memcg: adjust to support new THP refcounting
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include <net/tcp_memcontrol.h>
70 #include "slab.h"
71
72 #include <asm/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Whether the swap controller is active */
87 #ifdef CONFIG_MEMCG_SWAP
88 int do_swap_account __read_mostly;
89 #else
90 #define do_swap_account 0
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
97 }
98
99 static const char * const mem_cgroup_stat_names[] = {
100 "cache",
101 "rss",
102 "rss_huge",
103 "mapped_file",
104 "dirty",
105 "writeback",
106 "swap",
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 static const char * const mem_cgroup_lru_names[] = {
117 "inactive_anon",
118 "active_anon",
119 "inactive_file",
120 "active_file",
121 "unevictable",
122 };
123
124 #define THRESHOLDS_EVENTS_TARGET 128
125 #define SOFTLIMIT_EVENTS_TARGET 1024
126 #define NUMAINFO_EVENTS_TARGET 1024
127
128 /*
129 * Cgroups above their limits are maintained in a RB-Tree, independent of
130 * their hierarchy representation
131 */
132
133 struct mem_cgroup_tree_per_zone {
134 struct rb_root rb_root;
135 spinlock_t lock;
136 };
137
138 struct mem_cgroup_tree_per_node {
139 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
140 };
141
142 struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct mem_cgroup_event {
158 /*
159 * memcg which the event belongs to.
160 */
161 struct mem_cgroup *memcg;
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
175 int (*register_event)(struct mem_cgroup *memcg,
176 struct eventfd_ctx *eventfd, const char *args);
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
182 void (*unregister_event)(struct mem_cgroup *memcg,
183 struct eventfd_ctx *eventfd);
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192 };
193
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196
197 /* Stuffs for move charges at task migration. */
198 /*
199 * Types of charges to be moved.
200 */
201 #define MOVE_ANON 0x1U
202 #define MOVE_FILE 0x2U
203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 spinlock_t lock; /* for from, to */
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
210 unsigned long flags;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216 } mc = {
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219 };
220
221 /*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
227
228 enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
233 NR_CHARGE_TYPE,
234 };
235
236 /* for encoding cft->private value on file */
237 enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
241 _KMEM,
242 };
243
244 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
246 #define MEMFILE_ATTR(val) ((val) & 0xffff)
247 /* Used for OOM nofiier */
248 #define OOM_CONTROL (0)
249
250 /*
251 * The memcg_create_mutex will be held whenever a new cgroup is created.
252 * As a consequence, any change that needs to protect against new child cgroups
253 * appearing has to hold it as well.
254 */
255 static DEFINE_MUTEX(memcg_create_mutex);
256
257 /* Some nice accessors for the vmpressure. */
258 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259 {
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263 }
264
265 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266 {
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268 }
269
270 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
271 {
272 return (memcg == root_mem_cgroup);
273 }
274
275 /*
276 * We restrict the id in the range of [1, 65535], so it can fit into
277 * an unsigned short.
278 */
279 #define MEM_CGROUP_ID_MAX USHRT_MAX
280
281 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
282 {
283 return memcg->css.id;
284 }
285
286 /*
287 * A helper function to get mem_cgroup from ID. must be called under
288 * rcu_read_lock(). The caller is responsible for calling
289 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
290 * refcnt from swap can be called against removed memcg.)
291 */
292 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
293 {
294 struct cgroup_subsys_state *css;
295
296 css = css_from_id(id, &memory_cgrp_subsys);
297 return mem_cgroup_from_css(css);
298 }
299
300 #ifdef CONFIG_MEMCG_KMEM
301 /*
302 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
303 * The main reason for not using cgroup id for this:
304 * this works better in sparse environments, where we have a lot of memcgs,
305 * but only a few kmem-limited. Or also, if we have, for instance, 200
306 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
307 * 200 entry array for that.
308 *
309 * The current size of the caches array is stored in memcg_nr_cache_ids. It
310 * will double each time we have to increase it.
311 */
312 static DEFINE_IDA(memcg_cache_ida);
313 int memcg_nr_cache_ids;
314
315 /* Protects memcg_nr_cache_ids */
316 static DECLARE_RWSEM(memcg_cache_ids_sem);
317
318 void memcg_get_cache_ids(void)
319 {
320 down_read(&memcg_cache_ids_sem);
321 }
322
323 void memcg_put_cache_ids(void)
324 {
325 up_read(&memcg_cache_ids_sem);
326 }
327
328 /*
329 * MIN_SIZE is different than 1, because we would like to avoid going through
330 * the alloc/free process all the time. In a small machine, 4 kmem-limited
331 * cgroups is a reasonable guess. In the future, it could be a parameter or
332 * tunable, but that is strictly not necessary.
333 *
334 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
335 * this constant directly from cgroup, but it is understandable that this is
336 * better kept as an internal representation in cgroup.c. In any case, the
337 * cgrp_id space is not getting any smaller, and we don't have to necessarily
338 * increase ours as well if it increases.
339 */
340 #define MEMCG_CACHES_MIN_SIZE 4
341 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
342
343 /*
344 * A lot of the calls to the cache allocation functions are expected to be
345 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
346 * conditional to this static branch, we'll have to allow modules that does
347 * kmem_cache_alloc and the such to see this symbol as well
348 */
349 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
350 EXPORT_SYMBOL(memcg_kmem_enabled_key);
351
352 #endif /* CONFIG_MEMCG_KMEM */
353
354 static struct mem_cgroup_per_zone *
355 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
356 {
357 int nid = zone_to_nid(zone);
358 int zid = zone_idx(zone);
359
360 return &memcg->nodeinfo[nid]->zoneinfo[zid];
361 }
362
363 /**
364 * mem_cgroup_css_from_page - css of the memcg associated with a page
365 * @page: page of interest
366 *
367 * If memcg is bound to the default hierarchy, css of the memcg associated
368 * with @page is returned. The returned css remains associated with @page
369 * until it is released.
370 *
371 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
372 * is returned.
373 *
374 * XXX: The above description of behavior on the default hierarchy isn't
375 * strictly true yet as replace_page_cache_page() can modify the
376 * association before @page is released even on the default hierarchy;
377 * however, the current and planned usages don't mix the the two functions
378 * and replace_page_cache_page() will soon be updated to make the invariant
379 * actually true.
380 */
381 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
382 {
383 struct mem_cgroup *memcg;
384
385 rcu_read_lock();
386
387 memcg = page->mem_cgroup;
388
389 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
390 memcg = root_mem_cgroup;
391
392 rcu_read_unlock();
393 return &memcg->css;
394 }
395
396 /**
397 * page_cgroup_ino - return inode number of the memcg a page is charged to
398 * @page: the page
399 *
400 * Look up the closest online ancestor of the memory cgroup @page is charged to
401 * and return its inode number or 0 if @page is not charged to any cgroup. It
402 * is safe to call this function without holding a reference to @page.
403 *
404 * Note, this function is inherently racy, because there is nothing to prevent
405 * the cgroup inode from getting torn down and potentially reallocated a moment
406 * after page_cgroup_ino() returns, so it only should be used by callers that
407 * do not care (such as procfs interfaces).
408 */
409 ino_t page_cgroup_ino(struct page *page)
410 {
411 struct mem_cgroup *memcg;
412 unsigned long ino = 0;
413
414 rcu_read_lock();
415 memcg = READ_ONCE(page->mem_cgroup);
416 while (memcg && !(memcg->css.flags & CSS_ONLINE))
417 memcg = parent_mem_cgroup(memcg);
418 if (memcg)
419 ino = cgroup_ino(memcg->css.cgroup);
420 rcu_read_unlock();
421 return ino;
422 }
423
424 static struct mem_cgroup_per_zone *
425 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
426 {
427 int nid = page_to_nid(page);
428 int zid = page_zonenum(page);
429
430 return &memcg->nodeinfo[nid]->zoneinfo[zid];
431 }
432
433 static struct mem_cgroup_tree_per_zone *
434 soft_limit_tree_node_zone(int nid, int zid)
435 {
436 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
437 }
438
439 static struct mem_cgroup_tree_per_zone *
440 soft_limit_tree_from_page(struct page *page)
441 {
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
446 }
447
448 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz,
450 unsigned long new_usage_in_excess)
451 {
452 struct rb_node **p = &mctz->rb_root.rb_node;
453 struct rb_node *parent = NULL;
454 struct mem_cgroup_per_zone *mz_node;
455
456 if (mz->on_tree)
457 return;
458
459 mz->usage_in_excess = new_usage_in_excess;
460 if (!mz->usage_in_excess)
461 return;
462 while (*p) {
463 parent = *p;
464 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
465 tree_node);
466 if (mz->usage_in_excess < mz_node->usage_in_excess)
467 p = &(*p)->rb_left;
468 /*
469 * We can't avoid mem cgroups that are over their soft
470 * limit by the same amount
471 */
472 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
473 p = &(*p)->rb_right;
474 }
475 rb_link_node(&mz->tree_node, parent, p);
476 rb_insert_color(&mz->tree_node, &mctz->rb_root);
477 mz->on_tree = true;
478 }
479
480 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
481 struct mem_cgroup_tree_per_zone *mctz)
482 {
483 if (!mz->on_tree)
484 return;
485 rb_erase(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = false;
487 }
488
489 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
490 struct mem_cgroup_tree_per_zone *mctz)
491 {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 __mem_cgroup_remove_exceeded(mz, mctz);
496 spin_unlock_irqrestore(&mctz->lock, flags);
497 }
498
499 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
500 {
501 unsigned long nr_pages = page_counter_read(&memcg->memory);
502 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
503 unsigned long excess = 0;
504
505 if (nr_pages > soft_limit)
506 excess = nr_pages - soft_limit;
507
508 return excess;
509 }
510
511 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
512 {
513 unsigned long excess;
514 struct mem_cgroup_per_zone *mz;
515 struct mem_cgroup_tree_per_zone *mctz;
516
517 mctz = soft_limit_tree_from_page(page);
518 /*
519 * Necessary to update all ancestors when hierarchy is used.
520 * because their event counter is not touched.
521 */
522 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
523 mz = mem_cgroup_page_zoneinfo(memcg, page);
524 excess = soft_limit_excess(memcg);
525 /*
526 * We have to update the tree if mz is on RB-tree or
527 * mem is over its softlimit.
528 */
529 if (excess || mz->on_tree) {
530 unsigned long flags;
531
532 spin_lock_irqsave(&mctz->lock, flags);
533 /* if on-tree, remove it */
534 if (mz->on_tree)
535 __mem_cgroup_remove_exceeded(mz, mctz);
536 /*
537 * Insert again. mz->usage_in_excess will be updated.
538 * If excess is 0, no tree ops.
539 */
540 __mem_cgroup_insert_exceeded(mz, mctz, excess);
541 spin_unlock_irqrestore(&mctz->lock, flags);
542 }
543 }
544 }
545
546 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
547 {
548 struct mem_cgroup_tree_per_zone *mctz;
549 struct mem_cgroup_per_zone *mz;
550 int nid, zid;
551
552 for_each_node(nid) {
553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
554 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
555 mctz = soft_limit_tree_node_zone(nid, zid);
556 mem_cgroup_remove_exceeded(mz, mctz);
557 }
558 }
559 }
560
561 static struct mem_cgroup_per_zone *
562 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
563 {
564 struct rb_node *rightmost = NULL;
565 struct mem_cgroup_per_zone *mz;
566
567 retry:
568 mz = NULL;
569 rightmost = rb_last(&mctz->rb_root);
570 if (!rightmost)
571 goto done; /* Nothing to reclaim from */
572
573 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
574 /*
575 * Remove the node now but someone else can add it back,
576 * we will to add it back at the end of reclaim to its correct
577 * position in the tree.
578 */
579 __mem_cgroup_remove_exceeded(mz, mctz);
580 if (!soft_limit_excess(mz->memcg) ||
581 !css_tryget_online(&mz->memcg->css))
582 goto retry;
583 done:
584 return mz;
585 }
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
589 {
590 struct mem_cgroup_per_zone *mz;
591
592 spin_lock_irq(&mctz->lock);
593 mz = __mem_cgroup_largest_soft_limit_node(mctz);
594 spin_unlock_irq(&mctz->lock);
595 return mz;
596 }
597
598 /*
599 * Return page count for single (non recursive) @memcg.
600 *
601 * Implementation Note: reading percpu statistics for memcg.
602 *
603 * Both of vmstat[] and percpu_counter has threshold and do periodic
604 * synchronization to implement "quick" read. There are trade-off between
605 * reading cost and precision of value. Then, we may have a chance to implement
606 * a periodic synchronization of counter in memcg's counter.
607 *
608 * But this _read() function is used for user interface now. The user accounts
609 * memory usage by memory cgroup and he _always_ requires exact value because
610 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
611 * have to visit all online cpus and make sum. So, for now, unnecessary
612 * synchronization is not implemented. (just implemented for cpu hotplug)
613 *
614 * If there are kernel internal actions which can make use of some not-exact
615 * value, and reading all cpu value can be performance bottleneck in some
616 * common workload, threshold and synchronization as vmstat[] should be
617 * implemented.
618 */
619 static unsigned long
620 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
621 {
622 long val = 0;
623 int cpu;
624
625 /* Per-cpu values can be negative, use a signed accumulator */
626 for_each_possible_cpu(cpu)
627 val += per_cpu(memcg->stat->count[idx], cpu);
628 /*
629 * Summing races with updates, so val may be negative. Avoid exposing
630 * transient negative values.
631 */
632 if (val < 0)
633 val = 0;
634 return val;
635 }
636
637 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
638 enum mem_cgroup_events_index idx)
639 {
640 unsigned long val = 0;
641 int cpu;
642
643 for_each_possible_cpu(cpu)
644 val += per_cpu(memcg->stat->events[idx], cpu);
645 return val;
646 }
647
648 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
649 struct page *page,
650 bool compound, int nr_pages)
651 {
652 /*
653 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
654 * counted as CACHE even if it's on ANON LRU.
655 */
656 if (PageAnon(page))
657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
658 nr_pages);
659 else
660 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
661 nr_pages);
662
663 if (compound) {
664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
665 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
666 nr_pages);
667 }
668
669 /* pagein of a big page is an event. So, ignore page size */
670 if (nr_pages > 0)
671 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
672 else {
673 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
674 nr_pages = -nr_pages; /* for event */
675 }
676
677 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
678 }
679
680 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
681 int nid,
682 unsigned int lru_mask)
683 {
684 unsigned long nr = 0;
685 int zid;
686
687 VM_BUG_ON((unsigned)nid >= nr_node_ids);
688
689 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
690 struct mem_cgroup_per_zone *mz;
691 enum lru_list lru;
692
693 for_each_lru(lru) {
694 if (!(BIT(lru) & lru_mask))
695 continue;
696 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
697 nr += mz->lru_size[lru];
698 }
699 }
700 return nr;
701 }
702
703 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
704 unsigned int lru_mask)
705 {
706 unsigned long nr = 0;
707 int nid;
708
709 for_each_node_state(nid, N_MEMORY)
710 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
711 return nr;
712 }
713
714 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_target target)
716 {
717 unsigned long val, next;
718
719 val = __this_cpu_read(memcg->stat->nr_page_events);
720 next = __this_cpu_read(memcg->stat->targets[target]);
721 /* from time_after() in jiffies.h */
722 if ((long)next - (long)val < 0) {
723 switch (target) {
724 case MEM_CGROUP_TARGET_THRESH:
725 next = val + THRESHOLDS_EVENTS_TARGET;
726 break;
727 case MEM_CGROUP_TARGET_SOFTLIMIT:
728 next = val + SOFTLIMIT_EVENTS_TARGET;
729 break;
730 case MEM_CGROUP_TARGET_NUMAINFO:
731 next = val + NUMAINFO_EVENTS_TARGET;
732 break;
733 default:
734 break;
735 }
736 __this_cpu_write(memcg->stat->targets[target], next);
737 return true;
738 }
739 return false;
740 }
741
742 /*
743 * Check events in order.
744 *
745 */
746 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
747 {
748 /* threshold event is triggered in finer grain than soft limit */
749 if (unlikely(mem_cgroup_event_ratelimit(memcg,
750 MEM_CGROUP_TARGET_THRESH))) {
751 bool do_softlimit;
752 bool do_numainfo __maybe_unused;
753
754 do_softlimit = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_SOFTLIMIT);
756 #if MAX_NUMNODES > 1
757 do_numainfo = mem_cgroup_event_ratelimit(memcg,
758 MEM_CGROUP_TARGET_NUMAINFO);
759 #endif
760 mem_cgroup_threshold(memcg);
761 if (unlikely(do_softlimit))
762 mem_cgroup_update_tree(memcg, page);
763 #if MAX_NUMNODES > 1
764 if (unlikely(do_numainfo))
765 atomic_inc(&memcg->numainfo_events);
766 #endif
767 }
768 }
769
770 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
771 {
772 /*
773 * mm_update_next_owner() may clear mm->owner to NULL
774 * if it races with swapoff, page migration, etc.
775 * So this can be called with p == NULL.
776 */
777 if (unlikely(!p))
778 return NULL;
779
780 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
781 }
782 EXPORT_SYMBOL(mem_cgroup_from_task);
783
784 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
785 {
786 struct mem_cgroup *memcg = NULL;
787
788 rcu_read_lock();
789 do {
790 /*
791 * Page cache insertions can happen withou an
792 * actual mm context, e.g. during disk probing
793 * on boot, loopback IO, acct() writes etc.
794 */
795 if (unlikely(!mm))
796 memcg = root_mem_cgroup;
797 else {
798 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 if (unlikely(!memcg))
800 memcg = root_mem_cgroup;
801 }
802 } while (!css_tryget_online(&memcg->css));
803 rcu_read_unlock();
804 return memcg;
805 }
806
807 /**
808 * mem_cgroup_iter - iterate over memory cgroup hierarchy
809 * @root: hierarchy root
810 * @prev: previously returned memcg, NULL on first invocation
811 * @reclaim: cookie for shared reclaim walks, NULL for full walks
812 *
813 * Returns references to children of the hierarchy below @root, or
814 * @root itself, or %NULL after a full round-trip.
815 *
816 * Caller must pass the return value in @prev on subsequent
817 * invocations for reference counting, or use mem_cgroup_iter_break()
818 * to cancel a hierarchy walk before the round-trip is complete.
819 *
820 * Reclaimers can specify a zone and a priority level in @reclaim to
821 * divide up the memcgs in the hierarchy among all concurrent
822 * reclaimers operating on the same zone and priority.
823 */
824 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
825 struct mem_cgroup *prev,
826 struct mem_cgroup_reclaim_cookie *reclaim)
827 {
828 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
829 struct cgroup_subsys_state *css = NULL;
830 struct mem_cgroup *memcg = NULL;
831 struct mem_cgroup *pos = NULL;
832
833 if (mem_cgroup_disabled())
834 return NULL;
835
836 if (!root)
837 root = root_mem_cgroup;
838
839 if (prev && !reclaim)
840 pos = prev;
841
842 if (!root->use_hierarchy && root != root_mem_cgroup) {
843 if (prev)
844 goto out;
845 return root;
846 }
847
848 rcu_read_lock();
849
850 if (reclaim) {
851 struct mem_cgroup_per_zone *mz;
852
853 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
854 iter = &mz->iter[reclaim->priority];
855
856 if (prev && reclaim->generation != iter->generation)
857 goto out_unlock;
858
859 while (1) {
860 pos = READ_ONCE(iter->position);
861 if (!pos || css_tryget(&pos->css))
862 break;
863 /*
864 * css reference reached zero, so iter->position will
865 * be cleared by ->css_released. However, we should not
866 * rely on this happening soon, because ->css_released
867 * is called from a work queue, and by busy-waiting we
868 * might block it. So we clear iter->position right
869 * away.
870 */
871 (void)cmpxchg(&iter->position, pos, NULL);
872 }
873 }
874
875 if (pos)
876 css = &pos->css;
877
878 for (;;) {
879 css = css_next_descendant_pre(css, &root->css);
880 if (!css) {
881 /*
882 * Reclaimers share the hierarchy walk, and a
883 * new one might jump in right at the end of
884 * the hierarchy - make sure they see at least
885 * one group and restart from the beginning.
886 */
887 if (!prev)
888 continue;
889 break;
890 }
891
892 /*
893 * Verify the css and acquire a reference. The root
894 * is provided by the caller, so we know it's alive
895 * and kicking, and don't take an extra reference.
896 */
897 memcg = mem_cgroup_from_css(css);
898
899 if (css == &root->css)
900 break;
901
902 if (css_tryget(css)) {
903 /*
904 * Make sure the memcg is initialized:
905 * mem_cgroup_css_online() orders the the
906 * initialization against setting the flag.
907 */
908 if (smp_load_acquire(&memcg->initialized))
909 break;
910
911 css_put(css);
912 }
913
914 memcg = NULL;
915 }
916
917 if (reclaim) {
918 /*
919 * The position could have already been updated by a competing
920 * thread, so check that the value hasn't changed since we read
921 * it to avoid reclaiming from the same cgroup twice.
922 */
923 (void)cmpxchg(&iter->position, pos, memcg);
924
925 if (pos)
926 css_put(&pos->css);
927
928 if (!memcg)
929 iter->generation++;
930 else if (!prev)
931 reclaim->generation = iter->generation;
932 }
933
934 out_unlock:
935 rcu_read_unlock();
936 out:
937 if (prev && prev != root)
938 css_put(&prev->css);
939
940 return memcg;
941 }
942
943 /**
944 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
945 * @root: hierarchy root
946 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
947 */
948 void mem_cgroup_iter_break(struct mem_cgroup *root,
949 struct mem_cgroup *prev)
950 {
951 if (!root)
952 root = root_mem_cgroup;
953 if (prev && prev != root)
954 css_put(&prev->css);
955 }
956
957 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
958 {
959 struct mem_cgroup *memcg = dead_memcg;
960 struct mem_cgroup_reclaim_iter *iter;
961 struct mem_cgroup_per_zone *mz;
962 int nid, zid;
963 int i;
964
965 while ((memcg = parent_mem_cgroup(memcg))) {
966 for_each_node(nid) {
967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
968 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
969 for (i = 0; i <= DEF_PRIORITY; i++) {
970 iter = &mz->iter[i];
971 cmpxchg(&iter->position,
972 dead_memcg, NULL);
973 }
974 }
975 }
976 }
977 }
978
979 /*
980 * Iteration constructs for visiting all cgroups (under a tree). If
981 * loops are exited prematurely (break), mem_cgroup_iter_break() must
982 * be used for reference counting.
983 */
984 #define for_each_mem_cgroup_tree(iter, root) \
985 for (iter = mem_cgroup_iter(root, NULL, NULL); \
986 iter != NULL; \
987 iter = mem_cgroup_iter(root, iter, NULL))
988
989 #define for_each_mem_cgroup(iter) \
990 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
991 iter != NULL; \
992 iter = mem_cgroup_iter(NULL, iter, NULL))
993
994 /**
995 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
996 * @zone: zone of the wanted lruvec
997 * @memcg: memcg of the wanted lruvec
998 *
999 * Returns the lru list vector holding pages for the given @zone and
1000 * @mem. This can be the global zone lruvec, if the memory controller
1001 * is disabled.
1002 */
1003 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1004 struct mem_cgroup *memcg)
1005 {
1006 struct mem_cgroup_per_zone *mz;
1007 struct lruvec *lruvec;
1008
1009 if (mem_cgroup_disabled()) {
1010 lruvec = &zone->lruvec;
1011 goto out;
1012 }
1013
1014 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1015 lruvec = &mz->lruvec;
1016 out:
1017 /*
1018 * Since a node can be onlined after the mem_cgroup was created,
1019 * we have to be prepared to initialize lruvec->zone here;
1020 * and if offlined then reonlined, we need to reinitialize it.
1021 */
1022 if (unlikely(lruvec->zone != zone))
1023 lruvec->zone = zone;
1024 return lruvec;
1025 }
1026
1027 /**
1028 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1029 * @page: the page
1030 * @zone: zone of the page
1031 *
1032 * This function is only safe when following the LRU page isolation
1033 * and putback protocol: the LRU lock must be held, and the page must
1034 * either be PageLRU() or the caller must have isolated/allocated it.
1035 */
1036 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1037 {
1038 struct mem_cgroup_per_zone *mz;
1039 struct mem_cgroup *memcg;
1040 struct lruvec *lruvec;
1041
1042 if (mem_cgroup_disabled()) {
1043 lruvec = &zone->lruvec;
1044 goto out;
1045 }
1046
1047 memcg = page->mem_cgroup;
1048 /*
1049 * Swapcache readahead pages are added to the LRU - and
1050 * possibly migrated - before they are charged.
1051 */
1052 if (!memcg)
1053 memcg = root_mem_cgroup;
1054
1055 mz = mem_cgroup_page_zoneinfo(memcg, page);
1056 lruvec = &mz->lruvec;
1057 out:
1058 /*
1059 * Since a node can be onlined after the mem_cgroup was created,
1060 * we have to be prepared to initialize lruvec->zone here;
1061 * and if offlined then reonlined, we need to reinitialize it.
1062 */
1063 if (unlikely(lruvec->zone != zone))
1064 lruvec->zone = zone;
1065 return lruvec;
1066 }
1067
1068 /**
1069 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1070 * @lruvec: mem_cgroup per zone lru vector
1071 * @lru: index of lru list the page is sitting on
1072 * @nr_pages: positive when adding or negative when removing
1073 *
1074 * This function must be called when a page is added to or removed from an
1075 * lru list.
1076 */
1077 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1078 int nr_pages)
1079 {
1080 struct mem_cgroup_per_zone *mz;
1081 unsigned long *lru_size;
1082
1083 if (mem_cgroup_disabled())
1084 return;
1085
1086 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1087 lru_size = mz->lru_size + lru;
1088 *lru_size += nr_pages;
1089 VM_BUG_ON((long)(*lru_size) < 0);
1090 }
1091
1092 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1093 {
1094 struct mem_cgroup *task_memcg;
1095 struct task_struct *p;
1096 bool ret;
1097
1098 p = find_lock_task_mm(task);
1099 if (p) {
1100 task_memcg = get_mem_cgroup_from_mm(p->mm);
1101 task_unlock(p);
1102 } else {
1103 /*
1104 * All threads may have already detached their mm's, but the oom
1105 * killer still needs to detect if they have already been oom
1106 * killed to prevent needlessly killing additional tasks.
1107 */
1108 rcu_read_lock();
1109 task_memcg = mem_cgroup_from_task(task);
1110 css_get(&task_memcg->css);
1111 rcu_read_unlock();
1112 }
1113 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1114 css_put(&task_memcg->css);
1115 return ret;
1116 }
1117
1118 /**
1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1120 * @memcg: the memory cgroup
1121 *
1122 * Returns the maximum amount of memory @mem can be charged with, in
1123 * pages.
1124 */
1125 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1126 {
1127 unsigned long margin = 0;
1128 unsigned long count;
1129 unsigned long limit;
1130
1131 count = page_counter_read(&memcg->memory);
1132 limit = READ_ONCE(memcg->memory.limit);
1133 if (count < limit)
1134 margin = limit - count;
1135
1136 if (do_memsw_account()) {
1137 count = page_counter_read(&memcg->memsw);
1138 limit = READ_ONCE(memcg->memsw.limit);
1139 if (count <= limit)
1140 margin = min(margin, limit - count);
1141 }
1142
1143 return margin;
1144 }
1145
1146 /*
1147 * A routine for checking "mem" is under move_account() or not.
1148 *
1149 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1150 * moving cgroups. This is for waiting at high-memory pressure
1151 * caused by "move".
1152 */
1153 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1154 {
1155 struct mem_cgroup *from;
1156 struct mem_cgroup *to;
1157 bool ret = false;
1158 /*
1159 * Unlike task_move routines, we access mc.to, mc.from not under
1160 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1161 */
1162 spin_lock(&mc.lock);
1163 from = mc.from;
1164 to = mc.to;
1165 if (!from)
1166 goto unlock;
1167
1168 ret = mem_cgroup_is_descendant(from, memcg) ||
1169 mem_cgroup_is_descendant(to, memcg);
1170 unlock:
1171 spin_unlock(&mc.lock);
1172 return ret;
1173 }
1174
1175 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1176 {
1177 if (mc.moving_task && current != mc.moving_task) {
1178 if (mem_cgroup_under_move(memcg)) {
1179 DEFINE_WAIT(wait);
1180 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1181 /* moving charge context might have finished. */
1182 if (mc.moving_task)
1183 schedule();
1184 finish_wait(&mc.waitq, &wait);
1185 return true;
1186 }
1187 }
1188 return false;
1189 }
1190
1191 #define K(x) ((x) << (PAGE_SHIFT-10))
1192 /**
1193 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1194 * @memcg: The memory cgroup that went over limit
1195 * @p: Task that is going to be killed
1196 *
1197 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1198 * enabled
1199 */
1200 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1201 {
1202 /* oom_info_lock ensures that parallel ooms do not interleave */
1203 static DEFINE_MUTEX(oom_info_lock);
1204 struct mem_cgroup *iter;
1205 unsigned int i;
1206
1207 mutex_lock(&oom_info_lock);
1208 rcu_read_lock();
1209
1210 if (p) {
1211 pr_info("Task in ");
1212 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1213 pr_cont(" killed as a result of limit of ");
1214 } else {
1215 pr_info("Memory limit reached of cgroup ");
1216 }
1217
1218 pr_cont_cgroup_path(memcg->css.cgroup);
1219 pr_cont("\n");
1220
1221 rcu_read_unlock();
1222
1223 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memory)),
1225 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1226 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->memsw)),
1228 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1229 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1230 K((u64)page_counter_read(&memcg->kmem)),
1231 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1232
1233 for_each_mem_cgroup_tree(iter, memcg) {
1234 pr_info("Memory cgroup stats for ");
1235 pr_cont_cgroup_path(iter->css.cgroup);
1236 pr_cont(":");
1237
1238 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1239 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1240 continue;
1241 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1242 K(mem_cgroup_read_stat(iter, i)));
1243 }
1244
1245 for (i = 0; i < NR_LRU_LISTS; i++)
1246 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1247 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1248
1249 pr_cont("\n");
1250 }
1251 mutex_unlock(&oom_info_lock);
1252 }
1253
1254 /*
1255 * This function returns the number of memcg under hierarchy tree. Returns
1256 * 1(self count) if no children.
1257 */
1258 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1259 {
1260 int num = 0;
1261 struct mem_cgroup *iter;
1262
1263 for_each_mem_cgroup_tree(iter, memcg)
1264 num++;
1265 return num;
1266 }
1267
1268 /*
1269 * Return the memory (and swap, if configured) limit for a memcg.
1270 */
1271 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1272 {
1273 unsigned long limit;
1274
1275 limit = memcg->memory.limit;
1276 if (mem_cgroup_swappiness(memcg)) {
1277 unsigned long memsw_limit;
1278
1279 memsw_limit = memcg->memsw.limit;
1280 limit = min(limit + total_swap_pages, memsw_limit);
1281 }
1282 return limit;
1283 }
1284
1285 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1286 int order)
1287 {
1288 struct oom_control oc = {
1289 .zonelist = NULL,
1290 .nodemask = NULL,
1291 .gfp_mask = gfp_mask,
1292 .order = order,
1293 };
1294 struct mem_cgroup *iter;
1295 unsigned long chosen_points = 0;
1296 unsigned long totalpages;
1297 unsigned int points = 0;
1298 struct task_struct *chosen = NULL;
1299
1300 mutex_lock(&oom_lock);
1301
1302 /*
1303 * If current has a pending SIGKILL or is exiting, then automatically
1304 * select it. The goal is to allow it to allocate so that it may
1305 * quickly exit and free its memory.
1306 */
1307 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1308 mark_oom_victim(current);
1309 goto unlock;
1310 }
1311
1312 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1313 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1314 for_each_mem_cgroup_tree(iter, memcg) {
1315 struct css_task_iter it;
1316 struct task_struct *task;
1317
1318 css_task_iter_start(&iter->css, &it);
1319 while ((task = css_task_iter_next(&it))) {
1320 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1321 case OOM_SCAN_SELECT:
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = ULONG_MAX;
1326 get_task_struct(chosen);
1327 /* fall through */
1328 case OOM_SCAN_CONTINUE:
1329 continue;
1330 case OOM_SCAN_ABORT:
1331 css_task_iter_end(&it);
1332 mem_cgroup_iter_break(memcg, iter);
1333 if (chosen)
1334 put_task_struct(chosen);
1335 goto unlock;
1336 case OOM_SCAN_OK:
1337 break;
1338 };
1339 points = oom_badness(task, memcg, NULL, totalpages);
1340 if (!points || points < chosen_points)
1341 continue;
1342 /* Prefer thread group leaders for display purposes */
1343 if (points == chosen_points &&
1344 thread_group_leader(chosen))
1345 continue;
1346
1347 if (chosen)
1348 put_task_struct(chosen);
1349 chosen = task;
1350 chosen_points = points;
1351 get_task_struct(chosen);
1352 }
1353 css_task_iter_end(&it);
1354 }
1355
1356 if (chosen) {
1357 points = chosen_points * 1000 / totalpages;
1358 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1359 "Memory cgroup out of memory");
1360 }
1361 unlock:
1362 mutex_unlock(&oom_lock);
1363 }
1364
1365 #if MAX_NUMNODES > 1
1366
1367 /**
1368 * test_mem_cgroup_node_reclaimable
1369 * @memcg: the target memcg
1370 * @nid: the node ID to be checked.
1371 * @noswap : specify true here if the user wants flle only information.
1372 *
1373 * This function returns whether the specified memcg contains any
1374 * reclaimable pages on a node. Returns true if there are any reclaimable
1375 * pages in the node.
1376 */
1377 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1378 int nid, bool noswap)
1379 {
1380 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1381 return true;
1382 if (noswap || !total_swap_pages)
1383 return false;
1384 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1385 return true;
1386 return false;
1387
1388 }
1389
1390 /*
1391 * Always updating the nodemask is not very good - even if we have an empty
1392 * list or the wrong list here, we can start from some node and traverse all
1393 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1394 *
1395 */
1396 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1397 {
1398 int nid;
1399 /*
1400 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1401 * pagein/pageout changes since the last update.
1402 */
1403 if (!atomic_read(&memcg->numainfo_events))
1404 return;
1405 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1406 return;
1407
1408 /* make a nodemask where this memcg uses memory from */
1409 memcg->scan_nodes = node_states[N_MEMORY];
1410
1411 for_each_node_mask(nid, node_states[N_MEMORY]) {
1412
1413 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1414 node_clear(nid, memcg->scan_nodes);
1415 }
1416
1417 atomic_set(&memcg->numainfo_events, 0);
1418 atomic_set(&memcg->numainfo_updating, 0);
1419 }
1420
1421 /*
1422 * Selecting a node where we start reclaim from. Because what we need is just
1423 * reducing usage counter, start from anywhere is O,K. Considering
1424 * memory reclaim from current node, there are pros. and cons.
1425 *
1426 * Freeing memory from current node means freeing memory from a node which
1427 * we'll use or we've used. So, it may make LRU bad. And if several threads
1428 * hit limits, it will see a contention on a node. But freeing from remote
1429 * node means more costs for memory reclaim because of memory latency.
1430 *
1431 * Now, we use round-robin. Better algorithm is welcomed.
1432 */
1433 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1434 {
1435 int node;
1436
1437 mem_cgroup_may_update_nodemask(memcg);
1438 node = memcg->last_scanned_node;
1439
1440 node = next_node(node, memcg->scan_nodes);
1441 if (node == MAX_NUMNODES)
1442 node = first_node(memcg->scan_nodes);
1443 /*
1444 * We call this when we hit limit, not when pages are added to LRU.
1445 * No LRU may hold pages because all pages are UNEVICTABLE or
1446 * memcg is too small and all pages are not on LRU. In that case,
1447 * we use curret node.
1448 */
1449 if (unlikely(node == MAX_NUMNODES))
1450 node = numa_node_id();
1451
1452 memcg->last_scanned_node = node;
1453 return node;
1454 }
1455 #else
1456 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1457 {
1458 return 0;
1459 }
1460 #endif
1461
1462 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1463 struct zone *zone,
1464 gfp_t gfp_mask,
1465 unsigned long *total_scanned)
1466 {
1467 struct mem_cgroup *victim = NULL;
1468 int total = 0;
1469 int loop = 0;
1470 unsigned long excess;
1471 unsigned long nr_scanned;
1472 struct mem_cgroup_reclaim_cookie reclaim = {
1473 .zone = zone,
1474 .priority = 0,
1475 };
1476
1477 excess = soft_limit_excess(root_memcg);
1478
1479 while (1) {
1480 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1481 if (!victim) {
1482 loop++;
1483 if (loop >= 2) {
1484 /*
1485 * If we have not been able to reclaim
1486 * anything, it might because there are
1487 * no reclaimable pages under this hierarchy
1488 */
1489 if (!total)
1490 break;
1491 /*
1492 * We want to do more targeted reclaim.
1493 * excess >> 2 is not to excessive so as to
1494 * reclaim too much, nor too less that we keep
1495 * coming back to reclaim from this cgroup
1496 */
1497 if (total >= (excess >> 2) ||
1498 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1499 break;
1500 }
1501 continue;
1502 }
1503 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1504 zone, &nr_scanned);
1505 *total_scanned += nr_scanned;
1506 if (!soft_limit_excess(root_memcg))
1507 break;
1508 }
1509 mem_cgroup_iter_break(root_memcg, victim);
1510 return total;
1511 }
1512
1513 #ifdef CONFIG_LOCKDEP
1514 static struct lockdep_map memcg_oom_lock_dep_map = {
1515 .name = "memcg_oom_lock",
1516 };
1517 #endif
1518
1519 static DEFINE_SPINLOCK(memcg_oom_lock);
1520
1521 /*
1522 * Check OOM-Killer is already running under our hierarchy.
1523 * If someone is running, return false.
1524 */
1525 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1526 {
1527 struct mem_cgroup *iter, *failed = NULL;
1528
1529 spin_lock(&memcg_oom_lock);
1530
1531 for_each_mem_cgroup_tree(iter, memcg) {
1532 if (iter->oom_lock) {
1533 /*
1534 * this subtree of our hierarchy is already locked
1535 * so we cannot give a lock.
1536 */
1537 failed = iter;
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
1540 } else
1541 iter->oom_lock = true;
1542 }
1543
1544 if (failed) {
1545 /*
1546 * OK, we failed to lock the whole subtree so we have
1547 * to clean up what we set up to the failing subtree
1548 */
1549 for_each_mem_cgroup_tree(iter, memcg) {
1550 if (iter == failed) {
1551 mem_cgroup_iter_break(memcg, iter);
1552 break;
1553 }
1554 iter->oom_lock = false;
1555 }
1556 } else
1557 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1558
1559 spin_unlock(&memcg_oom_lock);
1560
1561 return !failed;
1562 }
1563
1564 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1565 {
1566 struct mem_cgroup *iter;
1567
1568 spin_lock(&memcg_oom_lock);
1569 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1570 for_each_mem_cgroup_tree(iter, memcg)
1571 iter->oom_lock = false;
1572 spin_unlock(&memcg_oom_lock);
1573 }
1574
1575 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1576 {
1577 struct mem_cgroup *iter;
1578
1579 spin_lock(&memcg_oom_lock);
1580 for_each_mem_cgroup_tree(iter, memcg)
1581 iter->under_oom++;
1582 spin_unlock(&memcg_oom_lock);
1583 }
1584
1585 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1586 {
1587 struct mem_cgroup *iter;
1588
1589 /*
1590 * When a new child is created while the hierarchy is under oom,
1591 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1592 */
1593 spin_lock(&memcg_oom_lock);
1594 for_each_mem_cgroup_tree(iter, memcg)
1595 if (iter->under_oom > 0)
1596 iter->under_oom--;
1597 spin_unlock(&memcg_oom_lock);
1598 }
1599
1600 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1601
1602 struct oom_wait_info {
1603 struct mem_cgroup *memcg;
1604 wait_queue_t wait;
1605 };
1606
1607 static int memcg_oom_wake_function(wait_queue_t *wait,
1608 unsigned mode, int sync, void *arg)
1609 {
1610 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1611 struct mem_cgroup *oom_wait_memcg;
1612 struct oom_wait_info *oom_wait_info;
1613
1614 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1615 oom_wait_memcg = oom_wait_info->memcg;
1616
1617 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1618 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1619 return 0;
1620 return autoremove_wake_function(wait, mode, sync, arg);
1621 }
1622
1623 static void memcg_oom_recover(struct mem_cgroup *memcg)
1624 {
1625 /*
1626 * For the following lockless ->under_oom test, the only required
1627 * guarantee is that it must see the state asserted by an OOM when
1628 * this function is called as a result of userland actions
1629 * triggered by the notification of the OOM. This is trivially
1630 * achieved by invoking mem_cgroup_mark_under_oom() before
1631 * triggering notification.
1632 */
1633 if (memcg && memcg->under_oom)
1634 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1635 }
1636
1637 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1638 {
1639 if (!current->memcg_may_oom)
1640 return;
1641 /*
1642 * We are in the middle of the charge context here, so we
1643 * don't want to block when potentially sitting on a callstack
1644 * that holds all kinds of filesystem and mm locks.
1645 *
1646 * Also, the caller may handle a failed allocation gracefully
1647 * (like optional page cache readahead) and so an OOM killer
1648 * invocation might not even be necessary.
1649 *
1650 * That's why we don't do anything here except remember the
1651 * OOM context and then deal with it at the end of the page
1652 * fault when the stack is unwound, the locks are released,
1653 * and when we know whether the fault was overall successful.
1654 */
1655 css_get(&memcg->css);
1656 current->memcg_in_oom = memcg;
1657 current->memcg_oom_gfp_mask = mask;
1658 current->memcg_oom_order = order;
1659 }
1660
1661 /**
1662 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1663 * @handle: actually kill/wait or just clean up the OOM state
1664 *
1665 * This has to be called at the end of a page fault if the memcg OOM
1666 * handler was enabled.
1667 *
1668 * Memcg supports userspace OOM handling where failed allocations must
1669 * sleep on a waitqueue until the userspace task resolves the
1670 * situation. Sleeping directly in the charge context with all kinds
1671 * of locks held is not a good idea, instead we remember an OOM state
1672 * in the task and mem_cgroup_oom_synchronize() has to be called at
1673 * the end of the page fault to complete the OOM handling.
1674 *
1675 * Returns %true if an ongoing memcg OOM situation was detected and
1676 * completed, %false otherwise.
1677 */
1678 bool mem_cgroup_oom_synchronize(bool handle)
1679 {
1680 struct mem_cgroup *memcg = current->memcg_in_oom;
1681 struct oom_wait_info owait;
1682 bool locked;
1683
1684 /* OOM is global, do not handle */
1685 if (!memcg)
1686 return false;
1687
1688 if (!handle || oom_killer_disabled)
1689 goto cleanup;
1690
1691 owait.memcg = memcg;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
1696
1697 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1698 mem_cgroup_mark_under_oom(memcg);
1699
1700 locked = mem_cgroup_oom_trylock(memcg);
1701
1702 if (locked)
1703 mem_cgroup_oom_notify(memcg);
1704
1705 if (locked && !memcg->oom_kill_disable) {
1706 mem_cgroup_unmark_under_oom(memcg);
1707 finish_wait(&memcg_oom_waitq, &owait.wait);
1708 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1709 current->memcg_oom_order);
1710 } else {
1711 schedule();
1712 mem_cgroup_unmark_under_oom(memcg);
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
1714 }
1715
1716 if (locked) {
1717 mem_cgroup_oom_unlock(memcg);
1718 /*
1719 * There is no guarantee that an OOM-lock contender
1720 * sees the wakeups triggered by the OOM kill
1721 * uncharges. Wake any sleepers explicitely.
1722 */
1723 memcg_oom_recover(memcg);
1724 }
1725 cleanup:
1726 current->memcg_in_oom = NULL;
1727 css_put(&memcg->css);
1728 return true;
1729 }
1730
1731 /**
1732 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1733 * @page: page that is going to change accounted state
1734 *
1735 * This function must mark the beginning of an accounted page state
1736 * change to prevent double accounting when the page is concurrently
1737 * being moved to another memcg:
1738 *
1739 * memcg = mem_cgroup_begin_page_stat(page);
1740 * if (TestClearPageState(page))
1741 * mem_cgroup_update_page_stat(memcg, state, -1);
1742 * mem_cgroup_end_page_stat(memcg);
1743 */
1744 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1745 {
1746 struct mem_cgroup *memcg;
1747 unsigned long flags;
1748
1749 /*
1750 * The RCU lock is held throughout the transaction. The fast
1751 * path can get away without acquiring the memcg->move_lock
1752 * because page moving starts with an RCU grace period.
1753 *
1754 * The RCU lock also protects the memcg from being freed when
1755 * the page state that is going to change is the only thing
1756 * preventing the page from being uncharged.
1757 * E.g. end-writeback clearing PageWriteback(), which allows
1758 * migration to go ahead and uncharge the page before the
1759 * account transaction might be complete.
1760 */
1761 rcu_read_lock();
1762
1763 if (mem_cgroup_disabled())
1764 return NULL;
1765 again:
1766 memcg = page->mem_cgroup;
1767 if (unlikely(!memcg))
1768 return NULL;
1769
1770 if (atomic_read(&memcg->moving_account) <= 0)
1771 return memcg;
1772
1773 spin_lock_irqsave(&memcg->move_lock, flags);
1774 if (memcg != page->mem_cgroup) {
1775 spin_unlock_irqrestore(&memcg->move_lock, flags);
1776 goto again;
1777 }
1778
1779 /*
1780 * When charge migration first begins, we can have locked and
1781 * unlocked page stat updates happening concurrently. Track
1782 * the task who has the lock for mem_cgroup_end_page_stat().
1783 */
1784 memcg->move_lock_task = current;
1785 memcg->move_lock_flags = flags;
1786
1787 return memcg;
1788 }
1789 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
1790
1791 /**
1792 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1793 * @memcg: the memcg that was accounted against
1794 */
1795 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
1796 {
1797 if (memcg && memcg->move_lock_task == current) {
1798 unsigned long flags = memcg->move_lock_flags;
1799
1800 memcg->move_lock_task = NULL;
1801 memcg->move_lock_flags = 0;
1802
1803 spin_unlock_irqrestore(&memcg->move_lock, flags);
1804 }
1805
1806 rcu_read_unlock();
1807 }
1808 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
1809
1810 /*
1811 * size of first charge trial. "32" comes from vmscan.c's magic value.
1812 * TODO: maybe necessary to use big numbers in big irons.
1813 */
1814 #define CHARGE_BATCH 32U
1815 struct memcg_stock_pcp {
1816 struct mem_cgroup *cached; /* this never be root cgroup */
1817 unsigned int nr_pages;
1818 struct work_struct work;
1819 unsigned long flags;
1820 #define FLUSHING_CACHED_CHARGE 0
1821 };
1822 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1823 static DEFINE_MUTEX(percpu_charge_mutex);
1824
1825 /**
1826 * consume_stock: Try to consume stocked charge on this cpu.
1827 * @memcg: memcg to consume from.
1828 * @nr_pages: how many pages to charge.
1829 *
1830 * The charges will only happen if @memcg matches the current cpu's memcg
1831 * stock, and at least @nr_pages are available in that stock. Failure to
1832 * service an allocation will refill the stock.
1833 *
1834 * returns true if successful, false otherwise.
1835 */
1836 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1837 {
1838 struct memcg_stock_pcp *stock;
1839 bool ret = false;
1840
1841 if (nr_pages > CHARGE_BATCH)
1842 return ret;
1843
1844 stock = &get_cpu_var(memcg_stock);
1845 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1846 stock->nr_pages -= nr_pages;
1847 ret = true;
1848 }
1849 put_cpu_var(memcg_stock);
1850 return ret;
1851 }
1852
1853 /*
1854 * Returns stocks cached in percpu and reset cached information.
1855 */
1856 static void drain_stock(struct memcg_stock_pcp *stock)
1857 {
1858 struct mem_cgroup *old = stock->cached;
1859
1860 if (stock->nr_pages) {
1861 page_counter_uncharge(&old->memory, stock->nr_pages);
1862 if (do_memsw_account())
1863 page_counter_uncharge(&old->memsw, stock->nr_pages);
1864 css_put_many(&old->css, stock->nr_pages);
1865 stock->nr_pages = 0;
1866 }
1867 stock->cached = NULL;
1868 }
1869
1870 /*
1871 * This must be called under preempt disabled or must be called by
1872 * a thread which is pinned to local cpu.
1873 */
1874 static void drain_local_stock(struct work_struct *dummy)
1875 {
1876 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1877 drain_stock(stock);
1878 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1879 }
1880
1881 /*
1882 * Cache charges(val) to local per_cpu area.
1883 * This will be consumed by consume_stock() function, later.
1884 */
1885 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1886 {
1887 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1888
1889 if (stock->cached != memcg) { /* reset if necessary */
1890 drain_stock(stock);
1891 stock->cached = memcg;
1892 }
1893 stock->nr_pages += nr_pages;
1894 put_cpu_var(memcg_stock);
1895 }
1896
1897 /*
1898 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1899 * of the hierarchy under it.
1900 */
1901 static void drain_all_stock(struct mem_cgroup *root_memcg)
1902 {
1903 int cpu, curcpu;
1904
1905 /* If someone's already draining, avoid adding running more workers. */
1906 if (!mutex_trylock(&percpu_charge_mutex))
1907 return;
1908 /* Notify other cpus that system-wide "drain" is running */
1909 get_online_cpus();
1910 curcpu = get_cpu();
1911 for_each_online_cpu(cpu) {
1912 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1913 struct mem_cgroup *memcg;
1914
1915 memcg = stock->cached;
1916 if (!memcg || !stock->nr_pages)
1917 continue;
1918 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1919 continue;
1920 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1921 if (cpu == curcpu)
1922 drain_local_stock(&stock->work);
1923 else
1924 schedule_work_on(cpu, &stock->work);
1925 }
1926 }
1927 put_cpu();
1928 put_online_cpus();
1929 mutex_unlock(&percpu_charge_mutex);
1930 }
1931
1932 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1933 unsigned long action,
1934 void *hcpu)
1935 {
1936 int cpu = (unsigned long)hcpu;
1937 struct memcg_stock_pcp *stock;
1938
1939 if (action == CPU_ONLINE)
1940 return NOTIFY_OK;
1941
1942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1943 return NOTIFY_OK;
1944
1945 stock = &per_cpu(memcg_stock, cpu);
1946 drain_stock(stock);
1947 return NOTIFY_OK;
1948 }
1949
1950 static void reclaim_high(struct mem_cgroup *memcg,
1951 unsigned int nr_pages,
1952 gfp_t gfp_mask)
1953 {
1954 do {
1955 if (page_counter_read(&memcg->memory) <= memcg->high)
1956 continue;
1957 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1958 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1959 } while ((memcg = parent_mem_cgroup(memcg)));
1960 }
1961
1962 static void high_work_func(struct work_struct *work)
1963 {
1964 struct mem_cgroup *memcg;
1965
1966 memcg = container_of(work, struct mem_cgroup, high_work);
1967 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1968 }
1969
1970 /*
1971 * Scheduled by try_charge() to be executed from the userland return path
1972 * and reclaims memory over the high limit.
1973 */
1974 void mem_cgroup_handle_over_high(void)
1975 {
1976 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1977 struct mem_cgroup *memcg;
1978
1979 if (likely(!nr_pages))
1980 return;
1981
1982 memcg = get_mem_cgroup_from_mm(current->mm);
1983 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1984 css_put(&memcg->css);
1985 current->memcg_nr_pages_over_high = 0;
1986 }
1987
1988 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1989 unsigned int nr_pages)
1990 {
1991 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1992 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1993 struct mem_cgroup *mem_over_limit;
1994 struct page_counter *counter;
1995 unsigned long nr_reclaimed;
1996 bool may_swap = true;
1997 bool drained = false;
1998
1999 if (mem_cgroup_is_root(memcg))
2000 return 0;
2001 retry:
2002 if (consume_stock(memcg, nr_pages))
2003 return 0;
2004
2005 if (!do_memsw_account() ||
2006 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2007 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2008 goto done_restock;
2009 if (do_memsw_account())
2010 page_counter_uncharge(&memcg->memsw, batch);
2011 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2012 } else {
2013 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2014 may_swap = false;
2015 }
2016
2017 if (batch > nr_pages) {
2018 batch = nr_pages;
2019 goto retry;
2020 }
2021
2022 /*
2023 * Unlike in global OOM situations, memcg is not in a physical
2024 * memory shortage. Allow dying and OOM-killed tasks to
2025 * bypass the last charges so that they can exit quickly and
2026 * free their memory.
2027 */
2028 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2029 fatal_signal_pending(current) ||
2030 current->flags & PF_EXITING))
2031 goto force;
2032
2033 if (unlikely(task_in_memcg_oom(current)))
2034 goto nomem;
2035
2036 if (!gfpflags_allow_blocking(gfp_mask))
2037 goto nomem;
2038
2039 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2040
2041 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2042 gfp_mask, may_swap);
2043
2044 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2045 goto retry;
2046
2047 if (!drained) {
2048 drain_all_stock(mem_over_limit);
2049 drained = true;
2050 goto retry;
2051 }
2052
2053 if (gfp_mask & __GFP_NORETRY)
2054 goto nomem;
2055 /*
2056 * Even though the limit is exceeded at this point, reclaim
2057 * may have been able to free some pages. Retry the charge
2058 * before killing the task.
2059 *
2060 * Only for regular pages, though: huge pages are rather
2061 * unlikely to succeed so close to the limit, and we fall back
2062 * to regular pages anyway in case of failure.
2063 */
2064 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2065 goto retry;
2066 /*
2067 * At task move, charge accounts can be doubly counted. So, it's
2068 * better to wait until the end of task_move if something is going on.
2069 */
2070 if (mem_cgroup_wait_acct_move(mem_over_limit))
2071 goto retry;
2072
2073 if (nr_retries--)
2074 goto retry;
2075
2076 if (gfp_mask & __GFP_NOFAIL)
2077 goto force;
2078
2079 if (fatal_signal_pending(current))
2080 goto force;
2081
2082 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2083
2084 mem_cgroup_oom(mem_over_limit, gfp_mask,
2085 get_order(nr_pages * PAGE_SIZE));
2086 nomem:
2087 if (!(gfp_mask & __GFP_NOFAIL))
2088 return -ENOMEM;
2089 force:
2090 /*
2091 * The allocation either can't fail or will lead to more memory
2092 * being freed very soon. Allow memory usage go over the limit
2093 * temporarily by force charging it.
2094 */
2095 page_counter_charge(&memcg->memory, nr_pages);
2096 if (do_memsw_account())
2097 page_counter_charge(&memcg->memsw, nr_pages);
2098 css_get_many(&memcg->css, nr_pages);
2099
2100 return 0;
2101
2102 done_restock:
2103 css_get_many(&memcg->css, batch);
2104 if (batch > nr_pages)
2105 refill_stock(memcg, batch - nr_pages);
2106
2107 /*
2108 * If the hierarchy is above the normal consumption range, schedule
2109 * reclaim on returning to userland. We can perform reclaim here
2110 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2111 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2112 * not recorded as it most likely matches current's and won't
2113 * change in the meantime. As high limit is checked again before
2114 * reclaim, the cost of mismatch is negligible.
2115 */
2116 do {
2117 if (page_counter_read(&memcg->memory) > memcg->high) {
2118 /* Don't bother a random interrupted task */
2119 if (in_interrupt()) {
2120 schedule_work(&memcg->high_work);
2121 break;
2122 }
2123 current->memcg_nr_pages_over_high += batch;
2124 set_notify_resume(current);
2125 break;
2126 }
2127 } while ((memcg = parent_mem_cgroup(memcg)));
2128
2129 return 0;
2130 }
2131
2132 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2133 {
2134 if (mem_cgroup_is_root(memcg))
2135 return;
2136
2137 page_counter_uncharge(&memcg->memory, nr_pages);
2138 if (do_memsw_account())
2139 page_counter_uncharge(&memcg->memsw, nr_pages);
2140
2141 css_put_many(&memcg->css, nr_pages);
2142 }
2143
2144 static void lock_page_lru(struct page *page, int *isolated)
2145 {
2146 struct zone *zone = page_zone(page);
2147
2148 spin_lock_irq(&zone->lru_lock);
2149 if (PageLRU(page)) {
2150 struct lruvec *lruvec;
2151
2152 lruvec = mem_cgroup_page_lruvec(page, zone);
2153 ClearPageLRU(page);
2154 del_page_from_lru_list(page, lruvec, page_lru(page));
2155 *isolated = 1;
2156 } else
2157 *isolated = 0;
2158 }
2159
2160 static void unlock_page_lru(struct page *page, int isolated)
2161 {
2162 struct zone *zone = page_zone(page);
2163
2164 if (isolated) {
2165 struct lruvec *lruvec;
2166
2167 lruvec = mem_cgroup_page_lruvec(page, zone);
2168 VM_BUG_ON_PAGE(PageLRU(page), page);
2169 SetPageLRU(page);
2170 add_page_to_lru_list(page, lruvec, page_lru(page));
2171 }
2172 spin_unlock_irq(&zone->lru_lock);
2173 }
2174
2175 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2176 bool lrucare)
2177 {
2178 int isolated;
2179
2180 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2181
2182 /*
2183 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2184 * may already be on some other mem_cgroup's LRU. Take care of it.
2185 */
2186 if (lrucare)
2187 lock_page_lru(page, &isolated);
2188
2189 /*
2190 * Nobody should be changing or seriously looking at
2191 * page->mem_cgroup at this point:
2192 *
2193 * - the page is uncharged
2194 *
2195 * - the page is off-LRU
2196 *
2197 * - an anonymous fault has exclusive page access, except for
2198 * a locked page table
2199 *
2200 * - a page cache insertion, a swapin fault, or a migration
2201 * have the page locked
2202 */
2203 page->mem_cgroup = memcg;
2204
2205 if (lrucare)
2206 unlock_page_lru(page, isolated);
2207 }
2208
2209 #ifdef CONFIG_MEMCG_KMEM
2210 static int memcg_alloc_cache_id(void)
2211 {
2212 int id, size;
2213 int err;
2214
2215 id = ida_simple_get(&memcg_cache_ida,
2216 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2217 if (id < 0)
2218 return id;
2219
2220 if (id < memcg_nr_cache_ids)
2221 return id;
2222
2223 /*
2224 * There's no space for the new id in memcg_caches arrays,
2225 * so we have to grow them.
2226 */
2227 down_write(&memcg_cache_ids_sem);
2228
2229 size = 2 * (id + 1);
2230 if (size < MEMCG_CACHES_MIN_SIZE)
2231 size = MEMCG_CACHES_MIN_SIZE;
2232 else if (size > MEMCG_CACHES_MAX_SIZE)
2233 size = MEMCG_CACHES_MAX_SIZE;
2234
2235 err = memcg_update_all_caches(size);
2236 if (!err)
2237 err = memcg_update_all_list_lrus(size);
2238 if (!err)
2239 memcg_nr_cache_ids = size;
2240
2241 up_write(&memcg_cache_ids_sem);
2242
2243 if (err) {
2244 ida_simple_remove(&memcg_cache_ida, id);
2245 return err;
2246 }
2247 return id;
2248 }
2249
2250 static void memcg_free_cache_id(int id)
2251 {
2252 ida_simple_remove(&memcg_cache_ida, id);
2253 }
2254
2255 struct memcg_kmem_cache_create_work {
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *cachep;
2258 struct work_struct work;
2259 };
2260
2261 static void memcg_kmem_cache_create_func(struct work_struct *w)
2262 {
2263 struct memcg_kmem_cache_create_work *cw =
2264 container_of(w, struct memcg_kmem_cache_create_work, work);
2265 struct mem_cgroup *memcg = cw->memcg;
2266 struct kmem_cache *cachep = cw->cachep;
2267
2268 memcg_create_kmem_cache(memcg, cachep);
2269
2270 css_put(&memcg->css);
2271 kfree(cw);
2272 }
2273
2274 /*
2275 * Enqueue the creation of a per-memcg kmem_cache.
2276 */
2277 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2278 struct kmem_cache *cachep)
2279 {
2280 struct memcg_kmem_cache_create_work *cw;
2281
2282 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2283 if (!cw)
2284 return;
2285
2286 css_get(&memcg->css);
2287
2288 cw->memcg = memcg;
2289 cw->cachep = cachep;
2290 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2291
2292 schedule_work(&cw->work);
2293 }
2294
2295 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2296 struct kmem_cache *cachep)
2297 {
2298 /*
2299 * We need to stop accounting when we kmalloc, because if the
2300 * corresponding kmalloc cache is not yet created, the first allocation
2301 * in __memcg_schedule_kmem_cache_create will recurse.
2302 *
2303 * However, it is better to enclose the whole function. Depending on
2304 * the debugging options enabled, INIT_WORK(), for instance, can
2305 * trigger an allocation. This too, will make us recurse. Because at
2306 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2307 * the safest choice is to do it like this, wrapping the whole function.
2308 */
2309 current->memcg_kmem_skip_account = 1;
2310 __memcg_schedule_kmem_cache_create(memcg, cachep);
2311 current->memcg_kmem_skip_account = 0;
2312 }
2313
2314 /*
2315 * Return the kmem_cache we're supposed to use for a slab allocation.
2316 * We try to use the current memcg's version of the cache.
2317 *
2318 * If the cache does not exist yet, if we are the first user of it,
2319 * we either create it immediately, if possible, or create it asynchronously
2320 * in a workqueue.
2321 * In the latter case, we will let the current allocation go through with
2322 * the original cache.
2323 *
2324 * Can't be called in interrupt context or from kernel threads.
2325 * This function needs to be called with rcu_read_lock() held.
2326 */
2327 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2328 {
2329 struct mem_cgroup *memcg;
2330 struct kmem_cache *memcg_cachep;
2331 int kmemcg_id;
2332
2333 VM_BUG_ON(!is_root_cache(cachep));
2334
2335 if (cachep->flags & SLAB_ACCOUNT)
2336 gfp |= __GFP_ACCOUNT;
2337
2338 if (!(gfp & __GFP_ACCOUNT))
2339 return cachep;
2340
2341 if (current->memcg_kmem_skip_account)
2342 return cachep;
2343
2344 memcg = get_mem_cgroup_from_mm(current->mm);
2345 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2346 if (kmemcg_id < 0)
2347 goto out;
2348
2349 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2350 if (likely(memcg_cachep))
2351 return memcg_cachep;
2352
2353 /*
2354 * If we are in a safe context (can wait, and not in interrupt
2355 * context), we could be be predictable and return right away.
2356 * This would guarantee that the allocation being performed
2357 * already belongs in the new cache.
2358 *
2359 * However, there are some clashes that can arrive from locking.
2360 * For instance, because we acquire the slab_mutex while doing
2361 * memcg_create_kmem_cache, this means no further allocation
2362 * could happen with the slab_mutex held. So it's better to
2363 * defer everything.
2364 */
2365 memcg_schedule_kmem_cache_create(memcg, cachep);
2366 out:
2367 css_put(&memcg->css);
2368 return cachep;
2369 }
2370
2371 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2372 {
2373 if (!is_root_cache(cachep))
2374 css_put(&cachep->memcg_params.memcg->css);
2375 }
2376
2377 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2378 struct mem_cgroup *memcg)
2379 {
2380 unsigned int nr_pages = 1 << order;
2381 struct page_counter *counter;
2382 int ret;
2383
2384 if (!memcg_kmem_is_active(memcg))
2385 return 0;
2386
2387 if (!page_counter_try_charge(&memcg->kmem, nr_pages, &counter))
2388 return -ENOMEM;
2389
2390 ret = try_charge(memcg, gfp, nr_pages);
2391 if (ret) {
2392 page_counter_uncharge(&memcg->kmem, nr_pages);
2393 return ret;
2394 }
2395
2396 page->mem_cgroup = memcg;
2397
2398 return 0;
2399 }
2400
2401 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2402 {
2403 struct mem_cgroup *memcg;
2404 int ret;
2405
2406 memcg = get_mem_cgroup_from_mm(current->mm);
2407 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2408 css_put(&memcg->css);
2409 return ret;
2410 }
2411
2412 void __memcg_kmem_uncharge(struct page *page, int order)
2413 {
2414 struct mem_cgroup *memcg = page->mem_cgroup;
2415 unsigned int nr_pages = 1 << order;
2416
2417 if (!memcg)
2418 return;
2419
2420 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2421
2422 page_counter_uncharge(&memcg->kmem, nr_pages);
2423 page_counter_uncharge(&memcg->memory, nr_pages);
2424 if (do_memsw_account())
2425 page_counter_uncharge(&memcg->memsw, nr_pages);
2426
2427 page->mem_cgroup = NULL;
2428 css_put_many(&memcg->css, nr_pages);
2429 }
2430 #endif /* CONFIG_MEMCG_KMEM */
2431
2432 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2433
2434 /*
2435 * Because tail pages are not marked as "used", set it. We're under
2436 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2437 * charge/uncharge will be never happen and move_account() is done under
2438 * compound_lock(), so we don't have to take care of races.
2439 */
2440 void mem_cgroup_split_huge_fixup(struct page *head)
2441 {
2442 int i;
2443
2444 if (mem_cgroup_disabled())
2445 return;
2446
2447 for (i = 1; i < HPAGE_PMD_NR; i++)
2448 head[i].mem_cgroup = head->mem_cgroup;
2449
2450 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2451 HPAGE_PMD_NR);
2452 }
2453 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2454
2455 #ifdef CONFIG_MEMCG_SWAP
2456 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2457 bool charge)
2458 {
2459 int val = (charge) ? 1 : -1;
2460 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2461 }
2462
2463 /**
2464 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2465 * @entry: swap entry to be moved
2466 * @from: mem_cgroup which the entry is moved from
2467 * @to: mem_cgroup which the entry is moved to
2468 *
2469 * It succeeds only when the swap_cgroup's record for this entry is the same
2470 * as the mem_cgroup's id of @from.
2471 *
2472 * Returns 0 on success, -EINVAL on failure.
2473 *
2474 * The caller must have charged to @to, IOW, called page_counter_charge() about
2475 * both res and memsw, and called css_get().
2476 */
2477 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2478 struct mem_cgroup *from, struct mem_cgroup *to)
2479 {
2480 unsigned short old_id, new_id;
2481
2482 old_id = mem_cgroup_id(from);
2483 new_id = mem_cgroup_id(to);
2484
2485 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2486 mem_cgroup_swap_statistics(from, false);
2487 mem_cgroup_swap_statistics(to, true);
2488 return 0;
2489 }
2490 return -EINVAL;
2491 }
2492 #else
2493 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2494 struct mem_cgroup *from, struct mem_cgroup *to)
2495 {
2496 return -EINVAL;
2497 }
2498 #endif
2499
2500 static DEFINE_MUTEX(memcg_limit_mutex);
2501
2502 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2503 unsigned long limit)
2504 {
2505 unsigned long curusage;
2506 unsigned long oldusage;
2507 bool enlarge = false;
2508 int retry_count;
2509 int ret;
2510
2511 /*
2512 * For keeping hierarchical_reclaim simple, how long we should retry
2513 * is depends on callers. We set our retry-count to be function
2514 * of # of children which we should visit in this loop.
2515 */
2516 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2517 mem_cgroup_count_children(memcg);
2518
2519 oldusage = page_counter_read(&memcg->memory);
2520
2521 do {
2522 if (signal_pending(current)) {
2523 ret = -EINTR;
2524 break;
2525 }
2526
2527 mutex_lock(&memcg_limit_mutex);
2528 if (limit > memcg->memsw.limit) {
2529 mutex_unlock(&memcg_limit_mutex);
2530 ret = -EINVAL;
2531 break;
2532 }
2533 if (limit > memcg->memory.limit)
2534 enlarge = true;
2535 ret = page_counter_limit(&memcg->memory, limit);
2536 mutex_unlock(&memcg_limit_mutex);
2537
2538 if (!ret)
2539 break;
2540
2541 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2542
2543 curusage = page_counter_read(&memcg->memory);
2544 /* Usage is reduced ? */
2545 if (curusage >= oldusage)
2546 retry_count--;
2547 else
2548 oldusage = curusage;
2549 } while (retry_count);
2550
2551 if (!ret && enlarge)
2552 memcg_oom_recover(memcg);
2553
2554 return ret;
2555 }
2556
2557 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2558 unsigned long limit)
2559 {
2560 unsigned long curusage;
2561 unsigned long oldusage;
2562 bool enlarge = false;
2563 int retry_count;
2564 int ret;
2565
2566 /* see mem_cgroup_resize_res_limit */
2567 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2568 mem_cgroup_count_children(memcg);
2569
2570 oldusage = page_counter_read(&memcg->memsw);
2571
2572 do {
2573 if (signal_pending(current)) {
2574 ret = -EINTR;
2575 break;
2576 }
2577
2578 mutex_lock(&memcg_limit_mutex);
2579 if (limit < memcg->memory.limit) {
2580 mutex_unlock(&memcg_limit_mutex);
2581 ret = -EINVAL;
2582 break;
2583 }
2584 if (limit > memcg->memsw.limit)
2585 enlarge = true;
2586 ret = page_counter_limit(&memcg->memsw, limit);
2587 mutex_unlock(&memcg_limit_mutex);
2588
2589 if (!ret)
2590 break;
2591
2592 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2593
2594 curusage = page_counter_read(&memcg->memsw);
2595 /* Usage is reduced ? */
2596 if (curusage >= oldusage)
2597 retry_count--;
2598 else
2599 oldusage = curusage;
2600 } while (retry_count);
2601
2602 if (!ret && enlarge)
2603 memcg_oom_recover(memcg);
2604
2605 return ret;
2606 }
2607
2608 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2609 gfp_t gfp_mask,
2610 unsigned long *total_scanned)
2611 {
2612 unsigned long nr_reclaimed = 0;
2613 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2614 unsigned long reclaimed;
2615 int loop = 0;
2616 struct mem_cgroup_tree_per_zone *mctz;
2617 unsigned long excess;
2618 unsigned long nr_scanned;
2619
2620 if (order > 0)
2621 return 0;
2622
2623 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2624 /*
2625 * This loop can run a while, specially if mem_cgroup's continuously
2626 * keep exceeding their soft limit and putting the system under
2627 * pressure
2628 */
2629 do {
2630 if (next_mz)
2631 mz = next_mz;
2632 else
2633 mz = mem_cgroup_largest_soft_limit_node(mctz);
2634 if (!mz)
2635 break;
2636
2637 nr_scanned = 0;
2638 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2639 gfp_mask, &nr_scanned);
2640 nr_reclaimed += reclaimed;
2641 *total_scanned += nr_scanned;
2642 spin_lock_irq(&mctz->lock);
2643 __mem_cgroup_remove_exceeded(mz, mctz);
2644
2645 /*
2646 * If we failed to reclaim anything from this memory cgroup
2647 * it is time to move on to the next cgroup
2648 */
2649 next_mz = NULL;
2650 if (!reclaimed)
2651 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2652
2653 excess = soft_limit_excess(mz->memcg);
2654 /*
2655 * One school of thought says that we should not add
2656 * back the node to the tree if reclaim returns 0.
2657 * But our reclaim could return 0, simply because due
2658 * to priority we are exposing a smaller subset of
2659 * memory to reclaim from. Consider this as a longer
2660 * term TODO.
2661 */
2662 /* If excess == 0, no tree ops */
2663 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2664 spin_unlock_irq(&mctz->lock);
2665 css_put(&mz->memcg->css);
2666 loop++;
2667 /*
2668 * Could not reclaim anything and there are no more
2669 * mem cgroups to try or we seem to be looping without
2670 * reclaiming anything.
2671 */
2672 if (!nr_reclaimed &&
2673 (next_mz == NULL ||
2674 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2675 break;
2676 } while (!nr_reclaimed);
2677 if (next_mz)
2678 css_put(&next_mz->memcg->css);
2679 return nr_reclaimed;
2680 }
2681
2682 /*
2683 * Test whether @memcg has children, dead or alive. Note that this
2684 * function doesn't care whether @memcg has use_hierarchy enabled and
2685 * returns %true if there are child csses according to the cgroup
2686 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2687 */
2688 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2689 {
2690 bool ret;
2691
2692 /*
2693 * The lock does not prevent addition or deletion of children, but
2694 * it prevents a new child from being initialized based on this
2695 * parent in css_online(), so it's enough to decide whether
2696 * hierarchically inherited attributes can still be changed or not.
2697 */
2698 lockdep_assert_held(&memcg_create_mutex);
2699
2700 rcu_read_lock();
2701 ret = css_next_child(NULL, &memcg->css);
2702 rcu_read_unlock();
2703 return ret;
2704 }
2705
2706 /*
2707 * Reclaims as many pages from the given memcg as possible and moves
2708 * the rest to the parent.
2709 *
2710 * Caller is responsible for holding css reference for memcg.
2711 */
2712 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2713 {
2714 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2715
2716 /* we call try-to-free pages for make this cgroup empty */
2717 lru_add_drain_all();
2718 /* try to free all pages in this cgroup */
2719 while (nr_retries && page_counter_read(&memcg->memory)) {
2720 int progress;
2721
2722 if (signal_pending(current))
2723 return -EINTR;
2724
2725 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2726 GFP_KERNEL, true);
2727 if (!progress) {
2728 nr_retries--;
2729 /* maybe some writeback is necessary */
2730 congestion_wait(BLK_RW_ASYNC, HZ/10);
2731 }
2732
2733 }
2734
2735 return 0;
2736 }
2737
2738 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2739 char *buf, size_t nbytes,
2740 loff_t off)
2741 {
2742 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2743
2744 if (mem_cgroup_is_root(memcg))
2745 return -EINVAL;
2746 return mem_cgroup_force_empty(memcg) ?: nbytes;
2747 }
2748
2749 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2750 struct cftype *cft)
2751 {
2752 return mem_cgroup_from_css(css)->use_hierarchy;
2753 }
2754
2755 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2756 struct cftype *cft, u64 val)
2757 {
2758 int retval = 0;
2759 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2760 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2761
2762 mutex_lock(&memcg_create_mutex);
2763
2764 if (memcg->use_hierarchy == val)
2765 goto out;
2766
2767 /*
2768 * If parent's use_hierarchy is set, we can't make any modifications
2769 * in the child subtrees. If it is unset, then the change can
2770 * occur, provided the current cgroup has no children.
2771 *
2772 * For the root cgroup, parent_mem is NULL, we allow value to be
2773 * set if there are no children.
2774 */
2775 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2776 (val == 1 || val == 0)) {
2777 if (!memcg_has_children(memcg))
2778 memcg->use_hierarchy = val;
2779 else
2780 retval = -EBUSY;
2781 } else
2782 retval = -EINVAL;
2783
2784 out:
2785 mutex_unlock(&memcg_create_mutex);
2786
2787 return retval;
2788 }
2789
2790 static unsigned long tree_stat(struct mem_cgroup *memcg,
2791 enum mem_cgroup_stat_index idx)
2792 {
2793 struct mem_cgroup *iter;
2794 unsigned long val = 0;
2795
2796 for_each_mem_cgroup_tree(iter, memcg)
2797 val += mem_cgroup_read_stat(iter, idx);
2798
2799 return val;
2800 }
2801
2802 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2803 {
2804 unsigned long val;
2805
2806 if (mem_cgroup_is_root(memcg)) {
2807 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2808 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2809 if (swap)
2810 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2811 } else {
2812 if (!swap)
2813 val = page_counter_read(&memcg->memory);
2814 else
2815 val = page_counter_read(&memcg->memsw);
2816 }
2817 return val;
2818 }
2819
2820 enum {
2821 RES_USAGE,
2822 RES_LIMIT,
2823 RES_MAX_USAGE,
2824 RES_FAILCNT,
2825 RES_SOFT_LIMIT,
2826 };
2827
2828 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2829 struct cftype *cft)
2830 {
2831 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2832 struct page_counter *counter;
2833
2834 switch (MEMFILE_TYPE(cft->private)) {
2835 case _MEM:
2836 counter = &memcg->memory;
2837 break;
2838 case _MEMSWAP:
2839 counter = &memcg->memsw;
2840 break;
2841 case _KMEM:
2842 counter = &memcg->kmem;
2843 break;
2844 default:
2845 BUG();
2846 }
2847
2848 switch (MEMFILE_ATTR(cft->private)) {
2849 case RES_USAGE:
2850 if (counter == &memcg->memory)
2851 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2852 if (counter == &memcg->memsw)
2853 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2854 return (u64)page_counter_read(counter) * PAGE_SIZE;
2855 case RES_LIMIT:
2856 return (u64)counter->limit * PAGE_SIZE;
2857 case RES_MAX_USAGE:
2858 return (u64)counter->watermark * PAGE_SIZE;
2859 case RES_FAILCNT:
2860 return counter->failcnt;
2861 case RES_SOFT_LIMIT:
2862 return (u64)memcg->soft_limit * PAGE_SIZE;
2863 default:
2864 BUG();
2865 }
2866 }
2867
2868 #ifdef CONFIG_MEMCG_KMEM
2869 static int memcg_activate_kmem(struct mem_cgroup *memcg,
2870 unsigned long nr_pages)
2871 {
2872 int err = 0;
2873 int memcg_id;
2874
2875 BUG_ON(memcg->kmemcg_id >= 0);
2876 BUG_ON(memcg->kmem_acct_activated);
2877 BUG_ON(memcg->kmem_acct_active);
2878
2879 /*
2880 * For simplicity, we won't allow this to be disabled. It also can't
2881 * be changed if the cgroup has children already, or if tasks had
2882 * already joined.
2883 *
2884 * If tasks join before we set the limit, a person looking at
2885 * kmem.usage_in_bytes will have no way to determine when it took
2886 * place, which makes the value quite meaningless.
2887 *
2888 * After it first became limited, changes in the value of the limit are
2889 * of course permitted.
2890 */
2891 mutex_lock(&memcg_create_mutex);
2892 if (cgroup_is_populated(memcg->css.cgroup) ||
2893 (memcg->use_hierarchy && memcg_has_children(memcg)))
2894 err = -EBUSY;
2895 mutex_unlock(&memcg_create_mutex);
2896 if (err)
2897 goto out;
2898
2899 memcg_id = memcg_alloc_cache_id();
2900 if (memcg_id < 0) {
2901 err = memcg_id;
2902 goto out;
2903 }
2904
2905 /*
2906 * We couldn't have accounted to this cgroup, because it hasn't got
2907 * activated yet, so this should succeed.
2908 */
2909 err = page_counter_limit(&memcg->kmem, nr_pages);
2910 VM_BUG_ON(err);
2911
2912 static_branch_inc(&memcg_kmem_enabled_key);
2913 /*
2914 * A memory cgroup is considered kmem-active as soon as it gets
2915 * kmemcg_id. Setting the id after enabling static branching will
2916 * guarantee no one starts accounting before all call sites are
2917 * patched.
2918 */
2919 memcg->kmemcg_id = memcg_id;
2920 memcg->kmem_acct_activated = true;
2921 memcg->kmem_acct_active = true;
2922 out:
2923 return err;
2924 }
2925
2926 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2927 unsigned long limit)
2928 {
2929 int ret;
2930
2931 mutex_lock(&memcg_limit_mutex);
2932 if (!memcg_kmem_is_active(memcg))
2933 ret = memcg_activate_kmem(memcg, limit);
2934 else
2935 ret = page_counter_limit(&memcg->kmem, limit);
2936 mutex_unlock(&memcg_limit_mutex);
2937 return ret;
2938 }
2939
2940 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2941 {
2942 int ret = 0;
2943 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
2944
2945 if (!parent)
2946 return 0;
2947
2948 mutex_lock(&memcg_limit_mutex);
2949 /*
2950 * If the parent cgroup is not kmem-active now, it cannot be activated
2951 * after this point, because it has at least one child already.
2952 */
2953 if (memcg_kmem_is_active(parent))
2954 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
2955 mutex_unlock(&memcg_limit_mutex);
2956 return ret;
2957 }
2958 #else
2959 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2960 unsigned long limit)
2961 {
2962 return -EINVAL;
2963 }
2964 #endif /* CONFIG_MEMCG_KMEM */
2965
2966 /*
2967 * The user of this function is...
2968 * RES_LIMIT.
2969 */
2970 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 char *buf, size_t nbytes, loff_t off)
2972 {
2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2974 unsigned long nr_pages;
2975 int ret;
2976
2977 buf = strstrip(buf);
2978 ret = page_counter_memparse(buf, "-1", &nr_pages);
2979 if (ret)
2980 return ret;
2981
2982 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2983 case RES_LIMIT:
2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 ret = -EINVAL;
2986 break;
2987 }
2988 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 case _MEM:
2990 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2991 break;
2992 case _MEMSWAP:
2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2994 break;
2995 case _KMEM:
2996 ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 break;
2998 }
2999 break;
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
3003 break;
3004 }
3005 return ret ?: nbytes;
3006 }
3007
3008 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
3010 {
3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3012 struct page_counter *counter;
3013
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
3024 default:
3025 BUG();
3026 }
3027
3028 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3029 case RES_MAX_USAGE:
3030 page_counter_reset_watermark(counter);
3031 break;
3032 case RES_FAILCNT:
3033 counter->failcnt = 0;
3034 break;
3035 default:
3036 BUG();
3037 }
3038
3039 return nbytes;
3040 }
3041
3042 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3043 struct cftype *cft)
3044 {
3045 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3046 }
3047
3048 #ifdef CONFIG_MMU
3049 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3050 struct cftype *cft, u64 val)
3051 {
3052 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3053
3054 if (val & ~MOVE_MASK)
3055 return -EINVAL;
3056
3057 /*
3058 * No kind of locking is needed in here, because ->can_attach() will
3059 * check this value once in the beginning of the process, and then carry
3060 * on with stale data. This means that changes to this value will only
3061 * affect task migrations starting after the change.
3062 */
3063 memcg->move_charge_at_immigrate = val;
3064 return 0;
3065 }
3066 #else
3067 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3068 struct cftype *cft, u64 val)
3069 {
3070 return -ENOSYS;
3071 }
3072 #endif
3073
3074 #ifdef CONFIG_NUMA
3075 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3076 {
3077 struct numa_stat {
3078 const char *name;
3079 unsigned int lru_mask;
3080 };
3081
3082 static const struct numa_stat stats[] = {
3083 { "total", LRU_ALL },
3084 { "file", LRU_ALL_FILE },
3085 { "anon", LRU_ALL_ANON },
3086 { "unevictable", BIT(LRU_UNEVICTABLE) },
3087 };
3088 const struct numa_stat *stat;
3089 int nid;
3090 unsigned long nr;
3091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3092
3093 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3094 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3095 seq_printf(m, "%s=%lu", stat->name, nr);
3096 for_each_node_state(nid, N_MEMORY) {
3097 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3098 stat->lru_mask);
3099 seq_printf(m, " N%d=%lu", nid, nr);
3100 }
3101 seq_putc(m, '\n');
3102 }
3103
3104 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3105 struct mem_cgroup *iter;
3106
3107 nr = 0;
3108 for_each_mem_cgroup_tree(iter, memcg)
3109 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3110 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3111 for_each_node_state(nid, N_MEMORY) {
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_node_nr_lru_pages(
3115 iter, nid, stat->lru_mask);
3116 seq_printf(m, " N%d=%lu", nid, nr);
3117 }
3118 seq_putc(m, '\n');
3119 }
3120
3121 return 0;
3122 }
3123 #endif /* CONFIG_NUMA */
3124
3125 static int memcg_stat_show(struct seq_file *m, void *v)
3126 {
3127 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3128 unsigned long memory, memsw;
3129 struct mem_cgroup *mi;
3130 unsigned int i;
3131
3132 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3133 MEM_CGROUP_STAT_NSTATS);
3134 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3135 MEM_CGROUP_EVENTS_NSTATS);
3136 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3137
3138 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3139 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3140 continue;
3141 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3142 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3143 }
3144
3145 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3146 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3147 mem_cgroup_read_events(memcg, i));
3148
3149 for (i = 0; i < NR_LRU_LISTS; i++)
3150 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3151 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3152
3153 /* Hierarchical information */
3154 memory = memsw = PAGE_COUNTER_MAX;
3155 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3156 memory = min(memory, mi->memory.limit);
3157 memsw = min(memsw, mi->memsw.limit);
3158 }
3159 seq_printf(m, "hierarchical_memory_limit %llu\n",
3160 (u64)memory * PAGE_SIZE);
3161 if (do_memsw_account())
3162 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3163 (u64)memsw * PAGE_SIZE);
3164
3165 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3166 unsigned long long val = 0;
3167
3168 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3169 continue;
3170 for_each_mem_cgroup_tree(mi, memcg)
3171 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3172 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3173 }
3174
3175 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3176 unsigned long long val = 0;
3177
3178 for_each_mem_cgroup_tree(mi, memcg)
3179 val += mem_cgroup_read_events(mi, i);
3180 seq_printf(m, "total_%s %llu\n",
3181 mem_cgroup_events_names[i], val);
3182 }
3183
3184 for (i = 0; i < NR_LRU_LISTS; i++) {
3185 unsigned long long val = 0;
3186
3187 for_each_mem_cgroup_tree(mi, memcg)
3188 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3189 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3190 }
3191
3192 #ifdef CONFIG_DEBUG_VM
3193 {
3194 int nid, zid;
3195 struct mem_cgroup_per_zone *mz;
3196 struct zone_reclaim_stat *rstat;
3197 unsigned long recent_rotated[2] = {0, 0};
3198 unsigned long recent_scanned[2] = {0, 0};
3199
3200 for_each_online_node(nid)
3201 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3202 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3203 rstat = &mz->lruvec.reclaim_stat;
3204
3205 recent_rotated[0] += rstat->recent_rotated[0];
3206 recent_rotated[1] += rstat->recent_rotated[1];
3207 recent_scanned[0] += rstat->recent_scanned[0];
3208 recent_scanned[1] += rstat->recent_scanned[1];
3209 }
3210 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3211 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3212 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3213 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3214 }
3215 #endif
3216
3217 return 0;
3218 }
3219
3220 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3221 struct cftype *cft)
3222 {
3223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3224
3225 return mem_cgroup_swappiness(memcg);
3226 }
3227
3228 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3229 struct cftype *cft, u64 val)
3230 {
3231 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3232
3233 if (val > 100)
3234 return -EINVAL;
3235
3236 if (css->parent)
3237 memcg->swappiness = val;
3238 else
3239 vm_swappiness = val;
3240
3241 return 0;
3242 }
3243
3244 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3245 {
3246 struct mem_cgroup_threshold_ary *t;
3247 unsigned long usage;
3248 int i;
3249
3250 rcu_read_lock();
3251 if (!swap)
3252 t = rcu_dereference(memcg->thresholds.primary);
3253 else
3254 t = rcu_dereference(memcg->memsw_thresholds.primary);
3255
3256 if (!t)
3257 goto unlock;
3258
3259 usage = mem_cgroup_usage(memcg, swap);
3260
3261 /*
3262 * current_threshold points to threshold just below or equal to usage.
3263 * If it's not true, a threshold was crossed after last
3264 * call of __mem_cgroup_threshold().
3265 */
3266 i = t->current_threshold;
3267
3268 /*
3269 * Iterate backward over array of thresholds starting from
3270 * current_threshold and check if a threshold is crossed.
3271 * If none of thresholds below usage is crossed, we read
3272 * only one element of the array here.
3273 */
3274 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3275 eventfd_signal(t->entries[i].eventfd, 1);
3276
3277 /* i = current_threshold + 1 */
3278 i++;
3279
3280 /*
3281 * Iterate forward over array of thresholds starting from
3282 * current_threshold+1 and check if a threshold is crossed.
3283 * If none of thresholds above usage is crossed, we read
3284 * only one element of the array here.
3285 */
3286 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3287 eventfd_signal(t->entries[i].eventfd, 1);
3288
3289 /* Update current_threshold */
3290 t->current_threshold = i - 1;
3291 unlock:
3292 rcu_read_unlock();
3293 }
3294
3295 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3296 {
3297 while (memcg) {
3298 __mem_cgroup_threshold(memcg, false);
3299 if (do_memsw_account())
3300 __mem_cgroup_threshold(memcg, true);
3301
3302 memcg = parent_mem_cgroup(memcg);
3303 }
3304 }
3305
3306 static int compare_thresholds(const void *a, const void *b)
3307 {
3308 const struct mem_cgroup_threshold *_a = a;
3309 const struct mem_cgroup_threshold *_b = b;
3310
3311 if (_a->threshold > _b->threshold)
3312 return 1;
3313
3314 if (_a->threshold < _b->threshold)
3315 return -1;
3316
3317 return 0;
3318 }
3319
3320 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3321 {
3322 struct mem_cgroup_eventfd_list *ev;
3323
3324 spin_lock(&memcg_oom_lock);
3325
3326 list_for_each_entry(ev, &memcg->oom_notify, list)
3327 eventfd_signal(ev->eventfd, 1);
3328
3329 spin_unlock(&memcg_oom_lock);
3330 return 0;
3331 }
3332
3333 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3334 {
3335 struct mem_cgroup *iter;
3336
3337 for_each_mem_cgroup_tree(iter, memcg)
3338 mem_cgroup_oom_notify_cb(iter);
3339 }
3340
3341 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3342 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3343 {
3344 struct mem_cgroup_thresholds *thresholds;
3345 struct mem_cgroup_threshold_ary *new;
3346 unsigned long threshold;
3347 unsigned long usage;
3348 int i, size, ret;
3349
3350 ret = page_counter_memparse(args, "-1", &threshold);
3351 if (ret)
3352 return ret;
3353
3354 mutex_lock(&memcg->thresholds_lock);
3355
3356 if (type == _MEM) {
3357 thresholds = &memcg->thresholds;
3358 usage = mem_cgroup_usage(memcg, false);
3359 } else if (type == _MEMSWAP) {
3360 thresholds = &memcg->memsw_thresholds;
3361 usage = mem_cgroup_usage(memcg, true);
3362 } else
3363 BUG();
3364
3365 /* Check if a threshold crossed before adding a new one */
3366 if (thresholds->primary)
3367 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3368
3369 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3370
3371 /* Allocate memory for new array of thresholds */
3372 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3373 GFP_KERNEL);
3374 if (!new) {
3375 ret = -ENOMEM;
3376 goto unlock;
3377 }
3378 new->size = size;
3379
3380 /* Copy thresholds (if any) to new array */
3381 if (thresholds->primary) {
3382 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3383 sizeof(struct mem_cgroup_threshold));
3384 }
3385
3386 /* Add new threshold */
3387 new->entries[size - 1].eventfd = eventfd;
3388 new->entries[size - 1].threshold = threshold;
3389
3390 /* Sort thresholds. Registering of new threshold isn't time-critical */
3391 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3392 compare_thresholds, NULL);
3393
3394 /* Find current threshold */
3395 new->current_threshold = -1;
3396 for (i = 0; i < size; i++) {
3397 if (new->entries[i].threshold <= usage) {
3398 /*
3399 * new->current_threshold will not be used until
3400 * rcu_assign_pointer(), so it's safe to increment
3401 * it here.
3402 */
3403 ++new->current_threshold;
3404 } else
3405 break;
3406 }
3407
3408 /* Free old spare buffer and save old primary buffer as spare */
3409 kfree(thresholds->spare);
3410 thresholds->spare = thresholds->primary;
3411
3412 rcu_assign_pointer(thresholds->primary, new);
3413
3414 /* To be sure that nobody uses thresholds */
3415 synchronize_rcu();
3416
3417 unlock:
3418 mutex_unlock(&memcg->thresholds_lock);
3419
3420 return ret;
3421 }
3422
3423 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3424 struct eventfd_ctx *eventfd, const char *args)
3425 {
3426 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3427 }
3428
3429 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3430 struct eventfd_ctx *eventfd, const char *args)
3431 {
3432 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3433 }
3434
3435 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3436 struct eventfd_ctx *eventfd, enum res_type type)
3437 {
3438 struct mem_cgroup_thresholds *thresholds;
3439 struct mem_cgroup_threshold_ary *new;
3440 unsigned long usage;
3441 int i, j, size;
3442
3443 mutex_lock(&memcg->thresholds_lock);
3444
3445 if (type == _MEM) {
3446 thresholds = &memcg->thresholds;
3447 usage = mem_cgroup_usage(memcg, false);
3448 } else if (type == _MEMSWAP) {
3449 thresholds = &memcg->memsw_thresholds;
3450 usage = mem_cgroup_usage(memcg, true);
3451 } else
3452 BUG();
3453
3454 if (!thresholds->primary)
3455 goto unlock;
3456
3457 /* Check if a threshold crossed before removing */
3458 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3459
3460 /* Calculate new number of threshold */
3461 size = 0;
3462 for (i = 0; i < thresholds->primary->size; i++) {
3463 if (thresholds->primary->entries[i].eventfd != eventfd)
3464 size++;
3465 }
3466
3467 new = thresholds->spare;
3468
3469 /* Set thresholds array to NULL if we don't have thresholds */
3470 if (!size) {
3471 kfree(new);
3472 new = NULL;
3473 goto swap_buffers;
3474 }
3475
3476 new->size = size;
3477
3478 /* Copy thresholds and find current threshold */
3479 new->current_threshold = -1;
3480 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3481 if (thresholds->primary->entries[i].eventfd == eventfd)
3482 continue;
3483
3484 new->entries[j] = thresholds->primary->entries[i];
3485 if (new->entries[j].threshold <= usage) {
3486 /*
3487 * new->current_threshold will not be used
3488 * until rcu_assign_pointer(), so it's safe to increment
3489 * it here.
3490 */
3491 ++new->current_threshold;
3492 }
3493 j++;
3494 }
3495
3496 swap_buffers:
3497 /* Swap primary and spare array */
3498 thresholds->spare = thresholds->primary;
3499 /* If all events are unregistered, free the spare array */
3500 if (!new) {
3501 kfree(thresholds->spare);
3502 thresholds->spare = NULL;
3503 }
3504
3505 rcu_assign_pointer(thresholds->primary, new);
3506
3507 /* To be sure that nobody uses thresholds */
3508 synchronize_rcu();
3509 unlock:
3510 mutex_unlock(&memcg->thresholds_lock);
3511 }
3512
3513 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3514 struct eventfd_ctx *eventfd)
3515 {
3516 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3517 }
3518
3519 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3520 struct eventfd_ctx *eventfd)
3521 {
3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3523 }
3524
3525 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3526 struct eventfd_ctx *eventfd, const char *args)
3527 {
3528 struct mem_cgroup_eventfd_list *event;
3529
3530 event = kmalloc(sizeof(*event), GFP_KERNEL);
3531 if (!event)
3532 return -ENOMEM;
3533
3534 spin_lock(&memcg_oom_lock);
3535
3536 event->eventfd = eventfd;
3537 list_add(&event->list, &memcg->oom_notify);
3538
3539 /* already in OOM ? */
3540 if (memcg->under_oom)
3541 eventfd_signal(eventfd, 1);
3542 spin_unlock(&memcg_oom_lock);
3543
3544 return 0;
3545 }
3546
3547 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3548 struct eventfd_ctx *eventfd)
3549 {
3550 struct mem_cgroup_eventfd_list *ev, *tmp;
3551
3552 spin_lock(&memcg_oom_lock);
3553
3554 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3555 if (ev->eventfd == eventfd) {
3556 list_del(&ev->list);
3557 kfree(ev);
3558 }
3559 }
3560
3561 spin_unlock(&memcg_oom_lock);
3562 }
3563
3564 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3565 {
3566 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3567
3568 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3569 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3570 return 0;
3571 }
3572
3573 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3574 struct cftype *cft, u64 val)
3575 {
3576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3577
3578 /* cannot set to root cgroup and only 0 and 1 are allowed */
3579 if (!css->parent || !((val == 0) || (val == 1)))
3580 return -EINVAL;
3581
3582 memcg->oom_kill_disable = val;
3583 if (!val)
3584 memcg_oom_recover(memcg);
3585
3586 return 0;
3587 }
3588
3589 #ifdef CONFIG_MEMCG_KMEM
3590 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3591 {
3592 int ret;
3593
3594 ret = memcg_propagate_kmem(memcg);
3595 if (ret)
3596 return ret;
3597
3598 return tcp_init_cgroup(memcg, ss);
3599 }
3600
3601 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3602 {
3603 struct cgroup_subsys_state *css;
3604 struct mem_cgroup *parent, *child;
3605 int kmemcg_id;
3606
3607 if (!memcg->kmem_acct_active)
3608 return;
3609
3610 /*
3611 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3612 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3613 * guarantees no cache will be created for this cgroup after we are
3614 * done (see memcg_create_kmem_cache()).
3615 */
3616 memcg->kmem_acct_active = false;
3617
3618 memcg_deactivate_kmem_caches(memcg);
3619
3620 kmemcg_id = memcg->kmemcg_id;
3621 BUG_ON(kmemcg_id < 0);
3622
3623 parent = parent_mem_cgroup(memcg);
3624 if (!parent)
3625 parent = root_mem_cgroup;
3626
3627 /*
3628 * Change kmemcg_id of this cgroup and all its descendants to the
3629 * parent's id, and then move all entries from this cgroup's list_lrus
3630 * to ones of the parent. After we have finished, all list_lrus
3631 * corresponding to this cgroup are guaranteed to remain empty. The
3632 * ordering is imposed by list_lru_node->lock taken by
3633 * memcg_drain_all_list_lrus().
3634 */
3635 css_for_each_descendant_pre(css, &memcg->css) {
3636 child = mem_cgroup_from_css(css);
3637 BUG_ON(child->kmemcg_id != kmemcg_id);
3638 child->kmemcg_id = parent->kmemcg_id;
3639 if (!memcg->use_hierarchy)
3640 break;
3641 }
3642 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3643
3644 memcg_free_cache_id(kmemcg_id);
3645 }
3646
3647 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3648 {
3649 if (memcg->kmem_acct_activated) {
3650 memcg_destroy_kmem_caches(memcg);
3651 static_branch_dec(&memcg_kmem_enabled_key);
3652 WARN_ON(page_counter_read(&memcg->kmem));
3653 }
3654 tcp_destroy_cgroup(memcg);
3655 }
3656 #else
3657 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3658 {
3659 return 0;
3660 }
3661
3662 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3663 {
3664 }
3665
3666 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
3667 {
3668 }
3669 #endif
3670
3671 #ifdef CONFIG_CGROUP_WRITEBACK
3672
3673 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3674 {
3675 return &memcg->cgwb_list;
3676 }
3677
3678 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3679 {
3680 return wb_domain_init(&memcg->cgwb_domain, gfp);
3681 }
3682
3683 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3684 {
3685 wb_domain_exit(&memcg->cgwb_domain);
3686 }
3687
3688 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3689 {
3690 wb_domain_size_changed(&memcg->cgwb_domain);
3691 }
3692
3693 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3694 {
3695 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3696
3697 if (!memcg->css.parent)
3698 return NULL;
3699
3700 return &memcg->cgwb_domain;
3701 }
3702
3703 /**
3704 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3705 * @wb: bdi_writeback in question
3706 * @pfilepages: out parameter for number of file pages
3707 * @pheadroom: out parameter for number of allocatable pages according to memcg
3708 * @pdirty: out parameter for number of dirty pages
3709 * @pwriteback: out parameter for number of pages under writeback
3710 *
3711 * Determine the numbers of file, headroom, dirty, and writeback pages in
3712 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3713 * is a bit more involved.
3714 *
3715 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3716 * headroom is calculated as the lowest headroom of itself and the
3717 * ancestors. Note that this doesn't consider the actual amount of
3718 * available memory in the system. The caller should further cap
3719 * *@pheadroom accordingly.
3720 */
3721 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3722 unsigned long *pheadroom, unsigned long *pdirty,
3723 unsigned long *pwriteback)
3724 {
3725 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3726 struct mem_cgroup *parent;
3727
3728 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3729
3730 /* this should eventually include NR_UNSTABLE_NFS */
3731 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3732 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3733 (1 << LRU_ACTIVE_FILE));
3734 *pheadroom = PAGE_COUNTER_MAX;
3735
3736 while ((parent = parent_mem_cgroup(memcg))) {
3737 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3738 unsigned long used = page_counter_read(&memcg->memory);
3739
3740 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3741 memcg = parent;
3742 }
3743 }
3744
3745 #else /* CONFIG_CGROUP_WRITEBACK */
3746
3747 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3748 {
3749 return 0;
3750 }
3751
3752 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3753 {
3754 }
3755
3756 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3757 {
3758 }
3759
3760 #endif /* CONFIG_CGROUP_WRITEBACK */
3761
3762 /*
3763 * DO NOT USE IN NEW FILES.
3764 *
3765 * "cgroup.event_control" implementation.
3766 *
3767 * This is way over-engineered. It tries to support fully configurable
3768 * events for each user. Such level of flexibility is completely
3769 * unnecessary especially in the light of the planned unified hierarchy.
3770 *
3771 * Please deprecate this and replace with something simpler if at all
3772 * possible.
3773 */
3774
3775 /*
3776 * Unregister event and free resources.
3777 *
3778 * Gets called from workqueue.
3779 */
3780 static void memcg_event_remove(struct work_struct *work)
3781 {
3782 struct mem_cgroup_event *event =
3783 container_of(work, struct mem_cgroup_event, remove);
3784 struct mem_cgroup *memcg = event->memcg;
3785
3786 remove_wait_queue(event->wqh, &event->wait);
3787
3788 event->unregister_event(memcg, event->eventfd);
3789
3790 /* Notify userspace the event is going away. */
3791 eventfd_signal(event->eventfd, 1);
3792
3793 eventfd_ctx_put(event->eventfd);
3794 kfree(event);
3795 css_put(&memcg->css);
3796 }
3797
3798 /*
3799 * Gets called on POLLHUP on eventfd when user closes it.
3800 *
3801 * Called with wqh->lock held and interrupts disabled.
3802 */
3803 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3804 int sync, void *key)
3805 {
3806 struct mem_cgroup_event *event =
3807 container_of(wait, struct mem_cgroup_event, wait);
3808 struct mem_cgroup *memcg = event->memcg;
3809 unsigned long flags = (unsigned long)key;
3810
3811 if (flags & POLLHUP) {
3812 /*
3813 * If the event has been detached at cgroup removal, we
3814 * can simply return knowing the other side will cleanup
3815 * for us.
3816 *
3817 * We can't race against event freeing since the other
3818 * side will require wqh->lock via remove_wait_queue(),
3819 * which we hold.
3820 */
3821 spin_lock(&memcg->event_list_lock);
3822 if (!list_empty(&event->list)) {
3823 list_del_init(&event->list);
3824 /*
3825 * We are in atomic context, but cgroup_event_remove()
3826 * may sleep, so we have to call it in workqueue.
3827 */
3828 schedule_work(&event->remove);
3829 }
3830 spin_unlock(&memcg->event_list_lock);
3831 }
3832
3833 return 0;
3834 }
3835
3836 static void memcg_event_ptable_queue_proc(struct file *file,
3837 wait_queue_head_t *wqh, poll_table *pt)
3838 {
3839 struct mem_cgroup_event *event =
3840 container_of(pt, struct mem_cgroup_event, pt);
3841
3842 event->wqh = wqh;
3843 add_wait_queue(wqh, &event->wait);
3844 }
3845
3846 /*
3847 * DO NOT USE IN NEW FILES.
3848 *
3849 * Parse input and register new cgroup event handler.
3850 *
3851 * Input must be in format '<event_fd> <control_fd> <args>'.
3852 * Interpretation of args is defined by control file implementation.
3853 */
3854 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3855 char *buf, size_t nbytes, loff_t off)
3856 {
3857 struct cgroup_subsys_state *css = of_css(of);
3858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3859 struct mem_cgroup_event *event;
3860 struct cgroup_subsys_state *cfile_css;
3861 unsigned int efd, cfd;
3862 struct fd efile;
3863 struct fd cfile;
3864 const char *name;
3865 char *endp;
3866 int ret;
3867
3868 buf = strstrip(buf);
3869
3870 efd = simple_strtoul(buf, &endp, 10);
3871 if (*endp != ' ')
3872 return -EINVAL;
3873 buf = endp + 1;
3874
3875 cfd = simple_strtoul(buf, &endp, 10);
3876 if ((*endp != ' ') && (*endp != '\0'))
3877 return -EINVAL;
3878 buf = endp + 1;
3879
3880 event = kzalloc(sizeof(*event), GFP_KERNEL);
3881 if (!event)
3882 return -ENOMEM;
3883
3884 event->memcg = memcg;
3885 INIT_LIST_HEAD(&event->list);
3886 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3887 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3888 INIT_WORK(&event->remove, memcg_event_remove);
3889
3890 efile = fdget(efd);
3891 if (!efile.file) {
3892 ret = -EBADF;
3893 goto out_kfree;
3894 }
3895
3896 event->eventfd = eventfd_ctx_fileget(efile.file);
3897 if (IS_ERR(event->eventfd)) {
3898 ret = PTR_ERR(event->eventfd);
3899 goto out_put_efile;
3900 }
3901
3902 cfile = fdget(cfd);
3903 if (!cfile.file) {
3904 ret = -EBADF;
3905 goto out_put_eventfd;
3906 }
3907
3908 /* the process need read permission on control file */
3909 /* AV: shouldn't we check that it's been opened for read instead? */
3910 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3911 if (ret < 0)
3912 goto out_put_cfile;
3913
3914 /*
3915 * Determine the event callbacks and set them in @event. This used
3916 * to be done via struct cftype but cgroup core no longer knows
3917 * about these events. The following is crude but the whole thing
3918 * is for compatibility anyway.
3919 *
3920 * DO NOT ADD NEW FILES.
3921 */
3922 name = cfile.file->f_path.dentry->d_name.name;
3923
3924 if (!strcmp(name, "memory.usage_in_bytes")) {
3925 event->register_event = mem_cgroup_usage_register_event;
3926 event->unregister_event = mem_cgroup_usage_unregister_event;
3927 } else if (!strcmp(name, "memory.oom_control")) {
3928 event->register_event = mem_cgroup_oom_register_event;
3929 event->unregister_event = mem_cgroup_oom_unregister_event;
3930 } else if (!strcmp(name, "memory.pressure_level")) {
3931 event->register_event = vmpressure_register_event;
3932 event->unregister_event = vmpressure_unregister_event;
3933 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3934 event->register_event = memsw_cgroup_usage_register_event;
3935 event->unregister_event = memsw_cgroup_usage_unregister_event;
3936 } else {
3937 ret = -EINVAL;
3938 goto out_put_cfile;
3939 }
3940
3941 /*
3942 * Verify @cfile should belong to @css. Also, remaining events are
3943 * automatically removed on cgroup destruction but the removal is
3944 * asynchronous, so take an extra ref on @css.
3945 */
3946 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3947 &memory_cgrp_subsys);
3948 ret = -EINVAL;
3949 if (IS_ERR(cfile_css))
3950 goto out_put_cfile;
3951 if (cfile_css != css) {
3952 css_put(cfile_css);
3953 goto out_put_cfile;
3954 }
3955
3956 ret = event->register_event(memcg, event->eventfd, buf);
3957 if (ret)
3958 goto out_put_css;
3959
3960 efile.file->f_op->poll(efile.file, &event->pt);
3961
3962 spin_lock(&memcg->event_list_lock);
3963 list_add(&event->list, &memcg->event_list);
3964 spin_unlock(&memcg->event_list_lock);
3965
3966 fdput(cfile);
3967 fdput(efile);
3968
3969 return nbytes;
3970
3971 out_put_css:
3972 css_put(css);
3973 out_put_cfile:
3974 fdput(cfile);
3975 out_put_eventfd:
3976 eventfd_ctx_put(event->eventfd);
3977 out_put_efile:
3978 fdput(efile);
3979 out_kfree:
3980 kfree(event);
3981
3982 return ret;
3983 }
3984
3985 static struct cftype mem_cgroup_legacy_files[] = {
3986 {
3987 .name = "usage_in_bytes",
3988 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "max_usage_in_bytes",
3993 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3994 .write = mem_cgroup_reset,
3995 .read_u64 = mem_cgroup_read_u64,
3996 },
3997 {
3998 .name = "limit_in_bytes",
3999 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4000 .write = mem_cgroup_write,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003 {
4004 .name = "soft_limit_in_bytes",
4005 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4006 .write = mem_cgroup_write,
4007 .read_u64 = mem_cgroup_read_u64,
4008 },
4009 {
4010 .name = "failcnt",
4011 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4012 .write = mem_cgroup_reset,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "stat",
4017 .seq_show = memcg_stat_show,
4018 },
4019 {
4020 .name = "force_empty",
4021 .write = mem_cgroup_force_empty_write,
4022 },
4023 {
4024 .name = "use_hierarchy",
4025 .write_u64 = mem_cgroup_hierarchy_write,
4026 .read_u64 = mem_cgroup_hierarchy_read,
4027 },
4028 {
4029 .name = "cgroup.event_control", /* XXX: for compat */
4030 .write = memcg_write_event_control,
4031 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4032 },
4033 {
4034 .name = "swappiness",
4035 .read_u64 = mem_cgroup_swappiness_read,
4036 .write_u64 = mem_cgroup_swappiness_write,
4037 },
4038 {
4039 .name = "move_charge_at_immigrate",
4040 .read_u64 = mem_cgroup_move_charge_read,
4041 .write_u64 = mem_cgroup_move_charge_write,
4042 },
4043 {
4044 .name = "oom_control",
4045 .seq_show = mem_cgroup_oom_control_read,
4046 .write_u64 = mem_cgroup_oom_control_write,
4047 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4048 },
4049 {
4050 .name = "pressure_level",
4051 },
4052 #ifdef CONFIG_NUMA
4053 {
4054 .name = "numa_stat",
4055 .seq_show = memcg_numa_stat_show,
4056 },
4057 #endif
4058 #ifdef CONFIG_MEMCG_KMEM
4059 {
4060 .name = "kmem.limit_in_bytes",
4061 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4062 .write = mem_cgroup_write,
4063 .read_u64 = mem_cgroup_read_u64,
4064 },
4065 {
4066 .name = "kmem.usage_in_bytes",
4067 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4068 .read_u64 = mem_cgroup_read_u64,
4069 },
4070 {
4071 .name = "kmem.failcnt",
4072 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4073 .write = mem_cgroup_reset,
4074 .read_u64 = mem_cgroup_read_u64,
4075 },
4076 {
4077 .name = "kmem.max_usage_in_bytes",
4078 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4079 .write = mem_cgroup_reset,
4080 .read_u64 = mem_cgroup_read_u64,
4081 },
4082 #ifdef CONFIG_SLABINFO
4083 {
4084 .name = "kmem.slabinfo",
4085 .seq_start = slab_start,
4086 .seq_next = slab_next,
4087 .seq_stop = slab_stop,
4088 .seq_show = memcg_slab_show,
4089 },
4090 #endif
4091 #endif
4092 { }, /* terminate */
4093 };
4094
4095 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4096 {
4097 struct mem_cgroup_per_node *pn;
4098 struct mem_cgroup_per_zone *mz;
4099 int zone, tmp = node;
4100 /*
4101 * This routine is called against possible nodes.
4102 * But it's BUG to call kmalloc() against offline node.
4103 *
4104 * TODO: this routine can waste much memory for nodes which will
4105 * never be onlined. It's better to use memory hotplug callback
4106 * function.
4107 */
4108 if (!node_state(node, N_NORMAL_MEMORY))
4109 tmp = -1;
4110 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4111 if (!pn)
4112 return 1;
4113
4114 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4115 mz = &pn->zoneinfo[zone];
4116 lruvec_init(&mz->lruvec);
4117 mz->usage_in_excess = 0;
4118 mz->on_tree = false;
4119 mz->memcg = memcg;
4120 }
4121 memcg->nodeinfo[node] = pn;
4122 return 0;
4123 }
4124
4125 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4126 {
4127 kfree(memcg->nodeinfo[node]);
4128 }
4129
4130 static struct mem_cgroup *mem_cgroup_alloc(void)
4131 {
4132 struct mem_cgroup *memcg;
4133 size_t size;
4134
4135 size = sizeof(struct mem_cgroup);
4136 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4137
4138 memcg = kzalloc(size, GFP_KERNEL);
4139 if (!memcg)
4140 return NULL;
4141
4142 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4143 if (!memcg->stat)
4144 goto out_free;
4145
4146 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4147 goto out_free_stat;
4148
4149 return memcg;
4150
4151 out_free_stat:
4152 free_percpu(memcg->stat);
4153 out_free:
4154 kfree(memcg);
4155 return NULL;
4156 }
4157
4158 /*
4159 * At destroying mem_cgroup, references from swap_cgroup can remain.
4160 * (scanning all at force_empty is too costly...)
4161 *
4162 * Instead of clearing all references at force_empty, we remember
4163 * the number of reference from swap_cgroup and free mem_cgroup when
4164 * it goes down to 0.
4165 *
4166 * Removal of cgroup itself succeeds regardless of refs from swap.
4167 */
4168
4169 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4170 {
4171 int node;
4172
4173 cancel_work_sync(&memcg->high_work);
4174
4175 mem_cgroup_remove_from_trees(memcg);
4176
4177 for_each_node(node)
4178 free_mem_cgroup_per_zone_info(memcg, node);
4179
4180 free_percpu(memcg->stat);
4181 memcg_wb_domain_exit(memcg);
4182 kfree(memcg);
4183 }
4184
4185 static struct cgroup_subsys_state * __ref
4186 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4187 {
4188 struct mem_cgroup *memcg;
4189 long error = -ENOMEM;
4190 int node;
4191
4192 memcg = mem_cgroup_alloc();
4193 if (!memcg)
4194 return ERR_PTR(error);
4195
4196 for_each_node(node)
4197 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4198 goto free_out;
4199
4200 /* root ? */
4201 if (parent_css == NULL) {
4202 root_mem_cgroup = memcg;
4203 page_counter_init(&memcg->memory, NULL);
4204 memcg->high = PAGE_COUNTER_MAX;
4205 memcg->soft_limit = PAGE_COUNTER_MAX;
4206 page_counter_init(&memcg->memsw, NULL);
4207 page_counter_init(&memcg->kmem, NULL);
4208 }
4209
4210 INIT_WORK(&memcg->high_work, high_work_func);
4211 memcg->last_scanned_node = MAX_NUMNODES;
4212 INIT_LIST_HEAD(&memcg->oom_notify);
4213 memcg->move_charge_at_immigrate = 0;
4214 mutex_init(&memcg->thresholds_lock);
4215 spin_lock_init(&memcg->move_lock);
4216 vmpressure_init(&memcg->vmpressure);
4217 INIT_LIST_HEAD(&memcg->event_list);
4218 spin_lock_init(&memcg->event_list_lock);
4219 #ifdef CONFIG_MEMCG_KMEM
4220 memcg->kmemcg_id = -1;
4221 #endif
4222 #ifdef CONFIG_CGROUP_WRITEBACK
4223 INIT_LIST_HEAD(&memcg->cgwb_list);
4224 #endif
4225 #ifdef CONFIG_INET
4226 memcg->socket_pressure = jiffies;
4227 #endif
4228 return &memcg->css;
4229
4230 free_out:
4231 __mem_cgroup_free(memcg);
4232 return ERR_PTR(error);
4233 }
4234
4235 static int
4236 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4237 {
4238 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4239 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4240 int ret;
4241
4242 if (css->id > MEM_CGROUP_ID_MAX)
4243 return -ENOSPC;
4244
4245 if (!parent)
4246 return 0;
4247
4248 mutex_lock(&memcg_create_mutex);
4249
4250 memcg->use_hierarchy = parent->use_hierarchy;
4251 memcg->oom_kill_disable = parent->oom_kill_disable;
4252 memcg->swappiness = mem_cgroup_swappiness(parent);
4253
4254 if (parent->use_hierarchy) {
4255 page_counter_init(&memcg->memory, &parent->memory);
4256 memcg->high = PAGE_COUNTER_MAX;
4257 memcg->soft_limit = PAGE_COUNTER_MAX;
4258 page_counter_init(&memcg->memsw, &parent->memsw);
4259 page_counter_init(&memcg->kmem, &parent->kmem);
4260
4261 /*
4262 * No need to take a reference to the parent because cgroup
4263 * core guarantees its existence.
4264 */
4265 } else {
4266 page_counter_init(&memcg->memory, NULL);
4267 memcg->high = PAGE_COUNTER_MAX;
4268 memcg->soft_limit = PAGE_COUNTER_MAX;
4269 page_counter_init(&memcg->memsw, NULL);
4270 page_counter_init(&memcg->kmem, NULL);
4271 /*
4272 * Deeper hierachy with use_hierarchy == false doesn't make
4273 * much sense so let cgroup subsystem know about this
4274 * unfortunate state in our controller.
4275 */
4276 if (parent != root_mem_cgroup)
4277 memory_cgrp_subsys.broken_hierarchy = true;
4278 }
4279 mutex_unlock(&memcg_create_mutex);
4280
4281 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4282 if (ret)
4283 return ret;
4284
4285 #ifdef CONFIG_INET
4286 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4287 static_branch_inc(&memcg_sockets_enabled_key);
4288 #endif
4289
4290 /*
4291 * Make sure the memcg is initialized: mem_cgroup_iter()
4292 * orders reading memcg->initialized against its callers
4293 * reading the memcg members.
4294 */
4295 smp_store_release(&memcg->initialized, 1);
4296
4297 return 0;
4298 }
4299
4300 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4301 {
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303 struct mem_cgroup_event *event, *tmp;
4304
4305 /*
4306 * Unregister events and notify userspace.
4307 * Notify userspace about cgroup removing only after rmdir of cgroup
4308 * directory to avoid race between userspace and kernelspace.
4309 */
4310 spin_lock(&memcg->event_list_lock);
4311 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4312 list_del_init(&event->list);
4313 schedule_work(&event->remove);
4314 }
4315 spin_unlock(&memcg->event_list_lock);
4316
4317 vmpressure_cleanup(&memcg->vmpressure);
4318
4319 memcg_deactivate_kmem(memcg);
4320
4321 wb_memcg_offline(memcg);
4322 }
4323
4324 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4325 {
4326 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4327
4328 invalidate_reclaim_iterators(memcg);
4329 }
4330
4331 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4332 {
4333 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4334
4335 memcg_destroy_kmem(memcg);
4336 #ifdef CONFIG_INET
4337 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4338 static_branch_dec(&memcg_sockets_enabled_key);
4339 #endif
4340 __mem_cgroup_free(memcg);
4341 }
4342
4343 /**
4344 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4345 * @css: the target css
4346 *
4347 * Reset the states of the mem_cgroup associated with @css. This is
4348 * invoked when the userland requests disabling on the default hierarchy
4349 * but the memcg is pinned through dependency. The memcg should stop
4350 * applying policies and should revert to the vanilla state as it may be
4351 * made visible again.
4352 *
4353 * The current implementation only resets the essential configurations.
4354 * This needs to be expanded to cover all the visible parts.
4355 */
4356 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4357 {
4358 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4359
4360 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4361 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4362 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4363 memcg->low = 0;
4364 memcg->high = PAGE_COUNTER_MAX;
4365 memcg->soft_limit = PAGE_COUNTER_MAX;
4366 memcg_wb_domain_size_changed(memcg);
4367 }
4368
4369 #ifdef CONFIG_MMU
4370 /* Handlers for move charge at task migration. */
4371 static int mem_cgroup_do_precharge(unsigned long count)
4372 {
4373 int ret;
4374
4375 /* Try a single bulk charge without reclaim first, kswapd may wake */
4376 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4377 if (!ret) {
4378 mc.precharge += count;
4379 return ret;
4380 }
4381
4382 /* Try charges one by one with reclaim */
4383 while (count--) {
4384 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4385 if (ret)
4386 return ret;
4387 mc.precharge++;
4388 cond_resched();
4389 }
4390 return 0;
4391 }
4392
4393 /**
4394 * get_mctgt_type - get target type of moving charge
4395 * @vma: the vma the pte to be checked belongs
4396 * @addr: the address corresponding to the pte to be checked
4397 * @ptent: the pte to be checked
4398 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4399 *
4400 * Returns
4401 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4402 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4403 * move charge. if @target is not NULL, the page is stored in target->page
4404 * with extra refcnt got(Callers should handle it).
4405 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4406 * target for charge migration. if @target is not NULL, the entry is stored
4407 * in target->ent.
4408 *
4409 * Called with pte lock held.
4410 */
4411 union mc_target {
4412 struct page *page;
4413 swp_entry_t ent;
4414 };
4415
4416 enum mc_target_type {
4417 MC_TARGET_NONE = 0,
4418 MC_TARGET_PAGE,
4419 MC_TARGET_SWAP,
4420 };
4421
4422 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4423 unsigned long addr, pte_t ptent)
4424 {
4425 struct page *page = vm_normal_page(vma, addr, ptent);
4426
4427 if (!page || !page_mapped(page))
4428 return NULL;
4429 if (PageAnon(page)) {
4430 if (!(mc.flags & MOVE_ANON))
4431 return NULL;
4432 } else {
4433 if (!(mc.flags & MOVE_FILE))
4434 return NULL;
4435 }
4436 if (!get_page_unless_zero(page))
4437 return NULL;
4438
4439 return page;
4440 }
4441
4442 #ifdef CONFIG_SWAP
4443 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4444 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4445 {
4446 struct page *page = NULL;
4447 swp_entry_t ent = pte_to_swp_entry(ptent);
4448
4449 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4450 return NULL;
4451 /*
4452 * Because lookup_swap_cache() updates some statistics counter,
4453 * we call find_get_page() with swapper_space directly.
4454 */
4455 page = find_get_page(swap_address_space(ent), ent.val);
4456 if (do_memsw_account())
4457 entry->val = ent.val;
4458
4459 return page;
4460 }
4461 #else
4462 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4463 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4464 {
4465 return NULL;
4466 }
4467 #endif
4468
4469 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4470 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4471 {
4472 struct page *page = NULL;
4473 struct address_space *mapping;
4474 pgoff_t pgoff;
4475
4476 if (!vma->vm_file) /* anonymous vma */
4477 return NULL;
4478 if (!(mc.flags & MOVE_FILE))
4479 return NULL;
4480
4481 mapping = vma->vm_file->f_mapping;
4482 pgoff = linear_page_index(vma, addr);
4483
4484 /* page is moved even if it's not RSS of this task(page-faulted). */
4485 #ifdef CONFIG_SWAP
4486 /* shmem/tmpfs may report page out on swap: account for that too. */
4487 if (shmem_mapping(mapping)) {
4488 page = find_get_entry(mapping, pgoff);
4489 if (radix_tree_exceptional_entry(page)) {
4490 swp_entry_t swp = radix_to_swp_entry(page);
4491 if (do_memsw_account())
4492 *entry = swp;
4493 page = find_get_page(swap_address_space(swp), swp.val);
4494 }
4495 } else
4496 page = find_get_page(mapping, pgoff);
4497 #else
4498 page = find_get_page(mapping, pgoff);
4499 #endif
4500 return page;
4501 }
4502
4503 /**
4504 * mem_cgroup_move_account - move account of the page
4505 * @page: the page
4506 * @nr_pages: number of regular pages (>1 for huge pages)
4507 * @from: mem_cgroup which the page is moved from.
4508 * @to: mem_cgroup which the page is moved to. @from != @to.
4509 *
4510 * The caller must confirm following.
4511 * - page is not on LRU (isolate_page() is useful.)
4512 * - compound_lock is held when nr_pages > 1
4513 *
4514 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4515 * from old cgroup.
4516 */
4517 static int mem_cgroup_move_account(struct page *page,
4518 bool compound,
4519 struct mem_cgroup *from,
4520 struct mem_cgroup *to)
4521 {
4522 unsigned long flags;
4523 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4524 int ret;
4525 bool anon;
4526
4527 VM_BUG_ON(from == to);
4528 VM_BUG_ON_PAGE(PageLRU(page), page);
4529 VM_BUG_ON(compound && !PageTransHuge(page));
4530
4531 /*
4532 * Prevent mem_cgroup_replace_page() from looking at
4533 * page->mem_cgroup of its source page while we change it.
4534 */
4535 ret = -EBUSY;
4536 if (!trylock_page(page))
4537 goto out;
4538
4539 ret = -EINVAL;
4540 if (page->mem_cgroup != from)
4541 goto out_unlock;
4542
4543 anon = PageAnon(page);
4544
4545 spin_lock_irqsave(&from->move_lock, flags);
4546
4547 if (!anon && page_mapped(page)) {
4548 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4549 nr_pages);
4550 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4551 nr_pages);
4552 }
4553
4554 /*
4555 * move_lock grabbed above and caller set from->moving_account, so
4556 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4557 * So mapping should be stable for dirty pages.
4558 */
4559 if (!anon && PageDirty(page)) {
4560 struct address_space *mapping = page_mapping(page);
4561
4562 if (mapping_cap_account_dirty(mapping)) {
4563 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4564 nr_pages);
4565 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4566 nr_pages);
4567 }
4568 }
4569
4570 if (PageWriteback(page)) {
4571 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4572 nr_pages);
4573 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4574 nr_pages);
4575 }
4576
4577 /*
4578 * It is safe to change page->mem_cgroup here because the page
4579 * is referenced, charged, and isolated - we can't race with
4580 * uncharging, charging, migration, or LRU putback.
4581 */
4582
4583 /* caller should have done css_get */
4584 page->mem_cgroup = to;
4585 spin_unlock_irqrestore(&from->move_lock, flags);
4586
4587 ret = 0;
4588
4589 local_irq_disable();
4590 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4591 memcg_check_events(to, page);
4592 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4593 memcg_check_events(from, page);
4594 local_irq_enable();
4595 out_unlock:
4596 unlock_page(page);
4597 out:
4598 return ret;
4599 }
4600
4601 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4602 unsigned long addr, pte_t ptent, union mc_target *target)
4603 {
4604 struct page *page = NULL;
4605 enum mc_target_type ret = MC_TARGET_NONE;
4606 swp_entry_t ent = { .val = 0 };
4607
4608 if (pte_present(ptent))
4609 page = mc_handle_present_pte(vma, addr, ptent);
4610 else if (is_swap_pte(ptent))
4611 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4612 else if (pte_none(ptent))
4613 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4614
4615 if (!page && !ent.val)
4616 return ret;
4617 if (page) {
4618 /*
4619 * Do only loose check w/o serialization.
4620 * mem_cgroup_move_account() checks the page is valid or
4621 * not under LRU exclusion.
4622 */
4623 if (page->mem_cgroup == mc.from) {
4624 ret = MC_TARGET_PAGE;
4625 if (target)
4626 target->page = page;
4627 }
4628 if (!ret || !target)
4629 put_page(page);
4630 }
4631 /* There is a swap entry and a page doesn't exist or isn't charged */
4632 if (ent.val && !ret &&
4633 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4634 ret = MC_TARGET_SWAP;
4635 if (target)
4636 target->ent = ent;
4637 }
4638 return ret;
4639 }
4640
4641 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4642 /*
4643 * We don't consider swapping or file mapped pages because THP does not
4644 * support them for now.
4645 * Caller should make sure that pmd_trans_huge(pmd) is true.
4646 */
4647 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4648 unsigned long addr, pmd_t pmd, union mc_target *target)
4649 {
4650 struct page *page = NULL;
4651 enum mc_target_type ret = MC_TARGET_NONE;
4652
4653 page = pmd_page(pmd);
4654 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4655 if (!(mc.flags & MOVE_ANON))
4656 return ret;
4657 if (page->mem_cgroup == mc.from) {
4658 ret = MC_TARGET_PAGE;
4659 if (target) {
4660 get_page(page);
4661 target->page = page;
4662 }
4663 }
4664 return ret;
4665 }
4666 #else
4667 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4668 unsigned long addr, pmd_t pmd, union mc_target *target)
4669 {
4670 return MC_TARGET_NONE;
4671 }
4672 #endif
4673
4674 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4675 unsigned long addr, unsigned long end,
4676 struct mm_walk *walk)
4677 {
4678 struct vm_area_struct *vma = walk->vma;
4679 pte_t *pte;
4680 spinlock_t *ptl;
4681
4682 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4683 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4684 mc.precharge += HPAGE_PMD_NR;
4685 spin_unlock(ptl);
4686 return 0;
4687 }
4688
4689 if (pmd_trans_unstable(pmd))
4690 return 0;
4691 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4692 for (; addr != end; pte++, addr += PAGE_SIZE)
4693 if (get_mctgt_type(vma, addr, *pte, NULL))
4694 mc.precharge++; /* increment precharge temporarily */
4695 pte_unmap_unlock(pte - 1, ptl);
4696 cond_resched();
4697
4698 return 0;
4699 }
4700
4701 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4702 {
4703 unsigned long precharge;
4704
4705 struct mm_walk mem_cgroup_count_precharge_walk = {
4706 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4707 .mm = mm,
4708 };
4709 down_read(&mm->mmap_sem);
4710 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4711 up_read(&mm->mmap_sem);
4712
4713 precharge = mc.precharge;
4714 mc.precharge = 0;
4715
4716 return precharge;
4717 }
4718
4719 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4720 {
4721 unsigned long precharge = mem_cgroup_count_precharge(mm);
4722
4723 VM_BUG_ON(mc.moving_task);
4724 mc.moving_task = current;
4725 return mem_cgroup_do_precharge(precharge);
4726 }
4727
4728 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4729 static void __mem_cgroup_clear_mc(void)
4730 {
4731 struct mem_cgroup *from = mc.from;
4732 struct mem_cgroup *to = mc.to;
4733
4734 /* we must uncharge all the leftover precharges from mc.to */
4735 if (mc.precharge) {
4736 cancel_charge(mc.to, mc.precharge);
4737 mc.precharge = 0;
4738 }
4739 /*
4740 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4741 * we must uncharge here.
4742 */
4743 if (mc.moved_charge) {
4744 cancel_charge(mc.from, mc.moved_charge);
4745 mc.moved_charge = 0;
4746 }
4747 /* we must fixup refcnts and charges */
4748 if (mc.moved_swap) {
4749 /* uncharge swap account from the old cgroup */
4750 if (!mem_cgroup_is_root(mc.from))
4751 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4752
4753 /*
4754 * we charged both to->memory and to->memsw, so we
4755 * should uncharge to->memory.
4756 */
4757 if (!mem_cgroup_is_root(mc.to))
4758 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4759
4760 css_put_many(&mc.from->css, mc.moved_swap);
4761
4762 /* we've already done css_get(mc.to) */
4763 mc.moved_swap = 0;
4764 }
4765 memcg_oom_recover(from);
4766 memcg_oom_recover(to);
4767 wake_up_all(&mc.waitq);
4768 }
4769
4770 static void mem_cgroup_clear_mc(void)
4771 {
4772 /*
4773 * we must clear moving_task before waking up waiters at the end of
4774 * task migration.
4775 */
4776 mc.moving_task = NULL;
4777 __mem_cgroup_clear_mc();
4778 spin_lock(&mc.lock);
4779 mc.from = NULL;
4780 mc.to = NULL;
4781 spin_unlock(&mc.lock);
4782 }
4783
4784 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4785 {
4786 struct cgroup_subsys_state *css;
4787 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4788 struct mem_cgroup *from;
4789 struct task_struct *leader, *p;
4790 struct mm_struct *mm;
4791 unsigned long move_flags;
4792 int ret = 0;
4793
4794 /* charge immigration isn't supported on the default hierarchy */
4795 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4796 return 0;
4797
4798 /*
4799 * Multi-process migrations only happen on the default hierarchy
4800 * where charge immigration is not used. Perform charge
4801 * immigration if @tset contains a leader and whine if there are
4802 * multiple.
4803 */
4804 p = NULL;
4805 cgroup_taskset_for_each_leader(leader, css, tset) {
4806 WARN_ON_ONCE(p);
4807 p = leader;
4808 memcg = mem_cgroup_from_css(css);
4809 }
4810 if (!p)
4811 return 0;
4812
4813 /*
4814 * We are now commited to this value whatever it is. Changes in this
4815 * tunable will only affect upcoming migrations, not the current one.
4816 * So we need to save it, and keep it going.
4817 */
4818 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4819 if (!move_flags)
4820 return 0;
4821
4822 from = mem_cgroup_from_task(p);
4823
4824 VM_BUG_ON(from == memcg);
4825
4826 mm = get_task_mm(p);
4827 if (!mm)
4828 return 0;
4829 /* We move charges only when we move a owner of the mm */
4830 if (mm->owner == p) {
4831 VM_BUG_ON(mc.from);
4832 VM_BUG_ON(mc.to);
4833 VM_BUG_ON(mc.precharge);
4834 VM_BUG_ON(mc.moved_charge);
4835 VM_BUG_ON(mc.moved_swap);
4836
4837 spin_lock(&mc.lock);
4838 mc.from = from;
4839 mc.to = memcg;
4840 mc.flags = move_flags;
4841 spin_unlock(&mc.lock);
4842 /* We set mc.moving_task later */
4843
4844 ret = mem_cgroup_precharge_mc(mm);
4845 if (ret)
4846 mem_cgroup_clear_mc();
4847 }
4848 mmput(mm);
4849 return ret;
4850 }
4851
4852 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4853 {
4854 if (mc.to)
4855 mem_cgroup_clear_mc();
4856 }
4857
4858 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4859 unsigned long addr, unsigned long end,
4860 struct mm_walk *walk)
4861 {
4862 int ret = 0;
4863 struct vm_area_struct *vma = walk->vma;
4864 pte_t *pte;
4865 spinlock_t *ptl;
4866 enum mc_target_type target_type;
4867 union mc_target target;
4868 struct page *page;
4869
4870 /*
4871 * We don't take compound_lock() here but no race with splitting thp
4872 * happens because:
4873 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
4874 * under splitting, which means there's no concurrent thp split,
4875 * - if another thread runs into split_huge_page() just after we
4876 * entered this if-block, the thread must wait for page table lock
4877 * to be unlocked in __split_huge_page_splitting(), where the main
4878 * part of thp split is not executed yet.
4879 */
4880 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4881 if (mc.precharge < HPAGE_PMD_NR) {
4882 spin_unlock(ptl);
4883 return 0;
4884 }
4885 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4886 if (target_type == MC_TARGET_PAGE) {
4887 page = target.page;
4888 if (!isolate_lru_page(page)) {
4889 if (!mem_cgroup_move_account(page, true,
4890 mc.from, mc.to)) {
4891 mc.precharge -= HPAGE_PMD_NR;
4892 mc.moved_charge += HPAGE_PMD_NR;
4893 }
4894 putback_lru_page(page);
4895 }
4896 put_page(page);
4897 }
4898 spin_unlock(ptl);
4899 return 0;
4900 }
4901
4902 if (pmd_trans_unstable(pmd))
4903 return 0;
4904 retry:
4905 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4906 for (; addr != end; addr += PAGE_SIZE) {
4907 pte_t ptent = *(pte++);
4908 swp_entry_t ent;
4909
4910 if (!mc.precharge)
4911 break;
4912
4913 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4914 case MC_TARGET_PAGE:
4915 page = target.page;
4916 if (isolate_lru_page(page))
4917 goto put;
4918 if (!mem_cgroup_move_account(page, false,
4919 mc.from, mc.to)) {
4920 mc.precharge--;
4921 /* we uncharge from mc.from later. */
4922 mc.moved_charge++;
4923 }
4924 putback_lru_page(page);
4925 put: /* get_mctgt_type() gets the page */
4926 put_page(page);
4927 break;
4928 case MC_TARGET_SWAP:
4929 ent = target.ent;
4930 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4931 mc.precharge--;
4932 /* we fixup refcnts and charges later. */
4933 mc.moved_swap++;
4934 }
4935 break;
4936 default:
4937 break;
4938 }
4939 }
4940 pte_unmap_unlock(pte - 1, ptl);
4941 cond_resched();
4942
4943 if (addr != end) {
4944 /*
4945 * We have consumed all precharges we got in can_attach().
4946 * We try charge one by one, but don't do any additional
4947 * charges to mc.to if we have failed in charge once in attach()
4948 * phase.
4949 */
4950 ret = mem_cgroup_do_precharge(1);
4951 if (!ret)
4952 goto retry;
4953 }
4954
4955 return ret;
4956 }
4957
4958 static void mem_cgroup_move_charge(struct mm_struct *mm)
4959 {
4960 struct mm_walk mem_cgroup_move_charge_walk = {
4961 .pmd_entry = mem_cgroup_move_charge_pte_range,
4962 .mm = mm,
4963 };
4964
4965 lru_add_drain_all();
4966 /*
4967 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4968 * move_lock while we're moving its pages to another memcg.
4969 * Then wait for already started RCU-only updates to finish.
4970 */
4971 atomic_inc(&mc.from->moving_account);
4972 synchronize_rcu();
4973 retry:
4974 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4975 /*
4976 * Someone who are holding the mmap_sem might be waiting in
4977 * waitq. So we cancel all extra charges, wake up all waiters,
4978 * and retry. Because we cancel precharges, we might not be able
4979 * to move enough charges, but moving charge is a best-effort
4980 * feature anyway, so it wouldn't be a big problem.
4981 */
4982 __mem_cgroup_clear_mc();
4983 cond_resched();
4984 goto retry;
4985 }
4986 /*
4987 * When we have consumed all precharges and failed in doing
4988 * additional charge, the page walk just aborts.
4989 */
4990 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4991 up_read(&mm->mmap_sem);
4992 atomic_dec(&mc.from->moving_account);
4993 }
4994
4995 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
4996 {
4997 struct cgroup_subsys_state *css;
4998 struct task_struct *p = cgroup_taskset_first(tset, &css);
4999 struct mm_struct *mm = get_task_mm(p);
5000
5001 if (mm) {
5002 if (mc.to)
5003 mem_cgroup_move_charge(mm);
5004 mmput(mm);
5005 }
5006 if (mc.to)
5007 mem_cgroup_clear_mc();
5008 }
5009 #else /* !CONFIG_MMU */
5010 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5011 {
5012 return 0;
5013 }
5014 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5015 {
5016 }
5017 static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5018 {
5019 }
5020 #endif
5021
5022 /*
5023 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5024 * to verify whether we're attached to the default hierarchy on each mount
5025 * attempt.
5026 */
5027 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5028 {
5029 /*
5030 * use_hierarchy is forced on the default hierarchy. cgroup core
5031 * guarantees that @root doesn't have any children, so turning it
5032 * on for the root memcg is enough.
5033 */
5034 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5035 root_mem_cgroup->use_hierarchy = true;
5036 else
5037 root_mem_cgroup->use_hierarchy = false;
5038 }
5039
5040 static u64 memory_current_read(struct cgroup_subsys_state *css,
5041 struct cftype *cft)
5042 {
5043 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5044
5045 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5046 }
5047
5048 static int memory_low_show(struct seq_file *m, void *v)
5049 {
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5051 unsigned long low = READ_ONCE(memcg->low);
5052
5053 if (low == PAGE_COUNTER_MAX)
5054 seq_puts(m, "max\n");
5055 else
5056 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5057
5058 return 0;
5059 }
5060
5061 static ssize_t memory_low_write(struct kernfs_open_file *of,
5062 char *buf, size_t nbytes, loff_t off)
5063 {
5064 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5065 unsigned long low;
5066 int err;
5067
5068 buf = strstrip(buf);
5069 err = page_counter_memparse(buf, "max", &low);
5070 if (err)
5071 return err;
5072
5073 memcg->low = low;
5074
5075 return nbytes;
5076 }
5077
5078 static int memory_high_show(struct seq_file *m, void *v)
5079 {
5080 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5081 unsigned long high = READ_ONCE(memcg->high);
5082
5083 if (high == PAGE_COUNTER_MAX)
5084 seq_puts(m, "max\n");
5085 else
5086 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5087
5088 return 0;
5089 }
5090
5091 static ssize_t memory_high_write(struct kernfs_open_file *of,
5092 char *buf, size_t nbytes, loff_t off)
5093 {
5094 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5095 unsigned long high;
5096 int err;
5097
5098 buf = strstrip(buf);
5099 err = page_counter_memparse(buf, "max", &high);
5100 if (err)
5101 return err;
5102
5103 memcg->high = high;
5104
5105 memcg_wb_domain_size_changed(memcg);
5106 return nbytes;
5107 }
5108
5109 static int memory_max_show(struct seq_file *m, void *v)
5110 {
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5112 unsigned long max = READ_ONCE(memcg->memory.limit);
5113
5114 if (max == PAGE_COUNTER_MAX)
5115 seq_puts(m, "max\n");
5116 else
5117 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5118
5119 return 0;
5120 }
5121
5122 static ssize_t memory_max_write(struct kernfs_open_file *of,
5123 char *buf, size_t nbytes, loff_t off)
5124 {
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5126 unsigned long max;
5127 int err;
5128
5129 buf = strstrip(buf);
5130 err = page_counter_memparse(buf, "max", &max);
5131 if (err)
5132 return err;
5133
5134 err = mem_cgroup_resize_limit(memcg, max);
5135 if (err)
5136 return err;
5137
5138 memcg_wb_domain_size_changed(memcg);
5139 return nbytes;
5140 }
5141
5142 static int memory_events_show(struct seq_file *m, void *v)
5143 {
5144 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5145
5146 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5147 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5148 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5149 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5150
5151 return 0;
5152 }
5153
5154 static struct cftype memory_files[] = {
5155 {
5156 .name = "current",
5157 .flags = CFTYPE_NOT_ON_ROOT,
5158 .read_u64 = memory_current_read,
5159 },
5160 {
5161 .name = "low",
5162 .flags = CFTYPE_NOT_ON_ROOT,
5163 .seq_show = memory_low_show,
5164 .write = memory_low_write,
5165 },
5166 {
5167 .name = "high",
5168 .flags = CFTYPE_NOT_ON_ROOT,
5169 .seq_show = memory_high_show,
5170 .write = memory_high_write,
5171 },
5172 {
5173 .name = "max",
5174 .flags = CFTYPE_NOT_ON_ROOT,
5175 .seq_show = memory_max_show,
5176 .write = memory_max_write,
5177 },
5178 {
5179 .name = "events",
5180 .flags = CFTYPE_NOT_ON_ROOT,
5181 .file_offset = offsetof(struct mem_cgroup, events_file),
5182 .seq_show = memory_events_show,
5183 },
5184 { } /* terminate */
5185 };
5186
5187 struct cgroup_subsys memory_cgrp_subsys = {
5188 .css_alloc = mem_cgroup_css_alloc,
5189 .css_online = mem_cgroup_css_online,
5190 .css_offline = mem_cgroup_css_offline,
5191 .css_released = mem_cgroup_css_released,
5192 .css_free = mem_cgroup_css_free,
5193 .css_reset = mem_cgroup_css_reset,
5194 .can_attach = mem_cgroup_can_attach,
5195 .cancel_attach = mem_cgroup_cancel_attach,
5196 .attach = mem_cgroup_move_task,
5197 .bind = mem_cgroup_bind,
5198 .dfl_cftypes = memory_files,
5199 .legacy_cftypes = mem_cgroup_legacy_files,
5200 .early_init = 0,
5201 };
5202
5203 /**
5204 * mem_cgroup_low - check if memory consumption is below the normal range
5205 * @root: the highest ancestor to consider
5206 * @memcg: the memory cgroup to check
5207 *
5208 * Returns %true if memory consumption of @memcg, and that of all
5209 * configurable ancestors up to @root, is below the normal range.
5210 */
5211 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5212 {
5213 if (mem_cgroup_disabled())
5214 return false;
5215
5216 /*
5217 * The toplevel group doesn't have a configurable range, so
5218 * it's never low when looked at directly, and it is not
5219 * considered an ancestor when assessing the hierarchy.
5220 */
5221
5222 if (memcg == root_mem_cgroup)
5223 return false;
5224
5225 if (page_counter_read(&memcg->memory) >= memcg->low)
5226 return false;
5227
5228 while (memcg != root) {
5229 memcg = parent_mem_cgroup(memcg);
5230
5231 if (memcg == root_mem_cgroup)
5232 break;
5233
5234 if (page_counter_read(&memcg->memory) >= memcg->low)
5235 return false;
5236 }
5237 return true;
5238 }
5239
5240 /**
5241 * mem_cgroup_try_charge - try charging a page
5242 * @page: page to charge
5243 * @mm: mm context of the victim
5244 * @gfp_mask: reclaim mode
5245 * @memcgp: charged memcg return
5246 *
5247 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5248 * pages according to @gfp_mask if necessary.
5249 *
5250 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5251 * Otherwise, an error code is returned.
5252 *
5253 * After page->mapping has been set up, the caller must finalize the
5254 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5255 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5256 */
5257 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5258 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5259 bool compound)
5260 {
5261 struct mem_cgroup *memcg = NULL;
5262 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5263 int ret = 0;
5264
5265 if (mem_cgroup_disabled())
5266 goto out;
5267
5268 if (PageSwapCache(page)) {
5269 /*
5270 * Every swap fault against a single page tries to charge the
5271 * page, bail as early as possible. shmem_unuse() encounters
5272 * already charged pages, too. The USED bit is protected by
5273 * the page lock, which serializes swap cache removal, which
5274 * in turn serializes uncharging.
5275 */
5276 VM_BUG_ON_PAGE(!PageLocked(page), page);
5277 if (page->mem_cgroup)
5278 goto out;
5279
5280 if (do_memsw_account()) {
5281 swp_entry_t ent = { .val = page_private(page), };
5282 unsigned short id = lookup_swap_cgroup_id(ent);
5283
5284 rcu_read_lock();
5285 memcg = mem_cgroup_from_id(id);
5286 if (memcg && !css_tryget_online(&memcg->css))
5287 memcg = NULL;
5288 rcu_read_unlock();
5289 }
5290 }
5291
5292 if (!memcg)
5293 memcg = get_mem_cgroup_from_mm(mm);
5294
5295 ret = try_charge(memcg, gfp_mask, nr_pages);
5296
5297 css_put(&memcg->css);
5298 out:
5299 *memcgp = memcg;
5300 return ret;
5301 }
5302
5303 /**
5304 * mem_cgroup_commit_charge - commit a page charge
5305 * @page: page to charge
5306 * @memcg: memcg to charge the page to
5307 * @lrucare: page might be on LRU already
5308 *
5309 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5310 * after page->mapping has been set up. This must happen atomically
5311 * as part of the page instantiation, i.e. under the page table lock
5312 * for anonymous pages, under the page lock for page and swap cache.
5313 *
5314 * In addition, the page must not be on the LRU during the commit, to
5315 * prevent racing with task migration. If it might be, use @lrucare.
5316 *
5317 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5318 */
5319 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5320 bool lrucare, bool compound)
5321 {
5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5323
5324 VM_BUG_ON_PAGE(!page->mapping, page);
5325 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5326
5327 if (mem_cgroup_disabled())
5328 return;
5329 /*
5330 * Swap faults will attempt to charge the same page multiple
5331 * times. But reuse_swap_page() might have removed the page
5332 * from swapcache already, so we can't check PageSwapCache().
5333 */
5334 if (!memcg)
5335 return;
5336
5337 commit_charge(page, memcg, lrucare);
5338
5339 local_irq_disable();
5340 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5341 memcg_check_events(memcg, page);
5342 local_irq_enable();
5343
5344 if (do_memsw_account() && PageSwapCache(page)) {
5345 swp_entry_t entry = { .val = page_private(page) };
5346 /*
5347 * The swap entry might not get freed for a long time,
5348 * let's not wait for it. The page already received a
5349 * memory+swap charge, drop the swap entry duplicate.
5350 */
5351 mem_cgroup_uncharge_swap(entry);
5352 }
5353 }
5354
5355 /**
5356 * mem_cgroup_cancel_charge - cancel a page charge
5357 * @page: page to charge
5358 * @memcg: memcg to charge the page to
5359 *
5360 * Cancel a charge transaction started by mem_cgroup_try_charge().
5361 */
5362 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5363 bool compound)
5364 {
5365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5366
5367 if (mem_cgroup_disabled())
5368 return;
5369 /*
5370 * Swap faults will attempt to charge the same page multiple
5371 * times. But reuse_swap_page() might have removed the page
5372 * from swapcache already, so we can't check PageSwapCache().
5373 */
5374 if (!memcg)
5375 return;
5376
5377 cancel_charge(memcg, nr_pages);
5378 }
5379
5380 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5381 unsigned long nr_anon, unsigned long nr_file,
5382 unsigned long nr_huge, struct page *dummy_page)
5383 {
5384 unsigned long nr_pages = nr_anon + nr_file;
5385 unsigned long flags;
5386
5387 if (!mem_cgroup_is_root(memcg)) {
5388 page_counter_uncharge(&memcg->memory, nr_pages);
5389 if (do_memsw_account())
5390 page_counter_uncharge(&memcg->memsw, nr_pages);
5391 memcg_oom_recover(memcg);
5392 }
5393
5394 local_irq_save(flags);
5395 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5396 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5397 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5398 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5399 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5400 memcg_check_events(memcg, dummy_page);
5401 local_irq_restore(flags);
5402
5403 if (!mem_cgroup_is_root(memcg))
5404 css_put_many(&memcg->css, nr_pages);
5405 }
5406
5407 static void uncharge_list(struct list_head *page_list)
5408 {
5409 struct mem_cgroup *memcg = NULL;
5410 unsigned long nr_anon = 0;
5411 unsigned long nr_file = 0;
5412 unsigned long nr_huge = 0;
5413 unsigned long pgpgout = 0;
5414 struct list_head *next;
5415 struct page *page;
5416
5417 next = page_list->next;
5418 do {
5419 unsigned int nr_pages = 1;
5420
5421 page = list_entry(next, struct page, lru);
5422 next = page->lru.next;
5423
5424 VM_BUG_ON_PAGE(PageLRU(page), page);
5425 VM_BUG_ON_PAGE(page_count(page), page);
5426
5427 if (!page->mem_cgroup)
5428 continue;
5429
5430 /*
5431 * Nobody should be changing or seriously looking at
5432 * page->mem_cgroup at this point, we have fully
5433 * exclusive access to the page.
5434 */
5435
5436 if (memcg != page->mem_cgroup) {
5437 if (memcg) {
5438 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5439 nr_huge, page);
5440 pgpgout = nr_anon = nr_file = nr_huge = 0;
5441 }
5442 memcg = page->mem_cgroup;
5443 }
5444
5445 if (PageTransHuge(page)) {
5446 nr_pages <<= compound_order(page);
5447 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5448 nr_huge += nr_pages;
5449 }
5450
5451 if (PageAnon(page))
5452 nr_anon += nr_pages;
5453 else
5454 nr_file += nr_pages;
5455
5456 page->mem_cgroup = NULL;
5457
5458 pgpgout++;
5459 } while (next != page_list);
5460
5461 if (memcg)
5462 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5463 nr_huge, page);
5464 }
5465
5466 /**
5467 * mem_cgroup_uncharge - uncharge a page
5468 * @page: page to uncharge
5469 *
5470 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5471 * mem_cgroup_commit_charge().
5472 */
5473 void mem_cgroup_uncharge(struct page *page)
5474 {
5475 if (mem_cgroup_disabled())
5476 return;
5477
5478 /* Don't touch page->lru of any random page, pre-check: */
5479 if (!page->mem_cgroup)
5480 return;
5481
5482 INIT_LIST_HEAD(&page->lru);
5483 uncharge_list(&page->lru);
5484 }
5485
5486 /**
5487 * mem_cgroup_uncharge_list - uncharge a list of page
5488 * @page_list: list of pages to uncharge
5489 *
5490 * Uncharge a list of pages previously charged with
5491 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5492 */
5493 void mem_cgroup_uncharge_list(struct list_head *page_list)
5494 {
5495 if (mem_cgroup_disabled())
5496 return;
5497
5498 if (!list_empty(page_list))
5499 uncharge_list(page_list);
5500 }
5501
5502 /**
5503 * mem_cgroup_replace_page - migrate a charge to another page
5504 * @oldpage: currently charged page
5505 * @newpage: page to transfer the charge to
5506 *
5507 * Migrate the charge from @oldpage to @newpage.
5508 *
5509 * Both pages must be locked, @newpage->mapping must be set up.
5510 * Either or both pages might be on the LRU already.
5511 */
5512 void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
5513 {
5514 struct mem_cgroup *memcg;
5515 int isolated;
5516
5517 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5518 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5519 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5520 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5521 newpage);
5522
5523 if (mem_cgroup_disabled())
5524 return;
5525
5526 /* Page cache replacement: new page already charged? */
5527 if (newpage->mem_cgroup)
5528 return;
5529
5530 /* Swapcache readahead pages can get replaced before being charged */
5531 memcg = oldpage->mem_cgroup;
5532 if (!memcg)
5533 return;
5534
5535 lock_page_lru(oldpage, &isolated);
5536 oldpage->mem_cgroup = NULL;
5537 unlock_page_lru(oldpage, isolated);
5538
5539 commit_charge(newpage, memcg, true);
5540 }
5541
5542 #ifdef CONFIG_INET
5543
5544 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5545 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5546
5547 void sock_update_memcg(struct sock *sk)
5548 {
5549 struct mem_cgroup *memcg;
5550
5551 /* Socket cloning can throw us here with sk_cgrp already
5552 * filled. It won't however, necessarily happen from
5553 * process context. So the test for root memcg given
5554 * the current task's memcg won't help us in this case.
5555 *
5556 * Respecting the original socket's memcg is a better
5557 * decision in this case.
5558 */
5559 if (sk->sk_memcg) {
5560 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5561 css_get(&sk->sk_memcg->css);
5562 return;
5563 }
5564
5565 rcu_read_lock();
5566 memcg = mem_cgroup_from_task(current);
5567 if (memcg == root_mem_cgroup)
5568 goto out;
5569 #ifdef CONFIG_MEMCG_KMEM
5570 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5571 goto out;
5572 #endif
5573 if (css_tryget_online(&memcg->css))
5574 sk->sk_memcg = memcg;
5575 out:
5576 rcu_read_unlock();
5577 }
5578 EXPORT_SYMBOL(sock_update_memcg);
5579
5580 void sock_release_memcg(struct sock *sk)
5581 {
5582 WARN_ON(!sk->sk_memcg);
5583 css_put(&sk->sk_memcg->css);
5584 }
5585
5586 /**
5587 * mem_cgroup_charge_skmem - charge socket memory
5588 * @memcg: memcg to charge
5589 * @nr_pages: number of pages to charge
5590 *
5591 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5592 * @memcg's configured limit, %false if the charge had to be forced.
5593 */
5594 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5595 {
5596 gfp_t gfp_mask = GFP_KERNEL;
5597
5598 #ifdef CONFIG_MEMCG_KMEM
5599 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5600 struct page_counter *counter;
5601
5602 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5603 nr_pages, &counter)) {
5604 memcg->tcp_mem.memory_pressure = 0;
5605 return true;
5606 }
5607 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5608 memcg->tcp_mem.memory_pressure = 1;
5609 return false;
5610 }
5611 #endif
5612 /* Don't block in the packet receive path */
5613 if (in_softirq())
5614 gfp_mask = GFP_NOWAIT;
5615
5616 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5617 return true;
5618
5619 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5620 return false;
5621 }
5622
5623 /**
5624 * mem_cgroup_uncharge_skmem - uncharge socket memory
5625 * @memcg - memcg to uncharge
5626 * @nr_pages - number of pages to uncharge
5627 */
5628 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5629 {
5630 #ifdef CONFIG_MEMCG_KMEM
5631 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5632 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5633 nr_pages);
5634 return;
5635 }
5636 #endif
5637 page_counter_uncharge(&memcg->memory, nr_pages);
5638 css_put_many(&memcg->css, nr_pages);
5639 }
5640
5641 #endif /* CONFIG_INET */
5642
5643 static int __init cgroup_memory(char *s)
5644 {
5645 char *token;
5646
5647 while ((token = strsep(&s, ",")) != NULL) {
5648 if (!*token)
5649 continue;
5650 if (!strcmp(token, "nosocket"))
5651 cgroup_memory_nosocket = true;
5652 }
5653 return 0;
5654 }
5655 __setup("cgroup.memory=", cgroup_memory);
5656
5657 /*
5658 * subsys_initcall() for memory controller.
5659 *
5660 * Some parts like hotcpu_notifier() have to be initialized from this context
5661 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5662 * everything that doesn't depend on a specific mem_cgroup structure should
5663 * be initialized from here.
5664 */
5665 static int __init mem_cgroup_init(void)
5666 {
5667 int cpu, node;
5668
5669 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5670
5671 for_each_possible_cpu(cpu)
5672 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5673 drain_local_stock);
5674
5675 for_each_node(node) {
5676 struct mem_cgroup_tree_per_node *rtpn;
5677 int zone;
5678
5679 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5680 node_online(node) ? node : NUMA_NO_NODE);
5681
5682 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5683 struct mem_cgroup_tree_per_zone *rtpz;
5684
5685 rtpz = &rtpn->rb_tree_per_zone[zone];
5686 rtpz->rb_root = RB_ROOT;
5687 spin_lock_init(&rtpz->lock);
5688 }
5689 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5690 }
5691
5692 return 0;
5693 }
5694 subsys_initcall(mem_cgroup_init);
5695
5696 #ifdef CONFIG_MEMCG_SWAP
5697 /**
5698 * mem_cgroup_swapout - transfer a memsw charge to swap
5699 * @page: page whose memsw charge to transfer
5700 * @entry: swap entry to move the charge to
5701 *
5702 * Transfer the memsw charge of @page to @entry.
5703 */
5704 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5705 {
5706 struct mem_cgroup *memcg;
5707 unsigned short oldid;
5708
5709 VM_BUG_ON_PAGE(PageLRU(page), page);
5710 VM_BUG_ON_PAGE(page_count(page), page);
5711
5712 if (!do_memsw_account())
5713 return;
5714
5715 memcg = page->mem_cgroup;
5716
5717 /* Readahead page, never charged */
5718 if (!memcg)
5719 return;
5720
5721 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5722 VM_BUG_ON_PAGE(oldid, page);
5723 mem_cgroup_swap_statistics(memcg, true);
5724
5725 page->mem_cgroup = NULL;
5726
5727 if (!mem_cgroup_is_root(memcg))
5728 page_counter_uncharge(&memcg->memory, 1);
5729
5730 /*
5731 * Interrupts should be disabled here because the caller holds the
5732 * mapping->tree_lock lock which is taken with interrupts-off. It is
5733 * important here to have the interrupts disabled because it is the
5734 * only synchronisation we have for udpating the per-CPU variables.
5735 */
5736 VM_BUG_ON(!irqs_disabled());
5737 mem_cgroup_charge_statistics(memcg, page, false, -1);
5738 memcg_check_events(memcg, page);
5739 }
5740
5741 /**
5742 * mem_cgroup_uncharge_swap - uncharge a swap entry
5743 * @entry: swap entry to uncharge
5744 *
5745 * Drop the memsw charge associated with @entry.
5746 */
5747 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5748 {
5749 struct mem_cgroup *memcg;
5750 unsigned short id;
5751
5752 if (!do_memsw_account())
5753 return;
5754
5755 id = swap_cgroup_record(entry, 0);
5756 rcu_read_lock();
5757 memcg = mem_cgroup_from_id(id);
5758 if (memcg) {
5759 if (!mem_cgroup_is_root(memcg))
5760 page_counter_uncharge(&memcg->memsw, 1);
5761 mem_cgroup_swap_statistics(memcg, false);
5762 css_put(&memcg->css);
5763 }
5764 rcu_read_unlock();
5765 }
5766
5767 /* for remember boot option*/
5768 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5769 static int really_do_swap_account __initdata = 1;
5770 #else
5771 static int really_do_swap_account __initdata;
5772 #endif
5773
5774 static int __init enable_swap_account(char *s)
5775 {
5776 if (!strcmp(s, "1"))
5777 really_do_swap_account = 1;
5778 else if (!strcmp(s, "0"))
5779 really_do_swap_account = 0;
5780 return 1;
5781 }
5782 __setup("swapaccount=", enable_swap_account);
5783
5784 static struct cftype memsw_cgroup_files[] = {
5785 {
5786 .name = "memsw.usage_in_bytes",
5787 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5788 .read_u64 = mem_cgroup_read_u64,
5789 },
5790 {
5791 .name = "memsw.max_usage_in_bytes",
5792 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5793 .write = mem_cgroup_reset,
5794 .read_u64 = mem_cgroup_read_u64,
5795 },
5796 {
5797 .name = "memsw.limit_in_bytes",
5798 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5799 .write = mem_cgroup_write,
5800 .read_u64 = mem_cgroup_read_u64,
5801 },
5802 {
5803 .name = "memsw.failcnt",
5804 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5805 .write = mem_cgroup_reset,
5806 .read_u64 = mem_cgroup_read_u64,
5807 },
5808 { }, /* terminate */
5809 };
5810
5811 static int __init mem_cgroup_swap_init(void)
5812 {
5813 if (!mem_cgroup_disabled() && really_do_swap_account) {
5814 do_swap_account = 1;
5815 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5816 memsw_cgroup_files));
5817 }
5818 return 0;
5819 }
5820 subsys_initcall(mem_cgroup_swap_init);
5821
5822 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.178099 seconds and 5 git commands to generate.