memcg: don't uncharge in mem_cgroup_move_account()
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account 0
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109 enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET 128
116 #define SOFTLIMIT_EVENTS_TARGET 1024
117 #define NUMAINFO_EVENTS_TARGET 1024
118
119 struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124
125 struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130 };
131
132 /*
133 * per-zone information in memory controller.
134 */
135 struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
141 struct rb_node tree_node; /* RB tree node */
142 unsigned long long usage_in_excess;/* Set to the value by which */
143 /* the soft limit is exceeded*/
144 bool on_tree;
145 struct mem_cgroup *memcg; /* Back pointer, we cannot */
146 /* use container_of */
147 };
148
149 struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151 };
152
153 struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155 };
156
157 /*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162 struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165 };
166
167 struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169 };
170
171 struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173 };
174
175 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
177 struct mem_cgroup_threshold {
178 struct eventfd_ctx *eventfd;
179 u64 threshold;
180 };
181
182 /* For threshold */
183 struct mem_cgroup_threshold_ary {
184 /* An array index points to threshold just below or equal to usage. */
185 int current_threshold;
186 /* Size of entries[] */
187 unsigned int size;
188 /* Array of thresholds */
189 struct mem_cgroup_threshold entries[0];
190 };
191
192 struct mem_cgroup_thresholds {
193 /* Primary thresholds array */
194 struct mem_cgroup_threshold_ary *primary;
195 /*
196 * Spare threshold array.
197 * This is needed to make mem_cgroup_unregister_event() "never fail".
198 * It must be able to store at least primary->size - 1 entries.
199 */
200 struct mem_cgroup_threshold_ary *spare;
201 };
202
203 /* for OOM */
204 struct mem_cgroup_eventfd_list {
205 struct list_head list;
206 struct eventfd_ctx *eventfd;
207 };
208
209 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
210 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
211
212 /*
213 * The memory controller data structure. The memory controller controls both
214 * page cache and RSS per cgroup. We would eventually like to provide
215 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
216 * to help the administrator determine what knobs to tune.
217 *
218 * TODO: Add a water mark for the memory controller. Reclaim will begin when
219 * we hit the water mark. May be even add a low water mark, such that
220 * no reclaim occurs from a cgroup at it's low water mark, this is
221 * a feature that will be implemented much later in the future.
222 */
223 struct mem_cgroup {
224 struct cgroup_subsys_state css;
225 /*
226 * the counter to account for memory usage
227 */
228 struct res_counter res;
229
230 union {
231 /*
232 * the counter to account for mem+swap usage.
233 */
234 struct res_counter memsw;
235
236 /*
237 * rcu_freeing is used only when freeing struct mem_cgroup,
238 * so put it into a union to avoid wasting more memory.
239 * It must be disjoint from the css field. It could be
240 * in a union with the res field, but res plays a much
241 * larger part in mem_cgroup life than memsw, and might
242 * be of interest, even at time of free, when debugging.
243 * So share rcu_head with the less interesting memsw.
244 */
245 struct rcu_head rcu_freeing;
246 /*
247 * But when using vfree(), that cannot be done at
248 * interrupt time, so we must then queue the work.
249 */
250 struct work_struct work_freeing;
251 };
252
253 /*
254 * Per cgroup active and inactive list, similar to the
255 * per zone LRU lists.
256 */
257 struct mem_cgroup_lru_info info;
258 int last_scanned_node;
259 #if MAX_NUMNODES > 1
260 nodemask_t scan_nodes;
261 atomic_t numainfo_events;
262 atomic_t numainfo_updating;
263 #endif
264 /*
265 * Should the accounting and control be hierarchical, per subtree?
266 */
267 bool use_hierarchy;
268
269 bool oom_lock;
270 atomic_t under_oom;
271
272 atomic_t refcnt;
273
274 int swappiness;
275 /* OOM-Killer disable */
276 int oom_kill_disable;
277
278 /* set when res.limit == memsw.limit */
279 bool memsw_is_minimum;
280
281 /* protect arrays of thresholds */
282 struct mutex thresholds_lock;
283
284 /* thresholds for memory usage. RCU-protected */
285 struct mem_cgroup_thresholds thresholds;
286
287 /* thresholds for mem+swap usage. RCU-protected */
288 struct mem_cgroup_thresholds memsw_thresholds;
289
290 /* For oom notifier event fd */
291 struct list_head oom_notify;
292
293 /*
294 * Should we move charges of a task when a task is moved into this
295 * mem_cgroup ? And what type of charges should we move ?
296 */
297 unsigned long move_charge_at_immigrate;
298 /*
299 * set > 0 if pages under this cgroup are moving to other cgroup.
300 */
301 atomic_t moving_account;
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
304 /*
305 * percpu counter.
306 */
307 struct mem_cgroup_stat_cpu __percpu *stat;
308 /*
309 * used when a cpu is offlined or other synchronizations
310 * See mem_cgroup_read_stat().
311 */
312 struct mem_cgroup_stat_cpu nocpu_base;
313 spinlock_t pcp_counter_lock;
314
315 #ifdef CONFIG_INET
316 struct tcp_memcontrol tcp_mem;
317 #endif
318 };
319
320 /* Stuffs for move charges at task migration. */
321 /*
322 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
323 * left-shifted bitmap of these types.
324 */
325 enum move_type {
326 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
327 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
328 NR_MOVE_TYPE,
329 };
330
331 /* "mc" and its members are protected by cgroup_mutex */
332 static struct move_charge_struct {
333 spinlock_t lock; /* for from, to */
334 struct mem_cgroup *from;
335 struct mem_cgroup *to;
336 unsigned long precharge;
337 unsigned long moved_charge;
338 unsigned long moved_swap;
339 struct task_struct *moving_task; /* a task moving charges */
340 wait_queue_head_t waitq; /* a waitq for other context */
341 } mc = {
342 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
343 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
344 };
345
346 static bool move_anon(void)
347 {
348 return test_bit(MOVE_CHARGE_TYPE_ANON,
349 &mc.to->move_charge_at_immigrate);
350 }
351
352 static bool move_file(void)
353 {
354 return test_bit(MOVE_CHARGE_TYPE_FILE,
355 &mc.to->move_charge_at_immigrate);
356 }
357
358 /*
359 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
360 * limit reclaim to prevent infinite loops, if they ever occur.
361 */
362 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
363 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
364
365 enum charge_type {
366 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
367 MEM_CGROUP_CHARGE_TYPE_MAPPED,
368 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
369 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
370 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
371 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
372 NR_CHARGE_TYPE,
373 };
374
375 /* for encoding cft->private value on file */
376 #define _MEM (0)
377 #define _MEMSWAP (1)
378 #define _OOM_TYPE (2)
379 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
380 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
381 #define MEMFILE_ATTR(val) ((val) & 0xffff)
382 /* Used for OOM nofiier */
383 #define OOM_CONTROL (0)
384
385 /*
386 * Reclaim flags for mem_cgroup_hierarchical_reclaim
387 */
388 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
389 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
390 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
391 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
392
393 static void mem_cgroup_get(struct mem_cgroup *memcg);
394 static void mem_cgroup_put(struct mem_cgroup *memcg);
395
396 /* Writing them here to avoid exposing memcg's inner layout */
397 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
398 #include <net/sock.h>
399 #include <net/ip.h>
400
401 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
402 void sock_update_memcg(struct sock *sk)
403 {
404 if (mem_cgroup_sockets_enabled) {
405 struct mem_cgroup *memcg;
406
407 BUG_ON(!sk->sk_prot->proto_cgroup);
408
409 /* Socket cloning can throw us here with sk_cgrp already
410 * filled. It won't however, necessarily happen from
411 * process context. So the test for root memcg given
412 * the current task's memcg won't help us in this case.
413 *
414 * Respecting the original socket's memcg is a better
415 * decision in this case.
416 */
417 if (sk->sk_cgrp) {
418 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
419 mem_cgroup_get(sk->sk_cgrp->memcg);
420 return;
421 }
422
423 rcu_read_lock();
424 memcg = mem_cgroup_from_task(current);
425 if (!mem_cgroup_is_root(memcg)) {
426 mem_cgroup_get(memcg);
427 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
428 }
429 rcu_read_unlock();
430 }
431 }
432 EXPORT_SYMBOL(sock_update_memcg);
433
434 void sock_release_memcg(struct sock *sk)
435 {
436 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
437 struct mem_cgroup *memcg;
438 WARN_ON(!sk->sk_cgrp->memcg);
439 memcg = sk->sk_cgrp->memcg;
440 mem_cgroup_put(memcg);
441 }
442 }
443
444 #ifdef CONFIG_INET
445 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
446 {
447 if (!memcg || mem_cgroup_is_root(memcg))
448 return NULL;
449
450 return &memcg->tcp_mem.cg_proto;
451 }
452 EXPORT_SYMBOL(tcp_proto_cgroup);
453 #endif /* CONFIG_INET */
454 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
455
456 static void drain_all_stock_async(struct mem_cgroup *memcg);
457
458 static struct mem_cgroup_per_zone *
459 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
460 {
461 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
462 }
463
464 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
465 {
466 return &memcg->css;
467 }
468
469 static struct mem_cgroup_per_zone *
470 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
471 {
472 int nid = page_to_nid(page);
473 int zid = page_zonenum(page);
474
475 return mem_cgroup_zoneinfo(memcg, nid, zid);
476 }
477
478 static struct mem_cgroup_tree_per_zone *
479 soft_limit_tree_node_zone(int nid, int zid)
480 {
481 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
482 }
483
484 static struct mem_cgroup_tree_per_zone *
485 soft_limit_tree_from_page(struct page *page)
486 {
487 int nid = page_to_nid(page);
488 int zid = page_zonenum(page);
489
490 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
491 }
492
493 static void
494 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
495 struct mem_cgroup_per_zone *mz,
496 struct mem_cgroup_tree_per_zone *mctz,
497 unsigned long long new_usage_in_excess)
498 {
499 struct rb_node **p = &mctz->rb_root.rb_node;
500 struct rb_node *parent = NULL;
501 struct mem_cgroup_per_zone *mz_node;
502
503 if (mz->on_tree)
504 return;
505
506 mz->usage_in_excess = new_usage_in_excess;
507 if (!mz->usage_in_excess)
508 return;
509 while (*p) {
510 parent = *p;
511 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
512 tree_node);
513 if (mz->usage_in_excess < mz_node->usage_in_excess)
514 p = &(*p)->rb_left;
515 /*
516 * We can't avoid mem cgroups that are over their soft
517 * limit by the same amount
518 */
519 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
520 p = &(*p)->rb_right;
521 }
522 rb_link_node(&mz->tree_node, parent, p);
523 rb_insert_color(&mz->tree_node, &mctz->rb_root);
524 mz->on_tree = true;
525 }
526
527 static void
528 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
529 struct mem_cgroup_per_zone *mz,
530 struct mem_cgroup_tree_per_zone *mctz)
531 {
532 if (!mz->on_tree)
533 return;
534 rb_erase(&mz->tree_node, &mctz->rb_root);
535 mz->on_tree = false;
536 }
537
538 static void
539 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
540 struct mem_cgroup_per_zone *mz,
541 struct mem_cgroup_tree_per_zone *mctz)
542 {
543 spin_lock(&mctz->lock);
544 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
545 spin_unlock(&mctz->lock);
546 }
547
548
549 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
550 {
551 unsigned long long excess;
552 struct mem_cgroup_per_zone *mz;
553 struct mem_cgroup_tree_per_zone *mctz;
554 int nid = page_to_nid(page);
555 int zid = page_zonenum(page);
556 mctz = soft_limit_tree_from_page(page);
557
558 /*
559 * Necessary to update all ancestors when hierarchy is used.
560 * because their event counter is not touched.
561 */
562 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
563 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
564 excess = res_counter_soft_limit_excess(&memcg->res);
565 /*
566 * We have to update the tree if mz is on RB-tree or
567 * mem is over its softlimit.
568 */
569 if (excess || mz->on_tree) {
570 spin_lock(&mctz->lock);
571 /* if on-tree, remove it */
572 if (mz->on_tree)
573 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
574 /*
575 * Insert again. mz->usage_in_excess will be updated.
576 * If excess is 0, no tree ops.
577 */
578 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
579 spin_unlock(&mctz->lock);
580 }
581 }
582 }
583
584 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
585 {
586 int node, zone;
587 struct mem_cgroup_per_zone *mz;
588 struct mem_cgroup_tree_per_zone *mctz;
589
590 for_each_node(node) {
591 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
592 mz = mem_cgroup_zoneinfo(memcg, node, zone);
593 mctz = soft_limit_tree_node_zone(node, zone);
594 mem_cgroup_remove_exceeded(memcg, mz, mctz);
595 }
596 }
597 }
598
599 static struct mem_cgroup_per_zone *
600 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
601 {
602 struct rb_node *rightmost = NULL;
603 struct mem_cgroup_per_zone *mz;
604
605 retry:
606 mz = NULL;
607 rightmost = rb_last(&mctz->rb_root);
608 if (!rightmost)
609 goto done; /* Nothing to reclaim from */
610
611 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
612 /*
613 * Remove the node now but someone else can add it back,
614 * we will to add it back at the end of reclaim to its correct
615 * position in the tree.
616 */
617 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
618 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
619 !css_tryget(&mz->memcg->css))
620 goto retry;
621 done:
622 return mz;
623 }
624
625 static struct mem_cgroup_per_zone *
626 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
627 {
628 struct mem_cgroup_per_zone *mz;
629
630 spin_lock(&mctz->lock);
631 mz = __mem_cgroup_largest_soft_limit_node(mctz);
632 spin_unlock(&mctz->lock);
633 return mz;
634 }
635
636 /*
637 * Implementation Note: reading percpu statistics for memcg.
638 *
639 * Both of vmstat[] and percpu_counter has threshold and do periodic
640 * synchronization to implement "quick" read. There are trade-off between
641 * reading cost and precision of value. Then, we may have a chance to implement
642 * a periodic synchronizion of counter in memcg's counter.
643 *
644 * But this _read() function is used for user interface now. The user accounts
645 * memory usage by memory cgroup and he _always_ requires exact value because
646 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
647 * have to visit all online cpus and make sum. So, for now, unnecessary
648 * synchronization is not implemented. (just implemented for cpu hotplug)
649 *
650 * If there are kernel internal actions which can make use of some not-exact
651 * value, and reading all cpu value can be performance bottleneck in some
652 * common workload, threashold and synchonization as vmstat[] should be
653 * implemented.
654 */
655 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
656 enum mem_cgroup_stat_index idx)
657 {
658 long val = 0;
659 int cpu;
660
661 get_online_cpus();
662 for_each_online_cpu(cpu)
663 val += per_cpu(memcg->stat->count[idx], cpu);
664 #ifdef CONFIG_HOTPLUG_CPU
665 spin_lock(&memcg->pcp_counter_lock);
666 val += memcg->nocpu_base.count[idx];
667 spin_unlock(&memcg->pcp_counter_lock);
668 #endif
669 put_online_cpus();
670 return val;
671 }
672
673 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
674 bool charge)
675 {
676 int val = (charge) ? 1 : -1;
677 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
678 }
679
680 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
681 enum mem_cgroup_events_index idx)
682 {
683 unsigned long val = 0;
684 int cpu;
685
686 for_each_online_cpu(cpu)
687 val += per_cpu(memcg->stat->events[idx], cpu);
688 #ifdef CONFIG_HOTPLUG_CPU
689 spin_lock(&memcg->pcp_counter_lock);
690 val += memcg->nocpu_base.events[idx];
691 spin_unlock(&memcg->pcp_counter_lock);
692 #endif
693 return val;
694 }
695
696 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
697 bool anon, int nr_pages)
698 {
699 preempt_disable();
700
701 /*
702 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
703 * counted as CACHE even if it's on ANON LRU.
704 */
705 if (anon)
706 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
707 nr_pages);
708 else
709 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
710 nr_pages);
711
712 /* pagein of a big page is an event. So, ignore page size */
713 if (nr_pages > 0)
714 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
715 else {
716 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
717 nr_pages = -nr_pages; /* for event */
718 }
719
720 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
721
722 preempt_enable();
723 }
724
725 unsigned long
726 mem_cgroup_get_lruvec_size(struct lruvec *lruvec, enum lru_list lru)
727 {
728 struct mem_cgroup_per_zone *mz;
729
730 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
731 return mz->lru_size[lru];
732 }
733
734 static unsigned long
735 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
736 unsigned int lru_mask)
737 {
738 struct mem_cgroup_per_zone *mz;
739 enum lru_list lru;
740 unsigned long ret = 0;
741
742 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
743
744 for_each_lru(lru) {
745 if (BIT(lru) & lru_mask)
746 ret += mz->lru_size[lru];
747 }
748 return ret;
749 }
750
751 static unsigned long
752 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
753 int nid, unsigned int lru_mask)
754 {
755 u64 total = 0;
756 int zid;
757
758 for (zid = 0; zid < MAX_NR_ZONES; zid++)
759 total += mem_cgroup_zone_nr_lru_pages(memcg,
760 nid, zid, lru_mask);
761
762 return total;
763 }
764
765 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
766 unsigned int lru_mask)
767 {
768 int nid;
769 u64 total = 0;
770
771 for_each_node_state(nid, N_HIGH_MEMORY)
772 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
773 return total;
774 }
775
776 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
777 enum mem_cgroup_events_target target)
778 {
779 unsigned long val, next;
780
781 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
782 next = __this_cpu_read(memcg->stat->targets[target]);
783 /* from time_after() in jiffies.h */
784 if ((long)next - (long)val < 0) {
785 switch (target) {
786 case MEM_CGROUP_TARGET_THRESH:
787 next = val + THRESHOLDS_EVENTS_TARGET;
788 break;
789 case MEM_CGROUP_TARGET_SOFTLIMIT:
790 next = val + SOFTLIMIT_EVENTS_TARGET;
791 break;
792 case MEM_CGROUP_TARGET_NUMAINFO:
793 next = val + NUMAINFO_EVENTS_TARGET;
794 break;
795 default:
796 break;
797 }
798 __this_cpu_write(memcg->stat->targets[target], next);
799 return true;
800 }
801 return false;
802 }
803
804 /*
805 * Check events in order.
806 *
807 */
808 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
809 {
810 preempt_disable();
811 /* threshold event is triggered in finer grain than soft limit */
812 if (unlikely(mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_THRESH))) {
814 bool do_softlimit;
815 bool do_numainfo __maybe_unused;
816
817 do_softlimit = mem_cgroup_event_ratelimit(memcg,
818 MEM_CGROUP_TARGET_SOFTLIMIT);
819 #if MAX_NUMNODES > 1
820 do_numainfo = mem_cgroup_event_ratelimit(memcg,
821 MEM_CGROUP_TARGET_NUMAINFO);
822 #endif
823 preempt_enable();
824
825 mem_cgroup_threshold(memcg);
826 if (unlikely(do_softlimit))
827 mem_cgroup_update_tree(memcg, page);
828 #if MAX_NUMNODES > 1
829 if (unlikely(do_numainfo))
830 atomic_inc(&memcg->numainfo_events);
831 #endif
832 } else
833 preempt_enable();
834 }
835
836 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
837 {
838 return container_of(cgroup_subsys_state(cont,
839 mem_cgroup_subsys_id), struct mem_cgroup,
840 css);
841 }
842
843 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
844 {
845 /*
846 * mm_update_next_owner() may clear mm->owner to NULL
847 * if it races with swapoff, page migration, etc.
848 * So this can be called with p == NULL.
849 */
850 if (unlikely(!p))
851 return NULL;
852
853 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
854 struct mem_cgroup, css);
855 }
856
857 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
858 {
859 struct mem_cgroup *memcg = NULL;
860
861 if (!mm)
862 return NULL;
863 /*
864 * Because we have no locks, mm->owner's may be being moved to other
865 * cgroup. We use css_tryget() here even if this looks
866 * pessimistic (rather than adding locks here).
867 */
868 rcu_read_lock();
869 do {
870 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
871 if (unlikely(!memcg))
872 break;
873 } while (!css_tryget(&memcg->css));
874 rcu_read_unlock();
875 return memcg;
876 }
877
878 /**
879 * mem_cgroup_iter - iterate over memory cgroup hierarchy
880 * @root: hierarchy root
881 * @prev: previously returned memcg, NULL on first invocation
882 * @reclaim: cookie for shared reclaim walks, NULL for full walks
883 *
884 * Returns references to children of the hierarchy below @root, or
885 * @root itself, or %NULL after a full round-trip.
886 *
887 * Caller must pass the return value in @prev on subsequent
888 * invocations for reference counting, or use mem_cgroup_iter_break()
889 * to cancel a hierarchy walk before the round-trip is complete.
890 *
891 * Reclaimers can specify a zone and a priority level in @reclaim to
892 * divide up the memcgs in the hierarchy among all concurrent
893 * reclaimers operating on the same zone and priority.
894 */
895 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
896 struct mem_cgroup *prev,
897 struct mem_cgroup_reclaim_cookie *reclaim)
898 {
899 struct mem_cgroup *memcg = NULL;
900 int id = 0;
901
902 if (mem_cgroup_disabled())
903 return NULL;
904
905 if (!root)
906 root = root_mem_cgroup;
907
908 if (prev && !reclaim)
909 id = css_id(&prev->css);
910
911 if (prev && prev != root)
912 css_put(&prev->css);
913
914 if (!root->use_hierarchy && root != root_mem_cgroup) {
915 if (prev)
916 return NULL;
917 return root;
918 }
919
920 while (!memcg) {
921 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
922 struct cgroup_subsys_state *css;
923
924 if (reclaim) {
925 int nid = zone_to_nid(reclaim->zone);
926 int zid = zone_idx(reclaim->zone);
927 struct mem_cgroup_per_zone *mz;
928
929 mz = mem_cgroup_zoneinfo(root, nid, zid);
930 iter = &mz->reclaim_iter[reclaim->priority];
931 if (prev && reclaim->generation != iter->generation)
932 return NULL;
933 id = iter->position;
934 }
935
936 rcu_read_lock();
937 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
938 if (css) {
939 if (css == &root->css || css_tryget(css))
940 memcg = container_of(css,
941 struct mem_cgroup, css);
942 } else
943 id = 0;
944 rcu_read_unlock();
945
946 if (reclaim) {
947 iter->position = id;
948 if (!css)
949 iter->generation++;
950 else if (!prev && memcg)
951 reclaim->generation = iter->generation;
952 }
953
954 if (prev && !css)
955 return NULL;
956 }
957 return memcg;
958 }
959
960 /**
961 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
962 * @root: hierarchy root
963 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
964 */
965 void mem_cgroup_iter_break(struct mem_cgroup *root,
966 struct mem_cgroup *prev)
967 {
968 if (!root)
969 root = root_mem_cgroup;
970 if (prev && prev != root)
971 css_put(&prev->css);
972 }
973
974 /*
975 * Iteration constructs for visiting all cgroups (under a tree). If
976 * loops are exited prematurely (break), mem_cgroup_iter_break() must
977 * be used for reference counting.
978 */
979 #define for_each_mem_cgroup_tree(iter, root) \
980 for (iter = mem_cgroup_iter(root, NULL, NULL); \
981 iter != NULL; \
982 iter = mem_cgroup_iter(root, iter, NULL))
983
984 #define for_each_mem_cgroup(iter) \
985 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
986 iter != NULL; \
987 iter = mem_cgroup_iter(NULL, iter, NULL))
988
989 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
990 {
991 return (memcg == root_mem_cgroup);
992 }
993
994 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
995 {
996 struct mem_cgroup *memcg;
997
998 if (!mm)
999 return;
1000
1001 rcu_read_lock();
1002 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1003 if (unlikely(!memcg))
1004 goto out;
1005
1006 switch (idx) {
1007 case PGFAULT:
1008 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1009 break;
1010 case PGMAJFAULT:
1011 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1012 break;
1013 default:
1014 BUG();
1015 }
1016 out:
1017 rcu_read_unlock();
1018 }
1019 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1020
1021 /**
1022 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1023 * @zone: zone of the wanted lruvec
1024 * @mem: memcg of the wanted lruvec
1025 *
1026 * Returns the lru list vector holding pages for the given @zone and
1027 * @mem. This can be the global zone lruvec, if the memory controller
1028 * is disabled.
1029 */
1030 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1031 struct mem_cgroup *memcg)
1032 {
1033 struct mem_cgroup_per_zone *mz;
1034
1035 if (mem_cgroup_disabled())
1036 return &zone->lruvec;
1037
1038 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1039 return &mz->lruvec;
1040 }
1041
1042 /*
1043 * Following LRU functions are allowed to be used without PCG_LOCK.
1044 * Operations are called by routine of global LRU independently from memcg.
1045 * What we have to take care of here is validness of pc->mem_cgroup.
1046 *
1047 * Changes to pc->mem_cgroup happens when
1048 * 1. charge
1049 * 2. moving account
1050 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1051 * It is added to LRU before charge.
1052 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1053 * When moving account, the page is not on LRU. It's isolated.
1054 */
1055
1056 /**
1057 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1058 * @zone: zone of the page
1059 * @page: the page
1060 * @lru: current lru
1061 *
1062 * This function accounts for @page being added to @lru, and returns
1063 * the lruvec for the given @zone and the memcg @page is charged to.
1064 *
1065 * The callsite is then responsible for physically linking the page to
1066 * the returned lruvec->lists[@lru].
1067 */
1068 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1069 enum lru_list lru)
1070 {
1071 struct mem_cgroup_per_zone *mz;
1072 struct mem_cgroup *memcg;
1073 struct page_cgroup *pc;
1074
1075 if (mem_cgroup_disabled())
1076 return &zone->lruvec;
1077
1078 pc = lookup_page_cgroup(page);
1079 memcg = pc->mem_cgroup;
1080
1081 /*
1082 * Surreptitiously switch any uncharged page to root:
1083 * an uncharged page off lru does nothing to secure
1084 * its former mem_cgroup from sudden removal.
1085 *
1086 * Our caller holds lru_lock, and PageCgroupUsed is updated
1087 * under page_cgroup lock: between them, they make all uses
1088 * of pc->mem_cgroup safe.
1089 */
1090 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1091 pc->mem_cgroup = memcg = root_mem_cgroup;
1092
1093 mz = page_cgroup_zoneinfo(memcg, page);
1094 /* compound_order() is stabilized through lru_lock */
1095 mz->lru_size[lru] += 1 << compound_order(page);
1096 return &mz->lruvec;
1097 }
1098
1099 /**
1100 * mem_cgroup_lru_del_list - account for removing an lru page
1101 * @page: the page
1102 * @lru: target lru
1103 *
1104 * This function accounts for @page being removed from @lru.
1105 *
1106 * The callsite is then responsible for physically unlinking
1107 * @page->lru.
1108 */
1109 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1110 {
1111 struct mem_cgroup_per_zone *mz;
1112 struct mem_cgroup *memcg;
1113 struct page_cgroup *pc;
1114
1115 if (mem_cgroup_disabled())
1116 return;
1117
1118 pc = lookup_page_cgroup(page);
1119 memcg = pc->mem_cgroup;
1120 VM_BUG_ON(!memcg);
1121 mz = page_cgroup_zoneinfo(memcg, page);
1122 /* huge page split is done under lru_lock. so, we have no races. */
1123 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1124 mz->lru_size[lru] -= 1 << compound_order(page);
1125 }
1126
1127 /**
1128 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1129 * @zone: zone of the page
1130 * @page: the page
1131 * @from: current lru
1132 * @to: target lru
1133 *
1134 * This function accounts for @page being moved between the lrus @from
1135 * and @to, and returns the lruvec for the given @zone and the memcg
1136 * @page is charged to.
1137 *
1138 * The callsite is then responsible for physically relinking
1139 * @page->lru to the returned lruvec->lists[@to].
1140 */
1141 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1142 struct page *page,
1143 enum lru_list from,
1144 enum lru_list to)
1145 {
1146 /* XXX: Optimize this, especially for @from == @to */
1147 mem_cgroup_lru_del_list(page, from);
1148 return mem_cgroup_lru_add_list(zone, page, to);
1149 }
1150
1151 /*
1152 * Checks whether given mem is same or in the root_mem_cgroup's
1153 * hierarchy subtree
1154 */
1155 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1156 struct mem_cgroup *memcg)
1157 {
1158 if (root_memcg == memcg)
1159 return true;
1160 if (!root_memcg->use_hierarchy)
1161 return false;
1162 return css_is_ancestor(&memcg->css, &root_memcg->css);
1163 }
1164
1165 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1166 struct mem_cgroup *memcg)
1167 {
1168 bool ret;
1169
1170 rcu_read_lock();
1171 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1172 rcu_read_unlock();
1173 return ret;
1174 }
1175
1176 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1177 {
1178 int ret;
1179 struct mem_cgroup *curr = NULL;
1180 struct task_struct *p;
1181
1182 p = find_lock_task_mm(task);
1183 if (p) {
1184 curr = try_get_mem_cgroup_from_mm(p->mm);
1185 task_unlock(p);
1186 } else {
1187 /*
1188 * All threads may have already detached their mm's, but the oom
1189 * killer still needs to detect if they have already been oom
1190 * killed to prevent needlessly killing additional tasks.
1191 */
1192 task_lock(task);
1193 curr = mem_cgroup_from_task(task);
1194 if (curr)
1195 css_get(&curr->css);
1196 task_unlock(task);
1197 }
1198 if (!curr)
1199 return 0;
1200 /*
1201 * We should check use_hierarchy of "memcg" not "curr". Because checking
1202 * use_hierarchy of "curr" here make this function true if hierarchy is
1203 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1204 * hierarchy(even if use_hierarchy is disabled in "memcg").
1205 */
1206 ret = mem_cgroup_same_or_subtree(memcg, curr);
1207 css_put(&curr->css);
1208 return ret;
1209 }
1210
1211 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1212 {
1213 unsigned long inactive_ratio;
1214 unsigned long inactive;
1215 unsigned long active;
1216 unsigned long gb;
1217
1218 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_ANON);
1219 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_ANON);
1220
1221 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1222 if (gb)
1223 inactive_ratio = int_sqrt(10 * gb);
1224 else
1225 inactive_ratio = 1;
1226
1227 return inactive * inactive_ratio < active;
1228 }
1229
1230 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1231 {
1232 unsigned long active;
1233 unsigned long inactive;
1234
1235 inactive = mem_cgroup_get_lruvec_size(lruvec, LRU_INACTIVE_FILE);
1236 active = mem_cgroup_get_lruvec_size(lruvec, LRU_ACTIVE_FILE);
1237
1238 return (active > inactive);
1239 }
1240
1241 struct zone_reclaim_stat *
1242 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1243 {
1244 struct page_cgroup *pc;
1245 struct mem_cgroup_per_zone *mz;
1246
1247 if (mem_cgroup_disabled())
1248 return NULL;
1249
1250 pc = lookup_page_cgroup(page);
1251 if (!PageCgroupUsed(pc))
1252 return NULL;
1253 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1254 smp_rmb();
1255 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1256 return &mz->lruvec.reclaim_stat;
1257 }
1258
1259 #define mem_cgroup_from_res_counter(counter, member) \
1260 container_of(counter, struct mem_cgroup, member)
1261
1262 /**
1263 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1264 * @mem: the memory cgroup
1265 *
1266 * Returns the maximum amount of memory @mem can be charged with, in
1267 * pages.
1268 */
1269 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1270 {
1271 unsigned long long margin;
1272
1273 margin = res_counter_margin(&memcg->res);
1274 if (do_swap_account)
1275 margin = min(margin, res_counter_margin(&memcg->memsw));
1276 return margin >> PAGE_SHIFT;
1277 }
1278
1279 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1280 {
1281 struct cgroup *cgrp = memcg->css.cgroup;
1282
1283 /* root ? */
1284 if (cgrp->parent == NULL)
1285 return vm_swappiness;
1286
1287 return memcg->swappiness;
1288 }
1289
1290 /*
1291 * memcg->moving_account is used for checking possibility that some thread is
1292 * calling move_account(). When a thread on CPU-A starts moving pages under
1293 * a memcg, other threads should check memcg->moving_account under
1294 * rcu_read_lock(), like this:
1295 *
1296 * CPU-A CPU-B
1297 * rcu_read_lock()
1298 * memcg->moving_account+1 if (memcg->mocing_account)
1299 * take heavy locks.
1300 * synchronize_rcu() update something.
1301 * rcu_read_unlock()
1302 * start move here.
1303 */
1304
1305 /* for quick checking without looking up memcg */
1306 atomic_t memcg_moving __read_mostly;
1307
1308 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1309 {
1310 atomic_inc(&memcg_moving);
1311 atomic_inc(&memcg->moving_account);
1312 synchronize_rcu();
1313 }
1314
1315 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1316 {
1317 /*
1318 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1319 * We check NULL in callee rather than caller.
1320 */
1321 if (memcg) {
1322 atomic_dec(&memcg_moving);
1323 atomic_dec(&memcg->moving_account);
1324 }
1325 }
1326
1327 /*
1328 * 2 routines for checking "mem" is under move_account() or not.
1329 *
1330 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1331 * is used for avoiding races in accounting. If true,
1332 * pc->mem_cgroup may be overwritten.
1333 *
1334 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1335 * under hierarchy of moving cgroups. This is for
1336 * waiting at hith-memory prressure caused by "move".
1337 */
1338
1339 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1340 {
1341 VM_BUG_ON(!rcu_read_lock_held());
1342 return atomic_read(&memcg->moving_account) > 0;
1343 }
1344
1345 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1346 {
1347 struct mem_cgroup *from;
1348 struct mem_cgroup *to;
1349 bool ret = false;
1350 /*
1351 * Unlike task_move routines, we access mc.to, mc.from not under
1352 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1353 */
1354 spin_lock(&mc.lock);
1355 from = mc.from;
1356 to = mc.to;
1357 if (!from)
1358 goto unlock;
1359
1360 ret = mem_cgroup_same_or_subtree(memcg, from)
1361 || mem_cgroup_same_or_subtree(memcg, to);
1362 unlock:
1363 spin_unlock(&mc.lock);
1364 return ret;
1365 }
1366
1367 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1368 {
1369 if (mc.moving_task && current != mc.moving_task) {
1370 if (mem_cgroup_under_move(memcg)) {
1371 DEFINE_WAIT(wait);
1372 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1373 /* moving charge context might have finished. */
1374 if (mc.moving_task)
1375 schedule();
1376 finish_wait(&mc.waitq, &wait);
1377 return true;
1378 }
1379 }
1380 return false;
1381 }
1382
1383 /*
1384 * Take this lock when
1385 * - a code tries to modify page's memcg while it's USED.
1386 * - a code tries to modify page state accounting in a memcg.
1387 * see mem_cgroup_stolen(), too.
1388 */
1389 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1390 unsigned long *flags)
1391 {
1392 spin_lock_irqsave(&memcg->move_lock, *flags);
1393 }
1394
1395 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1396 unsigned long *flags)
1397 {
1398 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1399 }
1400
1401 /**
1402 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1403 * @memcg: The memory cgroup that went over limit
1404 * @p: Task that is going to be killed
1405 *
1406 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1407 * enabled
1408 */
1409 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1410 {
1411 struct cgroup *task_cgrp;
1412 struct cgroup *mem_cgrp;
1413 /*
1414 * Need a buffer in BSS, can't rely on allocations. The code relies
1415 * on the assumption that OOM is serialized for memory controller.
1416 * If this assumption is broken, revisit this code.
1417 */
1418 static char memcg_name[PATH_MAX];
1419 int ret;
1420
1421 if (!memcg || !p)
1422 return;
1423
1424 rcu_read_lock();
1425
1426 mem_cgrp = memcg->css.cgroup;
1427 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1428
1429 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1430 if (ret < 0) {
1431 /*
1432 * Unfortunately, we are unable to convert to a useful name
1433 * But we'll still print out the usage information
1434 */
1435 rcu_read_unlock();
1436 goto done;
1437 }
1438 rcu_read_unlock();
1439
1440 printk(KERN_INFO "Task in %s killed", memcg_name);
1441
1442 rcu_read_lock();
1443 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1444 if (ret < 0) {
1445 rcu_read_unlock();
1446 goto done;
1447 }
1448 rcu_read_unlock();
1449
1450 /*
1451 * Continues from above, so we don't need an KERN_ level
1452 */
1453 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1454 done:
1455
1456 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1457 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1458 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1459 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1460 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1461 "failcnt %llu\n",
1462 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1463 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1464 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1465 }
1466
1467 /*
1468 * This function returns the number of memcg under hierarchy tree. Returns
1469 * 1(self count) if no children.
1470 */
1471 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1472 {
1473 int num = 0;
1474 struct mem_cgroup *iter;
1475
1476 for_each_mem_cgroup_tree(iter, memcg)
1477 num++;
1478 return num;
1479 }
1480
1481 /*
1482 * Return the memory (and swap, if configured) limit for a memcg.
1483 */
1484 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1485 {
1486 u64 limit;
1487 u64 memsw;
1488
1489 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1490 limit += total_swap_pages << PAGE_SHIFT;
1491
1492 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1493 /*
1494 * If memsw is finite and limits the amount of swap space available
1495 * to this memcg, return that limit.
1496 */
1497 return min(limit, memsw);
1498 }
1499
1500 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1501 gfp_t gfp_mask,
1502 unsigned long flags)
1503 {
1504 unsigned long total = 0;
1505 bool noswap = false;
1506 int loop;
1507
1508 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1509 noswap = true;
1510 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1511 noswap = true;
1512
1513 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1514 if (loop)
1515 drain_all_stock_async(memcg);
1516 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1517 /*
1518 * Allow limit shrinkers, which are triggered directly
1519 * by userspace, to catch signals and stop reclaim
1520 * after minimal progress, regardless of the margin.
1521 */
1522 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1523 break;
1524 if (mem_cgroup_margin(memcg))
1525 break;
1526 /*
1527 * If nothing was reclaimed after two attempts, there
1528 * may be no reclaimable pages in this hierarchy.
1529 */
1530 if (loop && !total)
1531 break;
1532 }
1533 return total;
1534 }
1535
1536 /**
1537 * test_mem_cgroup_node_reclaimable
1538 * @mem: the target memcg
1539 * @nid: the node ID to be checked.
1540 * @noswap : specify true here if the user wants flle only information.
1541 *
1542 * This function returns whether the specified memcg contains any
1543 * reclaimable pages on a node. Returns true if there are any reclaimable
1544 * pages in the node.
1545 */
1546 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1547 int nid, bool noswap)
1548 {
1549 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1550 return true;
1551 if (noswap || !total_swap_pages)
1552 return false;
1553 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1554 return true;
1555 return false;
1556
1557 }
1558 #if MAX_NUMNODES > 1
1559
1560 /*
1561 * Always updating the nodemask is not very good - even if we have an empty
1562 * list or the wrong list here, we can start from some node and traverse all
1563 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1564 *
1565 */
1566 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1567 {
1568 int nid;
1569 /*
1570 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1571 * pagein/pageout changes since the last update.
1572 */
1573 if (!atomic_read(&memcg->numainfo_events))
1574 return;
1575 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1576 return;
1577
1578 /* make a nodemask where this memcg uses memory from */
1579 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1580
1581 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1582
1583 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1584 node_clear(nid, memcg->scan_nodes);
1585 }
1586
1587 atomic_set(&memcg->numainfo_events, 0);
1588 atomic_set(&memcg->numainfo_updating, 0);
1589 }
1590
1591 /*
1592 * Selecting a node where we start reclaim from. Because what we need is just
1593 * reducing usage counter, start from anywhere is O,K. Considering
1594 * memory reclaim from current node, there are pros. and cons.
1595 *
1596 * Freeing memory from current node means freeing memory from a node which
1597 * we'll use or we've used. So, it may make LRU bad. And if several threads
1598 * hit limits, it will see a contention on a node. But freeing from remote
1599 * node means more costs for memory reclaim because of memory latency.
1600 *
1601 * Now, we use round-robin. Better algorithm is welcomed.
1602 */
1603 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1604 {
1605 int node;
1606
1607 mem_cgroup_may_update_nodemask(memcg);
1608 node = memcg->last_scanned_node;
1609
1610 node = next_node(node, memcg->scan_nodes);
1611 if (node == MAX_NUMNODES)
1612 node = first_node(memcg->scan_nodes);
1613 /*
1614 * We call this when we hit limit, not when pages are added to LRU.
1615 * No LRU may hold pages because all pages are UNEVICTABLE or
1616 * memcg is too small and all pages are not on LRU. In that case,
1617 * we use curret node.
1618 */
1619 if (unlikely(node == MAX_NUMNODES))
1620 node = numa_node_id();
1621
1622 memcg->last_scanned_node = node;
1623 return node;
1624 }
1625
1626 /*
1627 * Check all nodes whether it contains reclaimable pages or not.
1628 * For quick scan, we make use of scan_nodes. This will allow us to skip
1629 * unused nodes. But scan_nodes is lazily updated and may not cotain
1630 * enough new information. We need to do double check.
1631 */
1632 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1633 {
1634 int nid;
1635
1636 /*
1637 * quick check...making use of scan_node.
1638 * We can skip unused nodes.
1639 */
1640 if (!nodes_empty(memcg->scan_nodes)) {
1641 for (nid = first_node(memcg->scan_nodes);
1642 nid < MAX_NUMNODES;
1643 nid = next_node(nid, memcg->scan_nodes)) {
1644
1645 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1646 return true;
1647 }
1648 }
1649 /*
1650 * Check rest of nodes.
1651 */
1652 for_each_node_state(nid, N_HIGH_MEMORY) {
1653 if (node_isset(nid, memcg->scan_nodes))
1654 continue;
1655 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1656 return true;
1657 }
1658 return false;
1659 }
1660
1661 #else
1662 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1663 {
1664 return 0;
1665 }
1666
1667 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1668 {
1669 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1670 }
1671 #endif
1672
1673 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1674 struct zone *zone,
1675 gfp_t gfp_mask,
1676 unsigned long *total_scanned)
1677 {
1678 struct mem_cgroup *victim = NULL;
1679 int total = 0;
1680 int loop = 0;
1681 unsigned long excess;
1682 unsigned long nr_scanned;
1683 struct mem_cgroup_reclaim_cookie reclaim = {
1684 .zone = zone,
1685 .priority = 0,
1686 };
1687
1688 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1689
1690 while (1) {
1691 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1692 if (!victim) {
1693 loop++;
1694 if (loop >= 2) {
1695 /*
1696 * If we have not been able to reclaim
1697 * anything, it might because there are
1698 * no reclaimable pages under this hierarchy
1699 */
1700 if (!total)
1701 break;
1702 /*
1703 * We want to do more targeted reclaim.
1704 * excess >> 2 is not to excessive so as to
1705 * reclaim too much, nor too less that we keep
1706 * coming back to reclaim from this cgroup
1707 */
1708 if (total >= (excess >> 2) ||
1709 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1710 break;
1711 }
1712 continue;
1713 }
1714 if (!mem_cgroup_reclaimable(victim, false))
1715 continue;
1716 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1717 zone, &nr_scanned);
1718 *total_scanned += nr_scanned;
1719 if (!res_counter_soft_limit_excess(&root_memcg->res))
1720 break;
1721 }
1722 mem_cgroup_iter_break(root_memcg, victim);
1723 return total;
1724 }
1725
1726 /*
1727 * Check OOM-Killer is already running under our hierarchy.
1728 * If someone is running, return false.
1729 * Has to be called with memcg_oom_lock
1730 */
1731 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1732 {
1733 struct mem_cgroup *iter, *failed = NULL;
1734
1735 for_each_mem_cgroup_tree(iter, memcg) {
1736 if (iter->oom_lock) {
1737 /*
1738 * this subtree of our hierarchy is already locked
1739 * so we cannot give a lock.
1740 */
1741 failed = iter;
1742 mem_cgroup_iter_break(memcg, iter);
1743 break;
1744 } else
1745 iter->oom_lock = true;
1746 }
1747
1748 if (!failed)
1749 return true;
1750
1751 /*
1752 * OK, we failed to lock the whole subtree so we have to clean up
1753 * what we set up to the failing subtree
1754 */
1755 for_each_mem_cgroup_tree(iter, memcg) {
1756 if (iter == failed) {
1757 mem_cgroup_iter_break(memcg, iter);
1758 break;
1759 }
1760 iter->oom_lock = false;
1761 }
1762 return false;
1763 }
1764
1765 /*
1766 * Has to be called with memcg_oom_lock
1767 */
1768 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1769 {
1770 struct mem_cgroup *iter;
1771
1772 for_each_mem_cgroup_tree(iter, memcg)
1773 iter->oom_lock = false;
1774 return 0;
1775 }
1776
1777 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1778 {
1779 struct mem_cgroup *iter;
1780
1781 for_each_mem_cgroup_tree(iter, memcg)
1782 atomic_inc(&iter->under_oom);
1783 }
1784
1785 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1786 {
1787 struct mem_cgroup *iter;
1788
1789 /*
1790 * When a new child is created while the hierarchy is under oom,
1791 * mem_cgroup_oom_lock() may not be called. We have to use
1792 * atomic_add_unless() here.
1793 */
1794 for_each_mem_cgroup_tree(iter, memcg)
1795 atomic_add_unless(&iter->under_oom, -1, 0);
1796 }
1797
1798 static DEFINE_SPINLOCK(memcg_oom_lock);
1799 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1800
1801 struct oom_wait_info {
1802 struct mem_cgroup *memcg;
1803 wait_queue_t wait;
1804 };
1805
1806 static int memcg_oom_wake_function(wait_queue_t *wait,
1807 unsigned mode, int sync, void *arg)
1808 {
1809 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1810 struct mem_cgroup *oom_wait_memcg;
1811 struct oom_wait_info *oom_wait_info;
1812
1813 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1814 oom_wait_memcg = oom_wait_info->memcg;
1815
1816 /*
1817 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1818 * Then we can use css_is_ancestor without taking care of RCU.
1819 */
1820 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1821 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1822 return 0;
1823 return autoremove_wake_function(wait, mode, sync, arg);
1824 }
1825
1826 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1827 {
1828 /* for filtering, pass "memcg" as argument. */
1829 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1830 }
1831
1832 static void memcg_oom_recover(struct mem_cgroup *memcg)
1833 {
1834 if (memcg && atomic_read(&memcg->under_oom))
1835 memcg_wakeup_oom(memcg);
1836 }
1837
1838 /*
1839 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1840 */
1841 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1842 int order)
1843 {
1844 struct oom_wait_info owait;
1845 bool locked, need_to_kill;
1846
1847 owait.memcg = memcg;
1848 owait.wait.flags = 0;
1849 owait.wait.func = memcg_oom_wake_function;
1850 owait.wait.private = current;
1851 INIT_LIST_HEAD(&owait.wait.task_list);
1852 need_to_kill = true;
1853 mem_cgroup_mark_under_oom(memcg);
1854
1855 /* At first, try to OOM lock hierarchy under memcg.*/
1856 spin_lock(&memcg_oom_lock);
1857 locked = mem_cgroup_oom_lock(memcg);
1858 /*
1859 * Even if signal_pending(), we can't quit charge() loop without
1860 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1861 * under OOM is always welcomed, use TASK_KILLABLE here.
1862 */
1863 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1864 if (!locked || memcg->oom_kill_disable)
1865 need_to_kill = false;
1866 if (locked)
1867 mem_cgroup_oom_notify(memcg);
1868 spin_unlock(&memcg_oom_lock);
1869
1870 if (need_to_kill) {
1871 finish_wait(&memcg_oom_waitq, &owait.wait);
1872 mem_cgroup_out_of_memory(memcg, mask, order);
1873 } else {
1874 schedule();
1875 finish_wait(&memcg_oom_waitq, &owait.wait);
1876 }
1877 spin_lock(&memcg_oom_lock);
1878 if (locked)
1879 mem_cgroup_oom_unlock(memcg);
1880 memcg_wakeup_oom(memcg);
1881 spin_unlock(&memcg_oom_lock);
1882
1883 mem_cgroup_unmark_under_oom(memcg);
1884
1885 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1886 return false;
1887 /* Give chance to dying process */
1888 schedule_timeout_uninterruptible(1);
1889 return true;
1890 }
1891
1892 /*
1893 * Currently used to update mapped file statistics, but the routine can be
1894 * generalized to update other statistics as well.
1895 *
1896 * Notes: Race condition
1897 *
1898 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1899 * it tends to be costly. But considering some conditions, we doesn't need
1900 * to do so _always_.
1901 *
1902 * Considering "charge", lock_page_cgroup() is not required because all
1903 * file-stat operations happen after a page is attached to radix-tree. There
1904 * are no race with "charge".
1905 *
1906 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1907 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1908 * if there are race with "uncharge". Statistics itself is properly handled
1909 * by flags.
1910 *
1911 * Considering "move", this is an only case we see a race. To make the race
1912 * small, we check mm->moving_account and detect there are possibility of race
1913 * If there is, we take a lock.
1914 */
1915
1916 void __mem_cgroup_begin_update_page_stat(struct page *page,
1917 bool *locked, unsigned long *flags)
1918 {
1919 struct mem_cgroup *memcg;
1920 struct page_cgroup *pc;
1921
1922 pc = lookup_page_cgroup(page);
1923 again:
1924 memcg = pc->mem_cgroup;
1925 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1926 return;
1927 /*
1928 * If this memory cgroup is not under account moving, we don't
1929 * need to take move_lock_page_cgroup(). Because we already hold
1930 * rcu_read_lock(), any calls to move_account will be delayed until
1931 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1932 */
1933 if (!mem_cgroup_stolen(memcg))
1934 return;
1935
1936 move_lock_mem_cgroup(memcg, flags);
1937 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1938 move_unlock_mem_cgroup(memcg, flags);
1939 goto again;
1940 }
1941 *locked = true;
1942 }
1943
1944 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1945 {
1946 struct page_cgroup *pc = lookup_page_cgroup(page);
1947
1948 /*
1949 * It's guaranteed that pc->mem_cgroup never changes while
1950 * lock is held because a routine modifies pc->mem_cgroup
1951 * should take move_lock_page_cgroup().
1952 */
1953 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1954 }
1955
1956 void mem_cgroup_update_page_stat(struct page *page,
1957 enum mem_cgroup_page_stat_item idx, int val)
1958 {
1959 struct mem_cgroup *memcg;
1960 struct page_cgroup *pc = lookup_page_cgroup(page);
1961 unsigned long uninitialized_var(flags);
1962
1963 if (mem_cgroup_disabled())
1964 return;
1965
1966 memcg = pc->mem_cgroup;
1967 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1968 return;
1969
1970 switch (idx) {
1971 case MEMCG_NR_FILE_MAPPED:
1972 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1973 break;
1974 default:
1975 BUG();
1976 }
1977
1978 this_cpu_add(memcg->stat->count[idx], val);
1979 }
1980
1981 /*
1982 * size of first charge trial. "32" comes from vmscan.c's magic value.
1983 * TODO: maybe necessary to use big numbers in big irons.
1984 */
1985 #define CHARGE_BATCH 32U
1986 struct memcg_stock_pcp {
1987 struct mem_cgroup *cached; /* this never be root cgroup */
1988 unsigned int nr_pages;
1989 struct work_struct work;
1990 unsigned long flags;
1991 #define FLUSHING_CACHED_CHARGE 0
1992 };
1993 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1994 static DEFINE_MUTEX(percpu_charge_mutex);
1995
1996 /*
1997 * Try to consume stocked charge on this cpu. If success, one page is consumed
1998 * from local stock and true is returned. If the stock is 0 or charges from a
1999 * cgroup which is not current target, returns false. This stock will be
2000 * refilled.
2001 */
2002 static bool consume_stock(struct mem_cgroup *memcg)
2003 {
2004 struct memcg_stock_pcp *stock;
2005 bool ret = true;
2006
2007 stock = &get_cpu_var(memcg_stock);
2008 if (memcg == stock->cached && stock->nr_pages)
2009 stock->nr_pages--;
2010 else /* need to call res_counter_charge */
2011 ret = false;
2012 put_cpu_var(memcg_stock);
2013 return ret;
2014 }
2015
2016 /*
2017 * Returns stocks cached in percpu to res_counter and reset cached information.
2018 */
2019 static void drain_stock(struct memcg_stock_pcp *stock)
2020 {
2021 struct mem_cgroup *old = stock->cached;
2022
2023 if (stock->nr_pages) {
2024 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2025
2026 res_counter_uncharge(&old->res, bytes);
2027 if (do_swap_account)
2028 res_counter_uncharge(&old->memsw, bytes);
2029 stock->nr_pages = 0;
2030 }
2031 stock->cached = NULL;
2032 }
2033
2034 /*
2035 * This must be called under preempt disabled or must be called by
2036 * a thread which is pinned to local cpu.
2037 */
2038 static void drain_local_stock(struct work_struct *dummy)
2039 {
2040 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2041 drain_stock(stock);
2042 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2043 }
2044
2045 /*
2046 * Cache charges(val) which is from res_counter, to local per_cpu area.
2047 * This will be consumed by consume_stock() function, later.
2048 */
2049 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2050 {
2051 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2052
2053 if (stock->cached != memcg) { /* reset if necessary */
2054 drain_stock(stock);
2055 stock->cached = memcg;
2056 }
2057 stock->nr_pages += nr_pages;
2058 put_cpu_var(memcg_stock);
2059 }
2060
2061 /*
2062 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2063 * of the hierarchy under it. sync flag says whether we should block
2064 * until the work is done.
2065 */
2066 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2067 {
2068 int cpu, curcpu;
2069
2070 /* Notify other cpus that system-wide "drain" is running */
2071 get_online_cpus();
2072 curcpu = get_cpu();
2073 for_each_online_cpu(cpu) {
2074 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2075 struct mem_cgroup *memcg;
2076
2077 memcg = stock->cached;
2078 if (!memcg || !stock->nr_pages)
2079 continue;
2080 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2081 continue;
2082 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2083 if (cpu == curcpu)
2084 drain_local_stock(&stock->work);
2085 else
2086 schedule_work_on(cpu, &stock->work);
2087 }
2088 }
2089 put_cpu();
2090
2091 if (!sync)
2092 goto out;
2093
2094 for_each_online_cpu(cpu) {
2095 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2097 flush_work(&stock->work);
2098 }
2099 out:
2100 put_online_cpus();
2101 }
2102
2103 /*
2104 * Tries to drain stocked charges in other cpus. This function is asynchronous
2105 * and just put a work per cpu for draining localy on each cpu. Caller can
2106 * expects some charges will be back to res_counter later but cannot wait for
2107 * it.
2108 */
2109 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2110 {
2111 /*
2112 * If someone calls draining, avoid adding more kworker runs.
2113 */
2114 if (!mutex_trylock(&percpu_charge_mutex))
2115 return;
2116 drain_all_stock(root_memcg, false);
2117 mutex_unlock(&percpu_charge_mutex);
2118 }
2119
2120 /* This is a synchronous drain interface. */
2121 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2122 {
2123 /* called when force_empty is called */
2124 mutex_lock(&percpu_charge_mutex);
2125 drain_all_stock(root_memcg, true);
2126 mutex_unlock(&percpu_charge_mutex);
2127 }
2128
2129 /*
2130 * This function drains percpu counter value from DEAD cpu and
2131 * move it to local cpu. Note that this function can be preempted.
2132 */
2133 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2134 {
2135 int i;
2136
2137 spin_lock(&memcg->pcp_counter_lock);
2138 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2139 long x = per_cpu(memcg->stat->count[i], cpu);
2140
2141 per_cpu(memcg->stat->count[i], cpu) = 0;
2142 memcg->nocpu_base.count[i] += x;
2143 }
2144 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2145 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2146
2147 per_cpu(memcg->stat->events[i], cpu) = 0;
2148 memcg->nocpu_base.events[i] += x;
2149 }
2150 spin_unlock(&memcg->pcp_counter_lock);
2151 }
2152
2153 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2154 unsigned long action,
2155 void *hcpu)
2156 {
2157 int cpu = (unsigned long)hcpu;
2158 struct memcg_stock_pcp *stock;
2159 struct mem_cgroup *iter;
2160
2161 if (action == CPU_ONLINE)
2162 return NOTIFY_OK;
2163
2164 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2165 return NOTIFY_OK;
2166
2167 for_each_mem_cgroup(iter)
2168 mem_cgroup_drain_pcp_counter(iter, cpu);
2169
2170 stock = &per_cpu(memcg_stock, cpu);
2171 drain_stock(stock);
2172 return NOTIFY_OK;
2173 }
2174
2175
2176 /* See __mem_cgroup_try_charge() for details */
2177 enum {
2178 CHARGE_OK, /* success */
2179 CHARGE_RETRY, /* need to retry but retry is not bad */
2180 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2181 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2182 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2183 };
2184
2185 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2186 unsigned int nr_pages, bool oom_check)
2187 {
2188 unsigned long csize = nr_pages * PAGE_SIZE;
2189 struct mem_cgroup *mem_over_limit;
2190 struct res_counter *fail_res;
2191 unsigned long flags = 0;
2192 int ret;
2193
2194 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2195
2196 if (likely(!ret)) {
2197 if (!do_swap_account)
2198 return CHARGE_OK;
2199 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2200 if (likely(!ret))
2201 return CHARGE_OK;
2202
2203 res_counter_uncharge(&memcg->res, csize);
2204 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2205 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2206 } else
2207 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2208 /*
2209 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2210 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2211 *
2212 * Never reclaim on behalf of optional batching, retry with a
2213 * single page instead.
2214 */
2215 if (nr_pages == CHARGE_BATCH)
2216 return CHARGE_RETRY;
2217
2218 if (!(gfp_mask & __GFP_WAIT))
2219 return CHARGE_WOULDBLOCK;
2220
2221 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2222 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2223 return CHARGE_RETRY;
2224 /*
2225 * Even though the limit is exceeded at this point, reclaim
2226 * may have been able to free some pages. Retry the charge
2227 * before killing the task.
2228 *
2229 * Only for regular pages, though: huge pages are rather
2230 * unlikely to succeed so close to the limit, and we fall back
2231 * to regular pages anyway in case of failure.
2232 */
2233 if (nr_pages == 1 && ret)
2234 return CHARGE_RETRY;
2235
2236 /*
2237 * At task move, charge accounts can be doubly counted. So, it's
2238 * better to wait until the end of task_move if something is going on.
2239 */
2240 if (mem_cgroup_wait_acct_move(mem_over_limit))
2241 return CHARGE_RETRY;
2242
2243 /* If we don't need to call oom-killer at el, return immediately */
2244 if (!oom_check)
2245 return CHARGE_NOMEM;
2246 /* check OOM */
2247 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2248 return CHARGE_OOM_DIE;
2249
2250 return CHARGE_RETRY;
2251 }
2252
2253 /*
2254 * __mem_cgroup_try_charge() does
2255 * 1. detect memcg to be charged against from passed *mm and *ptr,
2256 * 2. update res_counter
2257 * 3. call memory reclaim if necessary.
2258 *
2259 * In some special case, if the task is fatal, fatal_signal_pending() or
2260 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2261 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2262 * as possible without any hazards. 2: all pages should have a valid
2263 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2264 * pointer, that is treated as a charge to root_mem_cgroup.
2265 *
2266 * So __mem_cgroup_try_charge() will return
2267 * 0 ... on success, filling *ptr with a valid memcg pointer.
2268 * -ENOMEM ... charge failure because of resource limits.
2269 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2270 *
2271 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2272 * the oom-killer can be invoked.
2273 */
2274 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2275 gfp_t gfp_mask,
2276 unsigned int nr_pages,
2277 struct mem_cgroup **ptr,
2278 bool oom)
2279 {
2280 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2281 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2282 struct mem_cgroup *memcg = NULL;
2283 int ret;
2284
2285 /*
2286 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2287 * in system level. So, allow to go ahead dying process in addition to
2288 * MEMDIE process.
2289 */
2290 if (unlikely(test_thread_flag(TIF_MEMDIE)
2291 || fatal_signal_pending(current)))
2292 goto bypass;
2293
2294 /*
2295 * We always charge the cgroup the mm_struct belongs to.
2296 * The mm_struct's mem_cgroup changes on task migration if the
2297 * thread group leader migrates. It's possible that mm is not
2298 * set, if so charge the init_mm (happens for pagecache usage).
2299 */
2300 if (!*ptr && !mm)
2301 *ptr = root_mem_cgroup;
2302 again:
2303 if (*ptr) { /* css should be a valid one */
2304 memcg = *ptr;
2305 VM_BUG_ON(css_is_removed(&memcg->css));
2306 if (mem_cgroup_is_root(memcg))
2307 goto done;
2308 if (nr_pages == 1 && consume_stock(memcg))
2309 goto done;
2310 css_get(&memcg->css);
2311 } else {
2312 struct task_struct *p;
2313
2314 rcu_read_lock();
2315 p = rcu_dereference(mm->owner);
2316 /*
2317 * Because we don't have task_lock(), "p" can exit.
2318 * In that case, "memcg" can point to root or p can be NULL with
2319 * race with swapoff. Then, we have small risk of mis-accouning.
2320 * But such kind of mis-account by race always happens because
2321 * we don't have cgroup_mutex(). It's overkill and we allo that
2322 * small race, here.
2323 * (*) swapoff at el will charge against mm-struct not against
2324 * task-struct. So, mm->owner can be NULL.
2325 */
2326 memcg = mem_cgroup_from_task(p);
2327 if (!memcg)
2328 memcg = root_mem_cgroup;
2329 if (mem_cgroup_is_root(memcg)) {
2330 rcu_read_unlock();
2331 goto done;
2332 }
2333 if (nr_pages == 1 && consume_stock(memcg)) {
2334 /*
2335 * It seems dagerous to access memcg without css_get().
2336 * But considering how consume_stok works, it's not
2337 * necessary. If consume_stock success, some charges
2338 * from this memcg are cached on this cpu. So, we
2339 * don't need to call css_get()/css_tryget() before
2340 * calling consume_stock().
2341 */
2342 rcu_read_unlock();
2343 goto done;
2344 }
2345 /* after here, we may be blocked. we need to get refcnt */
2346 if (!css_tryget(&memcg->css)) {
2347 rcu_read_unlock();
2348 goto again;
2349 }
2350 rcu_read_unlock();
2351 }
2352
2353 do {
2354 bool oom_check;
2355
2356 /* If killed, bypass charge */
2357 if (fatal_signal_pending(current)) {
2358 css_put(&memcg->css);
2359 goto bypass;
2360 }
2361
2362 oom_check = false;
2363 if (oom && !nr_oom_retries) {
2364 oom_check = true;
2365 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2366 }
2367
2368 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2369 switch (ret) {
2370 case CHARGE_OK:
2371 break;
2372 case CHARGE_RETRY: /* not in OOM situation but retry */
2373 batch = nr_pages;
2374 css_put(&memcg->css);
2375 memcg = NULL;
2376 goto again;
2377 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2378 css_put(&memcg->css);
2379 goto nomem;
2380 case CHARGE_NOMEM: /* OOM routine works */
2381 if (!oom) {
2382 css_put(&memcg->css);
2383 goto nomem;
2384 }
2385 /* If oom, we never return -ENOMEM */
2386 nr_oom_retries--;
2387 break;
2388 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2389 css_put(&memcg->css);
2390 goto bypass;
2391 }
2392 } while (ret != CHARGE_OK);
2393
2394 if (batch > nr_pages)
2395 refill_stock(memcg, batch - nr_pages);
2396 css_put(&memcg->css);
2397 done:
2398 *ptr = memcg;
2399 return 0;
2400 nomem:
2401 *ptr = NULL;
2402 return -ENOMEM;
2403 bypass:
2404 *ptr = root_mem_cgroup;
2405 return -EINTR;
2406 }
2407
2408 /*
2409 * Somemtimes we have to undo a charge we got by try_charge().
2410 * This function is for that and do uncharge, put css's refcnt.
2411 * gotten by try_charge().
2412 */
2413 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2414 unsigned int nr_pages)
2415 {
2416 if (!mem_cgroup_is_root(memcg)) {
2417 unsigned long bytes = nr_pages * PAGE_SIZE;
2418
2419 res_counter_uncharge(&memcg->res, bytes);
2420 if (do_swap_account)
2421 res_counter_uncharge(&memcg->memsw, bytes);
2422 }
2423 }
2424
2425 /*
2426 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2427 * This is useful when moving usage to parent cgroup.
2428 */
2429 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2430 unsigned int nr_pages)
2431 {
2432 unsigned long bytes = nr_pages * PAGE_SIZE;
2433
2434 if (mem_cgroup_is_root(memcg))
2435 return;
2436
2437 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2438 if (do_swap_account)
2439 res_counter_uncharge_until(&memcg->memsw,
2440 memcg->memsw.parent, bytes);
2441 }
2442
2443 /*
2444 * A helper function to get mem_cgroup from ID. must be called under
2445 * rcu_read_lock(). The caller must check css_is_removed() or some if
2446 * it's concern. (dropping refcnt from swap can be called against removed
2447 * memcg.)
2448 */
2449 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2450 {
2451 struct cgroup_subsys_state *css;
2452
2453 /* ID 0 is unused ID */
2454 if (!id)
2455 return NULL;
2456 css = css_lookup(&mem_cgroup_subsys, id);
2457 if (!css)
2458 return NULL;
2459 return container_of(css, struct mem_cgroup, css);
2460 }
2461
2462 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2463 {
2464 struct mem_cgroup *memcg = NULL;
2465 struct page_cgroup *pc;
2466 unsigned short id;
2467 swp_entry_t ent;
2468
2469 VM_BUG_ON(!PageLocked(page));
2470
2471 pc = lookup_page_cgroup(page);
2472 lock_page_cgroup(pc);
2473 if (PageCgroupUsed(pc)) {
2474 memcg = pc->mem_cgroup;
2475 if (memcg && !css_tryget(&memcg->css))
2476 memcg = NULL;
2477 } else if (PageSwapCache(page)) {
2478 ent.val = page_private(page);
2479 id = lookup_swap_cgroup_id(ent);
2480 rcu_read_lock();
2481 memcg = mem_cgroup_lookup(id);
2482 if (memcg && !css_tryget(&memcg->css))
2483 memcg = NULL;
2484 rcu_read_unlock();
2485 }
2486 unlock_page_cgroup(pc);
2487 return memcg;
2488 }
2489
2490 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2491 struct page *page,
2492 unsigned int nr_pages,
2493 enum charge_type ctype,
2494 bool lrucare)
2495 {
2496 struct page_cgroup *pc = lookup_page_cgroup(page);
2497 struct zone *uninitialized_var(zone);
2498 bool was_on_lru = false;
2499 bool anon;
2500
2501 lock_page_cgroup(pc);
2502 if (unlikely(PageCgroupUsed(pc))) {
2503 unlock_page_cgroup(pc);
2504 __mem_cgroup_cancel_charge(memcg, nr_pages);
2505 return;
2506 }
2507 /*
2508 * we don't need page_cgroup_lock about tail pages, becase they are not
2509 * accessed by any other context at this point.
2510 */
2511
2512 /*
2513 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2514 * may already be on some other mem_cgroup's LRU. Take care of it.
2515 */
2516 if (lrucare) {
2517 zone = page_zone(page);
2518 spin_lock_irq(&zone->lru_lock);
2519 if (PageLRU(page)) {
2520 ClearPageLRU(page);
2521 del_page_from_lru_list(zone, page, page_lru(page));
2522 was_on_lru = true;
2523 }
2524 }
2525
2526 pc->mem_cgroup = memcg;
2527 /*
2528 * We access a page_cgroup asynchronously without lock_page_cgroup().
2529 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2530 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2531 * before USED bit, we need memory barrier here.
2532 * See mem_cgroup_add_lru_list(), etc.
2533 */
2534 smp_wmb();
2535 SetPageCgroupUsed(pc);
2536
2537 if (lrucare) {
2538 if (was_on_lru) {
2539 VM_BUG_ON(PageLRU(page));
2540 SetPageLRU(page);
2541 add_page_to_lru_list(zone, page, page_lru(page));
2542 }
2543 spin_unlock_irq(&zone->lru_lock);
2544 }
2545
2546 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2547 anon = true;
2548 else
2549 anon = false;
2550
2551 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2552 unlock_page_cgroup(pc);
2553
2554 /*
2555 * "charge_statistics" updated event counter. Then, check it.
2556 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2557 * if they exceeds softlimit.
2558 */
2559 memcg_check_events(memcg, page);
2560 }
2561
2562 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2563
2564 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2565 /*
2566 * Because tail pages are not marked as "used", set it. We're under
2567 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2568 * charge/uncharge will be never happen and move_account() is done under
2569 * compound_lock(), so we don't have to take care of races.
2570 */
2571 void mem_cgroup_split_huge_fixup(struct page *head)
2572 {
2573 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2574 struct page_cgroup *pc;
2575 int i;
2576
2577 if (mem_cgroup_disabled())
2578 return;
2579 for (i = 1; i < HPAGE_PMD_NR; i++) {
2580 pc = head_pc + i;
2581 pc->mem_cgroup = head_pc->mem_cgroup;
2582 smp_wmb();/* see __commit_charge() */
2583 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2584 }
2585 }
2586 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2587
2588 /**
2589 * mem_cgroup_move_account - move account of the page
2590 * @page: the page
2591 * @nr_pages: number of regular pages (>1 for huge pages)
2592 * @pc: page_cgroup of the page.
2593 * @from: mem_cgroup which the page is moved from.
2594 * @to: mem_cgroup which the page is moved to. @from != @to.
2595 *
2596 * The caller must confirm following.
2597 * - page is not on LRU (isolate_page() is useful.)
2598 * - compound_lock is held when nr_pages > 1
2599 *
2600 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2601 * from old cgroup.
2602 */
2603 static int mem_cgroup_move_account(struct page *page,
2604 unsigned int nr_pages,
2605 struct page_cgroup *pc,
2606 struct mem_cgroup *from,
2607 struct mem_cgroup *to)
2608 {
2609 unsigned long flags;
2610 int ret;
2611 bool anon = PageAnon(page);
2612
2613 VM_BUG_ON(from == to);
2614 VM_BUG_ON(PageLRU(page));
2615 /*
2616 * The page is isolated from LRU. So, collapse function
2617 * will not handle this page. But page splitting can happen.
2618 * Do this check under compound_page_lock(). The caller should
2619 * hold it.
2620 */
2621 ret = -EBUSY;
2622 if (nr_pages > 1 && !PageTransHuge(page))
2623 goto out;
2624
2625 lock_page_cgroup(pc);
2626
2627 ret = -EINVAL;
2628 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2629 goto unlock;
2630
2631 move_lock_mem_cgroup(from, &flags);
2632
2633 if (!anon && page_mapped(page)) {
2634 /* Update mapped_file data for mem_cgroup */
2635 preempt_disable();
2636 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2637 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2638 preempt_enable();
2639 }
2640 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2641
2642 /* caller should have done css_get */
2643 pc->mem_cgroup = to;
2644 mem_cgroup_charge_statistics(to, anon, nr_pages);
2645 /*
2646 * We charges against "to" which may not have any tasks. Then, "to"
2647 * can be under rmdir(). But in current implementation, caller of
2648 * this function is just force_empty() and move charge, so it's
2649 * guaranteed that "to" is never removed. So, we don't check rmdir
2650 * status here.
2651 */
2652 move_unlock_mem_cgroup(from, &flags);
2653 ret = 0;
2654 unlock:
2655 unlock_page_cgroup(pc);
2656 /*
2657 * check events
2658 */
2659 memcg_check_events(to, page);
2660 memcg_check_events(from, page);
2661 out:
2662 return ret;
2663 }
2664
2665 /*
2666 * move charges to its parent.
2667 */
2668
2669 static int mem_cgroup_move_parent(struct page *page,
2670 struct page_cgroup *pc,
2671 struct mem_cgroup *child,
2672 gfp_t gfp_mask)
2673 {
2674 struct mem_cgroup *parent;
2675 unsigned int nr_pages;
2676 unsigned long uninitialized_var(flags);
2677 int ret;
2678
2679 /* Is ROOT ? */
2680 if (mem_cgroup_is_root(child))
2681 return -EINVAL;
2682
2683 ret = -EBUSY;
2684 if (!get_page_unless_zero(page))
2685 goto out;
2686 if (isolate_lru_page(page))
2687 goto put;
2688
2689 nr_pages = hpage_nr_pages(page);
2690
2691 parent = parent_mem_cgroup(child);
2692 /*
2693 * If no parent, move charges to root cgroup.
2694 */
2695 if (!parent)
2696 parent = root_mem_cgroup;
2697
2698 if (nr_pages > 1)
2699 flags = compound_lock_irqsave(page);
2700
2701 ret = mem_cgroup_move_account(page, nr_pages,
2702 pc, child, parent);
2703 if (!ret)
2704 __mem_cgroup_cancel_local_charge(child, nr_pages);
2705
2706 if (nr_pages > 1)
2707 compound_unlock_irqrestore(page, flags);
2708 putback_lru_page(page);
2709 put:
2710 put_page(page);
2711 out:
2712 return ret;
2713 }
2714
2715 /*
2716 * Charge the memory controller for page usage.
2717 * Return
2718 * 0 if the charge was successful
2719 * < 0 if the cgroup is over its limit
2720 */
2721 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2722 gfp_t gfp_mask, enum charge_type ctype)
2723 {
2724 struct mem_cgroup *memcg = NULL;
2725 unsigned int nr_pages = 1;
2726 bool oom = true;
2727 int ret;
2728
2729 if (PageTransHuge(page)) {
2730 nr_pages <<= compound_order(page);
2731 VM_BUG_ON(!PageTransHuge(page));
2732 /*
2733 * Never OOM-kill a process for a huge page. The
2734 * fault handler will fall back to regular pages.
2735 */
2736 oom = false;
2737 }
2738
2739 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2740 if (ret == -ENOMEM)
2741 return ret;
2742 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2743 return 0;
2744 }
2745
2746 int mem_cgroup_newpage_charge(struct page *page,
2747 struct mm_struct *mm, gfp_t gfp_mask)
2748 {
2749 if (mem_cgroup_disabled())
2750 return 0;
2751 VM_BUG_ON(page_mapped(page));
2752 VM_BUG_ON(page->mapping && !PageAnon(page));
2753 VM_BUG_ON(!mm);
2754 return mem_cgroup_charge_common(page, mm, gfp_mask,
2755 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2756 }
2757
2758 static void
2759 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2760 enum charge_type ctype);
2761
2762 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2763 gfp_t gfp_mask)
2764 {
2765 struct mem_cgroup *memcg = NULL;
2766 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2767 int ret;
2768
2769 if (mem_cgroup_disabled())
2770 return 0;
2771 if (PageCompound(page))
2772 return 0;
2773
2774 if (unlikely(!mm))
2775 mm = &init_mm;
2776 if (!page_is_file_cache(page))
2777 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2778
2779 if (!PageSwapCache(page))
2780 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2781 else { /* page is swapcache/shmem */
2782 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2783 if (!ret)
2784 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2785 }
2786 return ret;
2787 }
2788
2789 /*
2790 * While swap-in, try_charge -> commit or cancel, the page is locked.
2791 * And when try_charge() successfully returns, one refcnt to memcg without
2792 * struct page_cgroup is acquired. This refcnt will be consumed by
2793 * "commit()" or removed by "cancel()"
2794 */
2795 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2796 struct page *page,
2797 gfp_t mask, struct mem_cgroup **memcgp)
2798 {
2799 struct mem_cgroup *memcg;
2800 int ret;
2801
2802 *memcgp = NULL;
2803
2804 if (mem_cgroup_disabled())
2805 return 0;
2806
2807 if (!do_swap_account)
2808 goto charge_cur_mm;
2809 /*
2810 * A racing thread's fault, or swapoff, may have already updated
2811 * the pte, and even removed page from swap cache: in those cases
2812 * do_swap_page()'s pte_same() test will fail; but there's also a
2813 * KSM case which does need to charge the page.
2814 */
2815 if (!PageSwapCache(page))
2816 goto charge_cur_mm;
2817 memcg = try_get_mem_cgroup_from_page(page);
2818 if (!memcg)
2819 goto charge_cur_mm;
2820 *memcgp = memcg;
2821 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2822 css_put(&memcg->css);
2823 if (ret == -EINTR)
2824 ret = 0;
2825 return ret;
2826 charge_cur_mm:
2827 if (unlikely(!mm))
2828 mm = &init_mm;
2829 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2830 if (ret == -EINTR)
2831 ret = 0;
2832 return ret;
2833 }
2834
2835 static void
2836 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2837 enum charge_type ctype)
2838 {
2839 if (mem_cgroup_disabled())
2840 return;
2841 if (!memcg)
2842 return;
2843 cgroup_exclude_rmdir(&memcg->css);
2844
2845 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2846 /*
2847 * Now swap is on-memory. This means this page may be
2848 * counted both as mem and swap....double count.
2849 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2850 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2851 * may call delete_from_swap_cache() before reach here.
2852 */
2853 if (do_swap_account && PageSwapCache(page)) {
2854 swp_entry_t ent = {.val = page_private(page)};
2855 mem_cgroup_uncharge_swap(ent);
2856 }
2857 /*
2858 * At swapin, we may charge account against cgroup which has no tasks.
2859 * So, rmdir()->pre_destroy() can be called while we do this charge.
2860 * In that case, we need to call pre_destroy() again. check it here.
2861 */
2862 cgroup_release_and_wakeup_rmdir(&memcg->css);
2863 }
2864
2865 void mem_cgroup_commit_charge_swapin(struct page *page,
2866 struct mem_cgroup *memcg)
2867 {
2868 __mem_cgroup_commit_charge_swapin(page, memcg,
2869 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2870 }
2871
2872 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2873 {
2874 if (mem_cgroup_disabled())
2875 return;
2876 if (!memcg)
2877 return;
2878 __mem_cgroup_cancel_charge(memcg, 1);
2879 }
2880
2881 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2882 unsigned int nr_pages,
2883 const enum charge_type ctype)
2884 {
2885 struct memcg_batch_info *batch = NULL;
2886 bool uncharge_memsw = true;
2887
2888 /* If swapout, usage of swap doesn't decrease */
2889 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2890 uncharge_memsw = false;
2891
2892 batch = &current->memcg_batch;
2893 /*
2894 * In usual, we do css_get() when we remember memcg pointer.
2895 * But in this case, we keep res->usage until end of a series of
2896 * uncharges. Then, it's ok to ignore memcg's refcnt.
2897 */
2898 if (!batch->memcg)
2899 batch->memcg = memcg;
2900 /*
2901 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2902 * In those cases, all pages freed continuously can be expected to be in
2903 * the same cgroup and we have chance to coalesce uncharges.
2904 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2905 * because we want to do uncharge as soon as possible.
2906 */
2907
2908 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2909 goto direct_uncharge;
2910
2911 if (nr_pages > 1)
2912 goto direct_uncharge;
2913
2914 /*
2915 * In typical case, batch->memcg == mem. This means we can
2916 * merge a series of uncharges to an uncharge of res_counter.
2917 * If not, we uncharge res_counter ony by one.
2918 */
2919 if (batch->memcg != memcg)
2920 goto direct_uncharge;
2921 /* remember freed charge and uncharge it later */
2922 batch->nr_pages++;
2923 if (uncharge_memsw)
2924 batch->memsw_nr_pages++;
2925 return;
2926 direct_uncharge:
2927 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2928 if (uncharge_memsw)
2929 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2930 if (unlikely(batch->memcg != memcg))
2931 memcg_oom_recover(memcg);
2932 }
2933
2934 /*
2935 * uncharge if !page_mapped(page)
2936 */
2937 static struct mem_cgroup *
2938 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2939 {
2940 struct mem_cgroup *memcg = NULL;
2941 unsigned int nr_pages = 1;
2942 struct page_cgroup *pc;
2943 bool anon;
2944
2945 if (mem_cgroup_disabled())
2946 return NULL;
2947
2948 if (PageSwapCache(page))
2949 return NULL;
2950
2951 if (PageTransHuge(page)) {
2952 nr_pages <<= compound_order(page);
2953 VM_BUG_ON(!PageTransHuge(page));
2954 }
2955 /*
2956 * Check if our page_cgroup is valid
2957 */
2958 pc = lookup_page_cgroup(page);
2959 if (unlikely(!PageCgroupUsed(pc)))
2960 return NULL;
2961
2962 lock_page_cgroup(pc);
2963
2964 memcg = pc->mem_cgroup;
2965
2966 if (!PageCgroupUsed(pc))
2967 goto unlock_out;
2968
2969 anon = PageAnon(page);
2970
2971 switch (ctype) {
2972 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2973 /*
2974 * Generally PageAnon tells if it's the anon statistics to be
2975 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2976 * used before page reached the stage of being marked PageAnon.
2977 */
2978 anon = true;
2979 /* fallthrough */
2980 case MEM_CGROUP_CHARGE_TYPE_DROP:
2981 /* See mem_cgroup_prepare_migration() */
2982 if (page_mapped(page) || PageCgroupMigration(pc))
2983 goto unlock_out;
2984 break;
2985 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2986 if (!PageAnon(page)) { /* Shared memory */
2987 if (page->mapping && !page_is_file_cache(page))
2988 goto unlock_out;
2989 } else if (page_mapped(page)) /* Anon */
2990 goto unlock_out;
2991 break;
2992 default:
2993 break;
2994 }
2995
2996 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
2997
2998 ClearPageCgroupUsed(pc);
2999 /*
3000 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3001 * freed from LRU. This is safe because uncharged page is expected not
3002 * to be reused (freed soon). Exception is SwapCache, it's handled by
3003 * special functions.
3004 */
3005
3006 unlock_page_cgroup(pc);
3007 /*
3008 * even after unlock, we have memcg->res.usage here and this memcg
3009 * will never be freed.
3010 */
3011 memcg_check_events(memcg, page);
3012 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3013 mem_cgroup_swap_statistics(memcg, true);
3014 mem_cgroup_get(memcg);
3015 }
3016 if (!mem_cgroup_is_root(memcg))
3017 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3018
3019 return memcg;
3020
3021 unlock_out:
3022 unlock_page_cgroup(pc);
3023 return NULL;
3024 }
3025
3026 void mem_cgroup_uncharge_page(struct page *page)
3027 {
3028 /* early check. */
3029 if (page_mapped(page))
3030 return;
3031 VM_BUG_ON(page->mapping && !PageAnon(page));
3032 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3033 }
3034
3035 void mem_cgroup_uncharge_cache_page(struct page *page)
3036 {
3037 VM_BUG_ON(page_mapped(page));
3038 VM_BUG_ON(page->mapping);
3039 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3040 }
3041
3042 /*
3043 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3044 * In that cases, pages are freed continuously and we can expect pages
3045 * are in the same memcg. All these calls itself limits the number of
3046 * pages freed at once, then uncharge_start/end() is called properly.
3047 * This may be called prural(2) times in a context,
3048 */
3049
3050 void mem_cgroup_uncharge_start(void)
3051 {
3052 current->memcg_batch.do_batch++;
3053 /* We can do nest. */
3054 if (current->memcg_batch.do_batch == 1) {
3055 current->memcg_batch.memcg = NULL;
3056 current->memcg_batch.nr_pages = 0;
3057 current->memcg_batch.memsw_nr_pages = 0;
3058 }
3059 }
3060
3061 void mem_cgroup_uncharge_end(void)
3062 {
3063 struct memcg_batch_info *batch = &current->memcg_batch;
3064
3065 if (!batch->do_batch)
3066 return;
3067
3068 batch->do_batch--;
3069 if (batch->do_batch) /* If stacked, do nothing. */
3070 return;
3071
3072 if (!batch->memcg)
3073 return;
3074 /*
3075 * This "batch->memcg" is valid without any css_get/put etc...
3076 * bacause we hide charges behind us.
3077 */
3078 if (batch->nr_pages)
3079 res_counter_uncharge(&batch->memcg->res,
3080 batch->nr_pages * PAGE_SIZE);
3081 if (batch->memsw_nr_pages)
3082 res_counter_uncharge(&batch->memcg->memsw,
3083 batch->memsw_nr_pages * PAGE_SIZE);
3084 memcg_oom_recover(batch->memcg);
3085 /* forget this pointer (for sanity check) */
3086 batch->memcg = NULL;
3087 }
3088
3089 #ifdef CONFIG_SWAP
3090 /*
3091 * called after __delete_from_swap_cache() and drop "page" account.
3092 * memcg information is recorded to swap_cgroup of "ent"
3093 */
3094 void
3095 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3096 {
3097 struct mem_cgroup *memcg;
3098 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3099
3100 if (!swapout) /* this was a swap cache but the swap is unused ! */
3101 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3102
3103 memcg = __mem_cgroup_uncharge_common(page, ctype);
3104
3105 /*
3106 * record memcg information, if swapout && memcg != NULL,
3107 * mem_cgroup_get() was called in uncharge().
3108 */
3109 if (do_swap_account && swapout && memcg)
3110 swap_cgroup_record(ent, css_id(&memcg->css));
3111 }
3112 #endif
3113
3114 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3115 /*
3116 * called from swap_entry_free(). remove record in swap_cgroup and
3117 * uncharge "memsw" account.
3118 */
3119 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3120 {
3121 struct mem_cgroup *memcg;
3122 unsigned short id;
3123
3124 if (!do_swap_account)
3125 return;
3126
3127 id = swap_cgroup_record(ent, 0);
3128 rcu_read_lock();
3129 memcg = mem_cgroup_lookup(id);
3130 if (memcg) {
3131 /*
3132 * We uncharge this because swap is freed.
3133 * This memcg can be obsolete one. We avoid calling css_tryget
3134 */
3135 if (!mem_cgroup_is_root(memcg))
3136 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3137 mem_cgroup_swap_statistics(memcg, false);
3138 mem_cgroup_put(memcg);
3139 }
3140 rcu_read_unlock();
3141 }
3142
3143 /**
3144 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3145 * @entry: swap entry to be moved
3146 * @from: mem_cgroup which the entry is moved from
3147 * @to: mem_cgroup which the entry is moved to
3148 *
3149 * It succeeds only when the swap_cgroup's record for this entry is the same
3150 * as the mem_cgroup's id of @from.
3151 *
3152 * Returns 0 on success, -EINVAL on failure.
3153 *
3154 * The caller must have charged to @to, IOW, called res_counter_charge() about
3155 * both res and memsw, and called css_get().
3156 */
3157 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3158 struct mem_cgroup *from, struct mem_cgroup *to)
3159 {
3160 unsigned short old_id, new_id;
3161
3162 old_id = css_id(&from->css);
3163 new_id = css_id(&to->css);
3164
3165 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3166 mem_cgroup_swap_statistics(from, false);
3167 mem_cgroup_swap_statistics(to, true);
3168 /*
3169 * This function is only called from task migration context now.
3170 * It postpones res_counter and refcount handling till the end
3171 * of task migration(mem_cgroup_clear_mc()) for performance
3172 * improvement. But we cannot postpone mem_cgroup_get(to)
3173 * because if the process that has been moved to @to does
3174 * swap-in, the refcount of @to might be decreased to 0.
3175 */
3176 mem_cgroup_get(to);
3177 return 0;
3178 }
3179 return -EINVAL;
3180 }
3181 #else
3182 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3183 struct mem_cgroup *from, struct mem_cgroup *to)
3184 {
3185 return -EINVAL;
3186 }
3187 #endif
3188
3189 /*
3190 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3191 * page belongs to.
3192 */
3193 int mem_cgroup_prepare_migration(struct page *page,
3194 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3195 {
3196 struct mem_cgroup *memcg = NULL;
3197 struct page_cgroup *pc;
3198 enum charge_type ctype;
3199 int ret = 0;
3200
3201 *memcgp = NULL;
3202
3203 VM_BUG_ON(PageTransHuge(page));
3204 if (mem_cgroup_disabled())
3205 return 0;
3206
3207 pc = lookup_page_cgroup(page);
3208 lock_page_cgroup(pc);
3209 if (PageCgroupUsed(pc)) {
3210 memcg = pc->mem_cgroup;
3211 css_get(&memcg->css);
3212 /*
3213 * At migrating an anonymous page, its mapcount goes down
3214 * to 0 and uncharge() will be called. But, even if it's fully
3215 * unmapped, migration may fail and this page has to be
3216 * charged again. We set MIGRATION flag here and delay uncharge
3217 * until end_migration() is called
3218 *
3219 * Corner Case Thinking
3220 * A)
3221 * When the old page was mapped as Anon and it's unmap-and-freed
3222 * while migration was ongoing.
3223 * If unmap finds the old page, uncharge() of it will be delayed
3224 * until end_migration(). If unmap finds a new page, it's
3225 * uncharged when it make mapcount to be 1->0. If unmap code
3226 * finds swap_migration_entry, the new page will not be mapped
3227 * and end_migration() will find it(mapcount==0).
3228 *
3229 * B)
3230 * When the old page was mapped but migraion fails, the kernel
3231 * remaps it. A charge for it is kept by MIGRATION flag even
3232 * if mapcount goes down to 0. We can do remap successfully
3233 * without charging it again.
3234 *
3235 * C)
3236 * The "old" page is under lock_page() until the end of
3237 * migration, so, the old page itself will not be swapped-out.
3238 * If the new page is swapped out before end_migraton, our
3239 * hook to usual swap-out path will catch the event.
3240 */
3241 if (PageAnon(page))
3242 SetPageCgroupMigration(pc);
3243 }
3244 unlock_page_cgroup(pc);
3245 /*
3246 * If the page is not charged at this point,
3247 * we return here.
3248 */
3249 if (!memcg)
3250 return 0;
3251
3252 *memcgp = memcg;
3253 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3254 css_put(&memcg->css);/* drop extra refcnt */
3255 if (ret) {
3256 if (PageAnon(page)) {
3257 lock_page_cgroup(pc);
3258 ClearPageCgroupMigration(pc);
3259 unlock_page_cgroup(pc);
3260 /*
3261 * The old page may be fully unmapped while we kept it.
3262 */
3263 mem_cgroup_uncharge_page(page);
3264 }
3265 /* we'll need to revisit this error code (we have -EINTR) */
3266 return -ENOMEM;
3267 }
3268 /*
3269 * We charge new page before it's used/mapped. So, even if unlock_page()
3270 * is called before end_migration, we can catch all events on this new
3271 * page. In the case new page is migrated but not remapped, new page's
3272 * mapcount will be finally 0 and we call uncharge in end_migration().
3273 */
3274 if (PageAnon(page))
3275 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3276 else if (page_is_file_cache(page))
3277 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3278 else
3279 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3280 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3281 return ret;
3282 }
3283
3284 /* remove redundant charge if migration failed*/
3285 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3286 struct page *oldpage, struct page *newpage, bool migration_ok)
3287 {
3288 struct page *used, *unused;
3289 struct page_cgroup *pc;
3290 bool anon;
3291
3292 if (!memcg)
3293 return;
3294 /* blocks rmdir() */
3295 cgroup_exclude_rmdir(&memcg->css);
3296 if (!migration_ok) {
3297 used = oldpage;
3298 unused = newpage;
3299 } else {
3300 used = newpage;
3301 unused = oldpage;
3302 }
3303 /*
3304 * We disallowed uncharge of pages under migration because mapcount
3305 * of the page goes down to zero, temporarly.
3306 * Clear the flag and check the page should be charged.
3307 */
3308 pc = lookup_page_cgroup(oldpage);
3309 lock_page_cgroup(pc);
3310 ClearPageCgroupMigration(pc);
3311 unlock_page_cgroup(pc);
3312 anon = PageAnon(used);
3313 __mem_cgroup_uncharge_common(unused,
3314 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3315 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3316
3317 /*
3318 * If a page is a file cache, radix-tree replacement is very atomic
3319 * and we can skip this check. When it was an Anon page, its mapcount
3320 * goes down to 0. But because we added MIGRATION flage, it's not
3321 * uncharged yet. There are several case but page->mapcount check
3322 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3323 * check. (see prepare_charge() also)
3324 */
3325 if (anon)
3326 mem_cgroup_uncharge_page(used);
3327 /*
3328 * At migration, we may charge account against cgroup which has no
3329 * tasks.
3330 * So, rmdir()->pre_destroy() can be called while we do this charge.
3331 * In that case, we need to call pre_destroy() again. check it here.
3332 */
3333 cgroup_release_and_wakeup_rmdir(&memcg->css);
3334 }
3335
3336 /*
3337 * At replace page cache, newpage is not under any memcg but it's on
3338 * LRU. So, this function doesn't touch res_counter but handles LRU
3339 * in correct way. Both pages are locked so we cannot race with uncharge.
3340 */
3341 void mem_cgroup_replace_page_cache(struct page *oldpage,
3342 struct page *newpage)
3343 {
3344 struct mem_cgroup *memcg = NULL;
3345 struct page_cgroup *pc;
3346 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3347
3348 if (mem_cgroup_disabled())
3349 return;
3350
3351 pc = lookup_page_cgroup(oldpage);
3352 /* fix accounting on old pages */
3353 lock_page_cgroup(pc);
3354 if (PageCgroupUsed(pc)) {
3355 memcg = pc->mem_cgroup;
3356 mem_cgroup_charge_statistics(memcg, false, -1);
3357 ClearPageCgroupUsed(pc);
3358 }
3359 unlock_page_cgroup(pc);
3360
3361 /*
3362 * When called from shmem_replace_page(), in some cases the
3363 * oldpage has already been charged, and in some cases not.
3364 */
3365 if (!memcg)
3366 return;
3367
3368 if (PageSwapBacked(oldpage))
3369 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3370
3371 /*
3372 * Even if newpage->mapping was NULL before starting replacement,
3373 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3374 * LRU while we overwrite pc->mem_cgroup.
3375 */
3376 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3377 }
3378
3379 #ifdef CONFIG_DEBUG_VM
3380 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3381 {
3382 struct page_cgroup *pc;
3383
3384 pc = lookup_page_cgroup(page);
3385 /*
3386 * Can be NULL while feeding pages into the page allocator for
3387 * the first time, i.e. during boot or memory hotplug;
3388 * or when mem_cgroup_disabled().
3389 */
3390 if (likely(pc) && PageCgroupUsed(pc))
3391 return pc;
3392 return NULL;
3393 }
3394
3395 bool mem_cgroup_bad_page_check(struct page *page)
3396 {
3397 if (mem_cgroup_disabled())
3398 return false;
3399
3400 return lookup_page_cgroup_used(page) != NULL;
3401 }
3402
3403 void mem_cgroup_print_bad_page(struct page *page)
3404 {
3405 struct page_cgroup *pc;
3406
3407 pc = lookup_page_cgroup_used(page);
3408 if (pc) {
3409 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3410 pc, pc->flags, pc->mem_cgroup);
3411 }
3412 }
3413 #endif
3414
3415 static DEFINE_MUTEX(set_limit_mutex);
3416
3417 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3418 unsigned long long val)
3419 {
3420 int retry_count;
3421 u64 memswlimit, memlimit;
3422 int ret = 0;
3423 int children = mem_cgroup_count_children(memcg);
3424 u64 curusage, oldusage;
3425 int enlarge;
3426
3427 /*
3428 * For keeping hierarchical_reclaim simple, how long we should retry
3429 * is depends on callers. We set our retry-count to be function
3430 * of # of children which we should visit in this loop.
3431 */
3432 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3433
3434 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3435
3436 enlarge = 0;
3437 while (retry_count) {
3438 if (signal_pending(current)) {
3439 ret = -EINTR;
3440 break;
3441 }
3442 /*
3443 * Rather than hide all in some function, I do this in
3444 * open coded manner. You see what this really does.
3445 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3446 */
3447 mutex_lock(&set_limit_mutex);
3448 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3449 if (memswlimit < val) {
3450 ret = -EINVAL;
3451 mutex_unlock(&set_limit_mutex);
3452 break;
3453 }
3454
3455 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3456 if (memlimit < val)
3457 enlarge = 1;
3458
3459 ret = res_counter_set_limit(&memcg->res, val);
3460 if (!ret) {
3461 if (memswlimit == val)
3462 memcg->memsw_is_minimum = true;
3463 else
3464 memcg->memsw_is_minimum = false;
3465 }
3466 mutex_unlock(&set_limit_mutex);
3467
3468 if (!ret)
3469 break;
3470
3471 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3472 MEM_CGROUP_RECLAIM_SHRINK);
3473 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3474 /* Usage is reduced ? */
3475 if (curusage >= oldusage)
3476 retry_count--;
3477 else
3478 oldusage = curusage;
3479 }
3480 if (!ret && enlarge)
3481 memcg_oom_recover(memcg);
3482
3483 return ret;
3484 }
3485
3486 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3487 unsigned long long val)
3488 {
3489 int retry_count;
3490 u64 memlimit, memswlimit, oldusage, curusage;
3491 int children = mem_cgroup_count_children(memcg);
3492 int ret = -EBUSY;
3493 int enlarge = 0;
3494
3495 /* see mem_cgroup_resize_res_limit */
3496 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3497 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3498 while (retry_count) {
3499 if (signal_pending(current)) {
3500 ret = -EINTR;
3501 break;
3502 }
3503 /*
3504 * Rather than hide all in some function, I do this in
3505 * open coded manner. You see what this really does.
3506 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3507 */
3508 mutex_lock(&set_limit_mutex);
3509 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3510 if (memlimit > val) {
3511 ret = -EINVAL;
3512 mutex_unlock(&set_limit_mutex);
3513 break;
3514 }
3515 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3516 if (memswlimit < val)
3517 enlarge = 1;
3518 ret = res_counter_set_limit(&memcg->memsw, val);
3519 if (!ret) {
3520 if (memlimit == val)
3521 memcg->memsw_is_minimum = true;
3522 else
3523 memcg->memsw_is_minimum = false;
3524 }
3525 mutex_unlock(&set_limit_mutex);
3526
3527 if (!ret)
3528 break;
3529
3530 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3531 MEM_CGROUP_RECLAIM_NOSWAP |
3532 MEM_CGROUP_RECLAIM_SHRINK);
3533 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3534 /* Usage is reduced ? */
3535 if (curusage >= oldusage)
3536 retry_count--;
3537 else
3538 oldusage = curusage;
3539 }
3540 if (!ret && enlarge)
3541 memcg_oom_recover(memcg);
3542 return ret;
3543 }
3544
3545 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3546 gfp_t gfp_mask,
3547 unsigned long *total_scanned)
3548 {
3549 unsigned long nr_reclaimed = 0;
3550 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3551 unsigned long reclaimed;
3552 int loop = 0;
3553 struct mem_cgroup_tree_per_zone *mctz;
3554 unsigned long long excess;
3555 unsigned long nr_scanned;
3556
3557 if (order > 0)
3558 return 0;
3559
3560 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3561 /*
3562 * This loop can run a while, specially if mem_cgroup's continuously
3563 * keep exceeding their soft limit and putting the system under
3564 * pressure
3565 */
3566 do {
3567 if (next_mz)
3568 mz = next_mz;
3569 else
3570 mz = mem_cgroup_largest_soft_limit_node(mctz);
3571 if (!mz)
3572 break;
3573
3574 nr_scanned = 0;
3575 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3576 gfp_mask, &nr_scanned);
3577 nr_reclaimed += reclaimed;
3578 *total_scanned += nr_scanned;
3579 spin_lock(&mctz->lock);
3580
3581 /*
3582 * If we failed to reclaim anything from this memory cgroup
3583 * it is time to move on to the next cgroup
3584 */
3585 next_mz = NULL;
3586 if (!reclaimed) {
3587 do {
3588 /*
3589 * Loop until we find yet another one.
3590 *
3591 * By the time we get the soft_limit lock
3592 * again, someone might have aded the
3593 * group back on the RB tree. Iterate to
3594 * make sure we get a different mem.
3595 * mem_cgroup_largest_soft_limit_node returns
3596 * NULL if no other cgroup is present on
3597 * the tree
3598 */
3599 next_mz =
3600 __mem_cgroup_largest_soft_limit_node(mctz);
3601 if (next_mz == mz)
3602 css_put(&next_mz->memcg->css);
3603 else /* next_mz == NULL or other memcg */
3604 break;
3605 } while (1);
3606 }
3607 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3608 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3609 /*
3610 * One school of thought says that we should not add
3611 * back the node to the tree if reclaim returns 0.
3612 * But our reclaim could return 0, simply because due
3613 * to priority we are exposing a smaller subset of
3614 * memory to reclaim from. Consider this as a longer
3615 * term TODO.
3616 */
3617 /* If excess == 0, no tree ops */
3618 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3619 spin_unlock(&mctz->lock);
3620 css_put(&mz->memcg->css);
3621 loop++;
3622 /*
3623 * Could not reclaim anything and there are no more
3624 * mem cgroups to try or we seem to be looping without
3625 * reclaiming anything.
3626 */
3627 if (!nr_reclaimed &&
3628 (next_mz == NULL ||
3629 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3630 break;
3631 } while (!nr_reclaimed);
3632 if (next_mz)
3633 css_put(&next_mz->memcg->css);
3634 return nr_reclaimed;
3635 }
3636
3637 /*
3638 * This routine traverse page_cgroup in given list and drop them all.
3639 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3640 */
3641 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3642 int node, int zid, enum lru_list lru)
3643 {
3644 struct mem_cgroup_per_zone *mz;
3645 unsigned long flags, loop;
3646 struct list_head *list;
3647 struct page *busy;
3648 struct zone *zone;
3649 int ret = 0;
3650
3651 zone = &NODE_DATA(node)->node_zones[zid];
3652 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3653 list = &mz->lruvec.lists[lru];
3654
3655 loop = mz->lru_size[lru];
3656 /* give some margin against EBUSY etc...*/
3657 loop += 256;
3658 busy = NULL;
3659 while (loop--) {
3660 struct page_cgroup *pc;
3661 struct page *page;
3662
3663 ret = 0;
3664 spin_lock_irqsave(&zone->lru_lock, flags);
3665 if (list_empty(list)) {
3666 spin_unlock_irqrestore(&zone->lru_lock, flags);
3667 break;
3668 }
3669 page = list_entry(list->prev, struct page, lru);
3670 if (busy == page) {
3671 list_move(&page->lru, list);
3672 busy = NULL;
3673 spin_unlock_irqrestore(&zone->lru_lock, flags);
3674 continue;
3675 }
3676 spin_unlock_irqrestore(&zone->lru_lock, flags);
3677
3678 pc = lookup_page_cgroup(page);
3679
3680 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3681 if (ret == -ENOMEM || ret == -EINTR)
3682 break;
3683
3684 if (ret == -EBUSY || ret == -EINVAL) {
3685 /* found lock contention or "pc" is obsolete. */
3686 busy = page;
3687 cond_resched();
3688 } else
3689 busy = NULL;
3690 }
3691
3692 if (!ret && !list_empty(list))
3693 return -EBUSY;
3694 return ret;
3695 }
3696
3697 /*
3698 * make mem_cgroup's charge to be 0 if there is no task.
3699 * This enables deleting this mem_cgroup.
3700 */
3701 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3702 {
3703 int ret;
3704 int node, zid, shrink;
3705 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3706 struct cgroup *cgrp = memcg->css.cgroup;
3707
3708 css_get(&memcg->css);
3709
3710 shrink = 0;
3711 /* should free all ? */
3712 if (free_all)
3713 goto try_to_free;
3714 move_account:
3715 do {
3716 ret = -EBUSY;
3717 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3718 goto out;
3719 ret = -EINTR;
3720 if (signal_pending(current))
3721 goto out;
3722 /* This is for making all *used* pages to be on LRU. */
3723 lru_add_drain_all();
3724 drain_all_stock_sync(memcg);
3725 ret = 0;
3726 mem_cgroup_start_move(memcg);
3727 for_each_node_state(node, N_HIGH_MEMORY) {
3728 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3729 enum lru_list lru;
3730 for_each_lru(lru) {
3731 ret = mem_cgroup_force_empty_list(memcg,
3732 node, zid, lru);
3733 if (ret)
3734 break;
3735 }
3736 }
3737 if (ret)
3738 break;
3739 }
3740 mem_cgroup_end_move(memcg);
3741 memcg_oom_recover(memcg);
3742 /* it seems parent cgroup doesn't have enough mem */
3743 if (ret == -ENOMEM)
3744 goto try_to_free;
3745 cond_resched();
3746 /* "ret" should also be checked to ensure all lists are empty. */
3747 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3748 out:
3749 css_put(&memcg->css);
3750 return ret;
3751
3752 try_to_free:
3753 /* returns EBUSY if there is a task or if we come here twice. */
3754 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3755 ret = -EBUSY;
3756 goto out;
3757 }
3758 /* we call try-to-free pages for make this cgroup empty */
3759 lru_add_drain_all();
3760 /* try to free all pages in this cgroup */
3761 shrink = 1;
3762 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3763 int progress;
3764
3765 if (signal_pending(current)) {
3766 ret = -EINTR;
3767 goto out;
3768 }
3769 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3770 false);
3771 if (!progress) {
3772 nr_retries--;
3773 /* maybe some writeback is necessary */
3774 congestion_wait(BLK_RW_ASYNC, HZ/10);
3775 }
3776
3777 }
3778 lru_add_drain();
3779 /* try move_account...there may be some *locked* pages. */
3780 goto move_account;
3781 }
3782
3783 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3784 {
3785 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3786 }
3787
3788
3789 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3790 {
3791 return mem_cgroup_from_cont(cont)->use_hierarchy;
3792 }
3793
3794 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3795 u64 val)
3796 {
3797 int retval = 0;
3798 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3799 struct cgroup *parent = cont->parent;
3800 struct mem_cgroup *parent_memcg = NULL;
3801
3802 if (parent)
3803 parent_memcg = mem_cgroup_from_cont(parent);
3804
3805 cgroup_lock();
3806 /*
3807 * If parent's use_hierarchy is set, we can't make any modifications
3808 * in the child subtrees. If it is unset, then the change can
3809 * occur, provided the current cgroup has no children.
3810 *
3811 * For the root cgroup, parent_mem is NULL, we allow value to be
3812 * set if there are no children.
3813 */
3814 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3815 (val == 1 || val == 0)) {
3816 if (list_empty(&cont->children))
3817 memcg->use_hierarchy = val;
3818 else
3819 retval = -EBUSY;
3820 } else
3821 retval = -EINVAL;
3822 cgroup_unlock();
3823
3824 return retval;
3825 }
3826
3827
3828 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3829 enum mem_cgroup_stat_index idx)
3830 {
3831 struct mem_cgroup *iter;
3832 long val = 0;
3833
3834 /* Per-cpu values can be negative, use a signed accumulator */
3835 for_each_mem_cgroup_tree(iter, memcg)
3836 val += mem_cgroup_read_stat(iter, idx);
3837
3838 if (val < 0) /* race ? */
3839 val = 0;
3840 return val;
3841 }
3842
3843 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3844 {
3845 u64 val;
3846
3847 if (!mem_cgroup_is_root(memcg)) {
3848 if (!swap)
3849 return res_counter_read_u64(&memcg->res, RES_USAGE);
3850 else
3851 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3852 }
3853
3854 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3855 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3856
3857 if (swap)
3858 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3859
3860 return val << PAGE_SHIFT;
3861 }
3862
3863 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3864 struct file *file, char __user *buf,
3865 size_t nbytes, loff_t *ppos)
3866 {
3867 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3868 char str[64];
3869 u64 val;
3870 int type, name, len;
3871
3872 type = MEMFILE_TYPE(cft->private);
3873 name = MEMFILE_ATTR(cft->private);
3874
3875 if (!do_swap_account && type == _MEMSWAP)
3876 return -EOPNOTSUPP;
3877
3878 switch (type) {
3879 case _MEM:
3880 if (name == RES_USAGE)
3881 val = mem_cgroup_usage(memcg, false);
3882 else
3883 val = res_counter_read_u64(&memcg->res, name);
3884 break;
3885 case _MEMSWAP:
3886 if (name == RES_USAGE)
3887 val = mem_cgroup_usage(memcg, true);
3888 else
3889 val = res_counter_read_u64(&memcg->memsw, name);
3890 break;
3891 default:
3892 BUG();
3893 }
3894
3895 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3896 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3897 }
3898 /*
3899 * The user of this function is...
3900 * RES_LIMIT.
3901 */
3902 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3903 const char *buffer)
3904 {
3905 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3906 int type, name;
3907 unsigned long long val;
3908 int ret;
3909
3910 type = MEMFILE_TYPE(cft->private);
3911 name = MEMFILE_ATTR(cft->private);
3912
3913 if (!do_swap_account && type == _MEMSWAP)
3914 return -EOPNOTSUPP;
3915
3916 switch (name) {
3917 case RES_LIMIT:
3918 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3919 ret = -EINVAL;
3920 break;
3921 }
3922 /* This function does all necessary parse...reuse it */
3923 ret = res_counter_memparse_write_strategy(buffer, &val);
3924 if (ret)
3925 break;
3926 if (type == _MEM)
3927 ret = mem_cgroup_resize_limit(memcg, val);
3928 else
3929 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3930 break;
3931 case RES_SOFT_LIMIT:
3932 ret = res_counter_memparse_write_strategy(buffer, &val);
3933 if (ret)
3934 break;
3935 /*
3936 * For memsw, soft limits are hard to implement in terms
3937 * of semantics, for now, we support soft limits for
3938 * control without swap
3939 */
3940 if (type == _MEM)
3941 ret = res_counter_set_soft_limit(&memcg->res, val);
3942 else
3943 ret = -EINVAL;
3944 break;
3945 default:
3946 ret = -EINVAL; /* should be BUG() ? */
3947 break;
3948 }
3949 return ret;
3950 }
3951
3952 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3953 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3954 {
3955 struct cgroup *cgroup;
3956 unsigned long long min_limit, min_memsw_limit, tmp;
3957
3958 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3959 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3960 cgroup = memcg->css.cgroup;
3961 if (!memcg->use_hierarchy)
3962 goto out;
3963
3964 while (cgroup->parent) {
3965 cgroup = cgroup->parent;
3966 memcg = mem_cgroup_from_cont(cgroup);
3967 if (!memcg->use_hierarchy)
3968 break;
3969 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3970 min_limit = min(min_limit, tmp);
3971 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3972 min_memsw_limit = min(min_memsw_limit, tmp);
3973 }
3974 out:
3975 *mem_limit = min_limit;
3976 *memsw_limit = min_memsw_limit;
3977 }
3978
3979 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3980 {
3981 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3982 int type, name;
3983
3984 type = MEMFILE_TYPE(event);
3985 name = MEMFILE_ATTR(event);
3986
3987 if (!do_swap_account && type == _MEMSWAP)
3988 return -EOPNOTSUPP;
3989
3990 switch (name) {
3991 case RES_MAX_USAGE:
3992 if (type == _MEM)
3993 res_counter_reset_max(&memcg->res);
3994 else
3995 res_counter_reset_max(&memcg->memsw);
3996 break;
3997 case RES_FAILCNT:
3998 if (type == _MEM)
3999 res_counter_reset_failcnt(&memcg->res);
4000 else
4001 res_counter_reset_failcnt(&memcg->memsw);
4002 break;
4003 }
4004
4005 return 0;
4006 }
4007
4008 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4009 struct cftype *cft)
4010 {
4011 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4012 }
4013
4014 #ifdef CONFIG_MMU
4015 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4016 struct cftype *cft, u64 val)
4017 {
4018 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4019
4020 if (val >= (1 << NR_MOVE_TYPE))
4021 return -EINVAL;
4022 /*
4023 * We check this value several times in both in can_attach() and
4024 * attach(), so we need cgroup lock to prevent this value from being
4025 * inconsistent.
4026 */
4027 cgroup_lock();
4028 memcg->move_charge_at_immigrate = val;
4029 cgroup_unlock();
4030
4031 return 0;
4032 }
4033 #else
4034 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4035 struct cftype *cft, u64 val)
4036 {
4037 return -ENOSYS;
4038 }
4039 #endif
4040
4041
4042 /* For read statistics */
4043 enum {
4044 MCS_CACHE,
4045 MCS_RSS,
4046 MCS_FILE_MAPPED,
4047 MCS_PGPGIN,
4048 MCS_PGPGOUT,
4049 MCS_SWAP,
4050 MCS_PGFAULT,
4051 MCS_PGMAJFAULT,
4052 MCS_INACTIVE_ANON,
4053 MCS_ACTIVE_ANON,
4054 MCS_INACTIVE_FILE,
4055 MCS_ACTIVE_FILE,
4056 MCS_UNEVICTABLE,
4057 NR_MCS_STAT,
4058 };
4059
4060 struct mcs_total_stat {
4061 s64 stat[NR_MCS_STAT];
4062 };
4063
4064 static struct {
4065 char *local_name;
4066 char *total_name;
4067 } memcg_stat_strings[NR_MCS_STAT] = {
4068 {"cache", "total_cache"},
4069 {"rss", "total_rss"},
4070 {"mapped_file", "total_mapped_file"},
4071 {"pgpgin", "total_pgpgin"},
4072 {"pgpgout", "total_pgpgout"},
4073 {"swap", "total_swap"},
4074 {"pgfault", "total_pgfault"},
4075 {"pgmajfault", "total_pgmajfault"},
4076 {"inactive_anon", "total_inactive_anon"},
4077 {"active_anon", "total_active_anon"},
4078 {"inactive_file", "total_inactive_file"},
4079 {"active_file", "total_active_file"},
4080 {"unevictable", "total_unevictable"}
4081 };
4082
4083
4084 static void
4085 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4086 {
4087 s64 val;
4088
4089 /* per cpu stat */
4090 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4091 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4092 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4093 s->stat[MCS_RSS] += val * PAGE_SIZE;
4094 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4095 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4096 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4097 s->stat[MCS_PGPGIN] += val;
4098 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4099 s->stat[MCS_PGPGOUT] += val;
4100 if (do_swap_account) {
4101 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4102 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4103 }
4104 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4105 s->stat[MCS_PGFAULT] += val;
4106 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4107 s->stat[MCS_PGMAJFAULT] += val;
4108
4109 /* per zone stat */
4110 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4111 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4112 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4113 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4114 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4115 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4116 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4117 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4118 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4119 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4120 }
4121
4122 static void
4123 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4124 {
4125 struct mem_cgroup *iter;
4126
4127 for_each_mem_cgroup_tree(iter, memcg)
4128 mem_cgroup_get_local_stat(iter, s);
4129 }
4130
4131 #ifdef CONFIG_NUMA
4132 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4133 {
4134 int nid;
4135 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4136 unsigned long node_nr;
4137 struct cgroup *cont = m->private;
4138 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4139
4140 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4141 seq_printf(m, "total=%lu", total_nr);
4142 for_each_node_state(nid, N_HIGH_MEMORY) {
4143 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4144 seq_printf(m, " N%d=%lu", nid, node_nr);
4145 }
4146 seq_putc(m, '\n');
4147
4148 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4149 seq_printf(m, "file=%lu", file_nr);
4150 for_each_node_state(nid, N_HIGH_MEMORY) {
4151 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4152 LRU_ALL_FILE);
4153 seq_printf(m, " N%d=%lu", nid, node_nr);
4154 }
4155 seq_putc(m, '\n');
4156
4157 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4158 seq_printf(m, "anon=%lu", anon_nr);
4159 for_each_node_state(nid, N_HIGH_MEMORY) {
4160 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4161 LRU_ALL_ANON);
4162 seq_printf(m, " N%d=%lu", nid, node_nr);
4163 }
4164 seq_putc(m, '\n');
4165
4166 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4167 seq_printf(m, "unevictable=%lu", unevictable_nr);
4168 for_each_node_state(nid, N_HIGH_MEMORY) {
4169 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4170 BIT(LRU_UNEVICTABLE));
4171 seq_printf(m, " N%d=%lu", nid, node_nr);
4172 }
4173 seq_putc(m, '\n');
4174 return 0;
4175 }
4176 #endif /* CONFIG_NUMA */
4177
4178 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4179 struct cgroup_map_cb *cb)
4180 {
4181 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4182 struct mcs_total_stat mystat;
4183 int i;
4184
4185 memset(&mystat, 0, sizeof(mystat));
4186 mem_cgroup_get_local_stat(memcg, &mystat);
4187
4188
4189 for (i = 0; i < NR_MCS_STAT; i++) {
4190 if (i == MCS_SWAP && !do_swap_account)
4191 continue;
4192 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4193 }
4194
4195 /* Hierarchical information */
4196 {
4197 unsigned long long limit, memsw_limit;
4198 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4199 cb->fill(cb, "hierarchical_memory_limit", limit);
4200 if (do_swap_account)
4201 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4202 }
4203
4204 memset(&mystat, 0, sizeof(mystat));
4205 mem_cgroup_get_total_stat(memcg, &mystat);
4206 for (i = 0; i < NR_MCS_STAT; i++) {
4207 if (i == MCS_SWAP && !do_swap_account)
4208 continue;
4209 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4210 }
4211
4212 #ifdef CONFIG_DEBUG_VM
4213 {
4214 int nid, zid;
4215 struct mem_cgroup_per_zone *mz;
4216 struct zone_reclaim_stat *rstat;
4217 unsigned long recent_rotated[2] = {0, 0};
4218 unsigned long recent_scanned[2] = {0, 0};
4219
4220 for_each_online_node(nid)
4221 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4222 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4223 rstat = &mz->lruvec.reclaim_stat;
4224
4225 recent_rotated[0] += rstat->recent_rotated[0];
4226 recent_rotated[1] += rstat->recent_rotated[1];
4227 recent_scanned[0] += rstat->recent_scanned[0];
4228 recent_scanned[1] += rstat->recent_scanned[1];
4229 }
4230 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4231 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4232 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4233 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4234 }
4235 #endif
4236
4237 return 0;
4238 }
4239
4240 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4241 {
4242 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4243
4244 return mem_cgroup_swappiness(memcg);
4245 }
4246
4247 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4248 u64 val)
4249 {
4250 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4251 struct mem_cgroup *parent;
4252
4253 if (val > 100)
4254 return -EINVAL;
4255
4256 if (cgrp->parent == NULL)
4257 return -EINVAL;
4258
4259 parent = mem_cgroup_from_cont(cgrp->parent);
4260
4261 cgroup_lock();
4262
4263 /* If under hierarchy, only empty-root can set this value */
4264 if ((parent->use_hierarchy) ||
4265 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4266 cgroup_unlock();
4267 return -EINVAL;
4268 }
4269
4270 memcg->swappiness = val;
4271
4272 cgroup_unlock();
4273
4274 return 0;
4275 }
4276
4277 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4278 {
4279 struct mem_cgroup_threshold_ary *t;
4280 u64 usage;
4281 int i;
4282
4283 rcu_read_lock();
4284 if (!swap)
4285 t = rcu_dereference(memcg->thresholds.primary);
4286 else
4287 t = rcu_dereference(memcg->memsw_thresholds.primary);
4288
4289 if (!t)
4290 goto unlock;
4291
4292 usage = mem_cgroup_usage(memcg, swap);
4293
4294 /*
4295 * current_threshold points to threshold just below or equal to usage.
4296 * If it's not true, a threshold was crossed after last
4297 * call of __mem_cgroup_threshold().
4298 */
4299 i = t->current_threshold;
4300
4301 /*
4302 * Iterate backward over array of thresholds starting from
4303 * current_threshold and check if a threshold is crossed.
4304 * If none of thresholds below usage is crossed, we read
4305 * only one element of the array here.
4306 */
4307 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4308 eventfd_signal(t->entries[i].eventfd, 1);
4309
4310 /* i = current_threshold + 1 */
4311 i++;
4312
4313 /*
4314 * Iterate forward over array of thresholds starting from
4315 * current_threshold+1 and check if a threshold is crossed.
4316 * If none of thresholds above usage is crossed, we read
4317 * only one element of the array here.
4318 */
4319 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4320 eventfd_signal(t->entries[i].eventfd, 1);
4321
4322 /* Update current_threshold */
4323 t->current_threshold = i - 1;
4324 unlock:
4325 rcu_read_unlock();
4326 }
4327
4328 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4329 {
4330 while (memcg) {
4331 __mem_cgroup_threshold(memcg, false);
4332 if (do_swap_account)
4333 __mem_cgroup_threshold(memcg, true);
4334
4335 memcg = parent_mem_cgroup(memcg);
4336 }
4337 }
4338
4339 static int compare_thresholds(const void *a, const void *b)
4340 {
4341 const struct mem_cgroup_threshold *_a = a;
4342 const struct mem_cgroup_threshold *_b = b;
4343
4344 return _a->threshold - _b->threshold;
4345 }
4346
4347 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4348 {
4349 struct mem_cgroup_eventfd_list *ev;
4350
4351 list_for_each_entry(ev, &memcg->oom_notify, list)
4352 eventfd_signal(ev->eventfd, 1);
4353 return 0;
4354 }
4355
4356 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4357 {
4358 struct mem_cgroup *iter;
4359
4360 for_each_mem_cgroup_tree(iter, memcg)
4361 mem_cgroup_oom_notify_cb(iter);
4362 }
4363
4364 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4365 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4366 {
4367 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4368 struct mem_cgroup_thresholds *thresholds;
4369 struct mem_cgroup_threshold_ary *new;
4370 int type = MEMFILE_TYPE(cft->private);
4371 u64 threshold, usage;
4372 int i, size, ret;
4373
4374 ret = res_counter_memparse_write_strategy(args, &threshold);
4375 if (ret)
4376 return ret;
4377
4378 mutex_lock(&memcg->thresholds_lock);
4379
4380 if (type == _MEM)
4381 thresholds = &memcg->thresholds;
4382 else if (type == _MEMSWAP)
4383 thresholds = &memcg->memsw_thresholds;
4384 else
4385 BUG();
4386
4387 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4388
4389 /* Check if a threshold crossed before adding a new one */
4390 if (thresholds->primary)
4391 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4392
4393 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4394
4395 /* Allocate memory for new array of thresholds */
4396 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4397 GFP_KERNEL);
4398 if (!new) {
4399 ret = -ENOMEM;
4400 goto unlock;
4401 }
4402 new->size = size;
4403
4404 /* Copy thresholds (if any) to new array */
4405 if (thresholds->primary) {
4406 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4407 sizeof(struct mem_cgroup_threshold));
4408 }
4409
4410 /* Add new threshold */
4411 new->entries[size - 1].eventfd = eventfd;
4412 new->entries[size - 1].threshold = threshold;
4413
4414 /* Sort thresholds. Registering of new threshold isn't time-critical */
4415 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4416 compare_thresholds, NULL);
4417
4418 /* Find current threshold */
4419 new->current_threshold = -1;
4420 for (i = 0; i < size; i++) {
4421 if (new->entries[i].threshold <= usage) {
4422 /*
4423 * new->current_threshold will not be used until
4424 * rcu_assign_pointer(), so it's safe to increment
4425 * it here.
4426 */
4427 ++new->current_threshold;
4428 } else
4429 break;
4430 }
4431
4432 /* Free old spare buffer and save old primary buffer as spare */
4433 kfree(thresholds->spare);
4434 thresholds->spare = thresholds->primary;
4435
4436 rcu_assign_pointer(thresholds->primary, new);
4437
4438 /* To be sure that nobody uses thresholds */
4439 synchronize_rcu();
4440
4441 unlock:
4442 mutex_unlock(&memcg->thresholds_lock);
4443
4444 return ret;
4445 }
4446
4447 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4448 struct cftype *cft, struct eventfd_ctx *eventfd)
4449 {
4450 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4451 struct mem_cgroup_thresholds *thresholds;
4452 struct mem_cgroup_threshold_ary *new;
4453 int type = MEMFILE_TYPE(cft->private);
4454 u64 usage;
4455 int i, j, size;
4456
4457 mutex_lock(&memcg->thresholds_lock);
4458 if (type == _MEM)
4459 thresholds = &memcg->thresholds;
4460 else if (type == _MEMSWAP)
4461 thresholds = &memcg->memsw_thresholds;
4462 else
4463 BUG();
4464
4465 if (!thresholds->primary)
4466 goto unlock;
4467
4468 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4469
4470 /* Check if a threshold crossed before removing */
4471 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4472
4473 /* Calculate new number of threshold */
4474 size = 0;
4475 for (i = 0; i < thresholds->primary->size; i++) {
4476 if (thresholds->primary->entries[i].eventfd != eventfd)
4477 size++;
4478 }
4479
4480 new = thresholds->spare;
4481
4482 /* Set thresholds array to NULL if we don't have thresholds */
4483 if (!size) {
4484 kfree(new);
4485 new = NULL;
4486 goto swap_buffers;
4487 }
4488
4489 new->size = size;
4490
4491 /* Copy thresholds and find current threshold */
4492 new->current_threshold = -1;
4493 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4494 if (thresholds->primary->entries[i].eventfd == eventfd)
4495 continue;
4496
4497 new->entries[j] = thresholds->primary->entries[i];
4498 if (new->entries[j].threshold <= usage) {
4499 /*
4500 * new->current_threshold will not be used
4501 * until rcu_assign_pointer(), so it's safe to increment
4502 * it here.
4503 */
4504 ++new->current_threshold;
4505 }
4506 j++;
4507 }
4508
4509 swap_buffers:
4510 /* Swap primary and spare array */
4511 thresholds->spare = thresholds->primary;
4512 /* If all events are unregistered, free the spare array */
4513 if (!new) {
4514 kfree(thresholds->spare);
4515 thresholds->spare = NULL;
4516 }
4517
4518 rcu_assign_pointer(thresholds->primary, new);
4519
4520 /* To be sure that nobody uses thresholds */
4521 synchronize_rcu();
4522 unlock:
4523 mutex_unlock(&memcg->thresholds_lock);
4524 }
4525
4526 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4527 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4528 {
4529 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4530 struct mem_cgroup_eventfd_list *event;
4531 int type = MEMFILE_TYPE(cft->private);
4532
4533 BUG_ON(type != _OOM_TYPE);
4534 event = kmalloc(sizeof(*event), GFP_KERNEL);
4535 if (!event)
4536 return -ENOMEM;
4537
4538 spin_lock(&memcg_oom_lock);
4539
4540 event->eventfd = eventfd;
4541 list_add(&event->list, &memcg->oom_notify);
4542
4543 /* already in OOM ? */
4544 if (atomic_read(&memcg->under_oom))
4545 eventfd_signal(eventfd, 1);
4546 spin_unlock(&memcg_oom_lock);
4547
4548 return 0;
4549 }
4550
4551 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4552 struct cftype *cft, struct eventfd_ctx *eventfd)
4553 {
4554 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4555 struct mem_cgroup_eventfd_list *ev, *tmp;
4556 int type = MEMFILE_TYPE(cft->private);
4557
4558 BUG_ON(type != _OOM_TYPE);
4559
4560 spin_lock(&memcg_oom_lock);
4561
4562 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4563 if (ev->eventfd == eventfd) {
4564 list_del(&ev->list);
4565 kfree(ev);
4566 }
4567 }
4568
4569 spin_unlock(&memcg_oom_lock);
4570 }
4571
4572 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4573 struct cftype *cft, struct cgroup_map_cb *cb)
4574 {
4575 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4576
4577 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4578
4579 if (atomic_read(&memcg->under_oom))
4580 cb->fill(cb, "under_oom", 1);
4581 else
4582 cb->fill(cb, "under_oom", 0);
4583 return 0;
4584 }
4585
4586 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4587 struct cftype *cft, u64 val)
4588 {
4589 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4590 struct mem_cgroup *parent;
4591
4592 /* cannot set to root cgroup and only 0 and 1 are allowed */
4593 if (!cgrp->parent || !((val == 0) || (val == 1)))
4594 return -EINVAL;
4595
4596 parent = mem_cgroup_from_cont(cgrp->parent);
4597
4598 cgroup_lock();
4599 /* oom-kill-disable is a flag for subhierarchy. */
4600 if ((parent->use_hierarchy) ||
4601 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4602 cgroup_unlock();
4603 return -EINVAL;
4604 }
4605 memcg->oom_kill_disable = val;
4606 if (!val)
4607 memcg_oom_recover(memcg);
4608 cgroup_unlock();
4609 return 0;
4610 }
4611
4612 #ifdef CONFIG_NUMA
4613 static const struct file_operations mem_control_numa_stat_file_operations = {
4614 .read = seq_read,
4615 .llseek = seq_lseek,
4616 .release = single_release,
4617 };
4618
4619 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4620 {
4621 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4622
4623 file->f_op = &mem_control_numa_stat_file_operations;
4624 return single_open(file, mem_control_numa_stat_show, cont);
4625 }
4626 #endif /* CONFIG_NUMA */
4627
4628 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4629 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4630 {
4631 return mem_cgroup_sockets_init(memcg, ss);
4632 };
4633
4634 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4635 {
4636 mem_cgroup_sockets_destroy(memcg);
4637 }
4638 #else
4639 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4640 {
4641 return 0;
4642 }
4643
4644 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4645 {
4646 }
4647 #endif
4648
4649 static struct cftype mem_cgroup_files[] = {
4650 {
4651 .name = "usage_in_bytes",
4652 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4653 .read = mem_cgroup_read,
4654 .register_event = mem_cgroup_usage_register_event,
4655 .unregister_event = mem_cgroup_usage_unregister_event,
4656 },
4657 {
4658 .name = "max_usage_in_bytes",
4659 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4660 .trigger = mem_cgroup_reset,
4661 .read = mem_cgroup_read,
4662 },
4663 {
4664 .name = "limit_in_bytes",
4665 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4666 .write_string = mem_cgroup_write,
4667 .read = mem_cgroup_read,
4668 },
4669 {
4670 .name = "soft_limit_in_bytes",
4671 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4672 .write_string = mem_cgroup_write,
4673 .read = mem_cgroup_read,
4674 },
4675 {
4676 .name = "failcnt",
4677 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4678 .trigger = mem_cgroup_reset,
4679 .read = mem_cgroup_read,
4680 },
4681 {
4682 .name = "stat",
4683 .read_map = mem_control_stat_show,
4684 },
4685 {
4686 .name = "force_empty",
4687 .trigger = mem_cgroup_force_empty_write,
4688 },
4689 {
4690 .name = "use_hierarchy",
4691 .write_u64 = mem_cgroup_hierarchy_write,
4692 .read_u64 = mem_cgroup_hierarchy_read,
4693 },
4694 {
4695 .name = "swappiness",
4696 .read_u64 = mem_cgroup_swappiness_read,
4697 .write_u64 = mem_cgroup_swappiness_write,
4698 },
4699 {
4700 .name = "move_charge_at_immigrate",
4701 .read_u64 = mem_cgroup_move_charge_read,
4702 .write_u64 = mem_cgroup_move_charge_write,
4703 },
4704 {
4705 .name = "oom_control",
4706 .read_map = mem_cgroup_oom_control_read,
4707 .write_u64 = mem_cgroup_oom_control_write,
4708 .register_event = mem_cgroup_oom_register_event,
4709 .unregister_event = mem_cgroup_oom_unregister_event,
4710 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4711 },
4712 #ifdef CONFIG_NUMA
4713 {
4714 .name = "numa_stat",
4715 .open = mem_control_numa_stat_open,
4716 .mode = S_IRUGO,
4717 },
4718 #endif
4719 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4720 {
4721 .name = "memsw.usage_in_bytes",
4722 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4723 .read = mem_cgroup_read,
4724 .register_event = mem_cgroup_usage_register_event,
4725 .unregister_event = mem_cgroup_usage_unregister_event,
4726 },
4727 {
4728 .name = "memsw.max_usage_in_bytes",
4729 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4730 .trigger = mem_cgroup_reset,
4731 .read = mem_cgroup_read,
4732 },
4733 {
4734 .name = "memsw.limit_in_bytes",
4735 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4736 .write_string = mem_cgroup_write,
4737 .read = mem_cgroup_read,
4738 },
4739 {
4740 .name = "memsw.failcnt",
4741 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4742 .trigger = mem_cgroup_reset,
4743 .read = mem_cgroup_read,
4744 },
4745 #endif
4746 { }, /* terminate */
4747 };
4748
4749 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4750 {
4751 struct mem_cgroup_per_node *pn;
4752 struct mem_cgroup_per_zone *mz;
4753 int zone, tmp = node;
4754 /*
4755 * This routine is called against possible nodes.
4756 * But it's BUG to call kmalloc() against offline node.
4757 *
4758 * TODO: this routine can waste much memory for nodes which will
4759 * never be onlined. It's better to use memory hotplug callback
4760 * function.
4761 */
4762 if (!node_state(node, N_NORMAL_MEMORY))
4763 tmp = -1;
4764 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4765 if (!pn)
4766 return 1;
4767
4768 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4769 mz = &pn->zoneinfo[zone];
4770 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4771 mz->usage_in_excess = 0;
4772 mz->on_tree = false;
4773 mz->memcg = memcg;
4774 }
4775 memcg->info.nodeinfo[node] = pn;
4776 return 0;
4777 }
4778
4779 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4780 {
4781 kfree(memcg->info.nodeinfo[node]);
4782 }
4783
4784 static struct mem_cgroup *mem_cgroup_alloc(void)
4785 {
4786 struct mem_cgroup *memcg;
4787 int size = sizeof(struct mem_cgroup);
4788
4789 /* Can be very big if MAX_NUMNODES is very big */
4790 if (size < PAGE_SIZE)
4791 memcg = kzalloc(size, GFP_KERNEL);
4792 else
4793 memcg = vzalloc(size);
4794
4795 if (!memcg)
4796 return NULL;
4797
4798 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4799 if (!memcg->stat)
4800 goto out_free;
4801 spin_lock_init(&memcg->pcp_counter_lock);
4802 return memcg;
4803
4804 out_free:
4805 if (size < PAGE_SIZE)
4806 kfree(memcg);
4807 else
4808 vfree(memcg);
4809 return NULL;
4810 }
4811
4812 /*
4813 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4814 * but in process context. The work_freeing structure is overlaid
4815 * on the rcu_freeing structure, which itself is overlaid on memsw.
4816 */
4817 static void vfree_work(struct work_struct *work)
4818 {
4819 struct mem_cgroup *memcg;
4820
4821 memcg = container_of(work, struct mem_cgroup, work_freeing);
4822 vfree(memcg);
4823 }
4824 static void vfree_rcu(struct rcu_head *rcu_head)
4825 {
4826 struct mem_cgroup *memcg;
4827
4828 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4829 INIT_WORK(&memcg->work_freeing, vfree_work);
4830 schedule_work(&memcg->work_freeing);
4831 }
4832
4833 /*
4834 * At destroying mem_cgroup, references from swap_cgroup can remain.
4835 * (scanning all at force_empty is too costly...)
4836 *
4837 * Instead of clearing all references at force_empty, we remember
4838 * the number of reference from swap_cgroup and free mem_cgroup when
4839 * it goes down to 0.
4840 *
4841 * Removal of cgroup itself succeeds regardless of refs from swap.
4842 */
4843
4844 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4845 {
4846 int node;
4847
4848 mem_cgroup_remove_from_trees(memcg);
4849 free_css_id(&mem_cgroup_subsys, &memcg->css);
4850
4851 for_each_node(node)
4852 free_mem_cgroup_per_zone_info(memcg, node);
4853
4854 free_percpu(memcg->stat);
4855 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4856 kfree_rcu(memcg, rcu_freeing);
4857 else
4858 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4859 }
4860
4861 static void mem_cgroup_get(struct mem_cgroup *memcg)
4862 {
4863 atomic_inc(&memcg->refcnt);
4864 }
4865
4866 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4867 {
4868 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4869 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4870 __mem_cgroup_free(memcg);
4871 if (parent)
4872 mem_cgroup_put(parent);
4873 }
4874 }
4875
4876 static void mem_cgroup_put(struct mem_cgroup *memcg)
4877 {
4878 __mem_cgroup_put(memcg, 1);
4879 }
4880
4881 /*
4882 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4883 */
4884 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4885 {
4886 if (!memcg->res.parent)
4887 return NULL;
4888 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4889 }
4890 EXPORT_SYMBOL(parent_mem_cgroup);
4891
4892 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4893 static void __init enable_swap_cgroup(void)
4894 {
4895 if (!mem_cgroup_disabled() && really_do_swap_account)
4896 do_swap_account = 1;
4897 }
4898 #else
4899 static void __init enable_swap_cgroup(void)
4900 {
4901 }
4902 #endif
4903
4904 static int mem_cgroup_soft_limit_tree_init(void)
4905 {
4906 struct mem_cgroup_tree_per_node *rtpn;
4907 struct mem_cgroup_tree_per_zone *rtpz;
4908 int tmp, node, zone;
4909
4910 for_each_node(node) {
4911 tmp = node;
4912 if (!node_state(node, N_NORMAL_MEMORY))
4913 tmp = -1;
4914 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4915 if (!rtpn)
4916 goto err_cleanup;
4917
4918 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4919
4920 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4921 rtpz = &rtpn->rb_tree_per_zone[zone];
4922 rtpz->rb_root = RB_ROOT;
4923 spin_lock_init(&rtpz->lock);
4924 }
4925 }
4926 return 0;
4927
4928 err_cleanup:
4929 for_each_node(node) {
4930 if (!soft_limit_tree.rb_tree_per_node[node])
4931 break;
4932 kfree(soft_limit_tree.rb_tree_per_node[node]);
4933 soft_limit_tree.rb_tree_per_node[node] = NULL;
4934 }
4935 return 1;
4936
4937 }
4938
4939 static struct cgroup_subsys_state * __ref
4940 mem_cgroup_create(struct cgroup *cont)
4941 {
4942 struct mem_cgroup *memcg, *parent;
4943 long error = -ENOMEM;
4944 int node;
4945
4946 memcg = mem_cgroup_alloc();
4947 if (!memcg)
4948 return ERR_PTR(error);
4949
4950 for_each_node(node)
4951 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4952 goto free_out;
4953
4954 /* root ? */
4955 if (cont->parent == NULL) {
4956 int cpu;
4957 enable_swap_cgroup();
4958 parent = NULL;
4959 if (mem_cgroup_soft_limit_tree_init())
4960 goto free_out;
4961 root_mem_cgroup = memcg;
4962 for_each_possible_cpu(cpu) {
4963 struct memcg_stock_pcp *stock =
4964 &per_cpu(memcg_stock, cpu);
4965 INIT_WORK(&stock->work, drain_local_stock);
4966 }
4967 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4968 } else {
4969 parent = mem_cgroup_from_cont(cont->parent);
4970 memcg->use_hierarchy = parent->use_hierarchy;
4971 memcg->oom_kill_disable = parent->oom_kill_disable;
4972 }
4973
4974 if (parent && parent->use_hierarchy) {
4975 res_counter_init(&memcg->res, &parent->res);
4976 res_counter_init(&memcg->memsw, &parent->memsw);
4977 /*
4978 * We increment refcnt of the parent to ensure that we can
4979 * safely access it on res_counter_charge/uncharge.
4980 * This refcnt will be decremented when freeing this
4981 * mem_cgroup(see mem_cgroup_put).
4982 */
4983 mem_cgroup_get(parent);
4984 } else {
4985 res_counter_init(&memcg->res, NULL);
4986 res_counter_init(&memcg->memsw, NULL);
4987 }
4988 memcg->last_scanned_node = MAX_NUMNODES;
4989 INIT_LIST_HEAD(&memcg->oom_notify);
4990
4991 if (parent)
4992 memcg->swappiness = mem_cgroup_swappiness(parent);
4993 atomic_set(&memcg->refcnt, 1);
4994 memcg->move_charge_at_immigrate = 0;
4995 mutex_init(&memcg->thresholds_lock);
4996 spin_lock_init(&memcg->move_lock);
4997
4998 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4999 if (error) {
5000 /*
5001 * We call put now because our (and parent's) refcnts
5002 * are already in place. mem_cgroup_put() will internally
5003 * call __mem_cgroup_free, so return directly
5004 */
5005 mem_cgroup_put(memcg);
5006 return ERR_PTR(error);
5007 }
5008 return &memcg->css;
5009 free_out:
5010 __mem_cgroup_free(memcg);
5011 return ERR_PTR(error);
5012 }
5013
5014 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5015 {
5016 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5017
5018 return mem_cgroup_force_empty(memcg, false);
5019 }
5020
5021 static void mem_cgroup_destroy(struct cgroup *cont)
5022 {
5023 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5024
5025 kmem_cgroup_destroy(memcg);
5026
5027 mem_cgroup_put(memcg);
5028 }
5029
5030 #ifdef CONFIG_MMU
5031 /* Handlers for move charge at task migration. */
5032 #define PRECHARGE_COUNT_AT_ONCE 256
5033 static int mem_cgroup_do_precharge(unsigned long count)
5034 {
5035 int ret = 0;
5036 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5037 struct mem_cgroup *memcg = mc.to;
5038
5039 if (mem_cgroup_is_root(memcg)) {
5040 mc.precharge += count;
5041 /* we don't need css_get for root */
5042 return ret;
5043 }
5044 /* try to charge at once */
5045 if (count > 1) {
5046 struct res_counter *dummy;
5047 /*
5048 * "memcg" cannot be under rmdir() because we've already checked
5049 * by cgroup_lock_live_cgroup() that it is not removed and we
5050 * are still under the same cgroup_mutex. So we can postpone
5051 * css_get().
5052 */
5053 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5054 goto one_by_one;
5055 if (do_swap_account && res_counter_charge(&memcg->memsw,
5056 PAGE_SIZE * count, &dummy)) {
5057 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5058 goto one_by_one;
5059 }
5060 mc.precharge += count;
5061 return ret;
5062 }
5063 one_by_one:
5064 /* fall back to one by one charge */
5065 while (count--) {
5066 if (signal_pending(current)) {
5067 ret = -EINTR;
5068 break;
5069 }
5070 if (!batch_count--) {
5071 batch_count = PRECHARGE_COUNT_AT_ONCE;
5072 cond_resched();
5073 }
5074 ret = __mem_cgroup_try_charge(NULL,
5075 GFP_KERNEL, 1, &memcg, false);
5076 if (ret)
5077 /* mem_cgroup_clear_mc() will do uncharge later */
5078 return ret;
5079 mc.precharge++;
5080 }
5081 return ret;
5082 }
5083
5084 /**
5085 * get_mctgt_type - get target type of moving charge
5086 * @vma: the vma the pte to be checked belongs
5087 * @addr: the address corresponding to the pte to be checked
5088 * @ptent: the pte to be checked
5089 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5090 *
5091 * Returns
5092 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5093 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5094 * move charge. if @target is not NULL, the page is stored in target->page
5095 * with extra refcnt got(Callers should handle it).
5096 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5097 * target for charge migration. if @target is not NULL, the entry is stored
5098 * in target->ent.
5099 *
5100 * Called with pte lock held.
5101 */
5102 union mc_target {
5103 struct page *page;
5104 swp_entry_t ent;
5105 };
5106
5107 enum mc_target_type {
5108 MC_TARGET_NONE = 0,
5109 MC_TARGET_PAGE,
5110 MC_TARGET_SWAP,
5111 };
5112
5113 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5114 unsigned long addr, pte_t ptent)
5115 {
5116 struct page *page = vm_normal_page(vma, addr, ptent);
5117
5118 if (!page || !page_mapped(page))
5119 return NULL;
5120 if (PageAnon(page)) {
5121 /* we don't move shared anon */
5122 if (!move_anon())
5123 return NULL;
5124 } else if (!move_file())
5125 /* we ignore mapcount for file pages */
5126 return NULL;
5127 if (!get_page_unless_zero(page))
5128 return NULL;
5129
5130 return page;
5131 }
5132
5133 #ifdef CONFIG_SWAP
5134 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5135 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5136 {
5137 struct page *page = NULL;
5138 swp_entry_t ent = pte_to_swp_entry(ptent);
5139
5140 if (!move_anon() || non_swap_entry(ent))
5141 return NULL;
5142 /*
5143 * Because lookup_swap_cache() updates some statistics counter,
5144 * we call find_get_page() with swapper_space directly.
5145 */
5146 page = find_get_page(&swapper_space, ent.val);
5147 if (do_swap_account)
5148 entry->val = ent.val;
5149
5150 return page;
5151 }
5152 #else
5153 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5154 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5155 {
5156 return NULL;
5157 }
5158 #endif
5159
5160 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5161 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5162 {
5163 struct page *page = NULL;
5164 struct address_space *mapping;
5165 pgoff_t pgoff;
5166
5167 if (!vma->vm_file) /* anonymous vma */
5168 return NULL;
5169 if (!move_file())
5170 return NULL;
5171
5172 mapping = vma->vm_file->f_mapping;
5173 if (pte_none(ptent))
5174 pgoff = linear_page_index(vma, addr);
5175 else /* pte_file(ptent) is true */
5176 pgoff = pte_to_pgoff(ptent);
5177
5178 /* page is moved even if it's not RSS of this task(page-faulted). */
5179 page = find_get_page(mapping, pgoff);
5180
5181 #ifdef CONFIG_SWAP
5182 /* shmem/tmpfs may report page out on swap: account for that too. */
5183 if (radix_tree_exceptional_entry(page)) {
5184 swp_entry_t swap = radix_to_swp_entry(page);
5185 if (do_swap_account)
5186 *entry = swap;
5187 page = find_get_page(&swapper_space, swap.val);
5188 }
5189 #endif
5190 return page;
5191 }
5192
5193 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5194 unsigned long addr, pte_t ptent, union mc_target *target)
5195 {
5196 struct page *page = NULL;
5197 struct page_cgroup *pc;
5198 enum mc_target_type ret = MC_TARGET_NONE;
5199 swp_entry_t ent = { .val = 0 };
5200
5201 if (pte_present(ptent))
5202 page = mc_handle_present_pte(vma, addr, ptent);
5203 else if (is_swap_pte(ptent))
5204 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5205 else if (pte_none(ptent) || pte_file(ptent))
5206 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5207
5208 if (!page && !ent.val)
5209 return ret;
5210 if (page) {
5211 pc = lookup_page_cgroup(page);
5212 /*
5213 * Do only loose check w/o page_cgroup lock.
5214 * mem_cgroup_move_account() checks the pc is valid or not under
5215 * the lock.
5216 */
5217 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5218 ret = MC_TARGET_PAGE;
5219 if (target)
5220 target->page = page;
5221 }
5222 if (!ret || !target)
5223 put_page(page);
5224 }
5225 /* There is a swap entry and a page doesn't exist or isn't charged */
5226 if (ent.val && !ret &&
5227 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5228 ret = MC_TARGET_SWAP;
5229 if (target)
5230 target->ent = ent;
5231 }
5232 return ret;
5233 }
5234
5235 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5236 /*
5237 * We don't consider swapping or file mapped pages because THP does not
5238 * support them for now.
5239 * Caller should make sure that pmd_trans_huge(pmd) is true.
5240 */
5241 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5242 unsigned long addr, pmd_t pmd, union mc_target *target)
5243 {
5244 struct page *page = NULL;
5245 struct page_cgroup *pc;
5246 enum mc_target_type ret = MC_TARGET_NONE;
5247
5248 page = pmd_page(pmd);
5249 VM_BUG_ON(!page || !PageHead(page));
5250 if (!move_anon())
5251 return ret;
5252 pc = lookup_page_cgroup(page);
5253 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5254 ret = MC_TARGET_PAGE;
5255 if (target) {
5256 get_page(page);
5257 target->page = page;
5258 }
5259 }
5260 return ret;
5261 }
5262 #else
5263 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5264 unsigned long addr, pmd_t pmd, union mc_target *target)
5265 {
5266 return MC_TARGET_NONE;
5267 }
5268 #endif
5269
5270 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5271 unsigned long addr, unsigned long end,
5272 struct mm_walk *walk)
5273 {
5274 struct vm_area_struct *vma = walk->private;
5275 pte_t *pte;
5276 spinlock_t *ptl;
5277
5278 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5279 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5280 mc.precharge += HPAGE_PMD_NR;
5281 spin_unlock(&vma->vm_mm->page_table_lock);
5282 return 0;
5283 }
5284
5285 if (pmd_trans_unstable(pmd))
5286 return 0;
5287 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5288 for (; addr != end; pte++, addr += PAGE_SIZE)
5289 if (get_mctgt_type(vma, addr, *pte, NULL))
5290 mc.precharge++; /* increment precharge temporarily */
5291 pte_unmap_unlock(pte - 1, ptl);
5292 cond_resched();
5293
5294 return 0;
5295 }
5296
5297 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5298 {
5299 unsigned long precharge;
5300 struct vm_area_struct *vma;
5301
5302 down_read(&mm->mmap_sem);
5303 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5304 struct mm_walk mem_cgroup_count_precharge_walk = {
5305 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5306 .mm = mm,
5307 .private = vma,
5308 };
5309 if (is_vm_hugetlb_page(vma))
5310 continue;
5311 walk_page_range(vma->vm_start, vma->vm_end,
5312 &mem_cgroup_count_precharge_walk);
5313 }
5314 up_read(&mm->mmap_sem);
5315
5316 precharge = mc.precharge;
5317 mc.precharge = 0;
5318
5319 return precharge;
5320 }
5321
5322 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5323 {
5324 unsigned long precharge = mem_cgroup_count_precharge(mm);
5325
5326 VM_BUG_ON(mc.moving_task);
5327 mc.moving_task = current;
5328 return mem_cgroup_do_precharge(precharge);
5329 }
5330
5331 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5332 static void __mem_cgroup_clear_mc(void)
5333 {
5334 struct mem_cgroup *from = mc.from;
5335 struct mem_cgroup *to = mc.to;
5336
5337 /* we must uncharge all the leftover precharges from mc.to */
5338 if (mc.precharge) {
5339 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5340 mc.precharge = 0;
5341 }
5342 /*
5343 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5344 * we must uncharge here.
5345 */
5346 if (mc.moved_charge) {
5347 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5348 mc.moved_charge = 0;
5349 }
5350 /* we must fixup refcnts and charges */
5351 if (mc.moved_swap) {
5352 /* uncharge swap account from the old cgroup */
5353 if (!mem_cgroup_is_root(mc.from))
5354 res_counter_uncharge(&mc.from->memsw,
5355 PAGE_SIZE * mc.moved_swap);
5356 __mem_cgroup_put(mc.from, mc.moved_swap);
5357
5358 if (!mem_cgroup_is_root(mc.to)) {
5359 /*
5360 * we charged both to->res and to->memsw, so we should
5361 * uncharge to->res.
5362 */
5363 res_counter_uncharge(&mc.to->res,
5364 PAGE_SIZE * mc.moved_swap);
5365 }
5366 /* we've already done mem_cgroup_get(mc.to) */
5367 mc.moved_swap = 0;
5368 }
5369 memcg_oom_recover(from);
5370 memcg_oom_recover(to);
5371 wake_up_all(&mc.waitq);
5372 }
5373
5374 static void mem_cgroup_clear_mc(void)
5375 {
5376 struct mem_cgroup *from = mc.from;
5377
5378 /*
5379 * we must clear moving_task before waking up waiters at the end of
5380 * task migration.
5381 */
5382 mc.moving_task = NULL;
5383 __mem_cgroup_clear_mc();
5384 spin_lock(&mc.lock);
5385 mc.from = NULL;
5386 mc.to = NULL;
5387 spin_unlock(&mc.lock);
5388 mem_cgroup_end_move(from);
5389 }
5390
5391 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5392 struct cgroup_taskset *tset)
5393 {
5394 struct task_struct *p = cgroup_taskset_first(tset);
5395 int ret = 0;
5396 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5397
5398 if (memcg->move_charge_at_immigrate) {
5399 struct mm_struct *mm;
5400 struct mem_cgroup *from = mem_cgroup_from_task(p);
5401
5402 VM_BUG_ON(from == memcg);
5403
5404 mm = get_task_mm(p);
5405 if (!mm)
5406 return 0;
5407 /* We move charges only when we move a owner of the mm */
5408 if (mm->owner == p) {
5409 VM_BUG_ON(mc.from);
5410 VM_BUG_ON(mc.to);
5411 VM_BUG_ON(mc.precharge);
5412 VM_BUG_ON(mc.moved_charge);
5413 VM_BUG_ON(mc.moved_swap);
5414 mem_cgroup_start_move(from);
5415 spin_lock(&mc.lock);
5416 mc.from = from;
5417 mc.to = memcg;
5418 spin_unlock(&mc.lock);
5419 /* We set mc.moving_task later */
5420
5421 ret = mem_cgroup_precharge_mc(mm);
5422 if (ret)
5423 mem_cgroup_clear_mc();
5424 }
5425 mmput(mm);
5426 }
5427 return ret;
5428 }
5429
5430 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5431 struct cgroup_taskset *tset)
5432 {
5433 mem_cgroup_clear_mc();
5434 }
5435
5436 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5437 unsigned long addr, unsigned long end,
5438 struct mm_walk *walk)
5439 {
5440 int ret = 0;
5441 struct vm_area_struct *vma = walk->private;
5442 pte_t *pte;
5443 spinlock_t *ptl;
5444 enum mc_target_type target_type;
5445 union mc_target target;
5446 struct page *page;
5447 struct page_cgroup *pc;
5448
5449 /*
5450 * We don't take compound_lock() here but no race with splitting thp
5451 * happens because:
5452 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5453 * under splitting, which means there's no concurrent thp split,
5454 * - if another thread runs into split_huge_page() just after we
5455 * entered this if-block, the thread must wait for page table lock
5456 * to be unlocked in __split_huge_page_splitting(), where the main
5457 * part of thp split is not executed yet.
5458 */
5459 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5460 if (mc.precharge < HPAGE_PMD_NR) {
5461 spin_unlock(&vma->vm_mm->page_table_lock);
5462 return 0;
5463 }
5464 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5465 if (target_type == MC_TARGET_PAGE) {
5466 page = target.page;
5467 if (!isolate_lru_page(page)) {
5468 pc = lookup_page_cgroup(page);
5469 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5470 pc, mc.from, mc.to)) {
5471 mc.precharge -= HPAGE_PMD_NR;
5472 mc.moved_charge += HPAGE_PMD_NR;
5473 }
5474 putback_lru_page(page);
5475 }
5476 put_page(page);
5477 }
5478 spin_unlock(&vma->vm_mm->page_table_lock);
5479 return 0;
5480 }
5481
5482 if (pmd_trans_unstable(pmd))
5483 return 0;
5484 retry:
5485 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5486 for (; addr != end; addr += PAGE_SIZE) {
5487 pte_t ptent = *(pte++);
5488 swp_entry_t ent;
5489
5490 if (!mc.precharge)
5491 break;
5492
5493 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5494 case MC_TARGET_PAGE:
5495 page = target.page;
5496 if (isolate_lru_page(page))
5497 goto put;
5498 pc = lookup_page_cgroup(page);
5499 if (!mem_cgroup_move_account(page, 1, pc,
5500 mc.from, mc.to)) {
5501 mc.precharge--;
5502 /* we uncharge from mc.from later. */
5503 mc.moved_charge++;
5504 }
5505 putback_lru_page(page);
5506 put: /* get_mctgt_type() gets the page */
5507 put_page(page);
5508 break;
5509 case MC_TARGET_SWAP:
5510 ent = target.ent;
5511 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5512 mc.precharge--;
5513 /* we fixup refcnts and charges later. */
5514 mc.moved_swap++;
5515 }
5516 break;
5517 default:
5518 break;
5519 }
5520 }
5521 pte_unmap_unlock(pte - 1, ptl);
5522 cond_resched();
5523
5524 if (addr != end) {
5525 /*
5526 * We have consumed all precharges we got in can_attach().
5527 * We try charge one by one, but don't do any additional
5528 * charges to mc.to if we have failed in charge once in attach()
5529 * phase.
5530 */
5531 ret = mem_cgroup_do_precharge(1);
5532 if (!ret)
5533 goto retry;
5534 }
5535
5536 return ret;
5537 }
5538
5539 static void mem_cgroup_move_charge(struct mm_struct *mm)
5540 {
5541 struct vm_area_struct *vma;
5542
5543 lru_add_drain_all();
5544 retry:
5545 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5546 /*
5547 * Someone who are holding the mmap_sem might be waiting in
5548 * waitq. So we cancel all extra charges, wake up all waiters,
5549 * and retry. Because we cancel precharges, we might not be able
5550 * to move enough charges, but moving charge is a best-effort
5551 * feature anyway, so it wouldn't be a big problem.
5552 */
5553 __mem_cgroup_clear_mc();
5554 cond_resched();
5555 goto retry;
5556 }
5557 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5558 int ret;
5559 struct mm_walk mem_cgroup_move_charge_walk = {
5560 .pmd_entry = mem_cgroup_move_charge_pte_range,
5561 .mm = mm,
5562 .private = vma,
5563 };
5564 if (is_vm_hugetlb_page(vma))
5565 continue;
5566 ret = walk_page_range(vma->vm_start, vma->vm_end,
5567 &mem_cgroup_move_charge_walk);
5568 if (ret)
5569 /*
5570 * means we have consumed all precharges and failed in
5571 * doing additional charge. Just abandon here.
5572 */
5573 break;
5574 }
5575 up_read(&mm->mmap_sem);
5576 }
5577
5578 static void mem_cgroup_move_task(struct cgroup *cont,
5579 struct cgroup_taskset *tset)
5580 {
5581 struct task_struct *p = cgroup_taskset_first(tset);
5582 struct mm_struct *mm = get_task_mm(p);
5583
5584 if (mm) {
5585 if (mc.to)
5586 mem_cgroup_move_charge(mm);
5587 mmput(mm);
5588 }
5589 if (mc.to)
5590 mem_cgroup_clear_mc();
5591 }
5592 #else /* !CONFIG_MMU */
5593 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5594 struct cgroup_taskset *tset)
5595 {
5596 return 0;
5597 }
5598 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5599 struct cgroup_taskset *tset)
5600 {
5601 }
5602 static void mem_cgroup_move_task(struct cgroup *cont,
5603 struct cgroup_taskset *tset)
5604 {
5605 }
5606 #endif
5607
5608 struct cgroup_subsys mem_cgroup_subsys = {
5609 .name = "memory",
5610 .subsys_id = mem_cgroup_subsys_id,
5611 .create = mem_cgroup_create,
5612 .pre_destroy = mem_cgroup_pre_destroy,
5613 .destroy = mem_cgroup_destroy,
5614 .can_attach = mem_cgroup_can_attach,
5615 .cancel_attach = mem_cgroup_cancel_attach,
5616 .attach = mem_cgroup_move_task,
5617 .base_cftypes = mem_cgroup_files,
5618 .early_init = 0,
5619 .use_id = 1,
5620 .__DEPRECATED_clear_css_refs = true,
5621 };
5622
5623 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5624 static int __init enable_swap_account(char *s)
5625 {
5626 /* consider enabled if no parameter or 1 is given */
5627 if (!strcmp(s, "1"))
5628 really_do_swap_account = 1;
5629 else if (!strcmp(s, "0"))
5630 really_do_swap_account = 0;
5631 return 1;
5632 }
5633 __setup("swapaccount=", enable_swap_account);
5634
5635 #endif
This page took 0.134989 seconds and 6 git commands to generate.