memcg: cleanup kmem tcp ifdefs
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/ip.h>
55 #include <net/tcp_memcontrol.h>
56
57 #include <asm/uaccess.h>
58
59 #include <trace/events/vmscan.h>
60
61 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
62 #define MEM_CGROUP_RECLAIM_RETRIES 5
63 static struct mem_cgroup *root_mem_cgroup __read_mostly;
64
65 #ifdef CONFIG_MEMCG_SWAP
66 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
67 int do_swap_account __read_mostly;
68
69 /* for remember boot option*/
70 #ifdef CONFIG_MEMCG_SWAP_ENABLED
71 static int really_do_swap_account __initdata = 1;
72 #else
73 static int really_do_swap_account __initdata = 0;
74 #endif
75
76 #else
77 #define do_swap_account 0
78 #endif
79
80
81 /*
82 * Statistics for memory cgroup.
83 */
84 enum mem_cgroup_stat_index {
85 /*
86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 */
88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 static const char * const mem_cgroup_stat_names[] = {
96 "cache",
97 "rss",
98 "mapped_file",
99 "swap",
100 };
101
102 enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
107 MEM_CGROUP_EVENTS_NSTATS,
108 };
109
110 static const char * const mem_cgroup_events_names[] = {
111 "pgpgin",
112 "pgpgout",
113 "pgfault",
114 "pgmajfault",
115 };
116
117 /*
118 * Per memcg event counter is incremented at every pagein/pageout. With THP,
119 * it will be incremated by the number of pages. This counter is used for
120 * for trigger some periodic events. This is straightforward and better
121 * than using jiffies etc. to handle periodic memcg event.
122 */
123 enum mem_cgroup_events_target {
124 MEM_CGROUP_TARGET_THRESH,
125 MEM_CGROUP_TARGET_SOFTLIMIT,
126 MEM_CGROUP_TARGET_NUMAINFO,
127 MEM_CGROUP_NTARGETS,
128 };
129 #define THRESHOLDS_EVENTS_TARGET 128
130 #define SOFTLIMIT_EVENTS_TARGET 1024
131 #define NUMAINFO_EVENTS_TARGET 1024
132
133 struct mem_cgroup_stat_cpu {
134 long count[MEM_CGROUP_STAT_NSTATS];
135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
136 unsigned long nr_page_events;
137 unsigned long targets[MEM_CGROUP_NTARGETS];
138 };
139
140 struct mem_cgroup_reclaim_iter {
141 /* css_id of the last scanned hierarchy member */
142 int position;
143 /* scan generation, increased every round-trip */
144 unsigned int generation;
145 };
146
147 /*
148 * per-zone information in memory controller.
149 */
150 struct mem_cgroup_per_zone {
151 struct lruvec lruvec;
152 unsigned long lru_size[NR_LRU_LISTS];
153
154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155
156 struct rb_node tree_node; /* RB tree node */
157 unsigned long long usage_in_excess;/* Set to the value by which */
158 /* the soft limit is exceeded*/
159 bool on_tree;
160 struct mem_cgroup *memcg; /* Back pointer, we cannot */
161 /* use container_of */
162 };
163
164 struct mem_cgroup_per_node {
165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166 };
167
168 struct mem_cgroup_lru_info {
169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170 };
171
172 /*
173 * Cgroups above their limits are maintained in a RB-Tree, independent of
174 * their hierarchy representation
175 */
176
177 struct mem_cgroup_tree_per_zone {
178 struct rb_root rb_root;
179 spinlock_t lock;
180 };
181
182 struct mem_cgroup_tree_per_node {
183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184 };
185
186 struct mem_cgroup_tree {
187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188 };
189
190 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191
192 struct mem_cgroup_threshold {
193 struct eventfd_ctx *eventfd;
194 u64 threshold;
195 };
196
197 /* For threshold */
198 struct mem_cgroup_threshold_ary {
199 /* An array index points to threshold just below or equal to usage. */
200 int current_threshold;
201 /* Size of entries[] */
202 unsigned int size;
203 /* Array of thresholds */
204 struct mem_cgroup_threshold entries[0];
205 };
206
207 struct mem_cgroup_thresholds {
208 /* Primary thresholds array */
209 struct mem_cgroup_threshold_ary *primary;
210 /*
211 * Spare threshold array.
212 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 * It must be able to store at least primary->size - 1 entries.
214 */
215 struct mem_cgroup_threshold_ary *spare;
216 };
217
218 /* for OOM */
219 struct mem_cgroup_eventfd_list {
220 struct list_head list;
221 struct eventfd_ctx *eventfd;
222 };
223
224 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
226
227 /*
228 * The memory controller data structure. The memory controller controls both
229 * page cache and RSS per cgroup. We would eventually like to provide
230 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231 * to help the administrator determine what knobs to tune.
232 *
233 * TODO: Add a water mark for the memory controller. Reclaim will begin when
234 * we hit the water mark. May be even add a low water mark, such that
235 * no reclaim occurs from a cgroup at it's low water mark, this is
236 * a feature that will be implemented much later in the future.
237 */
238 struct mem_cgroup {
239 struct cgroup_subsys_state css;
240 /*
241 * the counter to account for memory usage
242 */
243 struct res_counter res;
244
245 union {
246 /*
247 * the counter to account for mem+swap usage.
248 */
249 struct res_counter memsw;
250
251 /*
252 * rcu_freeing is used only when freeing struct mem_cgroup,
253 * so put it into a union to avoid wasting more memory.
254 * It must be disjoint from the css field. It could be
255 * in a union with the res field, but res plays a much
256 * larger part in mem_cgroup life than memsw, and might
257 * be of interest, even at time of free, when debugging.
258 * So share rcu_head with the less interesting memsw.
259 */
260 struct rcu_head rcu_freeing;
261 /*
262 * We also need some space for a worker in deferred freeing.
263 * By the time we call it, rcu_freeing is no longer in use.
264 */
265 struct work_struct work_freeing;
266 };
267
268 /*
269 * Per cgroup active and inactive list, similar to the
270 * per zone LRU lists.
271 */
272 struct mem_cgroup_lru_info info;
273 int last_scanned_node;
274 #if MAX_NUMNODES > 1
275 nodemask_t scan_nodes;
276 atomic_t numainfo_events;
277 atomic_t numainfo_updating;
278 #endif
279 /*
280 * Should the accounting and control be hierarchical, per subtree?
281 */
282 bool use_hierarchy;
283
284 bool oom_lock;
285 atomic_t under_oom;
286
287 atomic_t refcnt;
288
289 int swappiness;
290 /* OOM-Killer disable */
291 int oom_kill_disable;
292
293 /* set when res.limit == memsw.limit */
294 bool memsw_is_minimum;
295
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
300 struct mem_cgroup_thresholds thresholds;
301
302 /* thresholds for mem+swap usage. RCU-protected */
303 struct mem_cgroup_thresholds memsw_thresholds;
304
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
307
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
319 /*
320 * percpu counter.
321 */
322 struct mem_cgroup_stat_cpu __percpu *stat;
323 /*
324 * used when a cpu is offlined or other synchronizations
325 * See mem_cgroup_read_stat().
326 */
327 struct mem_cgroup_stat_cpu nocpu_base;
328 spinlock_t pcp_counter_lock;
329
330 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
331 struct tcp_memcontrol tcp_mem;
332 #endif
333 };
334
335 /* Stuffs for move charges at task migration. */
336 /*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340 enum move_type {
341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
343 NR_MOVE_TYPE,
344 };
345
346 /* "mc" and its members are protected by cgroup_mutex */
347 static struct move_charge_struct {
348 spinlock_t lock; /* for from, to */
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
352 unsigned long moved_charge;
353 unsigned long moved_swap;
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356 } mc = {
357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359 };
360
361 static bool move_anon(void)
362 {
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365 }
366
367 static bool move_file(void)
368 {
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371 }
372
373 /*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
377 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
379
380 enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
382 MEM_CGROUP_CHARGE_TYPE_ANON,
383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
385 NR_CHARGE_TYPE,
386 };
387
388 /* for encoding cft->private value on file */
389 #define _MEM (0)
390 #define _MEMSWAP (1)
391 #define _OOM_TYPE (2)
392 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
394 #define MEMFILE_ATTR(val) ((val) & 0xffff)
395 /* Used for OOM nofiier */
396 #define OOM_CONTROL (0)
397
398 /*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
406 static void mem_cgroup_get(struct mem_cgroup *memcg);
407 static void mem_cgroup_put(struct mem_cgroup *memcg);
408
409 static inline
410 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411 {
412 return container_of(s, struct mem_cgroup, css);
413 }
414
415 /* Writing them here to avoid exposing memcg's inner layout */
416 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
417
418 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
419 void sock_update_memcg(struct sock *sk)
420 {
421 if (mem_cgroup_sockets_enabled) {
422 struct mem_cgroup *memcg;
423 struct cg_proto *cg_proto;
424
425 BUG_ON(!sk->sk_prot->proto_cgroup);
426
427 /* Socket cloning can throw us here with sk_cgrp already
428 * filled. It won't however, necessarily happen from
429 * process context. So the test for root memcg given
430 * the current task's memcg won't help us in this case.
431 *
432 * Respecting the original socket's memcg is a better
433 * decision in this case.
434 */
435 if (sk->sk_cgrp) {
436 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
437 mem_cgroup_get(sk->sk_cgrp->memcg);
438 return;
439 }
440
441 rcu_read_lock();
442 memcg = mem_cgroup_from_task(current);
443 cg_proto = sk->sk_prot->proto_cgroup(memcg);
444 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
445 mem_cgroup_get(memcg);
446 sk->sk_cgrp = cg_proto;
447 }
448 rcu_read_unlock();
449 }
450 }
451 EXPORT_SYMBOL(sock_update_memcg);
452
453 void sock_release_memcg(struct sock *sk)
454 {
455 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
456 struct mem_cgroup *memcg;
457 WARN_ON(!sk->sk_cgrp->memcg);
458 memcg = sk->sk_cgrp->memcg;
459 mem_cgroup_put(memcg);
460 }
461 }
462
463 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
464 {
465 if (!memcg || mem_cgroup_is_root(memcg))
466 return NULL;
467
468 return &memcg->tcp_mem.cg_proto;
469 }
470 EXPORT_SYMBOL(tcp_proto_cgroup);
471
472 static void disarm_sock_keys(struct mem_cgroup *memcg)
473 {
474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
475 return;
476 static_key_slow_dec(&memcg_socket_limit_enabled);
477 }
478 #else
479 static void disarm_sock_keys(struct mem_cgroup *memcg)
480 {
481 }
482 #endif
483
484 static void drain_all_stock_async(struct mem_cgroup *memcg);
485
486 static struct mem_cgroup_per_zone *
487 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
488 {
489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
490 }
491
492 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
493 {
494 return &memcg->css;
495 }
496
497 static struct mem_cgroup_per_zone *
498 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
499 {
500 int nid = page_to_nid(page);
501 int zid = page_zonenum(page);
502
503 return mem_cgroup_zoneinfo(memcg, nid, zid);
504 }
505
506 static struct mem_cgroup_tree_per_zone *
507 soft_limit_tree_node_zone(int nid, int zid)
508 {
509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
510 }
511
512 static struct mem_cgroup_tree_per_zone *
513 soft_limit_tree_from_page(struct page *page)
514 {
515 int nid = page_to_nid(page);
516 int zid = page_zonenum(page);
517
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
519 }
520
521 static void
522 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
523 struct mem_cgroup_per_zone *mz,
524 struct mem_cgroup_tree_per_zone *mctz,
525 unsigned long long new_usage_in_excess)
526 {
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_zone *mz_node;
530
531 if (mz->on_tree)
532 return;
533
534 mz->usage_in_excess = new_usage_in_excess;
535 if (!mz->usage_in_excess)
536 return;
537 while (*p) {
538 parent = *p;
539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
540 tree_node);
541 if (mz->usage_in_excess < mz_node->usage_in_excess)
542 p = &(*p)->rb_left;
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550 rb_link_node(&mz->tree_node, parent, p);
551 rb_insert_color(&mz->tree_node, &mctz->rb_root);
552 mz->on_tree = true;
553 }
554
555 static void
556 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
557 struct mem_cgroup_per_zone *mz,
558 struct mem_cgroup_tree_per_zone *mctz)
559 {
560 if (!mz->on_tree)
561 return;
562 rb_erase(&mz->tree_node, &mctz->rb_root);
563 mz->on_tree = false;
564 }
565
566 static void
567 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
568 struct mem_cgroup_per_zone *mz,
569 struct mem_cgroup_tree_per_zone *mctz)
570 {
571 spin_lock(&mctz->lock);
572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 spin_unlock(&mctz->lock);
574 }
575
576
577 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
578 {
579 unsigned long long excess;
580 struct mem_cgroup_per_zone *mz;
581 struct mem_cgroup_tree_per_zone *mctz;
582 int nid = page_to_nid(page);
583 int zid = page_zonenum(page);
584 mctz = soft_limit_tree_from_page(page);
585
586 /*
587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched.
589 */
590 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
591 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 excess = res_counter_soft_limit_excess(&memcg->res);
593 /*
594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit.
596 */
597 if (excess || mz->on_tree) {
598 spin_lock(&mctz->lock);
599 /* if on-tree, remove it */
600 if (mz->on_tree)
601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
602 /*
603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops.
605 */
606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
607 spin_unlock(&mctz->lock);
608 }
609 }
610 }
611
612 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
613 {
614 int node, zone;
615 struct mem_cgroup_per_zone *mz;
616 struct mem_cgroup_tree_per_zone *mctz;
617
618 for_each_node(node) {
619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
620 mz = mem_cgroup_zoneinfo(memcg, node, zone);
621 mctz = soft_limit_tree_node_zone(node, zone);
622 mem_cgroup_remove_exceeded(memcg, mz, mctz);
623 }
624 }
625 }
626
627 static struct mem_cgroup_per_zone *
628 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
629 {
630 struct rb_node *rightmost = NULL;
631 struct mem_cgroup_per_zone *mz;
632
633 retry:
634 mz = NULL;
635 rightmost = rb_last(&mctz->rb_root);
636 if (!rightmost)
637 goto done; /* Nothing to reclaim from */
638
639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
640 /*
641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree.
644 */
645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
646 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
647 !css_tryget(&mz->memcg->css))
648 goto retry;
649 done:
650 return mz;
651 }
652
653 static struct mem_cgroup_per_zone *
654 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
655 {
656 struct mem_cgroup_per_zone *mz;
657
658 spin_lock(&mctz->lock);
659 mz = __mem_cgroup_largest_soft_limit_node(mctz);
660 spin_unlock(&mctz->lock);
661 return mz;
662 }
663
664 /*
665 * Implementation Note: reading percpu statistics for memcg.
666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
671 *
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 *
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
682 */
683 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
684 enum mem_cgroup_stat_index idx)
685 {
686 long val = 0;
687 int cpu;
688
689 get_online_cpus();
690 for_each_online_cpu(cpu)
691 val += per_cpu(memcg->stat->count[idx], cpu);
692 #ifdef CONFIG_HOTPLUG_CPU
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
696 #endif
697 put_online_cpus();
698 return val;
699 }
700
701 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
702 bool charge)
703 {
704 int val = (charge) ? 1 : -1;
705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
706 }
707
708 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
709 enum mem_cgroup_events_index idx)
710 {
711 unsigned long val = 0;
712 int cpu;
713
714 for_each_online_cpu(cpu)
715 val += per_cpu(memcg->stat->events[idx], cpu);
716 #ifdef CONFIG_HOTPLUG_CPU
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
720 #endif
721 return val;
722 }
723
724 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
725 bool anon, int nr_pages)
726 {
727 preempt_disable();
728
729 /*
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU.
732 */
733 if (anon)
734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
735 nr_pages);
736 else
737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
738 nr_pages);
739
740 /* pagein of a big page is an event. So, ignore page size */
741 if (nr_pages > 0)
742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
743 else {
744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
745 nr_pages = -nr_pages; /* for event */
746 }
747
748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
749
750 preempt_enable();
751 }
752
753 unsigned long
754 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
755 {
756 struct mem_cgroup_per_zone *mz;
757
758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
759 return mz->lru_size[lru];
760 }
761
762 static unsigned long
763 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
764 unsigned int lru_mask)
765 {
766 struct mem_cgroup_per_zone *mz;
767 enum lru_list lru;
768 unsigned long ret = 0;
769
770 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
771
772 for_each_lru(lru) {
773 if (BIT(lru) & lru_mask)
774 ret += mz->lru_size[lru];
775 }
776 return ret;
777 }
778
779 static unsigned long
780 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
781 int nid, unsigned int lru_mask)
782 {
783 u64 total = 0;
784 int zid;
785
786 for (zid = 0; zid < MAX_NR_ZONES; zid++)
787 total += mem_cgroup_zone_nr_lru_pages(memcg,
788 nid, zid, lru_mask);
789
790 return total;
791 }
792
793 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
794 unsigned int lru_mask)
795 {
796 int nid;
797 u64 total = 0;
798
799 for_each_node_state(nid, N_HIGH_MEMORY)
800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
801 return total;
802 }
803
804 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
805 enum mem_cgroup_events_target target)
806 {
807 unsigned long val, next;
808
809 val = __this_cpu_read(memcg->stat->nr_page_events);
810 next = __this_cpu_read(memcg->stat->targets[target]);
811 /* from time_after() in jiffies.h */
812 if ((long)next - (long)val < 0) {
813 switch (target) {
814 case MEM_CGROUP_TARGET_THRESH:
815 next = val + THRESHOLDS_EVENTS_TARGET;
816 break;
817 case MEM_CGROUP_TARGET_SOFTLIMIT:
818 next = val + SOFTLIMIT_EVENTS_TARGET;
819 break;
820 case MEM_CGROUP_TARGET_NUMAINFO:
821 next = val + NUMAINFO_EVENTS_TARGET;
822 break;
823 default:
824 break;
825 }
826 __this_cpu_write(memcg->stat->targets[target], next);
827 return true;
828 }
829 return false;
830 }
831
832 /*
833 * Check events in order.
834 *
835 */
836 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
837 {
838 preempt_disable();
839 /* threshold event is triggered in finer grain than soft limit */
840 if (unlikely(mem_cgroup_event_ratelimit(memcg,
841 MEM_CGROUP_TARGET_THRESH))) {
842 bool do_softlimit;
843 bool do_numainfo __maybe_unused;
844
845 do_softlimit = mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_SOFTLIMIT);
847 #if MAX_NUMNODES > 1
848 do_numainfo = mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_NUMAINFO);
850 #endif
851 preempt_enable();
852
853 mem_cgroup_threshold(memcg);
854 if (unlikely(do_softlimit))
855 mem_cgroup_update_tree(memcg, page);
856 #if MAX_NUMNODES > 1
857 if (unlikely(do_numainfo))
858 atomic_inc(&memcg->numainfo_events);
859 #endif
860 } else
861 preempt_enable();
862 }
863
864 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
865 {
866 return mem_cgroup_from_css(
867 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
868 }
869
870 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
871 {
872 /*
873 * mm_update_next_owner() may clear mm->owner to NULL
874 * if it races with swapoff, page migration, etc.
875 * So this can be called with p == NULL.
876 */
877 if (unlikely(!p))
878 return NULL;
879
880 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
881 }
882
883 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
884 {
885 struct mem_cgroup *memcg = NULL;
886
887 if (!mm)
888 return NULL;
889 /*
890 * Because we have no locks, mm->owner's may be being moved to other
891 * cgroup. We use css_tryget() here even if this looks
892 * pessimistic (rather than adding locks here).
893 */
894 rcu_read_lock();
895 do {
896 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
897 if (unlikely(!memcg))
898 break;
899 } while (!css_tryget(&memcg->css));
900 rcu_read_unlock();
901 return memcg;
902 }
903
904 /**
905 * mem_cgroup_iter - iterate over memory cgroup hierarchy
906 * @root: hierarchy root
907 * @prev: previously returned memcg, NULL on first invocation
908 * @reclaim: cookie for shared reclaim walks, NULL for full walks
909 *
910 * Returns references to children of the hierarchy below @root, or
911 * @root itself, or %NULL after a full round-trip.
912 *
913 * Caller must pass the return value in @prev on subsequent
914 * invocations for reference counting, or use mem_cgroup_iter_break()
915 * to cancel a hierarchy walk before the round-trip is complete.
916 *
917 * Reclaimers can specify a zone and a priority level in @reclaim to
918 * divide up the memcgs in the hierarchy among all concurrent
919 * reclaimers operating on the same zone and priority.
920 */
921 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
922 struct mem_cgroup *prev,
923 struct mem_cgroup_reclaim_cookie *reclaim)
924 {
925 struct mem_cgroup *memcg = NULL;
926 int id = 0;
927
928 if (mem_cgroup_disabled())
929 return NULL;
930
931 if (!root)
932 root = root_mem_cgroup;
933
934 if (prev && !reclaim)
935 id = css_id(&prev->css);
936
937 if (prev && prev != root)
938 css_put(&prev->css);
939
940 if (!root->use_hierarchy && root != root_mem_cgroup) {
941 if (prev)
942 return NULL;
943 return root;
944 }
945
946 while (!memcg) {
947 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
948 struct cgroup_subsys_state *css;
949
950 if (reclaim) {
951 int nid = zone_to_nid(reclaim->zone);
952 int zid = zone_idx(reclaim->zone);
953 struct mem_cgroup_per_zone *mz;
954
955 mz = mem_cgroup_zoneinfo(root, nid, zid);
956 iter = &mz->reclaim_iter[reclaim->priority];
957 if (prev && reclaim->generation != iter->generation)
958 return NULL;
959 id = iter->position;
960 }
961
962 rcu_read_lock();
963 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
964 if (css) {
965 if (css == &root->css || css_tryget(css))
966 memcg = mem_cgroup_from_css(css);
967 } else
968 id = 0;
969 rcu_read_unlock();
970
971 if (reclaim) {
972 iter->position = id;
973 if (!css)
974 iter->generation++;
975 else if (!prev && memcg)
976 reclaim->generation = iter->generation;
977 }
978
979 if (prev && !css)
980 return NULL;
981 }
982 return memcg;
983 }
984
985 /**
986 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
987 * @root: hierarchy root
988 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
989 */
990 void mem_cgroup_iter_break(struct mem_cgroup *root,
991 struct mem_cgroup *prev)
992 {
993 if (!root)
994 root = root_mem_cgroup;
995 if (prev && prev != root)
996 css_put(&prev->css);
997 }
998
999 /*
1000 * Iteration constructs for visiting all cgroups (under a tree). If
1001 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1002 * be used for reference counting.
1003 */
1004 #define for_each_mem_cgroup_tree(iter, root) \
1005 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1006 iter != NULL; \
1007 iter = mem_cgroup_iter(root, iter, NULL))
1008
1009 #define for_each_mem_cgroup(iter) \
1010 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1011 iter != NULL; \
1012 iter = mem_cgroup_iter(NULL, iter, NULL))
1013
1014 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1015 {
1016 return (memcg == root_mem_cgroup);
1017 }
1018
1019 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1020 {
1021 struct mem_cgroup *memcg;
1022
1023 if (!mm)
1024 return;
1025
1026 rcu_read_lock();
1027 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1028 if (unlikely(!memcg))
1029 goto out;
1030
1031 switch (idx) {
1032 case PGFAULT:
1033 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1034 break;
1035 case PGMAJFAULT:
1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1037 break;
1038 default:
1039 BUG();
1040 }
1041 out:
1042 rcu_read_unlock();
1043 }
1044 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1045
1046 /**
1047 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1048 * @zone: zone of the wanted lruvec
1049 * @memcg: memcg of the wanted lruvec
1050 *
1051 * Returns the lru list vector holding pages for the given @zone and
1052 * @mem. This can be the global zone lruvec, if the memory controller
1053 * is disabled.
1054 */
1055 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1056 struct mem_cgroup *memcg)
1057 {
1058 struct mem_cgroup_per_zone *mz;
1059
1060 if (mem_cgroup_disabled())
1061 return &zone->lruvec;
1062
1063 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1064 return &mz->lruvec;
1065 }
1066
1067 /*
1068 * Following LRU functions are allowed to be used without PCG_LOCK.
1069 * Operations are called by routine of global LRU independently from memcg.
1070 * What we have to take care of here is validness of pc->mem_cgroup.
1071 *
1072 * Changes to pc->mem_cgroup happens when
1073 * 1. charge
1074 * 2. moving account
1075 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1076 * It is added to LRU before charge.
1077 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1078 * When moving account, the page is not on LRU. It's isolated.
1079 */
1080
1081 /**
1082 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1083 * @page: the page
1084 * @zone: zone of the page
1085 */
1086 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1087 {
1088 struct mem_cgroup_per_zone *mz;
1089 struct mem_cgroup *memcg;
1090 struct page_cgroup *pc;
1091
1092 if (mem_cgroup_disabled())
1093 return &zone->lruvec;
1094
1095 pc = lookup_page_cgroup(page);
1096 memcg = pc->mem_cgroup;
1097
1098 /*
1099 * Surreptitiously switch any uncharged offlist page to root:
1100 * an uncharged page off lru does nothing to secure
1101 * its former mem_cgroup from sudden removal.
1102 *
1103 * Our caller holds lru_lock, and PageCgroupUsed is updated
1104 * under page_cgroup lock: between them, they make all uses
1105 * of pc->mem_cgroup safe.
1106 */
1107 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1108 pc->mem_cgroup = memcg = root_mem_cgroup;
1109
1110 mz = page_cgroup_zoneinfo(memcg, page);
1111 return &mz->lruvec;
1112 }
1113
1114 /**
1115 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1116 * @lruvec: mem_cgroup per zone lru vector
1117 * @lru: index of lru list the page is sitting on
1118 * @nr_pages: positive when adding or negative when removing
1119 *
1120 * This function must be called when a page is added to or removed from an
1121 * lru list.
1122 */
1123 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1124 int nr_pages)
1125 {
1126 struct mem_cgroup_per_zone *mz;
1127 unsigned long *lru_size;
1128
1129 if (mem_cgroup_disabled())
1130 return;
1131
1132 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1133 lru_size = mz->lru_size + lru;
1134 *lru_size += nr_pages;
1135 VM_BUG_ON((long)(*lru_size) < 0);
1136 }
1137
1138 /*
1139 * Checks whether given mem is same or in the root_mem_cgroup's
1140 * hierarchy subtree
1141 */
1142 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1143 struct mem_cgroup *memcg)
1144 {
1145 if (root_memcg == memcg)
1146 return true;
1147 if (!root_memcg->use_hierarchy || !memcg)
1148 return false;
1149 return css_is_ancestor(&memcg->css, &root_memcg->css);
1150 }
1151
1152 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
1154 {
1155 bool ret;
1156
1157 rcu_read_lock();
1158 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1159 rcu_read_unlock();
1160 return ret;
1161 }
1162
1163 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1164 {
1165 int ret;
1166 struct mem_cgroup *curr = NULL;
1167 struct task_struct *p;
1168
1169 p = find_lock_task_mm(task);
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1174 /*
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1178 */
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1184 }
1185 if (!curr)
1186 return 0;
1187 /*
1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
1189 * use_hierarchy of "curr" here make this function true if hierarchy is
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
1192 */
1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
1194 css_put(&curr->css);
1195 return ret;
1196 }
1197
1198 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1199 {
1200 unsigned long inactive_ratio;
1201 unsigned long inactive;
1202 unsigned long active;
1203 unsigned long gb;
1204
1205 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1206 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1207
1208 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1209 if (gb)
1210 inactive_ratio = int_sqrt(10 * gb);
1211 else
1212 inactive_ratio = 1;
1213
1214 return inactive * inactive_ratio < active;
1215 }
1216
1217 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1218 {
1219 unsigned long active;
1220 unsigned long inactive;
1221
1222 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1223 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1224
1225 return (active > inactive);
1226 }
1227
1228 #define mem_cgroup_from_res_counter(counter, member) \
1229 container_of(counter, struct mem_cgroup, member)
1230
1231 /**
1232 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1233 * @memcg: the memory cgroup
1234 *
1235 * Returns the maximum amount of memory @mem can be charged with, in
1236 * pages.
1237 */
1238 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1239 {
1240 unsigned long long margin;
1241
1242 margin = res_counter_margin(&memcg->res);
1243 if (do_swap_account)
1244 margin = min(margin, res_counter_margin(&memcg->memsw));
1245 return margin >> PAGE_SHIFT;
1246 }
1247
1248 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1249 {
1250 struct cgroup *cgrp = memcg->css.cgroup;
1251
1252 /* root ? */
1253 if (cgrp->parent == NULL)
1254 return vm_swappiness;
1255
1256 return memcg->swappiness;
1257 }
1258
1259 /*
1260 * memcg->moving_account is used for checking possibility that some thread is
1261 * calling move_account(). When a thread on CPU-A starts moving pages under
1262 * a memcg, other threads should check memcg->moving_account under
1263 * rcu_read_lock(), like this:
1264 *
1265 * CPU-A CPU-B
1266 * rcu_read_lock()
1267 * memcg->moving_account+1 if (memcg->mocing_account)
1268 * take heavy locks.
1269 * synchronize_rcu() update something.
1270 * rcu_read_unlock()
1271 * start move here.
1272 */
1273
1274 /* for quick checking without looking up memcg */
1275 atomic_t memcg_moving __read_mostly;
1276
1277 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1278 {
1279 atomic_inc(&memcg_moving);
1280 atomic_inc(&memcg->moving_account);
1281 synchronize_rcu();
1282 }
1283
1284 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1285 {
1286 /*
1287 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1288 * We check NULL in callee rather than caller.
1289 */
1290 if (memcg) {
1291 atomic_dec(&memcg_moving);
1292 atomic_dec(&memcg->moving_account);
1293 }
1294 }
1295
1296 /*
1297 * 2 routines for checking "mem" is under move_account() or not.
1298 *
1299 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1300 * is used for avoiding races in accounting. If true,
1301 * pc->mem_cgroup may be overwritten.
1302 *
1303 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1304 * under hierarchy of moving cgroups. This is for
1305 * waiting at hith-memory prressure caused by "move".
1306 */
1307
1308 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1309 {
1310 VM_BUG_ON(!rcu_read_lock_held());
1311 return atomic_read(&memcg->moving_account) > 0;
1312 }
1313
1314 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1315 {
1316 struct mem_cgroup *from;
1317 struct mem_cgroup *to;
1318 bool ret = false;
1319 /*
1320 * Unlike task_move routines, we access mc.to, mc.from not under
1321 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1322 */
1323 spin_lock(&mc.lock);
1324 from = mc.from;
1325 to = mc.to;
1326 if (!from)
1327 goto unlock;
1328
1329 ret = mem_cgroup_same_or_subtree(memcg, from)
1330 || mem_cgroup_same_or_subtree(memcg, to);
1331 unlock:
1332 spin_unlock(&mc.lock);
1333 return ret;
1334 }
1335
1336 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1337 {
1338 if (mc.moving_task && current != mc.moving_task) {
1339 if (mem_cgroup_under_move(memcg)) {
1340 DEFINE_WAIT(wait);
1341 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1342 /* moving charge context might have finished. */
1343 if (mc.moving_task)
1344 schedule();
1345 finish_wait(&mc.waitq, &wait);
1346 return true;
1347 }
1348 }
1349 return false;
1350 }
1351
1352 /*
1353 * Take this lock when
1354 * - a code tries to modify page's memcg while it's USED.
1355 * - a code tries to modify page state accounting in a memcg.
1356 * see mem_cgroup_stolen(), too.
1357 */
1358 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1359 unsigned long *flags)
1360 {
1361 spin_lock_irqsave(&memcg->move_lock, *flags);
1362 }
1363
1364 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1365 unsigned long *flags)
1366 {
1367 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1368 }
1369
1370 /**
1371 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1372 * @memcg: The memory cgroup that went over limit
1373 * @p: Task that is going to be killed
1374 *
1375 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1376 * enabled
1377 */
1378 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1379 {
1380 struct cgroup *task_cgrp;
1381 struct cgroup *mem_cgrp;
1382 /*
1383 * Need a buffer in BSS, can't rely on allocations. The code relies
1384 * on the assumption that OOM is serialized for memory controller.
1385 * If this assumption is broken, revisit this code.
1386 */
1387 static char memcg_name[PATH_MAX];
1388 int ret;
1389
1390 if (!memcg || !p)
1391 return;
1392
1393 rcu_read_lock();
1394
1395 mem_cgrp = memcg->css.cgroup;
1396 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1397
1398 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1399 if (ret < 0) {
1400 /*
1401 * Unfortunately, we are unable to convert to a useful name
1402 * But we'll still print out the usage information
1403 */
1404 rcu_read_unlock();
1405 goto done;
1406 }
1407 rcu_read_unlock();
1408
1409 printk(KERN_INFO "Task in %s killed", memcg_name);
1410
1411 rcu_read_lock();
1412 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1413 if (ret < 0) {
1414 rcu_read_unlock();
1415 goto done;
1416 }
1417 rcu_read_unlock();
1418
1419 /*
1420 * Continues from above, so we don't need an KERN_ level
1421 */
1422 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1423 done:
1424
1425 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1426 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1427 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1428 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1429 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1430 "failcnt %llu\n",
1431 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1432 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1433 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1434 }
1435
1436 /*
1437 * This function returns the number of memcg under hierarchy tree. Returns
1438 * 1(self count) if no children.
1439 */
1440 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1441 {
1442 int num = 0;
1443 struct mem_cgroup *iter;
1444
1445 for_each_mem_cgroup_tree(iter, memcg)
1446 num++;
1447 return num;
1448 }
1449
1450 /*
1451 * Return the memory (and swap, if configured) limit for a memcg.
1452 */
1453 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1454 {
1455 u64 limit;
1456 u64 memsw;
1457
1458 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1459 limit += total_swap_pages << PAGE_SHIFT;
1460
1461 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1462 /*
1463 * If memsw is finite and limits the amount of swap space available
1464 * to this memcg, return that limit.
1465 */
1466 return min(limit, memsw);
1467 }
1468
1469 void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1470 int order)
1471 {
1472 struct mem_cgroup *iter;
1473 unsigned long chosen_points = 0;
1474 unsigned long totalpages;
1475 unsigned int points = 0;
1476 struct task_struct *chosen = NULL;
1477
1478 /*
1479 * If current has a pending SIGKILL, then automatically select it. The
1480 * goal is to allow it to allocate so that it may quickly exit and free
1481 * its memory.
1482 */
1483 if (fatal_signal_pending(current)) {
1484 set_thread_flag(TIF_MEMDIE);
1485 return;
1486 }
1487
1488 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1489 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1490 for_each_mem_cgroup_tree(iter, memcg) {
1491 struct cgroup *cgroup = iter->css.cgroup;
1492 struct cgroup_iter it;
1493 struct task_struct *task;
1494
1495 cgroup_iter_start(cgroup, &it);
1496 while ((task = cgroup_iter_next(cgroup, &it))) {
1497 switch (oom_scan_process_thread(task, totalpages, NULL,
1498 false)) {
1499 case OOM_SCAN_SELECT:
1500 if (chosen)
1501 put_task_struct(chosen);
1502 chosen = task;
1503 chosen_points = ULONG_MAX;
1504 get_task_struct(chosen);
1505 /* fall through */
1506 case OOM_SCAN_CONTINUE:
1507 continue;
1508 case OOM_SCAN_ABORT:
1509 cgroup_iter_end(cgroup, &it);
1510 mem_cgroup_iter_break(memcg, iter);
1511 if (chosen)
1512 put_task_struct(chosen);
1513 return;
1514 case OOM_SCAN_OK:
1515 break;
1516 };
1517 points = oom_badness(task, memcg, NULL, totalpages);
1518 if (points > chosen_points) {
1519 if (chosen)
1520 put_task_struct(chosen);
1521 chosen = task;
1522 chosen_points = points;
1523 get_task_struct(chosen);
1524 }
1525 }
1526 cgroup_iter_end(cgroup, &it);
1527 }
1528
1529 if (!chosen)
1530 return;
1531 points = chosen_points * 1000 / totalpages;
1532 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1533 NULL, "Memory cgroup out of memory");
1534 }
1535
1536 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1537 gfp_t gfp_mask,
1538 unsigned long flags)
1539 {
1540 unsigned long total = 0;
1541 bool noswap = false;
1542 int loop;
1543
1544 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1545 noswap = true;
1546 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1547 noswap = true;
1548
1549 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1550 if (loop)
1551 drain_all_stock_async(memcg);
1552 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1553 /*
1554 * Allow limit shrinkers, which are triggered directly
1555 * by userspace, to catch signals and stop reclaim
1556 * after minimal progress, regardless of the margin.
1557 */
1558 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1559 break;
1560 if (mem_cgroup_margin(memcg))
1561 break;
1562 /*
1563 * If nothing was reclaimed after two attempts, there
1564 * may be no reclaimable pages in this hierarchy.
1565 */
1566 if (loop && !total)
1567 break;
1568 }
1569 return total;
1570 }
1571
1572 /**
1573 * test_mem_cgroup_node_reclaimable
1574 * @memcg: the target memcg
1575 * @nid: the node ID to be checked.
1576 * @noswap : specify true here if the user wants flle only information.
1577 *
1578 * This function returns whether the specified memcg contains any
1579 * reclaimable pages on a node. Returns true if there are any reclaimable
1580 * pages in the node.
1581 */
1582 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1583 int nid, bool noswap)
1584 {
1585 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1586 return true;
1587 if (noswap || !total_swap_pages)
1588 return false;
1589 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1590 return true;
1591 return false;
1592
1593 }
1594 #if MAX_NUMNODES > 1
1595
1596 /*
1597 * Always updating the nodemask is not very good - even if we have an empty
1598 * list or the wrong list here, we can start from some node and traverse all
1599 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1600 *
1601 */
1602 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1603 {
1604 int nid;
1605 /*
1606 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1607 * pagein/pageout changes since the last update.
1608 */
1609 if (!atomic_read(&memcg->numainfo_events))
1610 return;
1611 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1612 return;
1613
1614 /* make a nodemask where this memcg uses memory from */
1615 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1616
1617 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1618
1619 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1620 node_clear(nid, memcg->scan_nodes);
1621 }
1622
1623 atomic_set(&memcg->numainfo_events, 0);
1624 atomic_set(&memcg->numainfo_updating, 0);
1625 }
1626
1627 /*
1628 * Selecting a node where we start reclaim from. Because what we need is just
1629 * reducing usage counter, start from anywhere is O,K. Considering
1630 * memory reclaim from current node, there are pros. and cons.
1631 *
1632 * Freeing memory from current node means freeing memory from a node which
1633 * we'll use or we've used. So, it may make LRU bad. And if several threads
1634 * hit limits, it will see a contention on a node. But freeing from remote
1635 * node means more costs for memory reclaim because of memory latency.
1636 *
1637 * Now, we use round-robin. Better algorithm is welcomed.
1638 */
1639 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1640 {
1641 int node;
1642
1643 mem_cgroup_may_update_nodemask(memcg);
1644 node = memcg->last_scanned_node;
1645
1646 node = next_node(node, memcg->scan_nodes);
1647 if (node == MAX_NUMNODES)
1648 node = first_node(memcg->scan_nodes);
1649 /*
1650 * We call this when we hit limit, not when pages are added to LRU.
1651 * No LRU may hold pages because all pages are UNEVICTABLE or
1652 * memcg is too small and all pages are not on LRU. In that case,
1653 * we use curret node.
1654 */
1655 if (unlikely(node == MAX_NUMNODES))
1656 node = numa_node_id();
1657
1658 memcg->last_scanned_node = node;
1659 return node;
1660 }
1661
1662 /*
1663 * Check all nodes whether it contains reclaimable pages or not.
1664 * For quick scan, we make use of scan_nodes. This will allow us to skip
1665 * unused nodes. But scan_nodes is lazily updated and may not cotain
1666 * enough new information. We need to do double check.
1667 */
1668 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1669 {
1670 int nid;
1671
1672 /*
1673 * quick check...making use of scan_node.
1674 * We can skip unused nodes.
1675 */
1676 if (!nodes_empty(memcg->scan_nodes)) {
1677 for (nid = first_node(memcg->scan_nodes);
1678 nid < MAX_NUMNODES;
1679 nid = next_node(nid, memcg->scan_nodes)) {
1680
1681 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1682 return true;
1683 }
1684 }
1685 /*
1686 * Check rest of nodes.
1687 */
1688 for_each_node_state(nid, N_HIGH_MEMORY) {
1689 if (node_isset(nid, memcg->scan_nodes))
1690 continue;
1691 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1692 return true;
1693 }
1694 return false;
1695 }
1696
1697 #else
1698 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1699 {
1700 return 0;
1701 }
1702
1703 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1704 {
1705 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1706 }
1707 #endif
1708
1709 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1710 struct zone *zone,
1711 gfp_t gfp_mask,
1712 unsigned long *total_scanned)
1713 {
1714 struct mem_cgroup *victim = NULL;
1715 int total = 0;
1716 int loop = 0;
1717 unsigned long excess;
1718 unsigned long nr_scanned;
1719 struct mem_cgroup_reclaim_cookie reclaim = {
1720 .zone = zone,
1721 .priority = 0,
1722 };
1723
1724 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1725
1726 while (1) {
1727 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1728 if (!victim) {
1729 loop++;
1730 if (loop >= 2) {
1731 /*
1732 * If we have not been able to reclaim
1733 * anything, it might because there are
1734 * no reclaimable pages under this hierarchy
1735 */
1736 if (!total)
1737 break;
1738 /*
1739 * We want to do more targeted reclaim.
1740 * excess >> 2 is not to excessive so as to
1741 * reclaim too much, nor too less that we keep
1742 * coming back to reclaim from this cgroup
1743 */
1744 if (total >= (excess >> 2) ||
1745 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1746 break;
1747 }
1748 continue;
1749 }
1750 if (!mem_cgroup_reclaimable(victim, false))
1751 continue;
1752 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1753 zone, &nr_scanned);
1754 *total_scanned += nr_scanned;
1755 if (!res_counter_soft_limit_excess(&root_memcg->res))
1756 break;
1757 }
1758 mem_cgroup_iter_break(root_memcg, victim);
1759 return total;
1760 }
1761
1762 /*
1763 * Check OOM-Killer is already running under our hierarchy.
1764 * If someone is running, return false.
1765 * Has to be called with memcg_oom_lock
1766 */
1767 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1768 {
1769 struct mem_cgroup *iter, *failed = NULL;
1770
1771 for_each_mem_cgroup_tree(iter, memcg) {
1772 if (iter->oom_lock) {
1773 /*
1774 * this subtree of our hierarchy is already locked
1775 * so we cannot give a lock.
1776 */
1777 failed = iter;
1778 mem_cgroup_iter_break(memcg, iter);
1779 break;
1780 } else
1781 iter->oom_lock = true;
1782 }
1783
1784 if (!failed)
1785 return true;
1786
1787 /*
1788 * OK, we failed to lock the whole subtree so we have to clean up
1789 * what we set up to the failing subtree
1790 */
1791 for_each_mem_cgroup_tree(iter, memcg) {
1792 if (iter == failed) {
1793 mem_cgroup_iter_break(memcg, iter);
1794 break;
1795 }
1796 iter->oom_lock = false;
1797 }
1798 return false;
1799 }
1800
1801 /*
1802 * Has to be called with memcg_oom_lock
1803 */
1804 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1805 {
1806 struct mem_cgroup *iter;
1807
1808 for_each_mem_cgroup_tree(iter, memcg)
1809 iter->oom_lock = false;
1810 return 0;
1811 }
1812
1813 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1814 {
1815 struct mem_cgroup *iter;
1816
1817 for_each_mem_cgroup_tree(iter, memcg)
1818 atomic_inc(&iter->under_oom);
1819 }
1820
1821 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1822 {
1823 struct mem_cgroup *iter;
1824
1825 /*
1826 * When a new child is created while the hierarchy is under oom,
1827 * mem_cgroup_oom_lock() may not be called. We have to use
1828 * atomic_add_unless() here.
1829 */
1830 for_each_mem_cgroup_tree(iter, memcg)
1831 atomic_add_unless(&iter->under_oom, -1, 0);
1832 }
1833
1834 static DEFINE_SPINLOCK(memcg_oom_lock);
1835 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1836
1837 struct oom_wait_info {
1838 struct mem_cgroup *memcg;
1839 wait_queue_t wait;
1840 };
1841
1842 static int memcg_oom_wake_function(wait_queue_t *wait,
1843 unsigned mode, int sync, void *arg)
1844 {
1845 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1846 struct mem_cgroup *oom_wait_memcg;
1847 struct oom_wait_info *oom_wait_info;
1848
1849 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1850 oom_wait_memcg = oom_wait_info->memcg;
1851
1852 /*
1853 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1854 * Then we can use css_is_ancestor without taking care of RCU.
1855 */
1856 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1857 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1858 return 0;
1859 return autoremove_wake_function(wait, mode, sync, arg);
1860 }
1861
1862 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1863 {
1864 /* for filtering, pass "memcg" as argument. */
1865 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1866 }
1867
1868 static void memcg_oom_recover(struct mem_cgroup *memcg)
1869 {
1870 if (memcg && atomic_read(&memcg->under_oom))
1871 memcg_wakeup_oom(memcg);
1872 }
1873
1874 /*
1875 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1876 */
1877 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1878 int order)
1879 {
1880 struct oom_wait_info owait;
1881 bool locked, need_to_kill;
1882
1883 owait.memcg = memcg;
1884 owait.wait.flags = 0;
1885 owait.wait.func = memcg_oom_wake_function;
1886 owait.wait.private = current;
1887 INIT_LIST_HEAD(&owait.wait.task_list);
1888 need_to_kill = true;
1889 mem_cgroup_mark_under_oom(memcg);
1890
1891 /* At first, try to OOM lock hierarchy under memcg.*/
1892 spin_lock(&memcg_oom_lock);
1893 locked = mem_cgroup_oom_lock(memcg);
1894 /*
1895 * Even if signal_pending(), we can't quit charge() loop without
1896 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1897 * under OOM is always welcomed, use TASK_KILLABLE here.
1898 */
1899 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1900 if (!locked || memcg->oom_kill_disable)
1901 need_to_kill = false;
1902 if (locked)
1903 mem_cgroup_oom_notify(memcg);
1904 spin_unlock(&memcg_oom_lock);
1905
1906 if (need_to_kill) {
1907 finish_wait(&memcg_oom_waitq, &owait.wait);
1908 mem_cgroup_out_of_memory(memcg, mask, order);
1909 } else {
1910 schedule();
1911 finish_wait(&memcg_oom_waitq, &owait.wait);
1912 }
1913 spin_lock(&memcg_oom_lock);
1914 if (locked)
1915 mem_cgroup_oom_unlock(memcg);
1916 memcg_wakeup_oom(memcg);
1917 spin_unlock(&memcg_oom_lock);
1918
1919 mem_cgroup_unmark_under_oom(memcg);
1920
1921 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1922 return false;
1923 /* Give chance to dying process */
1924 schedule_timeout_uninterruptible(1);
1925 return true;
1926 }
1927
1928 /*
1929 * Currently used to update mapped file statistics, but the routine can be
1930 * generalized to update other statistics as well.
1931 *
1932 * Notes: Race condition
1933 *
1934 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1935 * it tends to be costly. But considering some conditions, we doesn't need
1936 * to do so _always_.
1937 *
1938 * Considering "charge", lock_page_cgroup() is not required because all
1939 * file-stat operations happen after a page is attached to radix-tree. There
1940 * are no race with "charge".
1941 *
1942 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1943 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1944 * if there are race with "uncharge". Statistics itself is properly handled
1945 * by flags.
1946 *
1947 * Considering "move", this is an only case we see a race. To make the race
1948 * small, we check mm->moving_account and detect there are possibility of race
1949 * If there is, we take a lock.
1950 */
1951
1952 void __mem_cgroup_begin_update_page_stat(struct page *page,
1953 bool *locked, unsigned long *flags)
1954 {
1955 struct mem_cgroup *memcg;
1956 struct page_cgroup *pc;
1957
1958 pc = lookup_page_cgroup(page);
1959 again:
1960 memcg = pc->mem_cgroup;
1961 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1962 return;
1963 /*
1964 * If this memory cgroup is not under account moving, we don't
1965 * need to take move_lock_mem_cgroup(). Because we already hold
1966 * rcu_read_lock(), any calls to move_account will be delayed until
1967 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1968 */
1969 if (!mem_cgroup_stolen(memcg))
1970 return;
1971
1972 move_lock_mem_cgroup(memcg, flags);
1973 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1974 move_unlock_mem_cgroup(memcg, flags);
1975 goto again;
1976 }
1977 *locked = true;
1978 }
1979
1980 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1981 {
1982 struct page_cgroup *pc = lookup_page_cgroup(page);
1983
1984 /*
1985 * It's guaranteed that pc->mem_cgroup never changes while
1986 * lock is held because a routine modifies pc->mem_cgroup
1987 * should take move_lock_mem_cgroup().
1988 */
1989 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1990 }
1991
1992 void mem_cgroup_update_page_stat(struct page *page,
1993 enum mem_cgroup_page_stat_item idx, int val)
1994 {
1995 struct mem_cgroup *memcg;
1996 struct page_cgroup *pc = lookup_page_cgroup(page);
1997 unsigned long uninitialized_var(flags);
1998
1999 if (mem_cgroup_disabled())
2000 return;
2001
2002 memcg = pc->mem_cgroup;
2003 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2004 return;
2005
2006 switch (idx) {
2007 case MEMCG_NR_FILE_MAPPED:
2008 idx = MEM_CGROUP_STAT_FILE_MAPPED;
2009 break;
2010 default:
2011 BUG();
2012 }
2013
2014 this_cpu_add(memcg->stat->count[idx], val);
2015 }
2016
2017 /*
2018 * size of first charge trial. "32" comes from vmscan.c's magic value.
2019 * TODO: maybe necessary to use big numbers in big irons.
2020 */
2021 #define CHARGE_BATCH 32U
2022 struct memcg_stock_pcp {
2023 struct mem_cgroup *cached; /* this never be root cgroup */
2024 unsigned int nr_pages;
2025 struct work_struct work;
2026 unsigned long flags;
2027 #define FLUSHING_CACHED_CHARGE 0
2028 };
2029 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2030 static DEFINE_MUTEX(percpu_charge_mutex);
2031
2032 /*
2033 * Try to consume stocked charge on this cpu. If success, one page is consumed
2034 * from local stock and true is returned. If the stock is 0 or charges from a
2035 * cgroup which is not current target, returns false. This stock will be
2036 * refilled.
2037 */
2038 static bool consume_stock(struct mem_cgroup *memcg)
2039 {
2040 struct memcg_stock_pcp *stock;
2041 bool ret = true;
2042
2043 stock = &get_cpu_var(memcg_stock);
2044 if (memcg == stock->cached && stock->nr_pages)
2045 stock->nr_pages--;
2046 else /* need to call res_counter_charge */
2047 ret = false;
2048 put_cpu_var(memcg_stock);
2049 return ret;
2050 }
2051
2052 /*
2053 * Returns stocks cached in percpu to res_counter and reset cached information.
2054 */
2055 static void drain_stock(struct memcg_stock_pcp *stock)
2056 {
2057 struct mem_cgroup *old = stock->cached;
2058
2059 if (stock->nr_pages) {
2060 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2061
2062 res_counter_uncharge(&old->res, bytes);
2063 if (do_swap_account)
2064 res_counter_uncharge(&old->memsw, bytes);
2065 stock->nr_pages = 0;
2066 }
2067 stock->cached = NULL;
2068 }
2069
2070 /*
2071 * This must be called under preempt disabled or must be called by
2072 * a thread which is pinned to local cpu.
2073 */
2074 static void drain_local_stock(struct work_struct *dummy)
2075 {
2076 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2077 drain_stock(stock);
2078 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2079 }
2080
2081 /*
2082 * Cache charges(val) which is from res_counter, to local per_cpu area.
2083 * This will be consumed by consume_stock() function, later.
2084 */
2085 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2086 {
2087 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2088
2089 if (stock->cached != memcg) { /* reset if necessary */
2090 drain_stock(stock);
2091 stock->cached = memcg;
2092 }
2093 stock->nr_pages += nr_pages;
2094 put_cpu_var(memcg_stock);
2095 }
2096
2097 /*
2098 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2099 * of the hierarchy under it. sync flag says whether we should block
2100 * until the work is done.
2101 */
2102 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2103 {
2104 int cpu, curcpu;
2105
2106 /* Notify other cpus that system-wide "drain" is running */
2107 get_online_cpus();
2108 curcpu = get_cpu();
2109 for_each_online_cpu(cpu) {
2110 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2111 struct mem_cgroup *memcg;
2112
2113 memcg = stock->cached;
2114 if (!memcg || !stock->nr_pages)
2115 continue;
2116 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2117 continue;
2118 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2119 if (cpu == curcpu)
2120 drain_local_stock(&stock->work);
2121 else
2122 schedule_work_on(cpu, &stock->work);
2123 }
2124 }
2125 put_cpu();
2126
2127 if (!sync)
2128 goto out;
2129
2130 for_each_online_cpu(cpu) {
2131 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2132 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2133 flush_work(&stock->work);
2134 }
2135 out:
2136 put_online_cpus();
2137 }
2138
2139 /*
2140 * Tries to drain stocked charges in other cpus. This function is asynchronous
2141 * and just put a work per cpu for draining localy on each cpu. Caller can
2142 * expects some charges will be back to res_counter later but cannot wait for
2143 * it.
2144 */
2145 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2146 {
2147 /*
2148 * If someone calls draining, avoid adding more kworker runs.
2149 */
2150 if (!mutex_trylock(&percpu_charge_mutex))
2151 return;
2152 drain_all_stock(root_memcg, false);
2153 mutex_unlock(&percpu_charge_mutex);
2154 }
2155
2156 /* This is a synchronous drain interface. */
2157 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2158 {
2159 /* called when force_empty is called */
2160 mutex_lock(&percpu_charge_mutex);
2161 drain_all_stock(root_memcg, true);
2162 mutex_unlock(&percpu_charge_mutex);
2163 }
2164
2165 /*
2166 * This function drains percpu counter value from DEAD cpu and
2167 * move it to local cpu. Note that this function can be preempted.
2168 */
2169 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2170 {
2171 int i;
2172
2173 spin_lock(&memcg->pcp_counter_lock);
2174 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2175 long x = per_cpu(memcg->stat->count[i], cpu);
2176
2177 per_cpu(memcg->stat->count[i], cpu) = 0;
2178 memcg->nocpu_base.count[i] += x;
2179 }
2180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2181 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2182
2183 per_cpu(memcg->stat->events[i], cpu) = 0;
2184 memcg->nocpu_base.events[i] += x;
2185 }
2186 spin_unlock(&memcg->pcp_counter_lock);
2187 }
2188
2189 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2190 unsigned long action,
2191 void *hcpu)
2192 {
2193 int cpu = (unsigned long)hcpu;
2194 struct memcg_stock_pcp *stock;
2195 struct mem_cgroup *iter;
2196
2197 if (action == CPU_ONLINE)
2198 return NOTIFY_OK;
2199
2200 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2201 return NOTIFY_OK;
2202
2203 for_each_mem_cgroup(iter)
2204 mem_cgroup_drain_pcp_counter(iter, cpu);
2205
2206 stock = &per_cpu(memcg_stock, cpu);
2207 drain_stock(stock);
2208 return NOTIFY_OK;
2209 }
2210
2211
2212 /* See __mem_cgroup_try_charge() for details */
2213 enum {
2214 CHARGE_OK, /* success */
2215 CHARGE_RETRY, /* need to retry but retry is not bad */
2216 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2217 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2218 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2219 };
2220
2221 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2222 unsigned int nr_pages, bool oom_check)
2223 {
2224 unsigned long csize = nr_pages * PAGE_SIZE;
2225 struct mem_cgroup *mem_over_limit;
2226 struct res_counter *fail_res;
2227 unsigned long flags = 0;
2228 int ret;
2229
2230 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2231
2232 if (likely(!ret)) {
2233 if (!do_swap_account)
2234 return CHARGE_OK;
2235 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2236 if (likely(!ret))
2237 return CHARGE_OK;
2238
2239 res_counter_uncharge(&memcg->res, csize);
2240 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2241 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2242 } else
2243 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2244 /*
2245 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2246 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2247 *
2248 * Never reclaim on behalf of optional batching, retry with a
2249 * single page instead.
2250 */
2251 if (nr_pages == CHARGE_BATCH)
2252 return CHARGE_RETRY;
2253
2254 if (!(gfp_mask & __GFP_WAIT))
2255 return CHARGE_WOULDBLOCK;
2256
2257 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2258 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2259 return CHARGE_RETRY;
2260 /*
2261 * Even though the limit is exceeded at this point, reclaim
2262 * may have been able to free some pages. Retry the charge
2263 * before killing the task.
2264 *
2265 * Only for regular pages, though: huge pages are rather
2266 * unlikely to succeed so close to the limit, and we fall back
2267 * to regular pages anyway in case of failure.
2268 */
2269 if (nr_pages == 1 && ret)
2270 return CHARGE_RETRY;
2271
2272 /*
2273 * At task move, charge accounts can be doubly counted. So, it's
2274 * better to wait until the end of task_move if something is going on.
2275 */
2276 if (mem_cgroup_wait_acct_move(mem_over_limit))
2277 return CHARGE_RETRY;
2278
2279 /* If we don't need to call oom-killer at el, return immediately */
2280 if (!oom_check)
2281 return CHARGE_NOMEM;
2282 /* check OOM */
2283 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2284 return CHARGE_OOM_DIE;
2285
2286 return CHARGE_RETRY;
2287 }
2288
2289 /*
2290 * __mem_cgroup_try_charge() does
2291 * 1. detect memcg to be charged against from passed *mm and *ptr,
2292 * 2. update res_counter
2293 * 3. call memory reclaim if necessary.
2294 *
2295 * In some special case, if the task is fatal, fatal_signal_pending() or
2296 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2297 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2298 * as possible without any hazards. 2: all pages should have a valid
2299 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2300 * pointer, that is treated as a charge to root_mem_cgroup.
2301 *
2302 * So __mem_cgroup_try_charge() will return
2303 * 0 ... on success, filling *ptr with a valid memcg pointer.
2304 * -ENOMEM ... charge failure because of resource limits.
2305 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2306 *
2307 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2308 * the oom-killer can be invoked.
2309 */
2310 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2311 gfp_t gfp_mask,
2312 unsigned int nr_pages,
2313 struct mem_cgroup **ptr,
2314 bool oom)
2315 {
2316 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2317 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2318 struct mem_cgroup *memcg = NULL;
2319 int ret;
2320
2321 /*
2322 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2323 * in system level. So, allow to go ahead dying process in addition to
2324 * MEMDIE process.
2325 */
2326 if (unlikely(test_thread_flag(TIF_MEMDIE)
2327 || fatal_signal_pending(current)))
2328 goto bypass;
2329
2330 /*
2331 * We always charge the cgroup the mm_struct belongs to.
2332 * The mm_struct's mem_cgroup changes on task migration if the
2333 * thread group leader migrates. It's possible that mm is not
2334 * set, if so charge the root memcg (happens for pagecache usage).
2335 */
2336 if (!*ptr && !mm)
2337 *ptr = root_mem_cgroup;
2338 again:
2339 if (*ptr) { /* css should be a valid one */
2340 memcg = *ptr;
2341 VM_BUG_ON(css_is_removed(&memcg->css));
2342 if (mem_cgroup_is_root(memcg))
2343 goto done;
2344 if (nr_pages == 1 && consume_stock(memcg))
2345 goto done;
2346 css_get(&memcg->css);
2347 } else {
2348 struct task_struct *p;
2349
2350 rcu_read_lock();
2351 p = rcu_dereference(mm->owner);
2352 /*
2353 * Because we don't have task_lock(), "p" can exit.
2354 * In that case, "memcg" can point to root or p can be NULL with
2355 * race with swapoff. Then, we have small risk of mis-accouning.
2356 * But such kind of mis-account by race always happens because
2357 * we don't have cgroup_mutex(). It's overkill and we allo that
2358 * small race, here.
2359 * (*) swapoff at el will charge against mm-struct not against
2360 * task-struct. So, mm->owner can be NULL.
2361 */
2362 memcg = mem_cgroup_from_task(p);
2363 if (!memcg)
2364 memcg = root_mem_cgroup;
2365 if (mem_cgroup_is_root(memcg)) {
2366 rcu_read_unlock();
2367 goto done;
2368 }
2369 if (nr_pages == 1 && consume_stock(memcg)) {
2370 /*
2371 * It seems dagerous to access memcg without css_get().
2372 * But considering how consume_stok works, it's not
2373 * necessary. If consume_stock success, some charges
2374 * from this memcg are cached on this cpu. So, we
2375 * don't need to call css_get()/css_tryget() before
2376 * calling consume_stock().
2377 */
2378 rcu_read_unlock();
2379 goto done;
2380 }
2381 /* after here, we may be blocked. we need to get refcnt */
2382 if (!css_tryget(&memcg->css)) {
2383 rcu_read_unlock();
2384 goto again;
2385 }
2386 rcu_read_unlock();
2387 }
2388
2389 do {
2390 bool oom_check;
2391
2392 /* If killed, bypass charge */
2393 if (fatal_signal_pending(current)) {
2394 css_put(&memcg->css);
2395 goto bypass;
2396 }
2397
2398 oom_check = false;
2399 if (oom && !nr_oom_retries) {
2400 oom_check = true;
2401 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2402 }
2403
2404 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2405 switch (ret) {
2406 case CHARGE_OK:
2407 break;
2408 case CHARGE_RETRY: /* not in OOM situation but retry */
2409 batch = nr_pages;
2410 css_put(&memcg->css);
2411 memcg = NULL;
2412 goto again;
2413 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2414 css_put(&memcg->css);
2415 goto nomem;
2416 case CHARGE_NOMEM: /* OOM routine works */
2417 if (!oom) {
2418 css_put(&memcg->css);
2419 goto nomem;
2420 }
2421 /* If oom, we never return -ENOMEM */
2422 nr_oom_retries--;
2423 break;
2424 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2425 css_put(&memcg->css);
2426 goto bypass;
2427 }
2428 } while (ret != CHARGE_OK);
2429
2430 if (batch > nr_pages)
2431 refill_stock(memcg, batch - nr_pages);
2432 css_put(&memcg->css);
2433 done:
2434 *ptr = memcg;
2435 return 0;
2436 nomem:
2437 *ptr = NULL;
2438 return -ENOMEM;
2439 bypass:
2440 *ptr = root_mem_cgroup;
2441 return -EINTR;
2442 }
2443
2444 /*
2445 * Somemtimes we have to undo a charge we got by try_charge().
2446 * This function is for that and do uncharge, put css's refcnt.
2447 * gotten by try_charge().
2448 */
2449 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2450 unsigned int nr_pages)
2451 {
2452 if (!mem_cgroup_is_root(memcg)) {
2453 unsigned long bytes = nr_pages * PAGE_SIZE;
2454
2455 res_counter_uncharge(&memcg->res, bytes);
2456 if (do_swap_account)
2457 res_counter_uncharge(&memcg->memsw, bytes);
2458 }
2459 }
2460
2461 /*
2462 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2463 * This is useful when moving usage to parent cgroup.
2464 */
2465 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2466 unsigned int nr_pages)
2467 {
2468 unsigned long bytes = nr_pages * PAGE_SIZE;
2469
2470 if (mem_cgroup_is_root(memcg))
2471 return;
2472
2473 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2474 if (do_swap_account)
2475 res_counter_uncharge_until(&memcg->memsw,
2476 memcg->memsw.parent, bytes);
2477 }
2478
2479 /*
2480 * A helper function to get mem_cgroup from ID. must be called under
2481 * rcu_read_lock(). The caller must check css_is_removed() or some if
2482 * it's concern. (dropping refcnt from swap can be called against removed
2483 * memcg.)
2484 */
2485 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2486 {
2487 struct cgroup_subsys_state *css;
2488
2489 /* ID 0 is unused ID */
2490 if (!id)
2491 return NULL;
2492 css = css_lookup(&mem_cgroup_subsys, id);
2493 if (!css)
2494 return NULL;
2495 return mem_cgroup_from_css(css);
2496 }
2497
2498 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2499 {
2500 struct mem_cgroup *memcg = NULL;
2501 struct page_cgroup *pc;
2502 unsigned short id;
2503 swp_entry_t ent;
2504
2505 VM_BUG_ON(!PageLocked(page));
2506
2507 pc = lookup_page_cgroup(page);
2508 lock_page_cgroup(pc);
2509 if (PageCgroupUsed(pc)) {
2510 memcg = pc->mem_cgroup;
2511 if (memcg && !css_tryget(&memcg->css))
2512 memcg = NULL;
2513 } else if (PageSwapCache(page)) {
2514 ent.val = page_private(page);
2515 id = lookup_swap_cgroup_id(ent);
2516 rcu_read_lock();
2517 memcg = mem_cgroup_lookup(id);
2518 if (memcg && !css_tryget(&memcg->css))
2519 memcg = NULL;
2520 rcu_read_unlock();
2521 }
2522 unlock_page_cgroup(pc);
2523 return memcg;
2524 }
2525
2526 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2527 struct page *page,
2528 unsigned int nr_pages,
2529 enum charge_type ctype,
2530 bool lrucare)
2531 {
2532 struct page_cgroup *pc = lookup_page_cgroup(page);
2533 struct zone *uninitialized_var(zone);
2534 struct lruvec *lruvec;
2535 bool was_on_lru = false;
2536 bool anon;
2537
2538 lock_page_cgroup(pc);
2539 VM_BUG_ON(PageCgroupUsed(pc));
2540 /*
2541 * we don't need page_cgroup_lock about tail pages, becase they are not
2542 * accessed by any other context at this point.
2543 */
2544
2545 /*
2546 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2547 * may already be on some other mem_cgroup's LRU. Take care of it.
2548 */
2549 if (lrucare) {
2550 zone = page_zone(page);
2551 spin_lock_irq(&zone->lru_lock);
2552 if (PageLRU(page)) {
2553 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2554 ClearPageLRU(page);
2555 del_page_from_lru_list(page, lruvec, page_lru(page));
2556 was_on_lru = true;
2557 }
2558 }
2559
2560 pc->mem_cgroup = memcg;
2561 /*
2562 * We access a page_cgroup asynchronously without lock_page_cgroup().
2563 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2564 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2565 * before USED bit, we need memory barrier here.
2566 * See mem_cgroup_add_lru_list(), etc.
2567 */
2568 smp_wmb();
2569 SetPageCgroupUsed(pc);
2570
2571 if (lrucare) {
2572 if (was_on_lru) {
2573 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2574 VM_BUG_ON(PageLRU(page));
2575 SetPageLRU(page);
2576 add_page_to_lru_list(page, lruvec, page_lru(page));
2577 }
2578 spin_unlock_irq(&zone->lru_lock);
2579 }
2580
2581 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2582 anon = true;
2583 else
2584 anon = false;
2585
2586 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2587 unlock_page_cgroup(pc);
2588
2589 /*
2590 * "charge_statistics" updated event counter. Then, check it.
2591 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2592 * if they exceeds softlimit.
2593 */
2594 memcg_check_events(memcg, page);
2595 }
2596
2597 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2598
2599 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2600 /*
2601 * Because tail pages are not marked as "used", set it. We're under
2602 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2603 * charge/uncharge will be never happen and move_account() is done under
2604 * compound_lock(), so we don't have to take care of races.
2605 */
2606 void mem_cgroup_split_huge_fixup(struct page *head)
2607 {
2608 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2609 struct page_cgroup *pc;
2610 int i;
2611
2612 if (mem_cgroup_disabled())
2613 return;
2614 for (i = 1; i < HPAGE_PMD_NR; i++) {
2615 pc = head_pc + i;
2616 pc->mem_cgroup = head_pc->mem_cgroup;
2617 smp_wmb();/* see __commit_charge() */
2618 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2619 }
2620 }
2621 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2622
2623 /**
2624 * mem_cgroup_move_account - move account of the page
2625 * @page: the page
2626 * @nr_pages: number of regular pages (>1 for huge pages)
2627 * @pc: page_cgroup of the page.
2628 * @from: mem_cgroup which the page is moved from.
2629 * @to: mem_cgroup which the page is moved to. @from != @to.
2630 *
2631 * The caller must confirm following.
2632 * - page is not on LRU (isolate_page() is useful.)
2633 * - compound_lock is held when nr_pages > 1
2634 *
2635 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2636 * from old cgroup.
2637 */
2638 static int mem_cgroup_move_account(struct page *page,
2639 unsigned int nr_pages,
2640 struct page_cgroup *pc,
2641 struct mem_cgroup *from,
2642 struct mem_cgroup *to)
2643 {
2644 unsigned long flags;
2645 int ret;
2646 bool anon = PageAnon(page);
2647
2648 VM_BUG_ON(from == to);
2649 VM_BUG_ON(PageLRU(page));
2650 /*
2651 * The page is isolated from LRU. So, collapse function
2652 * will not handle this page. But page splitting can happen.
2653 * Do this check under compound_page_lock(). The caller should
2654 * hold it.
2655 */
2656 ret = -EBUSY;
2657 if (nr_pages > 1 && !PageTransHuge(page))
2658 goto out;
2659
2660 lock_page_cgroup(pc);
2661
2662 ret = -EINVAL;
2663 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2664 goto unlock;
2665
2666 move_lock_mem_cgroup(from, &flags);
2667
2668 if (!anon && page_mapped(page)) {
2669 /* Update mapped_file data for mem_cgroup */
2670 preempt_disable();
2671 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2672 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2673 preempt_enable();
2674 }
2675 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2676
2677 /* caller should have done css_get */
2678 pc->mem_cgroup = to;
2679 mem_cgroup_charge_statistics(to, anon, nr_pages);
2680 /*
2681 * We charges against "to" which may not have any tasks. Then, "to"
2682 * can be under rmdir(). But in current implementation, caller of
2683 * this function is just force_empty() and move charge, so it's
2684 * guaranteed that "to" is never removed. So, we don't check rmdir
2685 * status here.
2686 */
2687 move_unlock_mem_cgroup(from, &flags);
2688 ret = 0;
2689 unlock:
2690 unlock_page_cgroup(pc);
2691 /*
2692 * check events
2693 */
2694 memcg_check_events(to, page);
2695 memcg_check_events(from, page);
2696 out:
2697 return ret;
2698 }
2699
2700 /*
2701 * move charges to its parent.
2702 */
2703
2704 static int mem_cgroup_move_parent(struct page *page,
2705 struct page_cgroup *pc,
2706 struct mem_cgroup *child)
2707 {
2708 struct mem_cgroup *parent;
2709 unsigned int nr_pages;
2710 unsigned long uninitialized_var(flags);
2711 int ret;
2712
2713 /* Is ROOT ? */
2714 if (mem_cgroup_is_root(child))
2715 return -EINVAL;
2716
2717 ret = -EBUSY;
2718 if (!get_page_unless_zero(page))
2719 goto out;
2720 if (isolate_lru_page(page))
2721 goto put;
2722
2723 nr_pages = hpage_nr_pages(page);
2724
2725 parent = parent_mem_cgroup(child);
2726 /*
2727 * If no parent, move charges to root cgroup.
2728 */
2729 if (!parent)
2730 parent = root_mem_cgroup;
2731
2732 if (nr_pages > 1)
2733 flags = compound_lock_irqsave(page);
2734
2735 ret = mem_cgroup_move_account(page, nr_pages,
2736 pc, child, parent);
2737 if (!ret)
2738 __mem_cgroup_cancel_local_charge(child, nr_pages);
2739
2740 if (nr_pages > 1)
2741 compound_unlock_irqrestore(page, flags);
2742 putback_lru_page(page);
2743 put:
2744 put_page(page);
2745 out:
2746 return ret;
2747 }
2748
2749 /*
2750 * Charge the memory controller for page usage.
2751 * Return
2752 * 0 if the charge was successful
2753 * < 0 if the cgroup is over its limit
2754 */
2755 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2756 gfp_t gfp_mask, enum charge_type ctype)
2757 {
2758 struct mem_cgroup *memcg = NULL;
2759 unsigned int nr_pages = 1;
2760 bool oom = true;
2761 int ret;
2762
2763 if (PageTransHuge(page)) {
2764 nr_pages <<= compound_order(page);
2765 VM_BUG_ON(!PageTransHuge(page));
2766 /*
2767 * Never OOM-kill a process for a huge page. The
2768 * fault handler will fall back to regular pages.
2769 */
2770 oom = false;
2771 }
2772
2773 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2774 if (ret == -ENOMEM)
2775 return ret;
2776 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2777 return 0;
2778 }
2779
2780 int mem_cgroup_newpage_charge(struct page *page,
2781 struct mm_struct *mm, gfp_t gfp_mask)
2782 {
2783 if (mem_cgroup_disabled())
2784 return 0;
2785 VM_BUG_ON(page_mapped(page));
2786 VM_BUG_ON(page->mapping && !PageAnon(page));
2787 VM_BUG_ON(!mm);
2788 return mem_cgroup_charge_common(page, mm, gfp_mask,
2789 MEM_CGROUP_CHARGE_TYPE_ANON);
2790 }
2791
2792 /*
2793 * While swap-in, try_charge -> commit or cancel, the page is locked.
2794 * And when try_charge() successfully returns, one refcnt to memcg without
2795 * struct page_cgroup is acquired. This refcnt will be consumed by
2796 * "commit()" or removed by "cancel()"
2797 */
2798 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2799 struct page *page,
2800 gfp_t mask,
2801 struct mem_cgroup **memcgp)
2802 {
2803 struct mem_cgroup *memcg;
2804 struct page_cgroup *pc;
2805 int ret;
2806
2807 pc = lookup_page_cgroup(page);
2808 /*
2809 * Every swap fault against a single page tries to charge the
2810 * page, bail as early as possible. shmem_unuse() encounters
2811 * already charged pages, too. The USED bit is protected by
2812 * the page lock, which serializes swap cache removal, which
2813 * in turn serializes uncharging.
2814 */
2815 if (PageCgroupUsed(pc))
2816 return 0;
2817 if (!do_swap_account)
2818 goto charge_cur_mm;
2819 memcg = try_get_mem_cgroup_from_page(page);
2820 if (!memcg)
2821 goto charge_cur_mm;
2822 *memcgp = memcg;
2823 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2824 css_put(&memcg->css);
2825 if (ret == -EINTR)
2826 ret = 0;
2827 return ret;
2828 charge_cur_mm:
2829 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2830 if (ret == -EINTR)
2831 ret = 0;
2832 return ret;
2833 }
2834
2835 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2836 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2837 {
2838 *memcgp = NULL;
2839 if (mem_cgroup_disabled())
2840 return 0;
2841 /*
2842 * A racing thread's fault, or swapoff, may have already
2843 * updated the pte, and even removed page from swap cache: in
2844 * those cases unuse_pte()'s pte_same() test will fail; but
2845 * there's also a KSM case which does need to charge the page.
2846 */
2847 if (!PageSwapCache(page)) {
2848 int ret;
2849
2850 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2851 if (ret == -EINTR)
2852 ret = 0;
2853 return ret;
2854 }
2855 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2856 }
2857
2858 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2859 {
2860 if (mem_cgroup_disabled())
2861 return;
2862 if (!memcg)
2863 return;
2864 __mem_cgroup_cancel_charge(memcg, 1);
2865 }
2866
2867 static void
2868 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2869 enum charge_type ctype)
2870 {
2871 if (mem_cgroup_disabled())
2872 return;
2873 if (!memcg)
2874 return;
2875 cgroup_exclude_rmdir(&memcg->css);
2876
2877 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2878 /*
2879 * Now swap is on-memory. This means this page may be
2880 * counted both as mem and swap....double count.
2881 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2882 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2883 * may call delete_from_swap_cache() before reach here.
2884 */
2885 if (do_swap_account && PageSwapCache(page)) {
2886 swp_entry_t ent = {.val = page_private(page)};
2887 mem_cgroup_uncharge_swap(ent);
2888 }
2889 /*
2890 * At swapin, we may charge account against cgroup which has no tasks.
2891 * So, rmdir()->pre_destroy() can be called while we do this charge.
2892 * In that case, we need to call pre_destroy() again. check it here.
2893 */
2894 cgroup_release_and_wakeup_rmdir(&memcg->css);
2895 }
2896
2897 void mem_cgroup_commit_charge_swapin(struct page *page,
2898 struct mem_cgroup *memcg)
2899 {
2900 __mem_cgroup_commit_charge_swapin(page, memcg,
2901 MEM_CGROUP_CHARGE_TYPE_ANON);
2902 }
2903
2904 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2905 gfp_t gfp_mask)
2906 {
2907 struct mem_cgroup *memcg = NULL;
2908 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2909 int ret;
2910
2911 if (mem_cgroup_disabled())
2912 return 0;
2913 if (PageCompound(page))
2914 return 0;
2915
2916 if (!PageSwapCache(page))
2917 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2918 else { /* page is swapcache/shmem */
2919 ret = __mem_cgroup_try_charge_swapin(mm, page,
2920 gfp_mask, &memcg);
2921 if (!ret)
2922 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2923 }
2924 return ret;
2925 }
2926
2927 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2928 unsigned int nr_pages,
2929 const enum charge_type ctype)
2930 {
2931 struct memcg_batch_info *batch = NULL;
2932 bool uncharge_memsw = true;
2933
2934 /* If swapout, usage of swap doesn't decrease */
2935 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2936 uncharge_memsw = false;
2937
2938 batch = &current->memcg_batch;
2939 /*
2940 * In usual, we do css_get() when we remember memcg pointer.
2941 * But in this case, we keep res->usage until end of a series of
2942 * uncharges. Then, it's ok to ignore memcg's refcnt.
2943 */
2944 if (!batch->memcg)
2945 batch->memcg = memcg;
2946 /*
2947 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2948 * In those cases, all pages freed continuously can be expected to be in
2949 * the same cgroup and we have chance to coalesce uncharges.
2950 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2951 * because we want to do uncharge as soon as possible.
2952 */
2953
2954 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2955 goto direct_uncharge;
2956
2957 if (nr_pages > 1)
2958 goto direct_uncharge;
2959
2960 /*
2961 * In typical case, batch->memcg == mem. This means we can
2962 * merge a series of uncharges to an uncharge of res_counter.
2963 * If not, we uncharge res_counter ony by one.
2964 */
2965 if (batch->memcg != memcg)
2966 goto direct_uncharge;
2967 /* remember freed charge and uncharge it later */
2968 batch->nr_pages++;
2969 if (uncharge_memsw)
2970 batch->memsw_nr_pages++;
2971 return;
2972 direct_uncharge:
2973 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2974 if (uncharge_memsw)
2975 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2976 if (unlikely(batch->memcg != memcg))
2977 memcg_oom_recover(memcg);
2978 }
2979
2980 /*
2981 * uncharge if !page_mapped(page)
2982 */
2983 static struct mem_cgroup *
2984 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2985 bool end_migration)
2986 {
2987 struct mem_cgroup *memcg = NULL;
2988 unsigned int nr_pages = 1;
2989 struct page_cgroup *pc;
2990 bool anon;
2991
2992 if (mem_cgroup_disabled())
2993 return NULL;
2994
2995 VM_BUG_ON(PageSwapCache(page));
2996
2997 if (PageTransHuge(page)) {
2998 nr_pages <<= compound_order(page);
2999 VM_BUG_ON(!PageTransHuge(page));
3000 }
3001 /*
3002 * Check if our page_cgroup is valid
3003 */
3004 pc = lookup_page_cgroup(page);
3005 if (unlikely(!PageCgroupUsed(pc)))
3006 return NULL;
3007
3008 lock_page_cgroup(pc);
3009
3010 memcg = pc->mem_cgroup;
3011
3012 if (!PageCgroupUsed(pc))
3013 goto unlock_out;
3014
3015 anon = PageAnon(page);
3016
3017 switch (ctype) {
3018 case MEM_CGROUP_CHARGE_TYPE_ANON:
3019 /*
3020 * Generally PageAnon tells if it's the anon statistics to be
3021 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3022 * used before page reached the stage of being marked PageAnon.
3023 */
3024 anon = true;
3025 /* fallthrough */
3026 case MEM_CGROUP_CHARGE_TYPE_DROP:
3027 /* See mem_cgroup_prepare_migration() */
3028 if (page_mapped(page))
3029 goto unlock_out;
3030 /*
3031 * Pages under migration may not be uncharged. But
3032 * end_migration() /must/ be the one uncharging the
3033 * unused post-migration page and so it has to call
3034 * here with the migration bit still set. See the
3035 * res_counter handling below.
3036 */
3037 if (!end_migration && PageCgroupMigration(pc))
3038 goto unlock_out;
3039 break;
3040 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3041 if (!PageAnon(page)) { /* Shared memory */
3042 if (page->mapping && !page_is_file_cache(page))
3043 goto unlock_out;
3044 } else if (page_mapped(page)) /* Anon */
3045 goto unlock_out;
3046 break;
3047 default:
3048 break;
3049 }
3050
3051 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3052
3053 ClearPageCgroupUsed(pc);
3054 /*
3055 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3056 * freed from LRU. This is safe because uncharged page is expected not
3057 * to be reused (freed soon). Exception is SwapCache, it's handled by
3058 * special functions.
3059 */
3060
3061 unlock_page_cgroup(pc);
3062 /*
3063 * even after unlock, we have memcg->res.usage here and this memcg
3064 * will never be freed.
3065 */
3066 memcg_check_events(memcg, page);
3067 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3068 mem_cgroup_swap_statistics(memcg, true);
3069 mem_cgroup_get(memcg);
3070 }
3071 /*
3072 * Migration does not charge the res_counter for the
3073 * replacement page, so leave it alone when phasing out the
3074 * page that is unused after the migration.
3075 */
3076 if (!end_migration && !mem_cgroup_is_root(memcg))
3077 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3078
3079 return memcg;
3080
3081 unlock_out:
3082 unlock_page_cgroup(pc);
3083 return NULL;
3084 }
3085
3086 void mem_cgroup_uncharge_page(struct page *page)
3087 {
3088 /* early check. */
3089 if (page_mapped(page))
3090 return;
3091 VM_BUG_ON(page->mapping && !PageAnon(page));
3092 if (PageSwapCache(page))
3093 return;
3094 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
3095 }
3096
3097 void mem_cgroup_uncharge_cache_page(struct page *page)
3098 {
3099 VM_BUG_ON(page_mapped(page));
3100 VM_BUG_ON(page->mapping);
3101 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
3102 }
3103
3104 /*
3105 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3106 * In that cases, pages are freed continuously and we can expect pages
3107 * are in the same memcg. All these calls itself limits the number of
3108 * pages freed at once, then uncharge_start/end() is called properly.
3109 * This may be called prural(2) times in a context,
3110 */
3111
3112 void mem_cgroup_uncharge_start(void)
3113 {
3114 current->memcg_batch.do_batch++;
3115 /* We can do nest. */
3116 if (current->memcg_batch.do_batch == 1) {
3117 current->memcg_batch.memcg = NULL;
3118 current->memcg_batch.nr_pages = 0;
3119 current->memcg_batch.memsw_nr_pages = 0;
3120 }
3121 }
3122
3123 void mem_cgroup_uncharge_end(void)
3124 {
3125 struct memcg_batch_info *batch = &current->memcg_batch;
3126
3127 if (!batch->do_batch)
3128 return;
3129
3130 batch->do_batch--;
3131 if (batch->do_batch) /* If stacked, do nothing. */
3132 return;
3133
3134 if (!batch->memcg)
3135 return;
3136 /*
3137 * This "batch->memcg" is valid without any css_get/put etc...
3138 * bacause we hide charges behind us.
3139 */
3140 if (batch->nr_pages)
3141 res_counter_uncharge(&batch->memcg->res,
3142 batch->nr_pages * PAGE_SIZE);
3143 if (batch->memsw_nr_pages)
3144 res_counter_uncharge(&batch->memcg->memsw,
3145 batch->memsw_nr_pages * PAGE_SIZE);
3146 memcg_oom_recover(batch->memcg);
3147 /* forget this pointer (for sanity check) */
3148 batch->memcg = NULL;
3149 }
3150
3151 #ifdef CONFIG_SWAP
3152 /*
3153 * called after __delete_from_swap_cache() and drop "page" account.
3154 * memcg information is recorded to swap_cgroup of "ent"
3155 */
3156 void
3157 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3158 {
3159 struct mem_cgroup *memcg;
3160 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3161
3162 if (!swapout) /* this was a swap cache but the swap is unused ! */
3163 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3164
3165 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
3166
3167 /*
3168 * record memcg information, if swapout && memcg != NULL,
3169 * mem_cgroup_get() was called in uncharge().
3170 */
3171 if (do_swap_account && swapout && memcg)
3172 swap_cgroup_record(ent, css_id(&memcg->css));
3173 }
3174 #endif
3175
3176 #ifdef CONFIG_MEMCG_SWAP
3177 /*
3178 * called from swap_entry_free(). remove record in swap_cgroup and
3179 * uncharge "memsw" account.
3180 */
3181 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3182 {
3183 struct mem_cgroup *memcg;
3184 unsigned short id;
3185
3186 if (!do_swap_account)
3187 return;
3188
3189 id = swap_cgroup_record(ent, 0);
3190 rcu_read_lock();
3191 memcg = mem_cgroup_lookup(id);
3192 if (memcg) {
3193 /*
3194 * We uncharge this because swap is freed.
3195 * This memcg can be obsolete one. We avoid calling css_tryget
3196 */
3197 if (!mem_cgroup_is_root(memcg))
3198 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3199 mem_cgroup_swap_statistics(memcg, false);
3200 mem_cgroup_put(memcg);
3201 }
3202 rcu_read_unlock();
3203 }
3204
3205 /**
3206 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3207 * @entry: swap entry to be moved
3208 * @from: mem_cgroup which the entry is moved from
3209 * @to: mem_cgroup which the entry is moved to
3210 *
3211 * It succeeds only when the swap_cgroup's record for this entry is the same
3212 * as the mem_cgroup's id of @from.
3213 *
3214 * Returns 0 on success, -EINVAL on failure.
3215 *
3216 * The caller must have charged to @to, IOW, called res_counter_charge() about
3217 * both res and memsw, and called css_get().
3218 */
3219 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3220 struct mem_cgroup *from, struct mem_cgroup *to)
3221 {
3222 unsigned short old_id, new_id;
3223
3224 old_id = css_id(&from->css);
3225 new_id = css_id(&to->css);
3226
3227 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3228 mem_cgroup_swap_statistics(from, false);
3229 mem_cgroup_swap_statistics(to, true);
3230 /*
3231 * This function is only called from task migration context now.
3232 * It postpones res_counter and refcount handling till the end
3233 * of task migration(mem_cgroup_clear_mc()) for performance
3234 * improvement. But we cannot postpone mem_cgroup_get(to)
3235 * because if the process that has been moved to @to does
3236 * swap-in, the refcount of @to might be decreased to 0.
3237 */
3238 mem_cgroup_get(to);
3239 return 0;
3240 }
3241 return -EINVAL;
3242 }
3243 #else
3244 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3245 struct mem_cgroup *from, struct mem_cgroup *to)
3246 {
3247 return -EINVAL;
3248 }
3249 #endif
3250
3251 /*
3252 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3253 * page belongs to.
3254 */
3255 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3256 struct mem_cgroup **memcgp)
3257 {
3258 struct mem_cgroup *memcg = NULL;
3259 struct page_cgroup *pc;
3260 enum charge_type ctype;
3261
3262 *memcgp = NULL;
3263
3264 VM_BUG_ON(PageTransHuge(page));
3265 if (mem_cgroup_disabled())
3266 return;
3267
3268 pc = lookup_page_cgroup(page);
3269 lock_page_cgroup(pc);
3270 if (PageCgroupUsed(pc)) {
3271 memcg = pc->mem_cgroup;
3272 css_get(&memcg->css);
3273 /*
3274 * At migrating an anonymous page, its mapcount goes down
3275 * to 0 and uncharge() will be called. But, even if it's fully
3276 * unmapped, migration may fail and this page has to be
3277 * charged again. We set MIGRATION flag here and delay uncharge
3278 * until end_migration() is called
3279 *
3280 * Corner Case Thinking
3281 * A)
3282 * When the old page was mapped as Anon and it's unmap-and-freed
3283 * while migration was ongoing.
3284 * If unmap finds the old page, uncharge() of it will be delayed
3285 * until end_migration(). If unmap finds a new page, it's
3286 * uncharged when it make mapcount to be 1->0. If unmap code
3287 * finds swap_migration_entry, the new page will not be mapped
3288 * and end_migration() will find it(mapcount==0).
3289 *
3290 * B)
3291 * When the old page was mapped but migraion fails, the kernel
3292 * remaps it. A charge for it is kept by MIGRATION flag even
3293 * if mapcount goes down to 0. We can do remap successfully
3294 * without charging it again.
3295 *
3296 * C)
3297 * The "old" page is under lock_page() until the end of
3298 * migration, so, the old page itself will not be swapped-out.
3299 * If the new page is swapped out before end_migraton, our
3300 * hook to usual swap-out path will catch the event.
3301 */
3302 if (PageAnon(page))
3303 SetPageCgroupMigration(pc);
3304 }
3305 unlock_page_cgroup(pc);
3306 /*
3307 * If the page is not charged at this point,
3308 * we return here.
3309 */
3310 if (!memcg)
3311 return;
3312
3313 *memcgp = memcg;
3314 /*
3315 * We charge new page before it's used/mapped. So, even if unlock_page()
3316 * is called before end_migration, we can catch all events on this new
3317 * page. In the case new page is migrated but not remapped, new page's
3318 * mapcount will be finally 0 and we call uncharge in end_migration().
3319 */
3320 if (PageAnon(page))
3321 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
3322 else
3323 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3324 /*
3325 * The page is committed to the memcg, but it's not actually
3326 * charged to the res_counter since we plan on replacing the
3327 * old one and only one page is going to be left afterwards.
3328 */
3329 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3330 }
3331
3332 /* remove redundant charge if migration failed*/
3333 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3334 struct page *oldpage, struct page *newpage, bool migration_ok)
3335 {
3336 struct page *used, *unused;
3337 struct page_cgroup *pc;
3338 bool anon;
3339
3340 if (!memcg)
3341 return;
3342 /* blocks rmdir() */
3343 cgroup_exclude_rmdir(&memcg->css);
3344 if (!migration_ok) {
3345 used = oldpage;
3346 unused = newpage;
3347 } else {
3348 used = newpage;
3349 unused = oldpage;
3350 }
3351 anon = PageAnon(used);
3352 __mem_cgroup_uncharge_common(unused,
3353 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3354 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3355 true);
3356 css_put(&memcg->css);
3357 /*
3358 * We disallowed uncharge of pages under migration because mapcount
3359 * of the page goes down to zero, temporarly.
3360 * Clear the flag and check the page should be charged.
3361 */
3362 pc = lookup_page_cgroup(oldpage);
3363 lock_page_cgroup(pc);
3364 ClearPageCgroupMigration(pc);
3365 unlock_page_cgroup(pc);
3366
3367 /*
3368 * If a page is a file cache, radix-tree replacement is very atomic
3369 * and we can skip this check. When it was an Anon page, its mapcount
3370 * goes down to 0. But because we added MIGRATION flage, it's not
3371 * uncharged yet. There are several case but page->mapcount check
3372 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3373 * check. (see prepare_charge() also)
3374 */
3375 if (anon)
3376 mem_cgroup_uncharge_page(used);
3377 /*
3378 * At migration, we may charge account against cgroup which has no
3379 * tasks.
3380 * So, rmdir()->pre_destroy() can be called while we do this charge.
3381 * In that case, we need to call pre_destroy() again. check it here.
3382 */
3383 cgroup_release_and_wakeup_rmdir(&memcg->css);
3384 }
3385
3386 /*
3387 * At replace page cache, newpage is not under any memcg but it's on
3388 * LRU. So, this function doesn't touch res_counter but handles LRU
3389 * in correct way. Both pages are locked so we cannot race with uncharge.
3390 */
3391 void mem_cgroup_replace_page_cache(struct page *oldpage,
3392 struct page *newpage)
3393 {
3394 struct mem_cgroup *memcg = NULL;
3395 struct page_cgroup *pc;
3396 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3397
3398 if (mem_cgroup_disabled())
3399 return;
3400
3401 pc = lookup_page_cgroup(oldpage);
3402 /* fix accounting on old pages */
3403 lock_page_cgroup(pc);
3404 if (PageCgroupUsed(pc)) {
3405 memcg = pc->mem_cgroup;
3406 mem_cgroup_charge_statistics(memcg, false, -1);
3407 ClearPageCgroupUsed(pc);
3408 }
3409 unlock_page_cgroup(pc);
3410
3411 /*
3412 * When called from shmem_replace_page(), in some cases the
3413 * oldpage has already been charged, and in some cases not.
3414 */
3415 if (!memcg)
3416 return;
3417 /*
3418 * Even if newpage->mapping was NULL before starting replacement,
3419 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3420 * LRU while we overwrite pc->mem_cgroup.
3421 */
3422 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3423 }
3424
3425 #ifdef CONFIG_DEBUG_VM
3426 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3427 {
3428 struct page_cgroup *pc;
3429
3430 pc = lookup_page_cgroup(page);
3431 /*
3432 * Can be NULL while feeding pages into the page allocator for
3433 * the first time, i.e. during boot or memory hotplug;
3434 * or when mem_cgroup_disabled().
3435 */
3436 if (likely(pc) && PageCgroupUsed(pc))
3437 return pc;
3438 return NULL;
3439 }
3440
3441 bool mem_cgroup_bad_page_check(struct page *page)
3442 {
3443 if (mem_cgroup_disabled())
3444 return false;
3445
3446 return lookup_page_cgroup_used(page) != NULL;
3447 }
3448
3449 void mem_cgroup_print_bad_page(struct page *page)
3450 {
3451 struct page_cgroup *pc;
3452
3453 pc = lookup_page_cgroup_used(page);
3454 if (pc) {
3455 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3456 pc, pc->flags, pc->mem_cgroup);
3457 }
3458 }
3459 #endif
3460
3461 static DEFINE_MUTEX(set_limit_mutex);
3462
3463 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3464 unsigned long long val)
3465 {
3466 int retry_count;
3467 u64 memswlimit, memlimit;
3468 int ret = 0;
3469 int children = mem_cgroup_count_children(memcg);
3470 u64 curusage, oldusage;
3471 int enlarge;
3472
3473 /*
3474 * For keeping hierarchical_reclaim simple, how long we should retry
3475 * is depends on callers. We set our retry-count to be function
3476 * of # of children which we should visit in this loop.
3477 */
3478 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3479
3480 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3481
3482 enlarge = 0;
3483 while (retry_count) {
3484 if (signal_pending(current)) {
3485 ret = -EINTR;
3486 break;
3487 }
3488 /*
3489 * Rather than hide all in some function, I do this in
3490 * open coded manner. You see what this really does.
3491 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3492 */
3493 mutex_lock(&set_limit_mutex);
3494 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3495 if (memswlimit < val) {
3496 ret = -EINVAL;
3497 mutex_unlock(&set_limit_mutex);
3498 break;
3499 }
3500
3501 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3502 if (memlimit < val)
3503 enlarge = 1;
3504
3505 ret = res_counter_set_limit(&memcg->res, val);
3506 if (!ret) {
3507 if (memswlimit == val)
3508 memcg->memsw_is_minimum = true;
3509 else
3510 memcg->memsw_is_minimum = false;
3511 }
3512 mutex_unlock(&set_limit_mutex);
3513
3514 if (!ret)
3515 break;
3516
3517 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3518 MEM_CGROUP_RECLAIM_SHRINK);
3519 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3520 /* Usage is reduced ? */
3521 if (curusage >= oldusage)
3522 retry_count--;
3523 else
3524 oldusage = curusage;
3525 }
3526 if (!ret && enlarge)
3527 memcg_oom_recover(memcg);
3528
3529 return ret;
3530 }
3531
3532 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3533 unsigned long long val)
3534 {
3535 int retry_count;
3536 u64 memlimit, memswlimit, oldusage, curusage;
3537 int children = mem_cgroup_count_children(memcg);
3538 int ret = -EBUSY;
3539 int enlarge = 0;
3540
3541 /* see mem_cgroup_resize_res_limit */
3542 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3543 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3544 while (retry_count) {
3545 if (signal_pending(current)) {
3546 ret = -EINTR;
3547 break;
3548 }
3549 /*
3550 * Rather than hide all in some function, I do this in
3551 * open coded manner. You see what this really does.
3552 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
3553 */
3554 mutex_lock(&set_limit_mutex);
3555 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3556 if (memlimit > val) {
3557 ret = -EINVAL;
3558 mutex_unlock(&set_limit_mutex);
3559 break;
3560 }
3561 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3562 if (memswlimit < val)
3563 enlarge = 1;
3564 ret = res_counter_set_limit(&memcg->memsw, val);
3565 if (!ret) {
3566 if (memlimit == val)
3567 memcg->memsw_is_minimum = true;
3568 else
3569 memcg->memsw_is_minimum = false;
3570 }
3571 mutex_unlock(&set_limit_mutex);
3572
3573 if (!ret)
3574 break;
3575
3576 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3577 MEM_CGROUP_RECLAIM_NOSWAP |
3578 MEM_CGROUP_RECLAIM_SHRINK);
3579 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3580 /* Usage is reduced ? */
3581 if (curusage >= oldusage)
3582 retry_count--;
3583 else
3584 oldusage = curusage;
3585 }
3586 if (!ret && enlarge)
3587 memcg_oom_recover(memcg);
3588 return ret;
3589 }
3590
3591 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3592 gfp_t gfp_mask,
3593 unsigned long *total_scanned)
3594 {
3595 unsigned long nr_reclaimed = 0;
3596 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3597 unsigned long reclaimed;
3598 int loop = 0;
3599 struct mem_cgroup_tree_per_zone *mctz;
3600 unsigned long long excess;
3601 unsigned long nr_scanned;
3602
3603 if (order > 0)
3604 return 0;
3605
3606 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3607 /*
3608 * This loop can run a while, specially if mem_cgroup's continuously
3609 * keep exceeding their soft limit and putting the system under
3610 * pressure
3611 */
3612 do {
3613 if (next_mz)
3614 mz = next_mz;
3615 else
3616 mz = mem_cgroup_largest_soft_limit_node(mctz);
3617 if (!mz)
3618 break;
3619
3620 nr_scanned = 0;
3621 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3622 gfp_mask, &nr_scanned);
3623 nr_reclaimed += reclaimed;
3624 *total_scanned += nr_scanned;
3625 spin_lock(&mctz->lock);
3626
3627 /*
3628 * If we failed to reclaim anything from this memory cgroup
3629 * it is time to move on to the next cgroup
3630 */
3631 next_mz = NULL;
3632 if (!reclaimed) {
3633 do {
3634 /*
3635 * Loop until we find yet another one.
3636 *
3637 * By the time we get the soft_limit lock
3638 * again, someone might have aded the
3639 * group back on the RB tree. Iterate to
3640 * make sure we get a different mem.
3641 * mem_cgroup_largest_soft_limit_node returns
3642 * NULL if no other cgroup is present on
3643 * the tree
3644 */
3645 next_mz =
3646 __mem_cgroup_largest_soft_limit_node(mctz);
3647 if (next_mz == mz)
3648 css_put(&next_mz->memcg->css);
3649 else /* next_mz == NULL or other memcg */
3650 break;
3651 } while (1);
3652 }
3653 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3654 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3655 /*
3656 * One school of thought says that we should not add
3657 * back the node to the tree if reclaim returns 0.
3658 * But our reclaim could return 0, simply because due
3659 * to priority we are exposing a smaller subset of
3660 * memory to reclaim from. Consider this as a longer
3661 * term TODO.
3662 */
3663 /* If excess == 0, no tree ops */
3664 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3665 spin_unlock(&mctz->lock);
3666 css_put(&mz->memcg->css);
3667 loop++;
3668 /*
3669 * Could not reclaim anything and there are no more
3670 * mem cgroups to try or we seem to be looping without
3671 * reclaiming anything.
3672 */
3673 if (!nr_reclaimed &&
3674 (next_mz == NULL ||
3675 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3676 break;
3677 } while (!nr_reclaimed);
3678 if (next_mz)
3679 css_put(&next_mz->memcg->css);
3680 return nr_reclaimed;
3681 }
3682
3683 /*
3684 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3685 * reclaim the pages page themselves - it just removes the page_cgroups.
3686 * Returns true if some page_cgroups were not freed, indicating that the caller
3687 * must retry this operation.
3688 */
3689 static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3690 int node, int zid, enum lru_list lru)
3691 {
3692 struct mem_cgroup_per_zone *mz;
3693 unsigned long flags, loop;
3694 struct list_head *list;
3695 struct page *busy;
3696 struct zone *zone;
3697
3698 zone = &NODE_DATA(node)->node_zones[zid];
3699 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3700 list = &mz->lruvec.lists[lru];
3701
3702 loop = mz->lru_size[lru];
3703 /* give some margin against EBUSY etc...*/
3704 loop += 256;
3705 busy = NULL;
3706 while (loop--) {
3707 struct page_cgroup *pc;
3708 struct page *page;
3709
3710 spin_lock_irqsave(&zone->lru_lock, flags);
3711 if (list_empty(list)) {
3712 spin_unlock_irqrestore(&zone->lru_lock, flags);
3713 break;
3714 }
3715 page = list_entry(list->prev, struct page, lru);
3716 if (busy == page) {
3717 list_move(&page->lru, list);
3718 busy = NULL;
3719 spin_unlock_irqrestore(&zone->lru_lock, flags);
3720 continue;
3721 }
3722 spin_unlock_irqrestore(&zone->lru_lock, flags);
3723
3724 pc = lookup_page_cgroup(page);
3725
3726 if (mem_cgroup_move_parent(page, pc, memcg)) {
3727 /* found lock contention or "pc" is obsolete. */
3728 busy = page;
3729 cond_resched();
3730 } else
3731 busy = NULL;
3732 }
3733 return !list_empty(list);
3734 }
3735
3736 /*
3737 * make mem_cgroup's charge to be 0 if there is no task.
3738 * This enables deleting this mem_cgroup.
3739 */
3740 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3741 {
3742 int ret;
3743 int node, zid, shrink;
3744 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3745 struct cgroup *cgrp = memcg->css.cgroup;
3746
3747 css_get(&memcg->css);
3748
3749 shrink = 0;
3750 /* should free all ? */
3751 if (free_all)
3752 goto try_to_free;
3753 move_account:
3754 do {
3755 ret = -EBUSY;
3756 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3757 goto out;
3758 /* This is for making all *used* pages to be on LRU. */
3759 lru_add_drain_all();
3760 drain_all_stock_sync(memcg);
3761 ret = 0;
3762 mem_cgroup_start_move(memcg);
3763 for_each_node_state(node, N_HIGH_MEMORY) {
3764 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3765 enum lru_list lru;
3766 for_each_lru(lru) {
3767 ret = mem_cgroup_force_empty_list(memcg,
3768 node, zid, lru);
3769 if (ret)
3770 break;
3771 }
3772 }
3773 if (ret)
3774 break;
3775 }
3776 mem_cgroup_end_move(memcg);
3777 memcg_oom_recover(memcg);
3778 cond_resched();
3779 /* "ret" should also be checked to ensure all lists are empty. */
3780 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3781 out:
3782 css_put(&memcg->css);
3783 return ret;
3784
3785 try_to_free:
3786 /* returns EBUSY if there is a task or if we come here twice. */
3787 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3788 ret = -EBUSY;
3789 goto out;
3790 }
3791 /* we call try-to-free pages for make this cgroup empty */
3792 lru_add_drain_all();
3793 /* try to free all pages in this cgroup */
3794 shrink = 1;
3795 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3796 int progress;
3797
3798 if (signal_pending(current)) {
3799 ret = -EINTR;
3800 goto out;
3801 }
3802 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3803 false);
3804 if (!progress) {
3805 nr_retries--;
3806 /* maybe some writeback is necessary */
3807 congestion_wait(BLK_RW_ASYNC, HZ/10);
3808 }
3809
3810 }
3811 lru_add_drain();
3812 /* try move_account...there may be some *locked* pages. */
3813 goto move_account;
3814 }
3815
3816 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3817 {
3818 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3819 }
3820
3821
3822 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3823 {
3824 return mem_cgroup_from_cont(cont)->use_hierarchy;
3825 }
3826
3827 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3828 u64 val)
3829 {
3830 int retval = 0;
3831 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3832 struct cgroup *parent = cont->parent;
3833 struct mem_cgroup *parent_memcg = NULL;
3834
3835 if (parent)
3836 parent_memcg = mem_cgroup_from_cont(parent);
3837
3838 cgroup_lock();
3839
3840 if (memcg->use_hierarchy == val)
3841 goto out;
3842
3843 /*
3844 * If parent's use_hierarchy is set, we can't make any modifications
3845 * in the child subtrees. If it is unset, then the change can
3846 * occur, provided the current cgroup has no children.
3847 *
3848 * For the root cgroup, parent_mem is NULL, we allow value to be
3849 * set if there are no children.
3850 */
3851 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3852 (val == 1 || val == 0)) {
3853 if (list_empty(&cont->children))
3854 memcg->use_hierarchy = val;
3855 else
3856 retval = -EBUSY;
3857 } else
3858 retval = -EINVAL;
3859
3860 out:
3861 cgroup_unlock();
3862
3863 return retval;
3864 }
3865
3866
3867 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3868 enum mem_cgroup_stat_index idx)
3869 {
3870 struct mem_cgroup *iter;
3871 long val = 0;
3872
3873 /* Per-cpu values can be negative, use a signed accumulator */
3874 for_each_mem_cgroup_tree(iter, memcg)
3875 val += mem_cgroup_read_stat(iter, idx);
3876
3877 if (val < 0) /* race ? */
3878 val = 0;
3879 return val;
3880 }
3881
3882 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3883 {
3884 u64 val;
3885
3886 if (!mem_cgroup_is_root(memcg)) {
3887 if (!swap)
3888 return res_counter_read_u64(&memcg->res, RES_USAGE);
3889 else
3890 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3891 }
3892
3893 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3894 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3895
3896 if (swap)
3897 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
3898
3899 return val << PAGE_SHIFT;
3900 }
3901
3902 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3903 struct file *file, char __user *buf,
3904 size_t nbytes, loff_t *ppos)
3905 {
3906 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3907 char str[64];
3908 u64 val;
3909 int type, name, len;
3910
3911 type = MEMFILE_TYPE(cft->private);
3912 name = MEMFILE_ATTR(cft->private);
3913
3914 if (!do_swap_account && type == _MEMSWAP)
3915 return -EOPNOTSUPP;
3916
3917 switch (type) {
3918 case _MEM:
3919 if (name == RES_USAGE)
3920 val = mem_cgroup_usage(memcg, false);
3921 else
3922 val = res_counter_read_u64(&memcg->res, name);
3923 break;
3924 case _MEMSWAP:
3925 if (name == RES_USAGE)
3926 val = mem_cgroup_usage(memcg, true);
3927 else
3928 val = res_counter_read_u64(&memcg->memsw, name);
3929 break;
3930 default:
3931 BUG();
3932 }
3933
3934 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3935 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3936 }
3937 /*
3938 * The user of this function is...
3939 * RES_LIMIT.
3940 */
3941 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3942 const char *buffer)
3943 {
3944 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3945 int type, name;
3946 unsigned long long val;
3947 int ret;
3948
3949 type = MEMFILE_TYPE(cft->private);
3950 name = MEMFILE_ATTR(cft->private);
3951
3952 if (!do_swap_account && type == _MEMSWAP)
3953 return -EOPNOTSUPP;
3954
3955 switch (name) {
3956 case RES_LIMIT:
3957 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3958 ret = -EINVAL;
3959 break;
3960 }
3961 /* This function does all necessary parse...reuse it */
3962 ret = res_counter_memparse_write_strategy(buffer, &val);
3963 if (ret)
3964 break;
3965 if (type == _MEM)
3966 ret = mem_cgroup_resize_limit(memcg, val);
3967 else
3968 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3969 break;
3970 case RES_SOFT_LIMIT:
3971 ret = res_counter_memparse_write_strategy(buffer, &val);
3972 if (ret)
3973 break;
3974 /*
3975 * For memsw, soft limits are hard to implement in terms
3976 * of semantics, for now, we support soft limits for
3977 * control without swap
3978 */
3979 if (type == _MEM)
3980 ret = res_counter_set_soft_limit(&memcg->res, val);
3981 else
3982 ret = -EINVAL;
3983 break;
3984 default:
3985 ret = -EINVAL; /* should be BUG() ? */
3986 break;
3987 }
3988 return ret;
3989 }
3990
3991 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3992 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3993 {
3994 struct cgroup *cgroup;
3995 unsigned long long min_limit, min_memsw_limit, tmp;
3996
3997 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3998 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3999 cgroup = memcg->css.cgroup;
4000 if (!memcg->use_hierarchy)
4001 goto out;
4002
4003 while (cgroup->parent) {
4004 cgroup = cgroup->parent;
4005 memcg = mem_cgroup_from_cont(cgroup);
4006 if (!memcg->use_hierarchy)
4007 break;
4008 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4009 min_limit = min(min_limit, tmp);
4010 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4011 min_memsw_limit = min(min_memsw_limit, tmp);
4012 }
4013 out:
4014 *mem_limit = min_limit;
4015 *memsw_limit = min_memsw_limit;
4016 }
4017
4018 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4019 {
4020 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4021 int type, name;
4022
4023 type = MEMFILE_TYPE(event);
4024 name = MEMFILE_ATTR(event);
4025
4026 if (!do_swap_account && type == _MEMSWAP)
4027 return -EOPNOTSUPP;
4028
4029 switch (name) {
4030 case RES_MAX_USAGE:
4031 if (type == _MEM)
4032 res_counter_reset_max(&memcg->res);
4033 else
4034 res_counter_reset_max(&memcg->memsw);
4035 break;
4036 case RES_FAILCNT:
4037 if (type == _MEM)
4038 res_counter_reset_failcnt(&memcg->res);
4039 else
4040 res_counter_reset_failcnt(&memcg->memsw);
4041 break;
4042 }
4043
4044 return 0;
4045 }
4046
4047 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4048 struct cftype *cft)
4049 {
4050 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4051 }
4052
4053 #ifdef CONFIG_MMU
4054 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4055 struct cftype *cft, u64 val)
4056 {
4057 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4058
4059 if (val >= (1 << NR_MOVE_TYPE))
4060 return -EINVAL;
4061 /*
4062 * We check this value several times in both in can_attach() and
4063 * attach(), so we need cgroup lock to prevent this value from being
4064 * inconsistent.
4065 */
4066 cgroup_lock();
4067 memcg->move_charge_at_immigrate = val;
4068 cgroup_unlock();
4069
4070 return 0;
4071 }
4072 #else
4073 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4074 struct cftype *cft, u64 val)
4075 {
4076 return -ENOSYS;
4077 }
4078 #endif
4079
4080 #ifdef CONFIG_NUMA
4081 static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4082 struct seq_file *m)
4083 {
4084 int nid;
4085 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4086 unsigned long node_nr;
4087 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4088
4089 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4090 seq_printf(m, "total=%lu", total_nr);
4091 for_each_node_state(nid, N_HIGH_MEMORY) {
4092 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4093 seq_printf(m, " N%d=%lu", nid, node_nr);
4094 }
4095 seq_putc(m, '\n');
4096
4097 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4098 seq_printf(m, "file=%lu", file_nr);
4099 for_each_node_state(nid, N_HIGH_MEMORY) {
4100 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4101 LRU_ALL_FILE);
4102 seq_printf(m, " N%d=%lu", nid, node_nr);
4103 }
4104 seq_putc(m, '\n');
4105
4106 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4107 seq_printf(m, "anon=%lu", anon_nr);
4108 for_each_node_state(nid, N_HIGH_MEMORY) {
4109 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4110 LRU_ALL_ANON);
4111 seq_printf(m, " N%d=%lu", nid, node_nr);
4112 }
4113 seq_putc(m, '\n');
4114
4115 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4116 seq_printf(m, "unevictable=%lu", unevictable_nr);
4117 for_each_node_state(nid, N_HIGH_MEMORY) {
4118 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4119 BIT(LRU_UNEVICTABLE));
4120 seq_printf(m, " N%d=%lu", nid, node_nr);
4121 }
4122 seq_putc(m, '\n');
4123 return 0;
4124 }
4125 #endif /* CONFIG_NUMA */
4126
4127 static const char * const mem_cgroup_lru_names[] = {
4128 "inactive_anon",
4129 "active_anon",
4130 "inactive_file",
4131 "active_file",
4132 "unevictable",
4133 };
4134
4135 static inline void mem_cgroup_lru_names_not_uptodate(void)
4136 {
4137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4138 }
4139
4140 static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
4141 struct seq_file *m)
4142 {
4143 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4144 struct mem_cgroup *mi;
4145 unsigned int i;
4146
4147 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4148 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4149 continue;
4150 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4151 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4152 }
4153
4154 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4155 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4156 mem_cgroup_read_events(memcg, i));
4157
4158 for (i = 0; i < NR_LRU_LISTS; i++)
4159 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4160 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4161
4162 /* Hierarchical information */
4163 {
4164 unsigned long long limit, memsw_limit;
4165 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4166 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4167 if (do_swap_account)
4168 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4169 memsw_limit);
4170 }
4171
4172 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4173 long long val = 0;
4174
4175 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
4176 continue;
4177 for_each_mem_cgroup_tree(mi, memcg)
4178 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4179 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4180 }
4181
4182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4183 unsigned long long val = 0;
4184
4185 for_each_mem_cgroup_tree(mi, memcg)
4186 val += mem_cgroup_read_events(mi, i);
4187 seq_printf(m, "total_%s %llu\n",
4188 mem_cgroup_events_names[i], val);
4189 }
4190
4191 for (i = 0; i < NR_LRU_LISTS; i++) {
4192 unsigned long long val = 0;
4193
4194 for_each_mem_cgroup_tree(mi, memcg)
4195 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4196 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4197 }
4198
4199 #ifdef CONFIG_DEBUG_VM
4200 {
4201 int nid, zid;
4202 struct mem_cgroup_per_zone *mz;
4203 struct zone_reclaim_stat *rstat;
4204 unsigned long recent_rotated[2] = {0, 0};
4205 unsigned long recent_scanned[2] = {0, 0};
4206
4207 for_each_online_node(nid)
4208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4209 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4210 rstat = &mz->lruvec.reclaim_stat;
4211
4212 recent_rotated[0] += rstat->recent_rotated[0];
4213 recent_rotated[1] += rstat->recent_rotated[1];
4214 recent_scanned[0] += rstat->recent_scanned[0];
4215 recent_scanned[1] += rstat->recent_scanned[1];
4216 }
4217 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4218 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4219 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4220 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4221 }
4222 #endif
4223
4224 return 0;
4225 }
4226
4227 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4228 {
4229 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4230
4231 return mem_cgroup_swappiness(memcg);
4232 }
4233
4234 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4235 u64 val)
4236 {
4237 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4238 struct mem_cgroup *parent;
4239
4240 if (val > 100)
4241 return -EINVAL;
4242
4243 if (cgrp->parent == NULL)
4244 return -EINVAL;
4245
4246 parent = mem_cgroup_from_cont(cgrp->parent);
4247
4248 cgroup_lock();
4249
4250 /* If under hierarchy, only empty-root can set this value */
4251 if ((parent->use_hierarchy) ||
4252 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4253 cgroup_unlock();
4254 return -EINVAL;
4255 }
4256
4257 memcg->swappiness = val;
4258
4259 cgroup_unlock();
4260
4261 return 0;
4262 }
4263
4264 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4265 {
4266 struct mem_cgroup_threshold_ary *t;
4267 u64 usage;
4268 int i;
4269
4270 rcu_read_lock();
4271 if (!swap)
4272 t = rcu_dereference(memcg->thresholds.primary);
4273 else
4274 t = rcu_dereference(memcg->memsw_thresholds.primary);
4275
4276 if (!t)
4277 goto unlock;
4278
4279 usage = mem_cgroup_usage(memcg, swap);
4280
4281 /*
4282 * current_threshold points to threshold just below or equal to usage.
4283 * If it's not true, a threshold was crossed after last
4284 * call of __mem_cgroup_threshold().
4285 */
4286 i = t->current_threshold;
4287
4288 /*
4289 * Iterate backward over array of thresholds starting from
4290 * current_threshold and check if a threshold is crossed.
4291 * If none of thresholds below usage is crossed, we read
4292 * only one element of the array here.
4293 */
4294 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4295 eventfd_signal(t->entries[i].eventfd, 1);
4296
4297 /* i = current_threshold + 1 */
4298 i++;
4299
4300 /*
4301 * Iterate forward over array of thresholds starting from
4302 * current_threshold+1 and check if a threshold is crossed.
4303 * If none of thresholds above usage is crossed, we read
4304 * only one element of the array here.
4305 */
4306 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4307 eventfd_signal(t->entries[i].eventfd, 1);
4308
4309 /* Update current_threshold */
4310 t->current_threshold = i - 1;
4311 unlock:
4312 rcu_read_unlock();
4313 }
4314
4315 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4316 {
4317 while (memcg) {
4318 __mem_cgroup_threshold(memcg, false);
4319 if (do_swap_account)
4320 __mem_cgroup_threshold(memcg, true);
4321
4322 memcg = parent_mem_cgroup(memcg);
4323 }
4324 }
4325
4326 static int compare_thresholds(const void *a, const void *b)
4327 {
4328 const struct mem_cgroup_threshold *_a = a;
4329 const struct mem_cgroup_threshold *_b = b;
4330
4331 return _a->threshold - _b->threshold;
4332 }
4333
4334 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4335 {
4336 struct mem_cgroup_eventfd_list *ev;
4337
4338 list_for_each_entry(ev, &memcg->oom_notify, list)
4339 eventfd_signal(ev->eventfd, 1);
4340 return 0;
4341 }
4342
4343 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4344 {
4345 struct mem_cgroup *iter;
4346
4347 for_each_mem_cgroup_tree(iter, memcg)
4348 mem_cgroup_oom_notify_cb(iter);
4349 }
4350
4351 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4352 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4353 {
4354 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4355 struct mem_cgroup_thresholds *thresholds;
4356 struct mem_cgroup_threshold_ary *new;
4357 int type = MEMFILE_TYPE(cft->private);
4358 u64 threshold, usage;
4359 int i, size, ret;
4360
4361 ret = res_counter_memparse_write_strategy(args, &threshold);
4362 if (ret)
4363 return ret;
4364
4365 mutex_lock(&memcg->thresholds_lock);
4366
4367 if (type == _MEM)
4368 thresholds = &memcg->thresholds;
4369 else if (type == _MEMSWAP)
4370 thresholds = &memcg->memsw_thresholds;
4371 else
4372 BUG();
4373
4374 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4375
4376 /* Check if a threshold crossed before adding a new one */
4377 if (thresholds->primary)
4378 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4379
4380 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4381
4382 /* Allocate memory for new array of thresholds */
4383 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4384 GFP_KERNEL);
4385 if (!new) {
4386 ret = -ENOMEM;
4387 goto unlock;
4388 }
4389 new->size = size;
4390
4391 /* Copy thresholds (if any) to new array */
4392 if (thresholds->primary) {
4393 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4394 sizeof(struct mem_cgroup_threshold));
4395 }
4396
4397 /* Add new threshold */
4398 new->entries[size - 1].eventfd = eventfd;
4399 new->entries[size - 1].threshold = threshold;
4400
4401 /* Sort thresholds. Registering of new threshold isn't time-critical */
4402 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4403 compare_thresholds, NULL);
4404
4405 /* Find current threshold */
4406 new->current_threshold = -1;
4407 for (i = 0; i < size; i++) {
4408 if (new->entries[i].threshold <= usage) {
4409 /*
4410 * new->current_threshold will not be used until
4411 * rcu_assign_pointer(), so it's safe to increment
4412 * it here.
4413 */
4414 ++new->current_threshold;
4415 } else
4416 break;
4417 }
4418
4419 /* Free old spare buffer and save old primary buffer as spare */
4420 kfree(thresholds->spare);
4421 thresholds->spare = thresholds->primary;
4422
4423 rcu_assign_pointer(thresholds->primary, new);
4424
4425 /* To be sure that nobody uses thresholds */
4426 synchronize_rcu();
4427
4428 unlock:
4429 mutex_unlock(&memcg->thresholds_lock);
4430
4431 return ret;
4432 }
4433
4434 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4435 struct cftype *cft, struct eventfd_ctx *eventfd)
4436 {
4437 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4438 struct mem_cgroup_thresholds *thresholds;
4439 struct mem_cgroup_threshold_ary *new;
4440 int type = MEMFILE_TYPE(cft->private);
4441 u64 usage;
4442 int i, j, size;
4443
4444 mutex_lock(&memcg->thresholds_lock);
4445 if (type == _MEM)
4446 thresholds = &memcg->thresholds;
4447 else if (type == _MEMSWAP)
4448 thresholds = &memcg->memsw_thresholds;
4449 else
4450 BUG();
4451
4452 if (!thresholds->primary)
4453 goto unlock;
4454
4455 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4456
4457 /* Check if a threshold crossed before removing */
4458 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4459
4460 /* Calculate new number of threshold */
4461 size = 0;
4462 for (i = 0; i < thresholds->primary->size; i++) {
4463 if (thresholds->primary->entries[i].eventfd != eventfd)
4464 size++;
4465 }
4466
4467 new = thresholds->spare;
4468
4469 /* Set thresholds array to NULL if we don't have thresholds */
4470 if (!size) {
4471 kfree(new);
4472 new = NULL;
4473 goto swap_buffers;
4474 }
4475
4476 new->size = size;
4477
4478 /* Copy thresholds and find current threshold */
4479 new->current_threshold = -1;
4480 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4481 if (thresholds->primary->entries[i].eventfd == eventfd)
4482 continue;
4483
4484 new->entries[j] = thresholds->primary->entries[i];
4485 if (new->entries[j].threshold <= usage) {
4486 /*
4487 * new->current_threshold will not be used
4488 * until rcu_assign_pointer(), so it's safe to increment
4489 * it here.
4490 */
4491 ++new->current_threshold;
4492 }
4493 j++;
4494 }
4495
4496 swap_buffers:
4497 /* Swap primary and spare array */
4498 thresholds->spare = thresholds->primary;
4499 /* If all events are unregistered, free the spare array */
4500 if (!new) {
4501 kfree(thresholds->spare);
4502 thresholds->spare = NULL;
4503 }
4504
4505 rcu_assign_pointer(thresholds->primary, new);
4506
4507 /* To be sure that nobody uses thresholds */
4508 synchronize_rcu();
4509 unlock:
4510 mutex_unlock(&memcg->thresholds_lock);
4511 }
4512
4513 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4514 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4515 {
4516 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4517 struct mem_cgroup_eventfd_list *event;
4518 int type = MEMFILE_TYPE(cft->private);
4519
4520 BUG_ON(type != _OOM_TYPE);
4521 event = kmalloc(sizeof(*event), GFP_KERNEL);
4522 if (!event)
4523 return -ENOMEM;
4524
4525 spin_lock(&memcg_oom_lock);
4526
4527 event->eventfd = eventfd;
4528 list_add(&event->list, &memcg->oom_notify);
4529
4530 /* already in OOM ? */
4531 if (atomic_read(&memcg->under_oom))
4532 eventfd_signal(eventfd, 1);
4533 spin_unlock(&memcg_oom_lock);
4534
4535 return 0;
4536 }
4537
4538 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4539 struct cftype *cft, struct eventfd_ctx *eventfd)
4540 {
4541 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4542 struct mem_cgroup_eventfd_list *ev, *tmp;
4543 int type = MEMFILE_TYPE(cft->private);
4544
4545 BUG_ON(type != _OOM_TYPE);
4546
4547 spin_lock(&memcg_oom_lock);
4548
4549 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4550 if (ev->eventfd == eventfd) {
4551 list_del(&ev->list);
4552 kfree(ev);
4553 }
4554 }
4555
4556 spin_unlock(&memcg_oom_lock);
4557 }
4558
4559 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4560 struct cftype *cft, struct cgroup_map_cb *cb)
4561 {
4562 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4563
4564 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4565
4566 if (atomic_read(&memcg->under_oom))
4567 cb->fill(cb, "under_oom", 1);
4568 else
4569 cb->fill(cb, "under_oom", 0);
4570 return 0;
4571 }
4572
4573 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4574 struct cftype *cft, u64 val)
4575 {
4576 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4577 struct mem_cgroup *parent;
4578
4579 /* cannot set to root cgroup and only 0 and 1 are allowed */
4580 if (!cgrp->parent || !((val == 0) || (val == 1)))
4581 return -EINVAL;
4582
4583 parent = mem_cgroup_from_cont(cgrp->parent);
4584
4585 cgroup_lock();
4586 /* oom-kill-disable is a flag for subhierarchy. */
4587 if ((parent->use_hierarchy) ||
4588 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4589 cgroup_unlock();
4590 return -EINVAL;
4591 }
4592 memcg->oom_kill_disable = val;
4593 if (!val)
4594 memcg_oom_recover(memcg);
4595 cgroup_unlock();
4596 return 0;
4597 }
4598
4599 #ifdef CONFIG_MEMCG_KMEM
4600 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4601 {
4602 return mem_cgroup_sockets_init(memcg, ss);
4603 };
4604
4605 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4606 {
4607 mem_cgroup_sockets_destroy(memcg);
4608 }
4609 #else
4610 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4611 {
4612 return 0;
4613 }
4614
4615 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4616 {
4617 }
4618 #endif
4619
4620 static struct cftype mem_cgroup_files[] = {
4621 {
4622 .name = "usage_in_bytes",
4623 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4624 .read = mem_cgroup_read,
4625 .register_event = mem_cgroup_usage_register_event,
4626 .unregister_event = mem_cgroup_usage_unregister_event,
4627 },
4628 {
4629 .name = "max_usage_in_bytes",
4630 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4631 .trigger = mem_cgroup_reset,
4632 .read = mem_cgroup_read,
4633 },
4634 {
4635 .name = "limit_in_bytes",
4636 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4637 .write_string = mem_cgroup_write,
4638 .read = mem_cgroup_read,
4639 },
4640 {
4641 .name = "soft_limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4643 .write_string = mem_cgroup_write,
4644 .read = mem_cgroup_read,
4645 },
4646 {
4647 .name = "failcnt",
4648 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4649 .trigger = mem_cgroup_reset,
4650 .read = mem_cgroup_read,
4651 },
4652 {
4653 .name = "stat",
4654 .read_seq_string = memcg_stat_show,
4655 },
4656 {
4657 .name = "force_empty",
4658 .trigger = mem_cgroup_force_empty_write,
4659 },
4660 {
4661 .name = "use_hierarchy",
4662 .write_u64 = mem_cgroup_hierarchy_write,
4663 .read_u64 = mem_cgroup_hierarchy_read,
4664 },
4665 {
4666 .name = "swappiness",
4667 .read_u64 = mem_cgroup_swappiness_read,
4668 .write_u64 = mem_cgroup_swappiness_write,
4669 },
4670 {
4671 .name = "move_charge_at_immigrate",
4672 .read_u64 = mem_cgroup_move_charge_read,
4673 .write_u64 = mem_cgroup_move_charge_write,
4674 },
4675 {
4676 .name = "oom_control",
4677 .read_map = mem_cgroup_oom_control_read,
4678 .write_u64 = mem_cgroup_oom_control_write,
4679 .register_event = mem_cgroup_oom_register_event,
4680 .unregister_event = mem_cgroup_oom_unregister_event,
4681 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4682 },
4683 #ifdef CONFIG_NUMA
4684 {
4685 .name = "numa_stat",
4686 .read_seq_string = memcg_numa_stat_show,
4687 },
4688 #endif
4689 #ifdef CONFIG_MEMCG_SWAP
4690 {
4691 .name = "memsw.usage_in_bytes",
4692 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4693 .read = mem_cgroup_read,
4694 .register_event = mem_cgroup_usage_register_event,
4695 .unregister_event = mem_cgroup_usage_unregister_event,
4696 },
4697 {
4698 .name = "memsw.max_usage_in_bytes",
4699 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4700 .trigger = mem_cgroup_reset,
4701 .read = mem_cgroup_read,
4702 },
4703 {
4704 .name = "memsw.limit_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4706 .write_string = mem_cgroup_write,
4707 .read = mem_cgroup_read,
4708 },
4709 {
4710 .name = "memsw.failcnt",
4711 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4712 .trigger = mem_cgroup_reset,
4713 .read = mem_cgroup_read,
4714 },
4715 #endif
4716 { }, /* terminate */
4717 };
4718
4719 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4720 {
4721 struct mem_cgroup_per_node *pn;
4722 struct mem_cgroup_per_zone *mz;
4723 int zone, tmp = node;
4724 /*
4725 * This routine is called against possible nodes.
4726 * But it's BUG to call kmalloc() against offline node.
4727 *
4728 * TODO: this routine can waste much memory for nodes which will
4729 * never be onlined. It's better to use memory hotplug callback
4730 * function.
4731 */
4732 if (!node_state(node, N_NORMAL_MEMORY))
4733 tmp = -1;
4734 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4735 if (!pn)
4736 return 1;
4737
4738 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4739 mz = &pn->zoneinfo[zone];
4740 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4741 mz->usage_in_excess = 0;
4742 mz->on_tree = false;
4743 mz->memcg = memcg;
4744 }
4745 memcg->info.nodeinfo[node] = pn;
4746 return 0;
4747 }
4748
4749 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4750 {
4751 kfree(memcg->info.nodeinfo[node]);
4752 }
4753
4754 static struct mem_cgroup *mem_cgroup_alloc(void)
4755 {
4756 struct mem_cgroup *memcg;
4757 int size = sizeof(struct mem_cgroup);
4758
4759 /* Can be very big if MAX_NUMNODES is very big */
4760 if (size < PAGE_SIZE)
4761 memcg = kzalloc(size, GFP_KERNEL);
4762 else
4763 memcg = vzalloc(size);
4764
4765 if (!memcg)
4766 return NULL;
4767
4768 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4769 if (!memcg->stat)
4770 goto out_free;
4771 spin_lock_init(&memcg->pcp_counter_lock);
4772 return memcg;
4773
4774 out_free:
4775 if (size < PAGE_SIZE)
4776 kfree(memcg);
4777 else
4778 vfree(memcg);
4779 return NULL;
4780 }
4781
4782 /*
4783 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
4784 * but in process context. The work_freeing structure is overlaid
4785 * on the rcu_freeing structure, which itself is overlaid on memsw.
4786 */
4787 static void free_work(struct work_struct *work)
4788 {
4789 struct mem_cgroup *memcg;
4790 int size = sizeof(struct mem_cgroup);
4791
4792 memcg = container_of(work, struct mem_cgroup, work_freeing);
4793 /*
4794 * We need to make sure that (at least for now), the jump label
4795 * destruction code runs outside of the cgroup lock. This is because
4796 * get_online_cpus(), which is called from the static_branch update,
4797 * can't be called inside the cgroup_lock. cpusets are the ones
4798 * enforcing this dependency, so if they ever change, we might as well.
4799 *
4800 * schedule_work() will guarantee this happens. Be careful if you need
4801 * to move this code around, and make sure it is outside
4802 * the cgroup_lock.
4803 */
4804 disarm_sock_keys(memcg);
4805 if (size < PAGE_SIZE)
4806 kfree(memcg);
4807 else
4808 vfree(memcg);
4809 }
4810
4811 static void free_rcu(struct rcu_head *rcu_head)
4812 {
4813 struct mem_cgroup *memcg;
4814
4815 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4816 INIT_WORK(&memcg->work_freeing, free_work);
4817 schedule_work(&memcg->work_freeing);
4818 }
4819
4820 /*
4821 * At destroying mem_cgroup, references from swap_cgroup can remain.
4822 * (scanning all at force_empty is too costly...)
4823 *
4824 * Instead of clearing all references at force_empty, we remember
4825 * the number of reference from swap_cgroup and free mem_cgroup when
4826 * it goes down to 0.
4827 *
4828 * Removal of cgroup itself succeeds regardless of refs from swap.
4829 */
4830
4831 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4832 {
4833 int node;
4834
4835 mem_cgroup_remove_from_trees(memcg);
4836 free_css_id(&mem_cgroup_subsys, &memcg->css);
4837
4838 for_each_node(node)
4839 free_mem_cgroup_per_zone_info(memcg, node);
4840
4841 free_percpu(memcg->stat);
4842 call_rcu(&memcg->rcu_freeing, free_rcu);
4843 }
4844
4845 static void mem_cgroup_get(struct mem_cgroup *memcg)
4846 {
4847 atomic_inc(&memcg->refcnt);
4848 }
4849
4850 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4851 {
4852 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4853 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4854 __mem_cgroup_free(memcg);
4855 if (parent)
4856 mem_cgroup_put(parent);
4857 }
4858 }
4859
4860 static void mem_cgroup_put(struct mem_cgroup *memcg)
4861 {
4862 __mem_cgroup_put(memcg, 1);
4863 }
4864
4865 /*
4866 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4867 */
4868 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4869 {
4870 if (!memcg->res.parent)
4871 return NULL;
4872 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4873 }
4874 EXPORT_SYMBOL(parent_mem_cgroup);
4875
4876 #ifdef CONFIG_MEMCG_SWAP
4877 static void __init enable_swap_cgroup(void)
4878 {
4879 if (!mem_cgroup_disabled() && really_do_swap_account)
4880 do_swap_account = 1;
4881 }
4882 #else
4883 static void __init enable_swap_cgroup(void)
4884 {
4885 }
4886 #endif
4887
4888 static int mem_cgroup_soft_limit_tree_init(void)
4889 {
4890 struct mem_cgroup_tree_per_node *rtpn;
4891 struct mem_cgroup_tree_per_zone *rtpz;
4892 int tmp, node, zone;
4893
4894 for_each_node(node) {
4895 tmp = node;
4896 if (!node_state(node, N_NORMAL_MEMORY))
4897 tmp = -1;
4898 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4899 if (!rtpn)
4900 goto err_cleanup;
4901
4902 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4903
4904 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4905 rtpz = &rtpn->rb_tree_per_zone[zone];
4906 rtpz->rb_root = RB_ROOT;
4907 spin_lock_init(&rtpz->lock);
4908 }
4909 }
4910 return 0;
4911
4912 err_cleanup:
4913 for_each_node(node) {
4914 if (!soft_limit_tree.rb_tree_per_node[node])
4915 break;
4916 kfree(soft_limit_tree.rb_tree_per_node[node]);
4917 soft_limit_tree.rb_tree_per_node[node] = NULL;
4918 }
4919 return 1;
4920
4921 }
4922
4923 static struct cgroup_subsys_state * __ref
4924 mem_cgroup_create(struct cgroup *cont)
4925 {
4926 struct mem_cgroup *memcg, *parent;
4927 long error = -ENOMEM;
4928 int node;
4929
4930 memcg = mem_cgroup_alloc();
4931 if (!memcg)
4932 return ERR_PTR(error);
4933
4934 for_each_node(node)
4935 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4936 goto free_out;
4937
4938 /* root ? */
4939 if (cont->parent == NULL) {
4940 int cpu;
4941 enable_swap_cgroup();
4942 parent = NULL;
4943 if (mem_cgroup_soft_limit_tree_init())
4944 goto free_out;
4945 root_mem_cgroup = memcg;
4946 for_each_possible_cpu(cpu) {
4947 struct memcg_stock_pcp *stock =
4948 &per_cpu(memcg_stock, cpu);
4949 INIT_WORK(&stock->work, drain_local_stock);
4950 }
4951 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4952 } else {
4953 parent = mem_cgroup_from_cont(cont->parent);
4954 memcg->use_hierarchy = parent->use_hierarchy;
4955 memcg->oom_kill_disable = parent->oom_kill_disable;
4956 }
4957
4958 if (parent && parent->use_hierarchy) {
4959 res_counter_init(&memcg->res, &parent->res);
4960 res_counter_init(&memcg->memsw, &parent->memsw);
4961 /*
4962 * We increment refcnt of the parent to ensure that we can
4963 * safely access it on res_counter_charge/uncharge.
4964 * This refcnt will be decremented when freeing this
4965 * mem_cgroup(see mem_cgroup_put).
4966 */
4967 mem_cgroup_get(parent);
4968 } else {
4969 res_counter_init(&memcg->res, NULL);
4970 res_counter_init(&memcg->memsw, NULL);
4971 /*
4972 * Deeper hierachy with use_hierarchy == false doesn't make
4973 * much sense so let cgroup subsystem know about this
4974 * unfortunate state in our controller.
4975 */
4976 if (parent && parent != root_mem_cgroup)
4977 mem_cgroup_subsys.broken_hierarchy = true;
4978 }
4979 memcg->last_scanned_node = MAX_NUMNODES;
4980 INIT_LIST_HEAD(&memcg->oom_notify);
4981
4982 if (parent)
4983 memcg->swappiness = mem_cgroup_swappiness(parent);
4984 atomic_set(&memcg->refcnt, 1);
4985 memcg->move_charge_at_immigrate = 0;
4986 mutex_init(&memcg->thresholds_lock);
4987 spin_lock_init(&memcg->move_lock);
4988
4989 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4990 if (error) {
4991 /*
4992 * We call put now because our (and parent's) refcnts
4993 * are already in place. mem_cgroup_put() will internally
4994 * call __mem_cgroup_free, so return directly
4995 */
4996 mem_cgroup_put(memcg);
4997 return ERR_PTR(error);
4998 }
4999 return &memcg->css;
5000 free_out:
5001 __mem_cgroup_free(memcg);
5002 return ERR_PTR(error);
5003 }
5004
5005 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5006 {
5007 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5008
5009 return mem_cgroup_force_empty(memcg, false);
5010 }
5011
5012 static void mem_cgroup_destroy(struct cgroup *cont)
5013 {
5014 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5015
5016 kmem_cgroup_destroy(memcg);
5017
5018 mem_cgroup_put(memcg);
5019 }
5020
5021 #ifdef CONFIG_MMU
5022 /* Handlers for move charge at task migration. */
5023 #define PRECHARGE_COUNT_AT_ONCE 256
5024 static int mem_cgroup_do_precharge(unsigned long count)
5025 {
5026 int ret = 0;
5027 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5028 struct mem_cgroup *memcg = mc.to;
5029
5030 if (mem_cgroup_is_root(memcg)) {
5031 mc.precharge += count;
5032 /* we don't need css_get for root */
5033 return ret;
5034 }
5035 /* try to charge at once */
5036 if (count > 1) {
5037 struct res_counter *dummy;
5038 /*
5039 * "memcg" cannot be under rmdir() because we've already checked
5040 * by cgroup_lock_live_cgroup() that it is not removed and we
5041 * are still under the same cgroup_mutex. So we can postpone
5042 * css_get().
5043 */
5044 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5045 goto one_by_one;
5046 if (do_swap_account && res_counter_charge(&memcg->memsw,
5047 PAGE_SIZE * count, &dummy)) {
5048 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5049 goto one_by_one;
5050 }
5051 mc.precharge += count;
5052 return ret;
5053 }
5054 one_by_one:
5055 /* fall back to one by one charge */
5056 while (count--) {
5057 if (signal_pending(current)) {
5058 ret = -EINTR;
5059 break;
5060 }
5061 if (!batch_count--) {
5062 batch_count = PRECHARGE_COUNT_AT_ONCE;
5063 cond_resched();
5064 }
5065 ret = __mem_cgroup_try_charge(NULL,
5066 GFP_KERNEL, 1, &memcg, false);
5067 if (ret)
5068 /* mem_cgroup_clear_mc() will do uncharge later */
5069 return ret;
5070 mc.precharge++;
5071 }
5072 return ret;
5073 }
5074
5075 /**
5076 * get_mctgt_type - get target type of moving charge
5077 * @vma: the vma the pte to be checked belongs
5078 * @addr: the address corresponding to the pte to be checked
5079 * @ptent: the pte to be checked
5080 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5081 *
5082 * Returns
5083 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5084 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5085 * move charge. if @target is not NULL, the page is stored in target->page
5086 * with extra refcnt got(Callers should handle it).
5087 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5088 * target for charge migration. if @target is not NULL, the entry is stored
5089 * in target->ent.
5090 *
5091 * Called with pte lock held.
5092 */
5093 union mc_target {
5094 struct page *page;
5095 swp_entry_t ent;
5096 };
5097
5098 enum mc_target_type {
5099 MC_TARGET_NONE = 0,
5100 MC_TARGET_PAGE,
5101 MC_TARGET_SWAP,
5102 };
5103
5104 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5105 unsigned long addr, pte_t ptent)
5106 {
5107 struct page *page = vm_normal_page(vma, addr, ptent);
5108
5109 if (!page || !page_mapped(page))
5110 return NULL;
5111 if (PageAnon(page)) {
5112 /* we don't move shared anon */
5113 if (!move_anon())
5114 return NULL;
5115 } else if (!move_file())
5116 /* we ignore mapcount for file pages */
5117 return NULL;
5118 if (!get_page_unless_zero(page))
5119 return NULL;
5120
5121 return page;
5122 }
5123
5124 #ifdef CONFIG_SWAP
5125 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5126 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5127 {
5128 struct page *page = NULL;
5129 swp_entry_t ent = pte_to_swp_entry(ptent);
5130
5131 if (!move_anon() || non_swap_entry(ent))
5132 return NULL;
5133 /*
5134 * Because lookup_swap_cache() updates some statistics counter,
5135 * we call find_get_page() with swapper_space directly.
5136 */
5137 page = find_get_page(&swapper_space, ent.val);
5138 if (do_swap_account)
5139 entry->val = ent.val;
5140
5141 return page;
5142 }
5143 #else
5144 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5145 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5146 {
5147 return NULL;
5148 }
5149 #endif
5150
5151 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5152 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5153 {
5154 struct page *page = NULL;
5155 struct address_space *mapping;
5156 pgoff_t pgoff;
5157
5158 if (!vma->vm_file) /* anonymous vma */
5159 return NULL;
5160 if (!move_file())
5161 return NULL;
5162
5163 mapping = vma->vm_file->f_mapping;
5164 if (pte_none(ptent))
5165 pgoff = linear_page_index(vma, addr);
5166 else /* pte_file(ptent) is true */
5167 pgoff = pte_to_pgoff(ptent);
5168
5169 /* page is moved even if it's not RSS of this task(page-faulted). */
5170 page = find_get_page(mapping, pgoff);
5171
5172 #ifdef CONFIG_SWAP
5173 /* shmem/tmpfs may report page out on swap: account for that too. */
5174 if (radix_tree_exceptional_entry(page)) {
5175 swp_entry_t swap = radix_to_swp_entry(page);
5176 if (do_swap_account)
5177 *entry = swap;
5178 page = find_get_page(&swapper_space, swap.val);
5179 }
5180 #endif
5181 return page;
5182 }
5183
5184 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5185 unsigned long addr, pte_t ptent, union mc_target *target)
5186 {
5187 struct page *page = NULL;
5188 struct page_cgroup *pc;
5189 enum mc_target_type ret = MC_TARGET_NONE;
5190 swp_entry_t ent = { .val = 0 };
5191
5192 if (pte_present(ptent))
5193 page = mc_handle_present_pte(vma, addr, ptent);
5194 else if (is_swap_pte(ptent))
5195 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5196 else if (pte_none(ptent) || pte_file(ptent))
5197 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5198
5199 if (!page && !ent.val)
5200 return ret;
5201 if (page) {
5202 pc = lookup_page_cgroup(page);
5203 /*
5204 * Do only loose check w/o page_cgroup lock.
5205 * mem_cgroup_move_account() checks the pc is valid or not under
5206 * the lock.
5207 */
5208 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5209 ret = MC_TARGET_PAGE;
5210 if (target)
5211 target->page = page;
5212 }
5213 if (!ret || !target)
5214 put_page(page);
5215 }
5216 /* There is a swap entry and a page doesn't exist or isn't charged */
5217 if (ent.val && !ret &&
5218 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5219 ret = MC_TARGET_SWAP;
5220 if (target)
5221 target->ent = ent;
5222 }
5223 return ret;
5224 }
5225
5226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5227 /*
5228 * We don't consider swapping or file mapped pages because THP does not
5229 * support them for now.
5230 * Caller should make sure that pmd_trans_huge(pmd) is true.
5231 */
5232 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5233 unsigned long addr, pmd_t pmd, union mc_target *target)
5234 {
5235 struct page *page = NULL;
5236 struct page_cgroup *pc;
5237 enum mc_target_type ret = MC_TARGET_NONE;
5238
5239 page = pmd_page(pmd);
5240 VM_BUG_ON(!page || !PageHead(page));
5241 if (!move_anon())
5242 return ret;
5243 pc = lookup_page_cgroup(page);
5244 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5245 ret = MC_TARGET_PAGE;
5246 if (target) {
5247 get_page(page);
5248 target->page = page;
5249 }
5250 }
5251 return ret;
5252 }
5253 #else
5254 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5255 unsigned long addr, pmd_t pmd, union mc_target *target)
5256 {
5257 return MC_TARGET_NONE;
5258 }
5259 #endif
5260
5261 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5262 unsigned long addr, unsigned long end,
5263 struct mm_walk *walk)
5264 {
5265 struct vm_area_struct *vma = walk->private;
5266 pte_t *pte;
5267 spinlock_t *ptl;
5268
5269 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5270 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5271 mc.precharge += HPAGE_PMD_NR;
5272 spin_unlock(&vma->vm_mm->page_table_lock);
5273 return 0;
5274 }
5275
5276 if (pmd_trans_unstable(pmd))
5277 return 0;
5278 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5279 for (; addr != end; pte++, addr += PAGE_SIZE)
5280 if (get_mctgt_type(vma, addr, *pte, NULL))
5281 mc.precharge++; /* increment precharge temporarily */
5282 pte_unmap_unlock(pte - 1, ptl);
5283 cond_resched();
5284
5285 return 0;
5286 }
5287
5288 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5289 {
5290 unsigned long precharge;
5291 struct vm_area_struct *vma;
5292
5293 down_read(&mm->mmap_sem);
5294 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5295 struct mm_walk mem_cgroup_count_precharge_walk = {
5296 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5297 .mm = mm,
5298 .private = vma,
5299 };
5300 if (is_vm_hugetlb_page(vma))
5301 continue;
5302 walk_page_range(vma->vm_start, vma->vm_end,
5303 &mem_cgroup_count_precharge_walk);
5304 }
5305 up_read(&mm->mmap_sem);
5306
5307 precharge = mc.precharge;
5308 mc.precharge = 0;
5309
5310 return precharge;
5311 }
5312
5313 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5314 {
5315 unsigned long precharge = mem_cgroup_count_precharge(mm);
5316
5317 VM_BUG_ON(mc.moving_task);
5318 mc.moving_task = current;
5319 return mem_cgroup_do_precharge(precharge);
5320 }
5321
5322 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5323 static void __mem_cgroup_clear_mc(void)
5324 {
5325 struct mem_cgroup *from = mc.from;
5326 struct mem_cgroup *to = mc.to;
5327
5328 /* we must uncharge all the leftover precharges from mc.to */
5329 if (mc.precharge) {
5330 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5331 mc.precharge = 0;
5332 }
5333 /*
5334 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5335 * we must uncharge here.
5336 */
5337 if (mc.moved_charge) {
5338 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5339 mc.moved_charge = 0;
5340 }
5341 /* we must fixup refcnts and charges */
5342 if (mc.moved_swap) {
5343 /* uncharge swap account from the old cgroup */
5344 if (!mem_cgroup_is_root(mc.from))
5345 res_counter_uncharge(&mc.from->memsw,
5346 PAGE_SIZE * mc.moved_swap);
5347 __mem_cgroup_put(mc.from, mc.moved_swap);
5348
5349 if (!mem_cgroup_is_root(mc.to)) {
5350 /*
5351 * we charged both to->res and to->memsw, so we should
5352 * uncharge to->res.
5353 */
5354 res_counter_uncharge(&mc.to->res,
5355 PAGE_SIZE * mc.moved_swap);
5356 }
5357 /* we've already done mem_cgroup_get(mc.to) */
5358 mc.moved_swap = 0;
5359 }
5360 memcg_oom_recover(from);
5361 memcg_oom_recover(to);
5362 wake_up_all(&mc.waitq);
5363 }
5364
5365 static void mem_cgroup_clear_mc(void)
5366 {
5367 struct mem_cgroup *from = mc.from;
5368
5369 /*
5370 * we must clear moving_task before waking up waiters at the end of
5371 * task migration.
5372 */
5373 mc.moving_task = NULL;
5374 __mem_cgroup_clear_mc();
5375 spin_lock(&mc.lock);
5376 mc.from = NULL;
5377 mc.to = NULL;
5378 spin_unlock(&mc.lock);
5379 mem_cgroup_end_move(from);
5380 }
5381
5382 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5383 struct cgroup_taskset *tset)
5384 {
5385 struct task_struct *p = cgroup_taskset_first(tset);
5386 int ret = 0;
5387 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5388
5389 if (memcg->move_charge_at_immigrate) {
5390 struct mm_struct *mm;
5391 struct mem_cgroup *from = mem_cgroup_from_task(p);
5392
5393 VM_BUG_ON(from == memcg);
5394
5395 mm = get_task_mm(p);
5396 if (!mm)
5397 return 0;
5398 /* We move charges only when we move a owner of the mm */
5399 if (mm->owner == p) {
5400 VM_BUG_ON(mc.from);
5401 VM_BUG_ON(mc.to);
5402 VM_BUG_ON(mc.precharge);
5403 VM_BUG_ON(mc.moved_charge);
5404 VM_BUG_ON(mc.moved_swap);
5405 mem_cgroup_start_move(from);
5406 spin_lock(&mc.lock);
5407 mc.from = from;
5408 mc.to = memcg;
5409 spin_unlock(&mc.lock);
5410 /* We set mc.moving_task later */
5411
5412 ret = mem_cgroup_precharge_mc(mm);
5413 if (ret)
5414 mem_cgroup_clear_mc();
5415 }
5416 mmput(mm);
5417 }
5418 return ret;
5419 }
5420
5421 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5422 struct cgroup_taskset *tset)
5423 {
5424 mem_cgroup_clear_mc();
5425 }
5426
5427 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5428 unsigned long addr, unsigned long end,
5429 struct mm_walk *walk)
5430 {
5431 int ret = 0;
5432 struct vm_area_struct *vma = walk->private;
5433 pte_t *pte;
5434 spinlock_t *ptl;
5435 enum mc_target_type target_type;
5436 union mc_target target;
5437 struct page *page;
5438 struct page_cgroup *pc;
5439
5440 /*
5441 * We don't take compound_lock() here but no race with splitting thp
5442 * happens because:
5443 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5444 * under splitting, which means there's no concurrent thp split,
5445 * - if another thread runs into split_huge_page() just after we
5446 * entered this if-block, the thread must wait for page table lock
5447 * to be unlocked in __split_huge_page_splitting(), where the main
5448 * part of thp split is not executed yet.
5449 */
5450 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5451 if (mc.precharge < HPAGE_PMD_NR) {
5452 spin_unlock(&vma->vm_mm->page_table_lock);
5453 return 0;
5454 }
5455 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5456 if (target_type == MC_TARGET_PAGE) {
5457 page = target.page;
5458 if (!isolate_lru_page(page)) {
5459 pc = lookup_page_cgroup(page);
5460 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5461 pc, mc.from, mc.to)) {
5462 mc.precharge -= HPAGE_PMD_NR;
5463 mc.moved_charge += HPAGE_PMD_NR;
5464 }
5465 putback_lru_page(page);
5466 }
5467 put_page(page);
5468 }
5469 spin_unlock(&vma->vm_mm->page_table_lock);
5470 return 0;
5471 }
5472
5473 if (pmd_trans_unstable(pmd))
5474 return 0;
5475 retry:
5476 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5477 for (; addr != end; addr += PAGE_SIZE) {
5478 pte_t ptent = *(pte++);
5479 swp_entry_t ent;
5480
5481 if (!mc.precharge)
5482 break;
5483
5484 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5485 case MC_TARGET_PAGE:
5486 page = target.page;
5487 if (isolate_lru_page(page))
5488 goto put;
5489 pc = lookup_page_cgroup(page);
5490 if (!mem_cgroup_move_account(page, 1, pc,
5491 mc.from, mc.to)) {
5492 mc.precharge--;
5493 /* we uncharge from mc.from later. */
5494 mc.moved_charge++;
5495 }
5496 putback_lru_page(page);
5497 put: /* get_mctgt_type() gets the page */
5498 put_page(page);
5499 break;
5500 case MC_TARGET_SWAP:
5501 ent = target.ent;
5502 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5503 mc.precharge--;
5504 /* we fixup refcnts and charges later. */
5505 mc.moved_swap++;
5506 }
5507 break;
5508 default:
5509 break;
5510 }
5511 }
5512 pte_unmap_unlock(pte - 1, ptl);
5513 cond_resched();
5514
5515 if (addr != end) {
5516 /*
5517 * We have consumed all precharges we got in can_attach().
5518 * We try charge one by one, but don't do any additional
5519 * charges to mc.to if we have failed in charge once in attach()
5520 * phase.
5521 */
5522 ret = mem_cgroup_do_precharge(1);
5523 if (!ret)
5524 goto retry;
5525 }
5526
5527 return ret;
5528 }
5529
5530 static void mem_cgroup_move_charge(struct mm_struct *mm)
5531 {
5532 struct vm_area_struct *vma;
5533
5534 lru_add_drain_all();
5535 retry:
5536 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5537 /*
5538 * Someone who are holding the mmap_sem might be waiting in
5539 * waitq. So we cancel all extra charges, wake up all waiters,
5540 * and retry. Because we cancel precharges, we might not be able
5541 * to move enough charges, but moving charge is a best-effort
5542 * feature anyway, so it wouldn't be a big problem.
5543 */
5544 __mem_cgroup_clear_mc();
5545 cond_resched();
5546 goto retry;
5547 }
5548 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5549 int ret;
5550 struct mm_walk mem_cgroup_move_charge_walk = {
5551 .pmd_entry = mem_cgroup_move_charge_pte_range,
5552 .mm = mm,
5553 .private = vma,
5554 };
5555 if (is_vm_hugetlb_page(vma))
5556 continue;
5557 ret = walk_page_range(vma->vm_start, vma->vm_end,
5558 &mem_cgroup_move_charge_walk);
5559 if (ret)
5560 /*
5561 * means we have consumed all precharges and failed in
5562 * doing additional charge. Just abandon here.
5563 */
5564 break;
5565 }
5566 up_read(&mm->mmap_sem);
5567 }
5568
5569 static void mem_cgroup_move_task(struct cgroup *cont,
5570 struct cgroup_taskset *tset)
5571 {
5572 struct task_struct *p = cgroup_taskset_first(tset);
5573 struct mm_struct *mm = get_task_mm(p);
5574
5575 if (mm) {
5576 if (mc.to)
5577 mem_cgroup_move_charge(mm);
5578 mmput(mm);
5579 }
5580 if (mc.to)
5581 mem_cgroup_clear_mc();
5582 }
5583 #else /* !CONFIG_MMU */
5584 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5585 struct cgroup_taskset *tset)
5586 {
5587 return 0;
5588 }
5589 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5590 struct cgroup_taskset *tset)
5591 {
5592 }
5593 static void mem_cgroup_move_task(struct cgroup *cont,
5594 struct cgroup_taskset *tset)
5595 {
5596 }
5597 #endif
5598
5599 struct cgroup_subsys mem_cgroup_subsys = {
5600 .name = "memory",
5601 .subsys_id = mem_cgroup_subsys_id,
5602 .create = mem_cgroup_create,
5603 .pre_destroy = mem_cgroup_pre_destroy,
5604 .destroy = mem_cgroup_destroy,
5605 .can_attach = mem_cgroup_can_attach,
5606 .cancel_attach = mem_cgroup_cancel_attach,
5607 .attach = mem_cgroup_move_task,
5608 .base_cftypes = mem_cgroup_files,
5609 .early_init = 0,
5610 .use_id = 1,
5611 .__DEPRECATED_clear_css_refs = true,
5612 };
5613
5614 #ifdef CONFIG_MEMCG_SWAP
5615 static int __init enable_swap_account(char *s)
5616 {
5617 /* consider enabled if no parameter or 1 is given */
5618 if (!strcmp(s, "1"))
5619 really_do_swap_account = 1;
5620 else if (!strcmp(s, "0"))
5621 really_do_swap_account = 0;
5622 return 1;
5623 }
5624 __setup("swapaccount=", enable_swap_account);
5625
5626 #endif
This page took 0.190858 seconds and 6 git commands to generate.