memory controller: soft limit reclaim on contention
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/rbtree.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/spinlock.h>
36 #include <linux/fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm_inline.h>
40 #include <linux/page_cgroup.h>
41 #include "internal.h"
42
43 #include <asm/uaccess.h>
44
45 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
46 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 struct mem_cgroup *root_mem_cgroup __read_mostly;
48
49 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
50 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 int do_swap_account __read_mostly;
52 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
53 #else
54 #define do_swap_account (0)
55 #endif
56
57 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
58 #define SOFTLIMIT_EVENTS_THRESH (1000)
59
60 /*
61 * Statistics for memory cgroup.
62 */
63 enum mem_cgroup_stat_index {
64 /*
65 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66 */
67 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
68 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
69 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */
70 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
71 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
72 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
73
74 MEM_CGROUP_STAT_NSTATS,
75 };
76
77 struct mem_cgroup_stat_cpu {
78 s64 count[MEM_CGROUP_STAT_NSTATS];
79 } ____cacheline_aligned_in_smp;
80
81 struct mem_cgroup_stat {
82 struct mem_cgroup_stat_cpu cpustat[0];
83 };
84
85 static inline void
86 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
87 enum mem_cgroup_stat_index idx)
88 {
89 stat->count[idx] = 0;
90 }
91
92 static inline s64
93 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
94 enum mem_cgroup_stat_index idx)
95 {
96 return stat->count[idx];
97 }
98
99 /*
100 * For accounting under irq disable, no need for increment preempt count.
101 */
102 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
103 enum mem_cgroup_stat_index idx, int val)
104 {
105 stat->count[idx] += val;
106 }
107
108 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
109 enum mem_cgroup_stat_index idx)
110 {
111 int cpu;
112 s64 ret = 0;
113 for_each_possible_cpu(cpu)
114 ret += stat->cpustat[cpu].count[idx];
115 return ret;
116 }
117
118 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
119 {
120 s64 ret;
121
122 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
123 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
124 return ret;
125 }
126
127 /*
128 * per-zone information in memory controller.
129 */
130 struct mem_cgroup_per_zone {
131 /*
132 * spin_lock to protect the per cgroup LRU
133 */
134 struct list_head lists[NR_LRU_LISTS];
135 unsigned long count[NR_LRU_LISTS];
136
137 struct zone_reclaim_stat reclaim_stat;
138 struct rb_node tree_node; /* RB tree node */
139 unsigned long long usage_in_excess;/* Set to the value by which */
140 /* the soft limit is exceeded*/
141 bool on_tree;
142 struct mem_cgroup *mem; /* Back pointer, we cannot */
143 /* use container_of */
144 };
145 /* Macro for accessing counter */
146 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
147
148 struct mem_cgroup_per_node {
149 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
150 };
151
152 struct mem_cgroup_lru_info {
153 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
154 };
155
156 /*
157 * Cgroups above their limits are maintained in a RB-Tree, independent of
158 * their hierarchy representation
159 */
160
161 struct mem_cgroup_tree_per_zone {
162 struct rb_root rb_root;
163 spinlock_t lock;
164 };
165
166 struct mem_cgroup_tree_per_node {
167 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
168 };
169
170 struct mem_cgroup_tree {
171 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
172 };
173
174 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
175
176 /*
177 * The memory controller data structure. The memory controller controls both
178 * page cache and RSS per cgroup. We would eventually like to provide
179 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
180 * to help the administrator determine what knobs to tune.
181 *
182 * TODO: Add a water mark for the memory controller. Reclaim will begin when
183 * we hit the water mark. May be even add a low water mark, such that
184 * no reclaim occurs from a cgroup at it's low water mark, this is
185 * a feature that will be implemented much later in the future.
186 */
187 struct mem_cgroup {
188 struct cgroup_subsys_state css;
189 /*
190 * the counter to account for memory usage
191 */
192 struct res_counter res;
193 /*
194 * the counter to account for mem+swap usage.
195 */
196 struct res_counter memsw;
197 /*
198 * Per cgroup active and inactive list, similar to the
199 * per zone LRU lists.
200 */
201 struct mem_cgroup_lru_info info;
202
203 /*
204 protect against reclaim related member.
205 */
206 spinlock_t reclaim_param_lock;
207
208 int prev_priority; /* for recording reclaim priority */
209
210 /*
211 * While reclaiming in a hiearchy, we cache the last child we
212 * reclaimed from.
213 */
214 int last_scanned_child;
215 /*
216 * Should the accounting and control be hierarchical, per subtree?
217 */
218 bool use_hierarchy;
219 unsigned long last_oom_jiffies;
220 atomic_t refcnt;
221
222 unsigned int swappiness;
223
224 /* set when res.limit == memsw.limit */
225 bool memsw_is_minimum;
226
227 /*
228 * statistics. This must be placed at the end of memcg.
229 */
230 struct mem_cgroup_stat stat;
231 };
232
233 /*
234 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
235 * limit reclaim to prevent infinite loops, if they ever occur.
236 */
237 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
238 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
239
240 enum charge_type {
241 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
242 MEM_CGROUP_CHARGE_TYPE_MAPPED,
243 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
244 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
245 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
246 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
247 NR_CHARGE_TYPE,
248 };
249
250 /* only for here (for easy reading.) */
251 #define PCGF_CACHE (1UL << PCG_CACHE)
252 #define PCGF_USED (1UL << PCG_USED)
253 #define PCGF_LOCK (1UL << PCG_LOCK)
254 /* Not used, but added here for completeness */
255 #define PCGF_ACCT (1UL << PCG_ACCT)
256
257 /* for encoding cft->private value on file */
258 #define _MEM (0)
259 #define _MEMSWAP (1)
260 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
261 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
262 #define MEMFILE_ATTR(val) ((val) & 0xffff)
263
264 /*
265 * Reclaim flags for mem_cgroup_hierarchical_reclaim
266 */
267 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
268 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
269 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
270 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
271 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
272 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
273
274 static void mem_cgroup_get(struct mem_cgroup *mem);
275 static void mem_cgroup_put(struct mem_cgroup *mem);
276 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
277
278 static struct mem_cgroup_per_zone *
279 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
280 {
281 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
282 }
283
284 static struct mem_cgroup_per_zone *
285 page_cgroup_zoneinfo(struct page_cgroup *pc)
286 {
287 struct mem_cgroup *mem = pc->mem_cgroup;
288 int nid = page_cgroup_nid(pc);
289 int zid = page_cgroup_zid(pc);
290
291 if (!mem)
292 return NULL;
293
294 return mem_cgroup_zoneinfo(mem, nid, zid);
295 }
296
297 static struct mem_cgroup_tree_per_zone *
298 soft_limit_tree_node_zone(int nid, int zid)
299 {
300 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
301 }
302
303 static struct mem_cgroup_tree_per_zone *
304 soft_limit_tree_from_page(struct page *page)
305 {
306 int nid = page_to_nid(page);
307 int zid = page_zonenum(page);
308
309 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
310 }
311
312 static void
313 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
314 struct mem_cgroup_per_zone *mz,
315 struct mem_cgroup_tree_per_zone *mctz)
316 {
317 struct rb_node **p = &mctz->rb_root.rb_node;
318 struct rb_node *parent = NULL;
319 struct mem_cgroup_per_zone *mz_node;
320
321 if (mz->on_tree)
322 return;
323
324 mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
325 while (*p) {
326 parent = *p;
327 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
328 tree_node);
329 if (mz->usage_in_excess < mz_node->usage_in_excess)
330 p = &(*p)->rb_left;
331 /*
332 * We can't avoid mem cgroups that are over their soft
333 * limit by the same amount
334 */
335 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
336 p = &(*p)->rb_right;
337 }
338 rb_link_node(&mz->tree_node, parent, p);
339 rb_insert_color(&mz->tree_node, &mctz->rb_root);
340 mz->on_tree = true;
341 }
342
343 static void
344 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
345 struct mem_cgroup_per_zone *mz,
346 struct mem_cgroup_tree_per_zone *mctz)
347 {
348 if (!mz->on_tree)
349 return;
350 rb_erase(&mz->tree_node, &mctz->rb_root);
351 mz->on_tree = false;
352 }
353
354 static void
355 mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
356 struct mem_cgroup_per_zone *mz,
357 struct mem_cgroup_tree_per_zone *mctz)
358 {
359 spin_lock(&mctz->lock);
360 __mem_cgroup_insert_exceeded(mem, mz, mctz);
361 spin_unlock(&mctz->lock);
362 }
363
364 static void
365 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
366 struct mem_cgroup_per_zone *mz,
367 struct mem_cgroup_tree_per_zone *mctz)
368 {
369 spin_lock(&mctz->lock);
370 __mem_cgroup_remove_exceeded(mem, mz, mctz);
371 spin_unlock(&mctz->lock);
372 }
373
374 static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
375 {
376 bool ret = false;
377 int cpu;
378 s64 val;
379 struct mem_cgroup_stat_cpu *cpustat;
380
381 cpu = get_cpu();
382 cpustat = &mem->stat.cpustat[cpu];
383 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
384 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
385 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
386 ret = true;
387 }
388 put_cpu();
389 return ret;
390 }
391
392 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
393 {
394 unsigned long long prev_usage_in_excess, new_usage_in_excess;
395 bool updated_tree = false;
396 struct mem_cgroup_per_zone *mz;
397 struct mem_cgroup_tree_per_zone *mctz;
398
399 mz = mem_cgroup_zoneinfo(mem, page_to_nid(page), page_zonenum(page));
400 mctz = soft_limit_tree_from_page(page);
401
402 /*
403 * We do updates in lazy mode, mem's are removed
404 * lazily from the per-zone, per-node rb tree
405 */
406 prev_usage_in_excess = mz->usage_in_excess;
407
408 new_usage_in_excess = res_counter_soft_limit_excess(&mem->res);
409 if (prev_usage_in_excess) {
410 mem_cgroup_remove_exceeded(mem, mz, mctz);
411 updated_tree = true;
412 }
413 if (!new_usage_in_excess)
414 goto done;
415 mem_cgroup_insert_exceeded(mem, mz, mctz);
416
417 done:
418 if (updated_tree) {
419 spin_lock(&mctz->lock);
420 mz->usage_in_excess = new_usage_in_excess;
421 spin_unlock(&mctz->lock);
422 }
423 }
424
425 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
426 {
427 int node, zone;
428 struct mem_cgroup_per_zone *mz;
429 struct mem_cgroup_tree_per_zone *mctz;
430
431 for_each_node_state(node, N_POSSIBLE) {
432 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
433 mz = mem_cgroup_zoneinfo(mem, node, zone);
434 mctz = soft_limit_tree_node_zone(node, zone);
435 mem_cgroup_remove_exceeded(mem, mz, mctz);
436 }
437 }
438 }
439
440 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
441 {
442 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
443 }
444
445 static struct mem_cgroup_per_zone *
446 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
447 {
448 struct rb_node *rightmost = NULL;
449 struct mem_cgroup_per_zone *mz = NULL;
450
451 retry:
452 rightmost = rb_last(&mctz->rb_root);
453 if (!rightmost)
454 goto done; /* Nothing to reclaim from */
455
456 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
457 /*
458 * Remove the node now but someone else can add it back,
459 * we will to add it back at the end of reclaim to its correct
460 * position in the tree.
461 */
462 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
463 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
464 !css_tryget(&mz->mem->css))
465 goto retry;
466 done:
467 return mz;
468 }
469
470 static struct mem_cgroup_per_zone *
471 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
472 {
473 struct mem_cgroup_per_zone *mz;
474
475 spin_lock(&mctz->lock);
476 mz = __mem_cgroup_largest_soft_limit_node(mctz);
477 spin_unlock(&mctz->lock);
478 return mz;
479 }
480
481 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
482 struct page_cgroup *pc,
483 bool charge)
484 {
485 int val = (charge)? 1 : -1;
486 struct mem_cgroup_stat *stat = &mem->stat;
487 struct mem_cgroup_stat_cpu *cpustat;
488 int cpu = get_cpu();
489
490 cpustat = &stat->cpustat[cpu];
491 if (PageCgroupCache(pc))
492 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
493 else
494 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
495
496 if (charge)
497 __mem_cgroup_stat_add_safe(cpustat,
498 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
499 else
500 __mem_cgroup_stat_add_safe(cpustat,
501 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
502 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
503 put_cpu();
504 }
505
506 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
507 enum lru_list idx)
508 {
509 int nid, zid;
510 struct mem_cgroup_per_zone *mz;
511 u64 total = 0;
512
513 for_each_online_node(nid)
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = mem_cgroup_zoneinfo(mem, nid, zid);
516 total += MEM_CGROUP_ZSTAT(mz, idx);
517 }
518 return total;
519 }
520
521 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
522 {
523 return container_of(cgroup_subsys_state(cont,
524 mem_cgroup_subsys_id), struct mem_cgroup,
525 css);
526 }
527
528 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
529 {
530 /*
531 * mm_update_next_owner() may clear mm->owner to NULL
532 * if it races with swapoff, page migration, etc.
533 * So this can be called with p == NULL.
534 */
535 if (unlikely(!p))
536 return NULL;
537
538 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
539 struct mem_cgroup, css);
540 }
541
542 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
543 {
544 struct mem_cgroup *mem = NULL;
545
546 if (!mm)
547 return NULL;
548 /*
549 * Because we have no locks, mm->owner's may be being moved to other
550 * cgroup. We use css_tryget() here even if this looks
551 * pessimistic (rather than adding locks here).
552 */
553 rcu_read_lock();
554 do {
555 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
556 if (unlikely(!mem))
557 break;
558 } while (!css_tryget(&mem->css));
559 rcu_read_unlock();
560 return mem;
561 }
562
563 /*
564 * Call callback function against all cgroup under hierarchy tree.
565 */
566 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
567 int (*func)(struct mem_cgroup *, void *))
568 {
569 int found, ret, nextid;
570 struct cgroup_subsys_state *css;
571 struct mem_cgroup *mem;
572
573 if (!root->use_hierarchy)
574 return (*func)(root, data);
575
576 nextid = 1;
577 do {
578 ret = 0;
579 mem = NULL;
580
581 rcu_read_lock();
582 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
583 &found);
584 if (css && css_tryget(css))
585 mem = container_of(css, struct mem_cgroup, css);
586 rcu_read_unlock();
587
588 if (mem) {
589 ret = (*func)(mem, data);
590 css_put(&mem->css);
591 }
592 nextid = found + 1;
593 } while (!ret && css);
594
595 return ret;
596 }
597
598 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
599 {
600 return (mem == root_mem_cgroup);
601 }
602
603 /*
604 * Following LRU functions are allowed to be used without PCG_LOCK.
605 * Operations are called by routine of global LRU independently from memcg.
606 * What we have to take care of here is validness of pc->mem_cgroup.
607 *
608 * Changes to pc->mem_cgroup happens when
609 * 1. charge
610 * 2. moving account
611 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
612 * It is added to LRU before charge.
613 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
614 * When moving account, the page is not on LRU. It's isolated.
615 */
616
617 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
618 {
619 struct page_cgroup *pc;
620 struct mem_cgroup_per_zone *mz;
621
622 if (mem_cgroup_disabled())
623 return;
624 pc = lookup_page_cgroup(page);
625 /* can happen while we handle swapcache. */
626 if (!TestClearPageCgroupAcctLRU(pc))
627 return;
628 VM_BUG_ON(!pc->mem_cgroup);
629 /*
630 * We don't check PCG_USED bit. It's cleared when the "page" is finally
631 * removed from global LRU.
632 */
633 mz = page_cgroup_zoneinfo(pc);
634 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
635 if (mem_cgroup_is_root(pc->mem_cgroup))
636 return;
637 VM_BUG_ON(list_empty(&pc->lru));
638 list_del_init(&pc->lru);
639 return;
640 }
641
642 void mem_cgroup_del_lru(struct page *page)
643 {
644 mem_cgroup_del_lru_list(page, page_lru(page));
645 }
646
647 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
648 {
649 struct mem_cgroup_per_zone *mz;
650 struct page_cgroup *pc;
651
652 if (mem_cgroup_disabled())
653 return;
654
655 pc = lookup_page_cgroup(page);
656 /*
657 * Used bit is set without atomic ops but after smp_wmb().
658 * For making pc->mem_cgroup visible, insert smp_rmb() here.
659 */
660 smp_rmb();
661 /* unused or root page is not rotated. */
662 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
663 return;
664 mz = page_cgroup_zoneinfo(pc);
665 list_move(&pc->lru, &mz->lists[lru]);
666 }
667
668 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
669 {
670 struct page_cgroup *pc;
671 struct mem_cgroup_per_zone *mz;
672
673 if (mem_cgroup_disabled())
674 return;
675 pc = lookup_page_cgroup(page);
676 VM_BUG_ON(PageCgroupAcctLRU(pc));
677 /*
678 * Used bit is set without atomic ops but after smp_wmb().
679 * For making pc->mem_cgroup visible, insert smp_rmb() here.
680 */
681 smp_rmb();
682 if (!PageCgroupUsed(pc))
683 return;
684
685 mz = page_cgroup_zoneinfo(pc);
686 MEM_CGROUP_ZSTAT(mz, lru) += 1;
687 SetPageCgroupAcctLRU(pc);
688 if (mem_cgroup_is_root(pc->mem_cgroup))
689 return;
690 list_add(&pc->lru, &mz->lists[lru]);
691 }
692
693 /*
694 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
695 * lru because the page may.be reused after it's fully uncharged (because of
696 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
697 * it again. This function is only used to charge SwapCache. It's done under
698 * lock_page and expected that zone->lru_lock is never held.
699 */
700 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
701 {
702 unsigned long flags;
703 struct zone *zone = page_zone(page);
704 struct page_cgroup *pc = lookup_page_cgroup(page);
705
706 spin_lock_irqsave(&zone->lru_lock, flags);
707 /*
708 * Forget old LRU when this page_cgroup is *not* used. This Used bit
709 * is guarded by lock_page() because the page is SwapCache.
710 */
711 if (!PageCgroupUsed(pc))
712 mem_cgroup_del_lru_list(page, page_lru(page));
713 spin_unlock_irqrestore(&zone->lru_lock, flags);
714 }
715
716 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
717 {
718 unsigned long flags;
719 struct zone *zone = page_zone(page);
720 struct page_cgroup *pc = lookup_page_cgroup(page);
721
722 spin_lock_irqsave(&zone->lru_lock, flags);
723 /* link when the page is linked to LRU but page_cgroup isn't */
724 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
725 mem_cgroup_add_lru_list(page, page_lru(page));
726 spin_unlock_irqrestore(&zone->lru_lock, flags);
727 }
728
729
730 void mem_cgroup_move_lists(struct page *page,
731 enum lru_list from, enum lru_list to)
732 {
733 if (mem_cgroup_disabled())
734 return;
735 mem_cgroup_del_lru_list(page, from);
736 mem_cgroup_add_lru_list(page, to);
737 }
738
739 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
740 {
741 int ret;
742 struct mem_cgroup *curr = NULL;
743
744 task_lock(task);
745 rcu_read_lock();
746 curr = try_get_mem_cgroup_from_mm(task->mm);
747 rcu_read_unlock();
748 task_unlock(task);
749 if (!curr)
750 return 0;
751 if (curr->use_hierarchy)
752 ret = css_is_ancestor(&curr->css, &mem->css);
753 else
754 ret = (curr == mem);
755 css_put(&curr->css);
756 return ret;
757 }
758
759 /*
760 * prev_priority control...this will be used in memory reclaim path.
761 */
762 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
763 {
764 int prev_priority;
765
766 spin_lock(&mem->reclaim_param_lock);
767 prev_priority = mem->prev_priority;
768 spin_unlock(&mem->reclaim_param_lock);
769
770 return prev_priority;
771 }
772
773 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
774 {
775 spin_lock(&mem->reclaim_param_lock);
776 if (priority < mem->prev_priority)
777 mem->prev_priority = priority;
778 spin_unlock(&mem->reclaim_param_lock);
779 }
780
781 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
782 {
783 spin_lock(&mem->reclaim_param_lock);
784 mem->prev_priority = priority;
785 spin_unlock(&mem->reclaim_param_lock);
786 }
787
788 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
789 {
790 unsigned long active;
791 unsigned long inactive;
792 unsigned long gb;
793 unsigned long inactive_ratio;
794
795 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
796 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
797
798 gb = (inactive + active) >> (30 - PAGE_SHIFT);
799 if (gb)
800 inactive_ratio = int_sqrt(10 * gb);
801 else
802 inactive_ratio = 1;
803
804 if (present_pages) {
805 present_pages[0] = inactive;
806 present_pages[1] = active;
807 }
808
809 return inactive_ratio;
810 }
811
812 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
813 {
814 unsigned long active;
815 unsigned long inactive;
816 unsigned long present_pages[2];
817 unsigned long inactive_ratio;
818
819 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
820
821 inactive = present_pages[0];
822 active = present_pages[1];
823
824 if (inactive * inactive_ratio < active)
825 return 1;
826
827 return 0;
828 }
829
830 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
831 {
832 unsigned long active;
833 unsigned long inactive;
834
835 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
836 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
837
838 return (active > inactive);
839 }
840
841 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
842 struct zone *zone,
843 enum lru_list lru)
844 {
845 int nid = zone->zone_pgdat->node_id;
846 int zid = zone_idx(zone);
847 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
848
849 return MEM_CGROUP_ZSTAT(mz, lru);
850 }
851
852 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
853 struct zone *zone)
854 {
855 int nid = zone->zone_pgdat->node_id;
856 int zid = zone_idx(zone);
857 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
858
859 return &mz->reclaim_stat;
860 }
861
862 struct zone_reclaim_stat *
863 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
864 {
865 struct page_cgroup *pc;
866 struct mem_cgroup_per_zone *mz;
867
868 if (mem_cgroup_disabled())
869 return NULL;
870
871 pc = lookup_page_cgroup(page);
872 /*
873 * Used bit is set without atomic ops but after smp_wmb().
874 * For making pc->mem_cgroup visible, insert smp_rmb() here.
875 */
876 smp_rmb();
877 if (!PageCgroupUsed(pc))
878 return NULL;
879
880 mz = page_cgroup_zoneinfo(pc);
881 if (!mz)
882 return NULL;
883
884 return &mz->reclaim_stat;
885 }
886
887 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
888 struct list_head *dst,
889 unsigned long *scanned, int order,
890 int mode, struct zone *z,
891 struct mem_cgroup *mem_cont,
892 int active, int file)
893 {
894 unsigned long nr_taken = 0;
895 struct page *page;
896 unsigned long scan;
897 LIST_HEAD(pc_list);
898 struct list_head *src;
899 struct page_cgroup *pc, *tmp;
900 int nid = z->zone_pgdat->node_id;
901 int zid = zone_idx(z);
902 struct mem_cgroup_per_zone *mz;
903 int lru = LRU_FILE * file + active;
904 int ret;
905
906 BUG_ON(!mem_cont);
907 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
908 src = &mz->lists[lru];
909
910 scan = 0;
911 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
912 if (scan >= nr_to_scan)
913 break;
914
915 page = pc->page;
916 if (unlikely(!PageCgroupUsed(pc)))
917 continue;
918 if (unlikely(!PageLRU(page)))
919 continue;
920
921 scan++;
922 ret = __isolate_lru_page(page, mode, file);
923 switch (ret) {
924 case 0:
925 list_move(&page->lru, dst);
926 mem_cgroup_del_lru(page);
927 nr_taken++;
928 break;
929 case -EBUSY:
930 /* we don't affect global LRU but rotate in our LRU */
931 mem_cgroup_rotate_lru_list(page, page_lru(page));
932 break;
933 default:
934 break;
935 }
936 }
937
938 *scanned = scan;
939 return nr_taken;
940 }
941
942 #define mem_cgroup_from_res_counter(counter, member) \
943 container_of(counter, struct mem_cgroup, member)
944
945 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
946 {
947 if (do_swap_account) {
948 if (res_counter_check_under_limit(&mem->res) &&
949 res_counter_check_under_limit(&mem->memsw))
950 return true;
951 } else
952 if (res_counter_check_under_limit(&mem->res))
953 return true;
954 return false;
955 }
956
957 static unsigned int get_swappiness(struct mem_cgroup *memcg)
958 {
959 struct cgroup *cgrp = memcg->css.cgroup;
960 unsigned int swappiness;
961
962 /* root ? */
963 if (cgrp->parent == NULL)
964 return vm_swappiness;
965
966 spin_lock(&memcg->reclaim_param_lock);
967 swappiness = memcg->swappiness;
968 spin_unlock(&memcg->reclaim_param_lock);
969
970 return swappiness;
971 }
972
973 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
974 {
975 int *val = data;
976 (*val)++;
977 return 0;
978 }
979
980 /**
981 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
982 * @memcg: The memory cgroup that went over limit
983 * @p: Task that is going to be killed
984 *
985 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
986 * enabled
987 */
988 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
989 {
990 struct cgroup *task_cgrp;
991 struct cgroup *mem_cgrp;
992 /*
993 * Need a buffer in BSS, can't rely on allocations. The code relies
994 * on the assumption that OOM is serialized for memory controller.
995 * If this assumption is broken, revisit this code.
996 */
997 static char memcg_name[PATH_MAX];
998 int ret;
999
1000 if (!memcg)
1001 return;
1002
1003
1004 rcu_read_lock();
1005
1006 mem_cgrp = memcg->css.cgroup;
1007 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1008
1009 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1010 if (ret < 0) {
1011 /*
1012 * Unfortunately, we are unable to convert to a useful name
1013 * But we'll still print out the usage information
1014 */
1015 rcu_read_unlock();
1016 goto done;
1017 }
1018 rcu_read_unlock();
1019
1020 printk(KERN_INFO "Task in %s killed", memcg_name);
1021
1022 rcu_read_lock();
1023 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1024 if (ret < 0) {
1025 rcu_read_unlock();
1026 goto done;
1027 }
1028 rcu_read_unlock();
1029
1030 /*
1031 * Continues from above, so we don't need an KERN_ level
1032 */
1033 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1034 done:
1035
1036 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1037 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1038 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1039 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1040 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1041 "failcnt %llu\n",
1042 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1043 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1044 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1045 }
1046
1047 /*
1048 * This function returns the number of memcg under hierarchy tree. Returns
1049 * 1(self count) if no children.
1050 */
1051 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1052 {
1053 int num = 0;
1054 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1055 return num;
1056 }
1057
1058 /*
1059 * Visit the first child (need not be the first child as per the ordering
1060 * of the cgroup list, since we track last_scanned_child) of @mem and use
1061 * that to reclaim free pages from.
1062 */
1063 static struct mem_cgroup *
1064 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1065 {
1066 struct mem_cgroup *ret = NULL;
1067 struct cgroup_subsys_state *css;
1068 int nextid, found;
1069
1070 if (!root_mem->use_hierarchy) {
1071 css_get(&root_mem->css);
1072 ret = root_mem;
1073 }
1074
1075 while (!ret) {
1076 rcu_read_lock();
1077 nextid = root_mem->last_scanned_child + 1;
1078 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1079 &found);
1080 if (css && css_tryget(css))
1081 ret = container_of(css, struct mem_cgroup, css);
1082
1083 rcu_read_unlock();
1084 /* Updates scanning parameter */
1085 spin_lock(&root_mem->reclaim_param_lock);
1086 if (!css) {
1087 /* this means start scan from ID:1 */
1088 root_mem->last_scanned_child = 0;
1089 } else
1090 root_mem->last_scanned_child = found;
1091 spin_unlock(&root_mem->reclaim_param_lock);
1092 }
1093
1094 return ret;
1095 }
1096
1097 /*
1098 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1099 * we reclaimed from, so that we don't end up penalizing one child extensively
1100 * based on its position in the children list.
1101 *
1102 * root_mem is the original ancestor that we've been reclaim from.
1103 *
1104 * We give up and return to the caller when we visit root_mem twice.
1105 * (other groups can be removed while we're walking....)
1106 *
1107 * If shrink==true, for avoiding to free too much, this returns immedieately.
1108 */
1109 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1110 struct zone *zone,
1111 gfp_t gfp_mask,
1112 unsigned long reclaim_options)
1113 {
1114 struct mem_cgroup *victim;
1115 int ret, total = 0;
1116 int loop = 0;
1117 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1118 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1119 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1120 unsigned long excess = mem_cgroup_get_excess(root_mem);
1121
1122 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1123 if (root_mem->memsw_is_minimum)
1124 noswap = true;
1125
1126 while (1) {
1127 victim = mem_cgroup_select_victim(root_mem);
1128 if (victim == root_mem) {
1129 loop++;
1130 if (loop >= 2) {
1131 /*
1132 * If we have not been able to reclaim
1133 * anything, it might because there are
1134 * no reclaimable pages under this hierarchy
1135 */
1136 if (!check_soft || !total) {
1137 css_put(&victim->css);
1138 break;
1139 }
1140 /*
1141 * We want to do more targetted reclaim.
1142 * excess >> 2 is not to excessive so as to
1143 * reclaim too much, nor too less that we keep
1144 * coming back to reclaim from this cgroup
1145 */
1146 if (total >= (excess >> 2) ||
1147 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1148 css_put(&victim->css);
1149 break;
1150 }
1151 }
1152 }
1153 if (!mem_cgroup_local_usage(&victim->stat)) {
1154 /* this cgroup's local usage == 0 */
1155 css_put(&victim->css);
1156 continue;
1157 }
1158 /* we use swappiness of local cgroup */
1159 if (check_soft)
1160 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1161 noswap, get_swappiness(victim), zone,
1162 zone->zone_pgdat->node_id);
1163 else
1164 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1165 noswap, get_swappiness(victim));
1166 css_put(&victim->css);
1167 /*
1168 * At shrinking usage, we can't check we should stop here or
1169 * reclaim more. It's depends on callers. last_scanned_child
1170 * will work enough for keeping fairness under tree.
1171 */
1172 if (shrink)
1173 return ret;
1174 total += ret;
1175 if (check_soft) {
1176 if (res_counter_check_under_soft_limit(&root_mem->res))
1177 return total;
1178 } else if (mem_cgroup_check_under_limit(root_mem))
1179 return 1 + total;
1180 }
1181 return total;
1182 }
1183
1184 bool mem_cgroup_oom_called(struct task_struct *task)
1185 {
1186 bool ret = false;
1187 struct mem_cgroup *mem;
1188 struct mm_struct *mm;
1189
1190 rcu_read_lock();
1191 mm = task->mm;
1192 if (!mm)
1193 mm = &init_mm;
1194 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1195 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1196 ret = true;
1197 rcu_read_unlock();
1198 return ret;
1199 }
1200
1201 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1202 {
1203 mem->last_oom_jiffies = jiffies;
1204 return 0;
1205 }
1206
1207 static void record_last_oom(struct mem_cgroup *mem)
1208 {
1209 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1210 }
1211
1212 /*
1213 * Currently used to update mapped file statistics, but the routine can be
1214 * generalized to update other statistics as well.
1215 */
1216 void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1217 {
1218 struct mem_cgroup *mem;
1219 struct mem_cgroup_stat *stat;
1220 struct mem_cgroup_stat_cpu *cpustat;
1221 int cpu;
1222 struct page_cgroup *pc;
1223
1224 if (!page_is_file_cache(page))
1225 return;
1226
1227 pc = lookup_page_cgroup(page);
1228 if (unlikely(!pc))
1229 return;
1230
1231 lock_page_cgroup(pc);
1232 mem = pc->mem_cgroup;
1233 if (!mem)
1234 goto done;
1235
1236 if (!PageCgroupUsed(pc))
1237 goto done;
1238
1239 /*
1240 * Preemption is already disabled, we don't need get_cpu()
1241 */
1242 cpu = smp_processor_id();
1243 stat = &mem->stat;
1244 cpustat = &stat->cpustat[cpu];
1245
1246 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1247 done:
1248 unlock_page_cgroup(pc);
1249 }
1250
1251 /*
1252 * Unlike exported interface, "oom" parameter is added. if oom==true,
1253 * oom-killer can be invoked.
1254 */
1255 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1256 gfp_t gfp_mask, struct mem_cgroup **memcg,
1257 bool oom, struct page *page)
1258 {
1259 struct mem_cgroup *mem, *mem_over_limit, *mem_over_soft_limit;
1260 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1261 struct res_counter *fail_res, *soft_fail_res = NULL;
1262
1263 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1264 /* Don't account this! */
1265 *memcg = NULL;
1266 return 0;
1267 }
1268
1269 /*
1270 * We always charge the cgroup the mm_struct belongs to.
1271 * The mm_struct's mem_cgroup changes on task migration if the
1272 * thread group leader migrates. It's possible that mm is not
1273 * set, if so charge the init_mm (happens for pagecache usage).
1274 */
1275 mem = *memcg;
1276 if (likely(!mem)) {
1277 mem = try_get_mem_cgroup_from_mm(mm);
1278 *memcg = mem;
1279 } else {
1280 css_get(&mem->css);
1281 }
1282 if (unlikely(!mem))
1283 return 0;
1284
1285 VM_BUG_ON(css_is_removed(&mem->css));
1286
1287 while (1) {
1288 int ret;
1289 unsigned long flags = 0;
1290
1291 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res,
1292 &soft_fail_res);
1293 if (likely(!ret)) {
1294 if (!do_swap_account)
1295 break;
1296 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1297 &fail_res, NULL);
1298 if (likely(!ret))
1299 break;
1300 /* mem+swap counter fails */
1301 res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1302 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1303 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1304 memsw);
1305 } else
1306 /* mem counter fails */
1307 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1308 res);
1309
1310 if (!(gfp_mask & __GFP_WAIT))
1311 goto nomem;
1312
1313 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1314 gfp_mask, flags);
1315 if (ret)
1316 continue;
1317
1318 /*
1319 * try_to_free_mem_cgroup_pages() might not give us a full
1320 * picture of reclaim. Some pages are reclaimed and might be
1321 * moved to swap cache or just unmapped from the cgroup.
1322 * Check the limit again to see if the reclaim reduced the
1323 * current usage of the cgroup before giving up
1324 *
1325 */
1326 if (mem_cgroup_check_under_limit(mem_over_limit))
1327 continue;
1328
1329 if (!nr_retries--) {
1330 if (oom) {
1331 mutex_lock(&memcg_tasklist);
1332 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1333 mutex_unlock(&memcg_tasklist);
1334 record_last_oom(mem_over_limit);
1335 }
1336 goto nomem;
1337 }
1338 }
1339 /*
1340 * Insert just the ancestor, we should trickle down to the correct
1341 * cgroup for reclaim, since the other nodes will be below their
1342 * soft limit
1343 */
1344 if (soft_fail_res) {
1345 mem_over_soft_limit =
1346 mem_cgroup_from_res_counter(soft_fail_res, res);
1347 if (mem_cgroup_soft_limit_check(mem_over_soft_limit))
1348 mem_cgroup_update_tree(mem_over_soft_limit, page);
1349 }
1350 return 0;
1351 nomem:
1352 css_put(&mem->css);
1353 return -ENOMEM;
1354 }
1355
1356 /*
1357 * A helper function to get mem_cgroup from ID. must be called under
1358 * rcu_read_lock(). The caller must check css_is_removed() or some if
1359 * it's concern. (dropping refcnt from swap can be called against removed
1360 * memcg.)
1361 */
1362 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1363 {
1364 struct cgroup_subsys_state *css;
1365
1366 /* ID 0 is unused ID */
1367 if (!id)
1368 return NULL;
1369 css = css_lookup(&mem_cgroup_subsys, id);
1370 if (!css)
1371 return NULL;
1372 return container_of(css, struct mem_cgroup, css);
1373 }
1374
1375 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1376 {
1377 struct mem_cgroup *mem;
1378 struct page_cgroup *pc;
1379 unsigned short id;
1380 swp_entry_t ent;
1381
1382 VM_BUG_ON(!PageLocked(page));
1383
1384 if (!PageSwapCache(page))
1385 return NULL;
1386
1387 pc = lookup_page_cgroup(page);
1388 lock_page_cgroup(pc);
1389 if (PageCgroupUsed(pc)) {
1390 mem = pc->mem_cgroup;
1391 if (mem && !css_tryget(&mem->css))
1392 mem = NULL;
1393 } else {
1394 ent.val = page_private(page);
1395 id = lookup_swap_cgroup(ent);
1396 rcu_read_lock();
1397 mem = mem_cgroup_lookup(id);
1398 if (mem && !css_tryget(&mem->css))
1399 mem = NULL;
1400 rcu_read_unlock();
1401 }
1402 unlock_page_cgroup(pc);
1403 return mem;
1404 }
1405
1406 /*
1407 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1408 * USED state. If already USED, uncharge and return.
1409 */
1410
1411 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1412 struct page_cgroup *pc,
1413 enum charge_type ctype)
1414 {
1415 /* try_charge() can return NULL to *memcg, taking care of it. */
1416 if (!mem)
1417 return;
1418
1419 lock_page_cgroup(pc);
1420 if (unlikely(PageCgroupUsed(pc))) {
1421 unlock_page_cgroup(pc);
1422 res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1423 if (do_swap_account)
1424 res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1425 css_put(&mem->css);
1426 return;
1427 }
1428
1429 pc->mem_cgroup = mem;
1430 /*
1431 * We access a page_cgroup asynchronously without lock_page_cgroup().
1432 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1433 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1434 * before USED bit, we need memory barrier here.
1435 * See mem_cgroup_add_lru_list(), etc.
1436 */
1437 smp_wmb();
1438 switch (ctype) {
1439 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1440 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1441 SetPageCgroupCache(pc);
1442 SetPageCgroupUsed(pc);
1443 break;
1444 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1445 ClearPageCgroupCache(pc);
1446 SetPageCgroupUsed(pc);
1447 break;
1448 default:
1449 break;
1450 }
1451
1452 mem_cgroup_charge_statistics(mem, pc, true);
1453
1454 unlock_page_cgroup(pc);
1455 }
1456
1457 /**
1458 * mem_cgroup_move_account - move account of the page
1459 * @pc: page_cgroup of the page.
1460 * @from: mem_cgroup which the page is moved from.
1461 * @to: mem_cgroup which the page is moved to. @from != @to.
1462 *
1463 * The caller must confirm following.
1464 * - page is not on LRU (isolate_page() is useful.)
1465 *
1466 * returns 0 at success,
1467 * returns -EBUSY when lock is busy or "pc" is unstable.
1468 *
1469 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1470 * new cgroup. It should be done by a caller.
1471 */
1472
1473 static int mem_cgroup_move_account(struct page_cgroup *pc,
1474 struct mem_cgroup *from, struct mem_cgroup *to)
1475 {
1476 struct mem_cgroup_per_zone *from_mz, *to_mz;
1477 int nid, zid;
1478 int ret = -EBUSY;
1479 struct page *page;
1480 int cpu;
1481 struct mem_cgroup_stat *stat;
1482 struct mem_cgroup_stat_cpu *cpustat;
1483
1484 VM_BUG_ON(from == to);
1485 VM_BUG_ON(PageLRU(pc->page));
1486
1487 nid = page_cgroup_nid(pc);
1488 zid = page_cgroup_zid(pc);
1489 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1490 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1491
1492 if (!trylock_page_cgroup(pc))
1493 return ret;
1494
1495 if (!PageCgroupUsed(pc))
1496 goto out;
1497
1498 if (pc->mem_cgroup != from)
1499 goto out;
1500
1501 res_counter_uncharge(&from->res, PAGE_SIZE, NULL);
1502 mem_cgroup_charge_statistics(from, pc, false);
1503
1504 page = pc->page;
1505 if (page_is_file_cache(page) && page_mapped(page)) {
1506 cpu = smp_processor_id();
1507 /* Update mapped_file data for mem_cgroup "from" */
1508 stat = &from->stat;
1509 cpustat = &stat->cpustat[cpu];
1510 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1511 -1);
1512
1513 /* Update mapped_file data for mem_cgroup "to" */
1514 stat = &to->stat;
1515 cpustat = &stat->cpustat[cpu];
1516 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1517 1);
1518 }
1519
1520 if (do_swap_account)
1521 res_counter_uncharge(&from->memsw, PAGE_SIZE, NULL);
1522 css_put(&from->css);
1523
1524 css_get(&to->css);
1525 pc->mem_cgroup = to;
1526 mem_cgroup_charge_statistics(to, pc, true);
1527 ret = 0;
1528 out:
1529 unlock_page_cgroup(pc);
1530 /*
1531 * We charges against "to" which may not have any tasks. Then, "to"
1532 * can be under rmdir(). But in current implementation, caller of
1533 * this function is just force_empty() and it's garanteed that
1534 * "to" is never removed. So, we don't check rmdir status here.
1535 */
1536 return ret;
1537 }
1538
1539 /*
1540 * move charges to its parent.
1541 */
1542
1543 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1544 struct mem_cgroup *child,
1545 gfp_t gfp_mask)
1546 {
1547 struct page *page = pc->page;
1548 struct cgroup *cg = child->css.cgroup;
1549 struct cgroup *pcg = cg->parent;
1550 struct mem_cgroup *parent;
1551 int ret;
1552
1553 /* Is ROOT ? */
1554 if (!pcg)
1555 return -EINVAL;
1556
1557
1558 parent = mem_cgroup_from_cont(pcg);
1559
1560
1561 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1562 if (ret || !parent)
1563 return ret;
1564
1565 if (!get_page_unless_zero(page)) {
1566 ret = -EBUSY;
1567 goto uncharge;
1568 }
1569
1570 ret = isolate_lru_page(page);
1571
1572 if (ret)
1573 goto cancel;
1574
1575 ret = mem_cgroup_move_account(pc, child, parent);
1576
1577 putback_lru_page(page);
1578 if (!ret) {
1579 put_page(page);
1580 /* drop extra refcnt by try_charge() */
1581 css_put(&parent->css);
1582 return 0;
1583 }
1584
1585 cancel:
1586 put_page(page);
1587 uncharge:
1588 /* drop extra refcnt by try_charge() */
1589 css_put(&parent->css);
1590 /* uncharge if move fails */
1591 res_counter_uncharge(&parent->res, PAGE_SIZE, NULL);
1592 if (do_swap_account)
1593 res_counter_uncharge(&parent->memsw, PAGE_SIZE, NULL);
1594 return ret;
1595 }
1596
1597 /*
1598 * Charge the memory controller for page usage.
1599 * Return
1600 * 0 if the charge was successful
1601 * < 0 if the cgroup is over its limit
1602 */
1603 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1604 gfp_t gfp_mask, enum charge_type ctype,
1605 struct mem_cgroup *memcg)
1606 {
1607 struct mem_cgroup *mem;
1608 struct page_cgroup *pc;
1609 int ret;
1610
1611 pc = lookup_page_cgroup(page);
1612 /* can happen at boot */
1613 if (unlikely(!pc))
1614 return 0;
1615 prefetchw(pc);
1616
1617 mem = memcg;
1618 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1619 if (ret || !mem)
1620 return ret;
1621
1622 __mem_cgroup_commit_charge(mem, pc, ctype);
1623 return 0;
1624 }
1625
1626 int mem_cgroup_newpage_charge(struct page *page,
1627 struct mm_struct *mm, gfp_t gfp_mask)
1628 {
1629 if (mem_cgroup_disabled())
1630 return 0;
1631 if (PageCompound(page))
1632 return 0;
1633 /*
1634 * If already mapped, we don't have to account.
1635 * If page cache, page->mapping has address_space.
1636 * But page->mapping may have out-of-use anon_vma pointer,
1637 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1638 * is NULL.
1639 */
1640 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1641 return 0;
1642 if (unlikely(!mm))
1643 mm = &init_mm;
1644 return mem_cgroup_charge_common(page, mm, gfp_mask,
1645 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1646 }
1647
1648 static void
1649 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1650 enum charge_type ctype);
1651
1652 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1653 gfp_t gfp_mask)
1654 {
1655 struct mem_cgroup *mem = NULL;
1656 int ret;
1657
1658 if (mem_cgroup_disabled())
1659 return 0;
1660 if (PageCompound(page))
1661 return 0;
1662 /*
1663 * Corner case handling. This is called from add_to_page_cache()
1664 * in usual. But some FS (shmem) precharges this page before calling it
1665 * and call add_to_page_cache() with GFP_NOWAIT.
1666 *
1667 * For GFP_NOWAIT case, the page may be pre-charged before calling
1668 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1669 * charge twice. (It works but has to pay a bit larger cost.)
1670 * And when the page is SwapCache, it should take swap information
1671 * into account. This is under lock_page() now.
1672 */
1673 if (!(gfp_mask & __GFP_WAIT)) {
1674 struct page_cgroup *pc;
1675
1676
1677 pc = lookup_page_cgroup(page);
1678 if (!pc)
1679 return 0;
1680 lock_page_cgroup(pc);
1681 if (PageCgroupUsed(pc)) {
1682 unlock_page_cgroup(pc);
1683 return 0;
1684 }
1685 unlock_page_cgroup(pc);
1686 }
1687
1688 if (unlikely(!mm && !mem))
1689 mm = &init_mm;
1690
1691 if (page_is_file_cache(page))
1692 return mem_cgroup_charge_common(page, mm, gfp_mask,
1693 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1694
1695 /* shmem */
1696 if (PageSwapCache(page)) {
1697 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1698 if (!ret)
1699 __mem_cgroup_commit_charge_swapin(page, mem,
1700 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1701 } else
1702 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1703 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1704
1705 return ret;
1706 }
1707
1708 /*
1709 * While swap-in, try_charge -> commit or cancel, the page is locked.
1710 * And when try_charge() successfully returns, one refcnt to memcg without
1711 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1712 * "commit()" or removed by "cancel()"
1713 */
1714 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1715 struct page *page,
1716 gfp_t mask, struct mem_cgroup **ptr)
1717 {
1718 struct mem_cgroup *mem;
1719 int ret;
1720
1721 if (mem_cgroup_disabled())
1722 return 0;
1723
1724 if (!do_swap_account)
1725 goto charge_cur_mm;
1726 /*
1727 * A racing thread's fault, or swapoff, may have already updated
1728 * the pte, and even removed page from swap cache: return success
1729 * to go on to do_swap_page()'s pte_same() test, which should fail.
1730 */
1731 if (!PageSwapCache(page))
1732 return 0;
1733 mem = try_get_mem_cgroup_from_swapcache(page);
1734 if (!mem)
1735 goto charge_cur_mm;
1736 *ptr = mem;
1737 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1738 /* drop extra refcnt from tryget */
1739 css_put(&mem->css);
1740 return ret;
1741 charge_cur_mm:
1742 if (unlikely(!mm))
1743 mm = &init_mm;
1744 return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1745 }
1746
1747 static void
1748 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1749 enum charge_type ctype)
1750 {
1751 struct page_cgroup *pc;
1752
1753 if (mem_cgroup_disabled())
1754 return;
1755 if (!ptr)
1756 return;
1757 cgroup_exclude_rmdir(&ptr->css);
1758 pc = lookup_page_cgroup(page);
1759 mem_cgroup_lru_del_before_commit_swapcache(page);
1760 __mem_cgroup_commit_charge(ptr, pc, ctype);
1761 mem_cgroup_lru_add_after_commit_swapcache(page);
1762 /*
1763 * Now swap is on-memory. This means this page may be
1764 * counted both as mem and swap....double count.
1765 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1766 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1767 * may call delete_from_swap_cache() before reach here.
1768 */
1769 if (do_swap_account && PageSwapCache(page)) {
1770 swp_entry_t ent = {.val = page_private(page)};
1771 unsigned short id;
1772 struct mem_cgroup *memcg;
1773
1774 id = swap_cgroup_record(ent, 0);
1775 rcu_read_lock();
1776 memcg = mem_cgroup_lookup(id);
1777 if (memcg) {
1778 /*
1779 * This recorded memcg can be obsolete one. So, avoid
1780 * calling css_tryget
1781 */
1782 res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1783 mem_cgroup_put(memcg);
1784 }
1785 rcu_read_unlock();
1786 }
1787 /*
1788 * At swapin, we may charge account against cgroup which has no tasks.
1789 * So, rmdir()->pre_destroy() can be called while we do this charge.
1790 * In that case, we need to call pre_destroy() again. check it here.
1791 */
1792 cgroup_release_and_wakeup_rmdir(&ptr->css);
1793 }
1794
1795 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1796 {
1797 __mem_cgroup_commit_charge_swapin(page, ptr,
1798 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1799 }
1800
1801 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1802 {
1803 if (mem_cgroup_disabled())
1804 return;
1805 if (!mem)
1806 return;
1807 res_counter_uncharge(&mem->res, PAGE_SIZE, NULL);
1808 if (do_swap_account)
1809 res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1810 css_put(&mem->css);
1811 }
1812
1813
1814 /*
1815 * uncharge if !page_mapped(page)
1816 */
1817 static struct mem_cgroup *
1818 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1819 {
1820 struct page_cgroup *pc;
1821 struct mem_cgroup *mem = NULL;
1822 struct mem_cgroup_per_zone *mz;
1823 bool soft_limit_excess = false;
1824
1825 if (mem_cgroup_disabled())
1826 return NULL;
1827
1828 if (PageSwapCache(page))
1829 return NULL;
1830
1831 /*
1832 * Check if our page_cgroup is valid
1833 */
1834 pc = lookup_page_cgroup(page);
1835 if (unlikely(!pc || !PageCgroupUsed(pc)))
1836 return NULL;
1837
1838 lock_page_cgroup(pc);
1839
1840 mem = pc->mem_cgroup;
1841
1842 if (!PageCgroupUsed(pc))
1843 goto unlock_out;
1844
1845 switch (ctype) {
1846 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1847 case MEM_CGROUP_CHARGE_TYPE_DROP:
1848 if (page_mapped(page))
1849 goto unlock_out;
1850 break;
1851 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1852 if (!PageAnon(page)) { /* Shared memory */
1853 if (page->mapping && !page_is_file_cache(page))
1854 goto unlock_out;
1855 } else if (page_mapped(page)) /* Anon */
1856 goto unlock_out;
1857 break;
1858 default:
1859 break;
1860 }
1861
1862 res_counter_uncharge(&mem->res, PAGE_SIZE, &soft_limit_excess);
1863 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1864 res_counter_uncharge(&mem->memsw, PAGE_SIZE, NULL);
1865 mem_cgroup_charge_statistics(mem, pc, false);
1866
1867 ClearPageCgroupUsed(pc);
1868 /*
1869 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1870 * freed from LRU. This is safe because uncharged page is expected not
1871 * to be reused (freed soon). Exception is SwapCache, it's handled by
1872 * special functions.
1873 */
1874
1875 mz = page_cgroup_zoneinfo(pc);
1876 unlock_page_cgroup(pc);
1877
1878 if (soft_limit_excess && mem_cgroup_soft_limit_check(mem))
1879 mem_cgroup_update_tree(mem, page);
1880 /* at swapout, this memcg will be accessed to record to swap */
1881 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1882 css_put(&mem->css);
1883
1884 return mem;
1885
1886 unlock_out:
1887 unlock_page_cgroup(pc);
1888 return NULL;
1889 }
1890
1891 void mem_cgroup_uncharge_page(struct page *page)
1892 {
1893 /* early check. */
1894 if (page_mapped(page))
1895 return;
1896 if (page->mapping && !PageAnon(page))
1897 return;
1898 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1899 }
1900
1901 void mem_cgroup_uncharge_cache_page(struct page *page)
1902 {
1903 VM_BUG_ON(page_mapped(page));
1904 VM_BUG_ON(page->mapping);
1905 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1906 }
1907
1908 #ifdef CONFIG_SWAP
1909 /*
1910 * called after __delete_from_swap_cache() and drop "page" account.
1911 * memcg information is recorded to swap_cgroup of "ent"
1912 */
1913 void
1914 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1915 {
1916 struct mem_cgroup *memcg;
1917 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1918
1919 if (!swapout) /* this was a swap cache but the swap is unused ! */
1920 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1921
1922 memcg = __mem_cgroup_uncharge_common(page, ctype);
1923
1924 /* record memcg information */
1925 if (do_swap_account && swapout && memcg) {
1926 swap_cgroup_record(ent, css_id(&memcg->css));
1927 mem_cgroup_get(memcg);
1928 }
1929 if (swapout && memcg)
1930 css_put(&memcg->css);
1931 }
1932 #endif
1933
1934 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1935 /*
1936 * called from swap_entry_free(). remove record in swap_cgroup and
1937 * uncharge "memsw" account.
1938 */
1939 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1940 {
1941 struct mem_cgroup *memcg;
1942 unsigned short id;
1943
1944 if (!do_swap_account)
1945 return;
1946
1947 id = swap_cgroup_record(ent, 0);
1948 rcu_read_lock();
1949 memcg = mem_cgroup_lookup(id);
1950 if (memcg) {
1951 /*
1952 * We uncharge this because swap is freed.
1953 * This memcg can be obsolete one. We avoid calling css_tryget
1954 */
1955 res_counter_uncharge(&memcg->memsw, PAGE_SIZE, NULL);
1956 mem_cgroup_put(memcg);
1957 }
1958 rcu_read_unlock();
1959 }
1960 #endif
1961
1962 /*
1963 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1964 * page belongs to.
1965 */
1966 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1967 {
1968 struct page_cgroup *pc;
1969 struct mem_cgroup *mem = NULL;
1970 int ret = 0;
1971
1972 if (mem_cgroup_disabled())
1973 return 0;
1974
1975 pc = lookup_page_cgroup(page);
1976 lock_page_cgroup(pc);
1977 if (PageCgroupUsed(pc)) {
1978 mem = pc->mem_cgroup;
1979 css_get(&mem->css);
1980 }
1981 unlock_page_cgroup(pc);
1982
1983 if (mem) {
1984 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
1985 page);
1986 css_put(&mem->css);
1987 }
1988 *ptr = mem;
1989 return ret;
1990 }
1991
1992 /* remove redundant charge if migration failed*/
1993 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1994 struct page *oldpage, struct page *newpage)
1995 {
1996 struct page *target, *unused;
1997 struct page_cgroup *pc;
1998 enum charge_type ctype;
1999
2000 if (!mem)
2001 return;
2002 cgroup_exclude_rmdir(&mem->css);
2003 /* at migration success, oldpage->mapping is NULL. */
2004 if (oldpage->mapping) {
2005 target = oldpage;
2006 unused = NULL;
2007 } else {
2008 target = newpage;
2009 unused = oldpage;
2010 }
2011
2012 if (PageAnon(target))
2013 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2014 else if (page_is_file_cache(target))
2015 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2016 else
2017 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2018
2019 /* unused page is not on radix-tree now. */
2020 if (unused)
2021 __mem_cgroup_uncharge_common(unused, ctype);
2022
2023 pc = lookup_page_cgroup(target);
2024 /*
2025 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2026 * So, double-counting is effectively avoided.
2027 */
2028 __mem_cgroup_commit_charge(mem, pc, ctype);
2029
2030 /*
2031 * Both of oldpage and newpage are still under lock_page().
2032 * Then, we don't have to care about race in radix-tree.
2033 * But we have to be careful that this page is unmapped or not.
2034 *
2035 * There is a case for !page_mapped(). At the start of
2036 * migration, oldpage was mapped. But now, it's zapped.
2037 * But we know *target* page is not freed/reused under us.
2038 * mem_cgroup_uncharge_page() does all necessary checks.
2039 */
2040 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2041 mem_cgroup_uncharge_page(target);
2042 /*
2043 * At migration, we may charge account against cgroup which has no tasks
2044 * So, rmdir()->pre_destroy() can be called while we do this charge.
2045 * In that case, we need to call pre_destroy() again. check it here.
2046 */
2047 cgroup_release_and_wakeup_rmdir(&mem->css);
2048 }
2049
2050 /*
2051 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2052 * Calling hierarchical_reclaim is not enough because we should update
2053 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2054 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2055 * not from the memcg which this page would be charged to.
2056 * try_charge_swapin does all of these works properly.
2057 */
2058 int mem_cgroup_shmem_charge_fallback(struct page *page,
2059 struct mm_struct *mm,
2060 gfp_t gfp_mask)
2061 {
2062 struct mem_cgroup *mem = NULL;
2063 int ret;
2064
2065 if (mem_cgroup_disabled())
2066 return 0;
2067
2068 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2069 if (!ret)
2070 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2071
2072 return ret;
2073 }
2074
2075 static DEFINE_MUTEX(set_limit_mutex);
2076
2077 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2078 unsigned long long val)
2079 {
2080 int retry_count;
2081 int progress;
2082 u64 memswlimit;
2083 int ret = 0;
2084 int children = mem_cgroup_count_children(memcg);
2085 u64 curusage, oldusage;
2086
2087 /*
2088 * For keeping hierarchical_reclaim simple, how long we should retry
2089 * is depends on callers. We set our retry-count to be function
2090 * of # of children which we should visit in this loop.
2091 */
2092 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2093
2094 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2095
2096 while (retry_count) {
2097 if (signal_pending(current)) {
2098 ret = -EINTR;
2099 break;
2100 }
2101 /*
2102 * Rather than hide all in some function, I do this in
2103 * open coded manner. You see what this really does.
2104 * We have to guarantee mem->res.limit < mem->memsw.limit.
2105 */
2106 mutex_lock(&set_limit_mutex);
2107 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2108 if (memswlimit < val) {
2109 ret = -EINVAL;
2110 mutex_unlock(&set_limit_mutex);
2111 break;
2112 }
2113 ret = res_counter_set_limit(&memcg->res, val);
2114 if (!ret) {
2115 if (memswlimit == val)
2116 memcg->memsw_is_minimum = true;
2117 else
2118 memcg->memsw_is_minimum = false;
2119 }
2120 mutex_unlock(&set_limit_mutex);
2121
2122 if (!ret)
2123 break;
2124
2125 progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2126 GFP_KERNEL,
2127 MEM_CGROUP_RECLAIM_SHRINK);
2128 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2129 /* Usage is reduced ? */
2130 if (curusage >= oldusage)
2131 retry_count--;
2132 else
2133 oldusage = curusage;
2134 }
2135
2136 return ret;
2137 }
2138
2139 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2140 unsigned long long val)
2141 {
2142 int retry_count;
2143 u64 memlimit, oldusage, curusage;
2144 int children = mem_cgroup_count_children(memcg);
2145 int ret = -EBUSY;
2146
2147 /* see mem_cgroup_resize_res_limit */
2148 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2149 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2150 while (retry_count) {
2151 if (signal_pending(current)) {
2152 ret = -EINTR;
2153 break;
2154 }
2155 /*
2156 * Rather than hide all in some function, I do this in
2157 * open coded manner. You see what this really does.
2158 * We have to guarantee mem->res.limit < mem->memsw.limit.
2159 */
2160 mutex_lock(&set_limit_mutex);
2161 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2162 if (memlimit > val) {
2163 ret = -EINVAL;
2164 mutex_unlock(&set_limit_mutex);
2165 break;
2166 }
2167 ret = res_counter_set_limit(&memcg->memsw, val);
2168 if (!ret) {
2169 if (memlimit == val)
2170 memcg->memsw_is_minimum = true;
2171 else
2172 memcg->memsw_is_minimum = false;
2173 }
2174 mutex_unlock(&set_limit_mutex);
2175
2176 if (!ret)
2177 break;
2178
2179 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2180 MEM_CGROUP_RECLAIM_NOSWAP |
2181 MEM_CGROUP_RECLAIM_SHRINK);
2182 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2183 /* Usage is reduced ? */
2184 if (curusage >= oldusage)
2185 retry_count--;
2186 else
2187 oldusage = curusage;
2188 }
2189 return ret;
2190 }
2191
2192 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2193 gfp_t gfp_mask, int nid,
2194 int zid)
2195 {
2196 unsigned long nr_reclaimed = 0;
2197 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2198 unsigned long reclaimed;
2199 int loop = 0;
2200 struct mem_cgroup_tree_per_zone *mctz;
2201
2202 if (order > 0)
2203 return 0;
2204
2205 mctz = soft_limit_tree_node_zone(nid, zid);
2206 /*
2207 * This loop can run a while, specially if mem_cgroup's continuously
2208 * keep exceeding their soft limit and putting the system under
2209 * pressure
2210 */
2211 do {
2212 if (next_mz)
2213 mz = next_mz;
2214 else
2215 mz = mem_cgroup_largest_soft_limit_node(mctz);
2216 if (!mz)
2217 break;
2218
2219 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2220 gfp_mask,
2221 MEM_CGROUP_RECLAIM_SOFT);
2222 nr_reclaimed += reclaimed;
2223 spin_lock(&mctz->lock);
2224
2225 /*
2226 * If we failed to reclaim anything from this memory cgroup
2227 * it is time to move on to the next cgroup
2228 */
2229 next_mz = NULL;
2230 if (!reclaimed) {
2231 do {
2232 /*
2233 * Loop until we find yet another one.
2234 *
2235 * By the time we get the soft_limit lock
2236 * again, someone might have aded the
2237 * group back on the RB tree. Iterate to
2238 * make sure we get a different mem.
2239 * mem_cgroup_largest_soft_limit_node returns
2240 * NULL if no other cgroup is present on
2241 * the tree
2242 */
2243 next_mz =
2244 __mem_cgroup_largest_soft_limit_node(mctz);
2245 if (next_mz == mz) {
2246 css_put(&next_mz->mem->css);
2247 next_mz = NULL;
2248 } else /* next_mz == NULL or other memcg */
2249 break;
2250 } while (1);
2251 }
2252 mz->usage_in_excess =
2253 res_counter_soft_limit_excess(&mz->mem->res);
2254 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2255 /*
2256 * One school of thought says that we should not add
2257 * back the node to the tree if reclaim returns 0.
2258 * But our reclaim could return 0, simply because due
2259 * to priority we are exposing a smaller subset of
2260 * memory to reclaim from. Consider this as a longer
2261 * term TODO.
2262 */
2263 if (mz->usage_in_excess)
2264 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz);
2265 spin_unlock(&mctz->lock);
2266 css_put(&mz->mem->css);
2267 loop++;
2268 /*
2269 * Could not reclaim anything and there are no more
2270 * mem cgroups to try or we seem to be looping without
2271 * reclaiming anything.
2272 */
2273 if (!nr_reclaimed &&
2274 (next_mz == NULL ||
2275 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2276 break;
2277 } while (!nr_reclaimed);
2278 if (next_mz)
2279 css_put(&next_mz->mem->css);
2280 return nr_reclaimed;
2281 }
2282
2283 /*
2284 * This routine traverse page_cgroup in given list and drop them all.
2285 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2286 */
2287 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2288 int node, int zid, enum lru_list lru)
2289 {
2290 struct zone *zone;
2291 struct mem_cgroup_per_zone *mz;
2292 struct page_cgroup *pc, *busy;
2293 unsigned long flags, loop;
2294 struct list_head *list;
2295 int ret = 0;
2296
2297 zone = &NODE_DATA(node)->node_zones[zid];
2298 mz = mem_cgroup_zoneinfo(mem, node, zid);
2299 list = &mz->lists[lru];
2300
2301 loop = MEM_CGROUP_ZSTAT(mz, lru);
2302 /* give some margin against EBUSY etc...*/
2303 loop += 256;
2304 busy = NULL;
2305 while (loop--) {
2306 ret = 0;
2307 spin_lock_irqsave(&zone->lru_lock, flags);
2308 if (list_empty(list)) {
2309 spin_unlock_irqrestore(&zone->lru_lock, flags);
2310 break;
2311 }
2312 pc = list_entry(list->prev, struct page_cgroup, lru);
2313 if (busy == pc) {
2314 list_move(&pc->lru, list);
2315 busy = 0;
2316 spin_unlock_irqrestore(&zone->lru_lock, flags);
2317 continue;
2318 }
2319 spin_unlock_irqrestore(&zone->lru_lock, flags);
2320
2321 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2322 if (ret == -ENOMEM)
2323 break;
2324
2325 if (ret == -EBUSY || ret == -EINVAL) {
2326 /* found lock contention or "pc" is obsolete. */
2327 busy = pc;
2328 cond_resched();
2329 } else
2330 busy = NULL;
2331 }
2332
2333 if (!ret && !list_empty(list))
2334 return -EBUSY;
2335 return ret;
2336 }
2337
2338 /*
2339 * make mem_cgroup's charge to be 0 if there is no task.
2340 * This enables deleting this mem_cgroup.
2341 */
2342 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2343 {
2344 int ret;
2345 int node, zid, shrink;
2346 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2347 struct cgroup *cgrp = mem->css.cgroup;
2348
2349 css_get(&mem->css);
2350
2351 shrink = 0;
2352 /* should free all ? */
2353 if (free_all)
2354 goto try_to_free;
2355 move_account:
2356 while (mem->res.usage > 0) {
2357 ret = -EBUSY;
2358 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2359 goto out;
2360 ret = -EINTR;
2361 if (signal_pending(current))
2362 goto out;
2363 /* This is for making all *used* pages to be on LRU. */
2364 lru_add_drain_all();
2365 ret = 0;
2366 for_each_node_state(node, N_HIGH_MEMORY) {
2367 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2368 enum lru_list l;
2369 for_each_lru(l) {
2370 ret = mem_cgroup_force_empty_list(mem,
2371 node, zid, l);
2372 if (ret)
2373 break;
2374 }
2375 }
2376 if (ret)
2377 break;
2378 }
2379 /* it seems parent cgroup doesn't have enough mem */
2380 if (ret == -ENOMEM)
2381 goto try_to_free;
2382 cond_resched();
2383 }
2384 ret = 0;
2385 out:
2386 css_put(&mem->css);
2387 return ret;
2388
2389 try_to_free:
2390 /* returns EBUSY if there is a task or if we come here twice. */
2391 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2392 ret = -EBUSY;
2393 goto out;
2394 }
2395 /* we call try-to-free pages for make this cgroup empty */
2396 lru_add_drain_all();
2397 /* try to free all pages in this cgroup */
2398 shrink = 1;
2399 while (nr_retries && mem->res.usage > 0) {
2400 int progress;
2401
2402 if (signal_pending(current)) {
2403 ret = -EINTR;
2404 goto out;
2405 }
2406 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2407 false, get_swappiness(mem));
2408 if (!progress) {
2409 nr_retries--;
2410 /* maybe some writeback is necessary */
2411 congestion_wait(BLK_RW_ASYNC, HZ/10);
2412 }
2413
2414 }
2415 lru_add_drain();
2416 /* try move_account...there may be some *locked* pages. */
2417 if (mem->res.usage)
2418 goto move_account;
2419 ret = 0;
2420 goto out;
2421 }
2422
2423 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2424 {
2425 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2426 }
2427
2428
2429 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2430 {
2431 return mem_cgroup_from_cont(cont)->use_hierarchy;
2432 }
2433
2434 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2435 u64 val)
2436 {
2437 int retval = 0;
2438 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2439 struct cgroup *parent = cont->parent;
2440 struct mem_cgroup *parent_mem = NULL;
2441
2442 if (parent)
2443 parent_mem = mem_cgroup_from_cont(parent);
2444
2445 cgroup_lock();
2446 /*
2447 * If parent's use_hiearchy is set, we can't make any modifications
2448 * in the child subtrees. If it is unset, then the change can
2449 * occur, provided the current cgroup has no children.
2450 *
2451 * For the root cgroup, parent_mem is NULL, we allow value to be
2452 * set if there are no children.
2453 */
2454 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2455 (val == 1 || val == 0)) {
2456 if (list_empty(&cont->children))
2457 mem->use_hierarchy = val;
2458 else
2459 retval = -EBUSY;
2460 } else
2461 retval = -EINVAL;
2462 cgroup_unlock();
2463
2464 return retval;
2465 }
2466
2467 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2468 {
2469 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2470 u64 val = 0;
2471 int type, name;
2472
2473 type = MEMFILE_TYPE(cft->private);
2474 name = MEMFILE_ATTR(cft->private);
2475 switch (type) {
2476 case _MEM:
2477 val = res_counter_read_u64(&mem->res, name);
2478 break;
2479 case _MEMSWAP:
2480 val = res_counter_read_u64(&mem->memsw, name);
2481 break;
2482 default:
2483 BUG();
2484 break;
2485 }
2486 return val;
2487 }
2488 /*
2489 * The user of this function is...
2490 * RES_LIMIT.
2491 */
2492 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2493 const char *buffer)
2494 {
2495 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2496 int type, name;
2497 unsigned long long val;
2498 int ret;
2499
2500 type = MEMFILE_TYPE(cft->private);
2501 name = MEMFILE_ATTR(cft->private);
2502 switch (name) {
2503 case RES_LIMIT:
2504 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2505 ret = -EINVAL;
2506 break;
2507 }
2508 /* This function does all necessary parse...reuse it */
2509 ret = res_counter_memparse_write_strategy(buffer, &val);
2510 if (ret)
2511 break;
2512 if (type == _MEM)
2513 ret = mem_cgroup_resize_limit(memcg, val);
2514 else
2515 ret = mem_cgroup_resize_memsw_limit(memcg, val);
2516 break;
2517 case RES_SOFT_LIMIT:
2518 ret = res_counter_memparse_write_strategy(buffer, &val);
2519 if (ret)
2520 break;
2521 /*
2522 * For memsw, soft limits are hard to implement in terms
2523 * of semantics, for now, we support soft limits for
2524 * control without swap
2525 */
2526 if (type == _MEM)
2527 ret = res_counter_set_soft_limit(&memcg->res, val);
2528 else
2529 ret = -EINVAL;
2530 break;
2531 default:
2532 ret = -EINVAL; /* should be BUG() ? */
2533 break;
2534 }
2535 return ret;
2536 }
2537
2538 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2539 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2540 {
2541 struct cgroup *cgroup;
2542 unsigned long long min_limit, min_memsw_limit, tmp;
2543
2544 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2545 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2546 cgroup = memcg->css.cgroup;
2547 if (!memcg->use_hierarchy)
2548 goto out;
2549
2550 while (cgroup->parent) {
2551 cgroup = cgroup->parent;
2552 memcg = mem_cgroup_from_cont(cgroup);
2553 if (!memcg->use_hierarchy)
2554 break;
2555 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2556 min_limit = min(min_limit, tmp);
2557 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2558 min_memsw_limit = min(min_memsw_limit, tmp);
2559 }
2560 out:
2561 *mem_limit = min_limit;
2562 *memsw_limit = min_memsw_limit;
2563 return;
2564 }
2565
2566 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2567 {
2568 struct mem_cgroup *mem;
2569 int type, name;
2570
2571 mem = mem_cgroup_from_cont(cont);
2572 type = MEMFILE_TYPE(event);
2573 name = MEMFILE_ATTR(event);
2574 switch (name) {
2575 case RES_MAX_USAGE:
2576 if (type == _MEM)
2577 res_counter_reset_max(&mem->res);
2578 else
2579 res_counter_reset_max(&mem->memsw);
2580 break;
2581 case RES_FAILCNT:
2582 if (type == _MEM)
2583 res_counter_reset_failcnt(&mem->res);
2584 else
2585 res_counter_reset_failcnt(&mem->memsw);
2586 break;
2587 }
2588
2589 return 0;
2590 }
2591
2592
2593 /* For read statistics */
2594 enum {
2595 MCS_CACHE,
2596 MCS_RSS,
2597 MCS_MAPPED_FILE,
2598 MCS_PGPGIN,
2599 MCS_PGPGOUT,
2600 MCS_INACTIVE_ANON,
2601 MCS_ACTIVE_ANON,
2602 MCS_INACTIVE_FILE,
2603 MCS_ACTIVE_FILE,
2604 MCS_UNEVICTABLE,
2605 NR_MCS_STAT,
2606 };
2607
2608 struct mcs_total_stat {
2609 s64 stat[NR_MCS_STAT];
2610 };
2611
2612 struct {
2613 char *local_name;
2614 char *total_name;
2615 } memcg_stat_strings[NR_MCS_STAT] = {
2616 {"cache", "total_cache"},
2617 {"rss", "total_rss"},
2618 {"mapped_file", "total_mapped_file"},
2619 {"pgpgin", "total_pgpgin"},
2620 {"pgpgout", "total_pgpgout"},
2621 {"inactive_anon", "total_inactive_anon"},
2622 {"active_anon", "total_active_anon"},
2623 {"inactive_file", "total_inactive_file"},
2624 {"active_file", "total_active_file"},
2625 {"unevictable", "total_unevictable"}
2626 };
2627
2628
2629 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2630 {
2631 struct mcs_total_stat *s = data;
2632 s64 val;
2633
2634 /* per cpu stat */
2635 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2636 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2637 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2638 s->stat[MCS_RSS] += val * PAGE_SIZE;
2639 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2640 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2641 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2642 s->stat[MCS_PGPGIN] += val;
2643 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2644 s->stat[MCS_PGPGOUT] += val;
2645
2646 /* per zone stat */
2647 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2648 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2649 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2650 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2651 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2652 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2653 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2654 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2655 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2656 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2657 return 0;
2658 }
2659
2660 static void
2661 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2662 {
2663 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2664 }
2665
2666 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2667 struct cgroup_map_cb *cb)
2668 {
2669 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2670 struct mcs_total_stat mystat;
2671 int i;
2672
2673 memset(&mystat, 0, sizeof(mystat));
2674 mem_cgroup_get_local_stat(mem_cont, &mystat);
2675
2676 for (i = 0; i < NR_MCS_STAT; i++)
2677 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2678
2679 /* Hierarchical information */
2680 {
2681 unsigned long long limit, memsw_limit;
2682 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2683 cb->fill(cb, "hierarchical_memory_limit", limit);
2684 if (do_swap_account)
2685 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2686 }
2687
2688 memset(&mystat, 0, sizeof(mystat));
2689 mem_cgroup_get_total_stat(mem_cont, &mystat);
2690 for (i = 0; i < NR_MCS_STAT; i++)
2691 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2692
2693
2694 #ifdef CONFIG_DEBUG_VM
2695 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2696
2697 {
2698 int nid, zid;
2699 struct mem_cgroup_per_zone *mz;
2700 unsigned long recent_rotated[2] = {0, 0};
2701 unsigned long recent_scanned[2] = {0, 0};
2702
2703 for_each_online_node(nid)
2704 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2705 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2706
2707 recent_rotated[0] +=
2708 mz->reclaim_stat.recent_rotated[0];
2709 recent_rotated[1] +=
2710 mz->reclaim_stat.recent_rotated[1];
2711 recent_scanned[0] +=
2712 mz->reclaim_stat.recent_scanned[0];
2713 recent_scanned[1] +=
2714 mz->reclaim_stat.recent_scanned[1];
2715 }
2716 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2717 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2718 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2719 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2720 }
2721 #endif
2722
2723 return 0;
2724 }
2725
2726 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2727 {
2728 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2729
2730 return get_swappiness(memcg);
2731 }
2732
2733 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2734 u64 val)
2735 {
2736 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2737 struct mem_cgroup *parent;
2738
2739 if (val > 100)
2740 return -EINVAL;
2741
2742 if (cgrp->parent == NULL)
2743 return -EINVAL;
2744
2745 parent = mem_cgroup_from_cont(cgrp->parent);
2746
2747 cgroup_lock();
2748
2749 /* If under hierarchy, only empty-root can set this value */
2750 if ((parent->use_hierarchy) ||
2751 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2752 cgroup_unlock();
2753 return -EINVAL;
2754 }
2755
2756 spin_lock(&memcg->reclaim_param_lock);
2757 memcg->swappiness = val;
2758 spin_unlock(&memcg->reclaim_param_lock);
2759
2760 cgroup_unlock();
2761
2762 return 0;
2763 }
2764
2765
2766 static struct cftype mem_cgroup_files[] = {
2767 {
2768 .name = "usage_in_bytes",
2769 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2770 .read_u64 = mem_cgroup_read,
2771 },
2772 {
2773 .name = "max_usage_in_bytes",
2774 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2775 .trigger = mem_cgroup_reset,
2776 .read_u64 = mem_cgroup_read,
2777 },
2778 {
2779 .name = "limit_in_bytes",
2780 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2781 .write_string = mem_cgroup_write,
2782 .read_u64 = mem_cgroup_read,
2783 },
2784 {
2785 .name = "soft_limit_in_bytes",
2786 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2787 .write_string = mem_cgroup_write,
2788 .read_u64 = mem_cgroup_read,
2789 },
2790 {
2791 .name = "failcnt",
2792 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2793 .trigger = mem_cgroup_reset,
2794 .read_u64 = mem_cgroup_read,
2795 },
2796 {
2797 .name = "stat",
2798 .read_map = mem_control_stat_show,
2799 },
2800 {
2801 .name = "force_empty",
2802 .trigger = mem_cgroup_force_empty_write,
2803 },
2804 {
2805 .name = "use_hierarchy",
2806 .write_u64 = mem_cgroup_hierarchy_write,
2807 .read_u64 = mem_cgroup_hierarchy_read,
2808 },
2809 {
2810 .name = "swappiness",
2811 .read_u64 = mem_cgroup_swappiness_read,
2812 .write_u64 = mem_cgroup_swappiness_write,
2813 },
2814 };
2815
2816 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2817 static struct cftype memsw_cgroup_files[] = {
2818 {
2819 .name = "memsw.usage_in_bytes",
2820 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2821 .read_u64 = mem_cgroup_read,
2822 },
2823 {
2824 .name = "memsw.max_usage_in_bytes",
2825 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2826 .trigger = mem_cgroup_reset,
2827 .read_u64 = mem_cgroup_read,
2828 },
2829 {
2830 .name = "memsw.limit_in_bytes",
2831 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2832 .write_string = mem_cgroup_write,
2833 .read_u64 = mem_cgroup_read,
2834 },
2835 {
2836 .name = "memsw.failcnt",
2837 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2838 .trigger = mem_cgroup_reset,
2839 .read_u64 = mem_cgroup_read,
2840 },
2841 };
2842
2843 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2844 {
2845 if (!do_swap_account)
2846 return 0;
2847 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2848 ARRAY_SIZE(memsw_cgroup_files));
2849 };
2850 #else
2851 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2852 {
2853 return 0;
2854 }
2855 #endif
2856
2857 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2858 {
2859 struct mem_cgroup_per_node *pn;
2860 struct mem_cgroup_per_zone *mz;
2861 enum lru_list l;
2862 int zone, tmp = node;
2863 /*
2864 * This routine is called against possible nodes.
2865 * But it's BUG to call kmalloc() against offline node.
2866 *
2867 * TODO: this routine can waste much memory for nodes which will
2868 * never be onlined. It's better to use memory hotplug callback
2869 * function.
2870 */
2871 if (!node_state(node, N_NORMAL_MEMORY))
2872 tmp = -1;
2873 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2874 if (!pn)
2875 return 1;
2876
2877 mem->info.nodeinfo[node] = pn;
2878 memset(pn, 0, sizeof(*pn));
2879
2880 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2881 mz = &pn->zoneinfo[zone];
2882 for_each_lru(l)
2883 INIT_LIST_HEAD(&mz->lists[l]);
2884 mz->usage_in_excess = 0;
2885 mz->on_tree = false;
2886 mz->mem = mem;
2887 }
2888 return 0;
2889 }
2890
2891 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2892 {
2893 kfree(mem->info.nodeinfo[node]);
2894 }
2895
2896 static int mem_cgroup_size(void)
2897 {
2898 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2899 return sizeof(struct mem_cgroup) + cpustat_size;
2900 }
2901
2902 static struct mem_cgroup *mem_cgroup_alloc(void)
2903 {
2904 struct mem_cgroup *mem;
2905 int size = mem_cgroup_size();
2906
2907 if (size < PAGE_SIZE)
2908 mem = kmalloc(size, GFP_KERNEL);
2909 else
2910 mem = vmalloc(size);
2911
2912 if (mem)
2913 memset(mem, 0, size);
2914 return mem;
2915 }
2916
2917 /*
2918 * At destroying mem_cgroup, references from swap_cgroup can remain.
2919 * (scanning all at force_empty is too costly...)
2920 *
2921 * Instead of clearing all references at force_empty, we remember
2922 * the number of reference from swap_cgroup and free mem_cgroup when
2923 * it goes down to 0.
2924 *
2925 * Removal of cgroup itself succeeds regardless of refs from swap.
2926 */
2927
2928 static void __mem_cgroup_free(struct mem_cgroup *mem)
2929 {
2930 int node;
2931
2932 mem_cgroup_remove_from_trees(mem);
2933 free_css_id(&mem_cgroup_subsys, &mem->css);
2934
2935 for_each_node_state(node, N_POSSIBLE)
2936 free_mem_cgroup_per_zone_info(mem, node);
2937
2938 if (mem_cgroup_size() < PAGE_SIZE)
2939 kfree(mem);
2940 else
2941 vfree(mem);
2942 }
2943
2944 static void mem_cgroup_get(struct mem_cgroup *mem)
2945 {
2946 atomic_inc(&mem->refcnt);
2947 }
2948
2949 static void mem_cgroup_put(struct mem_cgroup *mem)
2950 {
2951 if (atomic_dec_and_test(&mem->refcnt)) {
2952 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2953 __mem_cgroup_free(mem);
2954 if (parent)
2955 mem_cgroup_put(parent);
2956 }
2957 }
2958
2959 /*
2960 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2961 */
2962 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2963 {
2964 if (!mem->res.parent)
2965 return NULL;
2966 return mem_cgroup_from_res_counter(mem->res.parent, res);
2967 }
2968
2969 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2970 static void __init enable_swap_cgroup(void)
2971 {
2972 if (!mem_cgroup_disabled() && really_do_swap_account)
2973 do_swap_account = 1;
2974 }
2975 #else
2976 static void __init enable_swap_cgroup(void)
2977 {
2978 }
2979 #endif
2980
2981 static int mem_cgroup_soft_limit_tree_init(void)
2982 {
2983 struct mem_cgroup_tree_per_node *rtpn;
2984 struct mem_cgroup_tree_per_zone *rtpz;
2985 int tmp, node, zone;
2986
2987 for_each_node_state(node, N_POSSIBLE) {
2988 tmp = node;
2989 if (!node_state(node, N_NORMAL_MEMORY))
2990 tmp = -1;
2991 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
2992 if (!rtpn)
2993 return 1;
2994
2995 soft_limit_tree.rb_tree_per_node[node] = rtpn;
2996
2997 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2998 rtpz = &rtpn->rb_tree_per_zone[zone];
2999 rtpz->rb_root = RB_ROOT;
3000 spin_lock_init(&rtpz->lock);
3001 }
3002 }
3003 return 0;
3004 }
3005
3006 static struct cgroup_subsys_state * __ref
3007 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3008 {
3009 struct mem_cgroup *mem, *parent;
3010 long error = -ENOMEM;
3011 int node;
3012
3013 mem = mem_cgroup_alloc();
3014 if (!mem)
3015 return ERR_PTR(error);
3016
3017 for_each_node_state(node, N_POSSIBLE)
3018 if (alloc_mem_cgroup_per_zone_info(mem, node))
3019 goto free_out;
3020
3021 /* root ? */
3022 if (cont->parent == NULL) {
3023 enable_swap_cgroup();
3024 parent = NULL;
3025 root_mem_cgroup = mem;
3026 if (mem_cgroup_soft_limit_tree_init())
3027 goto free_out;
3028
3029 } else {
3030 parent = mem_cgroup_from_cont(cont->parent);
3031 mem->use_hierarchy = parent->use_hierarchy;
3032 }
3033
3034 if (parent && parent->use_hierarchy) {
3035 res_counter_init(&mem->res, &parent->res);
3036 res_counter_init(&mem->memsw, &parent->memsw);
3037 /*
3038 * We increment refcnt of the parent to ensure that we can
3039 * safely access it on res_counter_charge/uncharge.
3040 * This refcnt will be decremented when freeing this
3041 * mem_cgroup(see mem_cgroup_put).
3042 */
3043 mem_cgroup_get(parent);
3044 } else {
3045 res_counter_init(&mem->res, NULL);
3046 res_counter_init(&mem->memsw, NULL);
3047 }
3048 mem->last_scanned_child = 0;
3049 spin_lock_init(&mem->reclaim_param_lock);
3050
3051 if (parent)
3052 mem->swappiness = get_swappiness(parent);
3053 atomic_set(&mem->refcnt, 1);
3054 return &mem->css;
3055 free_out:
3056 __mem_cgroup_free(mem);
3057 root_mem_cgroup = NULL;
3058 return ERR_PTR(error);
3059 }
3060
3061 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3062 struct cgroup *cont)
3063 {
3064 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3065
3066 return mem_cgroup_force_empty(mem, false);
3067 }
3068
3069 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3070 struct cgroup *cont)
3071 {
3072 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3073
3074 mem_cgroup_put(mem);
3075 }
3076
3077 static int mem_cgroup_populate(struct cgroup_subsys *ss,
3078 struct cgroup *cont)
3079 {
3080 int ret;
3081
3082 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3083 ARRAY_SIZE(mem_cgroup_files));
3084
3085 if (!ret)
3086 ret = register_memsw_files(cont, ss);
3087 return ret;
3088 }
3089
3090 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3091 struct cgroup *cont,
3092 struct cgroup *old_cont,
3093 struct task_struct *p,
3094 bool threadgroup)
3095 {
3096 mutex_lock(&memcg_tasklist);
3097 /*
3098 * FIXME: It's better to move charges of this process from old
3099 * memcg to new memcg. But it's just on TODO-List now.
3100 */
3101 mutex_unlock(&memcg_tasklist);
3102 }
3103
3104 struct cgroup_subsys mem_cgroup_subsys = {
3105 .name = "memory",
3106 .subsys_id = mem_cgroup_subsys_id,
3107 .create = mem_cgroup_create,
3108 .pre_destroy = mem_cgroup_pre_destroy,
3109 .destroy = mem_cgroup_destroy,
3110 .populate = mem_cgroup_populate,
3111 .attach = mem_cgroup_move_task,
3112 .early_init = 0,
3113 .use_id = 1,
3114 };
3115
3116 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3117
3118 static int __init disable_swap_account(char *s)
3119 {
3120 really_do_swap_account = 0;
3121 return 1;
3122 }
3123 __setup("noswapaccount", disable_swap_account);
3124 #endif
This page took 0.09782 seconds and 6 git commands to generate.