mm/memcg: apply add/del_page to lruvec
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account 0
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
92 };
93
94 static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99 };
100
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 /*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122 enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS,
127 };
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
131
132 struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
137 };
138
139 struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144 };
145
146 /*
147 * per-zone information in memory controller.
148 */
149 struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
161 };
162
163 struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 };
170
171 /*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176 struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179 };
180
181 struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 };
184
185 struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 };
188
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
191 struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194 };
195
196 /* For threshold */
197 struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204 };
205
206 struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215 };
216
217 /* for OOM */
218 struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221 };
222
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225
226 /*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
236 */
237 struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
261 * But when using vfree(), that cannot be done at
262 * interrupt time, so we must then queue the work.
263 */
264 struct work_struct work_freeing;
265 };
266
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
270 */
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
273 #if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
277 #endif
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
282
283 bool oom_lock;
284 atomic_t under_oom;
285
286 atomic_t refcnt;
287
288 int swappiness;
289 /* OOM-Killer disable */
290 int oom_kill_disable;
291
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
300
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
303
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
306
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
318 /*
319 * percpu counter.
320 */
321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
328
329 #ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331 #endif
332 };
333
334 /* Stuffs for move charges at task migration. */
335 /*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339 enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE,
343 };
344
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355 } mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 };
359
360 static bool move_anon(void)
361 {
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364 }
365
366 static bool move_file(void)
367 {
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370 }
371
372 /*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378
379 enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_MAPPED,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
384 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
385 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
386 NR_CHARGE_TYPE,
387 };
388
389 /* for encoding cft->private value on file */
390 #define _MEM (0)
391 #define _MEMSWAP (1)
392 #define _OOM_TYPE (2)
393 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
394 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
395 #define MEMFILE_ATTR(val) ((val) & 0xffff)
396 /* Used for OOM nofiier */
397 #define OOM_CONTROL (0)
398
399 /*
400 * Reclaim flags for mem_cgroup_hierarchical_reclaim
401 */
402 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
403 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
404 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
405 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406
407 static void mem_cgroup_get(struct mem_cgroup *memcg);
408 static void mem_cgroup_put(struct mem_cgroup *memcg);
409
410 /* Writing them here to avoid exposing memcg's inner layout */
411 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
412 #include <net/sock.h>
413 #include <net/ip.h>
414
415 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
416 void sock_update_memcg(struct sock *sk)
417 {
418 if (mem_cgroup_sockets_enabled) {
419 struct mem_cgroup *memcg;
420
421 BUG_ON(!sk->sk_prot->proto_cgroup);
422
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
427 *
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
430 */
431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return;
435 }
436
437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current);
439 if (!mem_cgroup_is_root(memcg)) {
440 mem_cgroup_get(memcg);
441 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
442 }
443 rcu_read_unlock();
444 }
445 }
446 EXPORT_SYMBOL(sock_update_memcg);
447
448 void sock_release_memcg(struct sock *sk)
449 {
450 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
451 struct mem_cgroup *memcg;
452 WARN_ON(!sk->sk_cgrp->memcg);
453 memcg = sk->sk_cgrp->memcg;
454 mem_cgroup_put(memcg);
455 }
456 }
457
458 #ifdef CONFIG_INET
459 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
460 {
461 if (!memcg || mem_cgroup_is_root(memcg))
462 return NULL;
463
464 return &memcg->tcp_mem.cg_proto;
465 }
466 EXPORT_SYMBOL(tcp_proto_cgroup);
467 #endif /* CONFIG_INET */
468 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
469
470 static void drain_all_stock_async(struct mem_cgroup *memcg);
471
472 static struct mem_cgroup_per_zone *
473 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
474 {
475 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
476 }
477
478 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
479 {
480 return &memcg->css;
481 }
482
483 static struct mem_cgroup_per_zone *
484 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
485 {
486 int nid = page_to_nid(page);
487 int zid = page_zonenum(page);
488
489 return mem_cgroup_zoneinfo(memcg, nid, zid);
490 }
491
492 static struct mem_cgroup_tree_per_zone *
493 soft_limit_tree_node_zone(int nid, int zid)
494 {
495 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
496 }
497
498 static struct mem_cgroup_tree_per_zone *
499 soft_limit_tree_from_page(struct page *page)
500 {
501 int nid = page_to_nid(page);
502 int zid = page_zonenum(page);
503
504 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
505 }
506
507 static void
508 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
509 struct mem_cgroup_per_zone *mz,
510 struct mem_cgroup_tree_per_zone *mctz,
511 unsigned long long new_usage_in_excess)
512 {
513 struct rb_node **p = &mctz->rb_root.rb_node;
514 struct rb_node *parent = NULL;
515 struct mem_cgroup_per_zone *mz_node;
516
517 if (mz->on_tree)
518 return;
519
520 mz->usage_in_excess = new_usage_in_excess;
521 if (!mz->usage_in_excess)
522 return;
523 while (*p) {
524 parent = *p;
525 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
526 tree_node);
527 if (mz->usage_in_excess < mz_node->usage_in_excess)
528 p = &(*p)->rb_left;
529 /*
530 * We can't avoid mem cgroups that are over their soft
531 * limit by the same amount
532 */
533 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
534 p = &(*p)->rb_right;
535 }
536 rb_link_node(&mz->tree_node, parent, p);
537 rb_insert_color(&mz->tree_node, &mctz->rb_root);
538 mz->on_tree = true;
539 }
540
541 static void
542 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
543 struct mem_cgroup_per_zone *mz,
544 struct mem_cgroup_tree_per_zone *mctz)
545 {
546 if (!mz->on_tree)
547 return;
548 rb_erase(&mz->tree_node, &mctz->rb_root);
549 mz->on_tree = false;
550 }
551
552 static void
553 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
554 struct mem_cgroup_per_zone *mz,
555 struct mem_cgroup_tree_per_zone *mctz)
556 {
557 spin_lock(&mctz->lock);
558 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
559 spin_unlock(&mctz->lock);
560 }
561
562
563 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
564 {
565 unsigned long long excess;
566 struct mem_cgroup_per_zone *mz;
567 struct mem_cgroup_tree_per_zone *mctz;
568 int nid = page_to_nid(page);
569 int zid = page_zonenum(page);
570 mctz = soft_limit_tree_from_page(page);
571
572 /*
573 * Necessary to update all ancestors when hierarchy is used.
574 * because their event counter is not touched.
575 */
576 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
577 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
578 excess = res_counter_soft_limit_excess(&memcg->res);
579 /*
580 * We have to update the tree if mz is on RB-tree or
581 * mem is over its softlimit.
582 */
583 if (excess || mz->on_tree) {
584 spin_lock(&mctz->lock);
585 /* if on-tree, remove it */
586 if (mz->on_tree)
587 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
588 /*
589 * Insert again. mz->usage_in_excess will be updated.
590 * If excess is 0, no tree ops.
591 */
592 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
593 spin_unlock(&mctz->lock);
594 }
595 }
596 }
597
598 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
599 {
600 int node, zone;
601 struct mem_cgroup_per_zone *mz;
602 struct mem_cgroup_tree_per_zone *mctz;
603
604 for_each_node(node) {
605 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
606 mz = mem_cgroup_zoneinfo(memcg, node, zone);
607 mctz = soft_limit_tree_node_zone(node, zone);
608 mem_cgroup_remove_exceeded(memcg, mz, mctz);
609 }
610 }
611 }
612
613 static struct mem_cgroup_per_zone *
614 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
615 {
616 struct rb_node *rightmost = NULL;
617 struct mem_cgroup_per_zone *mz;
618
619 retry:
620 mz = NULL;
621 rightmost = rb_last(&mctz->rb_root);
622 if (!rightmost)
623 goto done; /* Nothing to reclaim from */
624
625 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
626 /*
627 * Remove the node now but someone else can add it back,
628 * we will to add it back at the end of reclaim to its correct
629 * position in the tree.
630 */
631 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
632 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
633 !css_tryget(&mz->memcg->css))
634 goto retry;
635 done:
636 return mz;
637 }
638
639 static struct mem_cgroup_per_zone *
640 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
641 {
642 struct mem_cgroup_per_zone *mz;
643
644 spin_lock(&mctz->lock);
645 mz = __mem_cgroup_largest_soft_limit_node(mctz);
646 spin_unlock(&mctz->lock);
647 return mz;
648 }
649
650 /*
651 * Implementation Note: reading percpu statistics for memcg.
652 *
653 * Both of vmstat[] and percpu_counter has threshold and do periodic
654 * synchronization to implement "quick" read. There are trade-off between
655 * reading cost and precision of value. Then, we may have a chance to implement
656 * a periodic synchronizion of counter in memcg's counter.
657 *
658 * But this _read() function is used for user interface now. The user accounts
659 * memory usage by memory cgroup and he _always_ requires exact value because
660 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
661 * have to visit all online cpus and make sum. So, for now, unnecessary
662 * synchronization is not implemented. (just implemented for cpu hotplug)
663 *
664 * If there are kernel internal actions which can make use of some not-exact
665 * value, and reading all cpu value can be performance bottleneck in some
666 * common workload, threashold and synchonization as vmstat[] should be
667 * implemented.
668 */
669 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
670 enum mem_cgroup_stat_index idx)
671 {
672 long val = 0;
673 int cpu;
674
675 get_online_cpus();
676 for_each_online_cpu(cpu)
677 val += per_cpu(memcg->stat->count[idx], cpu);
678 #ifdef CONFIG_HOTPLUG_CPU
679 spin_lock(&memcg->pcp_counter_lock);
680 val += memcg->nocpu_base.count[idx];
681 spin_unlock(&memcg->pcp_counter_lock);
682 #endif
683 put_online_cpus();
684 return val;
685 }
686
687 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
688 bool charge)
689 {
690 int val = (charge) ? 1 : -1;
691 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
692 }
693
694 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
695 enum mem_cgroup_events_index idx)
696 {
697 unsigned long val = 0;
698 int cpu;
699
700 for_each_online_cpu(cpu)
701 val += per_cpu(memcg->stat->events[idx], cpu);
702 #ifdef CONFIG_HOTPLUG_CPU
703 spin_lock(&memcg->pcp_counter_lock);
704 val += memcg->nocpu_base.events[idx];
705 spin_unlock(&memcg->pcp_counter_lock);
706 #endif
707 return val;
708 }
709
710 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
711 bool anon, int nr_pages)
712 {
713 preempt_disable();
714
715 /*
716 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
717 * counted as CACHE even if it's on ANON LRU.
718 */
719 if (anon)
720 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
721 nr_pages);
722 else
723 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
724 nr_pages);
725
726 /* pagein of a big page is an event. So, ignore page size */
727 if (nr_pages > 0)
728 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
729 else {
730 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
731 nr_pages = -nr_pages; /* for event */
732 }
733
734 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
735
736 preempt_enable();
737 }
738
739 unsigned long
740 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
741 {
742 struct mem_cgroup_per_zone *mz;
743
744 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
745 return mz->lru_size[lru];
746 }
747
748 static unsigned long
749 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
750 unsigned int lru_mask)
751 {
752 struct mem_cgroup_per_zone *mz;
753 enum lru_list lru;
754 unsigned long ret = 0;
755
756 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
757
758 for_each_lru(lru) {
759 if (BIT(lru) & lru_mask)
760 ret += mz->lru_size[lru];
761 }
762 return ret;
763 }
764
765 static unsigned long
766 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
767 int nid, unsigned int lru_mask)
768 {
769 u64 total = 0;
770 int zid;
771
772 for (zid = 0; zid < MAX_NR_ZONES; zid++)
773 total += mem_cgroup_zone_nr_lru_pages(memcg,
774 nid, zid, lru_mask);
775
776 return total;
777 }
778
779 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
780 unsigned int lru_mask)
781 {
782 int nid;
783 u64 total = 0;
784
785 for_each_node_state(nid, N_HIGH_MEMORY)
786 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
787 return total;
788 }
789
790 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
791 enum mem_cgroup_events_target target)
792 {
793 unsigned long val, next;
794
795 val = __this_cpu_read(memcg->stat->nr_page_events);
796 next = __this_cpu_read(memcg->stat->targets[target]);
797 /* from time_after() in jiffies.h */
798 if ((long)next - (long)val < 0) {
799 switch (target) {
800 case MEM_CGROUP_TARGET_THRESH:
801 next = val + THRESHOLDS_EVENTS_TARGET;
802 break;
803 case MEM_CGROUP_TARGET_SOFTLIMIT:
804 next = val + SOFTLIMIT_EVENTS_TARGET;
805 break;
806 case MEM_CGROUP_TARGET_NUMAINFO:
807 next = val + NUMAINFO_EVENTS_TARGET;
808 break;
809 default:
810 break;
811 }
812 __this_cpu_write(memcg->stat->targets[target], next);
813 return true;
814 }
815 return false;
816 }
817
818 /*
819 * Check events in order.
820 *
821 */
822 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
823 {
824 preempt_disable();
825 /* threshold event is triggered in finer grain than soft limit */
826 if (unlikely(mem_cgroup_event_ratelimit(memcg,
827 MEM_CGROUP_TARGET_THRESH))) {
828 bool do_softlimit;
829 bool do_numainfo __maybe_unused;
830
831 do_softlimit = mem_cgroup_event_ratelimit(memcg,
832 MEM_CGROUP_TARGET_SOFTLIMIT);
833 #if MAX_NUMNODES > 1
834 do_numainfo = mem_cgroup_event_ratelimit(memcg,
835 MEM_CGROUP_TARGET_NUMAINFO);
836 #endif
837 preempt_enable();
838
839 mem_cgroup_threshold(memcg);
840 if (unlikely(do_softlimit))
841 mem_cgroup_update_tree(memcg, page);
842 #if MAX_NUMNODES > 1
843 if (unlikely(do_numainfo))
844 atomic_inc(&memcg->numainfo_events);
845 #endif
846 } else
847 preempt_enable();
848 }
849
850 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
851 {
852 return container_of(cgroup_subsys_state(cont,
853 mem_cgroup_subsys_id), struct mem_cgroup,
854 css);
855 }
856
857 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
858 {
859 /*
860 * mm_update_next_owner() may clear mm->owner to NULL
861 * if it races with swapoff, page migration, etc.
862 * So this can be called with p == NULL.
863 */
864 if (unlikely(!p))
865 return NULL;
866
867 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
868 struct mem_cgroup, css);
869 }
870
871 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
872 {
873 struct mem_cgroup *memcg = NULL;
874
875 if (!mm)
876 return NULL;
877 /*
878 * Because we have no locks, mm->owner's may be being moved to other
879 * cgroup. We use css_tryget() here even if this looks
880 * pessimistic (rather than adding locks here).
881 */
882 rcu_read_lock();
883 do {
884 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
885 if (unlikely(!memcg))
886 break;
887 } while (!css_tryget(&memcg->css));
888 rcu_read_unlock();
889 return memcg;
890 }
891
892 /**
893 * mem_cgroup_iter - iterate over memory cgroup hierarchy
894 * @root: hierarchy root
895 * @prev: previously returned memcg, NULL on first invocation
896 * @reclaim: cookie for shared reclaim walks, NULL for full walks
897 *
898 * Returns references to children of the hierarchy below @root, or
899 * @root itself, or %NULL after a full round-trip.
900 *
901 * Caller must pass the return value in @prev on subsequent
902 * invocations for reference counting, or use mem_cgroup_iter_break()
903 * to cancel a hierarchy walk before the round-trip is complete.
904 *
905 * Reclaimers can specify a zone and a priority level in @reclaim to
906 * divide up the memcgs in the hierarchy among all concurrent
907 * reclaimers operating on the same zone and priority.
908 */
909 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
910 struct mem_cgroup *prev,
911 struct mem_cgroup_reclaim_cookie *reclaim)
912 {
913 struct mem_cgroup *memcg = NULL;
914 int id = 0;
915
916 if (mem_cgroup_disabled())
917 return NULL;
918
919 if (!root)
920 root = root_mem_cgroup;
921
922 if (prev && !reclaim)
923 id = css_id(&prev->css);
924
925 if (prev && prev != root)
926 css_put(&prev->css);
927
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
930 return NULL;
931 return root;
932 }
933
934 while (!memcg) {
935 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
936 struct cgroup_subsys_state *css;
937
938 if (reclaim) {
939 int nid = zone_to_nid(reclaim->zone);
940 int zid = zone_idx(reclaim->zone);
941 struct mem_cgroup_per_zone *mz;
942
943 mz = mem_cgroup_zoneinfo(root, nid, zid);
944 iter = &mz->reclaim_iter[reclaim->priority];
945 if (prev && reclaim->generation != iter->generation)
946 return NULL;
947 id = iter->position;
948 }
949
950 rcu_read_lock();
951 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
952 if (css) {
953 if (css == &root->css || css_tryget(css))
954 memcg = container_of(css,
955 struct mem_cgroup, css);
956 } else
957 id = 0;
958 rcu_read_unlock();
959
960 if (reclaim) {
961 iter->position = id;
962 if (!css)
963 iter->generation++;
964 else if (!prev && memcg)
965 reclaim->generation = iter->generation;
966 }
967
968 if (prev && !css)
969 return NULL;
970 }
971 return memcg;
972 }
973
974 /**
975 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
976 * @root: hierarchy root
977 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
978 */
979 void mem_cgroup_iter_break(struct mem_cgroup *root,
980 struct mem_cgroup *prev)
981 {
982 if (!root)
983 root = root_mem_cgroup;
984 if (prev && prev != root)
985 css_put(&prev->css);
986 }
987
988 /*
989 * Iteration constructs for visiting all cgroups (under a tree). If
990 * loops are exited prematurely (break), mem_cgroup_iter_break() must
991 * be used for reference counting.
992 */
993 #define for_each_mem_cgroup_tree(iter, root) \
994 for (iter = mem_cgroup_iter(root, NULL, NULL); \
995 iter != NULL; \
996 iter = mem_cgroup_iter(root, iter, NULL))
997
998 #define for_each_mem_cgroup(iter) \
999 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1000 iter != NULL; \
1001 iter = mem_cgroup_iter(NULL, iter, NULL))
1002
1003 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1004 {
1005 return (memcg == root_mem_cgroup);
1006 }
1007
1008 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1009 {
1010 struct mem_cgroup *memcg;
1011
1012 if (!mm)
1013 return;
1014
1015 rcu_read_lock();
1016 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1017 if (unlikely(!memcg))
1018 goto out;
1019
1020 switch (idx) {
1021 case PGFAULT:
1022 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1023 break;
1024 case PGMAJFAULT:
1025 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1026 break;
1027 default:
1028 BUG();
1029 }
1030 out:
1031 rcu_read_unlock();
1032 }
1033 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1034
1035 /**
1036 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1037 * @zone: zone of the wanted lruvec
1038 * @memcg: memcg of the wanted lruvec
1039 *
1040 * Returns the lru list vector holding pages for the given @zone and
1041 * @mem. This can be the global zone lruvec, if the memory controller
1042 * is disabled.
1043 */
1044 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1045 struct mem_cgroup *memcg)
1046 {
1047 struct mem_cgroup_per_zone *mz;
1048
1049 if (mem_cgroup_disabled())
1050 return &zone->lruvec;
1051
1052 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1053 return &mz->lruvec;
1054 }
1055
1056 /*
1057 * Following LRU functions are allowed to be used without PCG_LOCK.
1058 * Operations are called by routine of global LRU independently from memcg.
1059 * What we have to take care of here is validness of pc->mem_cgroup.
1060 *
1061 * Changes to pc->mem_cgroup happens when
1062 * 1. charge
1063 * 2. moving account
1064 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1065 * It is added to LRU before charge.
1066 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1067 * When moving account, the page is not on LRU. It's isolated.
1068 */
1069
1070 /**
1071 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1072 * @page: the page
1073 * @zone: zone of the page
1074 */
1075 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1076 {
1077 struct mem_cgroup_per_zone *mz;
1078 struct mem_cgroup *memcg;
1079 struct page_cgroup *pc;
1080
1081 if (mem_cgroup_disabled())
1082 return &zone->lruvec;
1083
1084 pc = lookup_page_cgroup(page);
1085 memcg = pc->mem_cgroup;
1086
1087 /*
1088 * Surreptitiously switch any uncharged offlist page to root:
1089 * an uncharged page off lru does nothing to secure
1090 * its former mem_cgroup from sudden removal.
1091 *
1092 * Our caller holds lru_lock, and PageCgroupUsed is updated
1093 * under page_cgroup lock: between them, they make all uses
1094 * of pc->mem_cgroup safe.
1095 */
1096 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1097 pc->mem_cgroup = memcg = root_mem_cgroup;
1098
1099 mz = page_cgroup_zoneinfo(memcg, page);
1100 return &mz->lruvec;
1101 }
1102
1103 /**
1104 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1105 * @lruvec: mem_cgroup per zone lru vector
1106 * @lru: index of lru list the page is sitting on
1107 * @nr_pages: positive when adding or negative when removing
1108 *
1109 * This function must be called when a page is added to or removed from an
1110 * lru list.
1111 */
1112 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1113 int nr_pages)
1114 {
1115 struct mem_cgroup_per_zone *mz;
1116 unsigned long *lru_size;
1117
1118 if (mem_cgroup_disabled())
1119 return;
1120
1121 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1122 lru_size = mz->lru_size + lru;
1123 *lru_size += nr_pages;
1124 VM_BUG_ON((long)(*lru_size) < 0);
1125 }
1126
1127 /*
1128 * Checks whether given mem is same or in the root_mem_cgroup's
1129 * hierarchy subtree
1130 */
1131 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1132 struct mem_cgroup *memcg)
1133 {
1134 if (root_memcg == memcg)
1135 return true;
1136 if (!root_memcg->use_hierarchy)
1137 return false;
1138 return css_is_ancestor(&memcg->css, &root_memcg->css);
1139 }
1140
1141 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1142 struct mem_cgroup *memcg)
1143 {
1144 bool ret;
1145
1146 rcu_read_lock();
1147 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1148 rcu_read_unlock();
1149 return ret;
1150 }
1151
1152 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1153 {
1154 int ret;
1155 struct mem_cgroup *curr = NULL;
1156 struct task_struct *p;
1157
1158 p = find_lock_task_mm(task);
1159 if (p) {
1160 curr = try_get_mem_cgroup_from_mm(p->mm);
1161 task_unlock(p);
1162 } else {
1163 /*
1164 * All threads may have already detached their mm's, but the oom
1165 * killer still needs to detect if they have already been oom
1166 * killed to prevent needlessly killing additional tasks.
1167 */
1168 task_lock(task);
1169 curr = mem_cgroup_from_task(task);
1170 if (curr)
1171 css_get(&curr->css);
1172 task_unlock(task);
1173 }
1174 if (!curr)
1175 return 0;
1176 /*
1177 * We should check use_hierarchy of "memcg" not "curr". Because checking
1178 * use_hierarchy of "curr" here make this function true if hierarchy is
1179 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1180 * hierarchy(even if use_hierarchy is disabled in "memcg").
1181 */
1182 ret = mem_cgroup_same_or_subtree(memcg, curr);
1183 css_put(&curr->css);
1184 return ret;
1185 }
1186
1187 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1188 {
1189 unsigned long inactive_ratio;
1190 unsigned long inactive;
1191 unsigned long active;
1192 unsigned long gb;
1193
1194 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1195 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1196
1197 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1198 if (gb)
1199 inactive_ratio = int_sqrt(10 * gb);
1200 else
1201 inactive_ratio = 1;
1202
1203 return inactive * inactive_ratio < active;
1204 }
1205
1206 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1207 {
1208 unsigned long active;
1209 unsigned long inactive;
1210
1211 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1212 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1213
1214 return (active > inactive);
1215 }
1216
1217 #define mem_cgroup_from_res_counter(counter, member) \
1218 container_of(counter, struct mem_cgroup, member)
1219
1220 /**
1221 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1222 * @mem: the memory cgroup
1223 *
1224 * Returns the maximum amount of memory @mem can be charged with, in
1225 * pages.
1226 */
1227 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1228 {
1229 unsigned long long margin;
1230
1231 margin = res_counter_margin(&memcg->res);
1232 if (do_swap_account)
1233 margin = min(margin, res_counter_margin(&memcg->memsw));
1234 return margin >> PAGE_SHIFT;
1235 }
1236
1237 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1238 {
1239 struct cgroup *cgrp = memcg->css.cgroup;
1240
1241 /* root ? */
1242 if (cgrp->parent == NULL)
1243 return vm_swappiness;
1244
1245 return memcg->swappiness;
1246 }
1247
1248 /*
1249 * memcg->moving_account is used for checking possibility that some thread is
1250 * calling move_account(). When a thread on CPU-A starts moving pages under
1251 * a memcg, other threads should check memcg->moving_account under
1252 * rcu_read_lock(), like this:
1253 *
1254 * CPU-A CPU-B
1255 * rcu_read_lock()
1256 * memcg->moving_account+1 if (memcg->mocing_account)
1257 * take heavy locks.
1258 * synchronize_rcu() update something.
1259 * rcu_read_unlock()
1260 * start move here.
1261 */
1262
1263 /* for quick checking without looking up memcg */
1264 atomic_t memcg_moving __read_mostly;
1265
1266 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1267 {
1268 atomic_inc(&memcg_moving);
1269 atomic_inc(&memcg->moving_account);
1270 synchronize_rcu();
1271 }
1272
1273 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1274 {
1275 /*
1276 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1277 * We check NULL in callee rather than caller.
1278 */
1279 if (memcg) {
1280 atomic_dec(&memcg_moving);
1281 atomic_dec(&memcg->moving_account);
1282 }
1283 }
1284
1285 /*
1286 * 2 routines for checking "mem" is under move_account() or not.
1287 *
1288 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1289 * is used for avoiding races in accounting. If true,
1290 * pc->mem_cgroup may be overwritten.
1291 *
1292 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1293 * under hierarchy of moving cgroups. This is for
1294 * waiting at hith-memory prressure caused by "move".
1295 */
1296
1297 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1298 {
1299 VM_BUG_ON(!rcu_read_lock_held());
1300 return atomic_read(&memcg->moving_account) > 0;
1301 }
1302
1303 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1304 {
1305 struct mem_cgroup *from;
1306 struct mem_cgroup *to;
1307 bool ret = false;
1308 /*
1309 * Unlike task_move routines, we access mc.to, mc.from not under
1310 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1311 */
1312 spin_lock(&mc.lock);
1313 from = mc.from;
1314 to = mc.to;
1315 if (!from)
1316 goto unlock;
1317
1318 ret = mem_cgroup_same_or_subtree(memcg, from)
1319 || mem_cgroup_same_or_subtree(memcg, to);
1320 unlock:
1321 spin_unlock(&mc.lock);
1322 return ret;
1323 }
1324
1325 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1326 {
1327 if (mc.moving_task && current != mc.moving_task) {
1328 if (mem_cgroup_under_move(memcg)) {
1329 DEFINE_WAIT(wait);
1330 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1331 /* moving charge context might have finished. */
1332 if (mc.moving_task)
1333 schedule();
1334 finish_wait(&mc.waitq, &wait);
1335 return true;
1336 }
1337 }
1338 return false;
1339 }
1340
1341 /*
1342 * Take this lock when
1343 * - a code tries to modify page's memcg while it's USED.
1344 * - a code tries to modify page state accounting in a memcg.
1345 * see mem_cgroup_stolen(), too.
1346 */
1347 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1348 unsigned long *flags)
1349 {
1350 spin_lock_irqsave(&memcg->move_lock, *flags);
1351 }
1352
1353 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1354 unsigned long *flags)
1355 {
1356 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1357 }
1358
1359 /**
1360 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1361 * @memcg: The memory cgroup that went over limit
1362 * @p: Task that is going to be killed
1363 *
1364 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1365 * enabled
1366 */
1367 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1368 {
1369 struct cgroup *task_cgrp;
1370 struct cgroup *mem_cgrp;
1371 /*
1372 * Need a buffer in BSS, can't rely on allocations. The code relies
1373 * on the assumption that OOM is serialized for memory controller.
1374 * If this assumption is broken, revisit this code.
1375 */
1376 static char memcg_name[PATH_MAX];
1377 int ret;
1378
1379 if (!memcg || !p)
1380 return;
1381
1382 rcu_read_lock();
1383
1384 mem_cgrp = memcg->css.cgroup;
1385 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1386
1387 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1388 if (ret < 0) {
1389 /*
1390 * Unfortunately, we are unable to convert to a useful name
1391 * But we'll still print out the usage information
1392 */
1393 rcu_read_unlock();
1394 goto done;
1395 }
1396 rcu_read_unlock();
1397
1398 printk(KERN_INFO "Task in %s killed", memcg_name);
1399
1400 rcu_read_lock();
1401 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1402 if (ret < 0) {
1403 rcu_read_unlock();
1404 goto done;
1405 }
1406 rcu_read_unlock();
1407
1408 /*
1409 * Continues from above, so we don't need an KERN_ level
1410 */
1411 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1412 done:
1413
1414 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1415 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1416 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1417 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1418 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1419 "failcnt %llu\n",
1420 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1421 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1422 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1423 }
1424
1425 /*
1426 * This function returns the number of memcg under hierarchy tree. Returns
1427 * 1(self count) if no children.
1428 */
1429 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1430 {
1431 int num = 0;
1432 struct mem_cgroup *iter;
1433
1434 for_each_mem_cgroup_tree(iter, memcg)
1435 num++;
1436 return num;
1437 }
1438
1439 /*
1440 * Return the memory (and swap, if configured) limit for a memcg.
1441 */
1442 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1443 {
1444 u64 limit;
1445 u64 memsw;
1446
1447 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1448 limit += total_swap_pages << PAGE_SHIFT;
1449
1450 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1451 /*
1452 * If memsw is finite and limits the amount of swap space available
1453 * to this memcg, return that limit.
1454 */
1455 return min(limit, memsw);
1456 }
1457
1458 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1459 gfp_t gfp_mask,
1460 unsigned long flags)
1461 {
1462 unsigned long total = 0;
1463 bool noswap = false;
1464 int loop;
1465
1466 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1467 noswap = true;
1468 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1469 noswap = true;
1470
1471 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1472 if (loop)
1473 drain_all_stock_async(memcg);
1474 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1475 /*
1476 * Allow limit shrinkers, which are triggered directly
1477 * by userspace, to catch signals and stop reclaim
1478 * after minimal progress, regardless of the margin.
1479 */
1480 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1481 break;
1482 if (mem_cgroup_margin(memcg))
1483 break;
1484 /*
1485 * If nothing was reclaimed after two attempts, there
1486 * may be no reclaimable pages in this hierarchy.
1487 */
1488 if (loop && !total)
1489 break;
1490 }
1491 return total;
1492 }
1493
1494 /**
1495 * test_mem_cgroup_node_reclaimable
1496 * @mem: the target memcg
1497 * @nid: the node ID to be checked.
1498 * @noswap : specify true here if the user wants flle only information.
1499 *
1500 * This function returns whether the specified memcg contains any
1501 * reclaimable pages on a node. Returns true if there are any reclaimable
1502 * pages in the node.
1503 */
1504 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1505 int nid, bool noswap)
1506 {
1507 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1508 return true;
1509 if (noswap || !total_swap_pages)
1510 return false;
1511 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1512 return true;
1513 return false;
1514
1515 }
1516 #if MAX_NUMNODES > 1
1517
1518 /*
1519 * Always updating the nodemask is not very good - even if we have an empty
1520 * list or the wrong list here, we can start from some node and traverse all
1521 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1522 *
1523 */
1524 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1525 {
1526 int nid;
1527 /*
1528 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1529 * pagein/pageout changes since the last update.
1530 */
1531 if (!atomic_read(&memcg->numainfo_events))
1532 return;
1533 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1534 return;
1535
1536 /* make a nodemask where this memcg uses memory from */
1537 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1538
1539 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1540
1541 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1542 node_clear(nid, memcg->scan_nodes);
1543 }
1544
1545 atomic_set(&memcg->numainfo_events, 0);
1546 atomic_set(&memcg->numainfo_updating, 0);
1547 }
1548
1549 /*
1550 * Selecting a node where we start reclaim from. Because what we need is just
1551 * reducing usage counter, start from anywhere is O,K. Considering
1552 * memory reclaim from current node, there are pros. and cons.
1553 *
1554 * Freeing memory from current node means freeing memory from a node which
1555 * we'll use or we've used. So, it may make LRU bad. And if several threads
1556 * hit limits, it will see a contention on a node. But freeing from remote
1557 * node means more costs for memory reclaim because of memory latency.
1558 *
1559 * Now, we use round-robin. Better algorithm is welcomed.
1560 */
1561 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1562 {
1563 int node;
1564
1565 mem_cgroup_may_update_nodemask(memcg);
1566 node = memcg->last_scanned_node;
1567
1568 node = next_node(node, memcg->scan_nodes);
1569 if (node == MAX_NUMNODES)
1570 node = first_node(memcg->scan_nodes);
1571 /*
1572 * We call this when we hit limit, not when pages are added to LRU.
1573 * No LRU may hold pages because all pages are UNEVICTABLE or
1574 * memcg is too small and all pages are not on LRU. In that case,
1575 * we use curret node.
1576 */
1577 if (unlikely(node == MAX_NUMNODES))
1578 node = numa_node_id();
1579
1580 memcg->last_scanned_node = node;
1581 return node;
1582 }
1583
1584 /*
1585 * Check all nodes whether it contains reclaimable pages or not.
1586 * For quick scan, we make use of scan_nodes. This will allow us to skip
1587 * unused nodes. But scan_nodes is lazily updated and may not cotain
1588 * enough new information. We need to do double check.
1589 */
1590 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1591 {
1592 int nid;
1593
1594 /*
1595 * quick check...making use of scan_node.
1596 * We can skip unused nodes.
1597 */
1598 if (!nodes_empty(memcg->scan_nodes)) {
1599 for (nid = first_node(memcg->scan_nodes);
1600 nid < MAX_NUMNODES;
1601 nid = next_node(nid, memcg->scan_nodes)) {
1602
1603 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1604 return true;
1605 }
1606 }
1607 /*
1608 * Check rest of nodes.
1609 */
1610 for_each_node_state(nid, N_HIGH_MEMORY) {
1611 if (node_isset(nid, memcg->scan_nodes))
1612 continue;
1613 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1614 return true;
1615 }
1616 return false;
1617 }
1618
1619 #else
1620 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1621 {
1622 return 0;
1623 }
1624
1625 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1626 {
1627 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1628 }
1629 #endif
1630
1631 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1632 struct zone *zone,
1633 gfp_t gfp_mask,
1634 unsigned long *total_scanned)
1635 {
1636 struct mem_cgroup *victim = NULL;
1637 int total = 0;
1638 int loop = 0;
1639 unsigned long excess;
1640 unsigned long nr_scanned;
1641 struct mem_cgroup_reclaim_cookie reclaim = {
1642 .zone = zone,
1643 .priority = 0,
1644 };
1645
1646 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1647
1648 while (1) {
1649 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1650 if (!victim) {
1651 loop++;
1652 if (loop >= 2) {
1653 /*
1654 * If we have not been able to reclaim
1655 * anything, it might because there are
1656 * no reclaimable pages under this hierarchy
1657 */
1658 if (!total)
1659 break;
1660 /*
1661 * We want to do more targeted reclaim.
1662 * excess >> 2 is not to excessive so as to
1663 * reclaim too much, nor too less that we keep
1664 * coming back to reclaim from this cgroup
1665 */
1666 if (total >= (excess >> 2) ||
1667 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1668 break;
1669 }
1670 continue;
1671 }
1672 if (!mem_cgroup_reclaimable(victim, false))
1673 continue;
1674 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1675 zone, &nr_scanned);
1676 *total_scanned += nr_scanned;
1677 if (!res_counter_soft_limit_excess(&root_memcg->res))
1678 break;
1679 }
1680 mem_cgroup_iter_break(root_memcg, victim);
1681 return total;
1682 }
1683
1684 /*
1685 * Check OOM-Killer is already running under our hierarchy.
1686 * If someone is running, return false.
1687 * Has to be called with memcg_oom_lock
1688 */
1689 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1690 {
1691 struct mem_cgroup *iter, *failed = NULL;
1692
1693 for_each_mem_cgroup_tree(iter, memcg) {
1694 if (iter->oom_lock) {
1695 /*
1696 * this subtree of our hierarchy is already locked
1697 * so we cannot give a lock.
1698 */
1699 failed = iter;
1700 mem_cgroup_iter_break(memcg, iter);
1701 break;
1702 } else
1703 iter->oom_lock = true;
1704 }
1705
1706 if (!failed)
1707 return true;
1708
1709 /*
1710 * OK, we failed to lock the whole subtree so we have to clean up
1711 * what we set up to the failing subtree
1712 */
1713 for_each_mem_cgroup_tree(iter, memcg) {
1714 if (iter == failed) {
1715 mem_cgroup_iter_break(memcg, iter);
1716 break;
1717 }
1718 iter->oom_lock = false;
1719 }
1720 return false;
1721 }
1722
1723 /*
1724 * Has to be called with memcg_oom_lock
1725 */
1726 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1727 {
1728 struct mem_cgroup *iter;
1729
1730 for_each_mem_cgroup_tree(iter, memcg)
1731 iter->oom_lock = false;
1732 return 0;
1733 }
1734
1735 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1736 {
1737 struct mem_cgroup *iter;
1738
1739 for_each_mem_cgroup_tree(iter, memcg)
1740 atomic_inc(&iter->under_oom);
1741 }
1742
1743 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1744 {
1745 struct mem_cgroup *iter;
1746
1747 /*
1748 * When a new child is created while the hierarchy is under oom,
1749 * mem_cgroup_oom_lock() may not be called. We have to use
1750 * atomic_add_unless() here.
1751 */
1752 for_each_mem_cgroup_tree(iter, memcg)
1753 atomic_add_unless(&iter->under_oom, -1, 0);
1754 }
1755
1756 static DEFINE_SPINLOCK(memcg_oom_lock);
1757 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1758
1759 struct oom_wait_info {
1760 struct mem_cgroup *memcg;
1761 wait_queue_t wait;
1762 };
1763
1764 static int memcg_oom_wake_function(wait_queue_t *wait,
1765 unsigned mode, int sync, void *arg)
1766 {
1767 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1768 struct mem_cgroup *oom_wait_memcg;
1769 struct oom_wait_info *oom_wait_info;
1770
1771 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1772 oom_wait_memcg = oom_wait_info->memcg;
1773
1774 /*
1775 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1776 * Then we can use css_is_ancestor without taking care of RCU.
1777 */
1778 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1779 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1780 return 0;
1781 return autoremove_wake_function(wait, mode, sync, arg);
1782 }
1783
1784 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1785 {
1786 /* for filtering, pass "memcg" as argument. */
1787 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1788 }
1789
1790 static void memcg_oom_recover(struct mem_cgroup *memcg)
1791 {
1792 if (memcg && atomic_read(&memcg->under_oom))
1793 memcg_wakeup_oom(memcg);
1794 }
1795
1796 /*
1797 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1798 */
1799 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1800 int order)
1801 {
1802 struct oom_wait_info owait;
1803 bool locked, need_to_kill;
1804
1805 owait.memcg = memcg;
1806 owait.wait.flags = 0;
1807 owait.wait.func = memcg_oom_wake_function;
1808 owait.wait.private = current;
1809 INIT_LIST_HEAD(&owait.wait.task_list);
1810 need_to_kill = true;
1811 mem_cgroup_mark_under_oom(memcg);
1812
1813 /* At first, try to OOM lock hierarchy under memcg.*/
1814 spin_lock(&memcg_oom_lock);
1815 locked = mem_cgroup_oom_lock(memcg);
1816 /*
1817 * Even if signal_pending(), we can't quit charge() loop without
1818 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1819 * under OOM is always welcomed, use TASK_KILLABLE here.
1820 */
1821 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1822 if (!locked || memcg->oom_kill_disable)
1823 need_to_kill = false;
1824 if (locked)
1825 mem_cgroup_oom_notify(memcg);
1826 spin_unlock(&memcg_oom_lock);
1827
1828 if (need_to_kill) {
1829 finish_wait(&memcg_oom_waitq, &owait.wait);
1830 mem_cgroup_out_of_memory(memcg, mask, order);
1831 } else {
1832 schedule();
1833 finish_wait(&memcg_oom_waitq, &owait.wait);
1834 }
1835 spin_lock(&memcg_oom_lock);
1836 if (locked)
1837 mem_cgroup_oom_unlock(memcg);
1838 memcg_wakeup_oom(memcg);
1839 spin_unlock(&memcg_oom_lock);
1840
1841 mem_cgroup_unmark_under_oom(memcg);
1842
1843 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1844 return false;
1845 /* Give chance to dying process */
1846 schedule_timeout_uninterruptible(1);
1847 return true;
1848 }
1849
1850 /*
1851 * Currently used to update mapped file statistics, but the routine can be
1852 * generalized to update other statistics as well.
1853 *
1854 * Notes: Race condition
1855 *
1856 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1857 * it tends to be costly. But considering some conditions, we doesn't need
1858 * to do so _always_.
1859 *
1860 * Considering "charge", lock_page_cgroup() is not required because all
1861 * file-stat operations happen after a page is attached to radix-tree. There
1862 * are no race with "charge".
1863 *
1864 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1865 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1866 * if there are race with "uncharge". Statistics itself is properly handled
1867 * by flags.
1868 *
1869 * Considering "move", this is an only case we see a race. To make the race
1870 * small, we check mm->moving_account and detect there are possibility of race
1871 * If there is, we take a lock.
1872 */
1873
1874 void __mem_cgroup_begin_update_page_stat(struct page *page,
1875 bool *locked, unsigned long *flags)
1876 {
1877 struct mem_cgroup *memcg;
1878 struct page_cgroup *pc;
1879
1880 pc = lookup_page_cgroup(page);
1881 again:
1882 memcg = pc->mem_cgroup;
1883 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1884 return;
1885 /*
1886 * If this memory cgroup is not under account moving, we don't
1887 * need to take move_lock_page_cgroup(). Because we already hold
1888 * rcu_read_lock(), any calls to move_account will be delayed until
1889 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1890 */
1891 if (!mem_cgroup_stolen(memcg))
1892 return;
1893
1894 move_lock_mem_cgroup(memcg, flags);
1895 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1896 move_unlock_mem_cgroup(memcg, flags);
1897 goto again;
1898 }
1899 *locked = true;
1900 }
1901
1902 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1903 {
1904 struct page_cgroup *pc = lookup_page_cgroup(page);
1905
1906 /*
1907 * It's guaranteed that pc->mem_cgroup never changes while
1908 * lock is held because a routine modifies pc->mem_cgroup
1909 * should take move_lock_page_cgroup().
1910 */
1911 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1912 }
1913
1914 void mem_cgroup_update_page_stat(struct page *page,
1915 enum mem_cgroup_page_stat_item idx, int val)
1916 {
1917 struct mem_cgroup *memcg;
1918 struct page_cgroup *pc = lookup_page_cgroup(page);
1919 unsigned long uninitialized_var(flags);
1920
1921 if (mem_cgroup_disabled())
1922 return;
1923
1924 memcg = pc->mem_cgroup;
1925 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1926 return;
1927
1928 switch (idx) {
1929 case MEMCG_NR_FILE_MAPPED:
1930 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1931 break;
1932 default:
1933 BUG();
1934 }
1935
1936 this_cpu_add(memcg->stat->count[idx], val);
1937 }
1938
1939 /*
1940 * size of first charge trial. "32" comes from vmscan.c's magic value.
1941 * TODO: maybe necessary to use big numbers in big irons.
1942 */
1943 #define CHARGE_BATCH 32U
1944 struct memcg_stock_pcp {
1945 struct mem_cgroup *cached; /* this never be root cgroup */
1946 unsigned int nr_pages;
1947 struct work_struct work;
1948 unsigned long flags;
1949 #define FLUSHING_CACHED_CHARGE 0
1950 };
1951 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1952 static DEFINE_MUTEX(percpu_charge_mutex);
1953
1954 /*
1955 * Try to consume stocked charge on this cpu. If success, one page is consumed
1956 * from local stock and true is returned. If the stock is 0 or charges from a
1957 * cgroup which is not current target, returns false. This stock will be
1958 * refilled.
1959 */
1960 static bool consume_stock(struct mem_cgroup *memcg)
1961 {
1962 struct memcg_stock_pcp *stock;
1963 bool ret = true;
1964
1965 stock = &get_cpu_var(memcg_stock);
1966 if (memcg == stock->cached && stock->nr_pages)
1967 stock->nr_pages--;
1968 else /* need to call res_counter_charge */
1969 ret = false;
1970 put_cpu_var(memcg_stock);
1971 return ret;
1972 }
1973
1974 /*
1975 * Returns stocks cached in percpu to res_counter and reset cached information.
1976 */
1977 static void drain_stock(struct memcg_stock_pcp *stock)
1978 {
1979 struct mem_cgroup *old = stock->cached;
1980
1981 if (stock->nr_pages) {
1982 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1983
1984 res_counter_uncharge(&old->res, bytes);
1985 if (do_swap_account)
1986 res_counter_uncharge(&old->memsw, bytes);
1987 stock->nr_pages = 0;
1988 }
1989 stock->cached = NULL;
1990 }
1991
1992 /*
1993 * This must be called under preempt disabled or must be called by
1994 * a thread which is pinned to local cpu.
1995 */
1996 static void drain_local_stock(struct work_struct *dummy)
1997 {
1998 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1999 drain_stock(stock);
2000 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2001 }
2002
2003 /*
2004 * Cache charges(val) which is from res_counter, to local per_cpu area.
2005 * This will be consumed by consume_stock() function, later.
2006 */
2007 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2008 {
2009 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2010
2011 if (stock->cached != memcg) { /* reset if necessary */
2012 drain_stock(stock);
2013 stock->cached = memcg;
2014 }
2015 stock->nr_pages += nr_pages;
2016 put_cpu_var(memcg_stock);
2017 }
2018
2019 /*
2020 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2021 * of the hierarchy under it. sync flag says whether we should block
2022 * until the work is done.
2023 */
2024 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2025 {
2026 int cpu, curcpu;
2027
2028 /* Notify other cpus that system-wide "drain" is running */
2029 get_online_cpus();
2030 curcpu = get_cpu();
2031 for_each_online_cpu(cpu) {
2032 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2033 struct mem_cgroup *memcg;
2034
2035 memcg = stock->cached;
2036 if (!memcg || !stock->nr_pages)
2037 continue;
2038 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2039 continue;
2040 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2041 if (cpu == curcpu)
2042 drain_local_stock(&stock->work);
2043 else
2044 schedule_work_on(cpu, &stock->work);
2045 }
2046 }
2047 put_cpu();
2048
2049 if (!sync)
2050 goto out;
2051
2052 for_each_online_cpu(cpu) {
2053 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2054 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2055 flush_work(&stock->work);
2056 }
2057 out:
2058 put_online_cpus();
2059 }
2060
2061 /*
2062 * Tries to drain stocked charges in other cpus. This function is asynchronous
2063 * and just put a work per cpu for draining localy on each cpu. Caller can
2064 * expects some charges will be back to res_counter later but cannot wait for
2065 * it.
2066 */
2067 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2068 {
2069 /*
2070 * If someone calls draining, avoid adding more kworker runs.
2071 */
2072 if (!mutex_trylock(&percpu_charge_mutex))
2073 return;
2074 drain_all_stock(root_memcg, false);
2075 mutex_unlock(&percpu_charge_mutex);
2076 }
2077
2078 /* This is a synchronous drain interface. */
2079 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2080 {
2081 /* called when force_empty is called */
2082 mutex_lock(&percpu_charge_mutex);
2083 drain_all_stock(root_memcg, true);
2084 mutex_unlock(&percpu_charge_mutex);
2085 }
2086
2087 /*
2088 * This function drains percpu counter value from DEAD cpu and
2089 * move it to local cpu. Note that this function can be preempted.
2090 */
2091 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2092 {
2093 int i;
2094
2095 spin_lock(&memcg->pcp_counter_lock);
2096 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2097 long x = per_cpu(memcg->stat->count[i], cpu);
2098
2099 per_cpu(memcg->stat->count[i], cpu) = 0;
2100 memcg->nocpu_base.count[i] += x;
2101 }
2102 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2103 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2104
2105 per_cpu(memcg->stat->events[i], cpu) = 0;
2106 memcg->nocpu_base.events[i] += x;
2107 }
2108 spin_unlock(&memcg->pcp_counter_lock);
2109 }
2110
2111 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2112 unsigned long action,
2113 void *hcpu)
2114 {
2115 int cpu = (unsigned long)hcpu;
2116 struct memcg_stock_pcp *stock;
2117 struct mem_cgroup *iter;
2118
2119 if (action == CPU_ONLINE)
2120 return NOTIFY_OK;
2121
2122 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2123 return NOTIFY_OK;
2124
2125 for_each_mem_cgroup(iter)
2126 mem_cgroup_drain_pcp_counter(iter, cpu);
2127
2128 stock = &per_cpu(memcg_stock, cpu);
2129 drain_stock(stock);
2130 return NOTIFY_OK;
2131 }
2132
2133
2134 /* See __mem_cgroup_try_charge() for details */
2135 enum {
2136 CHARGE_OK, /* success */
2137 CHARGE_RETRY, /* need to retry but retry is not bad */
2138 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2139 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2140 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2141 };
2142
2143 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2144 unsigned int nr_pages, bool oom_check)
2145 {
2146 unsigned long csize = nr_pages * PAGE_SIZE;
2147 struct mem_cgroup *mem_over_limit;
2148 struct res_counter *fail_res;
2149 unsigned long flags = 0;
2150 int ret;
2151
2152 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2153
2154 if (likely(!ret)) {
2155 if (!do_swap_account)
2156 return CHARGE_OK;
2157 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2158 if (likely(!ret))
2159 return CHARGE_OK;
2160
2161 res_counter_uncharge(&memcg->res, csize);
2162 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2163 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2164 } else
2165 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2166 /*
2167 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2168 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2169 *
2170 * Never reclaim on behalf of optional batching, retry with a
2171 * single page instead.
2172 */
2173 if (nr_pages == CHARGE_BATCH)
2174 return CHARGE_RETRY;
2175
2176 if (!(gfp_mask & __GFP_WAIT))
2177 return CHARGE_WOULDBLOCK;
2178
2179 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2180 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2181 return CHARGE_RETRY;
2182 /*
2183 * Even though the limit is exceeded at this point, reclaim
2184 * may have been able to free some pages. Retry the charge
2185 * before killing the task.
2186 *
2187 * Only for regular pages, though: huge pages are rather
2188 * unlikely to succeed so close to the limit, and we fall back
2189 * to regular pages anyway in case of failure.
2190 */
2191 if (nr_pages == 1 && ret)
2192 return CHARGE_RETRY;
2193
2194 /*
2195 * At task move, charge accounts can be doubly counted. So, it's
2196 * better to wait until the end of task_move if something is going on.
2197 */
2198 if (mem_cgroup_wait_acct_move(mem_over_limit))
2199 return CHARGE_RETRY;
2200
2201 /* If we don't need to call oom-killer at el, return immediately */
2202 if (!oom_check)
2203 return CHARGE_NOMEM;
2204 /* check OOM */
2205 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2206 return CHARGE_OOM_DIE;
2207
2208 return CHARGE_RETRY;
2209 }
2210
2211 /*
2212 * __mem_cgroup_try_charge() does
2213 * 1. detect memcg to be charged against from passed *mm and *ptr,
2214 * 2. update res_counter
2215 * 3. call memory reclaim if necessary.
2216 *
2217 * In some special case, if the task is fatal, fatal_signal_pending() or
2218 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2219 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2220 * as possible without any hazards. 2: all pages should have a valid
2221 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2222 * pointer, that is treated as a charge to root_mem_cgroup.
2223 *
2224 * So __mem_cgroup_try_charge() will return
2225 * 0 ... on success, filling *ptr with a valid memcg pointer.
2226 * -ENOMEM ... charge failure because of resource limits.
2227 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2228 *
2229 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2230 * the oom-killer can be invoked.
2231 */
2232 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2233 gfp_t gfp_mask,
2234 unsigned int nr_pages,
2235 struct mem_cgroup **ptr,
2236 bool oom)
2237 {
2238 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2239 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2240 struct mem_cgroup *memcg = NULL;
2241 int ret;
2242
2243 /*
2244 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2245 * in system level. So, allow to go ahead dying process in addition to
2246 * MEMDIE process.
2247 */
2248 if (unlikely(test_thread_flag(TIF_MEMDIE)
2249 || fatal_signal_pending(current)))
2250 goto bypass;
2251
2252 /*
2253 * We always charge the cgroup the mm_struct belongs to.
2254 * The mm_struct's mem_cgroup changes on task migration if the
2255 * thread group leader migrates. It's possible that mm is not
2256 * set, if so charge the init_mm (happens for pagecache usage).
2257 */
2258 if (!*ptr && !mm)
2259 *ptr = root_mem_cgroup;
2260 again:
2261 if (*ptr) { /* css should be a valid one */
2262 memcg = *ptr;
2263 VM_BUG_ON(css_is_removed(&memcg->css));
2264 if (mem_cgroup_is_root(memcg))
2265 goto done;
2266 if (nr_pages == 1 && consume_stock(memcg))
2267 goto done;
2268 css_get(&memcg->css);
2269 } else {
2270 struct task_struct *p;
2271
2272 rcu_read_lock();
2273 p = rcu_dereference(mm->owner);
2274 /*
2275 * Because we don't have task_lock(), "p" can exit.
2276 * In that case, "memcg" can point to root or p can be NULL with
2277 * race with swapoff. Then, we have small risk of mis-accouning.
2278 * But such kind of mis-account by race always happens because
2279 * we don't have cgroup_mutex(). It's overkill and we allo that
2280 * small race, here.
2281 * (*) swapoff at el will charge against mm-struct not against
2282 * task-struct. So, mm->owner can be NULL.
2283 */
2284 memcg = mem_cgroup_from_task(p);
2285 if (!memcg)
2286 memcg = root_mem_cgroup;
2287 if (mem_cgroup_is_root(memcg)) {
2288 rcu_read_unlock();
2289 goto done;
2290 }
2291 if (nr_pages == 1 && consume_stock(memcg)) {
2292 /*
2293 * It seems dagerous to access memcg without css_get().
2294 * But considering how consume_stok works, it's not
2295 * necessary. If consume_stock success, some charges
2296 * from this memcg are cached on this cpu. So, we
2297 * don't need to call css_get()/css_tryget() before
2298 * calling consume_stock().
2299 */
2300 rcu_read_unlock();
2301 goto done;
2302 }
2303 /* after here, we may be blocked. we need to get refcnt */
2304 if (!css_tryget(&memcg->css)) {
2305 rcu_read_unlock();
2306 goto again;
2307 }
2308 rcu_read_unlock();
2309 }
2310
2311 do {
2312 bool oom_check;
2313
2314 /* If killed, bypass charge */
2315 if (fatal_signal_pending(current)) {
2316 css_put(&memcg->css);
2317 goto bypass;
2318 }
2319
2320 oom_check = false;
2321 if (oom && !nr_oom_retries) {
2322 oom_check = true;
2323 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2324 }
2325
2326 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2327 switch (ret) {
2328 case CHARGE_OK:
2329 break;
2330 case CHARGE_RETRY: /* not in OOM situation but retry */
2331 batch = nr_pages;
2332 css_put(&memcg->css);
2333 memcg = NULL;
2334 goto again;
2335 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2336 css_put(&memcg->css);
2337 goto nomem;
2338 case CHARGE_NOMEM: /* OOM routine works */
2339 if (!oom) {
2340 css_put(&memcg->css);
2341 goto nomem;
2342 }
2343 /* If oom, we never return -ENOMEM */
2344 nr_oom_retries--;
2345 break;
2346 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2347 css_put(&memcg->css);
2348 goto bypass;
2349 }
2350 } while (ret != CHARGE_OK);
2351
2352 if (batch > nr_pages)
2353 refill_stock(memcg, batch - nr_pages);
2354 css_put(&memcg->css);
2355 done:
2356 *ptr = memcg;
2357 return 0;
2358 nomem:
2359 *ptr = NULL;
2360 return -ENOMEM;
2361 bypass:
2362 *ptr = root_mem_cgroup;
2363 return -EINTR;
2364 }
2365
2366 /*
2367 * Somemtimes we have to undo a charge we got by try_charge().
2368 * This function is for that and do uncharge, put css's refcnt.
2369 * gotten by try_charge().
2370 */
2371 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2372 unsigned int nr_pages)
2373 {
2374 if (!mem_cgroup_is_root(memcg)) {
2375 unsigned long bytes = nr_pages * PAGE_SIZE;
2376
2377 res_counter_uncharge(&memcg->res, bytes);
2378 if (do_swap_account)
2379 res_counter_uncharge(&memcg->memsw, bytes);
2380 }
2381 }
2382
2383 /*
2384 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2385 * This is useful when moving usage to parent cgroup.
2386 */
2387 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2388 unsigned int nr_pages)
2389 {
2390 unsigned long bytes = nr_pages * PAGE_SIZE;
2391
2392 if (mem_cgroup_is_root(memcg))
2393 return;
2394
2395 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2396 if (do_swap_account)
2397 res_counter_uncharge_until(&memcg->memsw,
2398 memcg->memsw.parent, bytes);
2399 }
2400
2401 /*
2402 * A helper function to get mem_cgroup from ID. must be called under
2403 * rcu_read_lock(). The caller must check css_is_removed() or some if
2404 * it's concern. (dropping refcnt from swap can be called against removed
2405 * memcg.)
2406 */
2407 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2408 {
2409 struct cgroup_subsys_state *css;
2410
2411 /* ID 0 is unused ID */
2412 if (!id)
2413 return NULL;
2414 css = css_lookup(&mem_cgroup_subsys, id);
2415 if (!css)
2416 return NULL;
2417 return container_of(css, struct mem_cgroup, css);
2418 }
2419
2420 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2421 {
2422 struct mem_cgroup *memcg = NULL;
2423 struct page_cgroup *pc;
2424 unsigned short id;
2425 swp_entry_t ent;
2426
2427 VM_BUG_ON(!PageLocked(page));
2428
2429 pc = lookup_page_cgroup(page);
2430 lock_page_cgroup(pc);
2431 if (PageCgroupUsed(pc)) {
2432 memcg = pc->mem_cgroup;
2433 if (memcg && !css_tryget(&memcg->css))
2434 memcg = NULL;
2435 } else if (PageSwapCache(page)) {
2436 ent.val = page_private(page);
2437 id = lookup_swap_cgroup_id(ent);
2438 rcu_read_lock();
2439 memcg = mem_cgroup_lookup(id);
2440 if (memcg && !css_tryget(&memcg->css))
2441 memcg = NULL;
2442 rcu_read_unlock();
2443 }
2444 unlock_page_cgroup(pc);
2445 return memcg;
2446 }
2447
2448 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2449 struct page *page,
2450 unsigned int nr_pages,
2451 enum charge_type ctype,
2452 bool lrucare)
2453 {
2454 struct page_cgroup *pc = lookup_page_cgroup(page);
2455 struct zone *uninitialized_var(zone);
2456 struct lruvec *lruvec;
2457 bool was_on_lru = false;
2458 bool anon;
2459
2460 lock_page_cgroup(pc);
2461 if (unlikely(PageCgroupUsed(pc))) {
2462 unlock_page_cgroup(pc);
2463 __mem_cgroup_cancel_charge(memcg, nr_pages);
2464 return;
2465 }
2466 /*
2467 * we don't need page_cgroup_lock about tail pages, becase they are not
2468 * accessed by any other context at this point.
2469 */
2470
2471 /*
2472 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2473 * may already be on some other mem_cgroup's LRU. Take care of it.
2474 */
2475 if (lrucare) {
2476 zone = page_zone(page);
2477 spin_lock_irq(&zone->lru_lock);
2478 if (PageLRU(page)) {
2479 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2480 ClearPageLRU(page);
2481 del_page_from_lru_list(page, lruvec, page_lru(page));
2482 was_on_lru = true;
2483 }
2484 }
2485
2486 pc->mem_cgroup = memcg;
2487 /*
2488 * We access a page_cgroup asynchronously without lock_page_cgroup().
2489 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2490 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2491 * before USED bit, we need memory barrier here.
2492 * See mem_cgroup_add_lru_list(), etc.
2493 */
2494 smp_wmb();
2495 SetPageCgroupUsed(pc);
2496
2497 if (lrucare) {
2498 if (was_on_lru) {
2499 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2500 VM_BUG_ON(PageLRU(page));
2501 SetPageLRU(page);
2502 add_page_to_lru_list(page, lruvec, page_lru(page));
2503 }
2504 spin_unlock_irq(&zone->lru_lock);
2505 }
2506
2507 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2508 anon = true;
2509 else
2510 anon = false;
2511
2512 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2513 unlock_page_cgroup(pc);
2514
2515 /*
2516 * "charge_statistics" updated event counter. Then, check it.
2517 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2518 * if they exceeds softlimit.
2519 */
2520 memcg_check_events(memcg, page);
2521 }
2522
2523 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2524
2525 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2526 /*
2527 * Because tail pages are not marked as "used", set it. We're under
2528 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2529 * charge/uncharge will be never happen and move_account() is done under
2530 * compound_lock(), so we don't have to take care of races.
2531 */
2532 void mem_cgroup_split_huge_fixup(struct page *head)
2533 {
2534 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2535 struct page_cgroup *pc;
2536 int i;
2537
2538 if (mem_cgroup_disabled())
2539 return;
2540 for (i = 1; i < HPAGE_PMD_NR; i++) {
2541 pc = head_pc + i;
2542 pc->mem_cgroup = head_pc->mem_cgroup;
2543 smp_wmb();/* see __commit_charge() */
2544 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2545 }
2546 }
2547 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2548
2549 /**
2550 * mem_cgroup_move_account - move account of the page
2551 * @page: the page
2552 * @nr_pages: number of regular pages (>1 for huge pages)
2553 * @pc: page_cgroup of the page.
2554 * @from: mem_cgroup which the page is moved from.
2555 * @to: mem_cgroup which the page is moved to. @from != @to.
2556 *
2557 * The caller must confirm following.
2558 * - page is not on LRU (isolate_page() is useful.)
2559 * - compound_lock is held when nr_pages > 1
2560 *
2561 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2562 * from old cgroup.
2563 */
2564 static int mem_cgroup_move_account(struct page *page,
2565 unsigned int nr_pages,
2566 struct page_cgroup *pc,
2567 struct mem_cgroup *from,
2568 struct mem_cgroup *to)
2569 {
2570 unsigned long flags;
2571 int ret;
2572 bool anon = PageAnon(page);
2573
2574 VM_BUG_ON(from == to);
2575 VM_BUG_ON(PageLRU(page));
2576 /*
2577 * The page is isolated from LRU. So, collapse function
2578 * will not handle this page. But page splitting can happen.
2579 * Do this check under compound_page_lock(). The caller should
2580 * hold it.
2581 */
2582 ret = -EBUSY;
2583 if (nr_pages > 1 && !PageTransHuge(page))
2584 goto out;
2585
2586 lock_page_cgroup(pc);
2587
2588 ret = -EINVAL;
2589 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2590 goto unlock;
2591
2592 move_lock_mem_cgroup(from, &flags);
2593
2594 if (!anon && page_mapped(page)) {
2595 /* Update mapped_file data for mem_cgroup */
2596 preempt_disable();
2597 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2598 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2599 preempt_enable();
2600 }
2601 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2602
2603 /* caller should have done css_get */
2604 pc->mem_cgroup = to;
2605 mem_cgroup_charge_statistics(to, anon, nr_pages);
2606 /*
2607 * We charges against "to" which may not have any tasks. Then, "to"
2608 * can be under rmdir(). But in current implementation, caller of
2609 * this function is just force_empty() and move charge, so it's
2610 * guaranteed that "to" is never removed. So, we don't check rmdir
2611 * status here.
2612 */
2613 move_unlock_mem_cgroup(from, &flags);
2614 ret = 0;
2615 unlock:
2616 unlock_page_cgroup(pc);
2617 /*
2618 * check events
2619 */
2620 memcg_check_events(to, page);
2621 memcg_check_events(from, page);
2622 out:
2623 return ret;
2624 }
2625
2626 /*
2627 * move charges to its parent.
2628 */
2629
2630 static int mem_cgroup_move_parent(struct page *page,
2631 struct page_cgroup *pc,
2632 struct mem_cgroup *child,
2633 gfp_t gfp_mask)
2634 {
2635 struct mem_cgroup *parent;
2636 unsigned int nr_pages;
2637 unsigned long uninitialized_var(flags);
2638 int ret;
2639
2640 /* Is ROOT ? */
2641 if (mem_cgroup_is_root(child))
2642 return -EINVAL;
2643
2644 ret = -EBUSY;
2645 if (!get_page_unless_zero(page))
2646 goto out;
2647 if (isolate_lru_page(page))
2648 goto put;
2649
2650 nr_pages = hpage_nr_pages(page);
2651
2652 parent = parent_mem_cgroup(child);
2653 /*
2654 * If no parent, move charges to root cgroup.
2655 */
2656 if (!parent)
2657 parent = root_mem_cgroup;
2658
2659 if (nr_pages > 1)
2660 flags = compound_lock_irqsave(page);
2661
2662 ret = mem_cgroup_move_account(page, nr_pages,
2663 pc, child, parent);
2664 if (!ret)
2665 __mem_cgroup_cancel_local_charge(child, nr_pages);
2666
2667 if (nr_pages > 1)
2668 compound_unlock_irqrestore(page, flags);
2669 putback_lru_page(page);
2670 put:
2671 put_page(page);
2672 out:
2673 return ret;
2674 }
2675
2676 /*
2677 * Charge the memory controller for page usage.
2678 * Return
2679 * 0 if the charge was successful
2680 * < 0 if the cgroup is over its limit
2681 */
2682 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2683 gfp_t gfp_mask, enum charge_type ctype)
2684 {
2685 struct mem_cgroup *memcg = NULL;
2686 unsigned int nr_pages = 1;
2687 bool oom = true;
2688 int ret;
2689
2690 if (PageTransHuge(page)) {
2691 nr_pages <<= compound_order(page);
2692 VM_BUG_ON(!PageTransHuge(page));
2693 /*
2694 * Never OOM-kill a process for a huge page. The
2695 * fault handler will fall back to regular pages.
2696 */
2697 oom = false;
2698 }
2699
2700 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2701 if (ret == -ENOMEM)
2702 return ret;
2703 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2704 return 0;
2705 }
2706
2707 int mem_cgroup_newpage_charge(struct page *page,
2708 struct mm_struct *mm, gfp_t gfp_mask)
2709 {
2710 if (mem_cgroup_disabled())
2711 return 0;
2712 VM_BUG_ON(page_mapped(page));
2713 VM_BUG_ON(page->mapping && !PageAnon(page));
2714 VM_BUG_ON(!mm);
2715 return mem_cgroup_charge_common(page, mm, gfp_mask,
2716 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2717 }
2718
2719 static void
2720 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2721 enum charge_type ctype);
2722
2723 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2724 gfp_t gfp_mask)
2725 {
2726 struct mem_cgroup *memcg = NULL;
2727 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2728 int ret;
2729
2730 if (mem_cgroup_disabled())
2731 return 0;
2732 if (PageCompound(page))
2733 return 0;
2734
2735 if (unlikely(!mm))
2736 mm = &init_mm;
2737 if (!page_is_file_cache(page))
2738 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2739
2740 if (!PageSwapCache(page))
2741 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2742 else { /* page is swapcache/shmem */
2743 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2744 if (!ret)
2745 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2746 }
2747 return ret;
2748 }
2749
2750 /*
2751 * While swap-in, try_charge -> commit or cancel, the page is locked.
2752 * And when try_charge() successfully returns, one refcnt to memcg without
2753 * struct page_cgroup is acquired. This refcnt will be consumed by
2754 * "commit()" or removed by "cancel()"
2755 */
2756 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2757 struct page *page,
2758 gfp_t mask, struct mem_cgroup **memcgp)
2759 {
2760 struct mem_cgroup *memcg;
2761 int ret;
2762
2763 *memcgp = NULL;
2764
2765 if (mem_cgroup_disabled())
2766 return 0;
2767
2768 if (!do_swap_account)
2769 goto charge_cur_mm;
2770 /*
2771 * A racing thread's fault, or swapoff, may have already updated
2772 * the pte, and even removed page from swap cache: in those cases
2773 * do_swap_page()'s pte_same() test will fail; but there's also a
2774 * KSM case which does need to charge the page.
2775 */
2776 if (!PageSwapCache(page))
2777 goto charge_cur_mm;
2778 memcg = try_get_mem_cgroup_from_page(page);
2779 if (!memcg)
2780 goto charge_cur_mm;
2781 *memcgp = memcg;
2782 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2783 css_put(&memcg->css);
2784 if (ret == -EINTR)
2785 ret = 0;
2786 return ret;
2787 charge_cur_mm:
2788 if (unlikely(!mm))
2789 mm = &init_mm;
2790 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2791 if (ret == -EINTR)
2792 ret = 0;
2793 return ret;
2794 }
2795
2796 static void
2797 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2798 enum charge_type ctype)
2799 {
2800 if (mem_cgroup_disabled())
2801 return;
2802 if (!memcg)
2803 return;
2804 cgroup_exclude_rmdir(&memcg->css);
2805
2806 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2807 /*
2808 * Now swap is on-memory. This means this page may be
2809 * counted both as mem and swap....double count.
2810 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2811 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2812 * may call delete_from_swap_cache() before reach here.
2813 */
2814 if (do_swap_account && PageSwapCache(page)) {
2815 swp_entry_t ent = {.val = page_private(page)};
2816 mem_cgroup_uncharge_swap(ent);
2817 }
2818 /*
2819 * At swapin, we may charge account against cgroup which has no tasks.
2820 * So, rmdir()->pre_destroy() can be called while we do this charge.
2821 * In that case, we need to call pre_destroy() again. check it here.
2822 */
2823 cgroup_release_and_wakeup_rmdir(&memcg->css);
2824 }
2825
2826 void mem_cgroup_commit_charge_swapin(struct page *page,
2827 struct mem_cgroup *memcg)
2828 {
2829 __mem_cgroup_commit_charge_swapin(page, memcg,
2830 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2831 }
2832
2833 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2834 {
2835 if (mem_cgroup_disabled())
2836 return;
2837 if (!memcg)
2838 return;
2839 __mem_cgroup_cancel_charge(memcg, 1);
2840 }
2841
2842 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2843 unsigned int nr_pages,
2844 const enum charge_type ctype)
2845 {
2846 struct memcg_batch_info *batch = NULL;
2847 bool uncharge_memsw = true;
2848
2849 /* If swapout, usage of swap doesn't decrease */
2850 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2851 uncharge_memsw = false;
2852
2853 batch = &current->memcg_batch;
2854 /*
2855 * In usual, we do css_get() when we remember memcg pointer.
2856 * But in this case, we keep res->usage until end of a series of
2857 * uncharges. Then, it's ok to ignore memcg's refcnt.
2858 */
2859 if (!batch->memcg)
2860 batch->memcg = memcg;
2861 /*
2862 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2863 * In those cases, all pages freed continuously can be expected to be in
2864 * the same cgroup and we have chance to coalesce uncharges.
2865 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2866 * because we want to do uncharge as soon as possible.
2867 */
2868
2869 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2870 goto direct_uncharge;
2871
2872 if (nr_pages > 1)
2873 goto direct_uncharge;
2874
2875 /*
2876 * In typical case, batch->memcg == mem. This means we can
2877 * merge a series of uncharges to an uncharge of res_counter.
2878 * If not, we uncharge res_counter ony by one.
2879 */
2880 if (batch->memcg != memcg)
2881 goto direct_uncharge;
2882 /* remember freed charge and uncharge it later */
2883 batch->nr_pages++;
2884 if (uncharge_memsw)
2885 batch->memsw_nr_pages++;
2886 return;
2887 direct_uncharge:
2888 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2889 if (uncharge_memsw)
2890 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2891 if (unlikely(batch->memcg != memcg))
2892 memcg_oom_recover(memcg);
2893 }
2894
2895 /*
2896 * uncharge if !page_mapped(page)
2897 */
2898 static struct mem_cgroup *
2899 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2900 {
2901 struct mem_cgroup *memcg = NULL;
2902 unsigned int nr_pages = 1;
2903 struct page_cgroup *pc;
2904 bool anon;
2905
2906 if (mem_cgroup_disabled())
2907 return NULL;
2908
2909 if (PageSwapCache(page))
2910 return NULL;
2911
2912 if (PageTransHuge(page)) {
2913 nr_pages <<= compound_order(page);
2914 VM_BUG_ON(!PageTransHuge(page));
2915 }
2916 /*
2917 * Check if our page_cgroup is valid
2918 */
2919 pc = lookup_page_cgroup(page);
2920 if (unlikely(!PageCgroupUsed(pc)))
2921 return NULL;
2922
2923 lock_page_cgroup(pc);
2924
2925 memcg = pc->mem_cgroup;
2926
2927 if (!PageCgroupUsed(pc))
2928 goto unlock_out;
2929
2930 anon = PageAnon(page);
2931
2932 switch (ctype) {
2933 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2934 /*
2935 * Generally PageAnon tells if it's the anon statistics to be
2936 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2937 * used before page reached the stage of being marked PageAnon.
2938 */
2939 anon = true;
2940 /* fallthrough */
2941 case MEM_CGROUP_CHARGE_TYPE_DROP:
2942 /* See mem_cgroup_prepare_migration() */
2943 if (page_mapped(page) || PageCgroupMigration(pc))
2944 goto unlock_out;
2945 break;
2946 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2947 if (!PageAnon(page)) { /* Shared memory */
2948 if (page->mapping && !page_is_file_cache(page))
2949 goto unlock_out;
2950 } else if (page_mapped(page)) /* Anon */
2951 goto unlock_out;
2952 break;
2953 default:
2954 break;
2955 }
2956
2957 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2958
2959 ClearPageCgroupUsed(pc);
2960 /*
2961 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2962 * freed from LRU. This is safe because uncharged page is expected not
2963 * to be reused (freed soon). Exception is SwapCache, it's handled by
2964 * special functions.
2965 */
2966
2967 unlock_page_cgroup(pc);
2968 /*
2969 * even after unlock, we have memcg->res.usage here and this memcg
2970 * will never be freed.
2971 */
2972 memcg_check_events(memcg, page);
2973 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2974 mem_cgroup_swap_statistics(memcg, true);
2975 mem_cgroup_get(memcg);
2976 }
2977 if (!mem_cgroup_is_root(memcg))
2978 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
2979
2980 return memcg;
2981
2982 unlock_out:
2983 unlock_page_cgroup(pc);
2984 return NULL;
2985 }
2986
2987 void mem_cgroup_uncharge_page(struct page *page)
2988 {
2989 /* early check. */
2990 if (page_mapped(page))
2991 return;
2992 VM_BUG_ON(page->mapping && !PageAnon(page));
2993 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2994 }
2995
2996 void mem_cgroup_uncharge_cache_page(struct page *page)
2997 {
2998 VM_BUG_ON(page_mapped(page));
2999 VM_BUG_ON(page->mapping);
3000 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3001 }
3002
3003 /*
3004 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3005 * In that cases, pages are freed continuously and we can expect pages
3006 * are in the same memcg. All these calls itself limits the number of
3007 * pages freed at once, then uncharge_start/end() is called properly.
3008 * This may be called prural(2) times in a context,
3009 */
3010
3011 void mem_cgroup_uncharge_start(void)
3012 {
3013 current->memcg_batch.do_batch++;
3014 /* We can do nest. */
3015 if (current->memcg_batch.do_batch == 1) {
3016 current->memcg_batch.memcg = NULL;
3017 current->memcg_batch.nr_pages = 0;
3018 current->memcg_batch.memsw_nr_pages = 0;
3019 }
3020 }
3021
3022 void mem_cgroup_uncharge_end(void)
3023 {
3024 struct memcg_batch_info *batch = &current->memcg_batch;
3025
3026 if (!batch->do_batch)
3027 return;
3028
3029 batch->do_batch--;
3030 if (batch->do_batch) /* If stacked, do nothing. */
3031 return;
3032
3033 if (!batch->memcg)
3034 return;
3035 /*
3036 * This "batch->memcg" is valid without any css_get/put etc...
3037 * bacause we hide charges behind us.
3038 */
3039 if (batch->nr_pages)
3040 res_counter_uncharge(&batch->memcg->res,
3041 batch->nr_pages * PAGE_SIZE);
3042 if (batch->memsw_nr_pages)
3043 res_counter_uncharge(&batch->memcg->memsw,
3044 batch->memsw_nr_pages * PAGE_SIZE);
3045 memcg_oom_recover(batch->memcg);
3046 /* forget this pointer (for sanity check) */
3047 batch->memcg = NULL;
3048 }
3049
3050 #ifdef CONFIG_SWAP
3051 /*
3052 * called after __delete_from_swap_cache() and drop "page" account.
3053 * memcg information is recorded to swap_cgroup of "ent"
3054 */
3055 void
3056 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3057 {
3058 struct mem_cgroup *memcg;
3059 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3060
3061 if (!swapout) /* this was a swap cache but the swap is unused ! */
3062 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3063
3064 memcg = __mem_cgroup_uncharge_common(page, ctype);
3065
3066 /*
3067 * record memcg information, if swapout && memcg != NULL,
3068 * mem_cgroup_get() was called in uncharge().
3069 */
3070 if (do_swap_account && swapout && memcg)
3071 swap_cgroup_record(ent, css_id(&memcg->css));
3072 }
3073 #endif
3074
3075 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3076 /*
3077 * called from swap_entry_free(). remove record in swap_cgroup and
3078 * uncharge "memsw" account.
3079 */
3080 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3081 {
3082 struct mem_cgroup *memcg;
3083 unsigned short id;
3084
3085 if (!do_swap_account)
3086 return;
3087
3088 id = swap_cgroup_record(ent, 0);
3089 rcu_read_lock();
3090 memcg = mem_cgroup_lookup(id);
3091 if (memcg) {
3092 /*
3093 * We uncharge this because swap is freed.
3094 * This memcg can be obsolete one. We avoid calling css_tryget
3095 */
3096 if (!mem_cgroup_is_root(memcg))
3097 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3098 mem_cgroup_swap_statistics(memcg, false);
3099 mem_cgroup_put(memcg);
3100 }
3101 rcu_read_unlock();
3102 }
3103
3104 /**
3105 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3106 * @entry: swap entry to be moved
3107 * @from: mem_cgroup which the entry is moved from
3108 * @to: mem_cgroup which the entry is moved to
3109 *
3110 * It succeeds only when the swap_cgroup's record for this entry is the same
3111 * as the mem_cgroup's id of @from.
3112 *
3113 * Returns 0 on success, -EINVAL on failure.
3114 *
3115 * The caller must have charged to @to, IOW, called res_counter_charge() about
3116 * both res and memsw, and called css_get().
3117 */
3118 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3119 struct mem_cgroup *from, struct mem_cgroup *to)
3120 {
3121 unsigned short old_id, new_id;
3122
3123 old_id = css_id(&from->css);
3124 new_id = css_id(&to->css);
3125
3126 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3127 mem_cgroup_swap_statistics(from, false);
3128 mem_cgroup_swap_statistics(to, true);
3129 /*
3130 * This function is only called from task migration context now.
3131 * It postpones res_counter and refcount handling till the end
3132 * of task migration(mem_cgroup_clear_mc()) for performance
3133 * improvement. But we cannot postpone mem_cgroup_get(to)
3134 * because if the process that has been moved to @to does
3135 * swap-in, the refcount of @to might be decreased to 0.
3136 */
3137 mem_cgroup_get(to);
3138 return 0;
3139 }
3140 return -EINVAL;
3141 }
3142 #else
3143 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3144 struct mem_cgroup *from, struct mem_cgroup *to)
3145 {
3146 return -EINVAL;
3147 }
3148 #endif
3149
3150 /*
3151 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3152 * page belongs to.
3153 */
3154 int mem_cgroup_prepare_migration(struct page *page,
3155 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3156 {
3157 struct mem_cgroup *memcg = NULL;
3158 struct page_cgroup *pc;
3159 enum charge_type ctype;
3160 int ret = 0;
3161
3162 *memcgp = NULL;
3163
3164 VM_BUG_ON(PageTransHuge(page));
3165 if (mem_cgroup_disabled())
3166 return 0;
3167
3168 pc = lookup_page_cgroup(page);
3169 lock_page_cgroup(pc);
3170 if (PageCgroupUsed(pc)) {
3171 memcg = pc->mem_cgroup;
3172 css_get(&memcg->css);
3173 /*
3174 * At migrating an anonymous page, its mapcount goes down
3175 * to 0 and uncharge() will be called. But, even if it's fully
3176 * unmapped, migration may fail and this page has to be
3177 * charged again. We set MIGRATION flag here and delay uncharge
3178 * until end_migration() is called
3179 *
3180 * Corner Case Thinking
3181 * A)
3182 * When the old page was mapped as Anon and it's unmap-and-freed
3183 * while migration was ongoing.
3184 * If unmap finds the old page, uncharge() of it will be delayed
3185 * until end_migration(). If unmap finds a new page, it's
3186 * uncharged when it make mapcount to be 1->0. If unmap code
3187 * finds swap_migration_entry, the new page will not be mapped
3188 * and end_migration() will find it(mapcount==0).
3189 *
3190 * B)
3191 * When the old page was mapped but migraion fails, the kernel
3192 * remaps it. A charge for it is kept by MIGRATION flag even
3193 * if mapcount goes down to 0. We can do remap successfully
3194 * without charging it again.
3195 *
3196 * C)
3197 * The "old" page is under lock_page() until the end of
3198 * migration, so, the old page itself will not be swapped-out.
3199 * If the new page is swapped out before end_migraton, our
3200 * hook to usual swap-out path will catch the event.
3201 */
3202 if (PageAnon(page))
3203 SetPageCgroupMigration(pc);
3204 }
3205 unlock_page_cgroup(pc);
3206 /*
3207 * If the page is not charged at this point,
3208 * we return here.
3209 */
3210 if (!memcg)
3211 return 0;
3212
3213 *memcgp = memcg;
3214 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3215 css_put(&memcg->css);/* drop extra refcnt */
3216 if (ret) {
3217 if (PageAnon(page)) {
3218 lock_page_cgroup(pc);
3219 ClearPageCgroupMigration(pc);
3220 unlock_page_cgroup(pc);
3221 /*
3222 * The old page may be fully unmapped while we kept it.
3223 */
3224 mem_cgroup_uncharge_page(page);
3225 }
3226 /* we'll need to revisit this error code (we have -EINTR) */
3227 return -ENOMEM;
3228 }
3229 /*
3230 * We charge new page before it's used/mapped. So, even if unlock_page()
3231 * is called before end_migration, we can catch all events on this new
3232 * page. In the case new page is migrated but not remapped, new page's
3233 * mapcount will be finally 0 and we call uncharge in end_migration().
3234 */
3235 if (PageAnon(page))
3236 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3237 else if (page_is_file_cache(page))
3238 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3239 else
3240 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3241 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3242 return ret;
3243 }
3244
3245 /* remove redundant charge if migration failed*/
3246 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3247 struct page *oldpage, struct page *newpage, bool migration_ok)
3248 {
3249 struct page *used, *unused;
3250 struct page_cgroup *pc;
3251 bool anon;
3252
3253 if (!memcg)
3254 return;
3255 /* blocks rmdir() */
3256 cgroup_exclude_rmdir(&memcg->css);
3257 if (!migration_ok) {
3258 used = oldpage;
3259 unused = newpage;
3260 } else {
3261 used = newpage;
3262 unused = oldpage;
3263 }
3264 /*
3265 * We disallowed uncharge of pages under migration because mapcount
3266 * of the page goes down to zero, temporarly.
3267 * Clear the flag and check the page should be charged.
3268 */
3269 pc = lookup_page_cgroup(oldpage);
3270 lock_page_cgroup(pc);
3271 ClearPageCgroupMigration(pc);
3272 unlock_page_cgroup(pc);
3273 anon = PageAnon(used);
3274 __mem_cgroup_uncharge_common(unused,
3275 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3276 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3277
3278 /*
3279 * If a page is a file cache, radix-tree replacement is very atomic
3280 * and we can skip this check. When it was an Anon page, its mapcount
3281 * goes down to 0. But because we added MIGRATION flage, it's not
3282 * uncharged yet. There are several case but page->mapcount check
3283 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3284 * check. (see prepare_charge() also)
3285 */
3286 if (anon)
3287 mem_cgroup_uncharge_page(used);
3288 /*
3289 * At migration, we may charge account against cgroup which has no
3290 * tasks.
3291 * So, rmdir()->pre_destroy() can be called while we do this charge.
3292 * In that case, we need to call pre_destroy() again. check it here.
3293 */
3294 cgroup_release_and_wakeup_rmdir(&memcg->css);
3295 }
3296
3297 /*
3298 * At replace page cache, newpage is not under any memcg but it's on
3299 * LRU. So, this function doesn't touch res_counter but handles LRU
3300 * in correct way. Both pages are locked so we cannot race with uncharge.
3301 */
3302 void mem_cgroup_replace_page_cache(struct page *oldpage,
3303 struct page *newpage)
3304 {
3305 struct mem_cgroup *memcg = NULL;
3306 struct page_cgroup *pc;
3307 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3308
3309 if (mem_cgroup_disabled())
3310 return;
3311
3312 pc = lookup_page_cgroup(oldpage);
3313 /* fix accounting on old pages */
3314 lock_page_cgroup(pc);
3315 if (PageCgroupUsed(pc)) {
3316 memcg = pc->mem_cgroup;
3317 mem_cgroup_charge_statistics(memcg, false, -1);
3318 ClearPageCgroupUsed(pc);
3319 }
3320 unlock_page_cgroup(pc);
3321
3322 /*
3323 * When called from shmem_replace_page(), in some cases the
3324 * oldpage has already been charged, and in some cases not.
3325 */
3326 if (!memcg)
3327 return;
3328
3329 if (PageSwapBacked(oldpage))
3330 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3331
3332 /*
3333 * Even if newpage->mapping was NULL before starting replacement,
3334 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3335 * LRU while we overwrite pc->mem_cgroup.
3336 */
3337 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3338 }
3339
3340 #ifdef CONFIG_DEBUG_VM
3341 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3342 {
3343 struct page_cgroup *pc;
3344
3345 pc = lookup_page_cgroup(page);
3346 /*
3347 * Can be NULL while feeding pages into the page allocator for
3348 * the first time, i.e. during boot or memory hotplug;
3349 * or when mem_cgroup_disabled().
3350 */
3351 if (likely(pc) && PageCgroupUsed(pc))
3352 return pc;
3353 return NULL;
3354 }
3355
3356 bool mem_cgroup_bad_page_check(struct page *page)
3357 {
3358 if (mem_cgroup_disabled())
3359 return false;
3360
3361 return lookup_page_cgroup_used(page) != NULL;
3362 }
3363
3364 void mem_cgroup_print_bad_page(struct page *page)
3365 {
3366 struct page_cgroup *pc;
3367
3368 pc = lookup_page_cgroup_used(page);
3369 if (pc) {
3370 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3371 pc, pc->flags, pc->mem_cgroup);
3372 }
3373 }
3374 #endif
3375
3376 static DEFINE_MUTEX(set_limit_mutex);
3377
3378 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3379 unsigned long long val)
3380 {
3381 int retry_count;
3382 u64 memswlimit, memlimit;
3383 int ret = 0;
3384 int children = mem_cgroup_count_children(memcg);
3385 u64 curusage, oldusage;
3386 int enlarge;
3387
3388 /*
3389 * For keeping hierarchical_reclaim simple, how long we should retry
3390 * is depends on callers. We set our retry-count to be function
3391 * of # of children which we should visit in this loop.
3392 */
3393 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3394
3395 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3396
3397 enlarge = 0;
3398 while (retry_count) {
3399 if (signal_pending(current)) {
3400 ret = -EINTR;
3401 break;
3402 }
3403 /*
3404 * Rather than hide all in some function, I do this in
3405 * open coded manner. You see what this really does.
3406 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3407 */
3408 mutex_lock(&set_limit_mutex);
3409 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3410 if (memswlimit < val) {
3411 ret = -EINVAL;
3412 mutex_unlock(&set_limit_mutex);
3413 break;
3414 }
3415
3416 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3417 if (memlimit < val)
3418 enlarge = 1;
3419
3420 ret = res_counter_set_limit(&memcg->res, val);
3421 if (!ret) {
3422 if (memswlimit == val)
3423 memcg->memsw_is_minimum = true;
3424 else
3425 memcg->memsw_is_minimum = false;
3426 }
3427 mutex_unlock(&set_limit_mutex);
3428
3429 if (!ret)
3430 break;
3431
3432 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3433 MEM_CGROUP_RECLAIM_SHRINK);
3434 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3435 /* Usage is reduced ? */
3436 if (curusage >= oldusage)
3437 retry_count--;
3438 else
3439 oldusage = curusage;
3440 }
3441 if (!ret && enlarge)
3442 memcg_oom_recover(memcg);
3443
3444 return ret;
3445 }
3446
3447 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3448 unsigned long long val)
3449 {
3450 int retry_count;
3451 u64 memlimit, memswlimit, oldusage, curusage;
3452 int children = mem_cgroup_count_children(memcg);
3453 int ret = -EBUSY;
3454 int enlarge = 0;
3455
3456 /* see mem_cgroup_resize_res_limit */
3457 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3458 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3459 while (retry_count) {
3460 if (signal_pending(current)) {
3461 ret = -EINTR;
3462 break;
3463 }
3464 /*
3465 * Rather than hide all in some function, I do this in
3466 * open coded manner. You see what this really does.
3467 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3468 */
3469 mutex_lock(&set_limit_mutex);
3470 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3471 if (memlimit > val) {
3472 ret = -EINVAL;
3473 mutex_unlock(&set_limit_mutex);
3474 break;
3475 }
3476 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3477 if (memswlimit < val)
3478 enlarge = 1;
3479 ret = res_counter_set_limit(&memcg->memsw, val);
3480 if (!ret) {
3481 if (memlimit == val)
3482 memcg->memsw_is_minimum = true;
3483 else
3484 memcg->memsw_is_minimum = false;
3485 }
3486 mutex_unlock(&set_limit_mutex);
3487
3488 if (!ret)
3489 break;
3490
3491 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3492 MEM_CGROUP_RECLAIM_NOSWAP |
3493 MEM_CGROUP_RECLAIM_SHRINK);
3494 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3495 /* Usage is reduced ? */
3496 if (curusage >= oldusage)
3497 retry_count--;
3498 else
3499 oldusage = curusage;
3500 }
3501 if (!ret && enlarge)
3502 memcg_oom_recover(memcg);
3503 return ret;
3504 }
3505
3506 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3507 gfp_t gfp_mask,
3508 unsigned long *total_scanned)
3509 {
3510 unsigned long nr_reclaimed = 0;
3511 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3512 unsigned long reclaimed;
3513 int loop = 0;
3514 struct mem_cgroup_tree_per_zone *mctz;
3515 unsigned long long excess;
3516 unsigned long nr_scanned;
3517
3518 if (order > 0)
3519 return 0;
3520
3521 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3522 /*
3523 * This loop can run a while, specially if mem_cgroup's continuously
3524 * keep exceeding their soft limit and putting the system under
3525 * pressure
3526 */
3527 do {
3528 if (next_mz)
3529 mz = next_mz;
3530 else
3531 mz = mem_cgroup_largest_soft_limit_node(mctz);
3532 if (!mz)
3533 break;
3534
3535 nr_scanned = 0;
3536 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3537 gfp_mask, &nr_scanned);
3538 nr_reclaimed += reclaimed;
3539 *total_scanned += nr_scanned;
3540 spin_lock(&mctz->lock);
3541
3542 /*
3543 * If we failed to reclaim anything from this memory cgroup
3544 * it is time to move on to the next cgroup
3545 */
3546 next_mz = NULL;
3547 if (!reclaimed) {
3548 do {
3549 /*
3550 * Loop until we find yet another one.
3551 *
3552 * By the time we get the soft_limit lock
3553 * again, someone might have aded the
3554 * group back on the RB tree. Iterate to
3555 * make sure we get a different mem.
3556 * mem_cgroup_largest_soft_limit_node returns
3557 * NULL if no other cgroup is present on
3558 * the tree
3559 */
3560 next_mz =
3561 __mem_cgroup_largest_soft_limit_node(mctz);
3562 if (next_mz == mz)
3563 css_put(&next_mz->memcg->css);
3564 else /* next_mz == NULL or other memcg */
3565 break;
3566 } while (1);
3567 }
3568 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3569 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3570 /*
3571 * One school of thought says that we should not add
3572 * back the node to the tree if reclaim returns 0.
3573 * But our reclaim could return 0, simply because due
3574 * to priority we are exposing a smaller subset of
3575 * memory to reclaim from. Consider this as a longer
3576 * term TODO.
3577 */
3578 /* If excess == 0, no tree ops */
3579 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3580 spin_unlock(&mctz->lock);
3581 css_put(&mz->memcg->css);
3582 loop++;
3583 /*
3584 * Could not reclaim anything and there are no more
3585 * mem cgroups to try or we seem to be looping without
3586 * reclaiming anything.
3587 */
3588 if (!nr_reclaimed &&
3589 (next_mz == NULL ||
3590 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3591 break;
3592 } while (!nr_reclaimed);
3593 if (next_mz)
3594 css_put(&next_mz->memcg->css);
3595 return nr_reclaimed;
3596 }
3597
3598 /*
3599 * This routine traverse page_cgroup in given list and drop them all.
3600 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3601 */
3602 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3603 int node, int zid, enum lru_list lru)
3604 {
3605 struct mem_cgroup_per_zone *mz;
3606 unsigned long flags, loop;
3607 struct list_head *list;
3608 struct page *busy;
3609 struct zone *zone;
3610 int ret = 0;
3611
3612 zone = &NODE_DATA(node)->node_zones[zid];
3613 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3614 list = &mz->lruvec.lists[lru];
3615
3616 loop = mz->lru_size[lru];
3617 /* give some margin against EBUSY etc...*/
3618 loop += 256;
3619 busy = NULL;
3620 while (loop--) {
3621 struct page_cgroup *pc;
3622 struct page *page;
3623
3624 ret = 0;
3625 spin_lock_irqsave(&zone->lru_lock, flags);
3626 if (list_empty(list)) {
3627 spin_unlock_irqrestore(&zone->lru_lock, flags);
3628 break;
3629 }
3630 page = list_entry(list->prev, struct page, lru);
3631 if (busy == page) {
3632 list_move(&page->lru, list);
3633 busy = NULL;
3634 spin_unlock_irqrestore(&zone->lru_lock, flags);
3635 continue;
3636 }
3637 spin_unlock_irqrestore(&zone->lru_lock, flags);
3638
3639 pc = lookup_page_cgroup(page);
3640
3641 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3642 if (ret == -ENOMEM || ret == -EINTR)
3643 break;
3644
3645 if (ret == -EBUSY || ret == -EINVAL) {
3646 /* found lock contention or "pc" is obsolete. */
3647 busy = page;
3648 cond_resched();
3649 } else
3650 busy = NULL;
3651 }
3652
3653 if (!ret && !list_empty(list))
3654 return -EBUSY;
3655 return ret;
3656 }
3657
3658 /*
3659 * make mem_cgroup's charge to be 0 if there is no task.
3660 * This enables deleting this mem_cgroup.
3661 */
3662 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3663 {
3664 int ret;
3665 int node, zid, shrink;
3666 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3667 struct cgroup *cgrp = memcg->css.cgroup;
3668
3669 css_get(&memcg->css);
3670
3671 shrink = 0;
3672 /* should free all ? */
3673 if (free_all)
3674 goto try_to_free;
3675 move_account:
3676 do {
3677 ret = -EBUSY;
3678 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3679 goto out;
3680 ret = -EINTR;
3681 if (signal_pending(current))
3682 goto out;
3683 /* This is for making all *used* pages to be on LRU. */
3684 lru_add_drain_all();
3685 drain_all_stock_sync(memcg);
3686 ret = 0;
3687 mem_cgroup_start_move(memcg);
3688 for_each_node_state(node, N_HIGH_MEMORY) {
3689 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3690 enum lru_list lru;
3691 for_each_lru(lru) {
3692 ret = mem_cgroup_force_empty_list(memcg,
3693 node, zid, lru);
3694 if (ret)
3695 break;
3696 }
3697 }
3698 if (ret)
3699 break;
3700 }
3701 mem_cgroup_end_move(memcg);
3702 memcg_oom_recover(memcg);
3703 /* it seems parent cgroup doesn't have enough mem */
3704 if (ret == -ENOMEM)
3705 goto try_to_free;
3706 cond_resched();
3707 /* "ret" should also be checked to ensure all lists are empty. */
3708 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3709 out:
3710 css_put(&memcg->css);
3711 return ret;
3712
3713 try_to_free:
3714 /* returns EBUSY if there is a task or if we come here twice. */
3715 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3716 ret = -EBUSY;
3717 goto out;
3718 }
3719 /* we call try-to-free pages for make this cgroup empty */
3720 lru_add_drain_all();
3721 /* try to free all pages in this cgroup */
3722 shrink = 1;
3723 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3724 int progress;
3725
3726 if (signal_pending(current)) {
3727 ret = -EINTR;
3728 goto out;
3729 }
3730 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3731 false);
3732 if (!progress) {
3733 nr_retries--;
3734 /* maybe some writeback is necessary */
3735 congestion_wait(BLK_RW_ASYNC, HZ/10);
3736 }
3737
3738 }
3739 lru_add_drain();
3740 /* try move_account...there may be some *locked* pages. */
3741 goto move_account;
3742 }
3743
3744 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3745 {
3746 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3747 }
3748
3749
3750 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3751 {
3752 return mem_cgroup_from_cont(cont)->use_hierarchy;
3753 }
3754
3755 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3756 u64 val)
3757 {
3758 int retval = 0;
3759 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3760 struct cgroup *parent = cont->parent;
3761 struct mem_cgroup *parent_memcg = NULL;
3762
3763 if (parent)
3764 parent_memcg = mem_cgroup_from_cont(parent);
3765
3766 cgroup_lock();
3767 /*
3768 * If parent's use_hierarchy is set, we can't make any modifications
3769 * in the child subtrees. If it is unset, then the change can
3770 * occur, provided the current cgroup has no children.
3771 *
3772 * For the root cgroup, parent_mem is NULL, we allow value to be
3773 * set if there are no children.
3774 */
3775 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3776 (val == 1 || val == 0)) {
3777 if (list_empty(&cont->children))
3778 memcg->use_hierarchy = val;
3779 else
3780 retval = -EBUSY;
3781 } else
3782 retval = -EINVAL;
3783 cgroup_unlock();
3784
3785 return retval;
3786 }
3787
3788
3789 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3790 enum mem_cgroup_stat_index idx)
3791 {
3792 struct mem_cgroup *iter;
3793 long val = 0;
3794
3795 /* Per-cpu values can be negative, use a signed accumulator */
3796 for_each_mem_cgroup_tree(iter, memcg)
3797 val += mem_cgroup_read_stat(iter, idx);
3798
3799 if (val < 0) /* race ? */
3800 val = 0;
3801 return val;
3802 }
3803
3804 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3805 {
3806 u64 val;
3807
3808 if (!mem_cgroup_is_root(memcg)) {
3809 if (!swap)
3810 return res_counter_read_u64(&memcg->res, RES_USAGE);
3811 else
3812 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3813 }
3814
3815 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3816 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3817
3818 if (swap)
3819 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3820
3821 return val << PAGE_SHIFT;
3822 }
3823
3824 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3825 struct file *file, char __user *buf,
3826 size_t nbytes, loff_t *ppos)
3827 {
3828 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3829 char str[64];
3830 u64 val;
3831 int type, name, len;
3832
3833 type = MEMFILE_TYPE(cft->private);
3834 name = MEMFILE_ATTR(cft->private);
3835
3836 if (!do_swap_account && type == _MEMSWAP)
3837 return -EOPNOTSUPP;
3838
3839 switch (type) {
3840 case _MEM:
3841 if (name == RES_USAGE)
3842 val = mem_cgroup_usage(memcg, false);
3843 else
3844 val = res_counter_read_u64(&memcg->res, name);
3845 break;
3846 case _MEMSWAP:
3847 if (name == RES_USAGE)
3848 val = mem_cgroup_usage(memcg, true);
3849 else
3850 val = res_counter_read_u64(&memcg->memsw, name);
3851 break;
3852 default:
3853 BUG();
3854 }
3855
3856 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3857 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3858 }
3859 /*
3860 * The user of this function is...
3861 * RES_LIMIT.
3862 */
3863 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3864 const char *buffer)
3865 {
3866 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3867 int type, name;
3868 unsigned long long val;
3869 int ret;
3870
3871 type = MEMFILE_TYPE(cft->private);
3872 name = MEMFILE_ATTR(cft->private);
3873
3874 if (!do_swap_account && type == _MEMSWAP)
3875 return -EOPNOTSUPP;
3876
3877 switch (name) {
3878 case RES_LIMIT:
3879 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3880 ret = -EINVAL;
3881 break;
3882 }
3883 /* This function does all necessary parse...reuse it */
3884 ret = res_counter_memparse_write_strategy(buffer, &val);
3885 if (ret)
3886 break;
3887 if (type == _MEM)
3888 ret = mem_cgroup_resize_limit(memcg, val);
3889 else
3890 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3891 break;
3892 case RES_SOFT_LIMIT:
3893 ret = res_counter_memparse_write_strategy(buffer, &val);
3894 if (ret)
3895 break;
3896 /*
3897 * For memsw, soft limits are hard to implement in terms
3898 * of semantics, for now, we support soft limits for
3899 * control without swap
3900 */
3901 if (type == _MEM)
3902 ret = res_counter_set_soft_limit(&memcg->res, val);
3903 else
3904 ret = -EINVAL;
3905 break;
3906 default:
3907 ret = -EINVAL; /* should be BUG() ? */
3908 break;
3909 }
3910 return ret;
3911 }
3912
3913 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3914 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3915 {
3916 struct cgroup *cgroup;
3917 unsigned long long min_limit, min_memsw_limit, tmp;
3918
3919 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3920 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3921 cgroup = memcg->css.cgroup;
3922 if (!memcg->use_hierarchy)
3923 goto out;
3924
3925 while (cgroup->parent) {
3926 cgroup = cgroup->parent;
3927 memcg = mem_cgroup_from_cont(cgroup);
3928 if (!memcg->use_hierarchy)
3929 break;
3930 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3931 min_limit = min(min_limit, tmp);
3932 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3933 min_memsw_limit = min(min_memsw_limit, tmp);
3934 }
3935 out:
3936 *mem_limit = min_limit;
3937 *memsw_limit = min_memsw_limit;
3938 }
3939
3940 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3941 {
3942 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3943 int type, name;
3944
3945 type = MEMFILE_TYPE(event);
3946 name = MEMFILE_ATTR(event);
3947
3948 if (!do_swap_account && type == _MEMSWAP)
3949 return -EOPNOTSUPP;
3950
3951 switch (name) {
3952 case RES_MAX_USAGE:
3953 if (type == _MEM)
3954 res_counter_reset_max(&memcg->res);
3955 else
3956 res_counter_reset_max(&memcg->memsw);
3957 break;
3958 case RES_FAILCNT:
3959 if (type == _MEM)
3960 res_counter_reset_failcnt(&memcg->res);
3961 else
3962 res_counter_reset_failcnt(&memcg->memsw);
3963 break;
3964 }
3965
3966 return 0;
3967 }
3968
3969 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3970 struct cftype *cft)
3971 {
3972 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3973 }
3974
3975 #ifdef CONFIG_MMU
3976 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3977 struct cftype *cft, u64 val)
3978 {
3979 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3980
3981 if (val >= (1 << NR_MOVE_TYPE))
3982 return -EINVAL;
3983 /*
3984 * We check this value several times in both in can_attach() and
3985 * attach(), so we need cgroup lock to prevent this value from being
3986 * inconsistent.
3987 */
3988 cgroup_lock();
3989 memcg->move_charge_at_immigrate = val;
3990 cgroup_unlock();
3991
3992 return 0;
3993 }
3994 #else
3995 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3996 struct cftype *cft, u64 val)
3997 {
3998 return -ENOSYS;
3999 }
4000 #endif
4001
4002 #ifdef CONFIG_NUMA
4003 static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4004 struct seq_file *m)
4005 {
4006 int nid;
4007 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4008 unsigned long node_nr;
4009 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4010
4011 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4012 seq_printf(m, "total=%lu", total_nr);
4013 for_each_node_state(nid, N_HIGH_MEMORY) {
4014 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4015 seq_printf(m, " N%d=%lu", nid, node_nr);
4016 }
4017 seq_putc(m, '\n');
4018
4019 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4020 seq_printf(m, "file=%lu", file_nr);
4021 for_each_node_state(nid, N_HIGH_MEMORY) {
4022 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4023 LRU_ALL_FILE);
4024 seq_printf(m, " N%d=%lu", nid, node_nr);
4025 }
4026 seq_putc(m, '\n');
4027
4028 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4029 seq_printf(m, "anon=%lu", anon_nr);
4030 for_each_node_state(nid, N_HIGH_MEMORY) {
4031 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4032 LRU_ALL_ANON);
4033 seq_printf(m, " N%d=%lu", nid, node_nr);
4034 }
4035 seq_putc(m, '\n');
4036
4037 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4038 seq_printf(m, "unevictable=%lu", unevictable_nr);
4039 for_each_node_state(nid, N_HIGH_MEMORY) {
4040 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4041 BIT(LRU_UNEVICTABLE));
4042 seq_printf(m, " N%d=%lu", nid, node_nr);
4043 }
4044 seq_putc(m, '\n');
4045 return 0;
4046 }
4047 #endif /* CONFIG_NUMA */
4048
4049 static const char * const mem_cgroup_lru_names[] = {
4050 "inactive_anon",
4051 "active_anon",
4052 "inactive_file",
4053 "active_file",
4054 "unevictable",
4055 };
4056
4057 static inline void mem_cgroup_lru_names_not_uptodate(void)
4058 {
4059 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4060 }
4061
4062 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4063 struct seq_file *m)
4064 {
4065 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4066 struct mem_cgroup *mi;
4067 unsigned int i;
4068
4069 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4070 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4071 continue;
4072 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4073 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4074 }
4075
4076 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4077 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4078 mem_cgroup_read_events(memcg, i));
4079
4080 for (i = 0; i < NR_LRU_LISTS; i++)
4081 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4082 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4083
4084 /* Hierarchical information */
4085 {
4086 unsigned long long limit, memsw_limit;
4087 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4088 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4089 if (do_swap_account)
4090 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4091 memsw_limit);
4092 }
4093
4094 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4095 long long val = 0;
4096
4097 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4098 continue;
4099 for_each_mem_cgroup_tree(mi, memcg)
4100 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4101 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4102 }
4103
4104 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4105 unsigned long long val = 0;
4106
4107 for_each_mem_cgroup_tree(mi, memcg)
4108 val += mem_cgroup_read_events(mi, i);
4109 seq_printf(m, "total_%s %llu\n",
4110 mem_cgroup_events_names[i], val);
4111 }
4112
4113 for (i = 0; i < NR_LRU_LISTS; i++) {
4114 unsigned long long val = 0;
4115
4116 for_each_mem_cgroup_tree(mi, memcg)
4117 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4118 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4119 }
4120
4121 #ifdef CONFIG_DEBUG_VM
4122 {
4123 int nid, zid;
4124 struct mem_cgroup_per_zone *mz;
4125 struct zone_reclaim_stat *rstat;
4126 unsigned long recent_rotated[2] = {0, 0};
4127 unsigned long recent_scanned[2] = {0, 0};
4128
4129 for_each_online_node(nid)
4130 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4131 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4132 rstat = &mz->lruvec.reclaim_stat;
4133
4134 recent_rotated[0] += rstat->recent_rotated[0];
4135 recent_rotated[1] += rstat->recent_rotated[1];
4136 recent_scanned[0] += rstat->recent_scanned[0];
4137 recent_scanned[1] += rstat->recent_scanned[1];
4138 }
4139 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4140 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4141 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4142 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4143 }
4144 #endif
4145
4146 return 0;
4147 }
4148
4149 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4150 {
4151 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4152
4153 return mem_cgroup_swappiness(memcg);
4154 }
4155
4156 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4157 u64 val)
4158 {
4159 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4160 struct mem_cgroup *parent;
4161
4162 if (val > 100)
4163 return -EINVAL;
4164
4165 if (cgrp->parent == NULL)
4166 return -EINVAL;
4167
4168 parent = mem_cgroup_from_cont(cgrp->parent);
4169
4170 cgroup_lock();
4171
4172 /* If under hierarchy, only empty-root can set this value */
4173 if ((parent->use_hierarchy) ||
4174 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4175 cgroup_unlock();
4176 return -EINVAL;
4177 }
4178
4179 memcg->swappiness = val;
4180
4181 cgroup_unlock();
4182
4183 return 0;
4184 }
4185
4186 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4187 {
4188 struct mem_cgroup_threshold_ary *t;
4189 u64 usage;
4190 int i;
4191
4192 rcu_read_lock();
4193 if (!swap)
4194 t = rcu_dereference(memcg->thresholds.primary);
4195 else
4196 t = rcu_dereference(memcg->memsw_thresholds.primary);
4197
4198 if (!t)
4199 goto unlock;
4200
4201 usage = mem_cgroup_usage(memcg, swap);
4202
4203 /*
4204 * current_threshold points to threshold just below or equal to usage.
4205 * If it's not true, a threshold was crossed after last
4206 * call of __mem_cgroup_threshold().
4207 */
4208 i = t->current_threshold;
4209
4210 /*
4211 * Iterate backward over array of thresholds starting from
4212 * current_threshold and check if a threshold is crossed.
4213 * If none of thresholds below usage is crossed, we read
4214 * only one element of the array here.
4215 */
4216 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4217 eventfd_signal(t->entries[i].eventfd, 1);
4218
4219 /* i = current_threshold + 1 */
4220 i++;
4221
4222 /*
4223 * Iterate forward over array of thresholds starting from
4224 * current_threshold+1 and check if a threshold is crossed.
4225 * If none of thresholds above usage is crossed, we read
4226 * only one element of the array here.
4227 */
4228 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4229 eventfd_signal(t->entries[i].eventfd, 1);
4230
4231 /* Update current_threshold */
4232 t->current_threshold = i - 1;
4233 unlock:
4234 rcu_read_unlock();
4235 }
4236
4237 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4238 {
4239 while (memcg) {
4240 __mem_cgroup_threshold(memcg, false);
4241 if (do_swap_account)
4242 __mem_cgroup_threshold(memcg, true);
4243
4244 memcg = parent_mem_cgroup(memcg);
4245 }
4246 }
4247
4248 static int compare_thresholds(const void *a, const void *b)
4249 {
4250 const struct mem_cgroup_threshold *_a = a;
4251 const struct mem_cgroup_threshold *_b = b;
4252
4253 return _a->threshold - _b->threshold;
4254 }
4255
4256 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4257 {
4258 struct mem_cgroup_eventfd_list *ev;
4259
4260 list_for_each_entry(ev, &memcg->oom_notify, list)
4261 eventfd_signal(ev->eventfd, 1);
4262 return 0;
4263 }
4264
4265 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4266 {
4267 struct mem_cgroup *iter;
4268
4269 for_each_mem_cgroup_tree(iter, memcg)
4270 mem_cgroup_oom_notify_cb(iter);
4271 }
4272
4273 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4274 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4275 {
4276 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4277 struct mem_cgroup_thresholds *thresholds;
4278 struct mem_cgroup_threshold_ary *new;
4279 int type = MEMFILE_TYPE(cft->private);
4280 u64 threshold, usage;
4281 int i, size, ret;
4282
4283 ret = res_counter_memparse_write_strategy(args, &threshold);
4284 if (ret)
4285 return ret;
4286
4287 mutex_lock(&memcg->thresholds_lock);
4288
4289 if (type == _MEM)
4290 thresholds = &memcg->thresholds;
4291 else if (type == _MEMSWAP)
4292 thresholds = &memcg->memsw_thresholds;
4293 else
4294 BUG();
4295
4296 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4297
4298 /* Check if a threshold crossed before adding a new one */
4299 if (thresholds->primary)
4300 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4301
4302 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4303
4304 /* Allocate memory for new array of thresholds */
4305 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4306 GFP_KERNEL);
4307 if (!new) {
4308 ret = -ENOMEM;
4309 goto unlock;
4310 }
4311 new->size = size;
4312
4313 /* Copy thresholds (if any) to new array */
4314 if (thresholds->primary) {
4315 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4316 sizeof(struct mem_cgroup_threshold));
4317 }
4318
4319 /* Add new threshold */
4320 new->entries[size - 1].eventfd = eventfd;
4321 new->entries[size - 1].threshold = threshold;
4322
4323 /* Sort thresholds. Registering of new threshold isn't time-critical */
4324 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4325 compare_thresholds, NULL);
4326
4327 /* Find current threshold */
4328 new->current_threshold = -1;
4329 for (i = 0; i < size; i++) {
4330 if (new->entries[i].threshold <= usage) {
4331 /*
4332 * new->current_threshold will not be used until
4333 * rcu_assign_pointer(), so it's safe to increment
4334 * it here.
4335 */
4336 ++new->current_threshold;
4337 } else
4338 break;
4339 }
4340
4341 /* Free old spare buffer and save old primary buffer as spare */
4342 kfree(thresholds->spare);
4343 thresholds->spare = thresholds->primary;
4344
4345 rcu_assign_pointer(thresholds->primary, new);
4346
4347 /* To be sure that nobody uses thresholds */
4348 synchronize_rcu();
4349
4350 unlock:
4351 mutex_unlock(&memcg->thresholds_lock);
4352
4353 return ret;
4354 }
4355
4356 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4357 struct cftype *cft, struct eventfd_ctx *eventfd)
4358 {
4359 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4360 struct mem_cgroup_thresholds *thresholds;
4361 struct mem_cgroup_threshold_ary *new;
4362 int type = MEMFILE_TYPE(cft->private);
4363 u64 usage;
4364 int i, j, size;
4365
4366 mutex_lock(&memcg->thresholds_lock);
4367 if (type == _MEM)
4368 thresholds = &memcg->thresholds;
4369 else if (type == _MEMSWAP)
4370 thresholds = &memcg->memsw_thresholds;
4371 else
4372 BUG();
4373
4374 if (!thresholds->primary)
4375 goto unlock;
4376
4377 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4378
4379 /* Check if a threshold crossed before removing */
4380 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4381
4382 /* Calculate new number of threshold */
4383 size = 0;
4384 for (i = 0; i < thresholds->primary->size; i++) {
4385 if (thresholds->primary->entries[i].eventfd != eventfd)
4386 size++;
4387 }
4388
4389 new = thresholds->spare;
4390
4391 /* Set thresholds array to NULL if we don't have thresholds */
4392 if (!size) {
4393 kfree(new);
4394 new = NULL;
4395 goto swap_buffers;
4396 }
4397
4398 new->size = size;
4399
4400 /* Copy thresholds and find current threshold */
4401 new->current_threshold = -1;
4402 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4403 if (thresholds->primary->entries[i].eventfd == eventfd)
4404 continue;
4405
4406 new->entries[j] = thresholds->primary->entries[i];
4407 if (new->entries[j].threshold <= usage) {
4408 /*
4409 * new->current_threshold will not be used
4410 * until rcu_assign_pointer(), so it's safe to increment
4411 * it here.
4412 */
4413 ++new->current_threshold;
4414 }
4415 j++;
4416 }
4417
4418 swap_buffers:
4419 /* Swap primary and spare array */
4420 thresholds->spare = thresholds->primary;
4421 /* If all events are unregistered, free the spare array */
4422 if (!new) {
4423 kfree(thresholds->spare);
4424 thresholds->spare = NULL;
4425 }
4426
4427 rcu_assign_pointer(thresholds->primary, new);
4428
4429 /* To be sure that nobody uses thresholds */
4430 synchronize_rcu();
4431 unlock:
4432 mutex_unlock(&memcg->thresholds_lock);
4433 }
4434
4435 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4436 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4437 {
4438 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4439 struct mem_cgroup_eventfd_list *event;
4440 int type = MEMFILE_TYPE(cft->private);
4441
4442 BUG_ON(type != _OOM_TYPE);
4443 event = kmalloc(sizeof(*event), GFP_KERNEL);
4444 if (!event)
4445 return -ENOMEM;
4446
4447 spin_lock(&memcg_oom_lock);
4448
4449 event->eventfd = eventfd;
4450 list_add(&event->list, &memcg->oom_notify);
4451
4452 /* already in OOM ? */
4453 if (atomic_read(&memcg->under_oom))
4454 eventfd_signal(eventfd, 1);
4455 spin_unlock(&memcg_oom_lock);
4456
4457 return 0;
4458 }
4459
4460 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4461 struct cftype *cft, struct eventfd_ctx *eventfd)
4462 {
4463 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4464 struct mem_cgroup_eventfd_list *ev, *tmp;
4465 int type = MEMFILE_TYPE(cft->private);
4466
4467 BUG_ON(type != _OOM_TYPE);
4468
4469 spin_lock(&memcg_oom_lock);
4470
4471 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4472 if (ev->eventfd == eventfd) {
4473 list_del(&ev->list);
4474 kfree(ev);
4475 }
4476 }
4477
4478 spin_unlock(&memcg_oom_lock);
4479 }
4480
4481 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4482 struct cftype *cft, struct cgroup_map_cb *cb)
4483 {
4484 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4485
4486 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4487
4488 if (atomic_read(&memcg->under_oom))
4489 cb->fill(cb, "under_oom", 1);
4490 else
4491 cb->fill(cb, "under_oom", 0);
4492 return 0;
4493 }
4494
4495 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4496 struct cftype *cft, u64 val)
4497 {
4498 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4499 struct mem_cgroup *parent;
4500
4501 /* cannot set to root cgroup and only 0 and 1 are allowed */
4502 if (!cgrp->parent || !((val == 0) || (val == 1)))
4503 return -EINVAL;
4504
4505 parent = mem_cgroup_from_cont(cgrp->parent);
4506
4507 cgroup_lock();
4508 /* oom-kill-disable is a flag for subhierarchy. */
4509 if ((parent->use_hierarchy) ||
4510 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4511 cgroup_unlock();
4512 return -EINVAL;
4513 }
4514 memcg->oom_kill_disable = val;
4515 if (!val)
4516 memcg_oom_recover(memcg);
4517 cgroup_unlock();
4518 return 0;
4519 }
4520
4521 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4522 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4523 {
4524 return mem_cgroup_sockets_init(memcg, ss);
4525 };
4526
4527 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4528 {
4529 mem_cgroup_sockets_destroy(memcg);
4530 }
4531 #else
4532 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4533 {
4534 return 0;
4535 }
4536
4537 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4538 {
4539 }
4540 #endif
4541
4542 static struct cftype mem_cgroup_files[] = {
4543 {
4544 .name = "usage_in_bytes",
4545 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4546 .read = mem_cgroup_read,
4547 .register_event = mem_cgroup_usage_register_event,
4548 .unregister_event = mem_cgroup_usage_unregister_event,
4549 },
4550 {
4551 .name = "max_usage_in_bytes",
4552 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4553 .trigger = mem_cgroup_reset,
4554 .read = mem_cgroup_read,
4555 },
4556 {
4557 .name = "limit_in_bytes",
4558 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4559 .write_string = mem_cgroup_write,
4560 .read = mem_cgroup_read,
4561 },
4562 {
4563 .name = "soft_limit_in_bytes",
4564 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4565 .write_string = mem_cgroup_write,
4566 .read = mem_cgroup_read,
4567 },
4568 {
4569 .name = "failcnt",
4570 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4571 .trigger = mem_cgroup_reset,
4572 .read = mem_cgroup_read,
4573 },
4574 {
4575 .name = "stat",
4576 .read_seq_string = mem_control_stat_show,
4577 },
4578 {
4579 .name = "force_empty",
4580 .trigger = mem_cgroup_force_empty_write,
4581 },
4582 {
4583 .name = "use_hierarchy",
4584 .write_u64 = mem_cgroup_hierarchy_write,
4585 .read_u64 = mem_cgroup_hierarchy_read,
4586 },
4587 {
4588 .name = "swappiness",
4589 .read_u64 = mem_cgroup_swappiness_read,
4590 .write_u64 = mem_cgroup_swappiness_write,
4591 },
4592 {
4593 .name = "move_charge_at_immigrate",
4594 .read_u64 = mem_cgroup_move_charge_read,
4595 .write_u64 = mem_cgroup_move_charge_write,
4596 },
4597 {
4598 .name = "oom_control",
4599 .read_map = mem_cgroup_oom_control_read,
4600 .write_u64 = mem_cgroup_oom_control_write,
4601 .register_event = mem_cgroup_oom_register_event,
4602 .unregister_event = mem_cgroup_oom_unregister_event,
4603 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4604 },
4605 #ifdef CONFIG_NUMA
4606 {
4607 .name = "numa_stat",
4608 .read_seq_string = mem_control_numa_stat_show,
4609 },
4610 #endif
4611 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4612 {
4613 .name = "memsw.usage_in_bytes",
4614 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4615 .read = mem_cgroup_read,
4616 .register_event = mem_cgroup_usage_register_event,
4617 .unregister_event = mem_cgroup_usage_unregister_event,
4618 },
4619 {
4620 .name = "memsw.max_usage_in_bytes",
4621 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4622 .trigger = mem_cgroup_reset,
4623 .read = mem_cgroup_read,
4624 },
4625 {
4626 .name = "memsw.limit_in_bytes",
4627 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4628 .write_string = mem_cgroup_write,
4629 .read = mem_cgroup_read,
4630 },
4631 {
4632 .name = "memsw.failcnt",
4633 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4634 .trigger = mem_cgroup_reset,
4635 .read = mem_cgroup_read,
4636 },
4637 #endif
4638 { }, /* terminate */
4639 };
4640
4641 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4642 {
4643 struct mem_cgroup_per_node *pn;
4644 struct mem_cgroup_per_zone *mz;
4645 int zone, tmp = node;
4646 /*
4647 * This routine is called against possible nodes.
4648 * But it's BUG to call kmalloc() against offline node.
4649 *
4650 * TODO: this routine can waste much memory for nodes which will
4651 * never be onlined. It's better to use memory hotplug callback
4652 * function.
4653 */
4654 if (!node_state(node, N_NORMAL_MEMORY))
4655 tmp = -1;
4656 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4657 if (!pn)
4658 return 1;
4659
4660 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4661 mz = &pn->zoneinfo[zone];
4662 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4663 mz->usage_in_excess = 0;
4664 mz->on_tree = false;
4665 mz->memcg = memcg;
4666 }
4667 memcg->info.nodeinfo[node] = pn;
4668 return 0;
4669 }
4670
4671 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4672 {
4673 kfree(memcg->info.nodeinfo[node]);
4674 }
4675
4676 static struct mem_cgroup *mem_cgroup_alloc(void)
4677 {
4678 struct mem_cgroup *memcg;
4679 int size = sizeof(struct mem_cgroup);
4680
4681 /* Can be very big if MAX_NUMNODES is very big */
4682 if (size < PAGE_SIZE)
4683 memcg = kzalloc(size, GFP_KERNEL);
4684 else
4685 memcg = vzalloc(size);
4686
4687 if (!memcg)
4688 return NULL;
4689
4690 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4691 if (!memcg->stat)
4692 goto out_free;
4693 spin_lock_init(&memcg->pcp_counter_lock);
4694 return memcg;
4695
4696 out_free:
4697 if (size < PAGE_SIZE)
4698 kfree(memcg);
4699 else
4700 vfree(memcg);
4701 return NULL;
4702 }
4703
4704 /*
4705 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4706 * but in process context. The work_freeing structure is overlaid
4707 * on the rcu_freeing structure, which itself is overlaid on memsw.
4708 */
4709 static void vfree_work(struct work_struct *work)
4710 {
4711 struct mem_cgroup *memcg;
4712
4713 memcg = container_of(work, struct mem_cgroup, work_freeing);
4714 vfree(memcg);
4715 }
4716 static void vfree_rcu(struct rcu_head *rcu_head)
4717 {
4718 struct mem_cgroup *memcg;
4719
4720 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4721 INIT_WORK(&memcg->work_freeing, vfree_work);
4722 schedule_work(&memcg->work_freeing);
4723 }
4724
4725 /*
4726 * At destroying mem_cgroup, references from swap_cgroup can remain.
4727 * (scanning all at force_empty is too costly...)
4728 *
4729 * Instead of clearing all references at force_empty, we remember
4730 * the number of reference from swap_cgroup and free mem_cgroup when
4731 * it goes down to 0.
4732 *
4733 * Removal of cgroup itself succeeds regardless of refs from swap.
4734 */
4735
4736 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4737 {
4738 int node;
4739
4740 mem_cgroup_remove_from_trees(memcg);
4741 free_css_id(&mem_cgroup_subsys, &memcg->css);
4742
4743 for_each_node(node)
4744 free_mem_cgroup_per_zone_info(memcg, node);
4745
4746 free_percpu(memcg->stat);
4747 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4748 kfree_rcu(memcg, rcu_freeing);
4749 else
4750 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4751 }
4752
4753 static void mem_cgroup_get(struct mem_cgroup *memcg)
4754 {
4755 atomic_inc(&memcg->refcnt);
4756 }
4757
4758 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4759 {
4760 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4761 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4762 __mem_cgroup_free(memcg);
4763 if (parent)
4764 mem_cgroup_put(parent);
4765 }
4766 }
4767
4768 static void mem_cgroup_put(struct mem_cgroup *memcg)
4769 {
4770 __mem_cgroup_put(memcg, 1);
4771 }
4772
4773 /*
4774 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4775 */
4776 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4777 {
4778 if (!memcg->res.parent)
4779 return NULL;
4780 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4781 }
4782 EXPORT_SYMBOL(parent_mem_cgroup);
4783
4784 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4785 static void __init enable_swap_cgroup(void)
4786 {
4787 if (!mem_cgroup_disabled() && really_do_swap_account)
4788 do_swap_account = 1;
4789 }
4790 #else
4791 static void __init enable_swap_cgroup(void)
4792 {
4793 }
4794 #endif
4795
4796 static int mem_cgroup_soft_limit_tree_init(void)
4797 {
4798 struct mem_cgroup_tree_per_node *rtpn;
4799 struct mem_cgroup_tree_per_zone *rtpz;
4800 int tmp, node, zone;
4801
4802 for_each_node(node) {
4803 tmp = node;
4804 if (!node_state(node, N_NORMAL_MEMORY))
4805 tmp = -1;
4806 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4807 if (!rtpn)
4808 goto err_cleanup;
4809
4810 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4811
4812 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4813 rtpz = &rtpn->rb_tree_per_zone[zone];
4814 rtpz->rb_root = RB_ROOT;
4815 spin_lock_init(&rtpz->lock);
4816 }
4817 }
4818 return 0;
4819
4820 err_cleanup:
4821 for_each_node(node) {
4822 if (!soft_limit_tree.rb_tree_per_node[node])
4823 break;
4824 kfree(soft_limit_tree.rb_tree_per_node[node]);
4825 soft_limit_tree.rb_tree_per_node[node] = NULL;
4826 }
4827 return 1;
4828
4829 }
4830
4831 static struct cgroup_subsys_state * __ref
4832 mem_cgroup_create(struct cgroup *cont)
4833 {
4834 struct mem_cgroup *memcg, *parent;
4835 long error = -ENOMEM;
4836 int node;
4837
4838 memcg = mem_cgroup_alloc();
4839 if (!memcg)
4840 return ERR_PTR(error);
4841
4842 for_each_node(node)
4843 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4844 goto free_out;
4845
4846 /* root ? */
4847 if (cont->parent == NULL) {
4848 int cpu;
4849 enable_swap_cgroup();
4850 parent = NULL;
4851 if (mem_cgroup_soft_limit_tree_init())
4852 goto free_out;
4853 root_mem_cgroup = memcg;
4854 for_each_possible_cpu(cpu) {
4855 struct memcg_stock_pcp *stock =
4856 &per_cpu(memcg_stock, cpu);
4857 INIT_WORK(&stock->work, drain_local_stock);
4858 }
4859 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4860 } else {
4861 parent = mem_cgroup_from_cont(cont->parent);
4862 memcg->use_hierarchy = parent->use_hierarchy;
4863 memcg->oom_kill_disable = parent->oom_kill_disable;
4864 }
4865
4866 if (parent && parent->use_hierarchy) {
4867 res_counter_init(&memcg->res, &parent->res);
4868 res_counter_init(&memcg->memsw, &parent->memsw);
4869 /*
4870 * We increment refcnt of the parent to ensure that we can
4871 * safely access it on res_counter_charge/uncharge.
4872 * This refcnt will be decremented when freeing this
4873 * mem_cgroup(see mem_cgroup_put).
4874 */
4875 mem_cgroup_get(parent);
4876 } else {
4877 res_counter_init(&memcg->res, NULL);
4878 res_counter_init(&memcg->memsw, NULL);
4879 }
4880 memcg->last_scanned_node = MAX_NUMNODES;
4881 INIT_LIST_HEAD(&memcg->oom_notify);
4882
4883 if (parent)
4884 memcg->swappiness = mem_cgroup_swappiness(parent);
4885 atomic_set(&memcg->refcnt, 1);
4886 memcg->move_charge_at_immigrate = 0;
4887 mutex_init(&memcg->thresholds_lock);
4888 spin_lock_init(&memcg->move_lock);
4889
4890 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4891 if (error) {
4892 /*
4893 * We call put now because our (and parent's) refcnts
4894 * are already in place. mem_cgroup_put() will internally
4895 * call __mem_cgroup_free, so return directly
4896 */
4897 mem_cgroup_put(memcg);
4898 return ERR_PTR(error);
4899 }
4900 return &memcg->css;
4901 free_out:
4902 __mem_cgroup_free(memcg);
4903 return ERR_PTR(error);
4904 }
4905
4906 static int mem_cgroup_pre_destroy(struct cgroup *cont)
4907 {
4908 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4909
4910 return mem_cgroup_force_empty(memcg, false);
4911 }
4912
4913 static void mem_cgroup_destroy(struct cgroup *cont)
4914 {
4915 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4916
4917 kmem_cgroup_destroy(memcg);
4918
4919 mem_cgroup_put(memcg);
4920 }
4921
4922 #ifdef CONFIG_MMU
4923 /* Handlers for move charge at task migration. */
4924 #define PRECHARGE_COUNT_AT_ONCE 256
4925 static int mem_cgroup_do_precharge(unsigned long count)
4926 {
4927 int ret = 0;
4928 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4929 struct mem_cgroup *memcg = mc.to;
4930
4931 if (mem_cgroup_is_root(memcg)) {
4932 mc.precharge += count;
4933 /* we don't need css_get for root */
4934 return ret;
4935 }
4936 /* try to charge at once */
4937 if (count > 1) {
4938 struct res_counter *dummy;
4939 /*
4940 * "memcg" cannot be under rmdir() because we've already checked
4941 * by cgroup_lock_live_cgroup() that it is not removed and we
4942 * are still under the same cgroup_mutex. So we can postpone
4943 * css_get().
4944 */
4945 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4946 goto one_by_one;
4947 if (do_swap_account && res_counter_charge(&memcg->memsw,
4948 PAGE_SIZE * count, &dummy)) {
4949 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
4950 goto one_by_one;
4951 }
4952 mc.precharge += count;
4953 return ret;
4954 }
4955 one_by_one:
4956 /* fall back to one by one charge */
4957 while (count--) {
4958 if (signal_pending(current)) {
4959 ret = -EINTR;
4960 break;
4961 }
4962 if (!batch_count--) {
4963 batch_count = PRECHARGE_COUNT_AT_ONCE;
4964 cond_resched();
4965 }
4966 ret = __mem_cgroup_try_charge(NULL,
4967 GFP_KERNEL, 1, &memcg, false);
4968 if (ret)
4969 /* mem_cgroup_clear_mc() will do uncharge later */
4970 return ret;
4971 mc.precharge++;
4972 }
4973 return ret;
4974 }
4975
4976 /**
4977 * get_mctgt_type - get target type of moving charge
4978 * @vma: the vma the pte to be checked belongs
4979 * @addr: the address corresponding to the pte to be checked
4980 * @ptent: the pte to be checked
4981 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4982 *
4983 * Returns
4984 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4985 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4986 * move charge. if @target is not NULL, the page is stored in target->page
4987 * with extra refcnt got(Callers should handle it).
4988 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4989 * target for charge migration. if @target is not NULL, the entry is stored
4990 * in target->ent.
4991 *
4992 * Called with pte lock held.
4993 */
4994 union mc_target {
4995 struct page *page;
4996 swp_entry_t ent;
4997 };
4998
4999 enum mc_target_type {
5000 MC_TARGET_NONE = 0,
5001 MC_TARGET_PAGE,
5002 MC_TARGET_SWAP,
5003 };
5004
5005 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5006 unsigned long addr, pte_t ptent)
5007 {
5008 struct page *page = vm_normal_page(vma, addr, ptent);
5009
5010 if (!page || !page_mapped(page))
5011 return NULL;
5012 if (PageAnon(page)) {
5013 /* we don't move shared anon */
5014 if (!move_anon())
5015 return NULL;
5016 } else if (!move_file())
5017 /* we ignore mapcount for file pages */
5018 return NULL;
5019 if (!get_page_unless_zero(page))
5020 return NULL;
5021
5022 return page;
5023 }
5024
5025 #ifdef CONFIG_SWAP
5026 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5027 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5028 {
5029 struct page *page = NULL;
5030 swp_entry_t ent = pte_to_swp_entry(ptent);
5031
5032 if (!move_anon() || non_swap_entry(ent))
5033 return NULL;
5034 /*
5035 * Because lookup_swap_cache() updates some statistics counter,
5036 * we call find_get_page() with swapper_space directly.
5037 */
5038 page = find_get_page(&swapper_space, ent.val);
5039 if (do_swap_account)
5040 entry->val = ent.val;
5041
5042 return page;
5043 }
5044 #else
5045 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5046 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5047 {
5048 return NULL;
5049 }
5050 #endif
5051
5052 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5053 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5054 {
5055 struct page *page = NULL;
5056 struct address_space *mapping;
5057 pgoff_t pgoff;
5058
5059 if (!vma->vm_file) /* anonymous vma */
5060 return NULL;
5061 if (!move_file())
5062 return NULL;
5063
5064 mapping = vma->vm_file->f_mapping;
5065 if (pte_none(ptent))
5066 pgoff = linear_page_index(vma, addr);
5067 else /* pte_file(ptent) is true */
5068 pgoff = pte_to_pgoff(ptent);
5069
5070 /* page is moved even if it's not RSS of this task(page-faulted). */
5071 page = find_get_page(mapping, pgoff);
5072
5073 #ifdef CONFIG_SWAP
5074 /* shmem/tmpfs may report page out on swap: account for that too. */
5075 if (radix_tree_exceptional_entry(page)) {
5076 swp_entry_t swap = radix_to_swp_entry(page);
5077 if (do_swap_account)
5078 *entry = swap;
5079 page = find_get_page(&swapper_space, swap.val);
5080 }
5081 #endif
5082 return page;
5083 }
5084
5085 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5086 unsigned long addr, pte_t ptent, union mc_target *target)
5087 {
5088 struct page *page = NULL;
5089 struct page_cgroup *pc;
5090 enum mc_target_type ret = MC_TARGET_NONE;
5091 swp_entry_t ent = { .val = 0 };
5092
5093 if (pte_present(ptent))
5094 page = mc_handle_present_pte(vma, addr, ptent);
5095 else if (is_swap_pte(ptent))
5096 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5097 else if (pte_none(ptent) || pte_file(ptent))
5098 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5099
5100 if (!page && !ent.val)
5101 return ret;
5102 if (page) {
5103 pc = lookup_page_cgroup(page);
5104 /*
5105 * Do only loose check w/o page_cgroup lock.
5106 * mem_cgroup_move_account() checks the pc is valid or not under
5107 * the lock.
5108 */
5109 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5110 ret = MC_TARGET_PAGE;
5111 if (target)
5112 target->page = page;
5113 }
5114 if (!ret || !target)
5115 put_page(page);
5116 }
5117 /* There is a swap entry and a page doesn't exist or isn't charged */
5118 if (ent.val && !ret &&
5119 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5120 ret = MC_TARGET_SWAP;
5121 if (target)
5122 target->ent = ent;
5123 }
5124 return ret;
5125 }
5126
5127 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5128 /*
5129 * We don't consider swapping or file mapped pages because THP does not
5130 * support them for now.
5131 * Caller should make sure that pmd_trans_huge(pmd) is true.
5132 */
5133 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5134 unsigned long addr, pmd_t pmd, union mc_target *target)
5135 {
5136 struct page *page = NULL;
5137 struct page_cgroup *pc;
5138 enum mc_target_type ret = MC_TARGET_NONE;
5139
5140 page = pmd_page(pmd);
5141 VM_BUG_ON(!page || !PageHead(page));
5142 if (!move_anon())
5143 return ret;
5144 pc = lookup_page_cgroup(page);
5145 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5146 ret = MC_TARGET_PAGE;
5147 if (target) {
5148 get_page(page);
5149 target->page = page;
5150 }
5151 }
5152 return ret;
5153 }
5154 #else
5155 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5156 unsigned long addr, pmd_t pmd, union mc_target *target)
5157 {
5158 return MC_TARGET_NONE;
5159 }
5160 #endif
5161
5162 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5163 unsigned long addr, unsigned long end,
5164 struct mm_walk *walk)
5165 {
5166 struct vm_area_struct *vma = walk->private;
5167 pte_t *pte;
5168 spinlock_t *ptl;
5169
5170 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5171 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5172 mc.precharge += HPAGE_PMD_NR;
5173 spin_unlock(&vma->vm_mm->page_table_lock);
5174 return 0;
5175 }
5176
5177 if (pmd_trans_unstable(pmd))
5178 return 0;
5179 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5180 for (; addr != end; pte++, addr += PAGE_SIZE)
5181 if (get_mctgt_type(vma, addr, *pte, NULL))
5182 mc.precharge++; /* increment precharge temporarily */
5183 pte_unmap_unlock(pte - 1, ptl);
5184 cond_resched();
5185
5186 return 0;
5187 }
5188
5189 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5190 {
5191 unsigned long precharge;
5192 struct vm_area_struct *vma;
5193
5194 down_read(&mm->mmap_sem);
5195 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5196 struct mm_walk mem_cgroup_count_precharge_walk = {
5197 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5198 .mm = mm,
5199 .private = vma,
5200 };
5201 if (is_vm_hugetlb_page(vma))
5202 continue;
5203 walk_page_range(vma->vm_start, vma->vm_end,
5204 &mem_cgroup_count_precharge_walk);
5205 }
5206 up_read(&mm->mmap_sem);
5207
5208 precharge = mc.precharge;
5209 mc.precharge = 0;
5210
5211 return precharge;
5212 }
5213
5214 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5215 {
5216 unsigned long precharge = mem_cgroup_count_precharge(mm);
5217
5218 VM_BUG_ON(mc.moving_task);
5219 mc.moving_task = current;
5220 return mem_cgroup_do_precharge(precharge);
5221 }
5222
5223 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5224 static void __mem_cgroup_clear_mc(void)
5225 {
5226 struct mem_cgroup *from = mc.from;
5227 struct mem_cgroup *to = mc.to;
5228
5229 /* we must uncharge all the leftover precharges from mc.to */
5230 if (mc.precharge) {
5231 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5232 mc.precharge = 0;
5233 }
5234 /*
5235 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5236 * we must uncharge here.
5237 */
5238 if (mc.moved_charge) {
5239 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5240 mc.moved_charge = 0;
5241 }
5242 /* we must fixup refcnts and charges */
5243 if (mc.moved_swap) {
5244 /* uncharge swap account from the old cgroup */
5245 if (!mem_cgroup_is_root(mc.from))
5246 res_counter_uncharge(&mc.from->memsw,
5247 PAGE_SIZE * mc.moved_swap);
5248 __mem_cgroup_put(mc.from, mc.moved_swap);
5249
5250 if (!mem_cgroup_is_root(mc.to)) {
5251 /*
5252 * we charged both to->res and to->memsw, so we should
5253 * uncharge to->res.
5254 */
5255 res_counter_uncharge(&mc.to->res,
5256 PAGE_SIZE * mc.moved_swap);
5257 }
5258 /* we've already done mem_cgroup_get(mc.to) */
5259 mc.moved_swap = 0;
5260 }
5261 memcg_oom_recover(from);
5262 memcg_oom_recover(to);
5263 wake_up_all(&mc.waitq);
5264 }
5265
5266 static void mem_cgroup_clear_mc(void)
5267 {
5268 struct mem_cgroup *from = mc.from;
5269
5270 /*
5271 * we must clear moving_task before waking up waiters at the end of
5272 * task migration.
5273 */
5274 mc.moving_task = NULL;
5275 __mem_cgroup_clear_mc();
5276 spin_lock(&mc.lock);
5277 mc.from = NULL;
5278 mc.to = NULL;
5279 spin_unlock(&mc.lock);
5280 mem_cgroup_end_move(from);
5281 }
5282
5283 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5284 struct cgroup_taskset *tset)
5285 {
5286 struct task_struct *p = cgroup_taskset_first(tset);
5287 int ret = 0;
5288 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5289
5290 if (memcg->move_charge_at_immigrate) {
5291 struct mm_struct *mm;
5292 struct mem_cgroup *from = mem_cgroup_from_task(p);
5293
5294 VM_BUG_ON(from == memcg);
5295
5296 mm = get_task_mm(p);
5297 if (!mm)
5298 return 0;
5299 /* We move charges only when we move a owner of the mm */
5300 if (mm->owner == p) {
5301 VM_BUG_ON(mc.from);
5302 VM_BUG_ON(mc.to);
5303 VM_BUG_ON(mc.precharge);
5304 VM_BUG_ON(mc.moved_charge);
5305 VM_BUG_ON(mc.moved_swap);
5306 mem_cgroup_start_move(from);
5307 spin_lock(&mc.lock);
5308 mc.from = from;
5309 mc.to = memcg;
5310 spin_unlock(&mc.lock);
5311 /* We set mc.moving_task later */
5312
5313 ret = mem_cgroup_precharge_mc(mm);
5314 if (ret)
5315 mem_cgroup_clear_mc();
5316 }
5317 mmput(mm);
5318 }
5319 return ret;
5320 }
5321
5322 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5323 struct cgroup_taskset *tset)
5324 {
5325 mem_cgroup_clear_mc();
5326 }
5327
5328 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5329 unsigned long addr, unsigned long end,
5330 struct mm_walk *walk)
5331 {
5332 int ret = 0;
5333 struct vm_area_struct *vma = walk->private;
5334 pte_t *pte;
5335 spinlock_t *ptl;
5336 enum mc_target_type target_type;
5337 union mc_target target;
5338 struct page *page;
5339 struct page_cgroup *pc;
5340
5341 /*
5342 * We don't take compound_lock() here but no race with splitting thp
5343 * happens because:
5344 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5345 * under splitting, which means there's no concurrent thp split,
5346 * - if another thread runs into split_huge_page() just after we
5347 * entered this if-block, the thread must wait for page table lock
5348 * to be unlocked in __split_huge_page_splitting(), where the main
5349 * part of thp split is not executed yet.
5350 */
5351 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5352 if (mc.precharge < HPAGE_PMD_NR) {
5353 spin_unlock(&vma->vm_mm->page_table_lock);
5354 return 0;
5355 }
5356 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5357 if (target_type == MC_TARGET_PAGE) {
5358 page = target.page;
5359 if (!isolate_lru_page(page)) {
5360 pc = lookup_page_cgroup(page);
5361 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5362 pc, mc.from, mc.to)) {
5363 mc.precharge -= HPAGE_PMD_NR;
5364 mc.moved_charge += HPAGE_PMD_NR;
5365 }
5366 putback_lru_page(page);
5367 }
5368 put_page(page);
5369 }
5370 spin_unlock(&vma->vm_mm->page_table_lock);
5371 return 0;
5372 }
5373
5374 if (pmd_trans_unstable(pmd))
5375 return 0;
5376 retry:
5377 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5378 for (; addr != end; addr += PAGE_SIZE) {
5379 pte_t ptent = *(pte++);
5380 swp_entry_t ent;
5381
5382 if (!mc.precharge)
5383 break;
5384
5385 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5386 case MC_TARGET_PAGE:
5387 page = target.page;
5388 if (isolate_lru_page(page))
5389 goto put;
5390 pc = lookup_page_cgroup(page);
5391 if (!mem_cgroup_move_account(page, 1, pc,
5392 mc.from, mc.to)) {
5393 mc.precharge--;
5394 /* we uncharge from mc.from later. */
5395 mc.moved_charge++;
5396 }
5397 putback_lru_page(page);
5398 put: /* get_mctgt_type() gets the page */
5399 put_page(page);
5400 break;
5401 case MC_TARGET_SWAP:
5402 ent = target.ent;
5403 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5404 mc.precharge--;
5405 /* we fixup refcnts and charges later. */
5406 mc.moved_swap++;
5407 }
5408 break;
5409 default:
5410 break;
5411 }
5412 }
5413 pte_unmap_unlock(pte - 1, ptl);
5414 cond_resched();
5415
5416 if (addr != end) {
5417 /*
5418 * We have consumed all precharges we got in can_attach().
5419 * We try charge one by one, but don't do any additional
5420 * charges to mc.to if we have failed in charge once in attach()
5421 * phase.
5422 */
5423 ret = mem_cgroup_do_precharge(1);
5424 if (!ret)
5425 goto retry;
5426 }
5427
5428 return ret;
5429 }
5430
5431 static void mem_cgroup_move_charge(struct mm_struct *mm)
5432 {
5433 struct vm_area_struct *vma;
5434
5435 lru_add_drain_all();
5436 retry:
5437 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5438 /*
5439 * Someone who are holding the mmap_sem might be waiting in
5440 * waitq. So we cancel all extra charges, wake up all waiters,
5441 * and retry. Because we cancel precharges, we might not be able
5442 * to move enough charges, but moving charge is a best-effort
5443 * feature anyway, so it wouldn't be a big problem.
5444 */
5445 __mem_cgroup_clear_mc();
5446 cond_resched();
5447 goto retry;
5448 }
5449 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5450 int ret;
5451 struct mm_walk mem_cgroup_move_charge_walk = {
5452 .pmd_entry = mem_cgroup_move_charge_pte_range,
5453 .mm = mm,
5454 .private = vma,
5455 };
5456 if (is_vm_hugetlb_page(vma))
5457 continue;
5458 ret = walk_page_range(vma->vm_start, vma->vm_end,
5459 &mem_cgroup_move_charge_walk);
5460 if (ret)
5461 /*
5462 * means we have consumed all precharges and failed in
5463 * doing additional charge. Just abandon here.
5464 */
5465 break;
5466 }
5467 up_read(&mm->mmap_sem);
5468 }
5469
5470 static void mem_cgroup_move_task(struct cgroup *cont,
5471 struct cgroup_taskset *tset)
5472 {
5473 struct task_struct *p = cgroup_taskset_first(tset);
5474 struct mm_struct *mm = get_task_mm(p);
5475
5476 if (mm) {
5477 if (mc.to)
5478 mem_cgroup_move_charge(mm);
5479 mmput(mm);
5480 }
5481 if (mc.to)
5482 mem_cgroup_clear_mc();
5483 }
5484 #else /* !CONFIG_MMU */
5485 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5486 struct cgroup_taskset *tset)
5487 {
5488 return 0;
5489 }
5490 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5491 struct cgroup_taskset *tset)
5492 {
5493 }
5494 static void mem_cgroup_move_task(struct cgroup *cont,
5495 struct cgroup_taskset *tset)
5496 {
5497 }
5498 #endif
5499
5500 struct cgroup_subsys mem_cgroup_subsys = {
5501 .name = "memory",
5502 .subsys_id = mem_cgroup_subsys_id,
5503 .create = mem_cgroup_create,
5504 .pre_destroy = mem_cgroup_pre_destroy,
5505 .destroy = mem_cgroup_destroy,
5506 .can_attach = mem_cgroup_can_attach,
5507 .cancel_attach = mem_cgroup_cancel_attach,
5508 .attach = mem_cgroup_move_task,
5509 .base_cftypes = mem_cgroup_files,
5510 .early_init = 0,
5511 .use_id = 1,
5512 .__DEPRECATED_clear_css_refs = true,
5513 };
5514
5515 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5516 static int __init enable_swap_account(char *s)
5517 {
5518 /* consider enabled if no parameter or 1 is given */
5519 if (!strcmp(s, "1"))
5520 really_do_swap_account = 1;
5521 else if (!strcmp(s, "0"))
5522 really_do_swap_account = 0;
5523 return 1;
5524 }
5525 __setup("swapaccount=", enable_swap_account);
5526
5527 #endif
This page took 0.390875 seconds and 5 git commands to generate.