcu_read_lock();
1646
1647 mem_cgrp = memcg->css.cgroup;
1648 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1649
1650 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1651 if (ret < 0) {
1652 /*
1653 * Unfortunately, we are unable to convert to a useful name
1654 * But we'll still print out the usage information
1655 */
1656 rcu_read_unlock();
1657 goto done;
1658 }
1659 rcu_read_unlock();
1660
1661 pr_info("Task in %s killed", memcg_name);
1662
1663 rcu_read_lock();
1664 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1665 if (ret < 0) {
1666 rcu_read_unlock();
1667 goto done;
1668 }
1669 rcu_read_unlock();
1670
1671 /*
1672 * Continues from above, so we don't need an KERN_ level
1673 */
1674 pr_cont(" as a result of limit of %s\n", memcg_name);
1675 done:
1676
1677 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1678 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1679 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1680 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1681 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1682 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1683 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1684 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1685 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1686 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1687 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1688 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1689
1690 for_each_mem_cgroup_tree(iter, memcg) {
1691 pr_info("Memory cgroup stats");
1692
1693 rcu_read_lock();
1694 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1695 if (!ret)
1696 pr_cont(" for %s", memcg_name);
1697 rcu_read_unlock();
1698 pr_cont(":");
1699
1700 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1701 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1702 continue;
1703 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1704 K(mem_cgroup_read_stat(iter, i)));
1705 }
1706
1707 for (i = 0; i < NR_LRU_LISTS; i++)
1708 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1709 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1710
1711 pr_cont("\n");
1712 }
1713 }
1714
1715 /*
1716 * This function returns the number of memcg under hierarchy tree. Returns
1717 * 1(self count) if no children.
1718 */
1719 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1720 {
1721 int num = 0;
1722 struct mem_cgroup *iter;
1723
1724 for_each_mem_cgroup_tree(iter, memcg)
1725 num++;
1726 return num;
1727 }
1728
1729 /*
1730 * Return the memory (and swap, if configured) limit for a memcg.
1731 */
1732 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1733 {
1734 u64 limit;
1735
1736 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1737
1738 /*
1739 * Do not consider swap space if we cannot swap due to swappiness
1740 */
1741 if (mem_cgroup_swappiness(memcg)) {
1742 u64 memsw;
1743
1744 limit += total_swap_pages << PAGE_SHIFT;
1745 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1746
1747 /*
1748 * If memsw is finite and limits the amount of swap space
1749 * available to this memcg, return that limit.
1750 */
1751 limit = min(limit, memsw);
1752 }
1753
1754 return limit;
1755 }
1756
1757 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1758 int order)
1759 {
1760 struct mem_cgroup *iter;
1761 unsigned long chosen_points = 0;
1762 unsigned long totalpages;
1763 unsigned int points = 0;
1764 struct task_struct *chosen = NULL;
1765
1766 /*
1767 * If current has a pending SIGKILL, then automatically select it. The
1768 * goal is to allow it to allocate so that it may quickly exit and free
1769 * its memory.
1770 */
1771 if (fatal_signal_pending(current)) {
1772 set_thread_flag(TIF_MEMDIE);
1773 return;
1774 }
1775
1776 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1777 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1778 for_each_mem_cgroup_tree(iter, memcg) {
1779 struct cgroup *cgroup = iter->css.cgroup;
1780 struct cgroup_iter it;
1781 struct task_struct *task;
1782
1783 cgroup_iter_start(cgroup, &it);
1784 while ((task = cgroup_iter_next(cgroup, &it))) {
1785 switch (oom_scan_process_thread(task, totalpages, NULL,
1786 false)) {
1787 case OOM_SCAN_SELECT:
1788 if (chosen)
1789 put_task_struct(chosen);
1790 chosen = task;
1791 chosen_points = ULONG_MAX;
1792 get_task_struct(chosen);
1793 /* fall through */
1794 case OOM_SCAN_CONTINUE:
1795 continue;
1796 case OOM_SCAN_ABORT:
1797 cgroup_iter_end(cgroup, &it);
1798 mem_cgroup_iter_break(memcg, iter);
1799 if (chosen)
1800 put_task_struct(chosen);
1801 return;
1802 case OOM_SCAN_OK:
1803 break;
1804 };
1805 points = oom_badness(task, memcg, NULL, totalpages);
1806 if (points > chosen_points) {
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = points;
1811 get_task_struct(chosen);
1812 }
1813 }
1814 cgroup_iter_end(cgroup, &it);
1815 }
1816
1817 if (!chosen)
1818 return;
1819 points = chosen_points * 1000 / totalpages;
1820 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1821 NULL, "Memory cgroup out of memory");
1822 }
1823
1824 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1825 gfp_t gfp_mask,
1826 unsigned long flags)
1827 {
1828 unsigned long total = 0;
1829 bool noswap = false;
1830 int loop;
1831
1832 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1833 noswap = true;
1834 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1835 noswap = true;
1836
1837 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1838 if (loop)
1839 drain_all_stock_async(memcg);
1840 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1841 /*
1842 * Allow limit shrinkers, which are triggered directly
1843 * by userspace, to catch signals and stop reclaim
1844 * after minimal progress, regardless of the margin.
1845 */
1846 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1847 break;
1848 if (mem_cgroup_margin(memcg))
1849 break;
1850 /*
1851 * If nothing was reclaimed after two attempts, there
1852 * may be no reclaimable pages in this hierarchy.
1853 */
1854 if (loop && !total)
1855 break;
1856 }
1857 return total;
1858 }
1859
1860 /**
1861 * test_mem_cgroup_node_reclaimable
1862 * @memcg: the target memcg
1863 * @nid: the node ID to be checked.
1864 * @noswap : specify true here if the user wants flle only information.
1865 *
1866 * This function returns whether the specified memcg contains any
1867 * reclaimable pages on a node. Returns true if there are any reclaimable
1868 * pages in the node.
1869 */
1870 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1871 int nid, bool noswap)
1872 {
1873 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1874 return true;
1875 if (noswap || !total_swap_pages)
1876 return false;
1877 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1878 return true;
1879 return false;
1880
1881 }
1882 #if MAX_NUMNODES > 1
1883
1884 /*
1885 * Always updating the nodemask is not very good - even if we have an empty
1886 * list or the wrong list here, we can start from some node and traverse all
1887 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1888 *
1889 */
1890 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1891 {
1892 int nid;
1893 /*
1894 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1895 * pagein/pageout changes since the last update.
1896 */
1897 if (!atomic_read(&memcg->numainfo_events))
1898 return;
1899 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1900 return;
1901
1902 /* make a nodemask where this memcg uses memory from */
1903 memcg->scan_nodes = node_states[N_MEMORY];
1904
1905 for_each_node_mask(nid, node_states[N_MEMORY]) {
1906
1907 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1908 node_clear(nid, memcg->scan_nodes);
1909 }
1910
1911 atomic_set(&memcg->numainfo_events, 0);
1912 atomic_set(&memcg->numainfo_updating, 0);
1913 }
1914
1915 /*
1916 * Selecting a node where we start reclaim from. Because what we need is just
1917 * reducing usage counter, start from anywhere is O,K. Considering
1918 * memory reclaim from current node, there are pros. and cons.
1919 *
1920 * Freeing memory from current node means freeing memory from a node which
1921 * we'll use or we've used. So, it may make LRU bad. And if several threads
1922 * hit limits, it will see a contention on a node. But freeing from remote
1923 * node means more costs for memory reclaim because of memory latency.
1924 *
1925 * Now, we use round-robin. Better algorithm is welcomed.
1926 */
1927 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1928 {
1929 int node;
1930
1931 mem_cgroup_may_update_nodemask(memcg);
1932 node = memcg->last_scanned_node;
1933
1934 node = next_node(node, memcg->scan_nodes);
1935 if (node == MAX_NUMNODES)
1936 node = first_node(memcg->scan_nodes);
1937 /*
1938 * We call this when we hit limit, not when pages are added to LRU.
1939 * No LRU may hold pages because all pages are UNEVICTABLE or
1940 * memcg is too small and all pages are not on LRU. In that case,
1941 * we use curret node.
1942 */
1943 if (unlikely(node == MAX_NUMNODES))
1944 node = numa_node_id();
1945
1946 memcg->last_scanned_node = node;
1947 return node;
1948 }
1949
1950 /*
1951 * Check all nodes whether it contains reclaimable pages or not.
1952 * For quick scan, we make use of scan_nodes. This will allow us to skip
1953 * unused nodes. But scan_nodes is lazily updated and may not cotain
1954 * enough new information. We need to do double check.
1955 */
1956 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1957 {
1958 int nid;
1959
1960 /*
1961 * quick check...making use of scan_node.
1962 * We can skip unused nodes.
1963 */
1964 if (!nodes_empty(memcg->scan_nodes)) {
1965 for (nid = first_node(memcg->scan_nodes);
1966 nid < MAX_NUMNODES;
1967 nid = next_node(nid, memcg->scan_nodes)) {
1968
1969 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1970 return true;
1971 }
1972 }
1973 /*
1974 * Check rest of nodes.
1975 */
1976 for_each_node_state(nid, N_MEMORY) {
1977 if (node_isset(nid, memcg->scan_nodes))
1978 continue;
1979 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1980 return true;
1981 }
1982 return false;
1983 }
1984
1985 #else
1986 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1987 {
1988 return 0;
1989 }
1990
1991 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1992 {
1993 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1994 }
1995 #endif
1996
1997 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1998 struct zone *zone,
1999 gfp_t gfp_mask,
2000 unsigned long *total_scanned)
2001 {
2002 struct mem_cgroup *victim = NULL;
2003 int total = 0;
2004 int loop = 0;
2005 unsigned long excess;
2006 unsigned long nr_scanned;
2007 struct mem_cgroup_reclaim_cookie reclaim = {
2008 .zone = zone,
2009 .priority = 0,
2010 };
2011
2012 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2013
2014 while (1) {
2015 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2016 if (!victim) {
2017 loop++;
2018 if (loop >= 2) {
2019 /*
2020 * If we have not been able to reclaim
2021 * anything, it might because there are
2022 * no reclaimable pages under this hierarchy
2023 */
2024 if (!total)
2025 break;
2026 /*
2027 * We want to do more targeted reclaim.
2028 * excess >> 2 is not to excessive so as to
2029 * reclaim too much, nor too less that we keep
2030 * coming back to reclaim from this cgroup
2031 */
2032 if (total >= (excess >> 2) ||
2033 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2034 break;
2035 }
2036 continue;
2037 }
2038 if (!mem_cgroup_reclaimable(victim, false))
2039 continue;
2040 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2041 zone, &nr_scanned);
2042 *total_scanned += nr_scanned;
2043 if (!res_counter_soft_limit_excess(&root_memcg->res))
2044 break;
2045 }
2046 mem_cgroup_iter_break(root_memcg, victim);
2047 return total;
2048 }
2049
2050 /*
2051 * Check OOM-Killer is already running under our hierarchy.
2052 * If someone is running, return false.
2053 * Has to be called with memcg_oom_lock
2054 */
2055 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
2056 {
2057 struct mem_cgroup *iter, *failed = NULL;
2058
2059 for_each_mem_cgroup_tree(iter, memcg) {
2060 if (iter->oom_lock) {
2061 /*
2062 * this subtree of our hierarchy is already locked
2063 * so we cannot give a lock.
2064 */
2065 failed = iter;
2066 mem_cgroup_iter_break(memcg, iter);
2067 break;
2068 } else
2069 iter->oom_lock = true;
2070 }
2071
2072 if (!failed)
2073 return true;
2074
2075 /*
2076 * OK, we failed to lock the whole subtree so we have to clean up
2077 * what we set up to the failing subtree
2078 */
2079 for_each_mem_cgroup_tree(iter, memcg) {
2080 if (iter == failed) {
2081 mem_cgroup_iter_break(memcg, iter);
2082 break;
2083 }
2084 iter->oom_lock = false;
2085 }
2086 return false;
2087 }
2088
2089 /*
2090 * Has to be called with memcg_oom_lock
2091 */
2092 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2093 {
2094 struct mem_cgroup *iter;
2095
2096 for_each_mem_cgroup_tree(iter, memcg)
2097 iter->oom_lock = false;
2098 return 0;
2099 }
2100
2101 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2102 {
2103 struct mem_cgroup *iter;
2104
2105 for_each_mem_cgroup_tree(iter, memcg)
2106 atomic_inc(&iter->under_oom);
2107 }
2108
2109 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2110 {
2111 struct mem_cgroup *iter;
2112
2113 /*
2114 * When a new child is created while the hierarchy is under oom,
2115 * mem_cgroup_oom_lock() may not be called. We have to use
2116 * atomic_add_unless() here.
2117 */
2118 for_each_mem_cgroup_tree(iter, memcg)
2119 atomic_add_unless(&iter->under_oom, -1, 0);
2120 }
2121
2122 static DEFINE_SPINLOCK(memcg_oom_lock);
2123 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2124
2125 struct oom_wait_info {
2126 struct mem_cgroup *memcg;
2127 wait_queue_t wait;
2128 };
2129
2130 static int memcg_oom_wake_function(wait_queue_t *wait,
2131 unsigned mode, int sync, void *arg)
2132 {
2133 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2134 struct mem_cgroup *oom_wait_memcg;
2135 struct oom_wait_info *oom_wait_info;
2136
2137 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2138 oom_wait_memcg = oom_wait_info->memcg;
2139
2140 /*
2141 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2142 * Then we can use css_is_ancestor without taking care of RCU.
2143 */
2144 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2145 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2146 return 0;
2147 return autoremove_wake_function(wait, mode, sync, arg);
2148 }
2149
2150 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2151 {
2152 /* for filtering, pass "memcg" as argument. */
2153 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2154 }
2155
2156 static void memcg_oom_recover(struct mem_cgroup *memcg)
2157 {
2158 if (memcg && atomic_read(&memcg->under_oom))
2159 memcg_wakeup_oom(memcg);
2160 }
2161
2162 /*
2163 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2164 */
2165 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2166 int order)
2167 {
2168 struct oom_wait_info owait;
2169 bool locked, need_to_kill;
2170
2171 owait.memcg = memcg;
2172 owait.wait.flags = 0;
2173 owait.wait.func = memcg_oom_wake_function;
2174 owait.wait.private = current;
2175 INIT_LIST_HEAD(&owait.wait.task_list);
2176 need_to_kill = true;
2177 mem_cgroup_mark_under_oom(memcg);
2178
2179 /* At first, try to OOM lock hierarchy under memcg.*/
2180 spin_lock(&memcg_oom_lock);
2181 locked = mem_cgroup_oom_lock(memcg);
2182 /*
2183 * Even if signal_pending(), we can't quit charge() loop without
2184 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2185 * under OOM is always welcomed, use TASK_KILLABLE here.
2186 */
2187 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2188 if (!locked || memcg->oom_kill_disable)
2189 need_to_kill = false;
2190 if (locked)
2191 mem_cgroup_oom_notify(memcg);
2192 spin_unlock(&memcg_oom_lock);
2193
2194 if (need_to_kill) {
2195 finish_wait(&memcg_oom_waitq, &owait.wait);
2196 mem_cgroup_out_of_memory(memcg, mask, order);
2197 } else {
2198 schedule();
2199 finish_wait(&memcg_oom_waitq, &owait.wait);
2200 }
2201 spin_lock(&memcg_oom_lock);
2202 if (locked)
2203 mem_cgroup_oom_unlock(memcg);
2204 memcg_wakeup_oom(memcg);
2205 spin_unlock(&memcg_oom_lock);
2206
2207 mem_cgroup_unmark_under_oom(memcg);
2208
2209 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2210 return false;
2211 /* Give chance to dying process */
2212 schedule_timeout_uninterruptible(1);
2213 return true;
2214 }
2215
2216 /*
2217 * Currently used to update mapped file statistics, but the routine can be
2218 * generalized to update other statistics as well.
2219 *
2220 * Notes: Race condition
2221 *
2222 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2223 * it tends to be costly. But considering some conditions, we doesn't need
2224 * to do so _always_.
2225 *
2226 * Considering "charge", lock_page_cgroup() is not required because all
2227 * file-stat operations happen after a page is attached to radix-tree. There
2228 * are no race with "charge".
2229 *
2230 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2231 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2232 * if there are race with "uncharge". Statistics itself is properly handled
2233 * by flags.
2234 *
2235 * Considering "move", this is an only case we see a race. To make the race
2236 * small, we check mm->moving_account and detect there are possibility of race
2237 * If there is, we take a lock.
2238 */
2239
2240 void __mem_cgroup_begin_update_page_stat(struct page *page,
2241 bool *locked, unsigned long *flags)
2242 {
2243 struct mem_cgroup *memcg;
2244 struct page_cgroup *pc;
2245
2246 pc = lookup_page_cgroup(page);
2247 again:
2248 memcg = pc->mem_cgroup;
2249 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2250 return;
2251 /*
2252 * If this memory cgroup is not under account moving, we don't
2253 * need to take move_lock_mem_cgroup(). Because we already hold
2254 * rcu_read_lock(), any calls to move_account will be delayed until
2255 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2256 */
2257 if (!mem_cgroup_stolen(memcg))
2258 return;
2259
2260 move_lock_mem_cgroup(memcg, flags);
2261 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2262 move_unlock_mem_cgroup(memcg, flags);
2263 goto again;
2264 }
2265 *locked = true;
2266 }
2267
2268 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2269 {
2270 struct page_cgroup *pc = lookup_page_cgroup(page);
2271
2272 /*
2273 * It's guaranteed that pc->mem_cgroup never changes while
2274 * lock is held because a routine modifies pc->mem_cgroup
2275 * should take move_lock_mem_cgroup().
2276 */
2277 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2278 }
2279
2280 void mem_cgroup_update_page_stat(struct page *page,
2281 enum mem_cgroup_page_stat_item idx, int val)
2282 {
2283 struct mem_cgroup *memcg;
2284 struct page_cgroup *pc = lookup_page_cgroup(page);
2285 unsigned long uninitialized_var(flags);
2286
2287 if (mem_cgroup_disabled())
2288 return;
2289
2290 memcg = pc->mem_cgroup;
2291 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2292 return;
2293
2294 switch (idx) {
2295 case MEMCG_NR_FILE_MAPPED:
2296 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2297 break;
2298 default:
2299 BUG();
2300 }
2301
2302 this_cpu_add(memcg->stat->count[idx], val);
2303 }
2304
2305 /*
2306 * size of first charge trial. "32" comes from vmscan.c's magic value.
2307 * TODO: maybe necessary to use big numbers in big irons.
2308 */
2309 #define CHARGE_BATCH 32U
2310 struct memcg_stock_pcp {
2311 struct mem_cgroup *cached; /* this never be root cgroup */
2312 unsigned int nr_pages;
2313 struct work_struct work;
2314 unsigned long flags;
2315 #define FLUSHING_CACHED_CHARGE 0
2316 };
2317 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2318 static DEFINE_MUTEX(percpu_charge_mutex);
2319
2320 /**
2321 * consume_stock: Try to consume stocked charge on this cpu.
2322 * @memcg: memcg to consume from.
2323 * @nr_pages: how many pages to charge.
2324 *
2325 * The charges will only happen if @memcg matches the current cpu's memcg
2326 * stock, and at least @nr_pages are available in that stock. Failure to
2327 * service an allocation will refill the stock.
2328 *
2329 * returns true if successful, false otherwise.
2330 */
2331 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2332 {
2333 struct memcg_stock_pcp *stock;
2334 bool ret = true;
2335
2336 if (nr_pages > CHARGE_BATCH)
2337 return false;
2338
2339 stock = &get_cpu_var(memcg_stock);
2340 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2341 stock->nr_pages -= nr_pages;
2342 else /* need to call res_counter_charge */
2343 ret = false;
2344 put_cpu_var(memcg_stock);
2345 return ret;
2346 }
2347
2348 /*
2349 * Returns stocks cached in percpu to res_counter and reset cached information.
2350 */
2351 static void drain_stock(struct memcg_stock_pcp *stock)
2352 {
2353 struct mem_cgroup *old = stock->cached;
2354
2355 if (stock->nr_pages) {
2356 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2357
2358 res_counter_uncharge(&old->res, bytes);
2359 if (do_swap_account)
2360 res_counter_uncharge(&old->memsw, bytes);
2361 stock->nr_pages = 0;
2362 }
2363 stock->cached = NULL;
2364 }
2365
2366 /*
2367 * This must be called under preempt disabled or must be called by
2368 * a thread which is pinned to local cpu.
2369 */
2370 static void drain_local_stock(struct work_struct *dummy)
2371 {
2372 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2373 drain_stock(stock);
2374 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2375 }
2376
2377 static void __init memcg_stock_init(void)
2378 {
2379 int cpu;
2380
2381 for_each_possible_cpu(cpu) {
2382 struct memcg_stock_pcp *stock =
2383 &per_cpu(memcg_stock, cpu);
2384 INIT_WORK(&stock->work, drain_local_stock);
2385 }
2386 }
2387
2388 /*
2389 * Cache charges(val) which is from res_counter, to local per_cpu area.
2390 * This will be consumed by consume_stock() function, later.
2391 */
2392 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2393 {
2394 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2395
2396 if (stock->cached != memcg) { /* reset if necessary */
2397 drain_stock(stock);
2398 stock->cached = memcg;
2399 }
2400 stock->nr_pages += nr_pages;
2401 put_cpu_var(memcg_stock);
2402 }
2403
2404 /*
2405 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2406 * of the hierarchy under it. sync flag says whether we should block
2407 * until the work is done.
2408 */
2409 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2410 {
2411 int cpu, curcpu;
2412
2413 /* Notify other cpus that system-wide "drain" is running */
2414 get_online_cpus();
2415 curcpu = get_cpu();
2416 for_each_online_cpu(cpu) {
2417 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2418 struct mem_cgroup *memcg;
2419
2420 memcg = stock->cached;
2421 if (!memcg || !stock->nr_pages)
2422 continue;
2423 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2424 continue;
2425 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2426 if (cpu == curcpu)
2427 drain_local_stock(&stock->work);
2428 else
2429 schedule_work_on(cpu, &stock->work);
2430 }
2431 }
2432 put_cpu();
2433
2434 if (!sync)
2435 goto out;
2436
2437 for_each_online_cpu(cpu) {
2438 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2439 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2440 flush_work(&stock->work);
2441 }
2442 out:
2443 put_online_cpus();
2444 }
2445
2446 /*
2447 * Tries to drain stocked charges in other cpus. This function is asynchronous
2448 * and just put a work per cpu for draining localy on each cpu. Caller can
2449 * expects some charges will be back to res_counter later but cannot wait for
2450 * it.
2451 */
2452 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2453 {
2454 /*
2455 * If someone calls draining, avoid adding more kworker runs.
2456 */
2457 if (!mutex_trylock(&percpu_charge_mutex))
2458 return;
2459 drain_all_stock(root_memcg, false);
2460 mutex_unlock(&percpu_charge_mutex);
2461 }
2462
2463 /* This is a synchronous drain interface. */
2464 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2465 {
2466 /* called when force_empty is called */
2467 mutex_lock(&percpu_charge_mutex);
2468 drain_all_stock(root_memcg, true);
2469 mutex_unlock(&percpu_charge_mutex);
2470 }
2471
2472 /*
2473 * This function drains percpu counter value from DEAD cpu and
2474 * move it to local cpu. Note that this function can be preempted.
2475 */
2476 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2477 {
2478 int i;
2479
2480 spin_lock(&memcg->pcp_counter_lock);
2481 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2482 long x = per_cpu(memcg->stat->count[i], cpu);
2483
2484 per_cpu(memcg->stat->count[i], cpu) = 0;
2485 memcg->nocpu_base.count[i] += x;
2486 }
2487 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2488 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2489
2490 per_cpu(memcg->stat->events[i], cpu) = 0;
2491 memcg->nocpu_base.events[i] += x;
2492 }
2493 spin_unlock(&memcg->pcp_counter_lock);
2494 }
2495
2496 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2497 unsigned long action,
2498 void *hcpu)
2499 {
2500 int cpu = (unsigned long)hcpu;
2501 struct memcg_stock_pcp *stock;
2502 struct mem_cgroup *iter;
2503
2504 if (action == CPU_ONLINE)
2505 return NOTIFY_OK;
2506
2507 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2508 return NOTIFY_OK;
2509
2510 for_each_mem_cgroup(iter)
2511 mem_cgroup_drain_pcp_counter(iter, cpu);
2512
2513 stock = &per_cpu(memcg_stock, cpu);
2514 drain_stock(stock);
2515 return NOTIFY_OK;
2516 }
2517
2518
2519 /* See __mem_cgroup_try_charge() for details */
2520 enum {
2521 CHARGE_OK, /* success */
2522 CHARGE_RETRY, /* need to retry but retry is not bad */
2523 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2524 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2525 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2526 };
2527
2528 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2529 unsigned int nr_pages, unsigned int min_pages,
2530 bool oom_check)
2531 {
2532 unsigned long csize = nr_pages * PAGE_SIZE;
2533 struct mem_cgroup *mem_over_limit;
2534 struct res_counter *fail_res;
2535 unsigned long flags = 0;
2536 int ret;
2537
2538 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2539
2540 if (likely(!ret)) {
2541 if (!do_swap_account)
2542 return CHARGE_OK;
2543 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2544 if (likely(!ret))
2545 return CHARGE_OK;
2546
2547 res_counter_uncharge(&memcg->res, csize);
2548 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2549 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2550 } else
2551 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2552 /*
2553 * Never reclaim on behalf of optional batching, retry with a
2554 * single page instead.
2555 */
2556 if (nr_pages > min_pages)
2557 return CHARGE_RETRY;
2558
2559 if (!(gfp_mask & __GFP_WAIT))
2560 return CHARGE_WOULDBLOCK;
2561
2562 if (gfp_mask & __GFP_NORETRY)
2563 return CHARGE_NOMEM;
2564
2565 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2566 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2567 return CHARGE_RETRY;
2568 /*
2569 * Even though the limit is exceeded at this point, reclaim
2570 * may have been able to free some pages. Retry the charge
2571 * before killing the task.
2572 *
2573 * Only for regular pages, though: huge pages are rather
2574 * unlikely to succeed so close to the limit, and we fall back
2575 * to regular pages anyway in case of failure.
2576 */
2577 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2578 return CHARGE_RETRY;
2579
2580 /*
2581 * At task move, charge accounts can be doubly counted. So, it's
2582 * better to wait until the end of task_move if something is going on.
2583 */
2584 if (mem_cgroup_wait_acct_move(mem_over_limit))
2585 return CHARGE_RETRY;
2586
2587 /* If we don't need to call oom-killer at el, return immediately */
2588 if (!oom_check)
2589 return CHARGE_NOMEM;
2590 /* check OOM */
2591 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2592 return CHARGE_OOM_DIE;
2593
2594 return CHARGE_RETRY;
2595 }
2596
2597 /*
2598 * __mem_cgroup_try_charge() does
2599 * 1. detect memcg to be charged against from passed *mm and *ptr,
2600 * 2. update res_counter
2601 * 3. call memory reclaim if necessary.
2602 *
2603 * In some special case, if the task is fatal, fatal_signal_pending() or
2604 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2605 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2606 * as possible without any hazards. 2: all pages should have a valid
2607 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2608 * pointer, that is treated as a charge to root_mem_cgroup.
2609 *
2610 * So __mem_cgroup_try_charge() will return
2611 * 0 ... on success, filling *ptr with a valid memcg pointer.
2612 * -ENOMEM ... charge failure because of resource limits.
2613 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2614 *
2615 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2616 * the oom-killer can be invoked.
2617 */
2618 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2619 gfp_t gfp_mask,
2620 unsigned int nr_pages,
2621 struct mem_cgroup **ptr,
2622 bool oom)
2623 {
2624 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2625 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2626 struct mem_cgroup *memcg = NULL;
2627 int ret;
2628
2629 /*
2630 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2631 * in system level. So, allow to go ahead dying process in addition to
2632 * MEMDIE process.
2633 */
2634 if (unlikely(test_thread_flag(TIF_MEMDIE)
2635 || fatal_signal_pending(current)))
2636 goto bypass;
2637
2638 /*
2639 * We always charge the cgroup the mm_struct belongs to.
2640 * The mm_struct's mem_cgroup changes on task migration if the
2641 * thread group leader migrates. It's possible that mm is not
2642 * set, if so charge the root memcg (happens for pagecache usage).
2643 */
2644 if (!*ptr && !mm)
2645 *ptr = root_mem_cgroup;
2646 again:
2647 if (*ptr) { /* css should be a valid one */
2648 memcg = *ptr;
2649 if (mem_cgroup_is_root(memcg))
2650 goto done;
2651 if (consume_stock(memcg, nr_pages))
2652 goto done;
2653 css_get(&memcg->css);
2654 } else {
2655 struct task_struct *p;
2656
2657 rcu_read_lock();
2658 p = rcu_dereference(mm->owner);
2659 /*
2660 * Because we don't have task_lock(), "p" can exit.
2661 * In that case, "memcg" can point to root or p can be NULL with
2662 * race with swapoff. Then, we have small risk of mis-accouning.
2663 * But such kind of mis-account by race always happens because
2664 * we don't have cgroup_mutex(). It's overkill and we allo that
2665 * small race, here.
2666 * (*) swapoff at el will charge against mm-struct not against
2667 * task-struct. So, mm->owner can be NULL.
2668 */
2669 memcg = mem_cgroup_from_task(p);
2670 if (!memcg)
2671 memcg = root_mem_cgroup;
2672 if (mem_cgroup_is_root(memcg)) {
2673 rcu_read_unlock();
2674 goto done;
2675 }
2676 if (consume_stock(memcg, nr_pages)) {
2677 /*
2678 * It seems dagerous to access memcg without css_get().
2679 * But considering how consume_stok works, it's not
2680 * necessary. If consume_stock success, some charges
2681 * from this memcg are cached on this cpu. So, we
2682 * don't need to call css_get()/css_tryget() before
2683 * calling consume_stock().
2684 */
2685 rcu_read_unlock();
2686 goto done;
2687 }
2688 /* after here, we may be blocked. we need to get refcnt */
2689 if (!css_tryget(&memcg->css)) {
2690 rcu_read_unlock();
2691 goto again;
2692 }
2693 rcu_read_unlock();
2694 }
2695
2696 do {
2697 bool oom_check;
2698
2699 /* If killed, bypass charge */
2700 if (fatal_signal_pending(current)) {
2701 css_put(&memcg->css);
2702 goto bypass;
2703 }
2704
2705 oom_check = false;
2706 if (oom && !nr_oom_retries) {
2707 oom_check = true;
2708 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2709 }
2710
2711 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2712 oom_check);
2713 switch (ret) {
2714 case CHARGE_OK:
2715 break;
2716 case CHARGE_RETRY: /* not in OOM situation but retry */
2717 batch = nr_pages;
2718 css_put(&memcg->css);
2719 memcg = NULL;
2720 goto again;
2721 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2722 css_put(&memcg->css);
2723 goto nomem;
2724 case CHARGE_NOMEM: /* OOM routine works */
2725 if (!oom) {
2726 css_put(&memcg->css);
2727 goto nomem;
2728 }
2729 /* If oom, we never return -ENOMEM */
2730 nr_oom_retries--;
2731 break;
2732 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2733 css_put(&memcg->css);
2734 goto bypass;
2735 }
2736 } while (ret != CHARGE_OK);
2737
2738 if (batch > nr_pages)
2739 refill_stock(memcg, batch - nr_pages);
2740 css_put(&memcg->css);
2741 done:
2742 *ptr = memcg;
2743 return 0;
2744 nomem:
2745 *ptr = NULL;
2746 return -ENOMEM;
2747 bypass:
2748 *ptr = root_mem_cgroup;
2749 return -EINTR;
2750 }
2751
2752 /*
2753 * Somemtimes we have to undo a charge we got by try_charge().
2754 * This function is for that and do uncharge, put css's refcnt.
2755 * gotten by try_charge().
2756 */
2757 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2758 unsigned int nr_pages)
2759 {
2760 if (!mem_cgroup_is_root(memcg)) {
2761 unsigned long bytes = nr_pages * PAGE_SIZE;
2762
2763 res_counter_uncharge(&memcg->res, bytes);
2764 if (do_swap_account)
2765 res_counter_uncharge(&memcg->memsw, bytes);
2766 }
2767 }
2768
2769 /*
2770 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2771 * This is useful when moving usage to parent cgroup.
2772 */
2773 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2774 unsigned int nr_pages)
2775 {
2776 unsigned long bytes = nr_pages * PAGE_SIZE;
2777
2778 if (mem_cgroup_is_root(memcg))
2779 return;
2780
2781 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2782 if (do_swap_account)
2783 res_counter_uncharge_until(&memcg->memsw,
2784 memcg->memsw.parent, bytes);
2785 }
2786
2787 /*
2788 * A helper function to get mem_cgroup from ID. must be called under
2789 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2790 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2791 * called against removed memcg.)
2792 */
2793 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2794 {
2795 struct cgroup_subsys_state *css;
2796
2797 /* ID 0 is unused ID */
2798 if (!id)
2799 return NULL;
2800 css = css_lookup(&mem_cgroup_subsys, id);
2801 if (!css)
2802 return NULL;
2803 return mem_cgroup_from_css(css);
2804 }
2805
2806 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2807 {
2808 struct mem_cgroup *memcg = NULL;
2809 struct page_cgroup *pc;
2810 unsigned short id;
2811 swp_entry_t ent;
2812
2813 VM_BUG_ON(!PageLocked(page));
2814
2815 pc = lookup_page_cgroup(page);
2816 lock_page_cgroup(pc);
2817 if (PageCgroupUsed(pc)) {
2818 memcg = pc->mem_cgroup;
2819 if (memcg && !css_tryget(&memcg->css))
2820 memcg = NULL;
2821 } else if (PageSwapCache(page)) {
2822 ent.val = page_private(page);
2823 id = lookup_swap_cgroup_id(ent);
2824 rcu_read_lock();
2825 memcg = mem_cgroup_lookup(id);
2826 if (memcg && !css_tryget(&memcg->css))
2827 memcg = NULL;
2828 rcu_read_unlock();
2829 }
2830 unlock_page_cgroup(pc);
2831 return memcg;
2832 }
2833
2834 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2835 struct page *page,
2836 unsigned int nr_pages,
2837 enum charge_type ctype,
2838 bool lrucare)
2839 {
2840 struct page_cgroup *pc = lookup_page_cgroup(page);
2841 struct zone *uninitialized_var(zone);
2842 struct lruvec *lruvec;
2843 bool was_on_lru = false;
2844 bool anon;
2845
2846 lock_page_cgroup(pc);
2847 VM_BUG_ON(PageCgroupUsed(pc));
2848 /*
2849 * we don't need page_cgroup_lock about tail pages, becase they are not
2850 * accessed by any other context at this point.
2851 */
2852
2853 /*
2854 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2855 * may already be on some other mem_cgroup's LRU. Take care of it.
2856 */
2857 if (lrucare) {
2858 zone = page_zone(page);
2859 spin_lock_irq(&zone->lru_lock);
2860 if (PageLRU(page)) {
2861 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2862 ClearPageLRU(page);
2863 del_page_from_lru_list(page, lruvec, page_lru(page));
2864 was_on_lru = true;
2865 }
2866 }
2867
2868 pc->mem_cgroup = memcg;
2869 /*
2870 * We access a page_cgroup asynchronously without lock_page_cgroup().
2871 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2872 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2873 * before USED bit, we need memory barrier here.
2874 * See mem_cgroup_add_lru_list(), etc.
2875 */
2876 smp_wmb();
2877 SetPageCgroupUsed(pc);
2878
2879 if (lrucare) {
2880 if (was_on_lru) {
2881 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2882 VM_BUG_ON(PageLRU(page));
2883 SetPageLRU(page);
2884 add_page_to_lru_list(page, lruvec, page_lru(page));
2885 }
2886 spin_unlock_irq(&zone->lru_lock);
2887 }
2888
2889 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2890 anon = true;
2891 else
2892 anon = false;
2893
2894 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2895 unlock_page_cgroup(pc);
2896
2897 /*
2898 * "charge_statistics" updated event counter. Then, check it.
2899 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2900 * if they exceeds softlimit.
2901 */
2902 memcg_check_events(memcg, page);
2903 }
2904
2905 static DEFINE_MUTEX(set_limit_mutex);
2906
2907 #ifdef CONFIG_MEMCG_KMEM
2908 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2909 {
2910 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2911 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2912 }
2913
2914 /*
2915 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2916 * in the memcg_cache_params struct.
2917 */
2918 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2919 {
2920 struct kmem_cache *cachep;
2921
2922 VM_BUG_ON(p->is_root_cache);
2923 cachep = p->root_cache;
2924 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2925 }
2926
2927 #ifdef CONFIG_SLABINFO
2928 static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2929 struct seq_file *m)
2930 {
2931 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2932 struct memcg_cache_params *params;
2933
2934 if (!memcg_can_account_kmem(memcg))
2935 return -EIO;
2936
2937 print_slabinfo_header(m);
2938
2939 mutex_lock(&memcg->slab_caches_mutex);
2940 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2941 cache_show(memcg_params_to_cache(params), m);
2942 mutex_unlock(&memcg->slab_caches_mutex);
2943
2944 return 0;
2945 }
2946 #endif
2947
2948 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2949 {
2950 struct res_counter *fail_res;
2951 struct mem_cgroup *_memcg;
2952 int ret = 0;
2953 bool may_oom;
2954
2955 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2956 if (ret)
2957 return ret;
2958
2959 /*
2960 * Conditions under which we can wait for the oom_killer. Those are
2961 * the same conditions tested by the core page allocator
2962 */
2963 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2964
2965 _memcg = memcg;
2966 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2967 &_memcg, may_oom);
2968
2969 if (ret == -EINTR) {
2970 /*
2971 * __mem_cgroup_try_charge() chosed to bypass to root due to
2972 * OOM kill or fatal signal. Since our only options are to
2973 * either fail the allocation or charge it to this cgroup, do
2974 * it as a temporary condition. But we can't fail. From a
2975 * kmem/slab perspective, the cache has already been selected,
2976 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2977 * our minds.
2978 *
2979 * This condition will only trigger if the task entered
2980 * memcg_charge_kmem in a sane state, but was OOM-killed during
2981 * __mem_cgroup_try_charge() above. Tasks that were already
2982 * dying when the allocation triggers should have been already
2983 * directed to the root cgroup in memcontrol.h
2984 */
2985 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2986 if (do_swap_account)
2987 res_counter_charge_nofail(&memcg->memsw, size,
2988 &fail_res);
2989 ret = 0;
2990 } else if (ret)
2991 res_counter_uncharge(&memcg->kmem, size);
2992
2993 return ret;
2994 }
2995
2996 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2997 {
2998 res_counter_uncharge(&memcg->res, size);
2999 if (do_swap_account)
3000 res_counter_uncharge(&memcg->memsw, size);
3001
3002 /* Not down to 0 */
3003 if (res_counter_uncharge(&memcg->kmem, size))
3004 return;
3005
3006 if (memcg_kmem_test_and_clear_dead(memcg))
3007 mem_cgroup_put(memcg);
3008 }
3009
3010 void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3011 {
3012 if (!memcg)
3013 return;
3014
3015 mutex_lock(&memcg->slab_caches_mutex);
3016 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3017 mutex_unlock(&memcg->slab_caches_mutex);
3018 }
3019
3020 /*
3021 * helper for acessing a memcg's index. It will be used as an index in the
3022 * child cache array in kmem_cache, and also to derive its name. This function
3023 * will return -1 when this is not a kmem-limited memcg.
3024 */
3025 int memcg_cache_id(struct mem_cgroup *memcg)
3026 {
3027 return memcg ? memcg->kmemcg_id : -1;
3028 }
3029
3030 /*
3031 * This ends up being protected by the set_limit mutex, during normal
3032 * operation, because that is its main call site.
3033 *
3034 * But when we create a new cache, we can call this as well if its parent
3035 * is kmem-limited. That will have to hold set_limit_mutex as well.
3036 */
3037 int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3038 {
3039 int num, ret;
3040
3041 num = ida_simple_get(&kmem_limited_groups,
3042 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3043 if (num < 0)
3044 return num;
3045 /*
3046 * After this point, kmem_accounted (that we test atomically in
3047 * the beginning of this conditional), is no longer 0. This
3048 * guarantees only one process will set the following boolean
3049 * to true. We don't need test_and_set because we're protected
3050 * by the set_limit_mutex anyway.
3051 */
3052 memcg_kmem_set_activated(memcg);
3053
3054 ret = memcg_update_all_caches(num+1);
3055 if (ret) {
3056 ida_simple_remove(&kmem_limited_groups, num);
3057 memcg_kmem_clear_activated(memcg);
3058 return ret;
3059 }
3060
3061 memcg->kmemcg_id = num;
3062 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3063 mutex_init(&memcg->slab_caches_mutex);
3064 return 0;
3065 }
3066
3067 static size_t memcg_caches_array_size(int num_groups)
3068 {
3069 ssize_t size;
3070 if (num_groups <= 0)
3071 return 0;
3072
3073 size = 2 * num_groups;
3074 if (size < MEMCG_CACHES_MIN_SIZE)
3075 size = MEMCG_CACHES_MIN_SIZE;
3076 else if (size > MEMCG_CACHES_MAX_SIZE)
3077 size = MEMCG_CACHES_MAX_SIZE;
3078
3079 return size;
3080 }
3081
3082 /*
3083 * We should update the current array size iff all caches updates succeed. This
3084 * can only be done from the slab side. The slab mutex needs to be held when
3085 * calling this.
3086 */
3087 void memcg_update_array_size(int num)
3088 {
3089 if (num > memcg_limited_groups_array_size)
3090 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3091 }
3092
3093 static void kmem_cache_destroy_work_func(struct work_struct *w);
3094
3095 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3096 {
3097 struct memcg_cache_params *cur_params = s->memcg_params;
3098
3099 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3100
3101 if (num_groups > memcg_limited_groups_array_size) {
3102 int i;
3103 ssize_t size = memcg_caches_array_size(num_groups);
3104
3105 size *= sizeof(void *);
3106 size += sizeof(struct memcg_cache_params);
3107
3108 s->memcg_params = kzalloc(size, GFP_KERNEL);
3109 if (!s->memcg_params) {
3110 s->memcg_params = cur_params;
3111 return -ENOMEM;
3112 }
3113
3114 INIT_WORK(&s->memcg_params->destroy,
3115 kmem_cache_destroy_work_func);
3116 s->memcg_params->is_root_cache = true;
3117
3118 /*
3119 * There is the chance it will be bigger than
3120 * memcg_limited_groups_array_size, if we failed an allocation
3121 * in a cache, in which case all caches updated before it, will
3122 * have a bigger array.
3123 *
3124 * But if that is the case, the data after
3125 * memcg_limited_groups_array_size is certainly unused
3126 */
3127 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3128 if (!cur_params->memcg_caches[i])
3129 continue;
3130 s->memcg_params->memcg_caches[i] =
3131 cur_params->memcg_caches[i];
3132 }
3133
3134 /*
3135 * Ideally, we would wait until all caches succeed, and only
3136 * then free the old one. But this is not worth the extra
3137 * pointer per-cache we'd have to have for this.
3138 *
3139 * It is not a big deal if some caches are left with a size
3140 * bigger than the others. And all updates will reset this
3141 * anyway.
3142 */
3143 kfree(cur_params);
3144 }
3145 return 0;
3146 }
3147
3148 int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3149 struct kmem_cache *root_cache)
3150 {
3151 size_t size = sizeof(struct memcg_cache_params);
3152
3153 if (!memcg_kmem_enabled())
3154 return 0;
3155
3156 if (!memcg)
3157 size += memcg_limited_groups_array_size * sizeof(void *);
3158
3159 s->memcg_params = kzalloc(size, GFP_KERNEL);
3160 if (!s->memcg_params)
3161 return -ENOMEM;
3162
3163 INIT_WORK(&s->memcg_params->destroy,
3164 kmem_cache_destroy_work_func);
3165 if (memcg) {
3166 s->memcg_params->memcg = memcg;
3167 s->memcg_params->root_cache = root_cache;
3168 } else
3169 s->memcg_params->is_root_cache = true;
3170
3171 return 0;
3172 }
3173
3174 void memcg_release_cache(struct kmem_cache *s)
3175 {
3176 struct kmem_cache *root;
3177 struct mem_cgroup *memcg;
3178 int id;
3179
3180 /*
3181 * This happens, for instance, when a root cache goes away before we
3182 * add any memcg.
3183 */
3184 if (!s->memcg_params)
3185 return;
3186
3187 if (s->memcg_params->is_root_cache)
3188 goto out;
3189
3190 memcg = s->memcg_params->memcg;
3191 id = memcg_cache_id(memcg);
3192
3193 root = s->memcg_params->root_cache;
3194 root->memcg_params->memcg_caches[id] = NULL;
3195 mem_cgroup_put(memcg);
3196
3197 mutex_lock(&memcg->slab_caches_mutex);
3198 list_del(&s->memcg_params->list);
3199 mutex_unlock(&memcg->slab_caches_mutex);
3200
3201 out:
3202 kfree(s->memcg_params);
3203 }
3204
3205 /*
3206 * During the creation a new cache, we need to disable our accounting mechanism
3207 * altogether. This is true even if we are not creating, but rather just
3208 * enqueing new caches to be created.
3209 *
3210 * This is because that process will trigger allocations; some visible, like
3211 * explicit kmallocs to auxiliary data structures, name strings and internal
3212 * cache structures; some well concealed, like INIT_WORK() that can allocate
3213 * objects during debug.
3214 *
3215 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3216 * to it. This may not be a bounded recursion: since the first cache creation
3217 * failed to complete (waiting on the allocation), we'll just try to create the
3218 * cache again, failing at the same point.
3219 *
3220 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3221 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3222 * inside the following two functions.
3223 */
3224 static inline void memcg_stop_kmem_account(void)
3225 {
3226 VM_BUG_ON(!current->mm);
3227 current->memcg_kmem_skip_account++;
3228 }
3229
3230 static inline void memcg_resume_kmem_account(void)
3231 {
3232 VM_BUG_ON(!current->mm);
3233 current->memcg_kmem_skip_account--;
3234 }
3235
3236 static void kmem_cache_destroy_work_func(struct work_struct *w)
3237 {
3238 struct kmem_cache *cachep;
3239 struct memcg_cache_params *p;
3240
3241 p = container_of(w, struct memcg_cache_params, destroy);
3242
3243 cachep = memcg_params_to_cache(p);
3244
3245 /*
3246 * If we get down to 0 after shrink, we could delete right away.
3247 * However, memcg_release_pages() already puts us back in the workqueue
3248 * in that case. If we proceed deleting, we'll get a dangling
3249 * reference, and removing the object from the workqueue in that case
3250 * is unnecessary complication. We are not a fast path.
3251 *
3252 * Note that this case is fundamentally different from racing with
3253 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3254 * kmem_cache_shrink, not only we would be reinserting a dead cache
3255 * into the queue, but doing so from inside the worker racing to
3256 * destroy it.
3257 *
3258 * So if we aren't down to zero, we'll just schedule a worker and try
3259 * again
3260 */
3261 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3262 kmem_cache_shrink(cachep);
3263 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3264 return;
3265 } else
3266 kmem_cache_destroy(cachep);
3267 }
3268
3269 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3270 {
3271 if (!cachep->memcg_params->dead)
3272 return;
3273
3274 /*
3275 * There are many ways in which we can get here.
3276 *
3277 * We can get to a memory-pressure situation while the delayed work is
3278 * still pending to run. The vmscan shrinkers can then release all
3279 * cache memory and get us to destruction. If this is the case, we'll
3280 * be executed twice, which is a bug (the second time will execute over
3281 * bogus data). In this case, cancelling the work should be fine.
3282 *
3283 * But we can also get here from the worker itself, if
3284 * kmem_cache_shrink is enough to shake all the remaining objects and
3285 * get the page count to 0. In this case, we'll deadlock if we try to
3286 * cancel the work (the worker runs with an internal lock held, which
3287 * is the same lock we would hold for cancel_work_sync().)
3288 *
3289 * Since we can't possibly know who got us here, just refrain from
3290 * running if there is already work pending
3291 */
3292 if (work_pending(&cachep->memcg_params->destroy))
3293 return;
3294 /*
3295 * We have to defer the actual destroying to a workqueue, because
3296 * we might currently be in a context that cannot sleep.
3297 */
3298 schedule_work(&cachep->memcg_params->destroy);
3299 }
3300
3301 static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3302 {
3303 char *name;
3304 struct dentry *dentry;
3305
3306 rcu_read_lock();
3307 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3308 rcu_read_unlock();
3309
3310 BUG_ON(dentry == NULL);
3311
3312 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3313 memcg_cache_id(memcg), dentry->d_name.name);
3314
3315 return name;
3316 }
3317
3318 static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3319 struct kmem_cache *s)
3320 {
3321 char *name;
3322 struct kmem_cache *new;
3323
3324 name = memcg_cache_name(memcg, s);
3325 if (!name)
3326 return NULL;
3327
3328 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
3329 (s->flags & ~SLAB_PANIC), s->ctor, s);
3330
3331 if (new)
3332 new->allocflags |= __GFP_KMEMCG;
3333
3334 kfree(name);
3335 return new;
3336 }
3337
3338 /*
3339 * This lock protects updaters, not readers. We want readers to be as fast as
3340 * they can, and they will either see NULL or a valid cache value. Our model
3341 * allow them to see NULL, in which case the root memcg will be selected.
3342 *
3343 * We need this lock because multiple allocations to the same cache from a non
3344 * will span more than one worker. Only one of them can create the cache.
3345 */
3346 static DEFINE_MUTEX(memcg_cache_mutex);
3347 static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3348 struct kmem_cache *cachep)
3349 {
3350 struct kmem_cache *new_cachep;
3351 int idx;
3352
3353 BUG_ON(!memcg_can_account_kmem(memcg));
3354
3355 idx = memcg_cache_id(memcg);
3356
3357 mutex_lock(&memcg_cache_mutex);
3358 new_cachep = cachep->memcg_params->memcg_caches[idx];
3359 if (new_cachep)
3360 goto out;
3361
3362 new_cachep = kmem_cache_dup(memcg, cachep);
3363 if (new_cachep == NULL) {
3364 new_cachep = cachep;
3365 goto out;
3366 }
3367
3368 mem_cgroup_get(memcg);
3369 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3370
3371 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3372 /*
3373 * the readers won't lock, make sure everybody sees the updated value,
3374 * so they won't put stuff in the queue again for no reason
3375 */
3376 wmb();
3377 out:
3378 mutex_unlock(&memcg_cache_mutex);
3379 return new_cachep;
3380 }
3381
3382 void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3383 {
3384 struct kmem_cache *c;
3385 int i;
3386
3387 if (!s->memcg_params)
3388 return;
3389 if (!s->memcg_params->is_root_cache)
3390 return;
3391
3392 /*
3393 * If the cache is being destroyed, we trust that there is no one else
3394 * requesting objects from it. Even if there are, the sanity checks in
3395 * kmem_cache_destroy should caught this ill-case.
3396 *
3397 * Still, we don't want anyone else freeing memcg_caches under our
3398 * noses, which can happen if a new memcg comes to life. As usual,
3399 * we'll take the set_limit_mutex to protect ourselves against this.
3400 */
3401 mutex_lock(&set_limit_mutex);
3402 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3403 c = s->memcg_params->memcg_caches[i];
3404 if (!c)
3405 continue;
3406
3407 /*
3408 * We will now manually delete the caches, so to avoid races
3409 * we need to cancel all pending destruction workers and
3410 * proceed with destruction ourselves.
3411 *
3412 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3413 * and that could spawn the workers again: it is likely that
3414 * the cache still have active pages until this very moment.
3415 * This would lead us back to mem_cgroup_destroy_cache.
3416 *
3417 * But that will not execute at all if the "dead" flag is not
3418 * set, so flip it down to guarantee we are in control.
3419 */
3420 c->memcg_params->dead = false;
3421 cancel_work_sync(&c->memcg_params->destroy);
3422 kmem_cache_destroy(c);
3423 }
3424 mutex_unlock(&set_limit_mutex);
3425 }
3426
3427 struct create_work {
3428 struct mem_cgroup *memcg;
3429 struct kmem_cache *cachep;
3430 struct work_struct work;
3431 };
3432
3433 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3434 {
3435 struct kmem_cache *cachep;
3436 struct memcg_cache_params *params;
3437
3438 if (!memcg_kmem_is_active(memcg))
3439 return;
3440
3441 mutex_lock(&memcg->slab_caches_mutex);
3442 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3443 cachep = memcg_params_to_cache(params);
3444 cachep->memcg_params->dead = true;
3445 schedule_work(&cachep->memcg_params->destroy);
3446 }
3447 mutex_unlock(&memcg->slab_caches_mutex);
3448 }
3449
3450 static void memcg_create_cache_work_func(struct work_struct *w)
3451 {
3452 struct create_work *cw;
3453
3454 cw = container_of(w, struct create_work, work);
3455 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3456 /* Drop the reference gotten when we enqueued. */
3457 css_put(&cw->memcg->css);
3458 kfree(cw);
3459 }
3460
3461 /*
3462 * Enqueue the creation of a per-memcg kmem_cache.
3463 * Called with rcu_read_lock.
3464 */
3465 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3466 struct kmem_cache *cachep)
3467 {
3468 struct create_work *cw;
3469
3470 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3471 if (cw == NULL)
3472 return;
3473
3474 /* The corresponding put will be done in the workqueue. */
3475 if (!css_tryget(&memcg->css)) {
3476 kfree(cw);
3477 return;
3478 }
3479
3480 cw->memcg = memcg;
3481 cw->cachep = cachep;
3482
3483 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3484 schedule_work(&cw->work);
3485 }
3486
3487 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3488 struct kmem_cache *cachep)
3489 {
3490 /*
3491 * We need to stop accounting when we kmalloc, because if the
3492 * corresponding kmalloc cache is not yet created, the first allocation
3493 * in __memcg_create_cache_enqueue will recurse.
3494 *
3495 * However, it is better to enclose the whole function. Depending on
3496 * the debugging options enabled, INIT_WORK(), for instance, can
3497 * trigger an allocation. This too, will make us recurse. Because at
3498 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3499 * the safest choice is to do it like this, wrapping the whole function.
3500 */
3501 memcg_stop_kmem_account();
3502 __memcg_create_cache_enqueue(memcg, cachep);
3503 memcg_resume_kmem_account();
3504 }
3505 /*
3506 * Return the kmem_cache we're supposed to use for a slab allocation.
3507 * We try to use the current memcg's version of the cache.
3508 *
3509 * If the cache does not exist yet, if we are the first user of it,
3510 * we either create it immediately, if possible, or create it asynchronously
3511 * in a workqueue.
3512 * In the latter case, we will let the current allocation go through with
3513 * the original cache.
3514 *
3515 * Can't be called in interrupt context or from kernel threads.
3516 * This function needs to be called with rcu_read_lock() held.
3517 */
3518 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3519 gfp_t gfp)
3520 {
3521 struct mem_cgroup *memcg;
3522 int idx;
3523
3524 VM_BUG_ON(!cachep->memcg_params);
3525 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3526
3527 if (!current->mm || current->memcg_kmem_skip_account)
3528 return cachep;
3529
3530 rcu_read_lock();
3531 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3532 rcu_read_unlock();
3533
3534 if (!memcg_can_account_kmem(memcg))
3535 return cachep;
3536
3537 idx = memcg_cache_id(memcg);
3538
3539 /*
3540 * barrier to mare sure we're always seeing the up to date value. The
3541 * code updating memcg_caches will issue a write barrier to match this.
3542 */
3543 read_barrier_depends();
3544 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3545 /*
3546 * If we are in a safe context (can wait, and not in interrupt
3547 * context), we could be be predictable and return right away.
3548 * This would guarantee that the allocation being performed
3549 * already belongs in the new cache.
3550 *
3551 * However, there are some clashes that can arrive from locking.
3552 * For instance, because we acquire the slab_mutex while doing
3553 * kmem_cache_dup, this means no further allocation could happen
3554 * with the slab_mutex held.
3555 *
3556 * Also, because cache creation issue get_online_cpus(), this
3557 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3558 * that ends up reversed during cpu hotplug. (cpuset allocates
3559 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3560 * better to defer everything.
3561 */
3562 memcg_create_cache_enqueue(memcg, cachep);
3563 return cachep;
3564 }
3565
3566 return cachep->memcg_params->memcg_caches[idx];
3567 }
3568 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3569
3570 /*
3571 * We need to verify if the allocation against current->mm->owner's memcg is
3572 * possible for the given order. But the page is not allocated yet, so we'll
3573 * need a further commit step to do the final arrangements.
3574 *
3575 * It is possible for the task to switch cgroups in this mean time, so at
3576 * commit time, we can't rely on task conversion any longer. We'll then use
3577 * the handle argument to return to the caller which cgroup we should commit
3578 * against. We could also return the memcg directly and avoid the pointer
3579 * passing, but a boolean return value gives better semantics considering
3580 * the compiled-out case as well.
3581 *
3582 * Returning true means the allocation is possible.
3583 */
3584 bool
3585 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3586 {
3587 struct mem_cgroup *memcg;
3588 int ret;
3589
3590 *_memcg = NULL;
3591 memcg = try_get_mem_cgroup_from_mm(current->mm);
3592
3593 /*
3594 * very rare case described in mem_cgroup_from_task. Unfortunately there
3595 * isn't much we can do without complicating this too much, and it would
3596 * be gfp-dependent anyway. Just let it go
3597 */
3598 if (unlikely(!memcg))
3599 return true;
3600
3601 if (!memcg_can_account_kmem(memcg)) {
3602 css_put(&memcg->css);
3603 return true;
3604 }
3605
3606 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3607 if (!ret)
3608 *_memcg = memcg;
3609
3610 css_put(&memcg->css);
3611 return (ret == 0);
3612 }
3613
3614 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3615 int order)
3616 {
3617 struct page_cgroup *pc;
3618
3619 VM_BUG_ON(mem_cgroup_is_root(memcg));
3620
3621 /* The page allocation failed. Revert */
3622 if (!page) {
3623 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3624 return;
3625 }
3626
3627 pc = lookup_page_cgroup(page);
3628 lock_page_cgroup(pc);
3629 pc->mem_cgroup = memcg;
3630 SetPageCgroupUsed(pc);
3631 unlock_page_cgroup(pc);
3632 }
3633
3634 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3635 {
3636 struct mem_cgroup *memcg = NULL;
3637 struct page_cgroup *pc;
3638
3639
3640 pc = lookup_page_cgroup(page);
3641 /*
3642 * Fast unlocked return. Theoretically might have changed, have to
3643 * check again after locking.
3644 */
3645 if (!PageCgroupUsed(pc))
3646 return;
3647
3648 lock_page_cgroup(pc);
3649 if (PageCgroupUsed(pc)) {
3650 memcg = pc->mem_cgroup;
3651 ClearPageCgroupUsed(pc);
3652 }
3653 unlock_page_cgroup(pc);
3654
3655 /*
3656 * We trust that only if there is a memcg associated with the page, it
3657 * is a valid allocation
3658 */
3659 if (!memcg)
3660 return;
3661
3662 VM_BUG_ON(mem_cgroup_is_root(memcg));
3663 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3664 }
3665 #else
3666 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3667 {
3668 }
3669 #endif /* CONFIG_MEMCG_KMEM */
3670
3671 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3672
3673 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3674 /*
3675 * Because tail pages are not marked as "used", set it. We're under
3676 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3677 * charge/uncharge will be never happen and move_account() is done under
3678 * compound_lock(), so we don't have to take care of races.
3679 */
3680 void mem_cgroup_split_huge_fixup(struct page *head)
3681 {
3682 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3683 struct page_cgroup *pc;
3684 int i;
3685
3686 if (mem_cgroup_disabled())
3687 return;
3688 for (i = 1; i < HPAGE_PMD_NR; i++) {
3689 pc = head_pc + i;
3690 pc->mem_cgroup = head_pc->mem_cgroup;
3691 smp_wmb();/* see __commit_charge() */
3692 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3693 }
3694 }
3695 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3696
3697 /**
3698 * mem_cgroup_move_account - move account of the page
3699 * @page: the page
3700 * @nr_pages: number of regular pages (>1 for huge pages)
3701 * @pc: page_cgroup of the page.
3702 * @from: mem_cgroup which the page is moved from.
3703 * @to: mem_cgroup which the page is moved to. @from != @to.
3704 *
3705 * The caller must confirm following.
3706 * - page is not on LRU (isolate_page() is useful.)
3707 * - compound_lock is held when nr_pages > 1
3708 *
3709 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3710 * from old cgroup.
3711 */
3712 static int mem_cgroup_move_account(struct page *page,
3713 unsigned int nr_pages,
3714 struct page_cgroup *pc,
3715 struct mem_cgroup *from,
3716 struct mem_cgroup *to)
3717 {
3718 unsigned long flags;
3719 int ret;
3720 bool anon = PageAnon(page);
3721
3722 VM_BUG_ON(from == to);
3723 VM_BUG_ON(PageLRU(page));
3724 /*
3725 * The page is isolated from LRU. So, collapse function
3726 * will not handle this page. But page splitting can happen.
3727 * Do this check under compound_page_lock(). The caller should
3728 * hold it.
3729 */
3730 ret = -EBUSY;
3731 if (nr_pages > 1 && !PageTransHuge(page))
3732 goto out;
3733
3734 lock_page_cgroup(pc);
3735
3736 ret = -EINVAL;
3737 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3738 goto unlock;
3739
3740 move_lock_mem_cgroup(from, &flags);
3741
3742 if (!anon && page_mapped(page)) {
3743 /* Update mapped_file data for mem_cgroup */
3744 preempt_disable();
3745 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3746 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3747 preempt_enable();
3748 }
3749 mem_cgroup_charge_statistics(from, anon, -nr_pages);
3750
3751 /* caller should have done css_get */
3752 pc->mem_cgroup = to;
3753 mem_cgroup_charge_statistics(to, anon, nr_pages);
3754 move_unlock_mem_cgroup(from, &flags);
3755 ret = 0;
3756 unlock:
3757 unlock_page_cgroup(pc);
3758 /*
3759 * check events
3760 */
3761 memcg_check_events(to, page);
3762 memcg_check_events(from, page);
3763 out:
3764 return ret;
3765 }
3766
3767 /**
3768 * mem_cgroup_move_parent - moves page to the parent group
3769 * @page: the page to move
3770 * @pc: page_cgroup of the page
3771 * @child: page's cgroup
3772 *
3773 * move charges to its parent or the root cgroup if the group has no
3774 * parent (aka use_hierarchy==0).
3775 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3776 * mem_cgroup_move_account fails) the failure is always temporary and
3777 * it signals a race with a page removal/uncharge or migration. In the
3778 * first case the page is on the way out and it will vanish from the LRU
3779 * on the next attempt and the call should be retried later.
3780 * Isolation from the LRU fails only if page has been isolated from
3781 * the LRU since we looked at it and that usually means either global
3782 * reclaim or migration going on. The page will either get back to the
3783 * LRU or vanish.
3784 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3785 * (!PageCgroupUsed) or moved to a different group. The page will
3786 * disappear in the next attempt.
3787 */
3788 static int mem_cgroup_move_parent(struct page *page,
3789 struct page_cgroup *pc,
3790 struct mem_cgroup *child)
3791 {
3792 struct mem_cgroup *parent;
3793 unsigned int nr_pages;
3794 unsigned long uninitialized_var(flags);
3795 int ret;
3796
3797 VM_BUG_ON(mem_cgroup_is_root(child));
3798
3799 ret = -EBUSY;
3800 if (!get_page_unless_zero(page))
3801 goto out;
3802 if (isolate_lru_page(page))
3803 goto put;
3804
3805 nr_pages = hpage_nr_pages(page);
3806
3807 parent = parent_mem_cgroup(child);
3808 /*
3809 * If no parent, move charges to root cgroup.
3810 */
3811 if (!parent)
3812 parent = root_mem_cgroup;
3813
3814 if (nr_pages > 1) {
3815 VM_BUG_ON(!PageTransHuge(page));
3816 flags = compound_lock_irqsave(page);
3817 }
3818
3819 ret = mem_cgroup_move_account(page, nr_pages,
3820 pc, child, parent);
3821 if (!ret)
3822 __mem_cgroup_cancel_local_charge(child, nr_pages);
3823
3824 if (nr_pages > 1)
3825 compound_unlock_irqrestore(page, flags);
3826 putback_lru_page(page);
3827 put:
3828 put_page(page);
3829 out:
3830 return ret;
3831 }
3832
3833 /*
3834 * Charge the memory controller for page usage.
3835 * Return
3836 * 0 if the charge was successful
3837 * < 0 if the cgroup is over its limit
3838 */
3839 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3840 gfp_t gfp_mask, enum charge_type ctype)
3841 {
3842 struct mem_cgroup *memcg = NULL;
3843 unsigned int nr_pages = 1;
3844 bool oom = true;
3845 int ret;
3846
3847 if (PageTransHuge(page)) {
3848 nr_pages <<= compound_order(page);
3849 VM_BUG_ON(!PageTransHuge(page));
3850 /*
3851 * Never OOM-kill a process for a huge page. The
3852 * fault handler will fall back to regular pages.
3853 */
3854 oom = false;
3855 }
3856
3857 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3858 if (ret == -ENOMEM)
3859 return ret;
3860 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3861 return 0;
3862 }
3863
3864 int mem_cgroup_newpage_charge(struct page *page,
3865 struct mm_struct *mm, gfp_t gfp_mask)
3866 {
3867 if (mem_cgroup_disabled())
3868 return 0;
3869 VM_BUG_ON(page_mapped(page));
3870 VM_BUG_ON(page->mapping && !PageAnon(page));
3871 VM_BUG_ON(!mm);
3872 return mem_cgroup_charge_common(page, mm, gfp_mask,
3873 MEM_CGROUP_CHARGE_TYPE_ANON);
3874 }
3875
3876 /*
3877 * While swap-in, try_charge -> commit or cancel, the page is locked.
3878 * And when try_charge() successfully returns, one refcnt to memcg without
3879 * struct page_cgroup is acquired. This refcnt will be consumed by
3880 * "commit()" or removed by "cancel()"
3881 */
3882 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3883 struct page *page,
3884 gfp_t mask,
3885 struct mem_cgroup **memcgp)
3886 {
3887 struct mem_cgroup *memcg;
3888 struct page_cgroup *pc;
3889 int ret;
3890
3891 pc = lookup_page_cgroup(page);
3892 /*
3893 * Every swap fault against a single page tries to charge the
3894 * page, bail as early as possible. shmem_unuse() encounters
3895 * already charged pages, too. The USED bit is protected by
3896 * the page lock, which serializes swap cache removal, which
3897 * in turn serializes uncharging.
3898 */
3899 if (PageCgroupUsed(pc))
3900 return 0;
3901 if (!do_swap_account)
3902 goto charge_cur_mm;
3903 memcg = try_get_mem_cgroup_from_page(page);
3904 if (!memcg)
3905 goto charge_cur_mm;
3906 *memcgp = memcg;
3907 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3908 css_put(&memcg->css);
3909 if (ret == -EINTR)
3910 ret = 0;
3911 return ret;
3912 charge_cur_mm:
3913 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3914 if (ret == -EINTR)
3915 ret = 0;
3916 return ret;
3917 }
3918
3919 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3920 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3921 {
3922 *memcgp = NULL;
3923 if (mem_cgroup_disabled())
3924 return 0;
3925 /*
3926 * A racing thread's fault, or swapoff, may have already
3927 * updated the pte, and even removed page from swap cache: in
3928 * those cases unuse_pte()'s pte_same() test will fail; but
3929 * there's also a KSM case which does need to charge the page.
3930 */
3931 if (!PageSwapCache(page)) {
3932 int ret;
3933
3934 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3935 if (ret == -EINTR)
3936 ret = 0;
3937 return ret;
3938 }
3939 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3940 }
3941
3942 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3943 {
3944 if (mem_cgroup_disabled())
3945 return;
3946 if (!memcg)
3947 return;
3948 __mem_cgroup_cancel_charge(memcg, 1);
3949 }
3950
3951 static void
3952 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3953 enum charge_type ctype)
3954 {
3955 if (mem_cgroup_disabled())
3956 return;
3957 if (!memcg)
3958 return;
3959
3960 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3961 /*
3962 * Now swap is on-memory. This means this page may be
3963 * counted both as mem and swap....double count.
3964 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3965 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3966 * may call delete_from_swap_cache() before reach here.
3967 */
3968 if (do_swap_account && PageSwapCache(page)) {
3969 swp_entry_t ent = {.val = page_private(page)};
3970 mem_cgroup_uncharge_swap(ent);
3971 }
3972 }
3973
3974 void mem_cgroup_commit_charge_swapin(struct page *page,
3975 struct mem_cgroup *memcg)
3976 {
3977 __mem_cgroup_commit_charge_swapin(page, memcg,
3978 MEM_CGROUP_CHARGE_TYPE_ANON);
3979 }
3980
3981 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3982 gfp_t gfp_mask)
3983 {
3984 struct mem_cgroup *memcg = NULL;
3985 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3986 int ret;
3987
3988 if (mem_cgroup_disabled())
3989 return 0;
3990 if (PageCompound(page))
3991 return 0;
3992
3993 if (!PageSwapCache(page))
3994 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3995 else { /* page is swapcache/shmem */
3996 ret = __mem_cgroup_try_charge_swapin(mm, page,
3997 gfp_mask, &memcg);
3998 if (!ret)
3999 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4000 }
4001 return ret;
4002 }
4003
4004 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4005 unsigned int nr_pages,
4006 const enum charge_type ctype)
4007 {
4008 struct memcg_batch_info *batch = NULL;
4009 bool uncharge_memsw = true;
4010
4011 /* If swapout, usage of swap doesn't decrease */
4012 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4013 uncharge_memsw = false;
4014
4015 batch = &current->memcg_batch;
4016 /*
4017 * In usual, we do css_get() when we remember memcg pointer.
4018 * But in this case, we keep res->usage until end of a series of
4019 * uncharges. Then, it's ok to ignore memcg's refcnt.
4020 */
4021 if (!batch->memcg)
4022 batch->memcg = memcg;
4023 /*
4024 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
4025 * In those cases, all pages freed continuously can be expected to be in
4026 * the same cgroup and we have chance to coalesce uncharges.
4027 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4028 * because we want to do uncharge as soon as possible.
4029 */
4030
4031 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4032 goto direct_uncharge;
4033
4034 if (nr_pages > 1)
4035 goto direct_uncharge;
4036
4037 /*
4038 * In typical case, batch->memcg == mem. This means we can
4039 * merge a series of uncharges to an uncharge of res_counter.
4040 * If not, we uncharge res_counter ony by one.
4041 */
4042 if (batch->memcg != memcg)
4043 goto direct_uncharge;
4044 /* remember freed charge and uncharge it later */
4045 batch->nr_pages++;
4046 if (uncharge_memsw)
4047 batch->memsw_nr_pages++;
4048 return;
4049 direct_uncharge:
4050 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4051 if (uncharge_memsw)
4052 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4053 if (unlikely(batch->memcg != memcg))
4054 memcg_oom_recover(memcg);
4055 }
4056
4057 /*
4058 * uncharge if !page_mapped(page)
4059 */
4060 static struct mem_cgroup *
4061 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4062 bool end_migration)
4063 {
4064 struct mem_cgroup *memcg = NULL;
4065 unsigned int nr_pages = 1;
4066 struct page_cgroup *pc;
4067 bool anon;
4068
4069 if (mem_cgroup_disabled())
4070 return NULL;
4071
4072 VM_BUG_ON(PageSwapCache(page));
4073
4074 if (PageTransHuge(page)) {
4075 nr_pages <<= compound_order(page);
4076 VM_BUG_ON(!PageTransHuge(page));
4077 }
4078 /*
4079 * Check if our page_cgroup is valid
4080 */
4081 pc = lookup_page_cgroup(page);
4082 if (unlikely(!PageCgroupUsed(pc)))
4083 return NULL;
4084
4085 lock_page_cgroup(pc);
4086
4087 memcg = pc->mem_cgroup;
4088
4089 if (!PageCgroupUsed(pc))
4090 goto unlock_out;
4091
4092 anon = PageAnon(page);
4093
4094 switch (ctype) {
4095 case MEM_CGROUP_CHARGE_TYPE_ANON:
4096 /*
4097 * Generally PageAnon tells if it's the anon statistics to be
4098 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4099 * used before page reached the stage of being marked PageAnon.
4100 */
4101 anon = true;
4102 /* fallthrough */
4103 case MEM_CGROUP_CHARGE_TYPE_DROP:
4104 /* See mem_cgroup_prepare_migration() */
4105 if (page_mapped(page))
4106 goto unlock_out;
4107 /*
4108 * Pages under migration may not be uncharged. But
4109 * end_migration() /must/ be the one uncharging the
4110 * unused post-migration page and so it has to call
4111 * here with the migration bit still set. See the
4112 * res_counter handling below.
4113 */
4114 if (!end_migration && PageCgroupMigration(pc))
4115 goto unlock_out;
4116 break;
4117 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4118 if (!PageAnon(page)) { /* Shared memory */
4119 if (page->mapping && !page_is_file_cache(page))
4120 goto unlock_out;
4121 } else if (page_mapped(page)) /* Anon */
4122 goto unlock_out;
4123 break;
4124 default:
4125 break;
4126 }
4127
4128 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
4129
4130 ClearPageCgroupUsed(pc);
4131 /*
4132 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4133 * freed from LRU. This is safe because uncharged page is expected not
4134 * to be reused (freed soon). Exception is SwapCache, it's handled by
4135 * special functions.
4136 */
4137
4138 unlock_page_cgroup(pc);
4139 /*
4140 * even after unlock, we have memcg->res.usage here and this memcg
4141 * will never be freed.
4142 */
4143 memcg_check_events(memcg, page);
4144 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4145 mem_cgroup_swap_statistics(memcg, true);
4146 mem_cgroup_get(memcg);
4147 }
4148 /*
4149 * Migration does not charge the res_counter for the
4150 * replacement page, so leave it alone when phasing out the
4151 * page that is unused after the migration.
4152 */
4153 if (!end_migration && !mem_cgroup_is_root(memcg))
4154 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4155
4156 return memcg;
4157
4158 unlock_out:
4159 unlock_page_cgroup(pc);
4160 return NULL;
4161 }
4162
4163 void mem_cgroup_uncharge_page(struct page *page)
4164 {
4165 /* early check. */
4166 if (page_mapped(page))
4167 return;
4168 VM_BUG_ON(page->mapping && !PageAnon(page));
4169 if (PageSwapCache(page))
4170 return;
4171 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4172 }
4173
4174 void mem_cgroup_uncharge_cache_page(struct page *page)
4175 {
4176 VM_BUG_ON(page_mapped(page));
4177 VM_BUG_ON(page->mapping);
4178 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4179 }
4180
4181 /*
4182 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4183 * In that cases, pages are freed continuously and we can expect pages
4184 * are in the same memcg. All these calls itself limits the number of
4185 * pages freed at once, then uncharge_start/end() is called properly.
4186 * This may be called prural(2) times in a context,
4187 */
4188
4189 void mem_cgroup_uncharge_start(void)
4190 {
4191 current->memcg_batch.do_batch++;
4192 /* We can do nest. */
4193 if (current->memcg_batch.do_batch == 1) {
4194 current->memcg_batch.memcg = NULL;
4195 current->memcg_batch.nr_pages = 0;
4196 current->memcg_batch.memsw_nr_pages = 0;
4197 }
4198 }
4199
4200 void mem_cgroup_uncharge_end(void)
4201 {
4202 struct memcg_batch_info *batch = &current->memcg_batch;
4203
4204 if (!batch->do_batch)
4205 return;
4206
4207 batch->do_batch--;
4208 if (batch->do_batch) /* If stacked, do nothing. */
4209 return;
4210
4211 if (!batch->memcg)
4212 return;
4213 /*
4214 * This "batch->memcg" is valid without any css_get/put etc...
4215 * bacause we hide charges behind us.
4216 */
4217 if (batch->nr_pages)
4218 res_counter_uncharge(&batch->memcg->res,
4219 batch->nr_pages * PAGE_SIZE);
4220 if (batch->memsw_nr_pages)
4221 res_counter_uncharge(&batch->memcg->memsw,
4222 batch->memsw_nr_pages * PAGE_SIZE);
4223 memcg_oom_recover(batch->memcg);
4224 /* forget this pointer (for sanity check) */
4225 batch->memcg = NULL;
4226 }
4227
4228 #ifdef CONFIG_SWAP
4229 /*
4230 * called after __delete_from_swap_cache() and drop "page" account.
4231 * memcg information is recorded to swap_cgroup of "ent"
4232 */
4233 void
4234 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4235 {
4236 struct mem_cgroup *memcg;
4237 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4238
4239 if (!swapout) /* this was a swap cache but the swap is unused ! */
4240 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4241
4242 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4243
4244 /*
4245 * record memcg information, if swapout && memcg != NULL,
4246 * mem_cgroup_get() was called in uncharge().
4247 */
4248 if (do_swap_account && swapout && memcg)
4249 swap_cgroup_record(ent, css_id(&memcg->css));
4250 }
4251 #endif
4252
4253 #ifdef CONFIG_MEMCG_SWAP
4254 /*
4255 * called from swap_entry_free(). remove record in swap_cgroup and
4256 * uncharge "memsw" account.
4257 */
4258 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4259 {
4260 struct mem_cgroup *memcg;
4261 unsigned short id;
4262
4263 if (!do_swap_account)
4264 return;
4265
4266 id = swap_cgroup_record(ent, 0);
4267 rcu_read_lock();
4268 memcg = mem_cgroup_lookup(id);
4269 if (memcg) {
4270 /*
4271 * We uncharge this because swap is freed.
4272 * This memcg can be obsolete one. We avoid calling css_tryget
4273 */
4274 if (!mem_cgroup_is_root(memcg))
4275 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4276 mem_cgroup_swap_statistics(memcg, false);
4277 mem_cgroup_put(memcg);
4278 }
4279 rcu_read_unlock();
4280 }
4281
4282 /**
4283 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4284 * @entry: swap entry to be moved
4285 * @from: mem_cgroup which the entry is moved from
4286 * @to: mem_cgroup which the entry is moved to
4287 *
4288 * It succeeds only when the swap_cgroup's record for this entry is the same
4289 * as the mem_cgroup's id of @from.
4290 *
4291 * Returns 0 on success, -EINVAL on failure.
4292 *
4293 * The caller must have charged to @to, IOW, called res_counter_charge() about
4294 * both res and memsw, and called css_get().
4295 */
4296 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4297 struct mem_cgroup *from, struct mem_cgroup *to)
4298 {
4299 unsigned short old_id, new_id;
4300
4301 old_id = css_id(&from->css);
4302 new_id = css_id(&to->css);
4303
4304 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4305 mem_cgroup_swap_statistics(from, false);
4306 mem_cgroup_swap_statistics(to, true);
4307 /*
4308 * This function is only called from task migration context now.
4309 * It postpones res_counter and refcount handling till the end
4310 * of task migration(mem_cgroup_clear_mc()) for performance
4311 * improvement. But we cannot postpone mem_cgroup_get(to)
4312 * because if the process that has been moved to @to does
4313 * swap-in, the refcount of @to might be decreased to 0.
4314 */
4315 mem_cgroup_get(to);
4316 return 0;
4317 }
4318 return -EINVAL;
4319 }
4320 #else
4321 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4322 struct mem_cgroup *from, struct mem_cgroup *to)
4323 {
4324 return -EINVAL;
4325 }
4326 #endif
4327
4328 /*
4329 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4330 * page belongs to.
4331 */
4332 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4333 struct mem_cgroup **memcgp)
4334 {
4335 struct mem_cgroup *memcg = NULL;
4336 unsigned int nr_pages = 1;
4337 struct page_cgroup *pc;
4338 enum charge_type ctype;
4339
4340 *memcgp = NULL;
4341
4342 if (mem_cgroup_disabled())
4343 return;
4344
4345 if (PageTransHuge(page))
4346 nr_pages <<= compound_order(page);
4347
4348 pc = lookup_page_cgroup(page);
4349 lock_page_cgroup(pc);
4350 if (PageCgroupUsed(pc)) {
4351 memcg = pc->mem_cgroup;
4352 css_get(&memcg->css);
4353 /*
4354 * At migrating an anonymous page, its mapcount goes down
4355 * to 0 and uncharge() will be called. But, even if it's fully
4356 * unmapped, migration may fail and this page has to be
4357 * charged again. We set MIGRATION flag here and delay uncharge
4358 * until end_migration() is called
4359 *
4360 * Corner Case Thinking
4361 * A)
4362 * When the old page was mapped as Anon and it's unmap-and-freed
4363 * while migration was ongoing.
4364 * If unmap finds the old page, uncharge() of it will be delayed
4365 * until end_migration(). If unmap finds a new page, it's
4366 * uncharged when it make mapcount to be 1->0. If unmap code
4367 * finds swap_migration_entry, the new page will not be mapped
4368 * and end_migration() will find it(mapcount==0).
4369 *
4370 * B)
4371 * When the old page was mapped but migraion fails, the kernel
4372 * remaps it. A charge for it is kept by MIGRATION flag even
4373 * if mapcount goes down to 0. We can do remap successfully
4374 * without charging it again.
4375 *
4376 * C)
4377 * The "old" page is under lock_page() until the end of
4378 * migration, so, the old page itself will not be swapped-out.
4379 * If the new page is swapped out before end_migraton, our
4380 * hook to usual swap-out path will catch the event.
4381 */
4382 if (PageAnon(page))
4383 SetPageCgroupMigration(pc);
4384 }
4385 unlock_page_cgroup(pc);
4386 /*
4387 * If the page is not charged at this point,
4388 * we return here.
4389 */
4390 if (!memcg)
4391 return;
4392
4393 *memcgp = memcg;
4394 /*
4395 * We charge new page before it's used/mapped. So, even if unlock_page()
4396 * is called before end_migration, we can catch all events on this new
4397 * page. In the case new page is migrated but not remapped, new page's
4398 * mapcount will be finally 0 and we call uncharge in end_migration().
4399 */
4400 if (PageAnon(page))
4401 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4402 else
4403 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4404 /*
4405 * The page is committed to the memcg, but it's not actually
4406 * charged to the res_counter since we plan on replacing the
4407 * old one and only one page is going to be left afterwards.
4408 */
4409 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4410 }
4411
4412 /* remove redundant charge if migration failed*/
4413 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4414 struct page *oldpage, struct page *newpage, bool migration_ok)
4415 {
4416 struct page *used, *unused;
4417 struct page_cgroup *pc;
4418 bool anon;
4419
4420 if (!memcg)
4421 return;
4422
4423 if (!migration_ok) {
4424 used = oldpage;
4425 unused = newpage;
4426 } else {
4427 used = newpage;
4428 unused = oldpage;
4429 }
4430 anon = PageAnon(used);
4431 __mem_cgroup_uncharge_common(unused,
4432 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4433 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4434 true);
4435 css_put(&memcg->css);
4436 /*
4437 * We disallowed uncharge of pages under migration because mapcount
4438 * of the page goes down to zero, temporarly.
4439 * Clear the flag and check the page should be charged.
4440 */
4441 pc = lookup_page_cgroup(oldpage);
4442 lock_page_cgroup(pc);
4443 ClearPageCgroupMigration(pc);
4444 unlock_page_cgroup(pc);
4445
4446 /*
4447 * If a page is a file cache, radix-tree replacement is very atomic
4448 * and we can skip this check. When it was an Anon page, its mapcount
4449 * goes down to 0. But because we added MIGRATION flage, it's not
4450 * uncharged yet. There are several case but page->mapcount check
4451 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4452 * check. (see prepare_charge() also)
4453 */
4454 if (anon)
4455 mem_cgroup_uncharge_page(used);
4456 }
4457
4458 /*
4459 * At replace page cache, newpage is not under any memcg but it's on
4460 * LRU. So, this function doesn't touch res_counter but handles LRU
4461 * in correct way. Both pages are locked so we cannot race with uncharge.
4462 */
4463 void mem_cgroup_replace_page_cache(struct page *oldpage,
4464 struct page *newpage)
4465 {
4466 struct mem_cgroup *memcg = NULL;
4467 struct page_cgroup *pc;
4468 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4469
4470 if (mem_cgroup_disabled())
4471 return;
4472
4473 pc = lookup_page_cgroup(oldpage);
4474 /* fix accounting on old pages */
4475 lock_page_cgroup(pc);
4476 if (PageCgroupUsed(pc)) {
4477 memcg = pc->mem_cgroup;
4478 mem_cgroup_charge_statistics(memcg, false, -1);
4479 ClearPageCgroupUsed(pc);
4480 }
4481 unlock_page_cgroup(pc);
4482
4483 /*
4484 * When called from shmem_replace_page(), in some cases the
4485 * oldpage has already been charged, and in some cases not.
4486 */
4487 if (!memcg)
4488 return;
4489 /*
4490 * Even if newpage->mapping was NULL before starting replacement,
4491 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4492 * LRU while we overwrite pc->mem_cgroup.
4493 */
4494 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4495 }
4496
4497 #ifdef CONFIG_DEBUG_VM
4498 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4499 {
4500 struct page_cgroup *pc;
4501
4502 pc = lookup_page_cgroup(page);
4503 /*
4504 * Can be NULL while feeding pages into the page allocator for
4505 * the first time, i.e. during boot or memory hotplug;
4506 * or when mem_cgroup_disabled().
4507 */
4508 if (likely(pc) && PageCgroupUsed(pc))
4509 return pc;
4510 return NULL;
4511 }
4512
4513 bool mem_cgroup_bad_page_check(struct page *page)
4514 {
4515 if (mem_cgroup_disabled())
4516 return false;
4517
4518 return lookup_page_cgroup_used(page) != NULL;
4519 }
4520
4521 void mem_cgroup_print_bad_page(struct page *page)
4522 {
4523 struct page_cgroup *pc;
4524
4525 pc = lookup_page_cgroup_used(page);
4526 if (pc) {
4527 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4528 pc, pc->flags, pc->mem_cgroup);
4529 }
4530 }
4531 #endif
4532
4533 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4534 unsigned long long val)
4535 {
4536 int retry_count;
4537 u64 memswlimit, memlimit;
4538 int ret = 0;
4539 int children = mem_cgroup_count_children(memcg);
4540 u64 curusage, oldusage;
4541 int enlarge;
4542
4543 /*
4544 * For keeping hierarchical_reclaim simple, how long we should retry
4545 * is depends on callers. We set our retry-count to be function
4546 * of # of children which we should visit in this loop.
4547 */
4548 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4549
4550 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4551
4552 enlarge = 0;
4553 while (retry_count) {
4554 if (signal_pending(current)) {
4555 ret = -EINTR;
4556 break;
4557 }
4558 /*
4559 * Rather than hide all in some function, I do this in
4560 * open coded manner. You see what this really does.
4561 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4562 */
4563 mutex_lock(&set_limit_mutex);
4564 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4565 if (memswlimit < val) {
4566 ret = -EINVAL;
4567 mutex_unlock(&set_limit_mutex);
4568 break;
4569 }
4570
4571 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4572 if (memlimit < val)
4573 enlarge = 1;
4574
4575 ret = res_counter_set_limit(&memcg->res, val);
4576 if (!ret) {
4577 if (memswlimit == val)
4578 memcg->memsw_is_minimum = true;
4579 else
4580 memcg->memsw_is_minimum = false;
4581 }
4582 mutex_unlock(&set_limit_mutex);
4583
4584 if (!ret)
4585 break;
4586
4587 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4588 MEM_CGROUP_RECLAIM_SHRINK);
4589 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4590 /* Usage is reduced ? */
4591 if (curusage >= oldusage)
4592 retry_count--;
4593 else
4594 oldusage = curusage;
4595 }
4596 if (!ret && enlarge)
4597 memcg_oom_recover(memcg);
4598
4599 return ret;
4600 }
4601
4602 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4603 unsigned long long val)
4604 {
4605 int retry_count;
4606 u64 memlimit, memswlimit, oldusage, curusage;
4607 int children = mem_cgroup_count_children(memcg);
4608 int ret = -EBUSY;
4609 int enlarge = 0;
4610
4611 /* see mem_cgroup_resize_res_limit */
4612 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4613 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4614 while (retry_count) {
4615 if (signal_pending(current)) {
4616 ret = -EINTR;
4617 break;
4618 }
4619 /*
4620 * Rather than hide all in some function, I do this in
4621 * open coded manner. You see what this really does.
4622 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4623 */
4624 mutex_lock(&set_limit_mutex);
4625 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4626 if (memlimit > val) {
4627 ret = -EINVAL;
4628 mutex_unlock(&set_limit_mutex);
4629 break;
4630 }
4631 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4632 if (memswlimit < val)
4633 enlarge = 1;
4634 ret = res_counter_set_limit(&memcg->memsw, val);
4635 if (!ret) {
4636 if (memlimit == val)
4637 memcg->memsw_is_minimum = true;
4638 else
4639 memcg->memsw_is_minimum = false;
4640 }
4641 mutex_unlock(&set_limit_mutex);
4642
4643 if (!ret)
4644 break;
4645
4646 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4647 MEM_CGROUP_RECLAIM_NOSWAP |
4648 MEM_CGROUP_RECLAIM_SHRINK);
4649 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4650 /* Usage is reduced ? */
4651 if (curusage >= oldusage)
4652 retry_count--;
4653 else
4654 oldusage = curusage;
4655 }
4656 if (!ret && enlarge)
4657 memcg_oom_recover(memcg);
4658 return ret;
4659 }
4660
4661 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4662 gfp_t gfp_mask,
4663 unsigned long *total_scanned)
4664 {
4665 unsigned long nr_reclaimed = 0;
4666 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4667 unsigned long reclaimed;
4668 int loop = 0;
4669 struct mem_cgroup_tree_per_zone *mctz;
4670 unsigned long long excess;
4671 unsigned long nr_scanned;
4672
4673 if (order > 0)
4674 return 0;
4675
4676 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4677 /*
4678 * This loop can run a while, specially if mem_cgroup's continuously
4679 * keep exceeding their soft limit and putting the system under
4680 * pressure
4681 */
4682 do {
4683 if (next_mz)
4684 mz = next_mz;
4685 else
4686 mz = mem_cgroup_largest_soft_limit_node(mctz);
4687 if (!mz)
4688 break;
4689
4690 nr_scanned = 0;
4691 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4692 gfp_mask, &nr_scanned);
4693 nr_reclaimed += reclaimed;
4694 *total_scanned += nr_scanned;
4695 spin_lock(&mctz->lock);
4696
4697 /*
4698 * If we failed to reclaim anything from this memory cgroup
4699 * it is time to move on to the next cgroup
4700 */
4701 next_mz = NULL;
4702 if (!reclaimed) {
4703 do {
4704 /*
4705 * Loop until we find yet another one.
4706 *
4707 * By the time we get the soft_limit lock
4708 * again, someone might have aded the
4709 * group back on the RB tree. Iterate to
4710 * make sure we get a different mem.
4711 * mem_cgroup_largest_soft_limit_node returns
4712 * NULL if no other cgroup is present on
4713 * the tree
4714 */
4715 next_mz =
4716 __mem_cgroup_largest_soft_limit_node(mctz);
4717 if (next_mz == mz)
4718 css_put(&next_mz->memcg->css);
4719 else /* next_mz == NULL or other memcg */
4720 break;
4721 } while (1);
4722 }
4723 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4724 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4725 /*
4726 * One school of thought says that we should not add
4727 * back the node to the tree if reclaim returns 0.
4728 * But our reclaim could return 0, simply because due
4729 * to priority we are exposing a smaller subset of
4730 * memory to reclaim from. Consider this as a longer
4731 * term TODO.
4732 */
4733 /* If excess == 0, no tree ops */
4734 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4735 spin_unlock(&mctz->lock);
4736 css_put(&mz->memcg->css);
4737 loop++;
4738 /*
4739 * Could not reclaim anything and there are no more
4740 * mem cgroups to try or we seem to be looping without
4741 * reclaiming anything.
4742 */
4743 if (!nr_reclaimed &&
4744 (next_mz == NULL ||
4745 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4746 break;
4747 } while (!nr_reclaimed);
4748 if (next_mz)
4749 css_put(&next_mz->memcg->css);
4750 return nr_reclaimed;
4751 }
4752
4753 /**
4754 * mem_cgroup_force_empty_list - clears LRU of a group
4755 * @memcg: group to clear
4756 * @node: NUMA node
4757 * @zid: zone id
4758 * @lru: lru to to clear
4759 *
4760 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4761 * reclaim the pages page themselves - pages are moved to the parent (or root)
4762 * group.
4763 */
4764 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4765 int node, int zid, enum lru_list lru)
4766 {
4767 struct lruvec *lruvec;
4768 unsigned long flags;
4769 struct list_head *list;
4770 struct page *busy;
4771 struct zone *zone;
4772
4773 zone = &NODE_DATA(node)->node_zones[zid];
4774 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4775 list = &lruvec->lists[lru];
4776
4777 busy = NULL;
4778 do {
4779 struct page_cgroup *pc;
4780 struct page *page;
4781
4782 spin_lock_irqsave(&zone->lru_lock, flags);
4783 if (list_empty(list)) {
4784 spin_unlock_irqrestore(&zone->lru_lock, flags);
4785 break;
4786 }
4787 page = list_entry(list->prev, struct page, lru);
4788 if (busy == page) {
4789 list_move(&page->lru, list);
4790 busy = NULL;
4791 spin_unlock_irqrestore(&zone->lru_lock, flags);
4792 continue;
4793 }
4794 spin_unlock_irqrestore(&zone->lru_lock, flags);
4795
4796 pc = lookup_page_cgroup(page);
4797
4798 if (mem_cgroup_move_parent(page, pc, memcg)) {
4799 /* found lock contention or "pc" is obsolete. */
4800 busy = page;
4801 cond_resched();
4802 } else
4803 busy = NULL;
4804 } while (!list_empty(list));
4805 }
4806
4807 /*
4808 * make mem_cgroup's charge to be 0 if there is no task by moving
4809 * all the charges and pages to the parent.
4810 * This enables deleting this mem_cgroup.
4811 *
4812 * Caller is responsible for holding css reference on the memcg.
4813 */
4814 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4815 {
4816 int node, zid;
4817 u64 usage;
4818
4819 do {
4820 /* This is for making all *used* pages to be on LRU. */
4821 lru_add_drain_all();
4822 drain_all_stock_sync(memcg);
4823 mem_cgroup_start_move(memcg);
4824 for_each_node_state(node, N_MEMORY) {
4825 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4826 enum lru_list lru;
4827 for_each_lru(lru) {
4828 mem_cgroup_force_empty_list(memcg,
4829 node, zid, lru);
4830 }
4831 }
4832 }
4833 mem_cgroup_end_move(memcg);
4834 memcg_oom_recover(memcg);
4835 cond_resched();
4836
4837 /*
4838 * Kernel memory may not necessarily be trackable to a specific
4839 * process. So they are not migrated, and therefore we can't
4840 * expect their value to drop to 0 here.
4841 * Having res filled up with kmem only is enough.
4842 *
4843 * This is a safety check because mem_cgroup_force_empty_list
4844 * could have raced with mem_cgroup_replace_page_cache callers
4845 * so the lru seemed empty but the page could have been added
4846 * right after the check. RES_USAGE should be safe as we always
4847 * charge before adding to the LRU.
4848 */
4849 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4850 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4851 } while (usage > 0);
4852 }
4853
4854 /*
4855 * This mainly exists for tests during the setting of set of use_hierarchy.
4856 * Since this is the very setting we are changing, the current hierarchy value
4857 * is meaningless
4858 */
4859 static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4860 {
4861 struct cgroup *pos;
4862
4863 /* bounce at first found */
4864 cgroup_for_each_child(pos, memcg->css.cgroup)
4865 return true;
4866 return false;
4867 }
4868
4869 /*
4870 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4871 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
4872 * from mem_cgroup_count_children(), in the sense that we don't really care how
4873 * many children we have; we only need to know if we have any. It also counts
4874 * any memcg without hierarchy as infertile.
4875 */
4876 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4877 {
4878 return memcg->use_hierarchy && __memcg_has_children(memcg);
4879 }
4880
4881 /*
4882 * Reclaims as many pages from the given memcg as possible and moves
4883 * the rest to the parent.
4884 *
4885 * Caller is responsible for holding css reference for memcg.
4886 */
4887 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4888 {
4889 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4890 struct cgroup *cgrp = memcg->css.cgroup;
4891
4892 /* returns EBUSY if there is a task or if we come here twice. */
4893 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4894 return -EBUSY;
4895
4896 /* we call try-to-free pages for make this cgroup empty */
4897 lru_add_drain_all();
4898 /* try to free all pages in this cgroup */
4899 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4900 int progress;
4901
4902 if (signal_pending(current))
4903 return -EINTR;
4904
4905 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4906 false);
4907 if (!progress) {
4908 nr_retries--;
4909 /* maybe some writeback is necessary */
4910 congestion_wait(BLK_RW_ASYNC, HZ/10);
4911 }
4912
4913 }
4914 lru_add_drain();
4915 mem_cgroup_reparent_charges(memcg);
4916
4917 return 0;
4918 }
4919
4920 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
4921 {
4922 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4923 int ret;
4924
4925 if (mem_cgroup_is_root(memcg))
4926 return -EINVAL;
4927 css_get(&memcg->css);
4928 ret = mem_cgroup_force_empty(memcg);
4929 css_put(&memcg->css);
4930
4931 return ret;
4932 }
4933
4934
4935 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4936 {
4937 return mem_cgroup_from_cont(cont)->use_hierarchy;
4938 }
4939
4940 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4941 u64 val)
4942 {
4943 int retval = 0;
4944 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4945 struct cgroup *parent = cont->parent;
4946 struct mem_cgroup *parent_memcg = NULL;
4947
4948 if (parent)
4949 parent_memcg = mem_cgroup_from_cont(parent);
4950
4951 mutex_lock(&memcg_create_mutex);
4952
4953 if (memcg->use_hierarchy == val)
4954 goto out;
4955
4956 /*
4957 * If parent's use_hierarchy is set, we can't make any modifications
4958 * in the child subtrees. If it is unset, then the change can
4959 * occur, provided the current cgroup has no children.
4960 *
4961 * For the root cgroup, parent_mem is NULL, we allow value to be
4962 * set if there are no children.
4963 */
4964 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4965 (val == 1 || val == 0)) {
4966 if (!__memcg_has_children(memcg))
4967 memcg->use_hierarchy = val;
4968 else
4969 retval = -EBUSY;
4970 } else
4971 retval = -EINVAL;
4972
4973 out:
4974 mutex_unlock(&memcg_create_mutex);
4975
4976 return retval;
4977 }
4978
4979
4980 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4981 enum mem_cgroup_stat_index idx)
4982 {
4983 struct mem_cgroup *iter;
4984 long val = 0;
4985
4986 /* Per-cpu values can be negative, use a signed accumulator */
4987 for_each_mem_cgroup_tree(iter, memcg)
4988 val += mem_cgroup_read_stat(iter, idx);
4989
4990 if (val < 0) /* race ? */
4991 val = 0;
4992 return val;
4993 }
4994
4995 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4996 {
4997 u64 val;
4998
4999 if (!mem_cgroup_is_root(memcg)) {
5000 if (!swap)
5001 return res_counter_read_u64(&memcg->res, RES_USAGE);
5002 else
5003 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5004 }
5005
5006 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5007 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5008
5009 if (swap)
5010 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5011
5012 return val << PAGE_SHIFT;
5013 }
5014
5015 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5016 struct file *file, char __user *buf,
5017 size_t nbytes, loff_t *ppos)
5018 {
5019 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5020 char str[64];
5021 u64 val;
5022 int name, len;
5023 enum res_type type;
5024
5025 type = MEMFILE_TYPE(cft->private);
5026 name = MEMFILE_ATTR(cft->private);
5027
5028 if (!do_swap_account && type == _MEMSWAP)
5029 return -EOPNOTSUPP;
5030
5031 switch (type) {
5032 case _MEM:
5033 if (name == RES_USAGE)
5034 val = mem_cgroup_usage(memcg, false);
5035 else
5036 val = res_counter_read_u64(&memcg->res, name);
5037 break;
5038 case _MEMSWAP:
5039 if (name == RES_USAGE)
5040 val = mem_cgroup_usage(memcg, true);
5041 else
5042 val = res_counter_read_u64(&memcg->memsw, name);
5043 break;
5044 case _KMEM:
5045 val = res_counter_read_u64(&memcg->kmem, name);
5046 break;
5047 default:
5048 BUG();
5049 }
5050
5051 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5052 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
5053 }
5054
5055 static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5056 {
5057 int ret = -EINVAL;
5058 #ifdef CONFIG_MEMCG_KMEM
5059 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5060 /*
5061 * For simplicity, we won't allow this to be disabled. It also can't
5062 * be changed if the cgroup has children already, or if tasks had
5063 * already joined.
5064 *
5065 * If tasks join before we set the limit, a person looking at
5066 * kmem.usage_in_bytes will have no way to determine when it took
5067 * place, which makes the value quite meaningless.
5068 *
5069 * After it first became limited, changes in the value of the limit are
5070 * of course permitted.
5071 */
5072 mutex_lock(&memcg_create_mutex);
5073 mutex_lock(&set_limit_mutex);
5074 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
5075 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
5076 ret = -EBUSY;
5077 goto out;
5078 }
5079 ret = res_counter_set_limit(&memcg->kmem, val);
5080 VM_BUG_ON(ret);
5081
5082 ret = memcg_update_cache_sizes(memcg);
5083 if (ret) {
5084 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5085 goto out;
5086 }
5087 static_key_slow_inc(&memcg_kmem_enabled_key);
5088 /*
5089 * setting the active bit after the inc will guarantee no one
5090 * starts accounting before all call sites are patched
5091 */
5092 memcg_kmem_set_active(memcg);
5093
5094 /*
5095 * kmem charges can outlive the cgroup. In the case of slab
5096 * pages, for instance, a page contain objects from various
5097 * processes, so it is unfeasible to migrate them away. We
5098 * need to reference count the memcg because of that.
5099 */
5100 mem_cgroup_get(memcg);
5101 } else
5102 ret = res_counter_set_limit(&memcg->kmem, val);
5103 out:
5104 mutex_unlock(&set_limit_mutex);
5105 mutex_unlock(&memcg_create_mutex);
5106 #endif
5107 return ret;
5108 }
5109
5110 #ifdef CONFIG_MEMCG_KMEM
5111 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5112 {
5113 int ret = 0;
5114 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5115 if (!parent)
5116 goto out;
5117
5118 memcg->kmem_account_flags = parent->kmem_account_flags;
5119 /*
5120 * When that happen, we need to disable the static branch only on those
5121 * memcgs that enabled it. To achieve this, we would be forced to
5122 * complicate the code by keeping track of which memcgs were the ones
5123 * that actually enabled limits, and which ones got it from its
5124 * parents.
5125 *
5126 * It is a lot simpler just to do static_key_slow_inc() on every child
5127 * that is accounted.
5128 */
5129 if (!memcg_kmem_is_active(memcg))
5130 goto out;
5131
5132 /*
5133 * destroy(), called if we fail, will issue static_key_slow_inc() and
5134 * mem_cgroup_put() if kmem is enabled. We have to either call them
5135 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5136 * this more consistent, since it always leads to the same destroy path
5137 */
5138 mem_cgroup_get(memcg);
5139 static_key_slow_inc(&memcg_kmem_enabled_key);
5140
5141 mutex_lock(&set_limit_mutex);
5142 ret = memcg_update_cache_sizes(memcg);
5143 mutex_unlock(&set_limit_mutex);
5144 out:
5145 return ret;
5146 }
5147 #endif /* CONFIG_MEMCG_KMEM */
5148
5149 /*
5150 * The user of this function is...
5151 * RES_LIMIT.
5152 */
5153 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5154 const char *buffer)
5155 {
5156 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5157 enum res_type type;
5158 int name;
5159 unsigned long long val;
5160 int ret;
5161
5162 type = MEMFILE_TYPE(cft->private);
5163 name = MEMFILE_ATTR(cft->private);
5164
5165 if (!do_swap_account && type == _MEMSWAP)
5166 return -EOPNOTSUPP;
5167
5168 switch (name) {
5169 case RES_LIMIT:
5170 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5171 ret = -EINVAL;
5172 break;
5173 }
5174 /* This function does all necessary parse...reuse it */
5175 ret = res_counter_memparse_write_strategy(buffer, &val);
5176 if (ret)
5177 break;
5178 if (type == _MEM)
5179 ret = mem_cgroup_resize_limit(memcg, val);
5180 else if (type == _MEMSWAP)
5181 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5182 else if (type == _KMEM)
5183 ret = memcg_update_kmem_limit(cont, val);
5184 else
5185 return -EINVAL;
5186 break;
5187 case RES_SOFT_LIMIT:
5188 ret = res_counter_memparse_write_strategy(buffer, &val);
5189 if (ret)
5190 break;
5191 /*
5192 * For memsw, soft limits are hard to implement in terms
5193 * of semantics, for now, we support soft limits for
5194 * control without swap
5195 */
5196 if (type == _MEM)
5197 ret = res_counter_set_soft_limit(&memcg->res, val);
5198 else
5199 ret = -EINVAL;
5200 break;
5201 default:
5202 ret = -EINVAL; /* should be BUG() ? */
5203 break;
5204 }
5205 return ret;
5206 }
5207
5208 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5209 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5210 {
5211 struct cgroup *cgroup;
5212 unsigned long long min_limit, min_memsw_limit, tmp;
5213
5214 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5215 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5216 cgroup = memcg->css.cgroup;
5217 if (!memcg->use_hierarchy)
5218 goto out;
5219
5220 while (cgroup->parent) {
5221 cgroup = cgroup->parent;
5222 memcg = mem_cgroup_from_cont(cgroup);
5223 if (!memcg->use_hierarchy)
5224 break;
5225 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5226 min_limit = min(min_limit, tmp);
5227 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5228 min_memsw_limit = min(min_memsw_limit, tmp);
5229 }
5230 out:
5231 *mem_limit = min_limit;
5232 *memsw_limit = min_memsw_limit;
5233 }
5234
5235 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
5236 {
5237 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5238 int name;
5239 enum res_type type;
5240
5241 type = MEMFILE_TYPE(event);
5242 name = MEMFILE_ATTR(event);
5243
5244 if (!do_swap_account && type == _MEMSWAP)
5245 return -EOPNOTSUPP;
5246
5247 switch (name) {
5248 case RES_MAX_USAGE:
5249 if (type == _MEM)
5250 res_counter_reset_max(&memcg->res);
5251 else if (type == _MEMSWAP)
5252 res_counter_reset_max(&memcg->memsw);
5253 else if (type == _KMEM)
5254 res_counter_reset_max(&memcg->kmem);
5255 else
5256 return -EINVAL;
5257 break;
5258 case RES_FAILCNT:
5259 if (type == _MEM)
5260 res_counter_reset_failcnt(&memcg->res);
5261 else if (type == _MEMSWAP)
5262 res_counter_reset_failcnt(&memcg->memsw);
5263 else if (type == _KMEM)
5264 res_counter_reset_failcnt(&memcg->kmem);
5265 else
5266 return -EINVAL;
5267 break;
5268 }
5269
5270 return 0;
5271 }
5272
5273 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5274 struct cftype *cft)
5275 {
5276 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5277 }
5278
5279 #ifdef CONFIG_MMU
5280 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5281 struct cftype *cft, u64 val)
5282 {
5283 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5284
5285 if (val >= (1 << NR_MOVE_TYPE))
5286 return -EINVAL;
5287
5288 /*
5289 * No kind of locking is needed in here, because ->can_attach() will
5290 * check this value once in the beginning of the process, and then carry
5291 * on with stale data. This means that changes to this value will only
5292 * affect task migrations starting after the change.
5293 */
5294 memcg->move_charge_at_immigrate = val;
5295 return 0;
5296 }
5297 #else
5298 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5299 struct cftype *cft, u64 val)
5300 {
5301 return -ENOSYS;
5302 }
5303 #endif
5304
5305 #ifdef CONFIG_NUMA
5306 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
5307 struct seq_file *m)
5308 {
5309 int nid;
5310 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5311 unsigned long node_nr;
5312 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5313
5314 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
5315 seq_printf(m, "total=%lu", total_nr);
5316 for_each_node_state(nid, N_MEMORY) {
5317 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
5318 seq_printf(m, " N%d=%lu", nid, node_nr);
5319 }
5320 seq_putc(m, '\n');
5321
5322 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
5323 seq_printf(m, "file=%lu", file_nr);
5324 for_each_node_state(nid, N_MEMORY) {
5325 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5326 LRU_ALL_FILE);
5327 seq_printf(m, " N%d=%lu", nid, node_nr);
5328 }
5329 seq_putc(m, '\n');
5330
5331 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
5332 seq_printf(m, "anon=%lu", anon_nr);
5333 for_each_node_state(nid, N_MEMORY) {
5334 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5335 LRU_ALL_ANON);
5336 seq_printf(m, " N%d=%lu", nid, node_nr);
5337 }
5338 seq_putc(m, '\n');
5339
5340 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
5341 seq_printf(m, "unevictable=%lu", unevictable_nr);
5342 for_each_node_state(nid, N_MEMORY) {
5343 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5344 BIT(LRU_UNEVICTABLE));
5345 seq_printf(m, " N%d=%lu", nid, node_nr);
5346 }
5347 seq_putc(m, '\n');
5348 return 0;
5349 }
5350 #endif /* CONFIG_NUMA */
5351
5352 static inline void mem_cgroup_lru_names_not_uptodate(void)
5353 {
5354 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5355 }
5356
5357 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
5358 struct seq_file *m)
5359 {
5360 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5361 struct mem_cgroup *mi;
5362 unsigned int i;
5363
5364 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5365 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5366 continue;
5367 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5368 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5369 }
5370
5371 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5372 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5373 mem_cgroup_read_events(memcg, i));
5374
5375 for (i = 0; i < NR_LRU_LISTS; i++)
5376 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5377 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5378
5379 /* Hierarchical information */
5380 {
5381 unsigned long long limit, memsw_limit;
5382 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5383 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5384 if (do_swap_account)
5385 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5386 memsw_limit);
5387 }
5388
5389 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5390 long long val = 0;
5391
5392 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5393 continue;
5394 for_each_mem_cgroup_tree(mi, memcg)
5395 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5396 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5397 }
5398
5399 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5400 unsigned long long val = 0;
5401
5402 for_each_mem_cgroup_tree(mi, memcg)
5403 val += mem_cgroup_read_events(mi, i);
5404 seq_printf(m, "total_%s %llu\n",
5405 mem_cgroup_events_names[i], val);
5406 }
5407
5408 for (i = 0; i < NR_LRU_LISTS; i++) {
5409 unsigned long long val = 0;
5410
5411 for_each_mem_cgroup_tree(mi, memcg)
5412 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5413 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5414 }
5415
5416 #ifdef CONFIG_DEBUG_VM
5417 {
5418 int nid, zid;
5419 struct mem_cgroup_per_zone *mz;
5420 struct zone_reclaim_stat *rstat;
5421 unsigned long recent_rotated[2] = {0, 0};
5422 unsigned long recent_scanned[2] = {0, 0};
5423
5424 for_each_online_node(nid)
5425 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5426 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5427 rstat = &mz->lruvec.reclaim_stat;
5428
5429 recent_rotated[0] += rstat->recent_rotated[0];
5430 recent_rotated[1] += rstat->recent_rotated[1];
5431 recent_scanned[0] += rstat->recent_scanned[0];
5432 recent_scanned[1] += rstat->recent_scanned[1];
5433 }
5434 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5435 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5436 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5437 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5438 }
5439 #endif
5440
5441 return 0;
5442 }
5443
5444 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5445 {
5446 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5447
5448 return mem_cgroup_swappiness(memcg);
5449 }
5450
5451 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5452 u64 val)
5453 {
5454 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5455 struct mem_cgroup *parent;
5456
5457 if (val > 100)
5458 return -EINVAL;
5459
5460 if (cgrp->parent == NULL)
5461 return -EINVAL;
5462
5463 parent = mem_cgroup_from_cont(cgrp->parent);
5464
5465 mutex_lock(&memcg_create_mutex);
5466
5467 /* If under hierarchy, only empty-root can set this value */
5468 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5469 mutex_unlock(&memcg_create_mutex);
5470 return -EINVAL;
5471 }
5472
5473 memcg->swappiness = val;
5474
5475 mutex_unlock(&memcg_create_mutex);
5476
5477 return 0;
5478 }
5479
5480 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5481 {
5482 struct mem_cgroup_threshold_ary *t;
5483 u64 usage;
5484 int i;
5485
5486 rcu_read_lock();
5487 if (!swap)
5488 t = rcu_dereference(memcg->thresholds.primary);
5489 else
5490 t = rcu_dereference(memcg->memsw_thresholds.primary);
5491
5492 if (!t)
5493 goto unlock;
5494
5495 usage = mem_cgroup_usage(memcg, swap);
5496
5497 /*
5498 * current_threshold points to threshold just below or equal to usage.
5499 * If it's not true, a threshold was crossed after last
5500 * call of __mem_cgroup_threshold().
5501 */
5502 i = t->current_threshold;
5503
5504 /*
5505 * Iterate backward over array of thresholds starting from
5506 * current_threshold and check if a threshold is crossed.
5507 * If none of thresholds below usage is crossed, we read
5508 * only one element of the array here.
5509 */
5510 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5511 eventfd_signal(t->entries[i].eventfd, 1);
5512
5513 /* i = current_threshold + 1 */
5514 i++;
5515
5516 /*
5517 * Iterate forward over array of thresholds starting from
5518 * current_threshold+1 and check if a threshold is crossed.
5519 * If none of thresholds above usage is crossed, we read
5520 * only one element of the array here.
5521 */
5522 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5523 eventfd_signal(t->entries[i].eventfd, 1);
5524
5525 /* Update current_threshold */
5526 t->current_threshold = i - 1;
5527 unlock:
5528 rcu_read_unlock();
5529 }
5530
5531 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5532 {
5533 while (memcg) {
5534 __mem_cgroup_threshold(memcg, false);
5535 if (do_swap_account)
5536 __mem_cgroup_threshold(memcg, true);
5537
5538 memcg = parent_mem_cgroup(memcg);
5539 }
5540 }
5541
5542 static int compare_thresholds(const void *a, const void *b)
5543 {
5544 const struct mem_cgroup_threshold *_a = a;
5545 const struct mem_cgroup_threshold *_b = b;
5546
5547 return _a->threshold - _b->threshold;
5548 }
5549
5550 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5551 {
5552 struct mem_cgroup_eventfd_list *ev;
5553
5554 list_for_each_entry(ev, &memcg->oom_notify, list)
5555 eventfd_signal(ev->eventfd, 1);
5556 return 0;
5557 }
5558
5559 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5560 {
5561 struct mem_cgroup *iter;
5562
5563 for_each_mem_cgroup_tree(iter, memcg)
5564 mem_cgroup_oom_notify_cb(iter);
5565 }
5566
5567 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5568 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5569 {
5570 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5571 struct mem_cgroup_thresholds *thresholds;
5572 struct mem_cgroup_threshold_ary *new;
5573 enum res_type type = MEMFILE_TYPE(cft->private);
5574 u64 threshold, usage;
5575 int i, size, ret;
5576
5577 ret = res_counter_memparse_write_strategy(args, &threshold);
5578 if (ret)
5579 return ret;
5580
5581 mutex_lock(&memcg->thresholds_lock);
5582
5583 if (type == _MEM)
5584 thresholds = &memcg->thresholds;
5585 else if (type == _MEMSWAP)
5586 thresholds = &memcg->memsw_thresholds;
5587 else
5588 BUG();
5589
5590 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5591
5592 /* Check if a threshold crossed before adding a new one */
5593 if (thresholds->primary)
5594 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5595
5596 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5597
5598 /* Allocate memory for new array of thresholds */
5599 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5600 GFP_KERNEL);
5601 if (!new) {
5602 ret = -ENOMEM;
5603 goto unlock;
5604 }
5605 new->size = size;
5606
5607 /* Copy thresholds (if any) to new array */
5608 if (thresholds->primary) {
5609 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5610 sizeof(struct mem_cgroup_threshold));
5611 }
5612
5613 /* Add new threshold */
5614 new->entries[size - 1].eventfd = eventfd;
5615 new->entries[size - 1].threshold = threshold;
5616
5617 /* Sort thresholds. Registering of new threshold isn't time-critical */
5618 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5619 compare_thresholds, NULL);
5620
5621 /* Find current threshold */
5622 new->current_threshold = -1;
5623 for (i = 0; i < size; i++) {
5624 if (new->entries[i].threshold <= usage) {
5625 /*
5626 * new->current_threshold will not be used until
5627 * rcu_assign_pointer(), so it's safe to increment
5628 * it here.
5629 */
5630 ++new->current_threshold;
5631 } else
5632 break;
5633 }
5634
5635 /* Free old spare buffer and save old primary buffer as spare */
5636 kfree(thresholds->spare);
5637 thresholds->spare = thresholds->primary;
5638
5639 rcu_assign_pointer(thresholds->primary, new);
5640
5641 /* To be sure that nobody uses thresholds */
5642 synchronize_rcu();
5643
5644 unlock:
5645 mutex_unlock(&memcg->thresholds_lock);
5646
5647 return ret;
5648 }
5649
5650 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
5651 struct cftype *cft, struct eventfd_ctx *eventfd)
5652 {
5653 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5654 struct mem_cgroup_thresholds *thresholds;
5655 struct mem_cgroup_threshold_ary *new;
5656 enum res_type type = MEMFILE_TYPE(cft->private);
5657 u64 usage;
5658 int i, j, size;
5659
5660 mutex_lock(&memcg->thresholds_lock);
5661 if (type == _MEM)
5662 thresholds = &memcg->thresholds;
5663 else if (type == _MEMSWAP)
5664 thresholds = &memcg->memsw_thresholds;
5665 else
5666 BUG();
5667
5668 if (!thresholds->primary)
5669 goto unlock;
5670
5671 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5672
5673 /* Check if a threshold crossed before removing */
5674 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5675
5676 /* Calculate new number of threshold */
5677 size = 0;
5678 for (i = 0; i < thresholds->primary->size; i++) {
5679 if (thresholds->primary->entries[i].eventfd != eventfd)
5680 size++;
5681 }
5682
5683 new = thresholds->spare;
5684
5685 /* Set thresholds array to NULL if we don't have thresholds */
5686 if (!size) {
5687 kfree(new);
5688 new = NULL;
5689 goto swap_buffers;
5690 }
5691
5692 new->size = size;
5693
5694 /* Copy thresholds and find current threshold */
5695 new->current_threshold = -1;
5696 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5697 if (thresholds->primary->entries[i].eventfd == eventfd)
5698 continue;
5699
5700 new->entries[j] = thresholds->primary->entries[i];
5701 if (new->entries[j].threshold <= usage) {
5702 /*
5703 * new->current_threshold will not be used
5704 * until rcu_assign_pointer(), so it's safe to increment
5705 * it here.
5706 */
5707 ++new->current_threshold;
5708 }
5709 j++;
5710 }
5711
5712 swap_buffers:
5713 /* Swap primary and spare array */
5714 thresholds->spare = thresholds->primary;
5715 /* If all events are unregistered, free the spare array */
5716 if (!new) {
5717 kfree(thresholds->spare);
5718 thresholds->spare = NULL;
5719 }
5720
5721 rcu_assign_pointer(thresholds->primary, new);
5722
5723 /* To be sure that nobody uses thresholds */
5724 synchronize_rcu();
5725 unlock:
5726 mutex_unlock(&memcg->thresholds_lock);
5727 }
5728
5729 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5730 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5731 {
5732 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5733 struct mem_cgroup_eventfd_list *event;
5734 enum res_type type = MEMFILE_TYPE(cft->private);
5735
5736 BUG_ON(type != _OOM_TYPE);
5737 event = kmalloc(sizeof(*event), GFP_KERNEL);
5738 if (!event)
5739 return -ENOMEM;
5740
5741 spin_lock(&memcg_oom_lock);
5742
5743 event->eventfd = eventfd;
5744 list_add(&event->list, &memcg->oom_notify);
5745
5746 /* already in OOM ? */
5747 if (atomic_read(&memcg->under_oom))
5748 eventfd_signal(eventfd, 1);
5749 spin_unlock(&memcg_oom_lock);
5750
5751 return 0;
5752 }
5753
5754 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
5755 struct cftype *cft, struct eventfd_ctx *eventfd)
5756 {
5757 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5758 struct mem_cgroup_eventfd_list *ev, *tmp;
5759 enum res_type type = MEMFILE_TYPE(cft->private);
5760
5761 BUG_ON(type != _OOM_TYPE);
5762
5763 spin_lock(&memcg_oom_lock);
5764
5765 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5766 if (ev->eventfd == eventfd) {
5767 list_del(&ev->list);
5768 kfree(ev);
5769 }
5770 }
5771
5772 spin_unlock(&memcg_oom_lock);
5773 }
5774
5775 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5776 struct cftype *cft, struct cgroup_map_cb *cb)
5777 {
5778 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5779
5780 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5781
5782 if (atomic_read(&memcg->under_oom))
5783 cb->fill(cb, "under_oom", 1);
5784 else
5785 cb->fill(cb, "under_oom", 0);
5786 return 0;
5787 }
5788
5789 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5790 struct cftype *cft, u64 val)
5791 {
5792 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5793 struct mem_cgroup *parent;
5794
5795 /* cannot set to root cgroup and only 0 and 1 are allowed */
5796 if (!cgrp->parent || !((val == 0) || (val == 1)))
5797 return -EINVAL;
5798
5799 parent = mem_cgroup_from_cont(cgrp->parent);
5800
5801 mutex_lock(&memcg_create_mutex);
5802 /* oom-kill-disable is a flag for subhierarchy. */
5803 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5804 mutex_unlock(&memcg_create_mutex);
5805 return -EINVAL;
5806 }
5807 memcg->oom_kill_disable = val;
5808 if (!val)
5809 memcg_oom_recover(memcg);
5810 mutex_unlock(&memcg_create_mutex);
5811 return 0;
5812 }
5813
5814 #ifdef CONFIG_MEMCG_KMEM
5815 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5816 {
5817 int ret;
5818
5819 memcg->kmemcg_id = -1;
5820 ret = memcg_propagate_kmem(memcg);
5821 if (ret)
5822 return ret;
5823
5824 return mem_cgroup_sockets_init(memcg, ss);
5825 };
5826
5827 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5828 {
5829 mem_cgroup_sockets_destroy(memcg);
5830
5831 memcg_kmem_mark_dead(memcg);
5832
5833 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5834 return;
5835
5836 /*
5837 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5838 * path here, being careful not to race with memcg_uncharge_kmem: it is
5839 * possible that the charges went down to 0 between mark_dead and the
5840 * res_counter read, so in that case, we don't need the put
5841 */
5842 if (memcg_kmem_test_and_clear_dead(memcg))
5843 mem_cgroup_put(memcg);
5844 }
5845 #else
5846 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5847 {
5848 return 0;
5849 }
5850
5851 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
5852 {
5853 }
5854 #endif
5855
5856 static struct cftype mem_cgroup_files[] = {
5857 {
5858 .name = "usage_in_bytes",
5859 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5860 .read = mem_cgroup_read,
5861 .register_event = mem_cgroup_usage_register_event,
5862 .unregister_event = mem_cgroup_usage_unregister_event,
5863 },
5864 {
5865 .name = "max_usage_in_bytes",
5866 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5867 .trigger = mem_cgroup_reset,
5868 .read = mem_cgroup_read,
5869 },
5870 {
5871 .name = "limit_in_bytes",
5872 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5873 .write_string = mem_cgroup_write,
5874 .read = mem_cgroup_read,
5875 },
5876 {
5877 .name = "soft_limit_in_bytes",
5878 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5879 .write_string = mem_cgroup_write,
5880 .read = mem_cgroup_read,
5881 },
5882 {
5883 .name = "failcnt",
5884 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5885 .trigger = mem_cgroup_reset,
5886 .read = mem_cgroup_read,
5887 },
5888 {
5889 .name = "stat",
5890 .read_seq_string = memcg_stat_show,
5891 },
5892 {
5893 .name = "force_empty",
5894 .trigger = mem_cgroup_force_empty_write,
5895 },
5896 {
5897 .name = "use_hierarchy",
5898 .write_u64 = mem_cgroup_hierarchy_write,
5899 .read_u64 = mem_cgroup_hierarchy_read,
5900 },
5901 {
5902 .name = "swappiness",
5903 .read_u64 = mem_cgroup_swappiness_read,
5904 .write_u64 = mem_cgroup_swappiness_write,
5905 },
5906 {
5907 .name = "move_charge_at_immigrate",
5908 .read_u64 = mem_cgroup_move_charge_read,
5909 .write_u64 = mem_cgroup_move_charge_write,
5910 },
5911 {
5912 .name = "oom_control",
5913 .read_map = mem_cgroup_oom_control_read,
5914 .write_u64 = mem_cgroup_oom_control_write,
5915 .register_event = mem_cgroup_oom_register_event,
5916 .unregister_event = mem_cgroup_oom_unregister_event,
5917 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5918 },
5919 #ifdef CONFIG_NUMA
5920 {
5921 .name = "numa_stat",
5922 .read_seq_string = memcg_numa_stat_show,
5923 },
5924 #endif
5925 #ifdef CONFIG_MEMCG_KMEM
5926 {
5927 .name = "kmem.limit_in_bytes",
5928 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5929 .write_string = mem_cgroup_write,
5930 .read = mem_cgroup_read,
5931 },
5932 {
5933 .name = "kmem.usage_in_bytes",
5934 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5935 .read = mem_cgroup_read,
5936 },
5937 {
5938 .name = "kmem.failcnt",
5939 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5940 .trigger = mem_cgroup_reset,
5941 .read = mem_cgroup_read,
5942 },
5943 {
5944 .name = "kmem.max_usage_in_bytes",
5945 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5946 .trigger = mem_cgroup_reset,
5947 .read = mem_cgroup_read,
5948 },
5949 #ifdef CONFIG_SLABINFO
5950 {
5951 .name = "kmem.slabinfo",
5952 .read_seq_string = mem_cgroup_slabinfo_read,
5953 },
5954 #endif
5955 #endif
5956 { }, /* terminate */
5957 };
5958
5959 #ifdef CONFIG_MEMCG_SWAP
5960 static struct cftype memsw_cgroup_files[] = {
5961 {
5962 .name = "memsw.usage_in_bytes",
5963 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5964 .read = mem_cgroup_read,
5965 .register_event = mem_cgroup_usage_register_event,
5966 .unregister_event = mem_cgroup_usage_unregister_event,
5967 },
5968 {
5969 .name = "memsw.max_usage_in_bytes",
5970 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5971 .trigger = mem_cgroup_reset,
5972 .read = mem_cgroup_read,
5973 },
5974 {
5975 .name = "memsw.limit_in_bytes",
5976 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5977 .write_string = mem_cgroup_write,
5978 .read = mem_cgroup_read,
5979 },
5980 {
5981 .name = "memsw.failcnt",
5982 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5983 .trigger = mem_cgroup_reset,
5984 .read = mem_cgroup_read,
5985 },
5986 { }, /* terminate */
5987 };
5988 #endif
5989 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
5990 {
5991 struct mem_cgroup_per_node *pn;
5992 struct mem_cgroup_per_zone *mz;
5993 int zone, tmp = node;
5994 /*
5995 * This routine is called against possible nodes.
5996 * But it's BUG to call kmalloc() against offline node.
5997 *
5998 * TODO: this routine can waste much memory for nodes which will
5999 * never be onlined. It's better to use memory hotplug callback
6000 * function.
6001 */
6002 if (!node_state(node, N_NORMAL_MEMORY))
6003 tmp = -1;
6004 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6005 if (!pn)
6006 return 1;
6007
6008 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6009 mz = &pn->zoneinfo[zone];
6010 lruvec_init(&mz->lruvec);
6011 mz->usage_in_excess = 0;
6012 mz->on_tree = false;
6013 mz->memcg = memcg;
6014 }
6015 memcg->info.nodeinfo[node] = pn;
6016 return 0;
6017 }
6018
6019 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6020 {
6021 kfree(memcg->info.nodeinfo[node]);
6022 }
6023
6024 static struct mem_cgroup *mem_cgroup_alloc(void)
6025 {
6026 struct mem_cgroup *memcg;
6027 size_t size = memcg_size();
6028
6029 /* Can be very big if nr_node_ids is very big */
6030 if (size < PAGE_SIZE)
6031 memcg = kzalloc(size, GFP_KERNEL);
6032 else
6033 memcg = vzalloc(size);
6034
6035 if (!memcg)
6036 return NULL;
6037
6038 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6039 if (!memcg->stat)
6040 goto out_free;
6041 spin_lock_init(&memcg->pcp_counter_lock);
6042 return memcg;
6043
6044 out_free:
6045 if (size < PAGE_SIZE)
6046 kfree(memcg);
6047 else
6048 vfree(memcg);
6049 return NULL;
6050 }
6051
6052 /*
6053 * At destroying mem_cgroup, references from swap_cgroup can remain.
6054 * (scanning all at force_empty is too costly...)
6055 *
6056 * Instead of clearing all references at force_empty, we remember
6057 * the number of reference from swap_cgroup and free mem_cgroup when
6058 * it goes down to 0.
6059 *
6060 * Removal of cgroup itself succeeds regardless of refs from swap.
6061 */
6062
6063 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6064 {
6065 int node;
6066 size_t size = memcg_size();
6067
6068 mem_cgroup_remove_from_trees(memcg);
6069 free_css_id(&mem_cgroup_subsys, &memcg->css);
6070
6071 for_each_node(node)
6072 free_mem_cgroup_per_zone_info(memcg, node);
6073
6074 free_percpu(memcg->stat);
6075
6076 /*
6077 * We need to make sure that (at least for now), the jump label
6078 * destruction code runs outside of the cgroup lock. This is because
6079 * get_online_cpus(), which is called from the static_branch update,
6080 * can't be called inside the cgroup_lock. cpusets are the ones
6081 * enforcing this dependency, so if they ever change, we might as well.
6082 *
6083 * schedule_work() will guarantee this happens. Be careful if you need
6084 * to move this code around, and make sure it is outside
6085 * the cgroup_lock.
6086 */
6087 disarm_static_keys(memcg);
6088 if (size < PAGE_SIZE)
6089 kfree(memcg);
6090 else
6091 vfree(memcg);
6092 }
6093
6094
6095 /*
6096 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6097 * but in process context. The work_freeing structure is overlaid
6098 * on the rcu_freeing structure, which itself is overlaid on memsw.
6099 */
6100 static void free_work(struct work_struct *work)
6101 {
6102 struct mem_cgroup *memcg;
6103
6104 memcg = container_of(work, struct mem_cgroup, work_freeing);
6105 __mem_cgroup_free(memcg);
6106 }
6107
6108 static void free_rcu(struct rcu_head *rcu_head)
6109 {
6110 struct mem_cgroup *memcg;
6111
6112 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6113 INIT_WORK(&memcg->work_freeing, free_work);
6114 schedule_work(&memcg->work_freeing);
6115 }
6116
6117 static void mem_cgroup_get(struct mem_cgroup *memcg)
6118 {
6119 atomic_inc(&memcg->refcnt);
6120 }
6121
6122 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
6123 {
6124 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6125 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
6126 call_rcu(&memcg->rcu_freeing, free_rcu);
6127 if (parent)
6128 mem_cgroup_put(parent);
6129 }
6130 }
6131
6132 static void mem_cgroup_put(struct mem_cgroup *memcg)
6133 {
6134 __mem_cgroup_put(memcg, 1);
6135 }
6136
6137 /*
6138 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6139 */
6140 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6141 {
6142 if (!memcg->res.parent)
6143 return NULL;
6144 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6145 }
6146 EXPORT_SYMBOL(parent_mem_cgroup);
6147
6148 static void __init mem_cgroup_soft_limit_tree_init(void)
6149 {
6150 struct mem_cgroup_tree_per_node *rtpn;
6151 struct mem_cgroup_tree_per_zone *rtpz;
6152 int tmp, node, zone;
6153
6154 for_each_node(node) {
6155 tmp = node;
6156 if (!node_state(node, N_NORMAL_MEMORY))
6157 tmp = -1;
6158 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6159 BUG_ON(!rtpn);
6160
6161 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6162
6163 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6164 rtpz = &rtpn->rb_tree_per_zone[zone];
6165 rtpz->rb_root = RB_ROOT;
6166 spin_lock_init(&rtpz->lock);
6167 }
6168 }
6169 }
6170
6171 static struct cgroup_subsys_state * __ref
6172 mem_cgroup_css_alloc(struct cgroup *cont)
6173 {
6174 struct mem_cgroup *memcg;
6175 long error = -ENOMEM;
6176 int node;
6177
6178 memcg = mem_cgroup_alloc();
6179 if (!memcg)
6180 return ERR_PTR(error);
6181
6182 for_each_node(node)
6183 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6184 goto free_out;
6185
6186 /* root ? */
6187 if (cont->parent == NULL) {
6188 root_mem_cgroup = memcg;
6189 res_counter_init(&memcg->res, NULL);
6190 res_counter_init(&memcg->memsw, NULL);
6191 res_counter_init(&memcg->kmem, NULL);
6192 }
6193
6194 memcg->last_scanned_node = MAX_NUMNODES;
6195 INIT_LIST_HEAD(&memcg->oom_notify);
6196 atomic_set(&memcg->refcnt, 1);
6197 memcg->move_charge_at_immigrate = 0;
6198 mutex_init(&memcg->thresholds_lock);
6199 spin_lock_init(&memcg->move_lock);
6200
6201 return &memcg->css;
6202
6203 free_out:
6204 __mem_cgroup_free(memcg);
6205 return ERR_PTR(error);
6206 }
6207
6208 static int
6209 mem_cgroup_css_online(struct cgroup *cont)
6210 {
6211 struct mem_cgroup *memcg, *parent;
6212 int error = 0;
6213
6214 if (!cont->parent)
6215 return 0;
6216
6217 mutex_lock(&memcg_create_mutex);
6218 memcg = mem_cgroup_from_cont(cont);
6219 parent = mem_cgroup_from_cont(cont->parent);
6220
6221 memcg->use_hierarchy = parent->use_hierarchy;
6222 memcg->oom_kill_disable = parent->oom_kill_disable;
6223 memcg->swappiness = mem_cgroup_swappiness(parent);
6224
6225 if (parent->use_hierarchy) {
6226 res_counter_init(&memcg->res, &parent->res);
6227 res_counter_init(&memcg->memsw, &parent->memsw);
6228 res_counter_init(&memcg->kmem, &parent->kmem);
6229
6230 /*
6231 * We increment refcnt of the parent to ensure that we can
6232 * safely access it on res_counter_charge/uncharge.
6233 * This refcnt will be decremented when freeing this
6234 * mem_cgroup(see mem_cgroup_put).
6235 */
6236 mem_cgroup_get(parent);
6237 } else {
6238 res_counter_init(&memcg->res, NULL);
6239 res_counter_init(&memcg->memsw, NULL);
6240 res_counter_init(&memcg->kmem, NULL);
6241 /*
6242 * Deeper hierachy with use_hierarchy == false doesn't make
6243 * much sense so let cgroup subsystem know about this
6244 * unfortunate state in our controller.
6245 */
6246 if (parent != root_mem_cgroup)
6247 mem_cgroup_subsys.broken_hierarchy = true;
6248 }
6249
6250 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6251 mutex_unlock(&memcg_create_mutex);
6252 if (error) {
6253 /*
6254 * We call put now because our (and parent's) refcnts
6255 * are already in place. mem_cgroup_put() will internally
6256 * call __mem_cgroup_free, so return directly
6257 */
6258 mem_cgroup_put(memcg);
6259 if (parent->use_hierarchy)
6260 mem_cgroup_put(parent);
6261 }
6262 return error;
6263 }
6264
6265 /*
6266 * Announce all parents that a group from their hierarchy is gone.
6267 */
6268 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6269 {
6270 struct mem_cgroup *parent = memcg;
6271
6272 while ((parent = parent_mem_cgroup(parent)))
6273 atomic_inc(&parent->dead_count);
6274
6275 /*
6276 * if the root memcg is not hierarchical we have to check it
6277 * explicitely.
6278 */
6279 if (!root_mem_cgroup->use_hierarchy)
6280 atomic_inc(&root_mem_cgroup->dead_count);
6281 }
6282
6283 static void mem_cgroup_css_offline(struct cgroup *cont)
6284 {
6285 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6286
6287 mem_cgroup_invalidate_reclaim_iterators(memcg);
6288 mem_cgroup_reparent_charges(memcg);
6289 mem_cgroup_destroy_all_caches(memcg);
6290 }
6291
6292 static void mem_cgroup_css_free(struct cgroup *cont)
6293 {
6294 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
6295
6296 kmem_cgroup_destroy(memcg);
6297
6298 mem_cgroup_put(memcg);
6299 }
6300
6301 #ifdef CONFIG_MMU
6302 /* Handlers for move charge at task migration. */
6303 #define PRECHARGE_COUNT_AT_ONCE 256
6304 static int mem_cgroup_do_precharge(unsigned long count)
6305 {
6306 int ret = 0;
6307 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6308 struct mem_cgroup *memcg = mc.to;
6309
6310 if (mem_cgroup_is_root(memcg)) {
6311 mc.precharge += count;
6312 /* we don't need css_get for root */
6313 return ret;
6314 }
6315 /* try to charge at once */
6316 if (count > 1) {
6317 struct res_counter *dummy;
6318 /*
6319 * "memcg" cannot be under rmdir() because we've already checked
6320 * by cgroup_lock_live_cgroup() that it is not removed and we
6321 * are still under the same cgroup_mutex. So we can postpone
6322 * css_get().
6323 */
6324 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6325 goto one_by_one;
6326 if (do_swap_account && res_counter_charge(&memcg->memsw,
6327 PAGE_SIZE * count, &dummy)) {
6328 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6329 goto one_by_one;
6330 }
6331 mc.precharge += count;
6332 return ret;
6333 }
6334 one_by_one:
6335 /* fall back to one by one charge */
6336 while (count--) {
6337 if (signal_pending(current)) {
6338 ret = -EINTR;
6339 break;
6340 }
6341 if (!batch_count--) {
6342 batch_count = PRECHARGE_COUNT_AT_ONCE;
6343 cond_resched();
6344 }
6345 ret = __mem_cgroup_try_charge(NULL,
6346 GFP_KERNEL, 1, &memcg, false);
6347 if (ret)
6348 /* mem_cgroup_clear_mc() will do uncharge later */
6349 return ret;
6350 mc.precharge++;
6351 }
6352 return ret;
6353 }
6354
6355 /**
6356 * get_mctgt_type - get target type of moving charge
6357 * @vma: the vma the pte to be checked belongs
6358 * @addr: the address corresponding to the pte to be checked
6359 * @ptent: the pte to be checked
6360 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6361 *
6362 * Returns
6363 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6364 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6365 * move charge. if @target is not NULL, the page is stored in target->page
6366 * with extra refcnt got(Callers should handle it).
6367 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6368 * target for charge migration. if @target is not NULL, the entry is stored
6369 * in target->ent.
6370 *
6371 * Called with pte lock held.
6372 */
6373 union mc_target {
6374 struct page *page;
6375 swp_entry_t ent;
6376 };
6377
6378 enum mc_target_type {
6379 MC_TARGET_NONE = 0,
6380 MC_TARGET_PAGE,
6381 MC_TARGET_SWAP,
6382 };
6383
6384 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6385 unsigned long addr, pte_t ptent)
6386 {
6387 struct page *page = vm_normal_page(vma, addr, ptent);
6388
6389 if (!page || !page_mapped(page))
6390 return NULL;
6391 if (PageAnon(page)) {
6392 /* we don't move shared anon */
6393 if (!move_anon())
6394 return NULL;
6395 } else if (!move_file())
6396 /* we ignore mapcount for file pages */
6397 return NULL;
6398 if (!get_page_unless_zero(page))
6399 return NULL;
6400
6401 return page;
6402 }
6403
6404 #ifdef CONFIG_SWAP
6405 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6406 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6407 {
6408 struct page *page = NULL;
6409 swp_entry_t ent = pte_to_swp_entry(ptent);
6410
6411 if (!move_anon() || non_swap_entry(ent))
6412 return NULL;
6413 /*
6414 * Because lookup_swap_cache() updates some statistics counter,
6415 * we call find_get_page() with swapper_space directly.
6416 */
6417 page = find_get_page(swap_address_space(ent), ent.val);
6418 if (do_swap_account)
6419 entry->val = ent.val;
6420
6421 return page;
6422 }
6423 #else
6424 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6425 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6426 {
6427 return NULL;
6428 }
6429 #endif
6430
6431 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6432 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6433 {
6434 struct page *page = NULL;
6435 struct address_space *mapping;
6436 pgoff_t pgoff;
6437
6438 if (!vma->vm_file) /* anonymous vma */
6439 return NULL;
6440 if (!move_file())
6441 return NULL;
6442
6443 mapping = vma->vm_file->f_mapping;
6444 if (pte_none(ptent))
6445 pgoff = linear_page_index(vma, addr);
6446 else /* pte_file(ptent) is true */
6447 pgoff = pte_to_pgoff(ptent);
6448
6449 /* page is moved even if it's not RSS of this task(page-faulted). */
6450 page = find_get_page(mapping, pgoff);
6451
6452 #ifdef CONFIG_SWAP
6453 /* shmem/tmpfs may report page out on swap: account for that too. */
6454 if (radix_tree_exceptional_entry(page)) {
6455 swp_entry_t swap = radix_to_swp_entry(page);
6456 if (do_swap_account)
6457 *entry = swap;
6458 page = find_get_page(swap_address_space(swap), swap.val);
6459 }
6460 #endif
6461 return page;
6462 }
6463
6464 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6465 unsigned long addr, pte_t ptent, union mc_target *target)
6466 {
6467 struct page *page = NULL;
6468 struct page_cgroup *pc;
6469 enum mc_target_type ret = MC_TARGET_NONE;
6470 swp_entry_t ent = { .val = 0 };
6471
6472 if (pte_present(ptent))
6473 page = mc_handle_present_pte(vma, addr, ptent);
6474 else if (is_swap_pte(ptent))
6475 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6476 else if (pte_none(ptent) || pte_file(ptent))
6477 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6478
6479 if (!page && !ent.val)
6480 return ret;
6481 if (page) {
6482 pc = lookup_page_cgroup(page);
6483 /*
6484 * Do only loose check w/o page_cgroup lock.
6485 * mem_cgroup_move_account() checks the pc is valid or not under
6486 * the lock.
6487 */
6488 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6489 ret = MC_TARGET_PAGE;
6490 if (target)
6491 target->page = page;
6492 }
6493 if (!ret || !target)
6494 put_page(page);
6495 }
6496 /* There is a swap entry and a page doesn't exist or isn't charged */
6497 if (ent.val && !ret &&
6498 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6499 ret = MC_TARGET_SWAP;
6500 if (target)
6501 target->ent = ent;
6502 }
6503 return ret;
6504 }
6505
6506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6507 /*
6508 * We don't consider swapping or file mapped pages because THP does not
6509 * support them for now.
6510 * Caller should make sure that pmd_trans_huge(pmd) is true.
6511 */
6512 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6513 unsigned long addr, pmd_t pmd, union mc_target *target)
6514 {
6515 struct page *page = NULL;
6516 struct page_cgroup *pc;
6517 enum mc_target_type ret = MC_TARGET_NONE;
6518
6519 page = pmd_page(pmd);
6520 VM_BUG_ON(!page || !PageHead(page));
6521 if (!move_anon())
6522 return ret;
6523 pc = lookup_page_cgroup(page);
6524 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6525 ret = MC_TARGET_PAGE;
6526 if (target) {
6527 get_page(page);
6528 target->page = page;
6529 }
6530 }
6531 return ret;
6532 }
6533 #else
6534 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6535 unsigned long addr, pmd_t pmd, union mc_target *target)
6536 {
6537 return MC_TARGET_NONE;
6538 }
6539 #endif
6540
6541 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6542 unsigned long addr, unsigned long end,
6543 struct mm_walk *walk)
6544 {
6545 struct vm_area_struct *vma = walk->private;
6546 pte_t *pte;
6547 spinlock_t *ptl;
6548
6549 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6550 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6551 mc.precharge += HPAGE_PMD_NR;
6552 spin_unlock(&vma->vm_mm->page_table_lock);
6553 return 0;
6554 }
6555
6556 if (pmd_trans_unstable(pmd))
6557 return 0;
6558 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6559 for (; addr != end; pte++, addr += PAGE_SIZE)
6560 if (get_mctgt_type(vma, addr, *pte, NULL))
6561 mc.precharge++; /* increment precharge temporarily */
6562 pte_unmap_unlock(pte - 1, ptl);
6563 cond_resched();
6564
6565 return 0;
6566 }
6567
6568 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6569 {
6570 unsigned long precharge;
6571 struct vm_area_struct *vma;
6572
6573 down_read(&mm->mmap_sem);
6574 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6575 struct mm_walk mem_cgroup_count_precharge_walk = {
6576 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6577 .mm = mm,
6578 .private = vma,
6579 };
6580 if (is_vm_hugetlb_page(vma))
6581 continue;
6582 walk_page_range(vma->vm_start, vma->vm_end,
6583 &mem_cgroup_count_precharge_walk);
6584 }
6585 up_read(&mm->mmap_sem);
6586
6587 precharge = mc.precharge;
6588 mc.precharge = 0;
6589
6590 return precharge;
6591 }
6592
6593 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6594 {
6595 unsigned long precharge = mem_cgroup_count_precharge(mm);
6596
6597 VM_BUG_ON(mc.moving_task);
6598 mc.moving_task = current;
6599 return mem_cgroup_do_precharge(precharge);
6600 }
6601
6602 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6603 static void __mem_cgroup_clear_mc(void)
6604 {
6605 struct mem_cgroup *from = mc.from;
6606 struct mem_cgroup *to = mc.to;
6607
6608 /* we must uncharge all the leftover precharges from mc.to */
6609 if (mc.precharge) {
6610 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6611 mc.precharge = 0;
6612 }
6613 /*
6614 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6615 * we must uncharge here.
6616 */
6617 if (mc.moved_charge) {
6618 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6619 mc.moved_charge = 0;
6620 }
6621 /* we must fixup refcnts and charges */
6622 if (mc.moved_swap) {
6623 /* uncharge swap account from the old cgroup */
6624 if (!mem_cgroup_is_root(mc.from))
6625 res_counter_uncharge(&mc.from->memsw,
6626 PAGE_SIZE * mc.moved_swap);
6627 __mem_cgroup_put(mc.from, mc.moved_swap);
6628
6629 if (!mem_cgroup_is_root(mc.to)) {
6630 /*
6631 * we charged both to->res and to->memsw, so we should
6632 * uncharge to->res.
6633 */
6634 res_counter_uncharge(&mc.to->res,
6635 PAGE_SIZE * mc.moved_swap);
6636 }
6637 /* we've already done mem_cgroup_get(mc.to) */
6638 mc.moved_swap = 0;
6639 }
6640 memcg_oom_recover(from);
6641 memcg_oom_recover(to);
6642 wake_up_all(&mc.waitq);
6643 }
6644
6645 static void mem_cgroup_clear_mc(void)
6646 {
6647 struct mem_cgroup *from = mc.from;
6648
6649 /*
6650 * we must clear moving_task before waking up waiters at the end of
6651 * task migration.
6652 */
6653 mc.moving_task = NULL;
6654 __mem_cgroup_clear_mc();
6655 spin_lock(&mc.lock);
6656 mc.from = NULL;
6657 mc.to = NULL;
6658 spin_unlock(&mc.lock);
6659 mem_cgroup_end_move(from);
6660 }
6661
6662 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6663 struct cgroup_taskset *tset)
6664 {
6665 struct task_struct *p = cgroup_taskset_first(tset);
6666 int ret = 0;
6667 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
6668 unsigned long move_charge_at_immigrate;
6669
6670 /*
6671 * We are now commited to this value whatever it is. Changes in this
6672 * tunable will only affect upcoming migrations, not the current one.
6673 * So we need to save it, and keep it going.
6674 */
6675 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6676 if (move_charge_at_immigrate) {
6677 struct mm_struct *mm;
6678 struct mem_cgroup *from = mem_cgroup_from_task(p);
6679
6680 VM_BUG_ON(from == memcg);
6681
6682 mm = get_task_mm(p);
6683 if (!mm)
6684 return 0;
6685 /* We move charges only when we move a owner of the mm */
6686 if (mm->owner == p) {
6687 VM_BUG_ON(mc.from);
6688 VM_BUG_ON(mc.to);
6689 VM_BUG_ON(mc.precharge);
6690 VM_BUG_ON(mc.moved_charge);
6691 VM_BUG_ON(mc.moved_swap);
6692 mem_cgroup_start_move(from);
6693 spin_lock(&mc.lock);
6694 mc.from = from;
6695 mc.to = memcg;
6696 mc.immigrate_flags = move_charge_at_immigrate;
6697 spin_unlock(&mc.lock);
6698 /* We set mc.moving_task later */
6699
6700 ret = mem_cgroup_precharge_mc(mm);
6701 if (ret)
6702 mem_cgroup_clear_mc();
6703 }
6704 mmput(mm);
6705 }
6706 return ret;
6707 }
6708
6709 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6710 struct cgroup_taskset *tset)
6711 {
6712 mem_cgroup_clear_mc();
6713 }
6714
6715 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6716 unsigned long addr, unsigned long end,
6717 struct mm_walk *walk)
6718 {
6719 int ret = 0;
6720 struct vm_area_struct *vma = walk->private;
6721 pte_t *pte;
6722 spinlock_t *ptl;
6723 enum mc_target_type target_type;
6724 union mc_target target;
6725 struct page *page;
6726 struct page_cgroup *pc;
6727
6728 /*
6729 * We don't take compound_lock() here but no race with splitting thp
6730 * happens because:
6731 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6732 * under splitting, which means there's no concurrent thp split,
6733 * - if another thread runs into split_huge_page() just after we
6734 * entered this if-block, the thread must wait for page table lock
6735 * to be unlocked in __split_huge_page_splitting(), where the main
6736 * part of thp split is not executed yet.
6737 */
6738 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6739 if (mc.precharge < HPAGE_PMD_NR) {
6740 spin_unlock(&vma->vm_mm->page_table_lock);
6741 return 0;
6742 }
6743 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6744 if (target_type == MC_TARGET_PAGE) {
6745 page = target.page;
6746 if (!isolate_lru_page(page)) {
6747 pc = lookup_page_cgroup(page);
6748 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6749 pc, mc.from, mc.to)) {
6750 mc.precharge -= HPAGE_PMD_NR;
6751 mc.moved_charge += HPAGE_PMD_NR;
6752 }
6753 putback_lru_page(page);
6754 }
6755 put_page(page);
6756 }
6757 spin_unlock(&vma->vm_mm->page_table_lock);
6758 return 0;
6759 }
6760
6761 if (pmd_trans_unstable(pmd))
6762 return 0;
6763 retry:
6764 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6765 for (; addr != end; addr += PAGE_SIZE) {
6766 pte_t ptent = *(pte++);
6767 swp_entry_t ent;
6768
6769 if (!mc.precharge)
6770 break;
6771
6772 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6773 case MC_TARGET_PAGE:
6774 page = target.page;
6775 if (isolate_lru_page(page))
6776 goto put;
6777 pc = lookup_page_cgroup(page);
6778 if (!mem_cgroup_move_account(page, 1, pc,
6779 mc.from, mc.to)) {
6780 mc.precharge--;
6781 /* we uncharge from mc.from later. */
6782 mc.moved_charge++;
6783 }
6784 putback_lru_page(page);
6785 put: /* get_mctgt_type() gets the page */
6786 put_page(page);
6787 break;
6788 case MC_TARGET_SWAP:
6789 ent = target.ent;
6790 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6791 mc.precharge--;
6792 /* we fixup refcnts and charges later. */
6793 mc.moved_swap++;
6794 }
6795 break;
6796 default:
6797 break;
6798 }
6799 }
6800 pte_unmap_unlock(pte - 1, ptl);
6801 cond_resched();
6802
6803 if (addr != end) {
6804 /*
6805 * We have consumed all precharges we got in can_attach().
6806 * We try charge one by one, but don't do any additional
6807 * charges to mc.to if we have failed in charge once in attach()
6808 * phase.
6809 */
6810 ret = mem_cgroup_do_precharge(1);
6811 if (!ret)
6812 goto retry;
6813 }
6814
6815 return ret;
6816 }
6817
6818 static void mem_cgroup_move_charge(struct mm_struct *mm)
6819 {
6820 struct vm_area_struct *vma;
6821
6822 lru_add_drain_all();
6823 retry:
6824 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6825 /*
6826 * Someone who are holding the mmap_sem might be waiting in
6827 * waitq. So we cancel all extra charges, wake up all waiters,
6828 * and retry. Because we cancel precharges, we might not be able
6829 * to move enough charges, but moving charge is a best-effort
6830 * feature anyway, so it wouldn't be a big problem.
6831 */
6832 __mem_cgroup_clear_mc();
6833 cond_resched();
6834 goto retry;
6835 }
6836 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6837 int ret;
6838 struct mm_walk mem_cgroup_move_charge_walk = {
6839 .pmd_entry = mem_cgroup_move_charge_pte_range,
6840 .mm = mm,
6841 .private = vma,
6842 };
6843 if (is_vm_hugetlb_page(vma))
6844 continue;
6845 ret = walk_page_range(vma->vm_start, vma->vm_end,
6846 &mem_cgroup_move_charge_walk);
6847 if (ret)
6848 /*
6849 * means we have consumed all precharges and failed in
6850 * doing additional charge. Just abandon here.
6851 */
6852 break;
6853 }
6854 up_read(&mm->mmap_sem);
6855 }
6856
6857 static void mem_cgroup_move_task(struct cgroup *cont,
6858 struct cgroup_taskset *tset)
6859 {
6860 struct task_struct *p = cgroup_taskset_first(tset);
6861 struct mm_struct *mm = get_task_mm(p);
6862
6863 if (mm) {
6864 if (mc.to)
6865 mem_cgroup_move_charge(mm);
6866 mmput(mm);
6867 }
6868 if (mc.to)
6869 mem_cgroup_clear_mc();
6870 }
6871 #else /* !CONFIG_MMU */
6872 static int mem_cgroup_can_attach(struct cgroup *cgroup,
6873 struct cgroup_taskset *tset)
6874 {
6875 return 0;
6876 }
6877 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6878 struct cgroup_taskset *tset)
6879 {
6880 }
6881 static void mem_cgroup_move_task(struct cgroup *cont,
6882 struct cgroup_taskset *tset)
6883 {
6884 }
6885 #endif
6886
6887 struct cgroup_subsys mem_cgroup_subsys = {
6888 .name = "memory",
6889 .subsys_id = mem_cgroup_subsys_id,
6890 .css_alloc = mem_cgroup_css_alloc,
6891 .css_online = mem_cgroup_css_online,
6892 .css_offline = mem_cgroup_css_offline,
6893 .css_free = mem_cgroup_css_free,
6894 .can_attach = mem_cgroup_can_attach,
6895 .cancel_attach = mem_cgroup_cancel_attach,
6896 .attach = mem_cgroup_move_task,
6897 .base_cftypes = mem_cgroup_files,
6898 .early_init = 0,
6899 .use_id = 1,
6900 };
6901
6902 #ifdef CONFIG_MEMCG_SWAP
6903 static int __init enable_swap_account(char *s)
6904 {
6905 /* consider enabled if no parameter or 1 is given */
6906 if (!strcmp(s, "1"))
6907 really_do_swap_account = 1;
6908 else if (!strcmp(s, "0"))
6909 really_do_swap_account = 0;
6910 return 1;
6911 }
6912 __setup("swapaccount=", enable_swap_account);
6913
6914 static void __init memsw_file_init(void)
6915 {
6916 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6917 }
6918
6919 static void __init enable_swap_cgroup(void)
6920 {
6921 if (!mem_cgroup_disabled() && really_do_swap_account) {
6922 do_swap_account = 1;
6923 memsw_file_init();
6924 }
6925 }
6926
6927 #else
6928 static void __init enable_swap_cgroup(void)
6929 {
6930 }
6931 #endif
6932
6933 /*
6934 * subsys_initcall() for memory controller.
6935 *
6936 * Some parts like hotcpu_notifier() have to be initialized from this context
6937 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6938 * everything that doesn't depend on a specific mem_cgroup structure should
6939 * be initialized from here.
6940 */
6941 static int __init mem_cgroup_init(void)
6942 {
6943 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6944 enable_swap_cgroup();
6945 mem_cgroup_soft_limit_tree_init();
6946 memcg_stock_init();
6947 return 0;
6948 }
6949 subsys_initcall(mem_cgroup_init);
This page took 2.011718 seconds and 5 git commands to generate.