mm, page_alloc: use new PageAnonHead helper in the free page fast path
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292 down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297 up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 static struct mem_cgroup_per_zone *
327 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
328 {
329 int nid = zone_to_nid(zone);
330 int zid = zone_idx(zone);
331
332 return &memcg->nodeinfo[nid]->zoneinfo[zid];
333 }
334
335 /**
336 * mem_cgroup_css_from_page - css of the memcg associated with a page
337 * @page: page of interest
338 *
339 * If memcg is bound to the default hierarchy, css of the memcg associated
340 * with @page is returned. The returned css remains associated with @page
341 * until it is released.
342 *
343 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
344 * is returned.
345 */
346 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
347 {
348 struct mem_cgroup *memcg;
349
350 memcg = page->mem_cgroup;
351
352 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
353 memcg = root_mem_cgroup;
354
355 return &memcg->css;
356 }
357
358 /**
359 * page_cgroup_ino - return inode number of the memcg a page is charged to
360 * @page: the page
361 *
362 * Look up the closest online ancestor of the memory cgroup @page is charged to
363 * and return its inode number or 0 if @page is not charged to any cgroup. It
364 * is safe to call this function without holding a reference to @page.
365 *
366 * Note, this function is inherently racy, because there is nothing to prevent
367 * the cgroup inode from getting torn down and potentially reallocated a moment
368 * after page_cgroup_ino() returns, so it only should be used by callers that
369 * do not care (such as procfs interfaces).
370 */
371 ino_t page_cgroup_ino(struct page *page)
372 {
373 struct mem_cgroup *memcg;
374 unsigned long ino = 0;
375
376 rcu_read_lock();
377 memcg = READ_ONCE(page->mem_cgroup);
378 while (memcg && !(memcg->css.flags & CSS_ONLINE))
379 memcg = parent_mem_cgroup(memcg);
380 if (memcg)
381 ino = cgroup_ino(memcg->css.cgroup);
382 rcu_read_unlock();
383 return ino;
384 }
385
386 static struct mem_cgroup_per_zone *
387 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
388 {
389 int nid = page_to_nid(page);
390 int zid = page_zonenum(page);
391
392 return &memcg->nodeinfo[nid]->zoneinfo[zid];
393 }
394
395 static struct mem_cgroup_tree_per_zone *
396 soft_limit_tree_node_zone(int nid, int zid)
397 {
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static struct mem_cgroup_tree_per_zone *
402 soft_limit_tree_from_page(struct page *page)
403 {
404 int nid = page_to_nid(page);
405 int zid = page_zonenum(page);
406
407 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
408 }
409
410 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
411 struct mem_cgroup_tree_per_zone *mctz,
412 unsigned long new_usage_in_excess)
413 {
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_zone *mz_node;
417
418 if (mz->on_tree)
419 return;
420
421 mz->usage_in_excess = new_usage_in_excess;
422 if (!mz->usage_in_excess)
423 return;
424 while (*p) {
425 parent = *p;
426 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
427 tree_node);
428 if (mz->usage_in_excess < mz_node->usage_in_excess)
429 p = &(*p)->rb_left;
430 /*
431 * We can't avoid mem cgroups that are over their soft
432 * limit by the same amount
433 */
434 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
435 p = &(*p)->rb_right;
436 }
437 rb_link_node(&mz->tree_node, parent, p);
438 rb_insert_color(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = true;
440 }
441
442 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 if (!mz->on_tree)
446 return;
447 rb_erase(&mz->tree_node, &mctz->rb_root);
448 mz->on_tree = false;
449 }
450
451 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
452 struct mem_cgroup_tree_per_zone *mctz)
453 {
454 unsigned long flags;
455
456 spin_lock_irqsave(&mctz->lock, flags);
457 __mem_cgroup_remove_exceeded(mz, mctz);
458 spin_unlock_irqrestore(&mctz->lock, flags);
459 }
460
461 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
462 {
463 unsigned long nr_pages = page_counter_read(&memcg->memory);
464 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
465 unsigned long excess = 0;
466
467 if (nr_pages > soft_limit)
468 excess = nr_pages - soft_limit;
469
470 return excess;
471 }
472
473 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
474 {
475 unsigned long excess;
476 struct mem_cgroup_per_zone *mz;
477 struct mem_cgroup_tree_per_zone *mctz;
478
479 mctz = soft_limit_tree_from_page(page);
480 /*
481 * Necessary to update all ancestors when hierarchy is used.
482 * because their event counter is not touched.
483 */
484 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
485 mz = mem_cgroup_page_zoneinfo(memcg, page);
486 excess = soft_limit_excess(memcg);
487 /*
488 * We have to update the tree if mz is on RB-tree or
489 * mem is over its softlimit.
490 */
491 if (excess || mz->on_tree) {
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
495 /* if on-tree, remove it */
496 if (mz->on_tree)
497 __mem_cgroup_remove_exceeded(mz, mctz);
498 /*
499 * Insert again. mz->usage_in_excess will be updated.
500 * If excess is 0, no tree ops.
501 */
502 __mem_cgroup_insert_exceeded(mz, mctz, excess);
503 spin_unlock_irqrestore(&mctz->lock, flags);
504 }
505 }
506 }
507
508 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
509 {
510 struct mem_cgroup_tree_per_zone *mctz;
511 struct mem_cgroup_per_zone *mz;
512 int nid, zid;
513
514 for_each_node(nid) {
515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
516 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
517 mctz = soft_limit_tree_node_zone(nid, zid);
518 mem_cgroup_remove_exceeded(mz, mctz);
519 }
520 }
521 }
522
523 static struct mem_cgroup_per_zone *
524 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
525 {
526 struct rb_node *rightmost = NULL;
527 struct mem_cgroup_per_zone *mz;
528
529 retry:
530 mz = NULL;
531 rightmost = rb_last(&mctz->rb_root);
532 if (!rightmost)
533 goto done; /* Nothing to reclaim from */
534
535 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
536 /*
537 * Remove the node now but someone else can add it back,
538 * we will to add it back at the end of reclaim to its correct
539 * position in the tree.
540 */
541 __mem_cgroup_remove_exceeded(mz, mctz);
542 if (!soft_limit_excess(mz->memcg) ||
543 !css_tryget_online(&mz->memcg->css))
544 goto retry;
545 done:
546 return mz;
547 }
548
549 static struct mem_cgroup_per_zone *
550 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
551 {
552 struct mem_cgroup_per_zone *mz;
553
554 spin_lock_irq(&mctz->lock);
555 mz = __mem_cgroup_largest_soft_limit_node(mctz);
556 spin_unlock_irq(&mctz->lock);
557 return mz;
558 }
559
560 /*
561 * Return page count for single (non recursive) @memcg.
562 *
563 * Implementation Note: reading percpu statistics for memcg.
564 *
565 * Both of vmstat[] and percpu_counter has threshold and do periodic
566 * synchronization to implement "quick" read. There are trade-off between
567 * reading cost and precision of value. Then, we may have a chance to implement
568 * a periodic synchronization of counter in memcg's counter.
569 *
570 * But this _read() function is used for user interface now. The user accounts
571 * memory usage by memory cgroup and he _always_ requires exact value because
572 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
573 * have to visit all online cpus and make sum. So, for now, unnecessary
574 * synchronization is not implemented. (just implemented for cpu hotplug)
575 *
576 * If there are kernel internal actions which can make use of some not-exact
577 * value, and reading all cpu value can be performance bottleneck in some
578 * common workload, threshold and synchronization as vmstat[] should be
579 * implemented.
580 */
581 static unsigned long
582 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
583 {
584 long val = 0;
585 int cpu;
586
587 /* Per-cpu values can be negative, use a signed accumulator */
588 for_each_possible_cpu(cpu)
589 val += per_cpu(memcg->stat->count[idx], cpu);
590 /*
591 * Summing races with updates, so val may be negative. Avoid exposing
592 * transient negative values.
593 */
594 if (val < 0)
595 val = 0;
596 return val;
597 }
598
599 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
600 enum mem_cgroup_events_index idx)
601 {
602 unsigned long val = 0;
603 int cpu;
604
605 for_each_possible_cpu(cpu)
606 val += per_cpu(memcg->stat->events[idx], cpu);
607 return val;
608 }
609
610 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
611 struct page *page,
612 bool compound, int nr_pages)
613 {
614 /*
615 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
616 * counted as CACHE even if it's on ANON LRU.
617 */
618 if (PageAnon(page))
619 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
620 nr_pages);
621 else
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
623 nr_pages);
624
625 if (compound) {
626 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
627 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
628 nr_pages);
629 }
630
631 /* pagein of a big page is an event. So, ignore page size */
632 if (nr_pages > 0)
633 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
634 else {
635 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
636 nr_pages = -nr_pages; /* for event */
637 }
638
639 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
640 }
641
642 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
643 int nid, unsigned int lru_mask)
644 {
645 unsigned long nr = 0;
646 int zid;
647
648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
649
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
662 }
663
664 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
665 unsigned int lru_mask)
666 {
667 unsigned long nr = 0;
668 int nid;
669
670 for_each_node_state(nid, N_MEMORY)
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
673 }
674
675 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
677 {
678 unsigned long val, next;
679
680 val = __this_cpu_read(memcg->stat->nr_page_events);
681 next = __this_cpu_read(memcg->stat->targets[target]);
682 /* from time_after() in jiffies.h */
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
699 }
700 return false;
701 }
702
703 /*
704 * Check events in order.
705 *
706 */
707 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
708 {
709 /* threshold event is triggered in finer grain than soft limit */
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
712 bool do_softlimit;
713 bool do_numainfo __maybe_unused;
714
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
717 #if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720 #endif
721 mem_cgroup_threshold(memcg);
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
724 #if MAX_NUMNODES > 1
725 if (unlikely(do_numainfo))
726 atomic_inc(&memcg->numainfo_events);
727 #endif
728 }
729 }
730
731 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
732 {
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
742 }
743 EXPORT_SYMBOL(mem_cgroup_from_task);
744
745 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
746 {
747 struct mem_cgroup *memcg = NULL;
748
749 rcu_read_lock();
750 do {
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
757 memcg = root_mem_cgroup;
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
763 } while (!css_tryget_online(&memcg->css));
764 rcu_read_unlock();
765 return memcg;
766 }
767
768 /**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
785 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
786 struct mem_cgroup *prev,
787 struct mem_cgroup_reclaim_cookie *reclaim)
788 {
789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
790 struct cgroup_subsys_state *css = NULL;
791 struct mem_cgroup *memcg = NULL;
792 struct mem_cgroup *pos = NULL;
793
794 if (mem_cgroup_disabled())
795 return NULL;
796
797 if (!root)
798 root = root_mem_cgroup;
799
800 if (prev && !reclaim)
801 pos = prev;
802
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
805 goto out;
806 return root;
807 }
808
809 rcu_read_lock();
810
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
820 while (1) {
821 pos = READ_ONCE(iter->position);
822 if (!pos || css_tryget(&pos->css))
823 break;
824 /*
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
831 */
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
851 }
852
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
859
860 if (css == &root->css)
861 break;
862
863 if (css_tryget(css))
864 break;
865
866 memcg = NULL;
867 }
868
869 if (reclaim) {
870 /*
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
874 */
875 (void)cmpxchg(&iter->position, pos, memcg);
876
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
884 }
885
886 out_unlock:
887 rcu_read_unlock();
888 out:
889 if (prev && prev != root)
890 css_put(&prev->css);
891
892 return memcg;
893 }
894
895 /**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900 void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
902 {
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907 }
908
909 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910 {
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929 }
930
931 /*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936 #define for_each_mem_cgroup_tree(iter, root) \
937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
938 iter != NULL; \
939 iter = mem_cgroup_iter(root, iter, NULL))
940
941 #define for_each_mem_cgroup(iter) \
942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
943 iter != NULL; \
944 iter = mem_cgroup_iter(NULL, iter, NULL))
945
946 /**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
949 * @memcg: memcg of the wanted lruvec
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957 {
958 struct mem_cgroup_per_zone *mz;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
965
966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
967 lruvec = &mz->lruvec;
968 out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
977 }
978
979 /**
980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
981 * @page: the page
982 * @zone: zone of the page
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
987 */
988 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
989 {
990 struct mem_cgroup_per_zone *mz;
991 struct mem_cgroup *memcg;
992 struct lruvec *lruvec;
993
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
998
999 memcg = page->mem_cgroup;
1000 /*
1001 * Swapcache readahead pages are added to the LRU - and
1002 * possibly migrated - before they are charged.
1003 */
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
1006
1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
1008 lruvec = &mz->lruvec;
1009 out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
1018 }
1019
1020 /**
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
1025 *
1026 * This function must be called under lru_lock, just before a page is added
1027 * to or just after a page is removed from an lru list (that ordering being
1028 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1029 */
1030 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1031 int nr_pages)
1032 {
1033 struct mem_cgroup_per_zone *mz;
1034 unsigned long *lru_size;
1035 long size;
1036 bool empty;
1037
1038 __update_lru_size(lruvec, lru, nr_pages);
1039
1040 if (mem_cgroup_disabled())
1041 return;
1042
1043 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1044 lru_size = mz->lru_size + lru;
1045 empty = list_empty(lruvec->lists + lru);
1046
1047 if (nr_pages < 0)
1048 *lru_size += nr_pages;
1049
1050 size = *lru_size;
1051 if (WARN_ONCE(size < 0 || empty != !size,
1052 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1053 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1054 VM_BUG_ON(1);
1055 *lru_size = 0;
1056 }
1057
1058 if (nr_pages > 0)
1059 *lru_size += nr_pages;
1060 }
1061
1062 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1063 {
1064 struct mem_cgroup *task_memcg;
1065 struct task_struct *p;
1066 bool ret;
1067
1068 p = find_lock_task_mm(task);
1069 if (p) {
1070 task_memcg = get_mem_cgroup_from_mm(p->mm);
1071 task_unlock(p);
1072 } else {
1073 /*
1074 * All threads may have already detached their mm's, but the oom
1075 * killer still needs to detect if they have already been oom
1076 * killed to prevent needlessly killing additional tasks.
1077 */
1078 rcu_read_lock();
1079 task_memcg = mem_cgroup_from_task(task);
1080 css_get(&task_memcg->css);
1081 rcu_read_unlock();
1082 }
1083 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1084 css_put(&task_memcg->css);
1085 return ret;
1086 }
1087
1088 /**
1089 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1090 * @memcg: the memory cgroup
1091 *
1092 * Returns the maximum amount of memory @mem can be charged with, in
1093 * pages.
1094 */
1095 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1096 {
1097 unsigned long margin = 0;
1098 unsigned long count;
1099 unsigned long limit;
1100
1101 count = page_counter_read(&memcg->memory);
1102 limit = READ_ONCE(memcg->memory.limit);
1103 if (count < limit)
1104 margin = limit - count;
1105
1106 if (do_memsw_account()) {
1107 count = page_counter_read(&memcg->memsw);
1108 limit = READ_ONCE(memcg->memsw.limit);
1109 if (count <= limit)
1110 margin = min(margin, limit - count);
1111 }
1112
1113 return margin;
1114 }
1115
1116 /*
1117 * A routine for checking "mem" is under move_account() or not.
1118 *
1119 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1120 * moving cgroups. This is for waiting at high-memory pressure
1121 * caused by "move".
1122 */
1123 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1124 {
1125 struct mem_cgroup *from;
1126 struct mem_cgroup *to;
1127 bool ret = false;
1128 /*
1129 * Unlike task_move routines, we access mc.to, mc.from not under
1130 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1131 */
1132 spin_lock(&mc.lock);
1133 from = mc.from;
1134 to = mc.to;
1135 if (!from)
1136 goto unlock;
1137
1138 ret = mem_cgroup_is_descendant(from, memcg) ||
1139 mem_cgroup_is_descendant(to, memcg);
1140 unlock:
1141 spin_unlock(&mc.lock);
1142 return ret;
1143 }
1144
1145 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1146 {
1147 if (mc.moving_task && current != mc.moving_task) {
1148 if (mem_cgroup_under_move(memcg)) {
1149 DEFINE_WAIT(wait);
1150 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1151 /* moving charge context might have finished. */
1152 if (mc.moving_task)
1153 schedule();
1154 finish_wait(&mc.waitq, &wait);
1155 return true;
1156 }
1157 }
1158 return false;
1159 }
1160
1161 #define K(x) ((x) << (PAGE_SHIFT-10))
1162 /**
1163 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1164 * @memcg: The memory cgroup that went over limit
1165 * @p: Task that is going to be killed
1166 *
1167 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1168 * enabled
1169 */
1170 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1171 {
1172 struct mem_cgroup *iter;
1173 unsigned int i;
1174
1175 rcu_read_lock();
1176
1177 if (p) {
1178 pr_info("Task in ");
1179 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1180 pr_cont(" killed as a result of limit of ");
1181 } else {
1182 pr_info("Memory limit reached of cgroup ");
1183 }
1184
1185 pr_cont_cgroup_path(memcg->css.cgroup);
1186 pr_cont("\n");
1187
1188 rcu_read_unlock();
1189
1190 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1191 K((u64)page_counter_read(&memcg->memory)),
1192 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1193 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1194 K((u64)page_counter_read(&memcg->memsw)),
1195 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1196 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1197 K((u64)page_counter_read(&memcg->kmem)),
1198 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 pr_info("Memory cgroup stats for ");
1202 pr_cont_cgroup_path(iter->css.cgroup);
1203 pr_cont(":");
1204
1205 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1206 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1207 continue;
1208 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1209 K(mem_cgroup_read_stat(iter, i)));
1210 }
1211
1212 for (i = 0; i < NR_LRU_LISTS; i++)
1213 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1214 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1215
1216 pr_cont("\n");
1217 }
1218 }
1219
1220 /*
1221 * This function returns the number of memcg under hierarchy tree. Returns
1222 * 1(self count) if no children.
1223 */
1224 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1225 {
1226 int num = 0;
1227 struct mem_cgroup *iter;
1228
1229 for_each_mem_cgroup_tree(iter, memcg)
1230 num++;
1231 return num;
1232 }
1233
1234 /*
1235 * Return the memory (and swap, if configured) limit for a memcg.
1236 */
1237 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1238 {
1239 unsigned long limit;
1240
1241 limit = memcg->memory.limit;
1242 if (mem_cgroup_swappiness(memcg)) {
1243 unsigned long memsw_limit;
1244 unsigned long swap_limit;
1245
1246 memsw_limit = memcg->memsw.limit;
1247 swap_limit = memcg->swap.limit;
1248 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1249 limit = min(limit + swap_limit, memsw_limit);
1250 }
1251 return limit;
1252 }
1253
1254 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1255 int order)
1256 {
1257 struct oom_control oc = {
1258 .zonelist = NULL,
1259 .nodemask = NULL,
1260 .gfp_mask = gfp_mask,
1261 .order = order,
1262 };
1263 struct mem_cgroup *iter;
1264 unsigned long chosen_points = 0;
1265 unsigned long totalpages;
1266 unsigned int points = 0;
1267 struct task_struct *chosen = NULL;
1268
1269 mutex_lock(&oom_lock);
1270
1271 /*
1272 * If current has a pending SIGKILL or is exiting, then automatically
1273 * select it. The goal is to allow it to allocate so that it may
1274 * quickly exit and free its memory.
1275 */
1276 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1277 mark_oom_victim(current);
1278 try_oom_reaper(current);
1279 goto unlock;
1280 }
1281
1282 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
1283 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1284 for_each_mem_cgroup_tree(iter, memcg) {
1285 struct css_task_iter it;
1286 struct task_struct *task;
1287
1288 css_task_iter_start(&iter->css, &it);
1289 while ((task = css_task_iter_next(&it))) {
1290 switch (oom_scan_process_thread(&oc, task, totalpages)) {
1291 case OOM_SCAN_SELECT:
1292 if (chosen)
1293 put_task_struct(chosen);
1294 chosen = task;
1295 chosen_points = ULONG_MAX;
1296 get_task_struct(chosen);
1297 /* fall through */
1298 case OOM_SCAN_CONTINUE:
1299 continue;
1300 case OOM_SCAN_ABORT:
1301 css_task_iter_end(&it);
1302 mem_cgroup_iter_break(memcg, iter);
1303 if (chosen)
1304 put_task_struct(chosen);
1305 goto unlock;
1306 case OOM_SCAN_OK:
1307 break;
1308 };
1309 points = oom_badness(task, memcg, NULL, totalpages);
1310 if (!points || points < chosen_points)
1311 continue;
1312 /* Prefer thread group leaders for display purposes */
1313 if (points == chosen_points &&
1314 thread_group_leader(chosen))
1315 continue;
1316
1317 if (chosen)
1318 put_task_struct(chosen);
1319 chosen = task;
1320 chosen_points = points;
1321 get_task_struct(chosen);
1322 }
1323 css_task_iter_end(&it);
1324 }
1325
1326 if (chosen) {
1327 points = chosen_points * 1000 / totalpages;
1328 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1329 "Memory cgroup out of memory");
1330 }
1331 unlock:
1332 mutex_unlock(&oom_lock);
1333 return chosen;
1334 }
1335
1336 #if MAX_NUMNODES > 1
1337
1338 /**
1339 * test_mem_cgroup_node_reclaimable
1340 * @memcg: the target memcg
1341 * @nid: the node ID to be checked.
1342 * @noswap : specify true here if the user wants flle only information.
1343 *
1344 * This function returns whether the specified memcg contains any
1345 * reclaimable pages on a node. Returns true if there are any reclaimable
1346 * pages in the node.
1347 */
1348 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1349 int nid, bool noswap)
1350 {
1351 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1352 return true;
1353 if (noswap || !total_swap_pages)
1354 return false;
1355 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1356 return true;
1357 return false;
1358
1359 }
1360
1361 /*
1362 * Always updating the nodemask is not very good - even if we have an empty
1363 * list or the wrong list here, we can start from some node and traverse all
1364 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1365 *
1366 */
1367 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1368 {
1369 int nid;
1370 /*
1371 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1372 * pagein/pageout changes since the last update.
1373 */
1374 if (!atomic_read(&memcg->numainfo_events))
1375 return;
1376 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1377 return;
1378
1379 /* make a nodemask where this memcg uses memory from */
1380 memcg->scan_nodes = node_states[N_MEMORY];
1381
1382 for_each_node_mask(nid, node_states[N_MEMORY]) {
1383
1384 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1385 node_clear(nid, memcg->scan_nodes);
1386 }
1387
1388 atomic_set(&memcg->numainfo_events, 0);
1389 atomic_set(&memcg->numainfo_updating, 0);
1390 }
1391
1392 /*
1393 * Selecting a node where we start reclaim from. Because what we need is just
1394 * reducing usage counter, start from anywhere is O,K. Considering
1395 * memory reclaim from current node, there are pros. and cons.
1396 *
1397 * Freeing memory from current node means freeing memory from a node which
1398 * we'll use or we've used. So, it may make LRU bad. And if several threads
1399 * hit limits, it will see a contention on a node. But freeing from remote
1400 * node means more costs for memory reclaim because of memory latency.
1401 *
1402 * Now, we use round-robin. Better algorithm is welcomed.
1403 */
1404 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1405 {
1406 int node;
1407
1408 mem_cgroup_may_update_nodemask(memcg);
1409 node = memcg->last_scanned_node;
1410
1411 node = next_node_in(node, memcg->scan_nodes);
1412 /*
1413 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1414 * last time it really checked all the LRUs due to rate limiting.
1415 * Fallback to the current node in that case for simplicity.
1416 */
1417 if (unlikely(node == MAX_NUMNODES))
1418 node = numa_node_id();
1419
1420 memcg->last_scanned_node = node;
1421 return node;
1422 }
1423 #else
1424 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1425 {
1426 return 0;
1427 }
1428 #endif
1429
1430 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1431 struct zone *zone,
1432 gfp_t gfp_mask,
1433 unsigned long *total_scanned)
1434 {
1435 struct mem_cgroup *victim = NULL;
1436 int total = 0;
1437 int loop = 0;
1438 unsigned long excess;
1439 unsigned long nr_scanned;
1440 struct mem_cgroup_reclaim_cookie reclaim = {
1441 .zone = zone,
1442 .priority = 0,
1443 };
1444
1445 excess = soft_limit_excess(root_memcg);
1446
1447 while (1) {
1448 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1449 if (!victim) {
1450 loop++;
1451 if (loop >= 2) {
1452 /*
1453 * If we have not been able to reclaim
1454 * anything, it might because there are
1455 * no reclaimable pages under this hierarchy
1456 */
1457 if (!total)
1458 break;
1459 /*
1460 * We want to do more targeted reclaim.
1461 * excess >> 2 is not to excessive so as to
1462 * reclaim too much, nor too less that we keep
1463 * coming back to reclaim from this cgroup
1464 */
1465 if (total >= (excess >> 2) ||
1466 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1467 break;
1468 }
1469 continue;
1470 }
1471 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1472 zone, &nr_scanned);
1473 *total_scanned += nr_scanned;
1474 if (!soft_limit_excess(root_memcg))
1475 break;
1476 }
1477 mem_cgroup_iter_break(root_memcg, victim);
1478 return total;
1479 }
1480
1481 #ifdef CONFIG_LOCKDEP
1482 static struct lockdep_map memcg_oom_lock_dep_map = {
1483 .name = "memcg_oom_lock",
1484 };
1485 #endif
1486
1487 static DEFINE_SPINLOCK(memcg_oom_lock);
1488
1489 /*
1490 * Check OOM-Killer is already running under our hierarchy.
1491 * If someone is running, return false.
1492 */
1493 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1494 {
1495 struct mem_cgroup *iter, *failed = NULL;
1496
1497 spin_lock(&memcg_oom_lock);
1498
1499 for_each_mem_cgroup_tree(iter, memcg) {
1500 if (iter->oom_lock) {
1501 /*
1502 * this subtree of our hierarchy is already locked
1503 * so we cannot give a lock.
1504 */
1505 failed = iter;
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 } else
1509 iter->oom_lock = true;
1510 }
1511
1512 if (failed) {
1513 /*
1514 * OK, we failed to lock the whole subtree so we have
1515 * to clean up what we set up to the failing subtree
1516 */
1517 for_each_mem_cgroup_tree(iter, memcg) {
1518 if (iter == failed) {
1519 mem_cgroup_iter_break(memcg, iter);
1520 break;
1521 }
1522 iter->oom_lock = false;
1523 }
1524 } else
1525 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1526
1527 spin_unlock(&memcg_oom_lock);
1528
1529 return !failed;
1530 }
1531
1532 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1533 {
1534 struct mem_cgroup *iter;
1535
1536 spin_lock(&memcg_oom_lock);
1537 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1538 for_each_mem_cgroup_tree(iter, memcg)
1539 iter->oom_lock = false;
1540 spin_unlock(&memcg_oom_lock);
1541 }
1542
1543 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1544 {
1545 struct mem_cgroup *iter;
1546
1547 spin_lock(&memcg_oom_lock);
1548 for_each_mem_cgroup_tree(iter, memcg)
1549 iter->under_oom++;
1550 spin_unlock(&memcg_oom_lock);
1551 }
1552
1553 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1554 {
1555 struct mem_cgroup *iter;
1556
1557 /*
1558 * When a new child is created while the hierarchy is under oom,
1559 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1560 */
1561 spin_lock(&memcg_oom_lock);
1562 for_each_mem_cgroup_tree(iter, memcg)
1563 if (iter->under_oom > 0)
1564 iter->under_oom--;
1565 spin_unlock(&memcg_oom_lock);
1566 }
1567
1568 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1569
1570 struct oom_wait_info {
1571 struct mem_cgroup *memcg;
1572 wait_queue_t wait;
1573 };
1574
1575 static int memcg_oom_wake_function(wait_queue_t *wait,
1576 unsigned mode, int sync, void *arg)
1577 {
1578 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1579 struct mem_cgroup *oom_wait_memcg;
1580 struct oom_wait_info *oom_wait_info;
1581
1582 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1583 oom_wait_memcg = oom_wait_info->memcg;
1584
1585 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1586 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1587 return 0;
1588 return autoremove_wake_function(wait, mode, sync, arg);
1589 }
1590
1591 static void memcg_oom_recover(struct mem_cgroup *memcg)
1592 {
1593 /*
1594 * For the following lockless ->under_oom test, the only required
1595 * guarantee is that it must see the state asserted by an OOM when
1596 * this function is called as a result of userland actions
1597 * triggered by the notification of the OOM. This is trivially
1598 * achieved by invoking mem_cgroup_mark_under_oom() before
1599 * triggering notification.
1600 */
1601 if (memcg && memcg->under_oom)
1602 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1603 }
1604
1605 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1606 {
1607 if (!current->memcg_may_oom)
1608 return;
1609 /*
1610 * We are in the middle of the charge context here, so we
1611 * don't want to block when potentially sitting on a callstack
1612 * that holds all kinds of filesystem and mm locks.
1613 *
1614 * Also, the caller may handle a failed allocation gracefully
1615 * (like optional page cache readahead) and so an OOM killer
1616 * invocation might not even be necessary.
1617 *
1618 * That's why we don't do anything here except remember the
1619 * OOM context and then deal with it at the end of the page
1620 * fault when the stack is unwound, the locks are released,
1621 * and when we know whether the fault was overall successful.
1622 */
1623 css_get(&memcg->css);
1624 current->memcg_in_oom = memcg;
1625 current->memcg_oom_gfp_mask = mask;
1626 current->memcg_oom_order = order;
1627 }
1628
1629 /**
1630 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1631 * @handle: actually kill/wait or just clean up the OOM state
1632 *
1633 * This has to be called at the end of a page fault if the memcg OOM
1634 * handler was enabled.
1635 *
1636 * Memcg supports userspace OOM handling where failed allocations must
1637 * sleep on a waitqueue until the userspace task resolves the
1638 * situation. Sleeping directly in the charge context with all kinds
1639 * of locks held is not a good idea, instead we remember an OOM state
1640 * in the task and mem_cgroup_oom_synchronize() has to be called at
1641 * the end of the page fault to complete the OOM handling.
1642 *
1643 * Returns %true if an ongoing memcg OOM situation was detected and
1644 * completed, %false otherwise.
1645 */
1646 bool mem_cgroup_oom_synchronize(bool handle)
1647 {
1648 struct mem_cgroup *memcg = current->memcg_in_oom;
1649 struct oom_wait_info owait;
1650 bool locked;
1651
1652 /* OOM is global, do not handle */
1653 if (!memcg)
1654 return false;
1655
1656 if (!handle || oom_killer_disabled)
1657 goto cleanup;
1658
1659 owait.memcg = memcg;
1660 owait.wait.flags = 0;
1661 owait.wait.func = memcg_oom_wake_function;
1662 owait.wait.private = current;
1663 INIT_LIST_HEAD(&owait.wait.task_list);
1664
1665 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1666 mem_cgroup_mark_under_oom(memcg);
1667
1668 locked = mem_cgroup_oom_trylock(memcg);
1669
1670 if (locked)
1671 mem_cgroup_oom_notify(memcg);
1672
1673 if (locked && !memcg->oom_kill_disable) {
1674 mem_cgroup_unmark_under_oom(memcg);
1675 finish_wait(&memcg_oom_waitq, &owait.wait);
1676 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1677 current->memcg_oom_order);
1678 } else {
1679 schedule();
1680 mem_cgroup_unmark_under_oom(memcg);
1681 finish_wait(&memcg_oom_waitq, &owait.wait);
1682 }
1683
1684 if (locked) {
1685 mem_cgroup_oom_unlock(memcg);
1686 /*
1687 * There is no guarantee that an OOM-lock contender
1688 * sees the wakeups triggered by the OOM kill
1689 * uncharges. Wake any sleepers explicitely.
1690 */
1691 memcg_oom_recover(memcg);
1692 }
1693 cleanup:
1694 current->memcg_in_oom = NULL;
1695 css_put(&memcg->css);
1696 return true;
1697 }
1698
1699 /**
1700 * lock_page_memcg - lock a page->mem_cgroup binding
1701 * @page: the page
1702 *
1703 * This function protects unlocked LRU pages from being moved to
1704 * another cgroup and stabilizes their page->mem_cgroup binding.
1705 */
1706 void lock_page_memcg(struct page *page)
1707 {
1708 struct mem_cgroup *memcg;
1709 unsigned long flags;
1710
1711 /*
1712 * The RCU lock is held throughout the transaction. The fast
1713 * path can get away without acquiring the memcg->move_lock
1714 * because page moving starts with an RCU grace period.
1715 */
1716 rcu_read_lock();
1717
1718 if (mem_cgroup_disabled())
1719 return;
1720 again:
1721 memcg = page->mem_cgroup;
1722 if (unlikely(!memcg))
1723 return;
1724
1725 if (atomic_read(&memcg->moving_account) <= 0)
1726 return;
1727
1728 spin_lock_irqsave(&memcg->move_lock, flags);
1729 if (memcg != page->mem_cgroup) {
1730 spin_unlock_irqrestore(&memcg->move_lock, flags);
1731 goto again;
1732 }
1733
1734 /*
1735 * When charge migration first begins, we can have locked and
1736 * unlocked page stat updates happening concurrently. Track
1737 * the task who has the lock for unlock_page_memcg().
1738 */
1739 memcg->move_lock_task = current;
1740 memcg->move_lock_flags = flags;
1741
1742 return;
1743 }
1744 EXPORT_SYMBOL(lock_page_memcg);
1745
1746 /**
1747 * unlock_page_memcg - unlock a page->mem_cgroup binding
1748 * @page: the page
1749 */
1750 void unlock_page_memcg(struct page *page)
1751 {
1752 struct mem_cgroup *memcg = page->mem_cgroup;
1753
1754 if (memcg && memcg->move_lock_task == current) {
1755 unsigned long flags = memcg->move_lock_flags;
1756
1757 memcg->move_lock_task = NULL;
1758 memcg->move_lock_flags = 0;
1759
1760 spin_unlock_irqrestore(&memcg->move_lock, flags);
1761 }
1762
1763 rcu_read_unlock();
1764 }
1765 EXPORT_SYMBOL(unlock_page_memcg);
1766
1767 /*
1768 * size of first charge trial. "32" comes from vmscan.c's magic value.
1769 * TODO: maybe necessary to use big numbers in big irons.
1770 */
1771 #define CHARGE_BATCH 32U
1772 struct memcg_stock_pcp {
1773 struct mem_cgroup *cached; /* this never be root cgroup */
1774 unsigned int nr_pages;
1775 struct work_struct work;
1776 unsigned long flags;
1777 #define FLUSHING_CACHED_CHARGE 0
1778 };
1779 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1780 static DEFINE_MUTEX(percpu_charge_mutex);
1781
1782 /**
1783 * consume_stock: Try to consume stocked charge on this cpu.
1784 * @memcg: memcg to consume from.
1785 * @nr_pages: how many pages to charge.
1786 *
1787 * The charges will only happen if @memcg matches the current cpu's memcg
1788 * stock, and at least @nr_pages are available in that stock. Failure to
1789 * service an allocation will refill the stock.
1790 *
1791 * returns true if successful, false otherwise.
1792 */
1793 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1794 {
1795 struct memcg_stock_pcp *stock;
1796 bool ret = false;
1797
1798 if (nr_pages > CHARGE_BATCH)
1799 return ret;
1800
1801 stock = &get_cpu_var(memcg_stock);
1802 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1803 stock->nr_pages -= nr_pages;
1804 ret = true;
1805 }
1806 put_cpu_var(memcg_stock);
1807 return ret;
1808 }
1809
1810 /*
1811 * Returns stocks cached in percpu and reset cached information.
1812 */
1813 static void drain_stock(struct memcg_stock_pcp *stock)
1814 {
1815 struct mem_cgroup *old = stock->cached;
1816
1817 if (stock->nr_pages) {
1818 page_counter_uncharge(&old->memory, stock->nr_pages);
1819 if (do_memsw_account())
1820 page_counter_uncharge(&old->memsw, stock->nr_pages);
1821 css_put_many(&old->css, stock->nr_pages);
1822 stock->nr_pages = 0;
1823 }
1824 stock->cached = NULL;
1825 }
1826
1827 /*
1828 * This must be called under preempt disabled or must be called by
1829 * a thread which is pinned to local cpu.
1830 */
1831 static void drain_local_stock(struct work_struct *dummy)
1832 {
1833 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1834 drain_stock(stock);
1835 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1836 }
1837
1838 /*
1839 * Cache charges(val) to local per_cpu area.
1840 * This will be consumed by consume_stock() function, later.
1841 */
1842 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1843 {
1844 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1845
1846 if (stock->cached != memcg) { /* reset if necessary */
1847 drain_stock(stock);
1848 stock->cached = memcg;
1849 }
1850 stock->nr_pages += nr_pages;
1851 put_cpu_var(memcg_stock);
1852 }
1853
1854 /*
1855 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1856 * of the hierarchy under it.
1857 */
1858 static void drain_all_stock(struct mem_cgroup *root_memcg)
1859 {
1860 int cpu, curcpu;
1861
1862 /* If someone's already draining, avoid adding running more workers. */
1863 if (!mutex_trylock(&percpu_charge_mutex))
1864 return;
1865 /* Notify other cpus that system-wide "drain" is running */
1866 get_online_cpus();
1867 curcpu = get_cpu();
1868 for_each_online_cpu(cpu) {
1869 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1870 struct mem_cgroup *memcg;
1871
1872 memcg = stock->cached;
1873 if (!memcg || !stock->nr_pages)
1874 continue;
1875 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1876 continue;
1877 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1878 if (cpu == curcpu)
1879 drain_local_stock(&stock->work);
1880 else
1881 schedule_work_on(cpu, &stock->work);
1882 }
1883 }
1884 put_cpu();
1885 put_online_cpus();
1886 mutex_unlock(&percpu_charge_mutex);
1887 }
1888
1889 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1890 unsigned long action,
1891 void *hcpu)
1892 {
1893 int cpu = (unsigned long)hcpu;
1894 struct memcg_stock_pcp *stock;
1895
1896 if (action == CPU_ONLINE)
1897 return NOTIFY_OK;
1898
1899 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1900 return NOTIFY_OK;
1901
1902 stock = &per_cpu(memcg_stock, cpu);
1903 drain_stock(stock);
1904 return NOTIFY_OK;
1905 }
1906
1907 static void reclaim_high(struct mem_cgroup *memcg,
1908 unsigned int nr_pages,
1909 gfp_t gfp_mask)
1910 {
1911 do {
1912 if (page_counter_read(&memcg->memory) <= memcg->high)
1913 continue;
1914 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1915 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1916 } while ((memcg = parent_mem_cgroup(memcg)));
1917 }
1918
1919 static void high_work_func(struct work_struct *work)
1920 {
1921 struct mem_cgroup *memcg;
1922
1923 memcg = container_of(work, struct mem_cgroup, high_work);
1924 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1925 }
1926
1927 /*
1928 * Scheduled by try_charge() to be executed from the userland return path
1929 * and reclaims memory over the high limit.
1930 */
1931 void mem_cgroup_handle_over_high(void)
1932 {
1933 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1934 struct mem_cgroup *memcg;
1935
1936 if (likely(!nr_pages))
1937 return;
1938
1939 memcg = get_mem_cgroup_from_mm(current->mm);
1940 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1941 css_put(&memcg->css);
1942 current->memcg_nr_pages_over_high = 0;
1943 }
1944
1945 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1946 unsigned int nr_pages)
1947 {
1948 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1949 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1950 struct mem_cgroup *mem_over_limit;
1951 struct page_counter *counter;
1952 unsigned long nr_reclaimed;
1953 bool may_swap = true;
1954 bool drained = false;
1955
1956 if (mem_cgroup_is_root(memcg))
1957 return 0;
1958 retry:
1959 if (consume_stock(memcg, nr_pages))
1960 return 0;
1961
1962 if (!do_memsw_account() ||
1963 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1964 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1965 goto done_restock;
1966 if (do_memsw_account())
1967 page_counter_uncharge(&memcg->memsw, batch);
1968 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1969 } else {
1970 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1971 may_swap = false;
1972 }
1973
1974 if (batch > nr_pages) {
1975 batch = nr_pages;
1976 goto retry;
1977 }
1978
1979 /*
1980 * Unlike in global OOM situations, memcg is not in a physical
1981 * memory shortage. Allow dying and OOM-killed tasks to
1982 * bypass the last charges so that they can exit quickly and
1983 * free their memory.
1984 */
1985 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1986 fatal_signal_pending(current) ||
1987 current->flags & PF_EXITING))
1988 goto force;
1989
1990 if (unlikely(task_in_memcg_oom(current)))
1991 goto nomem;
1992
1993 if (!gfpflags_allow_blocking(gfp_mask))
1994 goto nomem;
1995
1996 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1997
1998 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1999 gfp_mask, may_swap);
2000
2001 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2002 goto retry;
2003
2004 if (!drained) {
2005 drain_all_stock(mem_over_limit);
2006 drained = true;
2007 goto retry;
2008 }
2009
2010 if (gfp_mask & __GFP_NORETRY)
2011 goto nomem;
2012 /*
2013 * Even though the limit is exceeded at this point, reclaim
2014 * may have been able to free some pages. Retry the charge
2015 * before killing the task.
2016 *
2017 * Only for regular pages, though: huge pages are rather
2018 * unlikely to succeed so close to the limit, and we fall back
2019 * to regular pages anyway in case of failure.
2020 */
2021 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2022 goto retry;
2023 /*
2024 * At task move, charge accounts can be doubly counted. So, it's
2025 * better to wait until the end of task_move if something is going on.
2026 */
2027 if (mem_cgroup_wait_acct_move(mem_over_limit))
2028 goto retry;
2029
2030 if (nr_retries--)
2031 goto retry;
2032
2033 if (gfp_mask & __GFP_NOFAIL)
2034 goto force;
2035
2036 if (fatal_signal_pending(current))
2037 goto force;
2038
2039 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2040
2041 mem_cgroup_oom(mem_over_limit, gfp_mask,
2042 get_order(nr_pages * PAGE_SIZE));
2043 nomem:
2044 if (!(gfp_mask & __GFP_NOFAIL))
2045 return -ENOMEM;
2046 force:
2047 /*
2048 * The allocation either can't fail or will lead to more memory
2049 * being freed very soon. Allow memory usage go over the limit
2050 * temporarily by force charging it.
2051 */
2052 page_counter_charge(&memcg->memory, nr_pages);
2053 if (do_memsw_account())
2054 page_counter_charge(&memcg->memsw, nr_pages);
2055 css_get_many(&memcg->css, nr_pages);
2056
2057 return 0;
2058
2059 done_restock:
2060 css_get_many(&memcg->css, batch);
2061 if (batch > nr_pages)
2062 refill_stock(memcg, batch - nr_pages);
2063
2064 /*
2065 * If the hierarchy is above the normal consumption range, schedule
2066 * reclaim on returning to userland. We can perform reclaim here
2067 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2068 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2069 * not recorded as it most likely matches current's and won't
2070 * change in the meantime. As high limit is checked again before
2071 * reclaim, the cost of mismatch is negligible.
2072 */
2073 do {
2074 if (page_counter_read(&memcg->memory) > memcg->high) {
2075 /* Don't bother a random interrupted task */
2076 if (in_interrupt()) {
2077 schedule_work(&memcg->high_work);
2078 break;
2079 }
2080 current->memcg_nr_pages_over_high += batch;
2081 set_notify_resume(current);
2082 break;
2083 }
2084 } while ((memcg = parent_mem_cgroup(memcg)));
2085
2086 return 0;
2087 }
2088
2089 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2090 {
2091 if (mem_cgroup_is_root(memcg))
2092 return;
2093
2094 page_counter_uncharge(&memcg->memory, nr_pages);
2095 if (do_memsw_account())
2096 page_counter_uncharge(&memcg->memsw, nr_pages);
2097
2098 css_put_many(&memcg->css, nr_pages);
2099 }
2100
2101 static void lock_page_lru(struct page *page, int *isolated)
2102 {
2103 struct zone *zone = page_zone(page);
2104
2105 spin_lock_irq(&zone->lru_lock);
2106 if (PageLRU(page)) {
2107 struct lruvec *lruvec;
2108
2109 lruvec = mem_cgroup_page_lruvec(page, zone);
2110 ClearPageLRU(page);
2111 del_page_from_lru_list(page, lruvec, page_lru(page));
2112 *isolated = 1;
2113 } else
2114 *isolated = 0;
2115 }
2116
2117 static void unlock_page_lru(struct page *page, int isolated)
2118 {
2119 struct zone *zone = page_zone(page);
2120
2121 if (isolated) {
2122 struct lruvec *lruvec;
2123
2124 lruvec = mem_cgroup_page_lruvec(page, zone);
2125 VM_BUG_ON_PAGE(PageLRU(page), page);
2126 SetPageLRU(page);
2127 add_page_to_lru_list(page, lruvec, page_lru(page));
2128 }
2129 spin_unlock_irq(&zone->lru_lock);
2130 }
2131
2132 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2133 bool lrucare)
2134 {
2135 int isolated;
2136
2137 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2138
2139 /*
2140 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2141 * may already be on some other mem_cgroup's LRU. Take care of it.
2142 */
2143 if (lrucare)
2144 lock_page_lru(page, &isolated);
2145
2146 /*
2147 * Nobody should be changing or seriously looking at
2148 * page->mem_cgroup at this point:
2149 *
2150 * - the page is uncharged
2151 *
2152 * - the page is off-LRU
2153 *
2154 * - an anonymous fault has exclusive page access, except for
2155 * a locked page table
2156 *
2157 * - a page cache insertion, a swapin fault, or a migration
2158 * have the page locked
2159 */
2160 page->mem_cgroup = memcg;
2161
2162 if (lrucare)
2163 unlock_page_lru(page, isolated);
2164 }
2165
2166 #ifndef CONFIG_SLOB
2167 static int memcg_alloc_cache_id(void)
2168 {
2169 int id, size;
2170 int err;
2171
2172 id = ida_simple_get(&memcg_cache_ida,
2173 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2174 if (id < 0)
2175 return id;
2176
2177 if (id < memcg_nr_cache_ids)
2178 return id;
2179
2180 /*
2181 * There's no space for the new id in memcg_caches arrays,
2182 * so we have to grow them.
2183 */
2184 down_write(&memcg_cache_ids_sem);
2185
2186 size = 2 * (id + 1);
2187 if (size < MEMCG_CACHES_MIN_SIZE)
2188 size = MEMCG_CACHES_MIN_SIZE;
2189 else if (size > MEMCG_CACHES_MAX_SIZE)
2190 size = MEMCG_CACHES_MAX_SIZE;
2191
2192 err = memcg_update_all_caches(size);
2193 if (!err)
2194 err = memcg_update_all_list_lrus(size);
2195 if (!err)
2196 memcg_nr_cache_ids = size;
2197
2198 up_write(&memcg_cache_ids_sem);
2199
2200 if (err) {
2201 ida_simple_remove(&memcg_cache_ida, id);
2202 return err;
2203 }
2204 return id;
2205 }
2206
2207 static void memcg_free_cache_id(int id)
2208 {
2209 ida_simple_remove(&memcg_cache_ida, id);
2210 }
2211
2212 struct memcg_kmem_cache_create_work {
2213 struct mem_cgroup *memcg;
2214 struct kmem_cache *cachep;
2215 struct work_struct work;
2216 };
2217
2218 static void memcg_kmem_cache_create_func(struct work_struct *w)
2219 {
2220 struct memcg_kmem_cache_create_work *cw =
2221 container_of(w, struct memcg_kmem_cache_create_work, work);
2222 struct mem_cgroup *memcg = cw->memcg;
2223 struct kmem_cache *cachep = cw->cachep;
2224
2225 memcg_create_kmem_cache(memcg, cachep);
2226
2227 css_put(&memcg->css);
2228 kfree(cw);
2229 }
2230
2231 /*
2232 * Enqueue the creation of a per-memcg kmem_cache.
2233 */
2234 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2235 struct kmem_cache *cachep)
2236 {
2237 struct memcg_kmem_cache_create_work *cw;
2238
2239 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2240 if (!cw)
2241 return;
2242
2243 css_get(&memcg->css);
2244
2245 cw->memcg = memcg;
2246 cw->cachep = cachep;
2247 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2248
2249 schedule_work(&cw->work);
2250 }
2251
2252 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2253 struct kmem_cache *cachep)
2254 {
2255 /*
2256 * We need to stop accounting when we kmalloc, because if the
2257 * corresponding kmalloc cache is not yet created, the first allocation
2258 * in __memcg_schedule_kmem_cache_create will recurse.
2259 *
2260 * However, it is better to enclose the whole function. Depending on
2261 * the debugging options enabled, INIT_WORK(), for instance, can
2262 * trigger an allocation. This too, will make us recurse. Because at
2263 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2264 * the safest choice is to do it like this, wrapping the whole function.
2265 */
2266 current->memcg_kmem_skip_account = 1;
2267 __memcg_schedule_kmem_cache_create(memcg, cachep);
2268 current->memcg_kmem_skip_account = 0;
2269 }
2270
2271 /*
2272 * Return the kmem_cache we're supposed to use for a slab allocation.
2273 * We try to use the current memcg's version of the cache.
2274 *
2275 * If the cache does not exist yet, if we are the first user of it,
2276 * we either create it immediately, if possible, or create it asynchronously
2277 * in a workqueue.
2278 * In the latter case, we will let the current allocation go through with
2279 * the original cache.
2280 *
2281 * Can't be called in interrupt context or from kernel threads.
2282 * This function needs to be called with rcu_read_lock() held.
2283 */
2284 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
2285 {
2286 struct mem_cgroup *memcg;
2287 struct kmem_cache *memcg_cachep;
2288 int kmemcg_id;
2289
2290 VM_BUG_ON(!is_root_cache(cachep));
2291
2292 if (cachep->flags & SLAB_ACCOUNT)
2293 gfp |= __GFP_ACCOUNT;
2294
2295 if (!(gfp & __GFP_ACCOUNT))
2296 return cachep;
2297
2298 if (current->memcg_kmem_skip_account)
2299 return cachep;
2300
2301 memcg = get_mem_cgroup_from_mm(current->mm);
2302 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2303 if (kmemcg_id < 0)
2304 goto out;
2305
2306 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2307 if (likely(memcg_cachep))
2308 return memcg_cachep;
2309
2310 /*
2311 * If we are in a safe context (can wait, and not in interrupt
2312 * context), we could be be predictable and return right away.
2313 * This would guarantee that the allocation being performed
2314 * already belongs in the new cache.
2315 *
2316 * However, there are some clashes that can arrive from locking.
2317 * For instance, because we acquire the slab_mutex while doing
2318 * memcg_create_kmem_cache, this means no further allocation
2319 * could happen with the slab_mutex held. So it's better to
2320 * defer everything.
2321 */
2322 memcg_schedule_kmem_cache_create(memcg, cachep);
2323 out:
2324 css_put(&memcg->css);
2325 return cachep;
2326 }
2327
2328 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2329 {
2330 if (!is_root_cache(cachep))
2331 css_put(&cachep->memcg_params.memcg->css);
2332 }
2333
2334 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2335 struct mem_cgroup *memcg)
2336 {
2337 unsigned int nr_pages = 1 << order;
2338 struct page_counter *counter;
2339 int ret;
2340
2341 ret = try_charge(memcg, gfp, nr_pages);
2342 if (ret)
2343 return ret;
2344
2345 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2346 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2347 cancel_charge(memcg, nr_pages);
2348 return -ENOMEM;
2349 }
2350
2351 page->mem_cgroup = memcg;
2352
2353 return 0;
2354 }
2355
2356 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2357 {
2358 struct mem_cgroup *memcg;
2359 int ret = 0;
2360
2361 memcg = get_mem_cgroup_from_mm(current->mm);
2362 if (!mem_cgroup_is_root(memcg))
2363 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2364 css_put(&memcg->css);
2365 return ret;
2366 }
2367
2368 void __memcg_kmem_uncharge(struct page *page, int order)
2369 {
2370 struct mem_cgroup *memcg = page->mem_cgroup;
2371 unsigned int nr_pages = 1 << order;
2372
2373 if (!memcg)
2374 return;
2375
2376 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2377
2378 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2379 page_counter_uncharge(&memcg->kmem, nr_pages);
2380
2381 page_counter_uncharge(&memcg->memory, nr_pages);
2382 if (do_memsw_account())
2383 page_counter_uncharge(&memcg->memsw, nr_pages);
2384
2385 page->mem_cgroup = NULL;
2386 css_put_many(&memcg->css, nr_pages);
2387 }
2388 #endif /* !CONFIG_SLOB */
2389
2390 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2391
2392 /*
2393 * Because tail pages are not marked as "used", set it. We're under
2394 * zone->lru_lock and migration entries setup in all page mappings.
2395 */
2396 void mem_cgroup_split_huge_fixup(struct page *head)
2397 {
2398 int i;
2399
2400 if (mem_cgroup_disabled())
2401 return;
2402
2403 for (i = 1; i < HPAGE_PMD_NR; i++)
2404 head[i].mem_cgroup = head->mem_cgroup;
2405
2406 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2407 HPAGE_PMD_NR);
2408 }
2409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2410
2411 #ifdef CONFIG_MEMCG_SWAP
2412 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2413 bool charge)
2414 {
2415 int val = (charge) ? 1 : -1;
2416 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2417 }
2418
2419 /**
2420 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2421 * @entry: swap entry to be moved
2422 * @from: mem_cgroup which the entry is moved from
2423 * @to: mem_cgroup which the entry is moved to
2424 *
2425 * It succeeds only when the swap_cgroup's record for this entry is the same
2426 * as the mem_cgroup's id of @from.
2427 *
2428 * Returns 0 on success, -EINVAL on failure.
2429 *
2430 * The caller must have charged to @to, IOW, called page_counter_charge() about
2431 * both res and memsw, and called css_get().
2432 */
2433 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2434 struct mem_cgroup *from, struct mem_cgroup *to)
2435 {
2436 unsigned short old_id, new_id;
2437
2438 old_id = mem_cgroup_id(from);
2439 new_id = mem_cgroup_id(to);
2440
2441 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2442 mem_cgroup_swap_statistics(from, false);
2443 mem_cgroup_swap_statistics(to, true);
2444 return 0;
2445 }
2446 return -EINVAL;
2447 }
2448 #else
2449 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2450 struct mem_cgroup *from, struct mem_cgroup *to)
2451 {
2452 return -EINVAL;
2453 }
2454 #endif
2455
2456 static DEFINE_MUTEX(memcg_limit_mutex);
2457
2458 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2459 unsigned long limit)
2460 {
2461 unsigned long curusage;
2462 unsigned long oldusage;
2463 bool enlarge = false;
2464 int retry_count;
2465 int ret;
2466
2467 /*
2468 * For keeping hierarchical_reclaim simple, how long we should retry
2469 * is depends on callers. We set our retry-count to be function
2470 * of # of children which we should visit in this loop.
2471 */
2472 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2473 mem_cgroup_count_children(memcg);
2474
2475 oldusage = page_counter_read(&memcg->memory);
2476
2477 do {
2478 if (signal_pending(current)) {
2479 ret = -EINTR;
2480 break;
2481 }
2482
2483 mutex_lock(&memcg_limit_mutex);
2484 if (limit > memcg->memsw.limit) {
2485 mutex_unlock(&memcg_limit_mutex);
2486 ret = -EINVAL;
2487 break;
2488 }
2489 if (limit > memcg->memory.limit)
2490 enlarge = true;
2491 ret = page_counter_limit(&memcg->memory, limit);
2492 mutex_unlock(&memcg_limit_mutex);
2493
2494 if (!ret)
2495 break;
2496
2497 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2498
2499 curusage = page_counter_read(&memcg->memory);
2500 /* Usage is reduced ? */
2501 if (curusage >= oldusage)
2502 retry_count--;
2503 else
2504 oldusage = curusage;
2505 } while (retry_count);
2506
2507 if (!ret && enlarge)
2508 memcg_oom_recover(memcg);
2509
2510 return ret;
2511 }
2512
2513 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2514 unsigned long limit)
2515 {
2516 unsigned long curusage;
2517 unsigned long oldusage;
2518 bool enlarge = false;
2519 int retry_count;
2520 int ret;
2521
2522 /* see mem_cgroup_resize_res_limit */
2523 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2524 mem_cgroup_count_children(memcg);
2525
2526 oldusage = page_counter_read(&memcg->memsw);
2527
2528 do {
2529 if (signal_pending(current)) {
2530 ret = -EINTR;
2531 break;
2532 }
2533
2534 mutex_lock(&memcg_limit_mutex);
2535 if (limit < memcg->memory.limit) {
2536 mutex_unlock(&memcg_limit_mutex);
2537 ret = -EINVAL;
2538 break;
2539 }
2540 if (limit > memcg->memsw.limit)
2541 enlarge = true;
2542 ret = page_counter_limit(&memcg->memsw, limit);
2543 mutex_unlock(&memcg_limit_mutex);
2544
2545 if (!ret)
2546 break;
2547
2548 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2549
2550 curusage = page_counter_read(&memcg->memsw);
2551 /* Usage is reduced ? */
2552 if (curusage >= oldusage)
2553 retry_count--;
2554 else
2555 oldusage = curusage;
2556 } while (retry_count);
2557
2558 if (!ret && enlarge)
2559 memcg_oom_recover(memcg);
2560
2561 return ret;
2562 }
2563
2564 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2565 gfp_t gfp_mask,
2566 unsigned long *total_scanned)
2567 {
2568 unsigned long nr_reclaimed = 0;
2569 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2570 unsigned long reclaimed;
2571 int loop = 0;
2572 struct mem_cgroup_tree_per_zone *mctz;
2573 unsigned long excess;
2574 unsigned long nr_scanned;
2575
2576 if (order > 0)
2577 return 0;
2578
2579 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2580 /*
2581 * This loop can run a while, specially if mem_cgroup's continuously
2582 * keep exceeding their soft limit and putting the system under
2583 * pressure
2584 */
2585 do {
2586 if (next_mz)
2587 mz = next_mz;
2588 else
2589 mz = mem_cgroup_largest_soft_limit_node(mctz);
2590 if (!mz)
2591 break;
2592
2593 nr_scanned = 0;
2594 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2595 gfp_mask, &nr_scanned);
2596 nr_reclaimed += reclaimed;
2597 *total_scanned += nr_scanned;
2598 spin_lock_irq(&mctz->lock);
2599 __mem_cgroup_remove_exceeded(mz, mctz);
2600
2601 /*
2602 * If we failed to reclaim anything from this memory cgroup
2603 * it is time to move on to the next cgroup
2604 */
2605 next_mz = NULL;
2606 if (!reclaimed)
2607 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2608
2609 excess = soft_limit_excess(mz->memcg);
2610 /*
2611 * One school of thought says that we should not add
2612 * back the node to the tree if reclaim returns 0.
2613 * But our reclaim could return 0, simply because due
2614 * to priority we are exposing a smaller subset of
2615 * memory to reclaim from. Consider this as a longer
2616 * term TODO.
2617 */
2618 /* If excess == 0, no tree ops */
2619 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2620 spin_unlock_irq(&mctz->lock);
2621 css_put(&mz->memcg->css);
2622 loop++;
2623 /*
2624 * Could not reclaim anything and there are no more
2625 * mem cgroups to try or we seem to be looping without
2626 * reclaiming anything.
2627 */
2628 if (!nr_reclaimed &&
2629 (next_mz == NULL ||
2630 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2631 break;
2632 } while (!nr_reclaimed);
2633 if (next_mz)
2634 css_put(&next_mz->memcg->css);
2635 return nr_reclaimed;
2636 }
2637
2638 /*
2639 * Test whether @memcg has children, dead or alive. Note that this
2640 * function doesn't care whether @memcg has use_hierarchy enabled and
2641 * returns %true if there are child csses according to the cgroup
2642 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2643 */
2644 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2645 {
2646 bool ret;
2647
2648 rcu_read_lock();
2649 ret = css_next_child(NULL, &memcg->css);
2650 rcu_read_unlock();
2651 return ret;
2652 }
2653
2654 /*
2655 * Reclaims as many pages from the given memcg as possible and moves
2656 * the rest to the parent.
2657 *
2658 * Caller is responsible for holding css reference for memcg.
2659 */
2660 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2661 {
2662 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2663
2664 /* we call try-to-free pages for make this cgroup empty */
2665 lru_add_drain_all();
2666 /* try to free all pages in this cgroup */
2667 while (nr_retries && page_counter_read(&memcg->memory)) {
2668 int progress;
2669
2670 if (signal_pending(current))
2671 return -EINTR;
2672
2673 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2674 GFP_KERNEL, true);
2675 if (!progress) {
2676 nr_retries--;
2677 /* maybe some writeback is necessary */
2678 congestion_wait(BLK_RW_ASYNC, HZ/10);
2679 }
2680
2681 }
2682
2683 return 0;
2684 }
2685
2686 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2687 char *buf, size_t nbytes,
2688 loff_t off)
2689 {
2690 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2691
2692 if (mem_cgroup_is_root(memcg))
2693 return -EINVAL;
2694 return mem_cgroup_force_empty(memcg) ?: nbytes;
2695 }
2696
2697 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2698 struct cftype *cft)
2699 {
2700 return mem_cgroup_from_css(css)->use_hierarchy;
2701 }
2702
2703 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2704 struct cftype *cft, u64 val)
2705 {
2706 int retval = 0;
2707 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2708 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2709
2710 if (memcg->use_hierarchy == val)
2711 return 0;
2712
2713 /*
2714 * If parent's use_hierarchy is set, we can't make any modifications
2715 * in the child subtrees. If it is unset, then the change can
2716 * occur, provided the current cgroup has no children.
2717 *
2718 * For the root cgroup, parent_mem is NULL, we allow value to be
2719 * set if there are no children.
2720 */
2721 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2722 (val == 1 || val == 0)) {
2723 if (!memcg_has_children(memcg))
2724 memcg->use_hierarchy = val;
2725 else
2726 retval = -EBUSY;
2727 } else
2728 retval = -EINVAL;
2729
2730 return retval;
2731 }
2732
2733 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2734 {
2735 struct mem_cgroup *iter;
2736 int i;
2737
2738 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2739
2740 for_each_mem_cgroup_tree(iter, memcg) {
2741 for (i = 0; i < MEMCG_NR_STAT; i++)
2742 stat[i] += mem_cgroup_read_stat(iter, i);
2743 }
2744 }
2745
2746 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2747 {
2748 struct mem_cgroup *iter;
2749 int i;
2750
2751 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2752
2753 for_each_mem_cgroup_tree(iter, memcg) {
2754 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2755 events[i] += mem_cgroup_read_events(iter, i);
2756 }
2757 }
2758
2759 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2760 {
2761 unsigned long val = 0;
2762
2763 if (mem_cgroup_is_root(memcg)) {
2764 struct mem_cgroup *iter;
2765
2766 for_each_mem_cgroup_tree(iter, memcg) {
2767 val += mem_cgroup_read_stat(iter,
2768 MEM_CGROUP_STAT_CACHE);
2769 val += mem_cgroup_read_stat(iter,
2770 MEM_CGROUP_STAT_RSS);
2771 if (swap)
2772 val += mem_cgroup_read_stat(iter,
2773 MEM_CGROUP_STAT_SWAP);
2774 }
2775 } else {
2776 if (!swap)
2777 val = page_counter_read(&memcg->memory);
2778 else
2779 val = page_counter_read(&memcg->memsw);
2780 }
2781 return val;
2782 }
2783
2784 enum {
2785 RES_USAGE,
2786 RES_LIMIT,
2787 RES_MAX_USAGE,
2788 RES_FAILCNT,
2789 RES_SOFT_LIMIT,
2790 };
2791
2792 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2793 struct cftype *cft)
2794 {
2795 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2796 struct page_counter *counter;
2797
2798 switch (MEMFILE_TYPE(cft->private)) {
2799 case _MEM:
2800 counter = &memcg->memory;
2801 break;
2802 case _MEMSWAP:
2803 counter = &memcg->memsw;
2804 break;
2805 case _KMEM:
2806 counter = &memcg->kmem;
2807 break;
2808 case _TCP:
2809 counter = &memcg->tcpmem;
2810 break;
2811 default:
2812 BUG();
2813 }
2814
2815 switch (MEMFILE_ATTR(cft->private)) {
2816 case RES_USAGE:
2817 if (counter == &memcg->memory)
2818 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2819 if (counter == &memcg->memsw)
2820 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2821 return (u64)page_counter_read(counter) * PAGE_SIZE;
2822 case RES_LIMIT:
2823 return (u64)counter->limit * PAGE_SIZE;
2824 case RES_MAX_USAGE:
2825 return (u64)counter->watermark * PAGE_SIZE;
2826 case RES_FAILCNT:
2827 return counter->failcnt;
2828 case RES_SOFT_LIMIT:
2829 return (u64)memcg->soft_limit * PAGE_SIZE;
2830 default:
2831 BUG();
2832 }
2833 }
2834
2835 #ifndef CONFIG_SLOB
2836 static int memcg_online_kmem(struct mem_cgroup *memcg)
2837 {
2838 int memcg_id;
2839
2840 if (cgroup_memory_nokmem)
2841 return 0;
2842
2843 BUG_ON(memcg->kmemcg_id >= 0);
2844 BUG_ON(memcg->kmem_state);
2845
2846 memcg_id = memcg_alloc_cache_id();
2847 if (memcg_id < 0)
2848 return memcg_id;
2849
2850 static_branch_inc(&memcg_kmem_enabled_key);
2851 /*
2852 * A memory cgroup is considered kmem-online as soon as it gets
2853 * kmemcg_id. Setting the id after enabling static branching will
2854 * guarantee no one starts accounting before all call sites are
2855 * patched.
2856 */
2857 memcg->kmemcg_id = memcg_id;
2858 memcg->kmem_state = KMEM_ONLINE;
2859
2860 return 0;
2861 }
2862
2863 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2864 {
2865 struct cgroup_subsys_state *css;
2866 struct mem_cgroup *parent, *child;
2867 int kmemcg_id;
2868
2869 if (memcg->kmem_state != KMEM_ONLINE)
2870 return;
2871 /*
2872 * Clear the online state before clearing memcg_caches array
2873 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2874 * guarantees that no cache will be created for this cgroup
2875 * after we are done (see memcg_create_kmem_cache()).
2876 */
2877 memcg->kmem_state = KMEM_ALLOCATED;
2878
2879 memcg_deactivate_kmem_caches(memcg);
2880
2881 kmemcg_id = memcg->kmemcg_id;
2882 BUG_ON(kmemcg_id < 0);
2883
2884 parent = parent_mem_cgroup(memcg);
2885 if (!parent)
2886 parent = root_mem_cgroup;
2887
2888 /*
2889 * Change kmemcg_id of this cgroup and all its descendants to the
2890 * parent's id, and then move all entries from this cgroup's list_lrus
2891 * to ones of the parent. After we have finished, all list_lrus
2892 * corresponding to this cgroup are guaranteed to remain empty. The
2893 * ordering is imposed by list_lru_node->lock taken by
2894 * memcg_drain_all_list_lrus().
2895 */
2896 css_for_each_descendant_pre(css, &memcg->css) {
2897 child = mem_cgroup_from_css(css);
2898 BUG_ON(child->kmemcg_id != kmemcg_id);
2899 child->kmemcg_id = parent->kmemcg_id;
2900 if (!memcg->use_hierarchy)
2901 break;
2902 }
2903 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2904
2905 memcg_free_cache_id(kmemcg_id);
2906 }
2907
2908 static void memcg_free_kmem(struct mem_cgroup *memcg)
2909 {
2910 /* css_alloc() failed, offlining didn't happen */
2911 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2912 memcg_offline_kmem(memcg);
2913
2914 if (memcg->kmem_state == KMEM_ALLOCATED) {
2915 memcg_destroy_kmem_caches(memcg);
2916 static_branch_dec(&memcg_kmem_enabled_key);
2917 WARN_ON(page_counter_read(&memcg->kmem));
2918 }
2919 }
2920 #else
2921 static int memcg_online_kmem(struct mem_cgroup *memcg)
2922 {
2923 return 0;
2924 }
2925 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2926 {
2927 }
2928 static void memcg_free_kmem(struct mem_cgroup *memcg)
2929 {
2930 }
2931 #endif /* !CONFIG_SLOB */
2932
2933 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2934 unsigned long limit)
2935 {
2936 int ret;
2937
2938 mutex_lock(&memcg_limit_mutex);
2939 ret = page_counter_limit(&memcg->kmem, limit);
2940 mutex_unlock(&memcg_limit_mutex);
2941 return ret;
2942 }
2943
2944 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2945 {
2946 int ret;
2947
2948 mutex_lock(&memcg_limit_mutex);
2949
2950 ret = page_counter_limit(&memcg->tcpmem, limit);
2951 if (ret)
2952 goto out;
2953
2954 if (!memcg->tcpmem_active) {
2955 /*
2956 * The active flag needs to be written after the static_key
2957 * update. This is what guarantees that the socket activation
2958 * function is the last one to run. See sock_update_memcg() for
2959 * details, and note that we don't mark any socket as belonging
2960 * to this memcg until that flag is up.
2961 *
2962 * We need to do this, because static_keys will span multiple
2963 * sites, but we can't control their order. If we mark a socket
2964 * as accounted, but the accounting functions are not patched in
2965 * yet, we'll lose accounting.
2966 *
2967 * We never race with the readers in sock_update_memcg(),
2968 * because when this value change, the code to process it is not
2969 * patched in yet.
2970 */
2971 static_branch_inc(&memcg_sockets_enabled_key);
2972 memcg->tcpmem_active = true;
2973 }
2974 out:
2975 mutex_unlock(&memcg_limit_mutex);
2976 return ret;
2977 }
2978
2979 /*
2980 * The user of this function is...
2981 * RES_LIMIT.
2982 */
2983 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2984 char *buf, size_t nbytes, loff_t off)
2985 {
2986 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2987 unsigned long nr_pages;
2988 int ret;
2989
2990 buf = strstrip(buf);
2991 ret = page_counter_memparse(buf, "-1", &nr_pages);
2992 if (ret)
2993 return ret;
2994
2995 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2996 case RES_LIMIT:
2997 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2998 ret = -EINVAL;
2999 break;
3000 }
3001 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3002 case _MEM:
3003 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3004 break;
3005 case _MEMSWAP:
3006 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3007 break;
3008 case _KMEM:
3009 ret = memcg_update_kmem_limit(memcg, nr_pages);
3010 break;
3011 case _TCP:
3012 ret = memcg_update_tcp_limit(memcg, nr_pages);
3013 break;
3014 }
3015 break;
3016 case RES_SOFT_LIMIT:
3017 memcg->soft_limit = nr_pages;
3018 ret = 0;
3019 break;
3020 }
3021 return ret ?: nbytes;
3022 }
3023
3024 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3025 size_t nbytes, loff_t off)
3026 {
3027 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3028 struct page_counter *counter;
3029
3030 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3031 case _MEM:
3032 counter = &memcg->memory;
3033 break;
3034 case _MEMSWAP:
3035 counter = &memcg->memsw;
3036 break;
3037 case _KMEM:
3038 counter = &memcg->kmem;
3039 break;
3040 case _TCP:
3041 counter = &memcg->tcpmem;
3042 break;
3043 default:
3044 BUG();
3045 }
3046
3047 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3048 case RES_MAX_USAGE:
3049 page_counter_reset_watermark(counter);
3050 break;
3051 case RES_FAILCNT:
3052 counter->failcnt = 0;
3053 break;
3054 default:
3055 BUG();
3056 }
3057
3058 return nbytes;
3059 }
3060
3061 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3062 struct cftype *cft)
3063 {
3064 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3065 }
3066
3067 #ifdef CONFIG_MMU
3068 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3069 struct cftype *cft, u64 val)
3070 {
3071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3072
3073 if (val & ~MOVE_MASK)
3074 return -EINVAL;
3075
3076 /*
3077 * No kind of locking is needed in here, because ->can_attach() will
3078 * check this value once in the beginning of the process, and then carry
3079 * on with stale data. This means that changes to this value will only
3080 * affect task migrations starting after the change.
3081 */
3082 memcg->move_charge_at_immigrate = val;
3083 return 0;
3084 }
3085 #else
3086 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3087 struct cftype *cft, u64 val)
3088 {
3089 return -ENOSYS;
3090 }
3091 #endif
3092
3093 #ifdef CONFIG_NUMA
3094 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3095 {
3096 struct numa_stat {
3097 const char *name;
3098 unsigned int lru_mask;
3099 };
3100
3101 static const struct numa_stat stats[] = {
3102 { "total", LRU_ALL },
3103 { "file", LRU_ALL_FILE },
3104 { "anon", LRU_ALL_ANON },
3105 { "unevictable", BIT(LRU_UNEVICTABLE) },
3106 };
3107 const struct numa_stat *stat;
3108 int nid;
3109 unsigned long nr;
3110 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3111
3112 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3113 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3114 seq_printf(m, "%s=%lu", stat->name, nr);
3115 for_each_node_state(nid, N_MEMORY) {
3116 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3117 stat->lru_mask);
3118 seq_printf(m, " N%d=%lu", nid, nr);
3119 }
3120 seq_putc(m, '\n');
3121 }
3122
3123 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3124 struct mem_cgroup *iter;
3125
3126 nr = 0;
3127 for_each_mem_cgroup_tree(iter, memcg)
3128 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3129 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3130 for_each_node_state(nid, N_MEMORY) {
3131 nr = 0;
3132 for_each_mem_cgroup_tree(iter, memcg)
3133 nr += mem_cgroup_node_nr_lru_pages(
3134 iter, nid, stat->lru_mask);
3135 seq_printf(m, " N%d=%lu", nid, nr);
3136 }
3137 seq_putc(m, '\n');
3138 }
3139
3140 return 0;
3141 }
3142 #endif /* CONFIG_NUMA */
3143
3144 static int memcg_stat_show(struct seq_file *m, void *v)
3145 {
3146 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3147 unsigned long memory, memsw;
3148 struct mem_cgroup *mi;
3149 unsigned int i;
3150
3151 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3152 MEM_CGROUP_STAT_NSTATS);
3153 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3154 MEM_CGROUP_EVENTS_NSTATS);
3155 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3156
3157 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3158 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3159 continue;
3160 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3161 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3162 }
3163
3164 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3165 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3166 mem_cgroup_read_events(memcg, i));
3167
3168 for (i = 0; i < NR_LRU_LISTS; i++)
3169 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3170 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3171
3172 /* Hierarchical information */
3173 memory = memsw = PAGE_COUNTER_MAX;
3174 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3175 memory = min(memory, mi->memory.limit);
3176 memsw = min(memsw, mi->memsw.limit);
3177 }
3178 seq_printf(m, "hierarchical_memory_limit %llu\n",
3179 (u64)memory * PAGE_SIZE);
3180 if (do_memsw_account())
3181 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3182 (u64)memsw * PAGE_SIZE);
3183
3184 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3185 unsigned long long val = 0;
3186
3187 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3188 continue;
3189 for_each_mem_cgroup_tree(mi, memcg)
3190 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3191 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3192 }
3193
3194 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3195 unsigned long long val = 0;
3196
3197 for_each_mem_cgroup_tree(mi, memcg)
3198 val += mem_cgroup_read_events(mi, i);
3199 seq_printf(m, "total_%s %llu\n",
3200 mem_cgroup_events_names[i], val);
3201 }
3202
3203 for (i = 0; i < NR_LRU_LISTS; i++) {
3204 unsigned long long val = 0;
3205
3206 for_each_mem_cgroup_tree(mi, memcg)
3207 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3208 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3209 }
3210
3211 #ifdef CONFIG_DEBUG_VM
3212 {
3213 int nid, zid;
3214 struct mem_cgroup_per_zone *mz;
3215 struct zone_reclaim_stat *rstat;
3216 unsigned long recent_rotated[2] = {0, 0};
3217 unsigned long recent_scanned[2] = {0, 0};
3218
3219 for_each_online_node(nid)
3220 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3221 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3222 rstat = &mz->lruvec.reclaim_stat;
3223
3224 recent_rotated[0] += rstat->recent_rotated[0];
3225 recent_rotated[1] += rstat->recent_rotated[1];
3226 recent_scanned[0] += rstat->recent_scanned[0];
3227 recent_scanned[1] += rstat->recent_scanned[1];
3228 }
3229 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3230 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3231 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3232 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3233 }
3234 #endif
3235
3236 return 0;
3237 }
3238
3239 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3240 struct cftype *cft)
3241 {
3242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3243
3244 return mem_cgroup_swappiness(memcg);
3245 }
3246
3247 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3248 struct cftype *cft, u64 val)
3249 {
3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251
3252 if (val > 100)
3253 return -EINVAL;
3254
3255 if (css->parent)
3256 memcg->swappiness = val;
3257 else
3258 vm_swappiness = val;
3259
3260 return 0;
3261 }
3262
3263 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3264 {
3265 struct mem_cgroup_threshold_ary *t;
3266 unsigned long usage;
3267 int i;
3268
3269 rcu_read_lock();
3270 if (!swap)
3271 t = rcu_dereference(memcg->thresholds.primary);
3272 else
3273 t = rcu_dereference(memcg->memsw_thresholds.primary);
3274
3275 if (!t)
3276 goto unlock;
3277
3278 usage = mem_cgroup_usage(memcg, swap);
3279
3280 /*
3281 * current_threshold points to threshold just below or equal to usage.
3282 * If it's not true, a threshold was crossed after last
3283 * call of __mem_cgroup_threshold().
3284 */
3285 i = t->current_threshold;
3286
3287 /*
3288 * Iterate backward over array of thresholds starting from
3289 * current_threshold and check if a threshold is crossed.
3290 * If none of thresholds below usage is crossed, we read
3291 * only one element of the array here.
3292 */
3293 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3294 eventfd_signal(t->entries[i].eventfd, 1);
3295
3296 /* i = current_threshold + 1 */
3297 i++;
3298
3299 /*
3300 * Iterate forward over array of thresholds starting from
3301 * current_threshold+1 and check if a threshold is crossed.
3302 * If none of thresholds above usage is crossed, we read
3303 * only one element of the array here.
3304 */
3305 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3306 eventfd_signal(t->entries[i].eventfd, 1);
3307
3308 /* Update current_threshold */
3309 t->current_threshold = i - 1;
3310 unlock:
3311 rcu_read_unlock();
3312 }
3313
3314 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3315 {
3316 while (memcg) {
3317 __mem_cgroup_threshold(memcg, false);
3318 if (do_memsw_account())
3319 __mem_cgroup_threshold(memcg, true);
3320
3321 memcg = parent_mem_cgroup(memcg);
3322 }
3323 }
3324
3325 static int compare_thresholds(const void *a, const void *b)
3326 {
3327 const struct mem_cgroup_threshold *_a = a;
3328 const struct mem_cgroup_threshold *_b = b;
3329
3330 if (_a->threshold > _b->threshold)
3331 return 1;
3332
3333 if (_a->threshold < _b->threshold)
3334 return -1;
3335
3336 return 0;
3337 }
3338
3339 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3340 {
3341 struct mem_cgroup_eventfd_list *ev;
3342
3343 spin_lock(&memcg_oom_lock);
3344
3345 list_for_each_entry(ev, &memcg->oom_notify, list)
3346 eventfd_signal(ev->eventfd, 1);
3347
3348 spin_unlock(&memcg_oom_lock);
3349 return 0;
3350 }
3351
3352 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3353 {
3354 struct mem_cgroup *iter;
3355
3356 for_each_mem_cgroup_tree(iter, memcg)
3357 mem_cgroup_oom_notify_cb(iter);
3358 }
3359
3360 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3361 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3362 {
3363 struct mem_cgroup_thresholds *thresholds;
3364 struct mem_cgroup_threshold_ary *new;
3365 unsigned long threshold;
3366 unsigned long usage;
3367 int i, size, ret;
3368
3369 ret = page_counter_memparse(args, "-1", &threshold);
3370 if (ret)
3371 return ret;
3372
3373 mutex_lock(&memcg->thresholds_lock);
3374
3375 if (type == _MEM) {
3376 thresholds = &memcg->thresholds;
3377 usage = mem_cgroup_usage(memcg, false);
3378 } else if (type == _MEMSWAP) {
3379 thresholds = &memcg->memsw_thresholds;
3380 usage = mem_cgroup_usage(memcg, true);
3381 } else
3382 BUG();
3383
3384 /* Check if a threshold crossed before adding a new one */
3385 if (thresholds->primary)
3386 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3387
3388 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3389
3390 /* Allocate memory for new array of thresholds */
3391 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3392 GFP_KERNEL);
3393 if (!new) {
3394 ret = -ENOMEM;
3395 goto unlock;
3396 }
3397 new->size = size;
3398
3399 /* Copy thresholds (if any) to new array */
3400 if (thresholds->primary) {
3401 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3402 sizeof(struct mem_cgroup_threshold));
3403 }
3404
3405 /* Add new threshold */
3406 new->entries[size - 1].eventfd = eventfd;
3407 new->entries[size - 1].threshold = threshold;
3408
3409 /* Sort thresholds. Registering of new threshold isn't time-critical */
3410 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3411 compare_thresholds, NULL);
3412
3413 /* Find current threshold */
3414 new->current_threshold = -1;
3415 for (i = 0; i < size; i++) {
3416 if (new->entries[i].threshold <= usage) {
3417 /*
3418 * new->current_threshold will not be used until
3419 * rcu_assign_pointer(), so it's safe to increment
3420 * it here.
3421 */
3422 ++new->current_threshold;
3423 } else
3424 break;
3425 }
3426
3427 /* Free old spare buffer and save old primary buffer as spare */
3428 kfree(thresholds->spare);
3429 thresholds->spare = thresholds->primary;
3430
3431 rcu_assign_pointer(thresholds->primary, new);
3432
3433 /* To be sure that nobody uses thresholds */
3434 synchronize_rcu();
3435
3436 unlock:
3437 mutex_unlock(&memcg->thresholds_lock);
3438
3439 return ret;
3440 }
3441
3442 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3443 struct eventfd_ctx *eventfd, const char *args)
3444 {
3445 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3446 }
3447
3448 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3449 struct eventfd_ctx *eventfd, const char *args)
3450 {
3451 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3452 }
3453
3454 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3455 struct eventfd_ctx *eventfd, enum res_type type)
3456 {
3457 struct mem_cgroup_thresholds *thresholds;
3458 struct mem_cgroup_threshold_ary *new;
3459 unsigned long usage;
3460 int i, j, size;
3461
3462 mutex_lock(&memcg->thresholds_lock);
3463
3464 if (type == _MEM) {
3465 thresholds = &memcg->thresholds;
3466 usage = mem_cgroup_usage(memcg, false);
3467 } else if (type == _MEMSWAP) {
3468 thresholds = &memcg->memsw_thresholds;
3469 usage = mem_cgroup_usage(memcg, true);
3470 } else
3471 BUG();
3472
3473 if (!thresholds->primary)
3474 goto unlock;
3475
3476 /* Check if a threshold crossed before removing */
3477 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3478
3479 /* Calculate new number of threshold */
3480 size = 0;
3481 for (i = 0; i < thresholds->primary->size; i++) {
3482 if (thresholds->primary->entries[i].eventfd != eventfd)
3483 size++;
3484 }
3485
3486 new = thresholds->spare;
3487
3488 /* Set thresholds array to NULL if we don't have thresholds */
3489 if (!size) {
3490 kfree(new);
3491 new = NULL;
3492 goto swap_buffers;
3493 }
3494
3495 new->size = size;
3496
3497 /* Copy thresholds and find current threshold */
3498 new->current_threshold = -1;
3499 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3500 if (thresholds->primary->entries[i].eventfd == eventfd)
3501 continue;
3502
3503 new->entries[j] = thresholds->primary->entries[i];
3504 if (new->entries[j].threshold <= usage) {
3505 /*
3506 * new->current_threshold will not be used
3507 * until rcu_assign_pointer(), so it's safe to increment
3508 * it here.
3509 */
3510 ++new->current_threshold;
3511 }
3512 j++;
3513 }
3514
3515 swap_buffers:
3516 /* Swap primary and spare array */
3517 thresholds->spare = thresholds->primary;
3518
3519 rcu_assign_pointer(thresholds->primary, new);
3520
3521 /* To be sure that nobody uses thresholds */
3522 synchronize_rcu();
3523
3524 /* If all events are unregistered, free the spare array */
3525 if (!new) {
3526 kfree(thresholds->spare);
3527 thresholds->spare = NULL;
3528 }
3529 unlock:
3530 mutex_unlock(&memcg->thresholds_lock);
3531 }
3532
3533 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3534 struct eventfd_ctx *eventfd)
3535 {
3536 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3537 }
3538
3539 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3540 struct eventfd_ctx *eventfd)
3541 {
3542 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3543 }
3544
3545 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3546 struct eventfd_ctx *eventfd, const char *args)
3547 {
3548 struct mem_cgroup_eventfd_list *event;
3549
3550 event = kmalloc(sizeof(*event), GFP_KERNEL);
3551 if (!event)
3552 return -ENOMEM;
3553
3554 spin_lock(&memcg_oom_lock);
3555
3556 event->eventfd = eventfd;
3557 list_add(&event->list, &memcg->oom_notify);
3558
3559 /* already in OOM ? */
3560 if (memcg->under_oom)
3561 eventfd_signal(eventfd, 1);
3562 spin_unlock(&memcg_oom_lock);
3563
3564 return 0;
3565 }
3566
3567 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3568 struct eventfd_ctx *eventfd)
3569 {
3570 struct mem_cgroup_eventfd_list *ev, *tmp;
3571
3572 spin_lock(&memcg_oom_lock);
3573
3574 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3575 if (ev->eventfd == eventfd) {
3576 list_del(&ev->list);
3577 kfree(ev);
3578 }
3579 }
3580
3581 spin_unlock(&memcg_oom_lock);
3582 }
3583
3584 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3585 {
3586 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3587
3588 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3589 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3590 return 0;
3591 }
3592
3593 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3594 struct cftype *cft, u64 val)
3595 {
3596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3597
3598 /* cannot set to root cgroup and only 0 and 1 are allowed */
3599 if (!css->parent || !((val == 0) || (val == 1)))
3600 return -EINVAL;
3601
3602 memcg->oom_kill_disable = val;
3603 if (!val)
3604 memcg_oom_recover(memcg);
3605
3606 return 0;
3607 }
3608
3609 #ifdef CONFIG_CGROUP_WRITEBACK
3610
3611 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3612 {
3613 return &memcg->cgwb_list;
3614 }
3615
3616 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3617 {
3618 return wb_domain_init(&memcg->cgwb_domain, gfp);
3619 }
3620
3621 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3622 {
3623 wb_domain_exit(&memcg->cgwb_domain);
3624 }
3625
3626 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3627 {
3628 wb_domain_size_changed(&memcg->cgwb_domain);
3629 }
3630
3631 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3632 {
3633 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3634
3635 if (!memcg->css.parent)
3636 return NULL;
3637
3638 return &memcg->cgwb_domain;
3639 }
3640
3641 /**
3642 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3643 * @wb: bdi_writeback in question
3644 * @pfilepages: out parameter for number of file pages
3645 * @pheadroom: out parameter for number of allocatable pages according to memcg
3646 * @pdirty: out parameter for number of dirty pages
3647 * @pwriteback: out parameter for number of pages under writeback
3648 *
3649 * Determine the numbers of file, headroom, dirty, and writeback pages in
3650 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3651 * is a bit more involved.
3652 *
3653 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3654 * headroom is calculated as the lowest headroom of itself and the
3655 * ancestors. Note that this doesn't consider the actual amount of
3656 * available memory in the system. The caller should further cap
3657 * *@pheadroom accordingly.
3658 */
3659 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3660 unsigned long *pheadroom, unsigned long *pdirty,
3661 unsigned long *pwriteback)
3662 {
3663 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3664 struct mem_cgroup *parent;
3665
3666 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3667
3668 /* this should eventually include NR_UNSTABLE_NFS */
3669 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3670 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3671 (1 << LRU_ACTIVE_FILE));
3672 *pheadroom = PAGE_COUNTER_MAX;
3673
3674 while ((parent = parent_mem_cgroup(memcg))) {
3675 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3676 unsigned long used = page_counter_read(&memcg->memory);
3677
3678 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3679 memcg = parent;
3680 }
3681 }
3682
3683 #else /* CONFIG_CGROUP_WRITEBACK */
3684
3685 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3686 {
3687 return 0;
3688 }
3689
3690 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3691 {
3692 }
3693
3694 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3695 {
3696 }
3697
3698 #endif /* CONFIG_CGROUP_WRITEBACK */
3699
3700 /*
3701 * DO NOT USE IN NEW FILES.
3702 *
3703 * "cgroup.event_control" implementation.
3704 *
3705 * This is way over-engineered. It tries to support fully configurable
3706 * events for each user. Such level of flexibility is completely
3707 * unnecessary especially in the light of the planned unified hierarchy.
3708 *
3709 * Please deprecate this and replace with something simpler if at all
3710 * possible.
3711 */
3712
3713 /*
3714 * Unregister event and free resources.
3715 *
3716 * Gets called from workqueue.
3717 */
3718 static void memcg_event_remove(struct work_struct *work)
3719 {
3720 struct mem_cgroup_event *event =
3721 container_of(work, struct mem_cgroup_event, remove);
3722 struct mem_cgroup *memcg = event->memcg;
3723
3724 remove_wait_queue(event->wqh, &event->wait);
3725
3726 event->unregister_event(memcg, event->eventfd);
3727
3728 /* Notify userspace the event is going away. */
3729 eventfd_signal(event->eventfd, 1);
3730
3731 eventfd_ctx_put(event->eventfd);
3732 kfree(event);
3733 css_put(&memcg->css);
3734 }
3735
3736 /*
3737 * Gets called on POLLHUP on eventfd when user closes it.
3738 *
3739 * Called with wqh->lock held and interrupts disabled.
3740 */
3741 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3742 int sync, void *key)
3743 {
3744 struct mem_cgroup_event *event =
3745 container_of(wait, struct mem_cgroup_event, wait);
3746 struct mem_cgroup *memcg = event->memcg;
3747 unsigned long flags = (unsigned long)key;
3748
3749 if (flags & POLLHUP) {
3750 /*
3751 * If the event has been detached at cgroup removal, we
3752 * can simply return knowing the other side will cleanup
3753 * for us.
3754 *
3755 * We can't race against event freeing since the other
3756 * side will require wqh->lock via remove_wait_queue(),
3757 * which we hold.
3758 */
3759 spin_lock(&memcg->event_list_lock);
3760 if (!list_empty(&event->list)) {
3761 list_del_init(&event->list);
3762 /*
3763 * We are in atomic context, but cgroup_event_remove()
3764 * may sleep, so we have to call it in workqueue.
3765 */
3766 schedule_work(&event->remove);
3767 }
3768 spin_unlock(&memcg->event_list_lock);
3769 }
3770
3771 return 0;
3772 }
3773
3774 static void memcg_event_ptable_queue_proc(struct file *file,
3775 wait_queue_head_t *wqh, poll_table *pt)
3776 {
3777 struct mem_cgroup_event *event =
3778 container_of(pt, struct mem_cgroup_event, pt);
3779
3780 event->wqh = wqh;
3781 add_wait_queue(wqh, &event->wait);
3782 }
3783
3784 /*
3785 * DO NOT USE IN NEW FILES.
3786 *
3787 * Parse input and register new cgroup event handler.
3788 *
3789 * Input must be in format '<event_fd> <control_fd> <args>'.
3790 * Interpretation of args is defined by control file implementation.
3791 */
3792 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3793 char *buf, size_t nbytes, loff_t off)
3794 {
3795 struct cgroup_subsys_state *css = of_css(of);
3796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3797 struct mem_cgroup_event *event;
3798 struct cgroup_subsys_state *cfile_css;
3799 unsigned int efd, cfd;
3800 struct fd efile;
3801 struct fd cfile;
3802 const char *name;
3803 char *endp;
3804 int ret;
3805
3806 buf = strstrip(buf);
3807
3808 efd = simple_strtoul(buf, &endp, 10);
3809 if (*endp != ' ')
3810 return -EINVAL;
3811 buf = endp + 1;
3812
3813 cfd = simple_strtoul(buf, &endp, 10);
3814 if ((*endp != ' ') && (*endp != '\0'))
3815 return -EINVAL;
3816 buf = endp + 1;
3817
3818 event = kzalloc(sizeof(*event), GFP_KERNEL);
3819 if (!event)
3820 return -ENOMEM;
3821
3822 event->memcg = memcg;
3823 INIT_LIST_HEAD(&event->list);
3824 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3825 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3826 INIT_WORK(&event->remove, memcg_event_remove);
3827
3828 efile = fdget(efd);
3829 if (!efile.file) {
3830 ret = -EBADF;
3831 goto out_kfree;
3832 }
3833
3834 event->eventfd = eventfd_ctx_fileget(efile.file);
3835 if (IS_ERR(event->eventfd)) {
3836 ret = PTR_ERR(event->eventfd);
3837 goto out_put_efile;
3838 }
3839
3840 cfile = fdget(cfd);
3841 if (!cfile.file) {
3842 ret = -EBADF;
3843 goto out_put_eventfd;
3844 }
3845
3846 /* the process need read permission on control file */
3847 /* AV: shouldn't we check that it's been opened for read instead? */
3848 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3849 if (ret < 0)
3850 goto out_put_cfile;
3851
3852 /*
3853 * Determine the event callbacks and set them in @event. This used
3854 * to be done via struct cftype but cgroup core no longer knows
3855 * about these events. The following is crude but the whole thing
3856 * is for compatibility anyway.
3857 *
3858 * DO NOT ADD NEW FILES.
3859 */
3860 name = cfile.file->f_path.dentry->d_name.name;
3861
3862 if (!strcmp(name, "memory.usage_in_bytes")) {
3863 event->register_event = mem_cgroup_usage_register_event;
3864 event->unregister_event = mem_cgroup_usage_unregister_event;
3865 } else if (!strcmp(name, "memory.oom_control")) {
3866 event->register_event = mem_cgroup_oom_register_event;
3867 event->unregister_event = mem_cgroup_oom_unregister_event;
3868 } else if (!strcmp(name, "memory.pressure_level")) {
3869 event->register_event = vmpressure_register_event;
3870 event->unregister_event = vmpressure_unregister_event;
3871 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3872 event->register_event = memsw_cgroup_usage_register_event;
3873 event->unregister_event = memsw_cgroup_usage_unregister_event;
3874 } else {
3875 ret = -EINVAL;
3876 goto out_put_cfile;
3877 }
3878
3879 /*
3880 * Verify @cfile should belong to @css. Also, remaining events are
3881 * automatically removed on cgroup destruction but the removal is
3882 * asynchronous, so take an extra ref on @css.
3883 */
3884 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3885 &memory_cgrp_subsys);
3886 ret = -EINVAL;
3887 if (IS_ERR(cfile_css))
3888 goto out_put_cfile;
3889 if (cfile_css != css) {
3890 css_put(cfile_css);
3891 goto out_put_cfile;
3892 }
3893
3894 ret = event->register_event(memcg, event->eventfd, buf);
3895 if (ret)
3896 goto out_put_css;
3897
3898 efile.file->f_op->poll(efile.file, &event->pt);
3899
3900 spin_lock(&memcg->event_list_lock);
3901 list_add(&event->list, &memcg->event_list);
3902 spin_unlock(&memcg->event_list_lock);
3903
3904 fdput(cfile);
3905 fdput(efile);
3906
3907 return nbytes;
3908
3909 out_put_css:
3910 css_put(css);
3911 out_put_cfile:
3912 fdput(cfile);
3913 out_put_eventfd:
3914 eventfd_ctx_put(event->eventfd);
3915 out_put_efile:
3916 fdput(efile);
3917 out_kfree:
3918 kfree(event);
3919
3920 return ret;
3921 }
3922
3923 static struct cftype mem_cgroup_legacy_files[] = {
3924 {
3925 .name = "usage_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3927 .read_u64 = mem_cgroup_read_u64,
3928 },
3929 {
3930 .name = "max_usage_in_bytes",
3931 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3932 .write = mem_cgroup_reset,
3933 .read_u64 = mem_cgroup_read_u64,
3934 },
3935 {
3936 .name = "limit_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3938 .write = mem_cgroup_write,
3939 .read_u64 = mem_cgroup_read_u64,
3940 },
3941 {
3942 .name = "soft_limit_in_bytes",
3943 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3944 .write = mem_cgroup_write,
3945 .read_u64 = mem_cgroup_read_u64,
3946 },
3947 {
3948 .name = "failcnt",
3949 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3950 .write = mem_cgroup_reset,
3951 .read_u64 = mem_cgroup_read_u64,
3952 },
3953 {
3954 .name = "stat",
3955 .seq_show = memcg_stat_show,
3956 },
3957 {
3958 .name = "force_empty",
3959 .write = mem_cgroup_force_empty_write,
3960 },
3961 {
3962 .name = "use_hierarchy",
3963 .write_u64 = mem_cgroup_hierarchy_write,
3964 .read_u64 = mem_cgroup_hierarchy_read,
3965 },
3966 {
3967 .name = "cgroup.event_control", /* XXX: for compat */
3968 .write = memcg_write_event_control,
3969 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3970 },
3971 {
3972 .name = "swappiness",
3973 .read_u64 = mem_cgroup_swappiness_read,
3974 .write_u64 = mem_cgroup_swappiness_write,
3975 },
3976 {
3977 .name = "move_charge_at_immigrate",
3978 .read_u64 = mem_cgroup_move_charge_read,
3979 .write_u64 = mem_cgroup_move_charge_write,
3980 },
3981 {
3982 .name = "oom_control",
3983 .seq_show = mem_cgroup_oom_control_read,
3984 .write_u64 = mem_cgroup_oom_control_write,
3985 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3986 },
3987 {
3988 .name = "pressure_level",
3989 },
3990 #ifdef CONFIG_NUMA
3991 {
3992 .name = "numa_stat",
3993 .seq_show = memcg_numa_stat_show,
3994 },
3995 #endif
3996 {
3997 .name = "kmem.limit_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3999 .write = mem_cgroup_write,
4000 .read_u64 = mem_cgroup_read_u64,
4001 },
4002 {
4003 .name = "kmem.usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4005 .read_u64 = mem_cgroup_read_u64,
4006 },
4007 {
4008 .name = "kmem.failcnt",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4010 .write = mem_cgroup_reset,
4011 .read_u64 = mem_cgroup_read_u64,
4012 },
4013 {
4014 .name = "kmem.max_usage_in_bytes",
4015 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4016 .write = mem_cgroup_reset,
4017 .read_u64 = mem_cgroup_read_u64,
4018 },
4019 #ifdef CONFIG_SLABINFO
4020 {
4021 .name = "kmem.slabinfo",
4022 .seq_start = slab_start,
4023 .seq_next = slab_next,
4024 .seq_stop = slab_stop,
4025 .seq_show = memcg_slab_show,
4026 },
4027 #endif
4028 {
4029 .name = "kmem.tcp.limit_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4031 .write = mem_cgroup_write,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "kmem.tcp.usage_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4037 .read_u64 = mem_cgroup_read_u64,
4038 },
4039 {
4040 .name = "kmem.tcp.failcnt",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4042 .write = mem_cgroup_reset,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
4045 {
4046 .name = "kmem.tcp.max_usage_in_bytes",
4047 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4048 .write = mem_cgroup_reset,
4049 .read_u64 = mem_cgroup_read_u64,
4050 },
4051 { }, /* terminate */
4052 };
4053
4054 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4055 {
4056 struct mem_cgroup_per_node *pn;
4057 struct mem_cgroup_per_zone *mz;
4058 int zone, tmp = node;
4059 /*
4060 * This routine is called against possible nodes.
4061 * But it's BUG to call kmalloc() against offline node.
4062 *
4063 * TODO: this routine can waste much memory for nodes which will
4064 * never be onlined. It's better to use memory hotplug callback
4065 * function.
4066 */
4067 if (!node_state(node, N_NORMAL_MEMORY))
4068 tmp = -1;
4069 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4070 if (!pn)
4071 return 1;
4072
4073 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4074 mz = &pn->zoneinfo[zone];
4075 lruvec_init(&mz->lruvec);
4076 mz->usage_in_excess = 0;
4077 mz->on_tree = false;
4078 mz->memcg = memcg;
4079 }
4080 memcg->nodeinfo[node] = pn;
4081 return 0;
4082 }
4083
4084 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4085 {
4086 kfree(memcg->nodeinfo[node]);
4087 }
4088
4089 static void mem_cgroup_free(struct mem_cgroup *memcg)
4090 {
4091 int node;
4092
4093 memcg_wb_domain_exit(memcg);
4094 for_each_node(node)
4095 free_mem_cgroup_per_zone_info(memcg, node);
4096 free_percpu(memcg->stat);
4097 kfree(memcg);
4098 }
4099
4100 static struct mem_cgroup *mem_cgroup_alloc(void)
4101 {
4102 struct mem_cgroup *memcg;
4103 size_t size;
4104 int node;
4105
4106 size = sizeof(struct mem_cgroup);
4107 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4108
4109 memcg = kzalloc(size, GFP_KERNEL);
4110 if (!memcg)
4111 return NULL;
4112
4113 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4114 if (!memcg->stat)
4115 goto fail;
4116
4117 for_each_node(node)
4118 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4119 goto fail;
4120
4121 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4122 goto fail;
4123
4124 INIT_WORK(&memcg->high_work, high_work_func);
4125 memcg->last_scanned_node = MAX_NUMNODES;
4126 INIT_LIST_HEAD(&memcg->oom_notify);
4127 mutex_init(&memcg->thresholds_lock);
4128 spin_lock_init(&memcg->move_lock);
4129 vmpressure_init(&memcg->vmpressure);
4130 INIT_LIST_HEAD(&memcg->event_list);
4131 spin_lock_init(&memcg->event_list_lock);
4132 memcg->socket_pressure = jiffies;
4133 #ifndef CONFIG_SLOB
4134 memcg->kmemcg_id = -1;
4135 #endif
4136 #ifdef CONFIG_CGROUP_WRITEBACK
4137 INIT_LIST_HEAD(&memcg->cgwb_list);
4138 #endif
4139 return memcg;
4140 fail:
4141 mem_cgroup_free(memcg);
4142 return NULL;
4143 }
4144
4145 static struct cgroup_subsys_state * __ref
4146 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4147 {
4148 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4149 struct mem_cgroup *memcg;
4150 long error = -ENOMEM;
4151
4152 memcg = mem_cgroup_alloc();
4153 if (!memcg)
4154 return ERR_PTR(error);
4155
4156 memcg->high = PAGE_COUNTER_MAX;
4157 memcg->soft_limit = PAGE_COUNTER_MAX;
4158 if (parent) {
4159 memcg->swappiness = mem_cgroup_swappiness(parent);
4160 memcg->oom_kill_disable = parent->oom_kill_disable;
4161 }
4162 if (parent && parent->use_hierarchy) {
4163 memcg->use_hierarchy = true;
4164 page_counter_init(&memcg->memory, &parent->memory);
4165 page_counter_init(&memcg->swap, &parent->swap);
4166 page_counter_init(&memcg->memsw, &parent->memsw);
4167 page_counter_init(&memcg->kmem, &parent->kmem);
4168 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4169 } else {
4170 page_counter_init(&memcg->memory, NULL);
4171 page_counter_init(&memcg->swap, NULL);
4172 page_counter_init(&memcg->memsw, NULL);
4173 page_counter_init(&memcg->kmem, NULL);
4174 page_counter_init(&memcg->tcpmem, NULL);
4175 /*
4176 * Deeper hierachy with use_hierarchy == false doesn't make
4177 * much sense so let cgroup subsystem know about this
4178 * unfortunate state in our controller.
4179 */
4180 if (parent != root_mem_cgroup)
4181 memory_cgrp_subsys.broken_hierarchy = true;
4182 }
4183
4184 /* The following stuff does not apply to the root */
4185 if (!parent) {
4186 root_mem_cgroup = memcg;
4187 return &memcg->css;
4188 }
4189
4190 error = memcg_online_kmem(memcg);
4191 if (error)
4192 goto fail;
4193
4194 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4195 static_branch_inc(&memcg_sockets_enabled_key);
4196
4197 return &memcg->css;
4198 fail:
4199 mem_cgroup_free(memcg);
4200 return NULL;
4201 }
4202
4203 static int
4204 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4205 {
4206 if (css->id > MEM_CGROUP_ID_MAX)
4207 return -ENOSPC;
4208
4209 return 0;
4210 }
4211
4212 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4213 {
4214 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4215 struct mem_cgroup_event *event, *tmp;
4216
4217 /*
4218 * Unregister events and notify userspace.
4219 * Notify userspace about cgroup removing only after rmdir of cgroup
4220 * directory to avoid race between userspace and kernelspace.
4221 */
4222 spin_lock(&memcg->event_list_lock);
4223 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4224 list_del_init(&event->list);
4225 schedule_work(&event->remove);
4226 }
4227 spin_unlock(&memcg->event_list_lock);
4228
4229 memcg_offline_kmem(memcg);
4230 wb_memcg_offline(memcg);
4231 }
4232
4233 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4234 {
4235 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4236
4237 invalidate_reclaim_iterators(memcg);
4238 }
4239
4240 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4241 {
4242 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4243
4244 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4245 static_branch_dec(&memcg_sockets_enabled_key);
4246
4247 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4248 static_branch_dec(&memcg_sockets_enabled_key);
4249
4250 vmpressure_cleanup(&memcg->vmpressure);
4251 cancel_work_sync(&memcg->high_work);
4252 mem_cgroup_remove_from_trees(memcg);
4253 memcg_free_kmem(memcg);
4254 mem_cgroup_free(memcg);
4255 }
4256
4257 /**
4258 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4259 * @css: the target css
4260 *
4261 * Reset the states of the mem_cgroup associated with @css. This is
4262 * invoked when the userland requests disabling on the default hierarchy
4263 * but the memcg is pinned through dependency. The memcg should stop
4264 * applying policies and should revert to the vanilla state as it may be
4265 * made visible again.
4266 *
4267 * The current implementation only resets the essential configurations.
4268 * This needs to be expanded to cover all the visible parts.
4269 */
4270 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4271 {
4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273
4274 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4275 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4276 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4277 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4278 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4279 memcg->low = 0;
4280 memcg->high = PAGE_COUNTER_MAX;
4281 memcg->soft_limit = PAGE_COUNTER_MAX;
4282 memcg_wb_domain_size_changed(memcg);
4283 }
4284
4285 #ifdef CONFIG_MMU
4286 /* Handlers for move charge at task migration. */
4287 static int mem_cgroup_do_precharge(unsigned long count)
4288 {
4289 int ret;
4290
4291 /* Try a single bulk charge without reclaim first, kswapd may wake */
4292 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4293 if (!ret) {
4294 mc.precharge += count;
4295 return ret;
4296 }
4297
4298 /* Try charges one by one with reclaim */
4299 while (count--) {
4300 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4301 if (ret)
4302 return ret;
4303 mc.precharge++;
4304 cond_resched();
4305 }
4306 return 0;
4307 }
4308
4309 /**
4310 * get_mctgt_type - get target type of moving charge
4311 * @vma: the vma the pte to be checked belongs
4312 * @addr: the address corresponding to the pte to be checked
4313 * @ptent: the pte to be checked
4314 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4315 *
4316 * Returns
4317 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4318 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4319 * move charge. if @target is not NULL, the page is stored in target->page
4320 * with extra refcnt got(Callers should handle it).
4321 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4322 * target for charge migration. if @target is not NULL, the entry is stored
4323 * in target->ent.
4324 *
4325 * Called with pte lock held.
4326 */
4327 union mc_target {
4328 struct page *page;
4329 swp_entry_t ent;
4330 };
4331
4332 enum mc_target_type {
4333 MC_TARGET_NONE = 0,
4334 MC_TARGET_PAGE,
4335 MC_TARGET_SWAP,
4336 };
4337
4338 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4339 unsigned long addr, pte_t ptent)
4340 {
4341 struct page *page = vm_normal_page(vma, addr, ptent);
4342
4343 if (!page || !page_mapped(page))
4344 return NULL;
4345 if (PageAnon(page)) {
4346 if (!(mc.flags & MOVE_ANON))
4347 return NULL;
4348 } else {
4349 if (!(mc.flags & MOVE_FILE))
4350 return NULL;
4351 }
4352 if (!get_page_unless_zero(page))
4353 return NULL;
4354
4355 return page;
4356 }
4357
4358 #ifdef CONFIG_SWAP
4359 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4360 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4361 {
4362 struct page *page = NULL;
4363 swp_entry_t ent = pte_to_swp_entry(ptent);
4364
4365 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4366 return NULL;
4367 /*
4368 * Because lookup_swap_cache() updates some statistics counter,
4369 * we call find_get_page() with swapper_space directly.
4370 */
4371 page = find_get_page(swap_address_space(ent), ent.val);
4372 if (do_memsw_account())
4373 entry->val = ent.val;
4374
4375 return page;
4376 }
4377 #else
4378 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4379 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4380 {
4381 return NULL;
4382 }
4383 #endif
4384
4385 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4386 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4387 {
4388 struct page *page = NULL;
4389 struct address_space *mapping;
4390 pgoff_t pgoff;
4391
4392 if (!vma->vm_file) /* anonymous vma */
4393 return NULL;
4394 if (!(mc.flags & MOVE_FILE))
4395 return NULL;
4396
4397 mapping = vma->vm_file->f_mapping;
4398 pgoff = linear_page_index(vma, addr);
4399
4400 /* page is moved even if it's not RSS of this task(page-faulted). */
4401 #ifdef CONFIG_SWAP
4402 /* shmem/tmpfs may report page out on swap: account for that too. */
4403 if (shmem_mapping(mapping)) {
4404 page = find_get_entry(mapping, pgoff);
4405 if (radix_tree_exceptional_entry(page)) {
4406 swp_entry_t swp = radix_to_swp_entry(page);
4407 if (do_memsw_account())
4408 *entry = swp;
4409 page = find_get_page(swap_address_space(swp), swp.val);
4410 }
4411 } else
4412 page = find_get_page(mapping, pgoff);
4413 #else
4414 page = find_get_page(mapping, pgoff);
4415 #endif
4416 return page;
4417 }
4418
4419 /**
4420 * mem_cgroup_move_account - move account of the page
4421 * @page: the page
4422 * @nr_pages: number of regular pages (>1 for huge pages)
4423 * @from: mem_cgroup which the page is moved from.
4424 * @to: mem_cgroup which the page is moved to. @from != @to.
4425 *
4426 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4427 *
4428 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4429 * from old cgroup.
4430 */
4431 static int mem_cgroup_move_account(struct page *page,
4432 bool compound,
4433 struct mem_cgroup *from,
4434 struct mem_cgroup *to)
4435 {
4436 unsigned long flags;
4437 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4438 int ret;
4439 bool anon;
4440
4441 VM_BUG_ON(from == to);
4442 VM_BUG_ON_PAGE(PageLRU(page), page);
4443 VM_BUG_ON(compound && !PageTransHuge(page));
4444
4445 /*
4446 * Prevent mem_cgroup_migrate() from looking at
4447 * page->mem_cgroup of its source page while we change it.
4448 */
4449 ret = -EBUSY;
4450 if (!trylock_page(page))
4451 goto out;
4452
4453 ret = -EINVAL;
4454 if (page->mem_cgroup != from)
4455 goto out_unlock;
4456
4457 anon = PageAnon(page);
4458
4459 spin_lock_irqsave(&from->move_lock, flags);
4460
4461 if (!anon && page_mapped(page)) {
4462 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4463 nr_pages);
4464 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4465 nr_pages);
4466 }
4467
4468 /*
4469 * move_lock grabbed above and caller set from->moving_account, so
4470 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4471 * So mapping should be stable for dirty pages.
4472 */
4473 if (!anon && PageDirty(page)) {
4474 struct address_space *mapping = page_mapping(page);
4475
4476 if (mapping_cap_account_dirty(mapping)) {
4477 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4478 nr_pages);
4479 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4480 nr_pages);
4481 }
4482 }
4483
4484 if (PageWriteback(page)) {
4485 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4486 nr_pages);
4487 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4488 nr_pages);
4489 }
4490
4491 /*
4492 * It is safe to change page->mem_cgroup here because the page
4493 * is referenced, charged, and isolated - we can't race with
4494 * uncharging, charging, migration, or LRU putback.
4495 */
4496
4497 /* caller should have done css_get */
4498 page->mem_cgroup = to;
4499 spin_unlock_irqrestore(&from->move_lock, flags);
4500
4501 ret = 0;
4502
4503 local_irq_disable();
4504 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4505 memcg_check_events(to, page);
4506 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4507 memcg_check_events(from, page);
4508 local_irq_enable();
4509 out_unlock:
4510 unlock_page(page);
4511 out:
4512 return ret;
4513 }
4514
4515 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4516 unsigned long addr, pte_t ptent, union mc_target *target)
4517 {
4518 struct page *page = NULL;
4519 enum mc_target_type ret = MC_TARGET_NONE;
4520 swp_entry_t ent = { .val = 0 };
4521
4522 if (pte_present(ptent))
4523 page = mc_handle_present_pte(vma, addr, ptent);
4524 else if (is_swap_pte(ptent))
4525 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4526 else if (pte_none(ptent))
4527 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4528
4529 if (!page && !ent.val)
4530 return ret;
4531 if (page) {
4532 /*
4533 * Do only loose check w/o serialization.
4534 * mem_cgroup_move_account() checks the page is valid or
4535 * not under LRU exclusion.
4536 */
4537 if (page->mem_cgroup == mc.from) {
4538 ret = MC_TARGET_PAGE;
4539 if (target)
4540 target->page = page;
4541 }
4542 if (!ret || !target)
4543 put_page(page);
4544 }
4545 /* There is a swap entry and a page doesn't exist or isn't charged */
4546 if (ent.val && !ret &&
4547 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4548 ret = MC_TARGET_SWAP;
4549 if (target)
4550 target->ent = ent;
4551 }
4552 return ret;
4553 }
4554
4555 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4556 /*
4557 * We don't consider swapping or file mapped pages because THP does not
4558 * support them for now.
4559 * Caller should make sure that pmd_trans_huge(pmd) is true.
4560 */
4561 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4562 unsigned long addr, pmd_t pmd, union mc_target *target)
4563 {
4564 struct page *page = NULL;
4565 enum mc_target_type ret = MC_TARGET_NONE;
4566
4567 page = pmd_page(pmd);
4568 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4569 if (!(mc.flags & MOVE_ANON))
4570 return ret;
4571 if (page->mem_cgroup == mc.from) {
4572 ret = MC_TARGET_PAGE;
4573 if (target) {
4574 get_page(page);
4575 target->page = page;
4576 }
4577 }
4578 return ret;
4579 }
4580 #else
4581 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4582 unsigned long addr, pmd_t pmd, union mc_target *target)
4583 {
4584 return MC_TARGET_NONE;
4585 }
4586 #endif
4587
4588 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4589 unsigned long addr, unsigned long end,
4590 struct mm_walk *walk)
4591 {
4592 struct vm_area_struct *vma = walk->vma;
4593 pte_t *pte;
4594 spinlock_t *ptl;
4595
4596 ptl = pmd_trans_huge_lock(pmd, vma);
4597 if (ptl) {
4598 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4599 mc.precharge += HPAGE_PMD_NR;
4600 spin_unlock(ptl);
4601 return 0;
4602 }
4603
4604 if (pmd_trans_unstable(pmd))
4605 return 0;
4606 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4607 for (; addr != end; pte++, addr += PAGE_SIZE)
4608 if (get_mctgt_type(vma, addr, *pte, NULL))
4609 mc.precharge++; /* increment precharge temporarily */
4610 pte_unmap_unlock(pte - 1, ptl);
4611 cond_resched();
4612
4613 return 0;
4614 }
4615
4616 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4617 {
4618 unsigned long precharge;
4619
4620 struct mm_walk mem_cgroup_count_precharge_walk = {
4621 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4622 .mm = mm,
4623 };
4624 down_read(&mm->mmap_sem);
4625 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4626 up_read(&mm->mmap_sem);
4627
4628 precharge = mc.precharge;
4629 mc.precharge = 0;
4630
4631 return precharge;
4632 }
4633
4634 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4635 {
4636 unsigned long precharge = mem_cgroup_count_precharge(mm);
4637
4638 VM_BUG_ON(mc.moving_task);
4639 mc.moving_task = current;
4640 return mem_cgroup_do_precharge(precharge);
4641 }
4642
4643 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4644 static void __mem_cgroup_clear_mc(void)
4645 {
4646 struct mem_cgroup *from = mc.from;
4647 struct mem_cgroup *to = mc.to;
4648
4649 /* we must uncharge all the leftover precharges from mc.to */
4650 if (mc.precharge) {
4651 cancel_charge(mc.to, mc.precharge);
4652 mc.precharge = 0;
4653 }
4654 /*
4655 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4656 * we must uncharge here.
4657 */
4658 if (mc.moved_charge) {
4659 cancel_charge(mc.from, mc.moved_charge);
4660 mc.moved_charge = 0;
4661 }
4662 /* we must fixup refcnts and charges */
4663 if (mc.moved_swap) {
4664 /* uncharge swap account from the old cgroup */
4665 if (!mem_cgroup_is_root(mc.from))
4666 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4667
4668 /*
4669 * we charged both to->memory and to->memsw, so we
4670 * should uncharge to->memory.
4671 */
4672 if (!mem_cgroup_is_root(mc.to))
4673 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4674
4675 css_put_many(&mc.from->css, mc.moved_swap);
4676
4677 /* we've already done css_get(mc.to) */
4678 mc.moved_swap = 0;
4679 }
4680 memcg_oom_recover(from);
4681 memcg_oom_recover(to);
4682 wake_up_all(&mc.waitq);
4683 }
4684
4685 static void mem_cgroup_clear_mc(void)
4686 {
4687 struct mm_struct *mm = mc.mm;
4688
4689 /*
4690 * we must clear moving_task before waking up waiters at the end of
4691 * task migration.
4692 */
4693 mc.moving_task = NULL;
4694 __mem_cgroup_clear_mc();
4695 spin_lock(&mc.lock);
4696 mc.from = NULL;
4697 mc.to = NULL;
4698 mc.mm = NULL;
4699 spin_unlock(&mc.lock);
4700
4701 mmput(mm);
4702 }
4703
4704 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4705 {
4706 struct cgroup_subsys_state *css;
4707 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4708 struct mem_cgroup *from;
4709 struct task_struct *leader, *p;
4710 struct mm_struct *mm;
4711 unsigned long move_flags;
4712 int ret = 0;
4713
4714 /* charge immigration isn't supported on the default hierarchy */
4715 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4716 return 0;
4717
4718 /*
4719 * Multi-process migrations only happen on the default hierarchy
4720 * where charge immigration is not used. Perform charge
4721 * immigration if @tset contains a leader and whine if there are
4722 * multiple.
4723 */
4724 p = NULL;
4725 cgroup_taskset_for_each_leader(leader, css, tset) {
4726 WARN_ON_ONCE(p);
4727 p = leader;
4728 memcg = mem_cgroup_from_css(css);
4729 }
4730 if (!p)
4731 return 0;
4732
4733 /*
4734 * We are now commited to this value whatever it is. Changes in this
4735 * tunable will only affect upcoming migrations, not the current one.
4736 * So we need to save it, and keep it going.
4737 */
4738 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4739 if (!move_flags)
4740 return 0;
4741
4742 from = mem_cgroup_from_task(p);
4743
4744 VM_BUG_ON(from == memcg);
4745
4746 mm = get_task_mm(p);
4747 if (!mm)
4748 return 0;
4749 /* We move charges only when we move a owner of the mm */
4750 if (mm->owner == p) {
4751 VM_BUG_ON(mc.from);
4752 VM_BUG_ON(mc.to);
4753 VM_BUG_ON(mc.precharge);
4754 VM_BUG_ON(mc.moved_charge);
4755 VM_BUG_ON(mc.moved_swap);
4756
4757 spin_lock(&mc.lock);
4758 mc.mm = mm;
4759 mc.from = from;
4760 mc.to = memcg;
4761 mc.flags = move_flags;
4762 spin_unlock(&mc.lock);
4763 /* We set mc.moving_task later */
4764
4765 ret = mem_cgroup_precharge_mc(mm);
4766 if (ret)
4767 mem_cgroup_clear_mc();
4768 } else {
4769 mmput(mm);
4770 }
4771 return ret;
4772 }
4773
4774 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4775 {
4776 if (mc.to)
4777 mem_cgroup_clear_mc();
4778 }
4779
4780 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4781 unsigned long addr, unsigned long end,
4782 struct mm_walk *walk)
4783 {
4784 int ret = 0;
4785 struct vm_area_struct *vma = walk->vma;
4786 pte_t *pte;
4787 spinlock_t *ptl;
4788 enum mc_target_type target_type;
4789 union mc_target target;
4790 struct page *page;
4791
4792 ptl = pmd_trans_huge_lock(pmd, vma);
4793 if (ptl) {
4794 if (mc.precharge < HPAGE_PMD_NR) {
4795 spin_unlock(ptl);
4796 return 0;
4797 }
4798 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4799 if (target_type == MC_TARGET_PAGE) {
4800 page = target.page;
4801 if (!isolate_lru_page(page)) {
4802 if (!mem_cgroup_move_account(page, true,
4803 mc.from, mc.to)) {
4804 mc.precharge -= HPAGE_PMD_NR;
4805 mc.moved_charge += HPAGE_PMD_NR;
4806 }
4807 putback_lru_page(page);
4808 }
4809 put_page(page);
4810 }
4811 spin_unlock(ptl);
4812 return 0;
4813 }
4814
4815 if (pmd_trans_unstable(pmd))
4816 return 0;
4817 retry:
4818 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4819 for (; addr != end; addr += PAGE_SIZE) {
4820 pte_t ptent = *(pte++);
4821 swp_entry_t ent;
4822
4823 if (!mc.precharge)
4824 break;
4825
4826 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4827 case MC_TARGET_PAGE:
4828 page = target.page;
4829 /*
4830 * We can have a part of the split pmd here. Moving it
4831 * can be done but it would be too convoluted so simply
4832 * ignore such a partial THP and keep it in original
4833 * memcg. There should be somebody mapping the head.
4834 */
4835 if (PageTransCompound(page))
4836 goto put;
4837 if (isolate_lru_page(page))
4838 goto put;
4839 if (!mem_cgroup_move_account(page, false,
4840 mc.from, mc.to)) {
4841 mc.precharge--;
4842 /* we uncharge from mc.from later. */
4843 mc.moved_charge++;
4844 }
4845 putback_lru_page(page);
4846 put: /* get_mctgt_type() gets the page */
4847 put_page(page);
4848 break;
4849 case MC_TARGET_SWAP:
4850 ent = target.ent;
4851 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4852 mc.precharge--;
4853 /* we fixup refcnts and charges later. */
4854 mc.moved_swap++;
4855 }
4856 break;
4857 default:
4858 break;
4859 }
4860 }
4861 pte_unmap_unlock(pte - 1, ptl);
4862 cond_resched();
4863
4864 if (addr != end) {
4865 /*
4866 * We have consumed all precharges we got in can_attach().
4867 * We try charge one by one, but don't do any additional
4868 * charges to mc.to if we have failed in charge once in attach()
4869 * phase.
4870 */
4871 ret = mem_cgroup_do_precharge(1);
4872 if (!ret)
4873 goto retry;
4874 }
4875
4876 return ret;
4877 }
4878
4879 static void mem_cgroup_move_charge(void)
4880 {
4881 struct mm_walk mem_cgroup_move_charge_walk = {
4882 .pmd_entry = mem_cgroup_move_charge_pte_range,
4883 .mm = mc.mm,
4884 };
4885
4886 lru_add_drain_all();
4887 /*
4888 * Signal lock_page_memcg() to take the memcg's move_lock
4889 * while we're moving its pages to another memcg. Then wait
4890 * for already started RCU-only updates to finish.
4891 */
4892 atomic_inc(&mc.from->moving_account);
4893 synchronize_rcu();
4894 retry:
4895 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4896 /*
4897 * Someone who are holding the mmap_sem might be waiting in
4898 * waitq. So we cancel all extra charges, wake up all waiters,
4899 * and retry. Because we cancel precharges, we might not be able
4900 * to move enough charges, but moving charge is a best-effort
4901 * feature anyway, so it wouldn't be a big problem.
4902 */
4903 __mem_cgroup_clear_mc();
4904 cond_resched();
4905 goto retry;
4906 }
4907 /*
4908 * When we have consumed all precharges and failed in doing
4909 * additional charge, the page walk just aborts.
4910 */
4911 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4912 up_read(&mc.mm->mmap_sem);
4913 atomic_dec(&mc.from->moving_account);
4914 }
4915
4916 static void mem_cgroup_move_task(void)
4917 {
4918 if (mc.to) {
4919 mem_cgroup_move_charge();
4920 mem_cgroup_clear_mc();
4921 }
4922 }
4923 #else /* !CONFIG_MMU */
4924 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4925 {
4926 return 0;
4927 }
4928 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4929 {
4930 }
4931 static void mem_cgroup_move_task(void)
4932 {
4933 }
4934 #endif
4935
4936 /*
4937 * Cgroup retains root cgroups across [un]mount cycles making it necessary
4938 * to verify whether we're attached to the default hierarchy on each mount
4939 * attempt.
4940 */
4941 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
4942 {
4943 /*
4944 * use_hierarchy is forced on the default hierarchy. cgroup core
4945 * guarantees that @root doesn't have any children, so turning it
4946 * on for the root memcg is enough.
4947 */
4948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4949 root_mem_cgroup->use_hierarchy = true;
4950 else
4951 root_mem_cgroup->use_hierarchy = false;
4952 }
4953
4954 static u64 memory_current_read(struct cgroup_subsys_state *css,
4955 struct cftype *cft)
4956 {
4957 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4958
4959 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
4960 }
4961
4962 static int memory_low_show(struct seq_file *m, void *v)
4963 {
4964 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4965 unsigned long low = READ_ONCE(memcg->low);
4966
4967 if (low == PAGE_COUNTER_MAX)
4968 seq_puts(m, "max\n");
4969 else
4970 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4971
4972 return 0;
4973 }
4974
4975 static ssize_t memory_low_write(struct kernfs_open_file *of,
4976 char *buf, size_t nbytes, loff_t off)
4977 {
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4979 unsigned long low;
4980 int err;
4981
4982 buf = strstrip(buf);
4983 err = page_counter_memparse(buf, "max", &low);
4984 if (err)
4985 return err;
4986
4987 memcg->low = low;
4988
4989 return nbytes;
4990 }
4991
4992 static int memory_high_show(struct seq_file *m, void *v)
4993 {
4994 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4995 unsigned long high = READ_ONCE(memcg->high);
4996
4997 if (high == PAGE_COUNTER_MAX)
4998 seq_puts(m, "max\n");
4999 else
5000 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5001
5002 return 0;
5003 }
5004
5005 static ssize_t memory_high_write(struct kernfs_open_file *of,
5006 char *buf, size_t nbytes, loff_t off)
5007 {
5008 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5009 unsigned long nr_pages;
5010 unsigned long high;
5011 int err;
5012
5013 buf = strstrip(buf);
5014 err = page_counter_memparse(buf, "max", &high);
5015 if (err)
5016 return err;
5017
5018 memcg->high = high;
5019
5020 nr_pages = page_counter_read(&memcg->memory);
5021 if (nr_pages > high)
5022 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5023 GFP_KERNEL, true);
5024
5025 memcg_wb_domain_size_changed(memcg);
5026 return nbytes;
5027 }
5028
5029 static int memory_max_show(struct seq_file *m, void *v)
5030 {
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5032 unsigned long max = READ_ONCE(memcg->memory.limit);
5033
5034 if (max == PAGE_COUNTER_MAX)
5035 seq_puts(m, "max\n");
5036 else
5037 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5038
5039 return 0;
5040 }
5041
5042 static ssize_t memory_max_write(struct kernfs_open_file *of,
5043 char *buf, size_t nbytes, loff_t off)
5044 {
5045 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5046 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5047 bool drained = false;
5048 unsigned long max;
5049 int err;
5050
5051 buf = strstrip(buf);
5052 err = page_counter_memparse(buf, "max", &max);
5053 if (err)
5054 return err;
5055
5056 xchg(&memcg->memory.limit, max);
5057
5058 for (;;) {
5059 unsigned long nr_pages = page_counter_read(&memcg->memory);
5060
5061 if (nr_pages <= max)
5062 break;
5063
5064 if (signal_pending(current)) {
5065 err = -EINTR;
5066 break;
5067 }
5068
5069 if (!drained) {
5070 drain_all_stock(memcg);
5071 drained = true;
5072 continue;
5073 }
5074
5075 if (nr_reclaims) {
5076 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5077 GFP_KERNEL, true))
5078 nr_reclaims--;
5079 continue;
5080 }
5081
5082 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5083 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5084 break;
5085 }
5086
5087 memcg_wb_domain_size_changed(memcg);
5088 return nbytes;
5089 }
5090
5091 static int memory_events_show(struct seq_file *m, void *v)
5092 {
5093 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5094
5095 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5096 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5097 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5098 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5099
5100 return 0;
5101 }
5102
5103 static int memory_stat_show(struct seq_file *m, void *v)
5104 {
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5106 unsigned long stat[MEMCG_NR_STAT];
5107 unsigned long events[MEMCG_NR_EVENTS];
5108 int i;
5109
5110 /*
5111 * Provide statistics on the state of the memory subsystem as
5112 * well as cumulative event counters that show past behavior.
5113 *
5114 * This list is ordered following a combination of these gradients:
5115 * 1) generic big picture -> specifics and details
5116 * 2) reflecting userspace activity -> reflecting kernel heuristics
5117 *
5118 * Current memory state:
5119 */
5120
5121 tree_stat(memcg, stat);
5122 tree_events(memcg, events);
5123
5124 seq_printf(m, "anon %llu\n",
5125 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5126 seq_printf(m, "file %llu\n",
5127 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5128 seq_printf(m, "kernel_stack %llu\n",
5129 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5130 seq_printf(m, "slab %llu\n",
5131 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5132 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5133 seq_printf(m, "sock %llu\n",
5134 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5135
5136 seq_printf(m, "file_mapped %llu\n",
5137 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5138 seq_printf(m, "file_dirty %llu\n",
5139 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5140 seq_printf(m, "file_writeback %llu\n",
5141 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5142
5143 for (i = 0; i < NR_LRU_LISTS; i++) {
5144 struct mem_cgroup *mi;
5145 unsigned long val = 0;
5146
5147 for_each_mem_cgroup_tree(mi, memcg)
5148 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5149 seq_printf(m, "%s %llu\n",
5150 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5151 }
5152
5153 seq_printf(m, "slab_reclaimable %llu\n",
5154 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5155 seq_printf(m, "slab_unreclaimable %llu\n",
5156 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5157
5158 /* Accumulated memory events */
5159
5160 seq_printf(m, "pgfault %lu\n",
5161 events[MEM_CGROUP_EVENTS_PGFAULT]);
5162 seq_printf(m, "pgmajfault %lu\n",
5163 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5164
5165 return 0;
5166 }
5167
5168 static struct cftype memory_files[] = {
5169 {
5170 .name = "current",
5171 .flags = CFTYPE_NOT_ON_ROOT,
5172 .read_u64 = memory_current_read,
5173 },
5174 {
5175 .name = "low",
5176 .flags = CFTYPE_NOT_ON_ROOT,
5177 .seq_show = memory_low_show,
5178 .write = memory_low_write,
5179 },
5180 {
5181 .name = "high",
5182 .flags = CFTYPE_NOT_ON_ROOT,
5183 .seq_show = memory_high_show,
5184 .write = memory_high_write,
5185 },
5186 {
5187 .name = "max",
5188 .flags = CFTYPE_NOT_ON_ROOT,
5189 .seq_show = memory_max_show,
5190 .write = memory_max_write,
5191 },
5192 {
5193 .name = "events",
5194 .flags = CFTYPE_NOT_ON_ROOT,
5195 .file_offset = offsetof(struct mem_cgroup, events_file),
5196 .seq_show = memory_events_show,
5197 },
5198 {
5199 .name = "stat",
5200 .flags = CFTYPE_NOT_ON_ROOT,
5201 .seq_show = memory_stat_show,
5202 },
5203 { } /* terminate */
5204 };
5205
5206 struct cgroup_subsys memory_cgrp_subsys = {
5207 .css_alloc = mem_cgroup_css_alloc,
5208 .css_online = mem_cgroup_css_online,
5209 .css_offline = mem_cgroup_css_offline,
5210 .css_released = mem_cgroup_css_released,
5211 .css_free = mem_cgroup_css_free,
5212 .css_reset = mem_cgroup_css_reset,
5213 .can_attach = mem_cgroup_can_attach,
5214 .cancel_attach = mem_cgroup_cancel_attach,
5215 .post_attach = mem_cgroup_move_task,
5216 .bind = mem_cgroup_bind,
5217 .dfl_cftypes = memory_files,
5218 .legacy_cftypes = mem_cgroup_legacy_files,
5219 .early_init = 0,
5220 };
5221
5222 /**
5223 * mem_cgroup_low - check if memory consumption is below the normal range
5224 * @root: the highest ancestor to consider
5225 * @memcg: the memory cgroup to check
5226 *
5227 * Returns %true if memory consumption of @memcg, and that of all
5228 * configurable ancestors up to @root, is below the normal range.
5229 */
5230 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5231 {
5232 if (mem_cgroup_disabled())
5233 return false;
5234
5235 /*
5236 * The toplevel group doesn't have a configurable range, so
5237 * it's never low when looked at directly, and it is not
5238 * considered an ancestor when assessing the hierarchy.
5239 */
5240
5241 if (memcg == root_mem_cgroup)
5242 return false;
5243
5244 if (page_counter_read(&memcg->memory) >= memcg->low)
5245 return false;
5246
5247 while (memcg != root) {
5248 memcg = parent_mem_cgroup(memcg);
5249
5250 if (memcg == root_mem_cgroup)
5251 break;
5252
5253 if (page_counter_read(&memcg->memory) >= memcg->low)
5254 return false;
5255 }
5256 return true;
5257 }
5258
5259 /**
5260 * mem_cgroup_try_charge - try charging a page
5261 * @page: page to charge
5262 * @mm: mm context of the victim
5263 * @gfp_mask: reclaim mode
5264 * @memcgp: charged memcg return
5265 *
5266 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5267 * pages according to @gfp_mask if necessary.
5268 *
5269 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5270 * Otherwise, an error code is returned.
5271 *
5272 * After page->mapping has been set up, the caller must finalize the
5273 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5274 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5275 */
5276 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5277 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5278 bool compound)
5279 {
5280 struct mem_cgroup *memcg = NULL;
5281 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5282 int ret = 0;
5283
5284 if (mem_cgroup_disabled())
5285 goto out;
5286
5287 if (PageSwapCache(page)) {
5288 /*
5289 * Every swap fault against a single page tries to charge the
5290 * page, bail as early as possible. shmem_unuse() encounters
5291 * already charged pages, too. The USED bit is protected by
5292 * the page lock, which serializes swap cache removal, which
5293 * in turn serializes uncharging.
5294 */
5295 VM_BUG_ON_PAGE(!PageLocked(page), page);
5296 if (page->mem_cgroup)
5297 goto out;
5298
5299 if (do_swap_account) {
5300 swp_entry_t ent = { .val = page_private(page), };
5301 unsigned short id = lookup_swap_cgroup_id(ent);
5302
5303 rcu_read_lock();
5304 memcg = mem_cgroup_from_id(id);
5305 if (memcg && !css_tryget_online(&memcg->css))
5306 memcg = NULL;
5307 rcu_read_unlock();
5308 }
5309 }
5310
5311 if (!memcg)
5312 memcg = get_mem_cgroup_from_mm(mm);
5313
5314 ret = try_charge(memcg, gfp_mask, nr_pages);
5315
5316 css_put(&memcg->css);
5317 out:
5318 *memcgp = memcg;
5319 return ret;
5320 }
5321
5322 /**
5323 * mem_cgroup_commit_charge - commit a page charge
5324 * @page: page to charge
5325 * @memcg: memcg to charge the page to
5326 * @lrucare: page might be on LRU already
5327 *
5328 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5329 * after page->mapping has been set up. This must happen atomically
5330 * as part of the page instantiation, i.e. under the page table lock
5331 * for anonymous pages, under the page lock for page and swap cache.
5332 *
5333 * In addition, the page must not be on the LRU during the commit, to
5334 * prevent racing with task migration. If it might be, use @lrucare.
5335 *
5336 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5337 */
5338 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5339 bool lrucare, bool compound)
5340 {
5341 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5342
5343 VM_BUG_ON_PAGE(!page->mapping, page);
5344 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5345
5346 if (mem_cgroup_disabled())
5347 return;
5348 /*
5349 * Swap faults will attempt to charge the same page multiple
5350 * times. But reuse_swap_page() might have removed the page
5351 * from swapcache already, so we can't check PageSwapCache().
5352 */
5353 if (!memcg)
5354 return;
5355
5356 commit_charge(page, memcg, lrucare);
5357
5358 local_irq_disable();
5359 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5360 memcg_check_events(memcg, page);
5361 local_irq_enable();
5362
5363 if (do_memsw_account() && PageSwapCache(page)) {
5364 swp_entry_t entry = { .val = page_private(page) };
5365 /*
5366 * The swap entry might not get freed for a long time,
5367 * let's not wait for it. The page already received a
5368 * memory+swap charge, drop the swap entry duplicate.
5369 */
5370 mem_cgroup_uncharge_swap(entry);
5371 }
5372 }
5373
5374 /**
5375 * mem_cgroup_cancel_charge - cancel a page charge
5376 * @page: page to charge
5377 * @memcg: memcg to charge the page to
5378 *
5379 * Cancel a charge transaction started by mem_cgroup_try_charge().
5380 */
5381 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5382 bool compound)
5383 {
5384 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5385
5386 if (mem_cgroup_disabled())
5387 return;
5388 /*
5389 * Swap faults will attempt to charge the same page multiple
5390 * times. But reuse_swap_page() might have removed the page
5391 * from swapcache already, so we can't check PageSwapCache().
5392 */
5393 if (!memcg)
5394 return;
5395
5396 cancel_charge(memcg, nr_pages);
5397 }
5398
5399 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5400 unsigned long nr_anon, unsigned long nr_file,
5401 unsigned long nr_huge, struct page *dummy_page)
5402 {
5403 unsigned long nr_pages = nr_anon + nr_file;
5404 unsigned long flags;
5405
5406 if (!mem_cgroup_is_root(memcg)) {
5407 page_counter_uncharge(&memcg->memory, nr_pages);
5408 if (do_memsw_account())
5409 page_counter_uncharge(&memcg->memsw, nr_pages);
5410 memcg_oom_recover(memcg);
5411 }
5412
5413 local_irq_save(flags);
5414 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5415 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5416 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5417 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5418 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5419 memcg_check_events(memcg, dummy_page);
5420 local_irq_restore(flags);
5421
5422 if (!mem_cgroup_is_root(memcg))
5423 css_put_many(&memcg->css, nr_pages);
5424 }
5425
5426 static void uncharge_list(struct list_head *page_list)
5427 {
5428 struct mem_cgroup *memcg = NULL;
5429 unsigned long nr_anon = 0;
5430 unsigned long nr_file = 0;
5431 unsigned long nr_huge = 0;
5432 unsigned long pgpgout = 0;
5433 struct list_head *next;
5434 struct page *page;
5435
5436 /*
5437 * Note that the list can be a single page->lru; hence the
5438 * do-while loop instead of a simple list_for_each_entry().
5439 */
5440 next = page_list->next;
5441 do {
5442 unsigned int nr_pages = 1;
5443
5444 page = list_entry(next, struct page, lru);
5445 next = page->lru.next;
5446
5447 VM_BUG_ON_PAGE(PageLRU(page), page);
5448 VM_BUG_ON_PAGE(page_count(page), page);
5449
5450 if (!page->mem_cgroup)
5451 continue;
5452
5453 /*
5454 * Nobody should be changing or seriously looking at
5455 * page->mem_cgroup at this point, we have fully
5456 * exclusive access to the page.
5457 */
5458
5459 if (memcg != page->mem_cgroup) {
5460 if (memcg) {
5461 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5462 nr_huge, page);
5463 pgpgout = nr_anon = nr_file = nr_huge = 0;
5464 }
5465 memcg = page->mem_cgroup;
5466 }
5467
5468 if (PageTransHuge(page)) {
5469 nr_pages <<= compound_order(page);
5470 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5471 nr_huge += nr_pages;
5472 }
5473
5474 if (PageAnon(page))
5475 nr_anon += nr_pages;
5476 else
5477 nr_file += nr_pages;
5478
5479 page->mem_cgroup = NULL;
5480
5481 pgpgout++;
5482 } while (next != page_list);
5483
5484 if (memcg)
5485 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5486 nr_huge, page);
5487 }
5488
5489 /**
5490 * mem_cgroup_uncharge - uncharge a page
5491 * @page: page to uncharge
5492 *
5493 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5494 * mem_cgroup_commit_charge().
5495 */
5496 void mem_cgroup_uncharge(struct page *page)
5497 {
5498 if (mem_cgroup_disabled())
5499 return;
5500
5501 /* Don't touch page->lru of any random page, pre-check: */
5502 if (!page->mem_cgroup)
5503 return;
5504
5505 INIT_LIST_HEAD(&page->lru);
5506 uncharge_list(&page->lru);
5507 }
5508
5509 /**
5510 * mem_cgroup_uncharge_list - uncharge a list of page
5511 * @page_list: list of pages to uncharge
5512 *
5513 * Uncharge a list of pages previously charged with
5514 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5515 */
5516 void mem_cgroup_uncharge_list(struct list_head *page_list)
5517 {
5518 if (mem_cgroup_disabled())
5519 return;
5520
5521 if (!list_empty(page_list))
5522 uncharge_list(page_list);
5523 }
5524
5525 /**
5526 * mem_cgroup_migrate - charge a page's replacement
5527 * @oldpage: currently circulating page
5528 * @newpage: replacement page
5529 *
5530 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5531 * be uncharged upon free.
5532 *
5533 * Both pages must be locked, @newpage->mapping must be set up.
5534 */
5535 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5536 {
5537 struct mem_cgroup *memcg;
5538 unsigned int nr_pages;
5539 bool compound;
5540
5541 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5542 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5543 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5544 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5545 newpage);
5546
5547 if (mem_cgroup_disabled())
5548 return;
5549
5550 /* Page cache replacement: new page already charged? */
5551 if (newpage->mem_cgroup)
5552 return;
5553
5554 /* Swapcache readahead pages can get replaced before being charged */
5555 memcg = oldpage->mem_cgroup;
5556 if (!memcg)
5557 return;
5558
5559 /* Force-charge the new page. The old one will be freed soon */
5560 compound = PageTransHuge(newpage);
5561 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5562
5563 page_counter_charge(&memcg->memory, nr_pages);
5564 if (do_memsw_account())
5565 page_counter_charge(&memcg->memsw, nr_pages);
5566 css_get_many(&memcg->css, nr_pages);
5567
5568 commit_charge(newpage, memcg, false);
5569
5570 local_irq_disable();
5571 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5572 memcg_check_events(memcg, newpage);
5573 local_irq_enable();
5574 }
5575
5576 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5577 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5578
5579 void sock_update_memcg(struct sock *sk)
5580 {
5581 struct mem_cgroup *memcg;
5582
5583 /* Socket cloning can throw us here with sk_cgrp already
5584 * filled. It won't however, necessarily happen from
5585 * process context. So the test for root memcg given
5586 * the current task's memcg won't help us in this case.
5587 *
5588 * Respecting the original socket's memcg is a better
5589 * decision in this case.
5590 */
5591 if (sk->sk_memcg) {
5592 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5593 css_get(&sk->sk_memcg->css);
5594 return;
5595 }
5596
5597 rcu_read_lock();
5598 memcg = mem_cgroup_from_task(current);
5599 if (memcg == root_mem_cgroup)
5600 goto out;
5601 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5602 goto out;
5603 if (css_tryget_online(&memcg->css))
5604 sk->sk_memcg = memcg;
5605 out:
5606 rcu_read_unlock();
5607 }
5608 EXPORT_SYMBOL(sock_update_memcg);
5609
5610 void sock_release_memcg(struct sock *sk)
5611 {
5612 WARN_ON(!sk->sk_memcg);
5613 css_put(&sk->sk_memcg->css);
5614 }
5615
5616 /**
5617 * mem_cgroup_charge_skmem - charge socket memory
5618 * @memcg: memcg to charge
5619 * @nr_pages: number of pages to charge
5620 *
5621 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5622 * @memcg's configured limit, %false if the charge had to be forced.
5623 */
5624 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5625 {
5626 gfp_t gfp_mask = GFP_KERNEL;
5627
5628 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5629 struct page_counter *fail;
5630
5631 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5632 memcg->tcpmem_pressure = 0;
5633 return true;
5634 }
5635 page_counter_charge(&memcg->tcpmem, nr_pages);
5636 memcg->tcpmem_pressure = 1;
5637 return false;
5638 }
5639
5640 /* Don't block in the packet receive path */
5641 if (in_softirq())
5642 gfp_mask = GFP_NOWAIT;
5643
5644 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5645
5646 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5647 return true;
5648
5649 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5650 return false;
5651 }
5652
5653 /**
5654 * mem_cgroup_uncharge_skmem - uncharge socket memory
5655 * @memcg - memcg to uncharge
5656 * @nr_pages - number of pages to uncharge
5657 */
5658 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5659 {
5660 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5661 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5662 return;
5663 }
5664
5665 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5666
5667 page_counter_uncharge(&memcg->memory, nr_pages);
5668 css_put_many(&memcg->css, nr_pages);
5669 }
5670
5671 static int __init cgroup_memory(char *s)
5672 {
5673 char *token;
5674
5675 while ((token = strsep(&s, ",")) != NULL) {
5676 if (!*token)
5677 continue;
5678 if (!strcmp(token, "nosocket"))
5679 cgroup_memory_nosocket = true;
5680 if (!strcmp(token, "nokmem"))
5681 cgroup_memory_nokmem = true;
5682 }
5683 return 0;
5684 }
5685 __setup("cgroup.memory=", cgroup_memory);
5686
5687 /*
5688 * subsys_initcall() for memory controller.
5689 *
5690 * Some parts like hotcpu_notifier() have to be initialized from this context
5691 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5692 * everything that doesn't depend on a specific mem_cgroup structure should
5693 * be initialized from here.
5694 */
5695 static int __init mem_cgroup_init(void)
5696 {
5697 int cpu, node;
5698
5699 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5700
5701 for_each_possible_cpu(cpu)
5702 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5703 drain_local_stock);
5704
5705 for_each_node(node) {
5706 struct mem_cgroup_tree_per_node *rtpn;
5707 int zone;
5708
5709 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5710 node_online(node) ? node : NUMA_NO_NODE);
5711
5712 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5713 struct mem_cgroup_tree_per_zone *rtpz;
5714
5715 rtpz = &rtpn->rb_tree_per_zone[zone];
5716 rtpz->rb_root = RB_ROOT;
5717 spin_lock_init(&rtpz->lock);
5718 }
5719 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5720 }
5721
5722 return 0;
5723 }
5724 subsys_initcall(mem_cgroup_init);
5725
5726 #ifdef CONFIG_MEMCG_SWAP
5727 /**
5728 * mem_cgroup_swapout - transfer a memsw charge to swap
5729 * @page: page whose memsw charge to transfer
5730 * @entry: swap entry to move the charge to
5731 *
5732 * Transfer the memsw charge of @page to @entry.
5733 */
5734 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5735 {
5736 struct mem_cgroup *memcg;
5737 unsigned short oldid;
5738
5739 VM_BUG_ON_PAGE(PageLRU(page), page);
5740 VM_BUG_ON_PAGE(page_count(page), page);
5741
5742 if (!do_memsw_account())
5743 return;
5744
5745 memcg = page->mem_cgroup;
5746
5747 /* Readahead page, never charged */
5748 if (!memcg)
5749 return;
5750
5751 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5752 VM_BUG_ON_PAGE(oldid, page);
5753 mem_cgroup_swap_statistics(memcg, true);
5754
5755 page->mem_cgroup = NULL;
5756
5757 if (!mem_cgroup_is_root(memcg))
5758 page_counter_uncharge(&memcg->memory, 1);
5759
5760 /*
5761 * Interrupts should be disabled here because the caller holds the
5762 * mapping->tree_lock lock which is taken with interrupts-off. It is
5763 * important here to have the interrupts disabled because it is the
5764 * only synchronisation we have for udpating the per-CPU variables.
5765 */
5766 VM_BUG_ON(!irqs_disabled());
5767 mem_cgroup_charge_statistics(memcg, page, false, -1);
5768 memcg_check_events(memcg, page);
5769 }
5770
5771 /*
5772 * mem_cgroup_try_charge_swap - try charging a swap entry
5773 * @page: page being added to swap
5774 * @entry: swap entry to charge
5775 *
5776 * Try to charge @entry to the memcg that @page belongs to.
5777 *
5778 * Returns 0 on success, -ENOMEM on failure.
5779 */
5780 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5781 {
5782 struct mem_cgroup *memcg;
5783 struct page_counter *counter;
5784 unsigned short oldid;
5785
5786 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5787 return 0;
5788
5789 memcg = page->mem_cgroup;
5790
5791 /* Readahead page, never charged */
5792 if (!memcg)
5793 return 0;
5794
5795 if (!mem_cgroup_is_root(memcg) &&
5796 !page_counter_try_charge(&memcg->swap, 1, &counter))
5797 return -ENOMEM;
5798
5799 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5800 VM_BUG_ON_PAGE(oldid, page);
5801 mem_cgroup_swap_statistics(memcg, true);
5802
5803 css_get(&memcg->css);
5804 return 0;
5805 }
5806
5807 /**
5808 * mem_cgroup_uncharge_swap - uncharge a swap entry
5809 * @entry: swap entry to uncharge
5810 *
5811 * Drop the swap charge associated with @entry.
5812 */
5813 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5814 {
5815 struct mem_cgroup *memcg;
5816 unsigned short id;
5817
5818 if (!do_swap_account)
5819 return;
5820
5821 id = swap_cgroup_record(entry, 0);
5822 rcu_read_lock();
5823 memcg = mem_cgroup_from_id(id);
5824 if (memcg) {
5825 if (!mem_cgroup_is_root(memcg)) {
5826 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5827 page_counter_uncharge(&memcg->swap, 1);
5828 else
5829 page_counter_uncharge(&memcg->memsw, 1);
5830 }
5831 mem_cgroup_swap_statistics(memcg, false);
5832 css_put(&memcg->css);
5833 }
5834 rcu_read_unlock();
5835 }
5836
5837 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5838 {
5839 long nr_swap_pages = get_nr_swap_pages();
5840
5841 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5842 return nr_swap_pages;
5843 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5844 nr_swap_pages = min_t(long, nr_swap_pages,
5845 READ_ONCE(memcg->swap.limit) -
5846 page_counter_read(&memcg->swap));
5847 return nr_swap_pages;
5848 }
5849
5850 bool mem_cgroup_swap_full(struct page *page)
5851 {
5852 struct mem_cgroup *memcg;
5853
5854 VM_BUG_ON_PAGE(!PageLocked(page), page);
5855
5856 if (vm_swap_full())
5857 return true;
5858 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5859 return false;
5860
5861 memcg = page->mem_cgroup;
5862 if (!memcg)
5863 return false;
5864
5865 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5866 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5867 return true;
5868
5869 return false;
5870 }
5871
5872 /* for remember boot option*/
5873 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5874 static int really_do_swap_account __initdata = 1;
5875 #else
5876 static int really_do_swap_account __initdata;
5877 #endif
5878
5879 static int __init enable_swap_account(char *s)
5880 {
5881 if (!strcmp(s, "1"))
5882 really_do_swap_account = 1;
5883 else if (!strcmp(s, "0"))
5884 really_do_swap_account = 0;
5885 return 1;
5886 }
5887 __setup("swapaccount=", enable_swap_account);
5888
5889 static u64 swap_current_read(struct cgroup_subsys_state *css,
5890 struct cftype *cft)
5891 {
5892 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5893
5894 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5895 }
5896
5897 static int swap_max_show(struct seq_file *m, void *v)
5898 {
5899 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5900 unsigned long max = READ_ONCE(memcg->swap.limit);
5901
5902 if (max == PAGE_COUNTER_MAX)
5903 seq_puts(m, "max\n");
5904 else
5905 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5906
5907 return 0;
5908 }
5909
5910 static ssize_t swap_max_write(struct kernfs_open_file *of,
5911 char *buf, size_t nbytes, loff_t off)
5912 {
5913 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5914 unsigned long max;
5915 int err;
5916
5917 buf = strstrip(buf);
5918 err = page_counter_memparse(buf, "max", &max);
5919 if (err)
5920 return err;
5921
5922 mutex_lock(&memcg_limit_mutex);
5923 err = page_counter_limit(&memcg->swap, max);
5924 mutex_unlock(&memcg_limit_mutex);
5925 if (err)
5926 return err;
5927
5928 return nbytes;
5929 }
5930
5931 static struct cftype swap_files[] = {
5932 {
5933 .name = "swap.current",
5934 .flags = CFTYPE_NOT_ON_ROOT,
5935 .read_u64 = swap_current_read,
5936 },
5937 {
5938 .name = "swap.max",
5939 .flags = CFTYPE_NOT_ON_ROOT,
5940 .seq_show = swap_max_show,
5941 .write = swap_max_write,
5942 },
5943 { } /* terminate */
5944 };
5945
5946 static struct cftype memsw_cgroup_files[] = {
5947 {
5948 .name = "memsw.usage_in_bytes",
5949 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5950 .read_u64 = mem_cgroup_read_u64,
5951 },
5952 {
5953 .name = "memsw.max_usage_in_bytes",
5954 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5955 .write = mem_cgroup_reset,
5956 .read_u64 = mem_cgroup_read_u64,
5957 },
5958 {
5959 .name = "memsw.limit_in_bytes",
5960 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5961 .write = mem_cgroup_write,
5962 .read_u64 = mem_cgroup_read_u64,
5963 },
5964 {
5965 .name = "memsw.failcnt",
5966 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5967 .write = mem_cgroup_reset,
5968 .read_u64 = mem_cgroup_read_u64,
5969 },
5970 { }, /* terminate */
5971 };
5972
5973 static int __init mem_cgroup_swap_init(void)
5974 {
5975 if (!mem_cgroup_disabled() && really_do_swap_account) {
5976 do_swap_account = 1;
5977 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5978 swap_files));
5979 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5980 memsw_cgroup_files));
5981 }
5982 return 0;
5983 }
5984 subsys_initcall(mem_cgroup_swap_init);
5985
5986 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.153855 seconds and 5 git commands to generate.