mm/memcg: get_lru_size not get_lruvec_size
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 static struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account 0
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_NSTATS,
92 };
93
94 static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99 };
100
101 enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
106 MEM_CGROUP_EVENTS_NSTATS,
107 };
108
109 static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114 };
115
116 /*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122 enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
125 MEM_CGROUP_TARGET_NUMAINFO,
126 MEM_CGROUP_NTARGETS,
127 };
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
131
132 struct mem_cgroup_stat_cpu {
133 long count[MEM_CGROUP_STAT_NSTATS];
134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
135 unsigned long nr_page_events;
136 unsigned long targets[MEM_CGROUP_NTARGETS];
137 };
138
139 struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144 };
145
146 /*
147 * per-zone information in memory controller.
148 */
149 struct mem_cgroup_per_zone {
150 struct lruvec lruvec;
151 unsigned long lru_size[NR_LRU_LISTS];
152
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
160 /* use container_of */
161 };
162
163 struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165 };
166
167 struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169 };
170
171 /*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176 struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179 };
180
181 struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183 };
184
185 struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187 };
188
189 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
191 struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194 };
195
196 /* For threshold */
197 struct mem_cgroup_threshold_ary {
198 /* An array index points to threshold just below or equal to usage. */
199 int current_threshold;
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204 };
205
206 struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215 };
216
217 /* for OOM */
218 struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221 };
222
223 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
225
226 /*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
236 */
237 struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
261 * But when using vfree(), that cannot be done at
262 * interrupt time, so we must then queue the work.
263 */
264 struct work_struct work_freeing;
265 };
266
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
270 */
271 struct mem_cgroup_lru_info info;
272 int last_scanned_node;
273 #if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
277 #endif
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
282
283 bool oom_lock;
284 atomic_t under_oom;
285
286 atomic_t refcnt;
287
288 int swappiness;
289 /* OOM-Killer disable */
290 int oom_kill_disable;
291
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
300
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
303
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
306
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
318 /*
319 * percpu counter.
320 */
321 struct mem_cgroup_stat_cpu __percpu *stat;
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
328
329 #ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331 #endif
332 };
333
334 /* Stuffs for move charges at task migration. */
335 /*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339 enum move_type {
340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
342 NR_MOVE_TYPE,
343 };
344
345 /* "mc" and its members are protected by cgroup_mutex */
346 static struct move_charge_struct {
347 spinlock_t lock; /* for from, to */
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
351 unsigned long moved_charge;
352 unsigned long moved_swap;
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355 } mc = {
356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358 };
359
360 static bool move_anon(void)
361 {
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364 }
365
366 static bool move_file(void)
367 {
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370 }
371
372 /*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
376 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
378
379 enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_MAPPED,
382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
383 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
384 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
385 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
386 NR_CHARGE_TYPE,
387 };
388
389 /* for encoding cft->private value on file */
390 #define _MEM (0)
391 #define _MEMSWAP (1)
392 #define _OOM_TYPE (2)
393 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
394 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
395 #define MEMFILE_ATTR(val) ((val) & 0xffff)
396 /* Used for OOM nofiier */
397 #define OOM_CONTROL (0)
398
399 /*
400 * Reclaim flags for mem_cgroup_hierarchical_reclaim
401 */
402 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
403 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
404 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
405 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406
407 static void mem_cgroup_get(struct mem_cgroup *memcg);
408 static void mem_cgroup_put(struct mem_cgroup *memcg);
409
410 /* Writing them here to avoid exposing memcg's inner layout */
411 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
412 #include <net/sock.h>
413 #include <net/ip.h>
414
415 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
416 void sock_update_memcg(struct sock *sk)
417 {
418 if (mem_cgroup_sockets_enabled) {
419 struct mem_cgroup *memcg;
420
421 BUG_ON(!sk->sk_prot->proto_cgroup);
422
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
427 *
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
430 */
431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return;
435 }
436
437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current);
439 if (!mem_cgroup_is_root(memcg)) {
440 mem_cgroup_get(memcg);
441 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
442 }
443 rcu_read_unlock();
444 }
445 }
446 EXPORT_SYMBOL(sock_update_memcg);
447
448 void sock_release_memcg(struct sock *sk)
449 {
450 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
451 struct mem_cgroup *memcg;
452 WARN_ON(!sk->sk_cgrp->memcg);
453 memcg = sk->sk_cgrp->memcg;
454 mem_cgroup_put(memcg);
455 }
456 }
457
458 #ifdef CONFIG_INET
459 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
460 {
461 if (!memcg || mem_cgroup_is_root(memcg))
462 return NULL;
463
464 return &memcg->tcp_mem.cg_proto;
465 }
466 EXPORT_SYMBOL(tcp_proto_cgroup);
467 #endif /* CONFIG_INET */
468 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
469
470 static void drain_all_stock_async(struct mem_cgroup *memcg);
471
472 static struct mem_cgroup_per_zone *
473 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
474 {
475 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
476 }
477
478 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
479 {
480 return &memcg->css;
481 }
482
483 static struct mem_cgroup_per_zone *
484 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
485 {
486 int nid = page_to_nid(page);
487 int zid = page_zonenum(page);
488
489 return mem_cgroup_zoneinfo(memcg, nid, zid);
490 }
491
492 static struct mem_cgroup_tree_per_zone *
493 soft_limit_tree_node_zone(int nid, int zid)
494 {
495 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
496 }
497
498 static struct mem_cgroup_tree_per_zone *
499 soft_limit_tree_from_page(struct page *page)
500 {
501 int nid = page_to_nid(page);
502 int zid = page_zonenum(page);
503
504 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
505 }
506
507 static void
508 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
509 struct mem_cgroup_per_zone *mz,
510 struct mem_cgroup_tree_per_zone *mctz,
511 unsigned long long new_usage_in_excess)
512 {
513 struct rb_node **p = &mctz->rb_root.rb_node;
514 struct rb_node *parent = NULL;
515 struct mem_cgroup_per_zone *mz_node;
516
517 if (mz->on_tree)
518 return;
519
520 mz->usage_in_excess = new_usage_in_excess;
521 if (!mz->usage_in_excess)
522 return;
523 while (*p) {
524 parent = *p;
525 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
526 tree_node);
527 if (mz->usage_in_excess < mz_node->usage_in_excess)
528 p = &(*p)->rb_left;
529 /*
530 * We can't avoid mem cgroups that are over their soft
531 * limit by the same amount
532 */
533 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
534 p = &(*p)->rb_right;
535 }
536 rb_link_node(&mz->tree_node, parent, p);
537 rb_insert_color(&mz->tree_node, &mctz->rb_root);
538 mz->on_tree = true;
539 }
540
541 static void
542 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
543 struct mem_cgroup_per_zone *mz,
544 struct mem_cgroup_tree_per_zone *mctz)
545 {
546 if (!mz->on_tree)
547 return;
548 rb_erase(&mz->tree_node, &mctz->rb_root);
549 mz->on_tree = false;
550 }
551
552 static void
553 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
554 struct mem_cgroup_per_zone *mz,
555 struct mem_cgroup_tree_per_zone *mctz)
556 {
557 spin_lock(&mctz->lock);
558 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
559 spin_unlock(&mctz->lock);
560 }
561
562
563 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
564 {
565 unsigned long long excess;
566 struct mem_cgroup_per_zone *mz;
567 struct mem_cgroup_tree_per_zone *mctz;
568 int nid = page_to_nid(page);
569 int zid = page_zonenum(page);
570 mctz = soft_limit_tree_from_page(page);
571
572 /*
573 * Necessary to update all ancestors when hierarchy is used.
574 * because their event counter is not touched.
575 */
576 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
577 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
578 excess = res_counter_soft_limit_excess(&memcg->res);
579 /*
580 * We have to update the tree if mz is on RB-tree or
581 * mem is over its softlimit.
582 */
583 if (excess || mz->on_tree) {
584 spin_lock(&mctz->lock);
585 /* if on-tree, remove it */
586 if (mz->on_tree)
587 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
588 /*
589 * Insert again. mz->usage_in_excess will be updated.
590 * If excess is 0, no tree ops.
591 */
592 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
593 spin_unlock(&mctz->lock);
594 }
595 }
596 }
597
598 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
599 {
600 int node, zone;
601 struct mem_cgroup_per_zone *mz;
602 struct mem_cgroup_tree_per_zone *mctz;
603
604 for_each_node(node) {
605 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
606 mz = mem_cgroup_zoneinfo(memcg, node, zone);
607 mctz = soft_limit_tree_node_zone(node, zone);
608 mem_cgroup_remove_exceeded(memcg, mz, mctz);
609 }
610 }
611 }
612
613 static struct mem_cgroup_per_zone *
614 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
615 {
616 struct rb_node *rightmost = NULL;
617 struct mem_cgroup_per_zone *mz;
618
619 retry:
620 mz = NULL;
621 rightmost = rb_last(&mctz->rb_root);
622 if (!rightmost)
623 goto done; /* Nothing to reclaim from */
624
625 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
626 /*
627 * Remove the node now but someone else can add it back,
628 * we will to add it back at the end of reclaim to its correct
629 * position in the tree.
630 */
631 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
632 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
633 !css_tryget(&mz->memcg->css))
634 goto retry;
635 done:
636 return mz;
637 }
638
639 static struct mem_cgroup_per_zone *
640 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
641 {
642 struct mem_cgroup_per_zone *mz;
643
644 spin_lock(&mctz->lock);
645 mz = __mem_cgroup_largest_soft_limit_node(mctz);
646 spin_unlock(&mctz->lock);
647 return mz;
648 }
649
650 /*
651 * Implementation Note: reading percpu statistics for memcg.
652 *
653 * Both of vmstat[] and percpu_counter has threshold and do periodic
654 * synchronization to implement "quick" read. There are trade-off between
655 * reading cost and precision of value. Then, we may have a chance to implement
656 * a periodic synchronizion of counter in memcg's counter.
657 *
658 * But this _read() function is used for user interface now. The user accounts
659 * memory usage by memory cgroup and he _always_ requires exact value because
660 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
661 * have to visit all online cpus and make sum. So, for now, unnecessary
662 * synchronization is not implemented. (just implemented for cpu hotplug)
663 *
664 * If there are kernel internal actions which can make use of some not-exact
665 * value, and reading all cpu value can be performance bottleneck in some
666 * common workload, threashold and synchonization as vmstat[] should be
667 * implemented.
668 */
669 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
670 enum mem_cgroup_stat_index idx)
671 {
672 long val = 0;
673 int cpu;
674
675 get_online_cpus();
676 for_each_online_cpu(cpu)
677 val += per_cpu(memcg->stat->count[idx], cpu);
678 #ifdef CONFIG_HOTPLUG_CPU
679 spin_lock(&memcg->pcp_counter_lock);
680 val += memcg->nocpu_base.count[idx];
681 spin_unlock(&memcg->pcp_counter_lock);
682 #endif
683 put_online_cpus();
684 return val;
685 }
686
687 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
688 bool charge)
689 {
690 int val = (charge) ? 1 : -1;
691 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
692 }
693
694 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
695 enum mem_cgroup_events_index idx)
696 {
697 unsigned long val = 0;
698 int cpu;
699
700 for_each_online_cpu(cpu)
701 val += per_cpu(memcg->stat->events[idx], cpu);
702 #ifdef CONFIG_HOTPLUG_CPU
703 spin_lock(&memcg->pcp_counter_lock);
704 val += memcg->nocpu_base.events[idx];
705 spin_unlock(&memcg->pcp_counter_lock);
706 #endif
707 return val;
708 }
709
710 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
711 bool anon, int nr_pages)
712 {
713 preempt_disable();
714
715 /*
716 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
717 * counted as CACHE even if it's on ANON LRU.
718 */
719 if (anon)
720 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
721 nr_pages);
722 else
723 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
724 nr_pages);
725
726 /* pagein of a big page is an event. So, ignore page size */
727 if (nr_pages > 0)
728 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
729 else {
730 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
731 nr_pages = -nr_pages; /* for event */
732 }
733
734 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
735
736 preempt_enable();
737 }
738
739 unsigned long
740 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
741 {
742 struct mem_cgroup_per_zone *mz;
743
744 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
745 return mz->lru_size[lru];
746 }
747
748 static unsigned long
749 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
750 unsigned int lru_mask)
751 {
752 struct mem_cgroup_per_zone *mz;
753 enum lru_list lru;
754 unsigned long ret = 0;
755
756 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
757
758 for_each_lru(lru) {
759 if (BIT(lru) & lru_mask)
760 ret += mz->lru_size[lru];
761 }
762 return ret;
763 }
764
765 static unsigned long
766 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
767 int nid, unsigned int lru_mask)
768 {
769 u64 total = 0;
770 int zid;
771
772 for (zid = 0; zid < MAX_NR_ZONES; zid++)
773 total += mem_cgroup_zone_nr_lru_pages(memcg,
774 nid, zid, lru_mask);
775
776 return total;
777 }
778
779 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
780 unsigned int lru_mask)
781 {
782 int nid;
783 u64 total = 0;
784
785 for_each_node_state(nid, N_HIGH_MEMORY)
786 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
787 return total;
788 }
789
790 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
791 enum mem_cgroup_events_target target)
792 {
793 unsigned long val, next;
794
795 val = __this_cpu_read(memcg->stat->nr_page_events);
796 next = __this_cpu_read(memcg->stat->targets[target]);
797 /* from time_after() in jiffies.h */
798 if ((long)next - (long)val < 0) {
799 switch (target) {
800 case MEM_CGROUP_TARGET_THRESH:
801 next = val + THRESHOLDS_EVENTS_TARGET;
802 break;
803 case MEM_CGROUP_TARGET_SOFTLIMIT:
804 next = val + SOFTLIMIT_EVENTS_TARGET;
805 break;
806 case MEM_CGROUP_TARGET_NUMAINFO:
807 next = val + NUMAINFO_EVENTS_TARGET;
808 break;
809 default:
810 break;
811 }
812 __this_cpu_write(memcg->stat->targets[target], next);
813 return true;
814 }
815 return false;
816 }
817
818 /*
819 * Check events in order.
820 *
821 */
822 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
823 {
824 preempt_disable();
825 /* threshold event is triggered in finer grain than soft limit */
826 if (unlikely(mem_cgroup_event_ratelimit(memcg,
827 MEM_CGROUP_TARGET_THRESH))) {
828 bool do_softlimit;
829 bool do_numainfo __maybe_unused;
830
831 do_softlimit = mem_cgroup_event_ratelimit(memcg,
832 MEM_CGROUP_TARGET_SOFTLIMIT);
833 #if MAX_NUMNODES > 1
834 do_numainfo = mem_cgroup_event_ratelimit(memcg,
835 MEM_CGROUP_TARGET_NUMAINFO);
836 #endif
837 preempt_enable();
838
839 mem_cgroup_threshold(memcg);
840 if (unlikely(do_softlimit))
841 mem_cgroup_update_tree(memcg, page);
842 #if MAX_NUMNODES > 1
843 if (unlikely(do_numainfo))
844 atomic_inc(&memcg->numainfo_events);
845 #endif
846 } else
847 preempt_enable();
848 }
849
850 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
851 {
852 return container_of(cgroup_subsys_state(cont,
853 mem_cgroup_subsys_id), struct mem_cgroup,
854 css);
855 }
856
857 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
858 {
859 /*
860 * mm_update_next_owner() may clear mm->owner to NULL
861 * if it races with swapoff, page migration, etc.
862 * So this can be called with p == NULL.
863 */
864 if (unlikely(!p))
865 return NULL;
866
867 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
868 struct mem_cgroup, css);
869 }
870
871 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
872 {
873 struct mem_cgroup *memcg = NULL;
874
875 if (!mm)
876 return NULL;
877 /*
878 * Because we have no locks, mm->owner's may be being moved to other
879 * cgroup. We use css_tryget() here even if this looks
880 * pessimistic (rather than adding locks here).
881 */
882 rcu_read_lock();
883 do {
884 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
885 if (unlikely(!memcg))
886 break;
887 } while (!css_tryget(&memcg->css));
888 rcu_read_unlock();
889 return memcg;
890 }
891
892 /**
893 * mem_cgroup_iter - iterate over memory cgroup hierarchy
894 * @root: hierarchy root
895 * @prev: previously returned memcg, NULL on first invocation
896 * @reclaim: cookie for shared reclaim walks, NULL for full walks
897 *
898 * Returns references to children of the hierarchy below @root, or
899 * @root itself, or %NULL after a full round-trip.
900 *
901 * Caller must pass the return value in @prev on subsequent
902 * invocations for reference counting, or use mem_cgroup_iter_break()
903 * to cancel a hierarchy walk before the round-trip is complete.
904 *
905 * Reclaimers can specify a zone and a priority level in @reclaim to
906 * divide up the memcgs in the hierarchy among all concurrent
907 * reclaimers operating on the same zone and priority.
908 */
909 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
910 struct mem_cgroup *prev,
911 struct mem_cgroup_reclaim_cookie *reclaim)
912 {
913 struct mem_cgroup *memcg = NULL;
914 int id = 0;
915
916 if (mem_cgroup_disabled())
917 return NULL;
918
919 if (!root)
920 root = root_mem_cgroup;
921
922 if (prev && !reclaim)
923 id = css_id(&prev->css);
924
925 if (prev && prev != root)
926 css_put(&prev->css);
927
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
930 return NULL;
931 return root;
932 }
933
934 while (!memcg) {
935 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
936 struct cgroup_subsys_state *css;
937
938 if (reclaim) {
939 int nid = zone_to_nid(reclaim->zone);
940 int zid = zone_idx(reclaim->zone);
941 struct mem_cgroup_per_zone *mz;
942
943 mz = mem_cgroup_zoneinfo(root, nid, zid);
944 iter = &mz->reclaim_iter[reclaim->priority];
945 if (prev && reclaim->generation != iter->generation)
946 return NULL;
947 id = iter->position;
948 }
949
950 rcu_read_lock();
951 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
952 if (css) {
953 if (css == &root->css || css_tryget(css))
954 memcg = container_of(css,
955 struct mem_cgroup, css);
956 } else
957 id = 0;
958 rcu_read_unlock();
959
960 if (reclaim) {
961 iter->position = id;
962 if (!css)
963 iter->generation++;
964 else if (!prev && memcg)
965 reclaim->generation = iter->generation;
966 }
967
968 if (prev && !css)
969 return NULL;
970 }
971 return memcg;
972 }
973
974 /**
975 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
976 * @root: hierarchy root
977 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
978 */
979 void mem_cgroup_iter_break(struct mem_cgroup *root,
980 struct mem_cgroup *prev)
981 {
982 if (!root)
983 root = root_mem_cgroup;
984 if (prev && prev != root)
985 css_put(&prev->css);
986 }
987
988 /*
989 * Iteration constructs for visiting all cgroups (under a tree). If
990 * loops are exited prematurely (break), mem_cgroup_iter_break() must
991 * be used for reference counting.
992 */
993 #define for_each_mem_cgroup_tree(iter, root) \
994 for (iter = mem_cgroup_iter(root, NULL, NULL); \
995 iter != NULL; \
996 iter = mem_cgroup_iter(root, iter, NULL))
997
998 #define for_each_mem_cgroup(iter) \
999 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1000 iter != NULL; \
1001 iter = mem_cgroup_iter(NULL, iter, NULL))
1002
1003 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1004 {
1005 return (memcg == root_mem_cgroup);
1006 }
1007
1008 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1009 {
1010 struct mem_cgroup *memcg;
1011
1012 if (!mm)
1013 return;
1014
1015 rcu_read_lock();
1016 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1017 if (unlikely(!memcg))
1018 goto out;
1019
1020 switch (idx) {
1021 case PGFAULT:
1022 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1023 break;
1024 case PGMAJFAULT:
1025 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1026 break;
1027 default:
1028 BUG();
1029 }
1030 out:
1031 rcu_read_unlock();
1032 }
1033 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1034
1035 /**
1036 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1037 * @zone: zone of the wanted lruvec
1038 * @mem: memcg of the wanted lruvec
1039 *
1040 * Returns the lru list vector holding pages for the given @zone and
1041 * @mem. This can be the global zone lruvec, if the memory controller
1042 * is disabled.
1043 */
1044 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1045 struct mem_cgroup *memcg)
1046 {
1047 struct mem_cgroup_per_zone *mz;
1048
1049 if (mem_cgroup_disabled())
1050 return &zone->lruvec;
1051
1052 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1053 return &mz->lruvec;
1054 }
1055
1056 /*
1057 * Following LRU functions are allowed to be used without PCG_LOCK.
1058 * Operations are called by routine of global LRU independently from memcg.
1059 * What we have to take care of here is validness of pc->mem_cgroup.
1060 *
1061 * Changes to pc->mem_cgroup happens when
1062 * 1. charge
1063 * 2. moving account
1064 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1065 * It is added to LRU before charge.
1066 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1067 * When moving account, the page is not on LRU. It's isolated.
1068 */
1069
1070 /**
1071 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1072 * @zone: zone of the page
1073 * @page: the page
1074 * @lru: current lru
1075 *
1076 * This function accounts for @page being added to @lru, and returns
1077 * the lruvec for the given @zone and the memcg @page is charged to.
1078 *
1079 * The callsite is then responsible for physically linking the page to
1080 * the returned lruvec->lists[@lru].
1081 */
1082 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1083 enum lru_list lru)
1084 {
1085 struct mem_cgroup_per_zone *mz;
1086 struct mem_cgroup *memcg;
1087 struct page_cgroup *pc;
1088
1089 if (mem_cgroup_disabled())
1090 return &zone->lruvec;
1091
1092 pc = lookup_page_cgroup(page);
1093 memcg = pc->mem_cgroup;
1094
1095 /*
1096 * Surreptitiously switch any uncharged page to root:
1097 * an uncharged page off lru does nothing to secure
1098 * its former mem_cgroup from sudden removal.
1099 *
1100 * Our caller holds lru_lock, and PageCgroupUsed is updated
1101 * under page_cgroup lock: between them, they make all uses
1102 * of pc->mem_cgroup safe.
1103 */
1104 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1105 pc->mem_cgroup = memcg = root_mem_cgroup;
1106
1107 mz = page_cgroup_zoneinfo(memcg, page);
1108 /* compound_order() is stabilized through lru_lock */
1109 mz->lru_size[lru] += 1 << compound_order(page);
1110 return &mz->lruvec;
1111 }
1112
1113 /**
1114 * mem_cgroup_lru_del_list - account for removing an lru page
1115 * @page: the page
1116 * @lru: target lru
1117 *
1118 * This function accounts for @page being removed from @lru.
1119 *
1120 * The callsite is then responsible for physically unlinking
1121 * @page->lru.
1122 */
1123 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1124 {
1125 struct mem_cgroup_per_zone *mz;
1126 struct mem_cgroup *memcg;
1127 struct page_cgroup *pc;
1128
1129 if (mem_cgroup_disabled())
1130 return;
1131
1132 pc = lookup_page_cgroup(page);
1133 memcg = pc->mem_cgroup;
1134 VM_BUG_ON(!memcg);
1135 mz = page_cgroup_zoneinfo(memcg, page);
1136 /* huge page split is done under lru_lock. so, we have no races. */
1137 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1138 mz->lru_size[lru] -= 1 << compound_order(page);
1139 }
1140
1141 /**
1142 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1143 * @zone: zone of the page
1144 * @page: the page
1145 * @from: current lru
1146 * @to: target lru
1147 *
1148 * This function accounts for @page being moved between the lrus @from
1149 * and @to, and returns the lruvec for the given @zone and the memcg
1150 * @page is charged to.
1151 *
1152 * The callsite is then responsible for physically relinking
1153 * @page->lru to the returned lruvec->lists[@to].
1154 */
1155 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1156 struct page *page,
1157 enum lru_list from,
1158 enum lru_list to)
1159 {
1160 /* XXX: Optimize this, especially for @from == @to */
1161 mem_cgroup_lru_del_list(page, from);
1162 return mem_cgroup_lru_add_list(zone, page, to);
1163 }
1164
1165 /*
1166 * Checks whether given mem is same or in the root_mem_cgroup's
1167 * hierarchy subtree
1168 */
1169 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1170 struct mem_cgroup *memcg)
1171 {
1172 if (root_memcg == memcg)
1173 return true;
1174 if (!root_memcg->use_hierarchy)
1175 return false;
1176 return css_is_ancestor(&memcg->css, &root_memcg->css);
1177 }
1178
1179 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1180 struct mem_cgroup *memcg)
1181 {
1182 bool ret;
1183
1184 rcu_read_lock();
1185 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1186 rcu_read_unlock();
1187 return ret;
1188 }
1189
1190 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1191 {
1192 int ret;
1193 struct mem_cgroup *curr = NULL;
1194 struct task_struct *p;
1195
1196 p = find_lock_task_mm(task);
1197 if (p) {
1198 curr = try_get_mem_cgroup_from_mm(p->mm);
1199 task_unlock(p);
1200 } else {
1201 /*
1202 * All threads may have already detached their mm's, but the oom
1203 * killer still needs to detect if they have already been oom
1204 * killed to prevent needlessly killing additional tasks.
1205 */
1206 task_lock(task);
1207 curr = mem_cgroup_from_task(task);
1208 if (curr)
1209 css_get(&curr->css);
1210 task_unlock(task);
1211 }
1212 if (!curr)
1213 return 0;
1214 /*
1215 * We should check use_hierarchy of "memcg" not "curr". Because checking
1216 * use_hierarchy of "curr" here make this function true if hierarchy is
1217 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1218 * hierarchy(even if use_hierarchy is disabled in "memcg").
1219 */
1220 ret = mem_cgroup_same_or_subtree(memcg, curr);
1221 css_put(&curr->css);
1222 return ret;
1223 }
1224
1225 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1226 {
1227 unsigned long inactive_ratio;
1228 unsigned long inactive;
1229 unsigned long active;
1230 unsigned long gb;
1231
1232 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1233 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1234
1235 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1236 if (gb)
1237 inactive_ratio = int_sqrt(10 * gb);
1238 else
1239 inactive_ratio = 1;
1240
1241 return inactive * inactive_ratio < active;
1242 }
1243
1244 int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
1245 {
1246 unsigned long active;
1247 unsigned long inactive;
1248
1249 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1250 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
1251
1252 return (active > inactive);
1253 }
1254
1255 struct zone_reclaim_stat *
1256 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1257 {
1258 struct page_cgroup *pc;
1259 struct mem_cgroup_per_zone *mz;
1260
1261 if (mem_cgroup_disabled())
1262 return NULL;
1263
1264 pc = lookup_page_cgroup(page);
1265 if (!PageCgroupUsed(pc))
1266 return NULL;
1267 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1268 smp_rmb();
1269 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1270 return &mz->lruvec.reclaim_stat;
1271 }
1272
1273 #define mem_cgroup_from_res_counter(counter, member) \
1274 container_of(counter, struct mem_cgroup, member)
1275
1276 /**
1277 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1278 * @mem: the memory cgroup
1279 *
1280 * Returns the maximum amount of memory @mem can be charged with, in
1281 * pages.
1282 */
1283 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1284 {
1285 unsigned long long margin;
1286
1287 margin = res_counter_margin(&memcg->res);
1288 if (do_swap_account)
1289 margin = min(margin, res_counter_margin(&memcg->memsw));
1290 return margin >> PAGE_SHIFT;
1291 }
1292
1293 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1294 {
1295 struct cgroup *cgrp = memcg->css.cgroup;
1296
1297 /* root ? */
1298 if (cgrp->parent == NULL)
1299 return vm_swappiness;
1300
1301 return memcg->swappiness;
1302 }
1303
1304 /*
1305 * memcg->moving_account is used for checking possibility that some thread is
1306 * calling move_account(). When a thread on CPU-A starts moving pages under
1307 * a memcg, other threads should check memcg->moving_account under
1308 * rcu_read_lock(), like this:
1309 *
1310 * CPU-A CPU-B
1311 * rcu_read_lock()
1312 * memcg->moving_account+1 if (memcg->mocing_account)
1313 * take heavy locks.
1314 * synchronize_rcu() update something.
1315 * rcu_read_unlock()
1316 * start move here.
1317 */
1318
1319 /* for quick checking without looking up memcg */
1320 atomic_t memcg_moving __read_mostly;
1321
1322 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1323 {
1324 atomic_inc(&memcg_moving);
1325 atomic_inc(&memcg->moving_account);
1326 synchronize_rcu();
1327 }
1328
1329 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1330 {
1331 /*
1332 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1333 * We check NULL in callee rather than caller.
1334 */
1335 if (memcg) {
1336 atomic_dec(&memcg_moving);
1337 atomic_dec(&memcg->moving_account);
1338 }
1339 }
1340
1341 /*
1342 * 2 routines for checking "mem" is under move_account() or not.
1343 *
1344 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1345 * is used for avoiding races in accounting. If true,
1346 * pc->mem_cgroup may be overwritten.
1347 *
1348 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1349 * under hierarchy of moving cgroups. This is for
1350 * waiting at hith-memory prressure caused by "move".
1351 */
1352
1353 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1354 {
1355 VM_BUG_ON(!rcu_read_lock_held());
1356 return atomic_read(&memcg->moving_account) > 0;
1357 }
1358
1359 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1360 {
1361 struct mem_cgroup *from;
1362 struct mem_cgroup *to;
1363 bool ret = false;
1364 /*
1365 * Unlike task_move routines, we access mc.to, mc.from not under
1366 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1367 */
1368 spin_lock(&mc.lock);
1369 from = mc.from;
1370 to = mc.to;
1371 if (!from)
1372 goto unlock;
1373
1374 ret = mem_cgroup_same_or_subtree(memcg, from)
1375 || mem_cgroup_same_or_subtree(memcg, to);
1376 unlock:
1377 spin_unlock(&mc.lock);
1378 return ret;
1379 }
1380
1381 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1382 {
1383 if (mc.moving_task && current != mc.moving_task) {
1384 if (mem_cgroup_under_move(memcg)) {
1385 DEFINE_WAIT(wait);
1386 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1387 /* moving charge context might have finished. */
1388 if (mc.moving_task)
1389 schedule();
1390 finish_wait(&mc.waitq, &wait);
1391 return true;
1392 }
1393 }
1394 return false;
1395 }
1396
1397 /*
1398 * Take this lock when
1399 * - a code tries to modify page's memcg while it's USED.
1400 * - a code tries to modify page state accounting in a memcg.
1401 * see mem_cgroup_stolen(), too.
1402 */
1403 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1404 unsigned long *flags)
1405 {
1406 spin_lock_irqsave(&memcg->move_lock, *flags);
1407 }
1408
1409 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1410 unsigned long *flags)
1411 {
1412 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1413 }
1414
1415 /**
1416 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1417 * @memcg: The memory cgroup that went over limit
1418 * @p: Task that is going to be killed
1419 *
1420 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1421 * enabled
1422 */
1423 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1424 {
1425 struct cgroup *task_cgrp;
1426 struct cgroup *mem_cgrp;
1427 /*
1428 * Need a buffer in BSS, can't rely on allocations. The code relies
1429 * on the assumption that OOM is serialized for memory controller.
1430 * If this assumption is broken, revisit this code.
1431 */
1432 static char memcg_name[PATH_MAX];
1433 int ret;
1434
1435 if (!memcg || !p)
1436 return;
1437
1438 rcu_read_lock();
1439
1440 mem_cgrp = memcg->css.cgroup;
1441 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1442
1443 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1444 if (ret < 0) {
1445 /*
1446 * Unfortunately, we are unable to convert to a useful name
1447 * But we'll still print out the usage information
1448 */
1449 rcu_read_unlock();
1450 goto done;
1451 }
1452 rcu_read_unlock();
1453
1454 printk(KERN_INFO "Task in %s killed", memcg_name);
1455
1456 rcu_read_lock();
1457 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1458 if (ret < 0) {
1459 rcu_read_unlock();
1460 goto done;
1461 }
1462 rcu_read_unlock();
1463
1464 /*
1465 * Continues from above, so we don't need an KERN_ level
1466 */
1467 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1468 done:
1469
1470 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1471 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1472 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1473 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1474 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1475 "failcnt %llu\n",
1476 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1477 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1478 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1479 }
1480
1481 /*
1482 * This function returns the number of memcg under hierarchy tree. Returns
1483 * 1(self count) if no children.
1484 */
1485 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1486 {
1487 int num = 0;
1488 struct mem_cgroup *iter;
1489
1490 for_each_mem_cgroup_tree(iter, memcg)
1491 num++;
1492 return num;
1493 }
1494
1495 /*
1496 * Return the memory (and swap, if configured) limit for a memcg.
1497 */
1498 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1499 {
1500 u64 limit;
1501 u64 memsw;
1502
1503 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1504 limit += total_swap_pages << PAGE_SHIFT;
1505
1506 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1507 /*
1508 * If memsw is finite and limits the amount of swap space available
1509 * to this memcg, return that limit.
1510 */
1511 return min(limit, memsw);
1512 }
1513
1514 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1515 gfp_t gfp_mask,
1516 unsigned long flags)
1517 {
1518 unsigned long total = 0;
1519 bool noswap = false;
1520 int loop;
1521
1522 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1523 noswap = true;
1524 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1525 noswap = true;
1526
1527 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1528 if (loop)
1529 drain_all_stock_async(memcg);
1530 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1531 /*
1532 * Allow limit shrinkers, which are triggered directly
1533 * by userspace, to catch signals and stop reclaim
1534 * after minimal progress, regardless of the margin.
1535 */
1536 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1537 break;
1538 if (mem_cgroup_margin(memcg))
1539 break;
1540 /*
1541 * If nothing was reclaimed after two attempts, there
1542 * may be no reclaimable pages in this hierarchy.
1543 */
1544 if (loop && !total)
1545 break;
1546 }
1547 return total;
1548 }
1549
1550 /**
1551 * test_mem_cgroup_node_reclaimable
1552 * @mem: the target memcg
1553 * @nid: the node ID to be checked.
1554 * @noswap : specify true here if the user wants flle only information.
1555 *
1556 * This function returns whether the specified memcg contains any
1557 * reclaimable pages on a node. Returns true if there are any reclaimable
1558 * pages in the node.
1559 */
1560 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1561 int nid, bool noswap)
1562 {
1563 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1564 return true;
1565 if (noswap || !total_swap_pages)
1566 return false;
1567 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1568 return true;
1569 return false;
1570
1571 }
1572 #if MAX_NUMNODES > 1
1573
1574 /*
1575 * Always updating the nodemask is not very good - even if we have an empty
1576 * list or the wrong list here, we can start from some node and traverse all
1577 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1578 *
1579 */
1580 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1581 {
1582 int nid;
1583 /*
1584 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1585 * pagein/pageout changes since the last update.
1586 */
1587 if (!atomic_read(&memcg->numainfo_events))
1588 return;
1589 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1590 return;
1591
1592 /* make a nodemask where this memcg uses memory from */
1593 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1594
1595 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1596
1597 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1598 node_clear(nid, memcg->scan_nodes);
1599 }
1600
1601 atomic_set(&memcg->numainfo_events, 0);
1602 atomic_set(&memcg->numainfo_updating, 0);
1603 }
1604
1605 /*
1606 * Selecting a node where we start reclaim from. Because what we need is just
1607 * reducing usage counter, start from anywhere is O,K. Considering
1608 * memory reclaim from current node, there are pros. and cons.
1609 *
1610 * Freeing memory from current node means freeing memory from a node which
1611 * we'll use or we've used. So, it may make LRU bad. And if several threads
1612 * hit limits, it will see a contention on a node. But freeing from remote
1613 * node means more costs for memory reclaim because of memory latency.
1614 *
1615 * Now, we use round-robin. Better algorithm is welcomed.
1616 */
1617 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1618 {
1619 int node;
1620
1621 mem_cgroup_may_update_nodemask(memcg);
1622 node = memcg->last_scanned_node;
1623
1624 node = next_node(node, memcg->scan_nodes);
1625 if (node == MAX_NUMNODES)
1626 node = first_node(memcg->scan_nodes);
1627 /*
1628 * We call this when we hit limit, not when pages are added to LRU.
1629 * No LRU may hold pages because all pages are UNEVICTABLE or
1630 * memcg is too small and all pages are not on LRU. In that case,
1631 * we use curret node.
1632 */
1633 if (unlikely(node == MAX_NUMNODES))
1634 node = numa_node_id();
1635
1636 memcg->last_scanned_node = node;
1637 return node;
1638 }
1639
1640 /*
1641 * Check all nodes whether it contains reclaimable pages or not.
1642 * For quick scan, we make use of scan_nodes. This will allow us to skip
1643 * unused nodes. But scan_nodes is lazily updated and may not cotain
1644 * enough new information. We need to do double check.
1645 */
1646 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1647 {
1648 int nid;
1649
1650 /*
1651 * quick check...making use of scan_node.
1652 * We can skip unused nodes.
1653 */
1654 if (!nodes_empty(memcg->scan_nodes)) {
1655 for (nid = first_node(memcg->scan_nodes);
1656 nid < MAX_NUMNODES;
1657 nid = next_node(nid, memcg->scan_nodes)) {
1658
1659 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1660 return true;
1661 }
1662 }
1663 /*
1664 * Check rest of nodes.
1665 */
1666 for_each_node_state(nid, N_HIGH_MEMORY) {
1667 if (node_isset(nid, memcg->scan_nodes))
1668 continue;
1669 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1670 return true;
1671 }
1672 return false;
1673 }
1674
1675 #else
1676 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1677 {
1678 return 0;
1679 }
1680
1681 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1682 {
1683 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1684 }
1685 #endif
1686
1687 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1688 struct zone *zone,
1689 gfp_t gfp_mask,
1690 unsigned long *total_scanned)
1691 {
1692 struct mem_cgroup *victim = NULL;
1693 int total = 0;
1694 int loop = 0;
1695 unsigned long excess;
1696 unsigned long nr_scanned;
1697 struct mem_cgroup_reclaim_cookie reclaim = {
1698 .zone = zone,
1699 .priority = 0,
1700 };
1701
1702 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1703
1704 while (1) {
1705 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1706 if (!victim) {
1707 loop++;
1708 if (loop >= 2) {
1709 /*
1710 * If we have not been able to reclaim
1711 * anything, it might because there are
1712 * no reclaimable pages under this hierarchy
1713 */
1714 if (!total)
1715 break;
1716 /*
1717 * We want to do more targeted reclaim.
1718 * excess >> 2 is not to excessive so as to
1719 * reclaim too much, nor too less that we keep
1720 * coming back to reclaim from this cgroup
1721 */
1722 if (total >= (excess >> 2) ||
1723 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1724 break;
1725 }
1726 continue;
1727 }
1728 if (!mem_cgroup_reclaimable(victim, false))
1729 continue;
1730 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1731 zone, &nr_scanned);
1732 *total_scanned += nr_scanned;
1733 if (!res_counter_soft_limit_excess(&root_memcg->res))
1734 break;
1735 }
1736 mem_cgroup_iter_break(root_memcg, victim);
1737 return total;
1738 }
1739
1740 /*
1741 * Check OOM-Killer is already running under our hierarchy.
1742 * If someone is running, return false.
1743 * Has to be called with memcg_oom_lock
1744 */
1745 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1746 {
1747 struct mem_cgroup *iter, *failed = NULL;
1748
1749 for_each_mem_cgroup_tree(iter, memcg) {
1750 if (iter->oom_lock) {
1751 /*
1752 * this subtree of our hierarchy is already locked
1753 * so we cannot give a lock.
1754 */
1755 failed = iter;
1756 mem_cgroup_iter_break(memcg, iter);
1757 break;
1758 } else
1759 iter->oom_lock = true;
1760 }
1761
1762 if (!failed)
1763 return true;
1764
1765 /*
1766 * OK, we failed to lock the whole subtree so we have to clean up
1767 * what we set up to the failing subtree
1768 */
1769 for_each_mem_cgroup_tree(iter, memcg) {
1770 if (iter == failed) {
1771 mem_cgroup_iter_break(memcg, iter);
1772 break;
1773 }
1774 iter->oom_lock = false;
1775 }
1776 return false;
1777 }
1778
1779 /*
1780 * Has to be called with memcg_oom_lock
1781 */
1782 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1783 {
1784 struct mem_cgroup *iter;
1785
1786 for_each_mem_cgroup_tree(iter, memcg)
1787 iter->oom_lock = false;
1788 return 0;
1789 }
1790
1791 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1792 {
1793 struct mem_cgroup *iter;
1794
1795 for_each_mem_cgroup_tree(iter, memcg)
1796 atomic_inc(&iter->under_oom);
1797 }
1798
1799 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1800 {
1801 struct mem_cgroup *iter;
1802
1803 /*
1804 * When a new child is created while the hierarchy is under oom,
1805 * mem_cgroup_oom_lock() may not be called. We have to use
1806 * atomic_add_unless() here.
1807 */
1808 for_each_mem_cgroup_tree(iter, memcg)
1809 atomic_add_unless(&iter->under_oom, -1, 0);
1810 }
1811
1812 static DEFINE_SPINLOCK(memcg_oom_lock);
1813 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1814
1815 struct oom_wait_info {
1816 struct mem_cgroup *memcg;
1817 wait_queue_t wait;
1818 };
1819
1820 static int memcg_oom_wake_function(wait_queue_t *wait,
1821 unsigned mode, int sync, void *arg)
1822 {
1823 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1824 struct mem_cgroup *oom_wait_memcg;
1825 struct oom_wait_info *oom_wait_info;
1826
1827 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1828 oom_wait_memcg = oom_wait_info->memcg;
1829
1830 /*
1831 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1832 * Then we can use css_is_ancestor without taking care of RCU.
1833 */
1834 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1835 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1836 return 0;
1837 return autoremove_wake_function(wait, mode, sync, arg);
1838 }
1839
1840 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1841 {
1842 /* for filtering, pass "memcg" as argument. */
1843 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1844 }
1845
1846 static void memcg_oom_recover(struct mem_cgroup *memcg)
1847 {
1848 if (memcg && atomic_read(&memcg->under_oom))
1849 memcg_wakeup_oom(memcg);
1850 }
1851
1852 /*
1853 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1854 */
1855 static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1856 int order)
1857 {
1858 struct oom_wait_info owait;
1859 bool locked, need_to_kill;
1860
1861 owait.memcg = memcg;
1862 owait.wait.flags = 0;
1863 owait.wait.func = memcg_oom_wake_function;
1864 owait.wait.private = current;
1865 INIT_LIST_HEAD(&owait.wait.task_list);
1866 need_to_kill = true;
1867 mem_cgroup_mark_under_oom(memcg);
1868
1869 /* At first, try to OOM lock hierarchy under memcg.*/
1870 spin_lock(&memcg_oom_lock);
1871 locked = mem_cgroup_oom_lock(memcg);
1872 /*
1873 * Even if signal_pending(), we can't quit charge() loop without
1874 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1875 * under OOM is always welcomed, use TASK_KILLABLE here.
1876 */
1877 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1878 if (!locked || memcg->oom_kill_disable)
1879 need_to_kill = false;
1880 if (locked)
1881 mem_cgroup_oom_notify(memcg);
1882 spin_unlock(&memcg_oom_lock);
1883
1884 if (need_to_kill) {
1885 finish_wait(&memcg_oom_waitq, &owait.wait);
1886 mem_cgroup_out_of_memory(memcg, mask, order);
1887 } else {
1888 schedule();
1889 finish_wait(&memcg_oom_waitq, &owait.wait);
1890 }
1891 spin_lock(&memcg_oom_lock);
1892 if (locked)
1893 mem_cgroup_oom_unlock(memcg);
1894 memcg_wakeup_oom(memcg);
1895 spin_unlock(&memcg_oom_lock);
1896
1897 mem_cgroup_unmark_under_oom(memcg);
1898
1899 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1900 return false;
1901 /* Give chance to dying process */
1902 schedule_timeout_uninterruptible(1);
1903 return true;
1904 }
1905
1906 /*
1907 * Currently used to update mapped file statistics, but the routine can be
1908 * generalized to update other statistics as well.
1909 *
1910 * Notes: Race condition
1911 *
1912 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1913 * it tends to be costly. But considering some conditions, we doesn't need
1914 * to do so _always_.
1915 *
1916 * Considering "charge", lock_page_cgroup() is not required because all
1917 * file-stat operations happen after a page is attached to radix-tree. There
1918 * are no race with "charge".
1919 *
1920 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1921 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1922 * if there are race with "uncharge". Statistics itself is properly handled
1923 * by flags.
1924 *
1925 * Considering "move", this is an only case we see a race. To make the race
1926 * small, we check mm->moving_account and detect there are possibility of race
1927 * If there is, we take a lock.
1928 */
1929
1930 void __mem_cgroup_begin_update_page_stat(struct page *page,
1931 bool *locked, unsigned long *flags)
1932 {
1933 struct mem_cgroup *memcg;
1934 struct page_cgroup *pc;
1935
1936 pc = lookup_page_cgroup(page);
1937 again:
1938 memcg = pc->mem_cgroup;
1939 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1940 return;
1941 /*
1942 * If this memory cgroup is not under account moving, we don't
1943 * need to take move_lock_page_cgroup(). Because we already hold
1944 * rcu_read_lock(), any calls to move_account will be delayed until
1945 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1946 */
1947 if (!mem_cgroup_stolen(memcg))
1948 return;
1949
1950 move_lock_mem_cgroup(memcg, flags);
1951 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1952 move_unlock_mem_cgroup(memcg, flags);
1953 goto again;
1954 }
1955 *locked = true;
1956 }
1957
1958 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1959 {
1960 struct page_cgroup *pc = lookup_page_cgroup(page);
1961
1962 /*
1963 * It's guaranteed that pc->mem_cgroup never changes while
1964 * lock is held because a routine modifies pc->mem_cgroup
1965 * should take move_lock_page_cgroup().
1966 */
1967 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1968 }
1969
1970 void mem_cgroup_update_page_stat(struct page *page,
1971 enum mem_cgroup_page_stat_item idx, int val)
1972 {
1973 struct mem_cgroup *memcg;
1974 struct page_cgroup *pc = lookup_page_cgroup(page);
1975 unsigned long uninitialized_var(flags);
1976
1977 if (mem_cgroup_disabled())
1978 return;
1979
1980 memcg = pc->mem_cgroup;
1981 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1982 return;
1983
1984 switch (idx) {
1985 case MEMCG_NR_FILE_MAPPED:
1986 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1987 break;
1988 default:
1989 BUG();
1990 }
1991
1992 this_cpu_add(memcg->stat->count[idx], val);
1993 }
1994
1995 /*
1996 * size of first charge trial. "32" comes from vmscan.c's magic value.
1997 * TODO: maybe necessary to use big numbers in big irons.
1998 */
1999 #define CHARGE_BATCH 32U
2000 struct memcg_stock_pcp {
2001 struct mem_cgroup *cached; /* this never be root cgroup */
2002 unsigned int nr_pages;
2003 struct work_struct work;
2004 unsigned long flags;
2005 #define FLUSHING_CACHED_CHARGE 0
2006 };
2007 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2008 static DEFINE_MUTEX(percpu_charge_mutex);
2009
2010 /*
2011 * Try to consume stocked charge on this cpu. If success, one page is consumed
2012 * from local stock and true is returned. If the stock is 0 or charges from a
2013 * cgroup which is not current target, returns false. This stock will be
2014 * refilled.
2015 */
2016 static bool consume_stock(struct mem_cgroup *memcg)
2017 {
2018 struct memcg_stock_pcp *stock;
2019 bool ret = true;
2020
2021 stock = &get_cpu_var(memcg_stock);
2022 if (memcg == stock->cached && stock->nr_pages)
2023 stock->nr_pages--;
2024 else /* need to call res_counter_charge */
2025 ret = false;
2026 put_cpu_var(memcg_stock);
2027 return ret;
2028 }
2029
2030 /*
2031 * Returns stocks cached in percpu to res_counter and reset cached information.
2032 */
2033 static void drain_stock(struct memcg_stock_pcp *stock)
2034 {
2035 struct mem_cgroup *old = stock->cached;
2036
2037 if (stock->nr_pages) {
2038 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2039
2040 res_counter_uncharge(&old->res, bytes);
2041 if (do_swap_account)
2042 res_counter_uncharge(&old->memsw, bytes);
2043 stock->nr_pages = 0;
2044 }
2045 stock->cached = NULL;
2046 }
2047
2048 /*
2049 * This must be called under preempt disabled or must be called by
2050 * a thread which is pinned to local cpu.
2051 */
2052 static void drain_local_stock(struct work_struct *dummy)
2053 {
2054 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2055 drain_stock(stock);
2056 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2057 }
2058
2059 /*
2060 * Cache charges(val) which is from res_counter, to local per_cpu area.
2061 * This will be consumed by consume_stock() function, later.
2062 */
2063 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2064 {
2065 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2066
2067 if (stock->cached != memcg) { /* reset if necessary */
2068 drain_stock(stock);
2069 stock->cached = memcg;
2070 }
2071 stock->nr_pages += nr_pages;
2072 put_cpu_var(memcg_stock);
2073 }
2074
2075 /*
2076 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2077 * of the hierarchy under it. sync flag says whether we should block
2078 * until the work is done.
2079 */
2080 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2081 {
2082 int cpu, curcpu;
2083
2084 /* Notify other cpus that system-wide "drain" is running */
2085 get_online_cpus();
2086 curcpu = get_cpu();
2087 for_each_online_cpu(cpu) {
2088 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2089 struct mem_cgroup *memcg;
2090
2091 memcg = stock->cached;
2092 if (!memcg || !stock->nr_pages)
2093 continue;
2094 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2095 continue;
2096 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2097 if (cpu == curcpu)
2098 drain_local_stock(&stock->work);
2099 else
2100 schedule_work_on(cpu, &stock->work);
2101 }
2102 }
2103 put_cpu();
2104
2105 if (!sync)
2106 goto out;
2107
2108 for_each_online_cpu(cpu) {
2109 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2110 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2111 flush_work(&stock->work);
2112 }
2113 out:
2114 put_online_cpus();
2115 }
2116
2117 /*
2118 * Tries to drain stocked charges in other cpus. This function is asynchronous
2119 * and just put a work per cpu for draining localy on each cpu. Caller can
2120 * expects some charges will be back to res_counter later but cannot wait for
2121 * it.
2122 */
2123 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2124 {
2125 /*
2126 * If someone calls draining, avoid adding more kworker runs.
2127 */
2128 if (!mutex_trylock(&percpu_charge_mutex))
2129 return;
2130 drain_all_stock(root_memcg, false);
2131 mutex_unlock(&percpu_charge_mutex);
2132 }
2133
2134 /* This is a synchronous drain interface. */
2135 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2136 {
2137 /* called when force_empty is called */
2138 mutex_lock(&percpu_charge_mutex);
2139 drain_all_stock(root_memcg, true);
2140 mutex_unlock(&percpu_charge_mutex);
2141 }
2142
2143 /*
2144 * This function drains percpu counter value from DEAD cpu and
2145 * move it to local cpu. Note that this function can be preempted.
2146 */
2147 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2148 {
2149 int i;
2150
2151 spin_lock(&memcg->pcp_counter_lock);
2152 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2153 long x = per_cpu(memcg->stat->count[i], cpu);
2154
2155 per_cpu(memcg->stat->count[i], cpu) = 0;
2156 memcg->nocpu_base.count[i] += x;
2157 }
2158 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2159 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2160
2161 per_cpu(memcg->stat->events[i], cpu) = 0;
2162 memcg->nocpu_base.events[i] += x;
2163 }
2164 spin_unlock(&memcg->pcp_counter_lock);
2165 }
2166
2167 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2168 unsigned long action,
2169 void *hcpu)
2170 {
2171 int cpu = (unsigned long)hcpu;
2172 struct memcg_stock_pcp *stock;
2173 struct mem_cgroup *iter;
2174
2175 if (action == CPU_ONLINE)
2176 return NOTIFY_OK;
2177
2178 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2179 return NOTIFY_OK;
2180
2181 for_each_mem_cgroup(iter)
2182 mem_cgroup_drain_pcp_counter(iter, cpu);
2183
2184 stock = &per_cpu(memcg_stock, cpu);
2185 drain_stock(stock);
2186 return NOTIFY_OK;
2187 }
2188
2189
2190 /* See __mem_cgroup_try_charge() for details */
2191 enum {
2192 CHARGE_OK, /* success */
2193 CHARGE_RETRY, /* need to retry but retry is not bad */
2194 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2195 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2196 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2197 };
2198
2199 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2200 unsigned int nr_pages, bool oom_check)
2201 {
2202 unsigned long csize = nr_pages * PAGE_SIZE;
2203 struct mem_cgroup *mem_over_limit;
2204 struct res_counter *fail_res;
2205 unsigned long flags = 0;
2206 int ret;
2207
2208 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2209
2210 if (likely(!ret)) {
2211 if (!do_swap_account)
2212 return CHARGE_OK;
2213 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2214 if (likely(!ret))
2215 return CHARGE_OK;
2216
2217 res_counter_uncharge(&memcg->res, csize);
2218 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2219 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2220 } else
2221 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2222 /*
2223 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2224 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2225 *
2226 * Never reclaim on behalf of optional batching, retry with a
2227 * single page instead.
2228 */
2229 if (nr_pages == CHARGE_BATCH)
2230 return CHARGE_RETRY;
2231
2232 if (!(gfp_mask & __GFP_WAIT))
2233 return CHARGE_WOULDBLOCK;
2234
2235 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2236 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2237 return CHARGE_RETRY;
2238 /*
2239 * Even though the limit is exceeded at this point, reclaim
2240 * may have been able to free some pages. Retry the charge
2241 * before killing the task.
2242 *
2243 * Only for regular pages, though: huge pages are rather
2244 * unlikely to succeed so close to the limit, and we fall back
2245 * to regular pages anyway in case of failure.
2246 */
2247 if (nr_pages == 1 && ret)
2248 return CHARGE_RETRY;
2249
2250 /*
2251 * At task move, charge accounts can be doubly counted. So, it's
2252 * better to wait until the end of task_move if something is going on.
2253 */
2254 if (mem_cgroup_wait_acct_move(mem_over_limit))
2255 return CHARGE_RETRY;
2256
2257 /* If we don't need to call oom-killer at el, return immediately */
2258 if (!oom_check)
2259 return CHARGE_NOMEM;
2260 /* check OOM */
2261 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2262 return CHARGE_OOM_DIE;
2263
2264 return CHARGE_RETRY;
2265 }
2266
2267 /*
2268 * __mem_cgroup_try_charge() does
2269 * 1. detect memcg to be charged against from passed *mm and *ptr,
2270 * 2. update res_counter
2271 * 3. call memory reclaim if necessary.
2272 *
2273 * In some special case, if the task is fatal, fatal_signal_pending() or
2274 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2275 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2276 * as possible without any hazards. 2: all pages should have a valid
2277 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2278 * pointer, that is treated as a charge to root_mem_cgroup.
2279 *
2280 * So __mem_cgroup_try_charge() will return
2281 * 0 ... on success, filling *ptr with a valid memcg pointer.
2282 * -ENOMEM ... charge failure because of resource limits.
2283 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2284 *
2285 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2286 * the oom-killer can be invoked.
2287 */
2288 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2289 gfp_t gfp_mask,
2290 unsigned int nr_pages,
2291 struct mem_cgroup **ptr,
2292 bool oom)
2293 {
2294 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2295 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2296 struct mem_cgroup *memcg = NULL;
2297 int ret;
2298
2299 /*
2300 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2301 * in system level. So, allow to go ahead dying process in addition to
2302 * MEMDIE process.
2303 */
2304 if (unlikely(test_thread_flag(TIF_MEMDIE)
2305 || fatal_signal_pending(current)))
2306 goto bypass;
2307
2308 /*
2309 * We always charge the cgroup the mm_struct belongs to.
2310 * The mm_struct's mem_cgroup changes on task migration if the
2311 * thread group leader migrates. It's possible that mm is not
2312 * set, if so charge the init_mm (happens for pagecache usage).
2313 */
2314 if (!*ptr && !mm)
2315 *ptr = root_mem_cgroup;
2316 again:
2317 if (*ptr) { /* css should be a valid one */
2318 memcg = *ptr;
2319 VM_BUG_ON(css_is_removed(&memcg->css));
2320 if (mem_cgroup_is_root(memcg))
2321 goto done;
2322 if (nr_pages == 1 && consume_stock(memcg))
2323 goto done;
2324 css_get(&memcg->css);
2325 } else {
2326 struct task_struct *p;
2327
2328 rcu_read_lock();
2329 p = rcu_dereference(mm->owner);
2330 /*
2331 * Because we don't have task_lock(), "p" can exit.
2332 * In that case, "memcg" can point to root or p can be NULL with
2333 * race with swapoff. Then, we have small risk of mis-accouning.
2334 * But such kind of mis-account by race always happens because
2335 * we don't have cgroup_mutex(). It's overkill and we allo that
2336 * small race, here.
2337 * (*) swapoff at el will charge against mm-struct not against
2338 * task-struct. So, mm->owner can be NULL.
2339 */
2340 memcg = mem_cgroup_from_task(p);
2341 if (!memcg)
2342 memcg = root_mem_cgroup;
2343 if (mem_cgroup_is_root(memcg)) {
2344 rcu_read_unlock();
2345 goto done;
2346 }
2347 if (nr_pages == 1 && consume_stock(memcg)) {
2348 /*
2349 * It seems dagerous to access memcg without css_get().
2350 * But considering how consume_stok works, it's not
2351 * necessary. If consume_stock success, some charges
2352 * from this memcg are cached on this cpu. So, we
2353 * don't need to call css_get()/css_tryget() before
2354 * calling consume_stock().
2355 */
2356 rcu_read_unlock();
2357 goto done;
2358 }
2359 /* after here, we may be blocked. we need to get refcnt */
2360 if (!css_tryget(&memcg->css)) {
2361 rcu_read_unlock();
2362 goto again;
2363 }
2364 rcu_read_unlock();
2365 }
2366
2367 do {
2368 bool oom_check;
2369
2370 /* If killed, bypass charge */
2371 if (fatal_signal_pending(current)) {
2372 css_put(&memcg->css);
2373 goto bypass;
2374 }
2375
2376 oom_check = false;
2377 if (oom && !nr_oom_retries) {
2378 oom_check = true;
2379 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2380 }
2381
2382 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2383 switch (ret) {
2384 case CHARGE_OK:
2385 break;
2386 case CHARGE_RETRY: /* not in OOM situation but retry */
2387 batch = nr_pages;
2388 css_put(&memcg->css);
2389 memcg = NULL;
2390 goto again;
2391 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2392 css_put(&memcg->css);
2393 goto nomem;
2394 case CHARGE_NOMEM: /* OOM routine works */
2395 if (!oom) {
2396 css_put(&memcg->css);
2397 goto nomem;
2398 }
2399 /* If oom, we never return -ENOMEM */
2400 nr_oom_retries--;
2401 break;
2402 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2403 css_put(&memcg->css);
2404 goto bypass;
2405 }
2406 } while (ret != CHARGE_OK);
2407
2408 if (batch > nr_pages)
2409 refill_stock(memcg, batch - nr_pages);
2410 css_put(&memcg->css);
2411 done:
2412 *ptr = memcg;
2413 return 0;
2414 nomem:
2415 *ptr = NULL;
2416 return -ENOMEM;
2417 bypass:
2418 *ptr = root_mem_cgroup;
2419 return -EINTR;
2420 }
2421
2422 /*
2423 * Somemtimes we have to undo a charge we got by try_charge().
2424 * This function is for that and do uncharge, put css's refcnt.
2425 * gotten by try_charge().
2426 */
2427 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2428 unsigned int nr_pages)
2429 {
2430 if (!mem_cgroup_is_root(memcg)) {
2431 unsigned long bytes = nr_pages * PAGE_SIZE;
2432
2433 res_counter_uncharge(&memcg->res, bytes);
2434 if (do_swap_account)
2435 res_counter_uncharge(&memcg->memsw, bytes);
2436 }
2437 }
2438
2439 /*
2440 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2441 * This is useful when moving usage to parent cgroup.
2442 */
2443 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2444 unsigned int nr_pages)
2445 {
2446 unsigned long bytes = nr_pages * PAGE_SIZE;
2447
2448 if (mem_cgroup_is_root(memcg))
2449 return;
2450
2451 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2452 if (do_swap_account)
2453 res_counter_uncharge_until(&memcg->memsw,
2454 memcg->memsw.parent, bytes);
2455 }
2456
2457 /*
2458 * A helper function to get mem_cgroup from ID. must be called under
2459 * rcu_read_lock(). The caller must check css_is_removed() or some if
2460 * it's concern. (dropping refcnt from swap can be called against removed
2461 * memcg.)
2462 */
2463 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2464 {
2465 struct cgroup_subsys_state *css;
2466
2467 /* ID 0 is unused ID */
2468 if (!id)
2469 return NULL;
2470 css = css_lookup(&mem_cgroup_subsys, id);
2471 if (!css)
2472 return NULL;
2473 return container_of(css, struct mem_cgroup, css);
2474 }
2475
2476 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2477 {
2478 struct mem_cgroup *memcg = NULL;
2479 struct page_cgroup *pc;
2480 unsigned short id;
2481 swp_entry_t ent;
2482
2483 VM_BUG_ON(!PageLocked(page));
2484
2485 pc = lookup_page_cgroup(page);
2486 lock_page_cgroup(pc);
2487 if (PageCgroupUsed(pc)) {
2488 memcg = pc->mem_cgroup;
2489 if (memcg && !css_tryget(&memcg->css))
2490 memcg = NULL;
2491 } else if (PageSwapCache(page)) {
2492 ent.val = page_private(page);
2493 id = lookup_swap_cgroup_id(ent);
2494 rcu_read_lock();
2495 memcg = mem_cgroup_lookup(id);
2496 if (memcg && !css_tryget(&memcg->css))
2497 memcg = NULL;
2498 rcu_read_unlock();
2499 }
2500 unlock_page_cgroup(pc);
2501 return memcg;
2502 }
2503
2504 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2505 struct page *page,
2506 unsigned int nr_pages,
2507 enum charge_type ctype,
2508 bool lrucare)
2509 {
2510 struct page_cgroup *pc = lookup_page_cgroup(page);
2511 struct zone *uninitialized_var(zone);
2512 bool was_on_lru = false;
2513 bool anon;
2514
2515 lock_page_cgroup(pc);
2516 if (unlikely(PageCgroupUsed(pc))) {
2517 unlock_page_cgroup(pc);
2518 __mem_cgroup_cancel_charge(memcg, nr_pages);
2519 return;
2520 }
2521 /*
2522 * we don't need page_cgroup_lock about tail pages, becase they are not
2523 * accessed by any other context at this point.
2524 */
2525
2526 /*
2527 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2528 * may already be on some other mem_cgroup's LRU. Take care of it.
2529 */
2530 if (lrucare) {
2531 zone = page_zone(page);
2532 spin_lock_irq(&zone->lru_lock);
2533 if (PageLRU(page)) {
2534 ClearPageLRU(page);
2535 del_page_from_lru_list(zone, page, page_lru(page));
2536 was_on_lru = true;
2537 }
2538 }
2539
2540 pc->mem_cgroup = memcg;
2541 /*
2542 * We access a page_cgroup asynchronously without lock_page_cgroup().
2543 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2544 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2545 * before USED bit, we need memory barrier here.
2546 * See mem_cgroup_add_lru_list(), etc.
2547 */
2548 smp_wmb();
2549 SetPageCgroupUsed(pc);
2550
2551 if (lrucare) {
2552 if (was_on_lru) {
2553 VM_BUG_ON(PageLRU(page));
2554 SetPageLRU(page);
2555 add_page_to_lru_list(zone, page, page_lru(page));
2556 }
2557 spin_unlock_irq(&zone->lru_lock);
2558 }
2559
2560 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2561 anon = true;
2562 else
2563 anon = false;
2564
2565 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2566 unlock_page_cgroup(pc);
2567
2568 /*
2569 * "charge_statistics" updated event counter. Then, check it.
2570 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2571 * if they exceeds softlimit.
2572 */
2573 memcg_check_events(memcg, page);
2574 }
2575
2576 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2577
2578 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
2579 /*
2580 * Because tail pages are not marked as "used", set it. We're under
2581 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2582 * charge/uncharge will be never happen and move_account() is done under
2583 * compound_lock(), so we don't have to take care of races.
2584 */
2585 void mem_cgroup_split_huge_fixup(struct page *head)
2586 {
2587 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2588 struct page_cgroup *pc;
2589 int i;
2590
2591 if (mem_cgroup_disabled())
2592 return;
2593 for (i = 1; i < HPAGE_PMD_NR; i++) {
2594 pc = head_pc + i;
2595 pc->mem_cgroup = head_pc->mem_cgroup;
2596 smp_wmb();/* see __commit_charge() */
2597 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2598 }
2599 }
2600 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2601
2602 /**
2603 * mem_cgroup_move_account - move account of the page
2604 * @page: the page
2605 * @nr_pages: number of regular pages (>1 for huge pages)
2606 * @pc: page_cgroup of the page.
2607 * @from: mem_cgroup which the page is moved from.
2608 * @to: mem_cgroup which the page is moved to. @from != @to.
2609 *
2610 * The caller must confirm following.
2611 * - page is not on LRU (isolate_page() is useful.)
2612 * - compound_lock is held when nr_pages > 1
2613 *
2614 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2615 * from old cgroup.
2616 */
2617 static int mem_cgroup_move_account(struct page *page,
2618 unsigned int nr_pages,
2619 struct page_cgroup *pc,
2620 struct mem_cgroup *from,
2621 struct mem_cgroup *to)
2622 {
2623 unsigned long flags;
2624 int ret;
2625 bool anon = PageAnon(page);
2626
2627 VM_BUG_ON(from == to);
2628 VM_BUG_ON(PageLRU(page));
2629 /*
2630 * The page is isolated from LRU. So, collapse function
2631 * will not handle this page. But page splitting can happen.
2632 * Do this check under compound_page_lock(). The caller should
2633 * hold it.
2634 */
2635 ret = -EBUSY;
2636 if (nr_pages > 1 && !PageTransHuge(page))
2637 goto out;
2638
2639 lock_page_cgroup(pc);
2640
2641 ret = -EINVAL;
2642 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2643 goto unlock;
2644
2645 move_lock_mem_cgroup(from, &flags);
2646
2647 if (!anon && page_mapped(page)) {
2648 /* Update mapped_file data for mem_cgroup */
2649 preempt_disable();
2650 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2651 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2652 preempt_enable();
2653 }
2654 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2655
2656 /* caller should have done css_get */
2657 pc->mem_cgroup = to;
2658 mem_cgroup_charge_statistics(to, anon, nr_pages);
2659 /*
2660 * We charges against "to" which may not have any tasks. Then, "to"
2661 * can be under rmdir(). But in current implementation, caller of
2662 * this function is just force_empty() and move charge, so it's
2663 * guaranteed that "to" is never removed. So, we don't check rmdir
2664 * status here.
2665 */
2666 move_unlock_mem_cgroup(from, &flags);
2667 ret = 0;
2668 unlock:
2669 unlock_page_cgroup(pc);
2670 /*
2671 * check events
2672 */
2673 memcg_check_events(to, page);
2674 memcg_check_events(from, page);
2675 out:
2676 return ret;
2677 }
2678
2679 /*
2680 * move charges to its parent.
2681 */
2682
2683 static int mem_cgroup_move_parent(struct page *page,
2684 struct page_cgroup *pc,
2685 struct mem_cgroup *child,
2686 gfp_t gfp_mask)
2687 {
2688 struct mem_cgroup *parent;
2689 unsigned int nr_pages;
2690 unsigned long uninitialized_var(flags);
2691 int ret;
2692
2693 /* Is ROOT ? */
2694 if (mem_cgroup_is_root(child))
2695 return -EINVAL;
2696
2697 ret = -EBUSY;
2698 if (!get_page_unless_zero(page))
2699 goto out;
2700 if (isolate_lru_page(page))
2701 goto put;
2702
2703 nr_pages = hpage_nr_pages(page);
2704
2705 parent = parent_mem_cgroup(child);
2706 /*
2707 * If no parent, move charges to root cgroup.
2708 */
2709 if (!parent)
2710 parent = root_mem_cgroup;
2711
2712 if (nr_pages > 1)
2713 flags = compound_lock_irqsave(page);
2714
2715 ret = mem_cgroup_move_account(page, nr_pages,
2716 pc, child, parent);
2717 if (!ret)
2718 __mem_cgroup_cancel_local_charge(child, nr_pages);
2719
2720 if (nr_pages > 1)
2721 compound_unlock_irqrestore(page, flags);
2722 putback_lru_page(page);
2723 put:
2724 put_page(page);
2725 out:
2726 return ret;
2727 }
2728
2729 /*
2730 * Charge the memory controller for page usage.
2731 * Return
2732 * 0 if the charge was successful
2733 * < 0 if the cgroup is over its limit
2734 */
2735 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2736 gfp_t gfp_mask, enum charge_type ctype)
2737 {
2738 struct mem_cgroup *memcg = NULL;
2739 unsigned int nr_pages = 1;
2740 bool oom = true;
2741 int ret;
2742
2743 if (PageTransHuge(page)) {
2744 nr_pages <<= compound_order(page);
2745 VM_BUG_ON(!PageTransHuge(page));
2746 /*
2747 * Never OOM-kill a process for a huge page. The
2748 * fault handler will fall back to regular pages.
2749 */
2750 oom = false;
2751 }
2752
2753 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2754 if (ret == -ENOMEM)
2755 return ret;
2756 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2757 return 0;
2758 }
2759
2760 int mem_cgroup_newpage_charge(struct page *page,
2761 struct mm_struct *mm, gfp_t gfp_mask)
2762 {
2763 if (mem_cgroup_disabled())
2764 return 0;
2765 VM_BUG_ON(page_mapped(page));
2766 VM_BUG_ON(page->mapping && !PageAnon(page));
2767 VM_BUG_ON(!mm);
2768 return mem_cgroup_charge_common(page, mm, gfp_mask,
2769 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2770 }
2771
2772 static void
2773 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2774 enum charge_type ctype);
2775
2776 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2777 gfp_t gfp_mask)
2778 {
2779 struct mem_cgroup *memcg = NULL;
2780 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2781 int ret;
2782
2783 if (mem_cgroup_disabled())
2784 return 0;
2785 if (PageCompound(page))
2786 return 0;
2787
2788 if (unlikely(!mm))
2789 mm = &init_mm;
2790 if (!page_is_file_cache(page))
2791 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2792
2793 if (!PageSwapCache(page))
2794 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2795 else { /* page is swapcache/shmem */
2796 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2797 if (!ret)
2798 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2799 }
2800 return ret;
2801 }
2802
2803 /*
2804 * While swap-in, try_charge -> commit or cancel, the page is locked.
2805 * And when try_charge() successfully returns, one refcnt to memcg without
2806 * struct page_cgroup is acquired. This refcnt will be consumed by
2807 * "commit()" or removed by "cancel()"
2808 */
2809 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2810 struct page *page,
2811 gfp_t mask, struct mem_cgroup **memcgp)
2812 {
2813 struct mem_cgroup *memcg;
2814 int ret;
2815
2816 *memcgp = NULL;
2817
2818 if (mem_cgroup_disabled())
2819 return 0;
2820
2821 if (!do_swap_account)
2822 goto charge_cur_mm;
2823 /*
2824 * A racing thread's fault, or swapoff, may have already updated
2825 * the pte, and even removed page from swap cache: in those cases
2826 * do_swap_page()'s pte_same() test will fail; but there's also a
2827 * KSM case which does need to charge the page.
2828 */
2829 if (!PageSwapCache(page))
2830 goto charge_cur_mm;
2831 memcg = try_get_mem_cgroup_from_page(page);
2832 if (!memcg)
2833 goto charge_cur_mm;
2834 *memcgp = memcg;
2835 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2836 css_put(&memcg->css);
2837 if (ret == -EINTR)
2838 ret = 0;
2839 return ret;
2840 charge_cur_mm:
2841 if (unlikely(!mm))
2842 mm = &init_mm;
2843 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2844 if (ret == -EINTR)
2845 ret = 0;
2846 return ret;
2847 }
2848
2849 static void
2850 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2851 enum charge_type ctype)
2852 {
2853 if (mem_cgroup_disabled())
2854 return;
2855 if (!memcg)
2856 return;
2857 cgroup_exclude_rmdir(&memcg->css);
2858
2859 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2860 /*
2861 * Now swap is on-memory. This means this page may be
2862 * counted both as mem and swap....double count.
2863 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2864 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2865 * may call delete_from_swap_cache() before reach here.
2866 */
2867 if (do_swap_account && PageSwapCache(page)) {
2868 swp_entry_t ent = {.val = page_private(page)};
2869 mem_cgroup_uncharge_swap(ent);
2870 }
2871 /*
2872 * At swapin, we may charge account against cgroup which has no tasks.
2873 * So, rmdir()->pre_destroy() can be called while we do this charge.
2874 * In that case, we need to call pre_destroy() again. check it here.
2875 */
2876 cgroup_release_and_wakeup_rmdir(&memcg->css);
2877 }
2878
2879 void mem_cgroup_commit_charge_swapin(struct page *page,
2880 struct mem_cgroup *memcg)
2881 {
2882 __mem_cgroup_commit_charge_swapin(page, memcg,
2883 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2884 }
2885
2886 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2887 {
2888 if (mem_cgroup_disabled())
2889 return;
2890 if (!memcg)
2891 return;
2892 __mem_cgroup_cancel_charge(memcg, 1);
2893 }
2894
2895 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2896 unsigned int nr_pages,
2897 const enum charge_type ctype)
2898 {
2899 struct memcg_batch_info *batch = NULL;
2900 bool uncharge_memsw = true;
2901
2902 /* If swapout, usage of swap doesn't decrease */
2903 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2904 uncharge_memsw = false;
2905
2906 batch = &current->memcg_batch;
2907 /*
2908 * In usual, we do css_get() when we remember memcg pointer.
2909 * But in this case, we keep res->usage until end of a series of
2910 * uncharges. Then, it's ok to ignore memcg's refcnt.
2911 */
2912 if (!batch->memcg)
2913 batch->memcg = memcg;
2914 /*
2915 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2916 * In those cases, all pages freed continuously can be expected to be in
2917 * the same cgroup and we have chance to coalesce uncharges.
2918 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2919 * because we want to do uncharge as soon as possible.
2920 */
2921
2922 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2923 goto direct_uncharge;
2924
2925 if (nr_pages > 1)
2926 goto direct_uncharge;
2927
2928 /*
2929 * In typical case, batch->memcg == mem. This means we can
2930 * merge a series of uncharges to an uncharge of res_counter.
2931 * If not, we uncharge res_counter ony by one.
2932 */
2933 if (batch->memcg != memcg)
2934 goto direct_uncharge;
2935 /* remember freed charge and uncharge it later */
2936 batch->nr_pages++;
2937 if (uncharge_memsw)
2938 batch->memsw_nr_pages++;
2939 return;
2940 direct_uncharge:
2941 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2942 if (uncharge_memsw)
2943 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2944 if (unlikely(batch->memcg != memcg))
2945 memcg_oom_recover(memcg);
2946 }
2947
2948 /*
2949 * uncharge if !page_mapped(page)
2950 */
2951 static struct mem_cgroup *
2952 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2953 {
2954 struct mem_cgroup *memcg = NULL;
2955 unsigned int nr_pages = 1;
2956 struct page_cgroup *pc;
2957 bool anon;
2958
2959 if (mem_cgroup_disabled())
2960 return NULL;
2961
2962 if (PageSwapCache(page))
2963 return NULL;
2964
2965 if (PageTransHuge(page)) {
2966 nr_pages <<= compound_order(page);
2967 VM_BUG_ON(!PageTransHuge(page));
2968 }
2969 /*
2970 * Check if our page_cgroup is valid
2971 */
2972 pc = lookup_page_cgroup(page);
2973 if (unlikely(!PageCgroupUsed(pc)))
2974 return NULL;
2975
2976 lock_page_cgroup(pc);
2977
2978 memcg = pc->mem_cgroup;
2979
2980 if (!PageCgroupUsed(pc))
2981 goto unlock_out;
2982
2983 anon = PageAnon(page);
2984
2985 switch (ctype) {
2986 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2987 /*
2988 * Generally PageAnon tells if it's the anon statistics to be
2989 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2990 * used before page reached the stage of being marked PageAnon.
2991 */
2992 anon = true;
2993 /* fallthrough */
2994 case MEM_CGROUP_CHARGE_TYPE_DROP:
2995 /* See mem_cgroup_prepare_migration() */
2996 if (page_mapped(page) || PageCgroupMigration(pc))
2997 goto unlock_out;
2998 break;
2999 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3000 if (!PageAnon(page)) { /* Shared memory */
3001 if (page->mapping && !page_is_file_cache(page))
3002 goto unlock_out;
3003 } else if (page_mapped(page)) /* Anon */
3004 goto unlock_out;
3005 break;
3006 default:
3007 break;
3008 }
3009
3010 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3011
3012 ClearPageCgroupUsed(pc);
3013 /*
3014 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3015 * freed from LRU. This is safe because uncharged page is expected not
3016 * to be reused (freed soon). Exception is SwapCache, it's handled by
3017 * special functions.
3018 */
3019
3020 unlock_page_cgroup(pc);
3021 /*
3022 * even after unlock, we have memcg->res.usage here and this memcg
3023 * will never be freed.
3024 */
3025 memcg_check_events(memcg, page);
3026 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3027 mem_cgroup_swap_statistics(memcg, true);
3028 mem_cgroup_get(memcg);
3029 }
3030 if (!mem_cgroup_is_root(memcg))
3031 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3032
3033 return memcg;
3034
3035 unlock_out:
3036 unlock_page_cgroup(pc);
3037 return NULL;
3038 }
3039
3040 void mem_cgroup_uncharge_page(struct page *page)
3041 {
3042 /* early check. */
3043 if (page_mapped(page))
3044 return;
3045 VM_BUG_ON(page->mapping && !PageAnon(page));
3046 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3047 }
3048
3049 void mem_cgroup_uncharge_cache_page(struct page *page)
3050 {
3051 VM_BUG_ON(page_mapped(page));
3052 VM_BUG_ON(page->mapping);
3053 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3054 }
3055
3056 /*
3057 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3058 * In that cases, pages are freed continuously and we can expect pages
3059 * are in the same memcg. All these calls itself limits the number of
3060 * pages freed at once, then uncharge_start/end() is called properly.
3061 * This may be called prural(2) times in a context,
3062 */
3063
3064 void mem_cgroup_uncharge_start(void)
3065 {
3066 current->memcg_batch.do_batch++;
3067 /* We can do nest. */
3068 if (current->memcg_batch.do_batch == 1) {
3069 current->memcg_batch.memcg = NULL;
3070 current->memcg_batch.nr_pages = 0;
3071 current->memcg_batch.memsw_nr_pages = 0;
3072 }
3073 }
3074
3075 void mem_cgroup_uncharge_end(void)
3076 {
3077 struct memcg_batch_info *batch = &current->memcg_batch;
3078
3079 if (!batch->do_batch)
3080 return;
3081
3082 batch->do_batch--;
3083 if (batch->do_batch) /* If stacked, do nothing. */
3084 return;
3085
3086 if (!batch->memcg)
3087 return;
3088 /*
3089 * This "batch->memcg" is valid without any css_get/put etc...
3090 * bacause we hide charges behind us.
3091 */
3092 if (batch->nr_pages)
3093 res_counter_uncharge(&batch->memcg->res,
3094 batch->nr_pages * PAGE_SIZE);
3095 if (batch->memsw_nr_pages)
3096 res_counter_uncharge(&batch->memcg->memsw,
3097 batch->memsw_nr_pages * PAGE_SIZE);
3098 memcg_oom_recover(batch->memcg);
3099 /* forget this pointer (for sanity check) */
3100 batch->memcg = NULL;
3101 }
3102
3103 #ifdef CONFIG_SWAP
3104 /*
3105 * called after __delete_from_swap_cache() and drop "page" account.
3106 * memcg information is recorded to swap_cgroup of "ent"
3107 */
3108 void
3109 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3110 {
3111 struct mem_cgroup *memcg;
3112 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3113
3114 if (!swapout) /* this was a swap cache but the swap is unused ! */
3115 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3116
3117 memcg = __mem_cgroup_uncharge_common(page, ctype);
3118
3119 /*
3120 * record memcg information, if swapout && memcg != NULL,
3121 * mem_cgroup_get() was called in uncharge().
3122 */
3123 if (do_swap_account && swapout && memcg)
3124 swap_cgroup_record(ent, css_id(&memcg->css));
3125 }
3126 #endif
3127
3128 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3129 /*
3130 * called from swap_entry_free(). remove record in swap_cgroup and
3131 * uncharge "memsw" account.
3132 */
3133 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3134 {
3135 struct mem_cgroup *memcg;
3136 unsigned short id;
3137
3138 if (!do_swap_account)
3139 return;
3140
3141 id = swap_cgroup_record(ent, 0);
3142 rcu_read_lock();
3143 memcg = mem_cgroup_lookup(id);
3144 if (memcg) {
3145 /*
3146 * We uncharge this because swap is freed.
3147 * This memcg can be obsolete one. We avoid calling css_tryget
3148 */
3149 if (!mem_cgroup_is_root(memcg))
3150 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3151 mem_cgroup_swap_statistics(memcg, false);
3152 mem_cgroup_put(memcg);
3153 }
3154 rcu_read_unlock();
3155 }
3156
3157 /**
3158 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3159 * @entry: swap entry to be moved
3160 * @from: mem_cgroup which the entry is moved from
3161 * @to: mem_cgroup which the entry is moved to
3162 *
3163 * It succeeds only when the swap_cgroup's record for this entry is the same
3164 * as the mem_cgroup's id of @from.
3165 *
3166 * Returns 0 on success, -EINVAL on failure.
3167 *
3168 * The caller must have charged to @to, IOW, called res_counter_charge() about
3169 * both res and memsw, and called css_get().
3170 */
3171 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3172 struct mem_cgroup *from, struct mem_cgroup *to)
3173 {
3174 unsigned short old_id, new_id;
3175
3176 old_id = css_id(&from->css);
3177 new_id = css_id(&to->css);
3178
3179 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3180 mem_cgroup_swap_statistics(from, false);
3181 mem_cgroup_swap_statistics(to, true);
3182 /*
3183 * This function is only called from task migration context now.
3184 * It postpones res_counter and refcount handling till the end
3185 * of task migration(mem_cgroup_clear_mc()) for performance
3186 * improvement. But we cannot postpone mem_cgroup_get(to)
3187 * because if the process that has been moved to @to does
3188 * swap-in, the refcount of @to might be decreased to 0.
3189 */
3190 mem_cgroup_get(to);
3191 return 0;
3192 }
3193 return -EINVAL;
3194 }
3195 #else
3196 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3197 struct mem_cgroup *from, struct mem_cgroup *to)
3198 {
3199 return -EINVAL;
3200 }
3201 #endif
3202
3203 /*
3204 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3205 * page belongs to.
3206 */
3207 int mem_cgroup_prepare_migration(struct page *page,
3208 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3209 {
3210 struct mem_cgroup *memcg = NULL;
3211 struct page_cgroup *pc;
3212 enum charge_type ctype;
3213 int ret = 0;
3214
3215 *memcgp = NULL;
3216
3217 VM_BUG_ON(PageTransHuge(page));
3218 if (mem_cgroup_disabled())
3219 return 0;
3220
3221 pc = lookup_page_cgroup(page);
3222 lock_page_cgroup(pc);
3223 if (PageCgroupUsed(pc)) {
3224 memcg = pc->mem_cgroup;
3225 css_get(&memcg->css);
3226 /*
3227 * At migrating an anonymous page, its mapcount goes down
3228 * to 0 and uncharge() will be called. But, even if it's fully
3229 * unmapped, migration may fail and this page has to be
3230 * charged again. We set MIGRATION flag here and delay uncharge
3231 * until end_migration() is called
3232 *
3233 * Corner Case Thinking
3234 * A)
3235 * When the old page was mapped as Anon and it's unmap-and-freed
3236 * while migration was ongoing.
3237 * If unmap finds the old page, uncharge() of it will be delayed
3238 * until end_migration(). If unmap finds a new page, it's
3239 * uncharged when it make mapcount to be 1->0. If unmap code
3240 * finds swap_migration_entry, the new page will not be mapped
3241 * and end_migration() will find it(mapcount==0).
3242 *
3243 * B)
3244 * When the old page was mapped but migraion fails, the kernel
3245 * remaps it. A charge for it is kept by MIGRATION flag even
3246 * if mapcount goes down to 0. We can do remap successfully
3247 * without charging it again.
3248 *
3249 * C)
3250 * The "old" page is under lock_page() until the end of
3251 * migration, so, the old page itself will not be swapped-out.
3252 * If the new page is swapped out before end_migraton, our
3253 * hook to usual swap-out path will catch the event.
3254 */
3255 if (PageAnon(page))
3256 SetPageCgroupMigration(pc);
3257 }
3258 unlock_page_cgroup(pc);
3259 /*
3260 * If the page is not charged at this point,
3261 * we return here.
3262 */
3263 if (!memcg)
3264 return 0;
3265
3266 *memcgp = memcg;
3267 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3268 css_put(&memcg->css);/* drop extra refcnt */
3269 if (ret) {
3270 if (PageAnon(page)) {
3271 lock_page_cgroup(pc);
3272 ClearPageCgroupMigration(pc);
3273 unlock_page_cgroup(pc);
3274 /*
3275 * The old page may be fully unmapped while we kept it.
3276 */
3277 mem_cgroup_uncharge_page(page);
3278 }
3279 /* we'll need to revisit this error code (we have -EINTR) */
3280 return -ENOMEM;
3281 }
3282 /*
3283 * We charge new page before it's used/mapped. So, even if unlock_page()
3284 * is called before end_migration, we can catch all events on this new
3285 * page. In the case new page is migrated but not remapped, new page's
3286 * mapcount will be finally 0 and we call uncharge in end_migration().
3287 */
3288 if (PageAnon(page))
3289 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3290 else if (page_is_file_cache(page))
3291 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3292 else
3293 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3294 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3295 return ret;
3296 }
3297
3298 /* remove redundant charge if migration failed*/
3299 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3300 struct page *oldpage, struct page *newpage, bool migration_ok)
3301 {
3302 struct page *used, *unused;
3303 struct page_cgroup *pc;
3304 bool anon;
3305
3306 if (!memcg)
3307 return;
3308 /* blocks rmdir() */
3309 cgroup_exclude_rmdir(&memcg->css);
3310 if (!migration_ok) {
3311 used = oldpage;
3312 unused = newpage;
3313 } else {
3314 used = newpage;
3315 unused = oldpage;
3316 }
3317 /*
3318 * We disallowed uncharge of pages under migration because mapcount
3319 * of the page goes down to zero, temporarly.
3320 * Clear the flag and check the page should be charged.
3321 */
3322 pc = lookup_page_cgroup(oldpage);
3323 lock_page_cgroup(pc);
3324 ClearPageCgroupMigration(pc);
3325 unlock_page_cgroup(pc);
3326 anon = PageAnon(used);
3327 __mem_cgroup_uncharge_common(unused,
3328 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3329 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3330
3331 /*
3332 * If a page is a file cache, radix-tree replacement is very atomic
3333 * and we can skip this check. When it was an Anon page, its mapcount
3334 * goes down to 0. But because we added MIGRATION flage, it's not
3335 * uncharged yet. There are several case but page->mapcount check
3336 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3337 * check. (see prepare_charge() also)
3338 */
3339 if (anon)
3340 mem_cgroup_uncharge_page(used);
3341 /*
3342 * At migration, we may charge account against cgroup which has no
3343 * tasks.
3344 * So, rmdir()->pre_destroy() can be called while we do this charge.
3345 * In that case, we need to call pre_destroy() again. check it here.
3346 */
3347 cgroup_release_and_wakeup_rmdir(&memcg->css);
3348 }
3349
3350 /*
3351 * At replace page cache, newpage is not under any memcg but it's on
3352 * LRU. So, this function doesn't touch res_counter but handles LRU
3353 * in correct way. Both pages are locked so we cannot race with uncharge.
3354 */
3355 void mem_cgroup_replace_page_cache(struct page *oldpage,
3356 struct page *newpage)
3357 {
3358 struct mem_cgroup *memcg = NULL;
3359 struct page_cgroup *pc;
3360 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3361
3362 if (mem_cgroup_disabled())
3363 return;
3364
3365 pc = lookup_page_cgroup(oldpage);
3366 /* fix accounting on old pages */
3367 lock_page_cgroup(pc);
3368 if (PageCgroupUsed(pc)) {
3369 memcg = pc->mem_cgroup;
3370 mem_cgroup_charge_statistics(memcg, false, -1);
3371 ClearPageCgroupUsed(pc);
3372 }
3373 unlock_page_cgroup(pc);
3374
3375 /*
3376 * When called from shmem_replace_page(), in some cases the
3377 * oldpage has already been charged, and in some cases not.
3378 */
3379 if (!memcg)
3380 return;
3381
3382 if (PageSwapBacked(oldpage))
3383 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3384
3385 /*
3386 * Even if newpage->mapping was NULL before starting replacement,
3387 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3388 * LRU while we overwrite pc->mem_cgroup.
3389 */
3390 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3391 }
3392
3393 #ifdef CONFIG_DEBUG_VM
3394 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3395 {
3396 struct page_cgroup *pc;
3397
3398 pc = lookup_page_cgroup(page);
3399 /*
3400 * Can be NULL while feeding pages into the page allocator for
3401 * the first time, i.e. during boot or memory hotplug;
3402 * or when mem_cgroup_disabled().
3403 */
3404 if (likely(pc) && PageCgroupUsed(pc))
3405 return pc;
3406 return NULL;
3407 }
3408
3409 bool mem_cgroup_bad_page_check(struct page *page)
3410 {
3411 if (mem_cgroup_disabled())
3412 return false;
3413
3414 return lookup_page_cgroup_used(page) != NULL;
3415 }
3416
3417 void mem_cgroup_print_bad_page(struct page *page)
3418 {
3419 struct page_cgroup *pc;
3420
3421 pc = lookup_page_cgroup_used(page);
3422 if (pc) {
3423 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3424 pc, pc->flags, pc->mem_cgroup);
3425 }
3426 }
3427 #endif
3428
3429 static DEFINE_MUTEX(set_limit_mutex);
3430
3431 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3432 unsigned long long val)
3433 {
3434 int retry_count;
3435 u64 memswlimit, memlimit;
3436 int ret = 0;
3437 int children = mem_cgroup_count_children(memcg);
3438 u64 curusage, oldusage;
3439 int enlarge;
3440
3441 /*
3442 * For keeping hierarchical_reclaim simple, how long we should retry
3443 * is depends on callers. We set our retry-count to be function
3444 * of # of children which we should visit in this loop.
3445 */
3446 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3447
3448 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3449
3450 enlarge = 0;
3451 while (retry_count) {
3452 if (signal_pending(current)) {
3453 ret = -EINTR;
3454 break;
3455 }
3456 /*
3457 * Rather than hide all in some function, I do this in
3458 * open coded manner. You see what this really does.
3459 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3460 */
3461 mutex_lock(&set_limit_mutex);
3462 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3463 if (memswlimit < val) {
3464 ret = -EINVAL;
3465 mutex_unlock(&set_limit_mutex);
3466 break;
3467 }
3468
3469 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3470 if (memlimit < val)
3471 enlarge = 1;
3472
3473 ret = res_counter_set_limit(&memcg->res, val);
3474 if (!ret) {
3475 if (memswlimit == val)
3476 memcg->memsw_is_minimum = true;
3477 else
3478 memcg->memsw_is_minimum = false;
3479 }
3480 mutex_unlock(&set_limit_mutex);
3481
3482 if (!ret)
3483 break;
3484
3485 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3486 MEM_CGROUP_RECLAIM_SHRINK);
3487 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3488 /* Usage is reduced ? */
3489 if (curusage >= oldusage)
3490 retry_count--;
3491 else
3492 oldusage = curusage;
3493 }
3494 if (!ret && enlarge)
3495 memcg_oom_recover(memcg);
3496
3497 return ret;
3498 }
3499
3500 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3501 unsigned long long val)
3502 {
3503 int retry_count;
3504 u64 memlimit, memswlimit, oldusage, curusage;
3505 int children = mem_cgroup_count_children(memcg);
3506 int ret = -EBUSY;
3507 int enlarge = 0;
3508
3509 /* see mem_cgroup_resize_res_limit */
3510 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3511 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3512 while (retry_count) {
3513 if (signal_pending(current)) {
3514 ret = -EINTR;
3515 break;
3516 }
3517 /*
3518 * Rather than hide all in some function, I do this in
3519 * open coded manner. You see what this really does.
3520 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3521 */
3522 mutex_lock(&set_limit_mutex);
3523 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3524 if (memlimit > val) {
3525 ret = -EINVAL;
3526 mutex_unlock(&set_limit_mutex);
3527 break;
3528 }
3529 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3530 if (memswlimit < val)
3531 enlarge = 1;
3532 ret = res_counter_set_limit(&memcg->memsw, val);
3533 if (!ret) {
3534 if (memlimit == val)
3535 memcg->memsw_is_minimum = true;
3536 else
3537 memcg->memsw_is_minimum = false;
3538 }
3539 mutex_unlock(&set_limit_mutex);
3540
3541 if (!ret)
3542 break;
3543
3544 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3545 MEM_CGROUP_RECLAIM_NOSWAP |
3546 MEM_CGROUP_RECLAIM_SHRINK);
3547 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3548 /* Usage is reduced ? */
3549 if (curusage >= oldusage)
3550 retry_count--;
3551 else
3552 oldusage = curusage;
3553 }
3554 if (!ret && enlarge)
3555 memcg_oom_recover(memcg);
3556 return ret;
3557 }
3558
3559 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3560 gfp_t gfp_mask,
3561 unsigned long *total_scanned)
3562 {
3563 unsigned long nr_reclaimed = 0;
3564 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3565 unsigned long reclaimed;
3566 int loop = 0;
3567 struct mem_cgroup_tree_per_zone *mctz;
3568 unsigned long long excess;
3569 unsigned long nr_scanned;
3570
3571 if (order > 0)
3572 return 0;
3573
3574 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3575 /*
3576 * This loop can run a while, specially if mem_cgroup's continuously
3577 * keep exceeding their soft limit and putting the system under
3578 * pressure
3579 */
3580 do {
3581 if (next_mz)
3582 mz = next_mz;
3583 else
3584 mz = mem_cgroup_largest_soft_limit_node(mctz);
3585 if (!mz)
3586 break;
3587
3588 nr_scanned = 0;
3589 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3590 gfp_mask, &nr_scanned);
3591 nr_reclaimed += reclaimed;
3592 *total_scanned += nr_scanned;
3593 spin_lock(&mctz->lock);
3594
3595 /*
3596 * If we failed to reclaim anything from this memory cgroup
3597 * it is time to move on to the next cgroup
3598 */
3599 next_mz = NULL;
3600 if (!reclaimed) {
3601 do {
3602 /*
3603 * Loop until we find yet another one.
3604 *
3605 * By the time we get the soft_limit lock
3606 * again, someone might have aded the
3607 * group back on the RB tree. Iterate to
3608 * make sure we get a different mem.
3609 * mem_cgroup_largest_soft_limit_node returns
3610 * NULL if no other cgroup is present on
3611 * the tree
3612 */
3613 next_mz =
3614 __mem_cgroup_largest_soft_limit_node(mctz);
3615 if (next_mz == mz)
3616 css_put(&next_mz->memcg->css);
3617 else /* next_mz == NULL or other memcg */
3618 break;
3619 } while (1);
3620 }
3621 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3622 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3623 /*
3624 * One school of thought says that we should not add
3625 * back the node to the tree if reclaim returns 0.
3626 * But our reclaim could return 0, simply because due
3627 * to priority we are exposing a smaller subset of
3628 * memory to reclaim from. Consider this as a longer
3629 * term TODO.
3630 */
3631 /* If excess == 0, no tree ops */
3632 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3633 spin_unlock(&mctz->lock);
3634 css_put(&mz->memcg->css);
3635 loop++;
3636 /*
3637 * Could not reclaim anything and there are no more
3638 * mem cgroups to try or we seem to be looping without
3639 * reclaiming anything.
3640 */
3641 if (!nr_reclaimed &&
3642 (next_mz == NULL ||
3643 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3644 break;
3645 } while (!nr_reclaimed);
3646 if (next_mz)
3647 css_put(&next_mz->memcg->css);
3648 return nr_reclaimed;
3649 }
3650
3651 /*
3652 * This routine traverse page_cgroup in given list and drop them all.
3653 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3654 */
3655 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3656 int node, int zid, enum lru_list lru)
3657 {
3658 struct mem_cgroup_per_zone *mz;
3659 unsigned long flags, loop;
3660 struct list_head *list;
3661 struct page *busy;
3662 struct zone *zone;
3663 int ret = 0;
3664
3665 zone = &NODE_DATA(node)->node_zones[zid];
3666 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3667 list = &mz->lruvec.lists[lru];
3668
3669 loop = mz->lru_size[lru];
3670 /* give some margin against EBUSY etc...*/
3671 loop += 256;
3672 busy = NULL;
3673 while (loop--) {
3674 struct page_cgroup *pc;
3675 struct page *page;
3676
3677 ret = 0;
3678 spin_lock_irqsave(&zone->lru_lock, flags);
3679 if (list_empty(list)) {
3680 spin_unlock_irqrestore(&zone->lru_lock, flags);
3681 break;
3682 }
3683 page = list_entry(list->prev, struct page, lru);
3684 if (busy == page) {
3685 list_move(&page->lru, list);
3686 busy = NULL;
3687 spin_unlock_irqrestore(&zone->lru_lock, flags);
3688 continue;
3689 }
3690 spin_unlock_irqrestore(&zone->lru_lock, flags);
3691
3692 pc = lookup_page_cgroup(page);
3693
3694 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3695 if (ret == -ENOMEM || ret == -EINTR)
3696 break;
3697
3698 if (ret == -EBUSY || ret == -EINVAL) {
3699 /* found lock contention or "pc" is obsolete. */
3700 busy = page;
3701 cond_resched();
3702 } else
3703 busy = NULL;
3704 }
3705
3706 if (!ret && !list_empty(list))
3707 return -EBUSY;
3708 return ret;
3709 }
3710
3711 /*
3712 * make mem_cgroup's charge to be 0 if there is no task.
3713 * This enables deleting this mem_cgroup.
3714 */
3715 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3716 {
3717 int ret;
3718 int node, zid, shrink;
3719 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3720 struct cgroup *cgrp = memcg->css.cgroup;
3721
3722 css_get(&memcg->css);
3723
3724 shrink = 0;
3725 /* should free all ? */
3726 if (free_all)
3727 goto try_to_free;
3728 move_account:
3729 do {
3730 ret = -EBUSY;
3731 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3732 goto out;
3733 ret = -EINTR;
3734 if (signal_pending(current))
3735 goto out;
3736 /* This is for making all *used* pages to be on LRU. */
3737 lru_add_drain_all();
3738 drain_all_stock_sync(memcg);
3739 ret = 0;
3740 mem_cgroup_start_move(memcg);
3741 for_each_node_state(node, N_HIGH_MEMORY) {
3742 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3743 enum lru_list lru;
3744 for_each_lru(lru) {
3745 ret = mem_cgroup_force_empty_list(memcg,
3746 node, zid, lru);
3747 if (ret)
3748 break;
3749 }
3750 }
3751 if (ret)
3752 break;
3753 }
3754 mem_cgroup_end_move(memcg);
3755 memcg_oom_recover(memcg);
3756 /* it seems parent cgroup doesn't have enough mem */
3757 if (ret == -ENOMEM)
3758 goto try_to_free;
3759 cond_resched();
3760 /* "ret" should also be checked to ensure all lists are empty. */
3761 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3762 out:
3763 css_put(&memcg->css);
3764 return ret;
3765
3766 try_to_free:
3767 /* returns EBUSY if there is a task or if we come here twice. */
3768 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3769 ret = -EBUSY;
3770 goto out;
3771 }
3772 /* we call try-to-free pages for make this cgroup empty */
3773 lru_add_drain_all();
3774 /* try to free all pages in this cgroup */
3775 shrink = 1;
3776 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3777 int progress;
3778
3779 if (signal_pending(current)) {
3780 ret = -EINTR;
3781 goto out;
3782 }
3783 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3784 false);
3785 if (!progress) {
3786 nr_retries--;
3787 /* maybe some writeback is necessary */
3788 congestion_wait(BLK_RW_ASYNC, HZ/10);
3789 }
3790
3791 }
3792 lru_add_drain();
3793 /* try move_account...there may be some *locked* pages. */
3794 goto move_account;
3795 }
3796
3797 static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3798 {
3799 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3800 }
3801
3802
3803 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3804 {
3805 return mem_cgroup_from_cont(cont)->use_hierarchy;
3806 }
3807
3808 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3809 u64 val)
3810 {
3811 int retval = 0;
3812 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3813 struct cgroup *parent = cont->parent;
3814 struct mem_cgroup *parent_memcg = NULL;
3815
3816 if (parent)
3817 parent_memcg = mem_cgroup_from_cont(parent);
3818
3819 cgroup_lock();
3820 /*
3821 * If parent's use_hierarchy is set, we can't make any modifications
3822 * in the child subtrees. If it is unset, then the change can
3823 * occur, provided the current cgroup has no children.
3824 *
3825 * For the root cgroup, parent_mem is NULL, we allow value to be
3826 * set if there are no children.
3827 */
3828 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3829 (val == 1 || val == 0)) {
3830 if (list_empty(&cont->children))
3831 memcg->use_hierarchy = val;
3832 else
3833 retval = -EBUSY;
3834 } else
3835 retval = -EINVAL;
3836 cgroup_unlock();
3837
3838 return retval;
3839 }
3840
3841
3842 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3843 enum mem_cgroup_stat_index idx)
3844 {
3845 struct mem_cgroup *iter;
3846 long val = 0;
3847
3848 /* Per-cpu values can be negative, use a signed accumulator */
3849 for_each_mem_cgroup_tree(iter, memcg)
3850 val += mem_cgroup_read_stat(iter, idx);
3851
3852 if (val < 0) /* race ? */
3853 val = 0;
3854 return val;
3855 }
3856
3857 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3858 {
3859 u64 val;
3860
3861 if (!mem_cgroup_is_root(memcg)) {
3862 if (!swap)
3863 return res_counter_read_u64(&memcg->res, RES_USAGE);
3864 else
3865 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3866 }
3867
3868 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3869 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3870
3871 if (swap)
3872 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3873
3874 return val << PAGE_SHIFT;
3875 }
3876
3877 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3878 struct file *file, char __user *buf,
3879 size_t nbytes, loff_t *ppos)
3880 {
3881 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3882 char str[64];
3883 u64 val;
3884 int type, name, len;
3885
3886 type = MEMFILE_TYPE(cft->private);
3887 name = MEMFILE_ATTR(cft->private);
3888
3889 if (!do_swap_account && type == _MEMSWAP)
3890 return -EOPNOTSUPP;
3891
3892 switch (type) {
3893 case _MEM:
3894 if (name == RES_USAGE)
3895 val = mem_cgroup_usage(memcg, false);
3896 else
3897 val = res_counter_read_u64(&memcg->res, name);
3898 break;
3899 case _MEMSWAP:
3900 if (name == RES_USAGE)
3901 val = mem_cgroup_usage(memcg, true);
3902 else
3903 val = res_counter_read_u64(&memcg->memsw, name);
3904 break;
3905 default:
3906 BUG();
3907 }
3908
3909 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3910 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3911 }
3912 /*
3913 * The user of this function is...
3914 * RES_LIMIT.
3915 */
3916 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3917 const char *buffer)
3918 {
3919 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3920 int type, name;
3921 unsigned long long val;
3922 int ret;
3923
3924 type = MEMFILE_TYPE(cft->private);
3925 name = MEMFILE_ATTR(cft->private);
3926
3927 if (!do_swap_account && type == _MEMSWAP)
3928 return -EOPNOTSUPP;
3929
3930 switch (name) {
3931 case RES_LIMIT:
3932 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3933 ret = -EINVAL;
3934 break;
3935 }
3936 /* This function does all necessary parse...reuse it */
3937 ret = res_counter_memparse_write_strategy(buffer, &val);
3938 if (ret)
3939 break;
3940 if (type == _MEM)
3941 ret = mem_cgroup_resize_limit(memcg, val);
3942 else
3943 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3944 break;
3945 case RES_SOFT_LIMIT:
3946 ret = res_counter_memparse_write_strategy(buffer, &val);
3947 if (ret)
3948 break;
3949 /*
3950 * For memsw, soft limits are hard to implement in terms
3951 * of semantics, for now, we support soft limits for
3952 * control without swap
3953 */
3954 if (type == _MEM)
3955 ret = res_counter_set_soft_limit(&memcg->res, val);
3956 else
3957 ret = -EINVAL;
3958 break;
3959 default:
3960 ret = -EINVAL; /* should be BUG() ? */
3961 break;
3962 }
3963 return ret;
3964 }
3965
3966 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3967 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3968 {
3969 struct cgroup *cgroup;
3970 unsigned long long min_limit, min_memsw_limit, tmp;
3971
3972 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3973 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3974 cgroup = memcg->css.cgroup;
3975 if (!memcg->use_hierarchy)
3976 goto out;
3977
3978 while (cgroup->parent) {
3979 cgroup = cgroup->parent;
3980 memcg = mem_cgroup_from_cont(cgroup);
3981 if (!memcg->use_hierarchy)
3982 break;
3983 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3984 min_limit = min(min_limit, tmp);
3985 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3986 min_memsw_limit = min(min_memsw_limit, tmp);
3987 }
3988 out:
3989 *mem_limit = min_limit;
3990 *memsw_limit = min_memsw_limit;
3991 }
3992
3993 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3994 {
3995 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3996 int type, name;
3997
3998 type = MEMFILE_TYPE(event);
3999 name = MEMFILE_ATTR(event);
4000
4001 if (!do_swap_account && type == _MEMSWAP)
4002 return -EOPNOTSUPP;
4003
4004 switch (name) {
4005 case RES_MAX_USAGE:
4006 if (type == _MEM)
4007 res_counter_reset_max(&memcg->res);
4008 else
4009 res_counter_reset_max(&memcg->memsw);
4010 break;
4011 case RES_FAILCNT:
4012 if (type == _MEM)
4013 res_counter_reset_failcnt(&memcg->res);
4014 else
4015 res_counter_reset_failcnt(&memcg->memsw);
4016 break;
4017 }
4018
4019 return 0;
4020 }
4021
4022 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4023 struct cftype *cft)
4024 {
4025 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4026 }
4027
4028 #ifdef CONFIG_MMU
4029 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4030 struct cftype *cft, u64 val)
4031 {
4032 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4033
4034 if (val >= (1 << NR_MOVE_TYPE))
4035 return -EINVAL;
4036 /*
4037 * We check this value several times in both in can_attach() and
4038 * attach(), so we need cgroup lock to prevent this value from being
4039 * inconsistent.
4040 */
4041 cgroup_lock();
4042 memcg->move_charge_at_immigrate = val;
4043 cgroup_unlock();
4044
4045 return 0;
4046 }
4047 #else
4048 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4049 struct cftype *cft, u64 val)
4050 {
4051 return -ENOSYS;
4052 }
4053 #endif
4054
4055 #ifdef CONFIG_NUMA
4056 static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4057 struct seq_file *m)
4058 {
4059 int nid;
4060 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4061 unsigned long node_nr;
4062 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4063
4064 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4065 seq_printf(m, "total=%lu", total_nr);
4066 for_each_node_state(nid, N_HIGH_MEMORY) {
4067 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4068 seq_printf(m, " N%d=%lu", nid, node_nr);
4069 }
4070 seq_putc(m, '\n');
4071
4072 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4073 seq_printf(m, "file=%lu", file_nr);
4074 for_each_node_state(nid, N_HIGH_MEMORY) {
4075 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4076 LRU_ALL_FILE);
4077 seq_printf(m, " N%d=%lu", nid, node_nr);
4078 }
4079 seq_putc(m, '\n');
4080
4081 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4082 seq_printf(m, "anon=%lu", anon_nr);
4083 for_each_node_state(nid, N_HIGH_MEMORY) {
4084 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4085 LRU_ALL_ANON);
4086 seq_printf(m, " N%d=%lu", nid, node_nr);
4087 }
4088 seq_putc(m, '\n');
4089
4090 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4091 seq_printf(m, "unevictable=%lu", unevictable_nr);
4092 for_each_node_state(nid, N_HIGH_MEMORY) {
4093 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4094 BIT(LRU_UNEVICTABLE));
4095 seq_printf(m, " N%d=%lu", nid, node_nr);
4096 }
4097 seq_putc(m, '\n');
4098 return 0;
4099 }
4100 #endif /* CONFIG_NUMA */
4101
4102 static const char * const mem_cgroup_lru_names[] = {
4103 "inactive_anon",
4104 "active_anon",
4105 "inactive_file",
4106 "active_file",
4107 "unevictable",
4108 };
4109
4110 static inline void mem_cgroup_lru_names_not_uptodate(void)
4111 {
4112 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4113 }
4114
4115 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4116 struct seq_file *m)
4117 {
4118 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4119 struct mem_cgroup *mi;
4120 unsigned int i;
4121
4122 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4123 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4124 continue;
4125 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4126 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
4127 }
4128
4129 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4130 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4131 mem_cgroup_read_events(memcg, i));
4132
4133 for (i = 0; i < NR_LRU_LISTS; i++)
4134 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4135 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4136
4137 /* Hierarchical information */
4138 {
4139 unsigned long long limit, memsw_limit;
4140 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4141 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
4142 if (do_swap_account)
4143 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4144 memsw_limit);
4145 }
4146
4147 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4148 long long val = 0;
4149
4150 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
4151 continue;
4152 for_each_mem_cgroup_tree(mi, memcg)
4153 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4154 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4155 }
4156
4157 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4158 unsigned long long val = 0;
4159
4160 for_each_mem_cgroup_tree(mi, memcg)
4161 val += mem_cgroup_read_events(mi, i);
4162 seq_printf(m, "total_%s %llu\n",
4163 mem_cgroup_events_names[i], val);
4164 }
4165
4166 for (i = 0; i < NR_LRU_LISTS; i++) {
4167 unsigned long long val = 0;
4168
4169 for_each_mem_cgroup_tree(mi, memcg)
4170 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4171 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
4172 }
4173
4174 #ifdef CONFIG_DEBUG_VM
4175 {
4176 int nid, zid;
4177 struct mem_cgroup_per_zone *mz;
4178 struct zone_reclaim_stat *rstat;
4179 unsigned long recent_rotated[2] = {0, 0};
4180 unsigned long recent_scanned[2] = {0, 0};
4181
4182 for_each_online_node(nid)
4183 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4184 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4185 rstat = &mz->lruvec.reclaim_stat;
4186
4187 recent_rotated[0] += rstat->recent_rotated[0];
4188 recent_rotated[1] += rstat->recent_rotated[1];
4189 recent_scanned[0] += rstat->recent_scanned[0];
4190 recent_scanned[1] += rstat->recent_scanned[1];
4191 }
4192 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4193 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4194 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4195 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
4196 }
4197 #endif
4198
4199 return 0;
4200 }
4201
4202 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4203 {
4204 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4205
4206 return mem_cgroup_swappiness(memcg);
4207 }
4208
4209 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4210 u64 val)
4211 {
4212 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4213 struct mem_cgroup *parent;
4214
4215 if (val > 100)
4216 return -EINVAL;
4217
4218 if (cgrp->parent == NULL)
4219 return -EINVAL;
4220
4221 parent = mem_cgroup_from_cont(cgrp->parent);
4222
4223 cgroup_lock();
4224
4225 /* If under hierarchy, only empty-root can set this value */
4226 if ((parent->use_hierarchy) ||
4227 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4228 cgroup_unlock();
4229 return -EINVAL;
4230 }
4231
4232 memcg->swappiness = val;
4233
4234 cgroup_unlock();
4235
4236 return 0;
4237 }
4238
4239 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4240 {
4241 struct mem_cgroup_threshold_ary *t;
4242 u64 usage;
4243 int i;
4244
4245 rcu_read_lock();
4246 if (!swap)
4247 t = rcu_dereference(memcg->thresholds.primary);
4248 else
4249 t = rcu_dereference(memcg->memsw_thresholds.primary);
4250
4251 if (!t)
4252 goto unlock;
4253
4254 usage = mem_cgroup_usage(memcg, swap);
4255
4256 /*
4257 * current_threshold points to threshold just below or equal to usage.
4258 * If it's not true, a threshold was crossed after last
4259 * call of __mem_cgroup_threshold().
4260 */
4261 i = t->current_threshold;
4262
4263 /*
4264 * Iterate backward over array of thresholds starting from
4265 * current_threshold and check if a threshold is crossed.
4266 * If none of thresholds below usage is crossed, we read
4267 * only one element of the array here.
4268 */
4269 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4270 eventfd_signal(t->entries[i].eventfd, 1);
4271
4272 /* i = current_threshold + 1 */
4273 i++;
4274
4275 /*
4276 * Iterate forward over array of thresholds starting from
4277 * current_threshold+1 and check if a threshold is crossed.
4278 * If none of thresholds above usage is crossed, we read
4279 * only one element of the array here.
4280 */
4281 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4282 eventfd_signal(t->entries[i].eventfd, 1);
4283
4284 /* Update current_threshold */
4285 t->current_threshold = i - 1;
4286 unlock:
4287 rcu_read_unlock();
4288 }
4289
4290 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4291 {
4292 while (memcg) {
4293 __mem_cgroup_threshold(memcg, false);
4294 if (do_swap_account)
4295 __mem_cgroup_threshold(memcg, true);
4296
4297 memcg = parent_mem_cgroup(memcg);
4298 }
4299 }
4300
4301 static int compare_thresholds(const void *a, const void *b)
4302 {
4303 const struct mem_cgroup_threshold *_a = a;
4304 const struct mem_cgroup_threshold *_b = b;
4305
4306 return _a->threshold - _b->threshold;
4307 }
4308
4309 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4310 {
4311 struct mem_cgroup_eventfd_list *ev;
4312
4313 list_for_each_entry(ev, &memcg->oom_notify, list)
4314 eventfd_signal(ev->eventfd, 1);
4315 return 0;
4316 }
4317
4318 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4319 {
4320 struct mem_cgroup *iter;
4321
4322 for_each_mem_cgroup_tree(iter, memcg)
4323 mem_cgroup_oom_notify_cb(iter);
4324 }
4325
4326 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4327 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4328 {
4329 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4330 struct mem_cgroup_thresholds *thresholds;
4331 struct mem_cgroup_threshold_ary *new;
4332 int type = MEMFILE_TYPE(cft->private);
4333 u64 threshold, usage;
4334 int i, size, ret;
4335
4336 ret = res_counter_memparse_write_strategy(args, &threshold);
4337 if (ret)
4338 return ret;
4339
4340 mutex_lock(&memcg->thresholds_lock);
4341
4342 if (type == _MEM)
4343 thresholds = &memcg->thresholds;
4344 else if (type == _MEMSWAP)
4345 thresholds = &memcg->memsw_thresholds;
4346 else
4347 BUG();
4348
4349 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4350
4351 /* Check if a threshold crossed before adding a new one */
4352 if (thresholds->primary)
4353 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4354
4355 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4356
4357 /* Allocate memory for new array of thresholds */
4358 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4359 GFP_KERNEL);
4360 if (!new) {
4361 ret = -ENOMEM;
4362 goto unlock;
4363 }
4364 new->size = size;
4365
4366 /* Copy thresholds (if any) to new array */
4367 if (thresholds->primary) {
4368 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4369 sizeof(struct mem_cgroup_threshold));
4370 }
4371
4372 /* Add new threshold */
4373 new->entries[size - 1].eventfd = eventfd;
4374 new->entries[size - 1].threshold = threshold;
4375
4376 /* Sort thresholds. Registering of new threshold isn't time-critical */
4377 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4378 compare_thresholds, NULL);
4379
4380 /* Find current threshold */
4381 new->current_threshold = -1;
4382 for (i = 0; i < size; i++) {
4383 if (new->entries[i].threshold <= usage) {
4384 /*
4385 * new->current_threshold will not be used until
4386 * rcu_assign_pointer(), so it's safe to increment
4387 * it here.
4388 */
4389 ++new->current_threshold;
4390 } else
4391 break;
4392 }
4393
4394 /* Free old spare buffer and save old primary buffer as spare */
4395 kfree(thresholds->spare);
4396 thresholds->spare = thresholds->primary;
4397
4398 rcu_assign_pointer(thresholds->primary, new);
4399
4400 /* To be sure that nobody uses thresholds */
4401 synchronize_rcu();
4402
4403 unlock:
4404 mutex_unlock(&memcg->thresholds_lock);
4405
4406 return ret;
4407 }
4408
4409 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4410 struct cftype *cft, struct eventfd_ctx *eventfd)
4411 {
4412 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4413 struct mem_cgroup_thresholds *thresholds;
4414 struct mem_cgroup_threshold_ary *new;
4415 int type = MEMFILE_TYPE(cft->private);
4416 u64 usage;
4417 int i, j, size;
4418
4419 mutex_lock(&memcg->thresholds_lock);
4420 if (type == _MEM)
4421 thresholds = &memcg->thresholds;
4422 else if (type == _MEMSWAP)
4423 thresholds = &memcg->memsw_thresholds;
4424 else
4425 BUG();
4426
4427 if (!thresholds->primary)
4428 goto unlock;
4429
4430 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4431
4432 /* Check if a threshold crossed before removing */
4433 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4434
4435 /* Calculate new number of threshold */
4436 size = 0;
4437 for (i = 0; i < thresholds->primary->size; i++) {
4438 if (thresholds->primary->entries[i].eventfd != eventfd)
4439 size++;
4440 }
4441
4442 new = thresholds->spare;
4443
4444 /* Set thresholds array to NULL if we don't have thresholds */
4445 if (!size) {
4446 kfree(new);
4447 new = NULL;
4448 goto swap_buffers;
4449 }
4450
4451 new->size = size;
4452
4453 /* Copy thresholds and find current threshold */
4454 new->current_threshold = -1;
4455 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4456 if (thresholds->primary->entries[i].eventfd == eventfd)
4457 continue;
4458
4459 new->entries[j] = thresholds->primary->entries[i];
4460 if (new->entries[j].threshold <= usage) {
4461 /*
4462 * new->current_threshold will not be used
4463 * until rcu_assign_pointer(), so it's safe to increment
4464 * it here.
4465 */
4466 ++new->current_threshold;
4467 }
4468 j++;
4469 }
4470
4471 swap_buffers:
4472 /* Swap primary and spare array */
4473 thresholds->spare = thresholds->primary;
4474 /* If all events are unregistered, free the spare array */
4475 if (!new) {
4476 kfree(thresholds->spare);
4477 thresholds->spare = NULL;
4478 }
4479
4480 rcu_assign_pointer(thresholds->primary, new);
4481
4482 /* To be sure that nobody uses thresholds */
4483 synchronize_rcu();
4484 unlock:
4485 mutex_unlock(&memcg->thresholds_lock);
4486 }
4487
4488 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4489 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4490 {
4491 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4492 struct mem_cgroup_eventfd_list *event;
4493 int type = MEMFILE_TYPE(cft->private);
4494
4495 BUG_ON(type != _OOM_TYPE);
4496 event = kmalloc(sizeof(*event), GFP_KERNEL);
4497 if (!event)
4498 return -ENOMEM;
4499
4500 spin_lock(&memcg_oom_lock);
4501
4502 event->eventfd = eventfd;
4503 list_add(&event->list, &memcg->oom_notify);
4504
4505 /* already in OOM ? */
4506 if (atomic_read(&memcg->under_oom))
4507 eventfd_signal(eventfd, 1);
4508 spin_unlock(&memcg_oom_lock);
4509
4510 return 0;
4511 }
4512
4513 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4514 struct cftype *cft, struct eventfd_ctx *eventfd)
4515 {
4516 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4517 struct mem_cgroup_eventfd_list *ev, *tmp;
4518 int type = MEMFILE_TYPE(cft->private);
4519
4520 BUG_ON(type != _OOM_TYPE);
4521
4522 spin_lock(&memcg_oom_lock);
4523
4524 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4525 if (ev->eventfd == eventfd) {
4526 list_del(&ev->list);
4527 kfree(ev);
4528 }
4529 }
4530
4531 spin_unlock(&memcg_oom_lock);
4532 }
4533
4534 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4535 struct cftype *cft, struct cgroup_map_cb *cb)
4536 {
4537 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4538
4539 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4540
4541 if (atomic_read(&memcg->under_oom))
4542 cb->fill(cb, "under_oom", 1);
4543 else
4544 cb->fill(cb, "under_oom", 0);
4545 return 0;
4546 }
4547
4548 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4549 struct cftype *cft, u64 val)
4550 {
4551 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4552 struct mem_cgroup *parent;
4553
4554 /* cannot set to root cgroup and only 0 and 1 are allowed */
4555 if (!cgrp->parent || !((val == 0) || (val == 1)))
4556 return -EINVAL;
4557
4558 parent = mem_cgroup_from_cont(cgrp->parent);
4559
4560 cgroup_lock();
4561 /* oom-kill-disable is a flag for subhierarchy. */
4562 if ((parent->use_hierarchy) ||
4563 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4564 cgroup_unlock();
4565 return -EINVAL;
4566 }
4567 memcg->oom_kill_disable = val;
4568 if (!val)
4569 memcg_oom_recover(memcg);
4570 cgroup_unlock();
4571 return 0;
4572 }
4573
4574 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4575 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4576 {
4577 return mem_cgroup_sockets_init(memcg, ss);
4578 };
4579
4580 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4581 {
4582 mem_cgroup_sockets_destroy(memcg);
4583 }
4584 #else
4585 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4586 {
4587 return 0;
4588 }
4589
4590 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4591 {
4592 }
4593 #endif
4594
4595 static struct cftype mem_cgroup_files[] = {
4596 {
4597 .name = "usage_in_bytes",
4598 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4599 .read = mem_cgroup_read,
4600 .register_event = mem_cgroup_usage_register_event,
4601 .unregister_event = mem_cgroup_usage_unregister_event,
4602 },
4603 {
4604 .name = "max_usage_in_bytes",
4605 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4606 .trigger = mem_cgroup_reset,
4607 .read = mem_cgroup_read,
4608 },
4609 {
4610 .name = "limit_in_bytes",
4611 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4612 .write_string = mem_cgroup_write,
4613 .read = mem_cgroup_read,
4614 },
4615 {
4616 .name = "soft_limit_in_bytes",
4617 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4618 .write_string = mem_cgroup_write,
4619 .read = mem_cgroup_read,
4620 },
4621 {
4622 .name = "failcnt",
4623 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4624 .trigger = mem_cgroup_reset,
4625 .read = mem_cgroup_read,
4626 },
4627 {
4628 .name = "stat",
4629 .read_seq_string = mem_control_stat_show,
4630 },
4631 {
4632 .name = "force_empty",
4633 .trigger = mem_cgroup_force_empty_write,
4634 },
4635 {
4636 .name = "use_hierarchy",
4637 .write_u64 = mem_cgroup_hierarchy_write,
4638 .read_u64 = mem_cgroup_hierarchy_read,
4639 },
4640 {
4641 .name = "swappiness",
4642 .read_u64 = mem_cgroup_swappiness_read,
4643 .write_u64 = mem_cgroup_swappiness_write,
4644 },
4645 {
4646 .name = "move_charge_at_immigrate",
4647 .read_u64 = mem_cgroup_move_charge_read,
4648 .write_u64 = mem_cgroup_move_charge_write,
4649 },
4650 {
4651 .name = "oom_control",
4652 .read_map = mem_cgroup_oom_control_read,
4653 .write_u64 = mem_cgroup_oom_control_write,
4654 .register_event = mem_cgroup_oom_register_event,
4655 .unregister_event = mem_cgroup_oom_unregister_event,
4656 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4657 },
4658 #ifdef CONFIG_NUMA
4659 {
4660 .name = "numa_stat",
4661 .read_seq_string = mem_control_numa_stat_show,
4662 },
4663 #endif
4664 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4665 {
4666 .name = "memsw.usage_in_bytes",
4667 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4668 .read = mem_cgroup_read,
4669 .register_event = mem_cgroup_usage_register_event,
4670 .unregister_event = mem_cgroup_usage_unregister_event,
4671 },
4672 {
4673 .name = "memsw.max_usage_in_bytes",
4674 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4675 .trigger = mem_cgroup_reset,
4676 .read = mem_cgroup_read,
4677 },
4678 {
4679 .name = "memsw.limit_in_bytes",
4680 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4681 .write_string = mem_cgroup_write,
4682 .read = mem_cgroup_read,
4683 },
4684 {
4685 .name = "memsw.failcnt",
4686 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4687 .trigger = mem_cgroup_reset,
4688 .read = mem_cgroup_read,
4689 },
4690 #endif
4691 { }, /* terminate */
4692 };
4693
4694 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4695 {
4696 struct mem_cgroup_per_node *pn;
4697 struct mem_cgroup_per_zone *mz;
4698 int zone, tmp = node;
4699 /*
4700 * This routine is called against possible nodes.
4701 * But it's BUG to call kmalloc() against offline node.
4702 *
4703 * TODO: this routine can waste much memory for nodes which will
4704 * never be onlined. It's better to use memory hotplug callback
4705 * function.
4706 */
4707 if (!node_state(node, N_NORMAL_MEMORY))
4708 tmp = -1;
4709 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4710 if (!pn)
4711 return 1;
4712
4713 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4714 mz = &pn->zoneinfo[zone];
4715 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
4716 mz->usage_in_excess = 0;
4717 mz->on_tree = false;
4718 mz->memcg = memcg;
4719 }
4720 memcg->info.nodeinfo[node] = pn;
4721 return 0;
4722 }
4723
4724 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4725 {
4726 kfree(memcg->info.nodeinfo[node]);
4727 }
4728
4729 static struct mem_cgroup *mem_cgroup_alloc(void)
4730 {
4731 struct mem_cgroup *memcg;
4732 int size = sizeof(struct mem_cgroup);
4733
4734 /* Can be very big if MAX_NUMNODES is very big */
4735 if (size < PAGE_SIZE)
4736 memcg = kzalloc(size, GFP_KERNEL);
4737 else
4738 memcg = vzalloc(size);
4739
4740 if (!memcg)
4741 return NULL;
4742
4743 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4744 if (!memcg->stat)
4745 goto out_free;
4746 spin_lock_init(&memcg->pcp_counter_lock);
4747 return memcg;
4748
4749 out_free:
4750 if (size < PAGE_SIZE)
4751 kfree(memcg);
4752 else
4753 vfree(memcg);
4754 return NULL;
4755 }
4756
4757 /*
4758 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4759 * but in process context. The work_freeing structure is overlaid
4760 * on the rcu_freeing structure, which itself is overlaid on memsw.
4761 */
4762 static void vfree_work(struct work_struct *work)
4763 {
4764 struct mem_cgroup *memcg;
4765
4766 memcg = container_of(work, struct mem_cgroup, work_freeing);
4767 vfree(memcg);
4768 }
4769 static void vfree_rcu(struct rcu_head *rcu_head)
4770 {
4771 struct mem_cgroup *memcg;
4772
4773 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4774 INIT_WORK(&memcg->work_freeing, vfree_work);
4775 schedule_work(&memcg->work_freeing);
4776 }
4777
4778 /*
4779 * At destroying mem_cgroup, references from swap_cgroup can remain.
4780 * (scanning all at force_empty is too costly...)
4781 *
4782 * Instead of clearing all references at force_empty, we remember
4783 * the number of reference from swap_cgroup and free mem_cgroup when
4784 * it goes down to 0.
4785 *
4786 * Removal of cgroup itself succeeds regardless of refs from swap.
4787 */
4788
4789 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4790 {
4791 int node;
4792
4793 mem_cgroup_remove_from_trees(memcg);
4794 free_css_id(&mem_cgroup_subsys, &memcg->css);
4795
4796 for_each_node(node)
4797 free_mem_cgroup_per_zone_info(memcg, node);
4798
4799 free_percpu(memcg->stat);
4800 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4801 kfree_rcu(memcg, rcu_freeing);
4802 else
4803 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4804 }
4805
4806 static void mem_cgroup_get(struct mem_cgroup *memcg)
4807 {
4808 atomic_inc(&memcg->refcnt);
4809 }
4810
4811 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4812 {
4813 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4814 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4815 __mem_cgroup_free(memcg);
4816 if (parent)
4817 mem_cgroup_put(parent);
4818 }
4819 }
4820
4821 static void mem_cgroup_put(struct mem_cgroup *memcg)
4822 {
4823 __mem_cgroup_put(memcg, 1);
4824 }
4825
4826 /*
4827 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4828 */
4829 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4830 {
4831 if (!memcg->res.parent)
4832 return NULL;
4833 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4834 }
4835 EXPORT_SYMBOL(parent_mem_cgroup);
4836
4837 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4838 static void __init enable_swap_cgroup(void)
4839 {
4840 if (!mem_cgroup_disabled() && really_do_swap_account)
4841 do_swap_account = 1;
4842 }
4843 #else
4844 static void __init enable_swap_cgroup(void)
4845 {
4846 }
4847 #endif
4848
4849 static int mem_cgroup_soft_limit_tree_init(void)
4850 {
4851 struct mem_cgroup_tree_per_node *rtpn;
4852 struct mem_cgroup_tree_per_zone *rtpz;
4853 int tmp, node, zone;
4854
4855 for_each_node(node) {
4856 tmp = node;
4857 if (!node_state(node, N_NORMAL_MEMORY))
4858 tmp = -1;
4859 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4860 if (!rtpn)
4861 goto err_cleanup;
4862
4863 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4864
4865 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4866 rtpz = &rtpn->rb_tree_per_zone[zone];
4867 rtpz->rb_root = RB_ROOT;
4868 spin_lock_init(&rtpz->lock);
4869 }
4870 }
4871 return 0;
4872
4873 err_cleanup:
4874 for_each_node(node) {
4875 if (!soft_limit_tree.rb_tree_per_node[node])
4876 break;
4877 kfree(soft_limit_tree.rb_tree_per_node[node]);
4878 soft_limit_tree.rb_tree_per_node[node] = NULL;
4879 }
4880 return 1;
4881
4882 }
4883
4884 static struct cgroup_subsys_state * __ref
4885 mem_cgroup_create(struct cgroup *cont)
4886 {
4887 struct mem_cgroup *memcg, *parent;
4888 long error = -ENOMEM;
4889 int node;
4890
4891 memcg = mem_cgroup_alloc();
4892 if (!memcg)
4893 return ERR_PTR(error);
4894
4895 for_each_node(node)
4896 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4897 goto free_out;
4898
4899 /* root ? */
4900 if (cont->parent == NULL) {
4901 int cpu;
4902 enable_swap_cgroup();
4903 parent = NULL;
4904 if (mem_cgroup_soft_limit_tree_init())
4905 goto free_out;
4906 root_mem_cgroup = memcg;
4907 for_each_possible_cpu(cpu) {
4908 struct memcg_stock_pcp *stock =
4909 &per_cpu(memcg_stock, cpu);
4910 INIT_WORK(&stock->work, drain_local_stock);
4911 }
4912 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4913 } else {
4914 parent = mem_cgroup_from_cont(cont->parent);
4915 memcg->use_hierarchy = parent->use_hierarchy;
4916 memcg->oom_kill_disable = parent->oom_kill_disable;
4917 }
4918
4919 if (parent && parent->use_hierarchy) {
4920 res_counter_init(&memcg->res, &parent->res);
4921 res_counter_init(&memcg->memsw, &parent->memsw);
4922 /*
4923 * We increment refcnt of the parent to ensure that we can
4924 * safely access it on res_counter_charge/uncharge.
4925 * This refcnt will be decremented when freeing this
4926 * mem_cgroup(see mem_cgroup_put).
4927 */
4928 mem_cgroup_get(parent);
4929 } else {
4930 res_counter_init(&memcg->res, NULL);
4931 res_counter_init(&memcg->memsw, NULL);
4932 }
4933 memcg->last_scanned_node = MAX_NUMNODES;
4934 INIT_LIST_HEAD(&memcg->oom_notify);
4935
4936 if (parent)
4937 memcg->swappiness = mem_cgroup_swappiness(parent);
4938 atomic_set(&memcg->refcnt, 1);
4939 memcg->move_charge_at_immigrate = 0;
4940 mutex_init(&memcg->thresholds_lock);
4941 spin_lock_init(&memcg->move_lock);
4942
4943 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4944 if (error) {
4945 /*
4946 * We call put now because our (and parent's) refcnts
4947 * are already in place. mem_cgroup_put() will internally
4948 * call __mem_cgroup_free, so return directly
4949 */
4950 mem_cgroup_put(memcg);
4951 return ERR_PTR(error);
4952 }
4953 return &memcg->css;
4954 free_out:
4955 __mem_cgroup_free(memcg);
4956 return ERR_PTR(error);
4957 }
4958
4959 static int mem_cgroup_pre_destroy(struct cgroup *cont)
4960 {
4961 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4962
4963 return mem_cgroup_force_empty(memcg, false);
4964 }
4965
4966 static void mem_cgroup_destroy(struct cgroup *cont)
4967 {
4968 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4969
4970 kmem_cgroup_destroy(memcg);
4971
4972 mem_cgroup_put(memcg);
4973 }
4974
4975 #ifdef CONFIG_MMU
4976 /* Handlers for move charge at task migration. */
4977 #define PRECHARGE_COUNT_AT_ONCE 256
4978 static int mem_cgroup_do_precharge(unsigned long count)
4979 {
4980 int ret = 0;
4981 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4982 struct mem_cgroup *memcg = mc.to;
4983
4984 if (mem_cgroup_is_root(memcg)) {
4985 mc.precharge += count;
4986 /* we don't need css_get for root */
4987 return ret;
4988 }
4989 /* try to charge at once */
4990 if (count > 1) {
4991 struct res_counter *dummy;
4992 /*
4993 * "memcg" cannot be under rmdir() because we've already checked
4994 * by cgroup_lock_live_cgroup() that it is not removed and we
4995 * are still under the same cgroup_mutex. So we can postpone
4996 * css_get().
4997 */
4998 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
4999 goto one_by_one;
5000 if (do_swap_account && res_counter_charge(&memcg->memsw,
5001 PAGE_SIZE * count, &dummy)) {
5002 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5003 goto one_by_one;
5004 }
5005 mc.precharge += count;
5006 return ret;
5007 }
5008 one_by_one:
5009 /* fall back to one by one charge */
5010 while (count--) {
5011 if (signal_pending(current)) {
5012 ret = -EINTR;
5013 break;
5014 }
5015 if (!batch_count--) {
5016 batch_count = PRECHARGE_COUNT_AT_ONCE;
5017 cond_resched();
5018 }
5019 ret = __mem_cgroup_try_charge(NULL,
5020 GFP_KERNEL, 1, &memcg, false);
5021 if (ret)
5022 /* mem_cgroup_clear_mc() will do uncharge later */
5023 return ret;
5024 mc.precharge++;
5025 }
5026 return ret;
5027 }
5028
5029 /**
5030 * get_mctgt_type - get target type of moving charge
5031 * @vma: the vma the pte to be checked belongs
5032 * @addr: the address corresponding to the pte to be checked
5033 * @ptent: the pte to be checked
5034 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5035 *
5036 * Returns
5037 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5038 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5039 * move charge. if @target is not NULL, the page is stored in target->page
5040 * with extra refcnt got(Callers should handle it).
5041 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5042 * target for charge migration. if @target is not NULL, the entry is stored
5043 * in target->ent.
5044 *
5045 * Called with pte lock held.
5046 */
5047 union mc_target {
5048 struct page *page;
5049 swp_entry_t ent;
5050 };
5051
5052 enum mc_target_type {
5053 MC_TARGET_NONE = 0,
5054 MC_TARGET_PAGE,
5055 MC_TARGET_SWAP,
5056 };
5057
5058 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5059 unsigned long addr, pte_t ptent)
5060 {
5061 struct page *page = vm_normal_page(vma, addr, ptent);
5062
5063 if (!page || !page_mapped(page))
5064 return NULL;
5065 if (PageAnon(page)) {
5066 /* we don't move shared anon */
5067 if (!move_anon())
5068 return NULL;
5069 } else if (!move_file())
5070 /* we ignore mapcount for file pages */
5071 return NULL;
5072 if (!get_page_unless_zero(page))
5073 return NULL;
5074
5075 return page;
5076 }
5077
5078 #ifdef CONFIG_SWAP
5079 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5080 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5081 {
5082 struct page *page = NULL;
5083 swp_entry_t ent = pte_to_swp_entry(ptent);
5084
5085 if (!move_anon() || non_swap_entry(ent))
5086 return NULL;
5087 /*
5088 * Because lookup_swap_cache() updates some statistics counter,
5089 * we call find_get_page() with swapper_space directly.
5090 */
5091 page = find_get_page(&swapper_space, ent.val);
5092 if (do_swap_account)
5093 entry->val = ent.val;
5094
5095 return page;
5096 }
5097 #else
5098 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5099 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100 {
5101 return NULL;
5102 }
5103 #endif
5104
5105 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5106 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5107 {
5108 struct page *page = NULL;
5109 struct address_space *mapping;
5110 pgoff_t pgoff;
5111
5112 if (!vma->vm_file) /* anonymous vma */
5113 return NULL;
5114 if (!move_file())
5115 return NULL;
5116
5117 mapping = vma->vm_file->f_mapping;
5118 if (pte_none(ptent))
5119 pgoff = linear_page_index(vma, addr);
5120 else /* pte_file(ptent) is true */
5121 pgoff = pte_to_pgoff(ptent);
5122
5123 /* page is moved even if it's not RSS of this task(page-faulted). */
5124 page = find_get_page(mapping, pgoff);
5125
5126 #ifdef CONFIG_SWAP
5127 /* shmem/tmpfs may report page out on swap: account for that too. */
5128 if (radix_tree_exceptional_entry(page)) {
5129 swp_entry_t swap = radix_to_swp_entry(page);
5130 if (do_swap_account)
5131 *entry = swap;
5132 page = find_get_page(&swapper_space, swap.val);
5133 }
5134 #endif
5135 return page;
5136 }
5137
5138 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5139 unsigned long addr, pte_t ptent, union mc_target *target)
5140 {
5141 struct page *page = NULL;
5142 struct page_cgroup *pc;
5143 enum mc_target_type ret = MC_TARGET_NONE;
5144 swp_entry_t ent = { .val = 0 };
5145
5146 if (pte_present(ptent))
5147 page = mc_handle_present_pte(vma, addr, ptent);
5148 else if (is_swap_pte(ptent))
5149 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5150 else if (pte_none(ptent) || pte_file(ptent))
5151 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5152
5153 if (!page && !ent.val)
5154 return ret;
5155 if (page) {
5156 pc = lookup_page_cgroup(page);
5157 /*
5158 * Do only loose check w/o page_cgroup lock.
5159 * mem_cgroup_move_account() checks the pc is valid or not under
5160 * the lock.
5161 */
5162 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5163 ret = MC_TARGET_PAGE;
5164 if (target)
5165 target->page = page;
5166 }
5167 if (!ret || !target)
5168 put_page(page);
5169 }
5170 /* There is a swap entry and a page doesn't exist or isn't charged */
5171 if (ent.val && !ret &&
5172 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5173 ret = MC_TARGET_SWAP;
5174 if (target)
5175 target->ent = ent;
5176 }
5177 return ret;
5178 }
5179
5180 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5181 /*
5182 * We don't consider swapping or file mapped pages because THP does not
5183 * support them for now.
5184 * Caller should make sure that pmd_trans_huge(pmd) is true.
5185 */
5186 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5187 unsigned long addr, pmd_t pmd, union mc_target *target)
5188 {
5189 struct page *page = NULL;
5190 struct page_cgroup *pc;
5191 enum mc_target_type ret = MC_TARGET_NONE;
5192
5193 page = pmd_page(pmd);
5194 VM_BUG_ON(!page || !PageHead(page));
5195 if (!move_anon())
5196 return ret;
5197 pc = lookup_page_cgroup(page);
5198 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5199 ret = MC_TARGET_PAGE;
5200 if (target) {
5201 get_page(page);
5202 target->page = page;
5203 }
5204 }
5205 return ret;
5206 }
5207 #else
5208 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5209 unsigned long addr, pmd_t pmd, union mc_target *target)
5210 {
5211 return MC_TARGET_NONE;
5212 }
5213 #endif
5214
5215 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5216 unsigned long addr, unsigned long end,
5217 struct mm_walk *walk)
5218 {
5219 struct vm_area_struct *vma = walk->private;
5220 pte_t *pte;
5221 spinlock_t *ptl;
5222
5223 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5224 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5225 mc.precharge += HPAGE_PMD_NR;
5226 spin_unlock(&vma->vm_mm->page_table_lock);
5227 return 0;
5228 }
5229
5230 if (pmd_trans_unstable(pmd))
5231 return 0;
5232 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5233 for (; addr != end; pte++, addr += PAGE_SIZE)
5234 if (get_mctgt_type(vma, addr, *pte, NULL))
5235 mc.precharge++; /* increment precharge temporarily */
5236 pte_unmap_unlock(pte - 1, ptl);
5237 cond_resched();
5238
5239 return 0;
5240 }
5241
5242 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5243 {
5244 unsigned long precharge;
5245 struct vm_area_struct *vma;
5246
5247 down_read(&mm->mmap_sem);
5248 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5249 struct mm_walk mem_cgroup_count_precharge_walk = {
5250 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5251 .mm = mm,
5252 .private = vma,
5253 };
5254 if (is_vm_hugetlb_page(vma))
5255 continue;
5256 walk_page_range(vma->vm_start, vma->vm_end,
5257 &mem_cgroup_count_precharge_walk);
5258 }
5259 up_read(&mm->mmap_sem);
5260
5261 precharge = mc.precharge;
5262 mc.precharge = 0;
5263
5264 return precharge;
5265 }
5266
5267 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5268 {
5269 unsigned long precharge = mem_cgroup_count_precharge(mm);
5270
5271 VM_BUG_ON(mc.moving_task);
5272 mc.moving_task = current;
5273 return mem_cgroup_do_precharge(precharge);
5274 }
5275
5276 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5277 static void __mem_cgroup_clear_mc(void)
5278 {
5279 struct mem_cgroup *from = mc.from;
5280 struct mem_cgroup *to = mc.to;
5281
5282 /* we must uncharge all the leftover precharges from mc.to */
5283 if (mc.precharge) {
5284 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5285 mc.precharge = 0;
5286 }
5287 /*
5288 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5289 * we must uncharge here.
5290 */
5291 if (mc.moved_charge) {
5292 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5293 mc.moved_charge = 0;
5294 }
5295 /* we must fixup refcnts and charges */
5296 if (mc.moved_swap) {
5297 /* uncharge swap account from the old cgroup */
5298 if (!mem_cgroup_is_root(mc.from))
5299 res_counter_uncharge(&mc.from->memsw,
5300 PAGE_SIZE * mc.moved_swap);
5301 __mem_cgroup_put(mc.from, mc.moved_swap);
5302
5303 if (!mem_cgroup_is_root(mc.to)) {
5304 /*
5305 * we charged both to->res and to->memsw, so we should
5306 * uncharge to->res.
5307 */
5308 res_counter_uncharge(&mc.to->res,
5309 PAGE_SIZE * mc.moved_swap);
5310 }
5311 /* we've already done mem_cgroup_get(mc.to) */
5312 mc.moved_swap = 0;
5313 }
5314 memcg_oom_recover(from);
5315 memcg_oom_recover(to);
5316 wake_up_all(&mc.waitq);
5317 }
5318
5319 static void mem_cgroup_clear_mc(void)
5320 {
5321 struct mem_cgroup *from = mc.from;
5322
5323 /*
5324 * we must clear moving_task before waking up waiters at the end of
5325 * task migration.
5326 */
5327 mc.moving_task = NULL;
5328 __mem_cgroup_clear_mc();
5329 spin_lock(&mc.lock);
5330 mc.from = NULL;
5331 mc.to = NULL;
5332 spin_unlock(&mc.lock);
5333 mem_cgroup_end_move(from);
5334 }
5335
5336 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5337 struct cgroup_taskset *tset)
5338 {
5339 struct task_struct *p = cgroup_taskset_first(tset);
5340 int ret = 0;
5341 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5342
5343 if (memcg->move_charge_at_immigrate) {
5344 struct mm_struct *mm;
5345 struct mem_cgroup *from = mem_cgroup_from_task(p);
5346
5347 VM_BUG_ON(from == memcg);
5348
5349 mm = get_task_mm(p);
5350 if (!mm)
5351 return 0;
5352 /* We move charges only when we move a owner of the mm */
5353 if (mm->owner == p) {
5354 VM_BUG_ON(mc.from);
5355 VM_BUG_ON(mc.to);
5356 VM_BUG_ON(mc.precharge);
5357 VM_BUG_ON(mc.moved_charge);
5358 VM_BUG_ON(mc.moved_swap);
5359 mem_cgroup_start_move(from);
5360 spin_lock(&mc.lock);
5361 mc.from = from;
5362 mc.to = memcg;
5363 spin_unlock(&mc.lock);
5364 /* We set mc.moving_task later */
5365
5366 ret = mem_cgroup_precharge_mc(mm);
5367 if (ret)
5368 mem_cgroup_clear_mc();
5369 }
5370 mmput(mm);
5371 }
5372 return ret;
5373 }
5374
5375 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5376 struct cgroup_taskset *tset)
5377 {
5378 mem_cgroup_clear_mc();
5379 }
5380
5381 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5382 unsigned long addr, unsigned long end,
5383 struct mm_walk *walk)
5384 {
5385 int ret = 0;
5386 struct vm_area_struct *vma = walk->private;
5387 pte_t *pte;
5388 spinlock_t *ptl;
5389 enum mc_target_type target_type;
5390 union mc_target target;
5391 struct page *page;
5392 struct page_cgroup *pc;
5393
5394 /*
5395 * We don't take compound_lock() here but no race with splitting thp
5396 * happens because:
5397 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5398 * under splitting, which means there's no concurrent thp split,
5399 * - if another thread runs into split_huge_page() just after we
5400 * entered this if-block, the thread must wait for page table lock
5401 * to be unlocked in __split_huge_page_splitting(), where the main
5402 * part of thp split is not executed yet.
5403 */
5404 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5405 if (mc.precharge < HPAGE_PMD_NR) {
5406 spin_unlock(&vma->vm_mm->page_table_lock);
5407 return 0;
5408 }
5409 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5410 if (target_type == MC_TARGET_PAGE) {
5411 page = target.page;
5412 if (!isolate_lru_page(page)) {
5413 pc = lookup_page_cgroup(page);
5414 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5415 pc, mc.from, mc.to)) {
5416 mc.precharge -= HPAGE_PMD_NR;
5417 mc.moved_charge += HPAGE_PMD_NR;
5418 }
5419 putback_lru_page(page);
5420 }
5421 put_page(page);
5422 }
5423 spin_unlock(&vma->vm_mm->page_table_lock);
5424 return 0;
5425 }
5426
5427 if (pmd_trans_unstable(pmd))
5428 return 0;
5429 retry:
5430 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5431 for (; addr != end; addr += PAGE_SIZE) {
5432 pte_t ptent = *(pte++);
5433 swp_entry_t ent;
5434
5435 if (!mc.precharge)
5436 break;
5437
5438 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5439 case MC_TARGET_PAGE:
5440 page = target.page;
5441 if (isolate_lru_page(page))
5442 goto put;
5443 pc = lookup_page_cgroup(page);
5444 if (!mem_cgroup_move_account(page, 1, pc,
5445 mc.from, mc.to)) {
5446 mc.precharge--;
5447 /* we uncharge from mc.from later. */
5448 mc.moved_charge++;
5449 }
5450 putback_lru_page(page);
5451 put: /* get_mctgt_type() gets the page */
5452 put_page(page);
5453 break;
5454 case MC_TARGET_SWAP:
5455 ent = target.ent;
5456 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5457 mc.precharge--;
5458 /* we fixup refcnts and charges later. */
5459 mc.moved_swap++;
5460 }
5461 break;
5462 default:
5463 break;
5464 }
5465 }
5466 pte_unmap_unlock(pte - 1, ptl);
5467 cond_resched();
5468
5469 if (addr != end) {
5470 /*
5471 * We have consumed all precharges we got in can_attach().
5472 * We try charge one by one, but don't do any additional
5473 * charges to mc.to if we have failed in charge once in attach()
5474 * phase.
5475 */
5476 ret = mem_cgroup_do_precharge(1);
5477 if (!ret)
5478 goto retry;
5479 }
5480
5481 return ret;
5482 }
5483
5484 static void mem_cgroup_move_charge(struct mm_struct *mm)
5485 {
5486 struct vm_area_struct *vma;
5487
5488 lru_add_drain_all();
5489 retry:
5490 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5491 /*
5492 * Someone who are holding the mmap_sem might be waiting in
5493 * waitq. So we cancel all extra charges, wake up all waiters,
5494 * and retry. Because we cancel precharges, we might not be able
5495 * to move enough charges, but moving charge is a best-effort
5496 * feature anyway, so it wouldn't be a big problem.
5497 */
5498 __mem_cgroup_clear_mc();
5499 cond_resched();
5500 goto retry;
5501 }
5502 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5503 int ret;
5504 struct mm_walk mem_cgroup_move_charge_walk = {
5505 .pmd_entry = mem_cgroup_move_charge_pte_range,
5506 .mm = mm,
5507 .private = vma,
5508 };
5509 if (is_vm_hugetlb_page(vma))
5510 continue;
5511 ret = walk_page_range(vma->vm_start, vma->vm_end,
5512 &mem_cgroup_move_charge_walk);
5513 if (ret)
5514 /*
5515 * means we have consumed all precharges and failed in
5516 * doing additional charge. Just abandon here.
5517 */
5518 break;
5519 }
5520 up_read(&mm->mmap_sem);
5521 }
5522
5523 static void mem_cgroup_move_task(struct cgroup *cont,
5524 struct cgroup_taskset *tset)
5525 {
5526 struct task_struct *p = cgroup_taskset_first(tset);
5527 struct mm_struct *mm = get_task_mm(p);
5528
5529 if (mm) {
5530 if (mc.to)
5531 mem_cgroup_move_charge(mm);
5532 mmput(mm);
5533 }
5534 if (mc.to)
5535 mem_cgroup_clear_mc();
5536 }
5537 #else /* !CONFIG_MMU */
5538 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5539 struct cgroup_taskset *tset)
5540 {
5541 return 0;
5542 }
5543 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5544 struct cgroup_taskset *tset)
5545 {
5546 }
5547 static void mem_cgroup_move_task(struct cgroup *cont,
5548 struct cgroup_taskset *tset)
5549 {
5550 }
5551 #endif
5552
5553 struct cgroup_subsys mem_cgroup_subsys = {
5554 .name = "memory",
5555 .subsys_id = mem_cgroup_subsys_id,
5556 .create = mem_cgroup_create,
5557 .pre_destroy = mem_cgroup_pre_destroy,
5558 .destroy = mem_cgroup_destroy,
5559 .can_attach = mem_cgroup_can_attach,
5560 .cancel_attach = mem_cgroup_cancel_attach,
5561 .attach = mem_cgroup_move_task,
5562 .base_cftypes = mem_cgroup_files,
5563 .early_init = 0,
5564 .use_id = 1,
5565 .__DEPRECATED_clear_css_refs = true,
5566 };
5567
5568 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5569 static int __init enable_swap_account(char *s)
5570 {
5571 /* consider enabled if no parameter or 1 is given */
5572 if (!strcmp(s, "1"))
5573 really_do_swap_account = 1;
5574 else if (!strcmp(s, "0"))
5575 really_do_swap_account = 0;
5576 return 1;
5577 }
5578 __setup("swapaccount=", enable_swap_account);
5579
5580 #endif
This page took 0.135359 seconds and 6 git commands to generate.