memcg: some modification to softlimit under hierarchical memory reclaim.
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/rbtree.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/spinlock.h>
36 #include <linux/fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm_inline.h>
40 #include <linux/page_cgroup.h>
41 #include "internal.h"
42
43 #include <asm/uaccess.h>
44
45 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
46 #define MEM_CGROUP_RECLAIM_RETRIES 5
47 struct mem_cgroup *root_mem_cgroup __read_mostly;
48
49 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
50 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
51 int do_swap_account __read_mostly;
52 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
53 #else
54 #define do_swap_account (0)
55 #endif
56
57 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
58 #define SOFTLIMIT_EVENTS_THRESH (1000)
59
60 /*
61 * Statistics for memory cgroup.
62 */
63 enum mem_cgroup_stat_index {
64 /*
65 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
66 */
67 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
68 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
69 MEM_CGROUP_STAT_MAPPED_FILE, /* # of pages charged as file rss */
70 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
71 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
72 MEM_CGROUP_STAT_EVENTS, /* sum of pagein + pageout for internal use */
73 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
74
75 MEM_CGROUP_STAT_NSTATS,
76 };
77
78 struct mem_cgroup_stat_cpu {
79 s64 count[MEM_CGROUP_STAT_NSTATS];
80 } ____cacheline_aligned_in_smp;
81
82 struct mem_cgroup_stat {
83 struct mem_cgroup_stat_cpu cpustat[0];
84 };
85
86 static inline void
87 __mem_cgroup_stat_reset_safe(struct mem_cgroup_stat_cpu *stat,
88 enum mem_cgroup_stat_index idx)
89 {
90 stat->count[idx] = 0;
91 }
92
93 static inline s64
94 __mem_cgroup_stat_read_local(struct mem_cgroup_stat_cpu *stat,
95 enum mem_cgroup_stat_index idx)
96 {
97 return stat->count[idx];
98 }
99
100 /*
101 * For accounting under irq disable, no need for increment preempt count.
102 */
103 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
104 enum mem_cgroup_stat_index idx, int val)
105 {
106 stat->count[idx] += val;
107 }
108
109 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
110 enum mem_cgroup_stat_index idx)
111 {
112 int cpu;
113 s64 ret = 0;
114 for_each_possible_cpu(cpu)
115 ret += stat->cpustat[cpu].count[idx];
116 return ret;
117 }
118
119 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
120 {
121 s64 ret;
122
123 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
124 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
125 return ret;
126 }
127
128 /*
129 * per-zone information in memory controller.
130 */
131 struct mem_cgroup_per_zone {
132 /*
133 * spin_lock to protect the per cgroup LRU
134 */
135 struct list_head lists[NR_LRU_LISTS];
136 unsigned long count[NR_LRU_LISTS];
137
138 struct zone_reclaim_stat reclaim_stat;
139 struct rb_node tree_node; /* RB tree node */
140 unsigned long long usage_in_excess;/* Set to the value by which */
141 /* the soft limit is exceeded*/
142 bool on_tree;
143 struct mem_cgroup *mem; /* Back pointer, we cannot */
144 /* use container_of */
145 };
146 /* Macro for accessing counter */
147 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
148
149 struct mem_cgroup_per_node {
150 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
151 };
152
153 struct mem_cgroup_lru_info {
154 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
155 };
156
157 /*
158 * Cgroups above their limits are maintained in a RB-Tree, independent of
159 * their hierarchy representation
160 */
161
162 struct mem_cgroup_tree_per_zone {
163 struct rb_root rb_root;
164 spinlock_t lock;
165 };
166
167 struct mem_cgroup_tree_per_node {
168 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
169 };
170
171 struct mem_cgroup_tree {
172 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
173 };
174
175 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
176
177 /*
178 * The memory controller data structure. The memory controller controls both
179 * page cache and RSS per cgroup. We would eventually like to provide
180 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181 * to help the administrator determine what knobs to tune.
182 *
183 * TODO: Add a water mark for the memory controller. Reclaim will begin when
184 * we hit the water mark. May be even add a low water mark, such that
185 * no reclaim occurs from a cgroup at it's low water mark, this is
186 * a feature that will be implemented much later in the future.
187 */
188 struct mem_cgroup {
189 struct cgroup_subsys_state css;
190 /*
191 * the counter to account for memory usage
192 */
193 struct res_counter res;
194 /*
195 * the counter to account for mem+swap usage.
196 */
197 struct res_counter memsw;
198 /*
199 * Per cgroup active and inactive list, similar to the
200 * per zone LRU lists.
201 */
202 struct mem_cgroup_lru_info info;
203
204 /*
205 protect against reclaim related member.
206 */
207 spinlock_t reclaim_param_lock;
208
209 int prev_priority; /* for recording reclaim priority */
210
211 /*
212 * While reclaiming in a hiearchy, we cache the last child we
213 * reclaimed from.
214 */
215 int last_scanned_child;
216 /*
217 * Should the accounting and control be hierarchical, per subtree?
218 */
219 bool use_hierarchy;
220 unsigned long last_oom_jiffies;
221 atomic_t refcnt;
222
223 unsigned int swappiness;
224
225 /* set when res.limit == memsw.limit */
226 bool memsw_is_minimum;
227
228 /*
229 * statistics. This must be placed at the end of memcg.
230 */
231 struct mem_cgroup_stat stat;
232 };
233
234 /*
235 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
236 * limit reclaim to prevent infinite loops, if they ever occur.
237 */
238 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
239 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
240
241 enum charge_type {
242 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
243 MEM_CGROUP_CHARGE_TYPE_MAPPED,
244 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
245 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
246 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
247 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
248 NR_CHARGE_TYPE,
249 };
250
251 /* only for here (for easy reading.) */
252 #define PCGF_CACHE (1UL << PCG_CACHE)
253 #define PCGF_USED (1UL << PCG_USED)
254 #define PCGF_LOCK (1UL << PCG_LOCK)
255 /* Not used, but added here for completeness */
256 #define PCGF_ACCT (1UL << PCG_ACCT)
257
258 /* for encoding cft->private value on file */
259 #define _MEM (0)
260 #define _MEMSWAP (1)
261 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
262 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
263 #define MEMFILE_ATTR(val) ((val) & 0xffff)
264
265 /*
266 * Reclaim flags for mem_cgroup_hierarchical_reclaim
267 */
268 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
269 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
270 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
271 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
272 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
273 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
274
275 static void mem_cgroup_get(struct mem_cgroup *mem);
276 static void mem_cgroup_put(struct mem_cgroup *mem);
277 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
278
279 static struct mem_cgroup_per_zone *
280 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
281 {
282 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
283 }
284
285 static struct mem_cgroup_per_zone *
286 page_cgroup_zoneinfo(struct page_cgroup *pc)
287 {
288 struct mem_cgroup *mem = pc->mem_cgroup;
289 int nid = page_cgroup_nid(pc);
290 int zid = page_cgroup_zid(pc);
291
292 if (!mem)
293 return NULL;
294
295 return mem_cgroup_zoneinfo(mem, nid, zid);
296 }
297
298 static struct mem_cgroup_tree_per_zone *
299 soft_limit_tree_node_zone(int nid, int zid)
300 {
301 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
302 }
303
304 static struct mem_cgroup_tree_per_zone *
305 soft_limit_tree_from_page(struct page *page)
306 {
307 int nid = page_to_nid(page);
308 int zid = page_zonenum(page);
309
310 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
311 }
312
313 static void
314 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
315 struct mem_cgroup_per_zone *mz,
316 struct mem_cgroup_tree_per_zone *mctz)
317 {
318 struct rb_node **p = &mctz->rb_root.rb_node;
319 struct rb_node *parent = NULL;
320 struct mem_cgroup_per_zone *mz_node;
321
322 if (mz->on_tree)
323 return;
324
325 mz->usage_in_excess = res_counter_soft_limit_excess(&mem->res);
326 while (*p) {
327 parent = *p;
328 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
329 tree_node);
330 if (mz->usage_in_excess < mz_node->usage_in_excess)
331 p = &(*p)->rb_left;
332 /*
333 * We can't avoid mem cgroups that are over their soft
334 * limit by the same amount
335 */
336 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
337 p = &(*p)->rb_right;
338 }
339 rb_link_node(&mz->tree_node, parent, p);
340 rb_insert_color(&mz->tree_node, &mctz->rb_root);
341 mz->on_tree = true;
342 }
343
344 static void
345 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
346 struct mem_cgroup_per_zone *mz,
347 struct mem_cgroup_tree_per_zone *mctz)
348 {
349 if (!mz->on_tree)
350 return;
351 rb_erase(&mz->tree_node, &mctz->rb_root);
352 mz->on_tree = false;
353 }
354
355 static void
356 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
357 struct mem_cgroup_per_zone *mz,
358 struct mem_cgroup_tree_per_zone *mctz)
359 {
360 spin_lock(&mctz->lock);
361 __mem_cgroup_remove_exceeded(mem, mz, mctz);
362 spin_unlock(&mctz->lock);
363 }
364
365 static bool mem_cgroup_soft_limit_check(struct mem_cgroup *mem)
366 {
367 bool ret = false;
368 int cpu;
369 s64 val;
370 struct mem_cgroup_stat_cpu *cpustat;
371
372 cpu = get_cpu();
373 cpustat = &mem->stat.cpustat[cpu];
374 val = __mem_cgroup_stat_read_local(cpustat, MEM_CGROUP_STAT_EVENTS);
375 if (unlikely(val > SOFTLIMIT_EVENTS_THRESH)) {
376 __mem_cgroup_stat_reset_safe(cpustat, MEM_CGROUP_STAT_EVENTS);
377 ret = true;
378 }
379 put_cpu();
380 return ret;
381 }
382
383 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
384 {
385 unsigned long long new_usage_in_excess;
386 struct mem_cgroup_per_zone *mz;
387 struct mem_cgroup_tree_per_zone *mctz;
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
390 mctz = soft_limit_tree_from_page(page);
391
392 /*
393 * Necessary to update all ancestors when hierarchy is used.
394 * because their event counter is not touched.
395 */
396 for (; mem; mem = parent_mem_cgroup(mem)) {
397 mz = mem_cgroup_zoneinfo(mem, nid, zid);
398 new_usage_in_excess =
399 res_counter_soft_limit_excess(&mem->res);
400 /*
401 * We have to update the tree if mz is on RB-tree or
402 * mem is over its softlimit.
403 */
404 if (new_usage_in_excess || mz->on_tree) {
405 spin_lock(&mctz->lock);
406 /* if on-tree, remove it */
407 if (mz->on_tree)
408 __mem_cgroup_remove_exceeded(mem, mz, mctz);
409 /*
410 * if over soft limit, insert again. mz->usage_in_excess
411 * will be updated properly.
412 */
413 if (new_usage_in_excess)
414 __mem_cgroup_insert_exceeded(mem, mz, mctz);
415 else
416 mz->usage_in_excess = 0;
417 spin_unlock(&mctz->lock);
418 }
419 }
420 }
421
422 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
423 {
424 int node, zone;
425 struct mem_cgroup_per_zone *mz;
426 struct mem_cgroup_tree_per_zone *mctz;
427
428 for_each_node_state(node, N_POSSIBLE) {
429 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
430 mz = mem_cgroup_zoneinfo(mem, node, zone);
431 mctz = soft_limit_tree_node_zone(node, zone);
432 mem_cgroup_remove_exceeded(mem, mz, mctz);
433 }
434 }
435 }
436
437 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
438 {
439 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
440 }
441
442 static struct mem_cgroup_per_zone *
443 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
444 {
445 struct rb_node *rightmost = NULL;
446 struct mem_cgroup_per_zone *mz;
447
448 retry:
449 mz = NULL;
450 rightmost = rb_last(&mctz->rb_root);
451 if (!rightmost)
452 goto done; /* Nothing to reclaim from */
453
454 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
455 /*
456 * Remove the node now but someone else can add it back,
457 * we will to add it back at the end of reclaim to its correct
458 * position in the tree.
459 */
460 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
461 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
462 !css_tryget(&mz->mem->css))
463 goto retry;
464 done:
465 return mz;
466 }
467
468 static struct mem_cgroup_per_zone *
469 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
470 {
471 struct mem_cgroup_per_zone *mz;
472
473 spin_lock(&mctz->lock);
474 mz = __mem_cgroup_largest_soft_limit_node(mctz);
475 spin_unlock(&mctz->lock);
476 return mz;
477 }
478
479 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
480 bool charge)
481 {
482 int val = (charge) ? 1 : -1;
483 struct mem_cgroup_stat *stat = &mem->stat;
484 struct mem_cgroup_stat_cpu *cpustat;
485 int cpu = get_cpu();
486
487 cpustat = &stat->cpustat[cpu];
488 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_SWAPOUT, val);
489 put_cpu();
490 }
491
492 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
493 struct page_cgroup *pc,
494 bool charge)
495 {
496 int val = (charge) ? 1 : -1;
497 struct mem_cgroup_stat *stat = &mem->stat;
498 struct mem_cgroup_stat_cpu *cpustat;
499 int cpu = get_cpu();
500
501 cpustat = &stat->cpustat[cpu];
502 if (PageCgroupCache(pc))
503 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
504 else
505 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
506
507 if (charge)
508 __mem_cgroup_stat_add_safe(cpustat,
509 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
510 else
511 __mem_cgroup_stat_add_safe(cpustat,
512 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
513 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_EVENTS, 1);
514 put_cpu();
515 }
516
517 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
518 enum lru_list idx)
519 {
520 int nid, zid;
521 struct mem_cgroup_per_zone *mz;
522 u64 total = 0;
523
524 for_each_online_node(nid)
525 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
526 mz = mem_cgroup_zoneinfo(mem, nid, zid);
527 total += MEM_CGROUP_ZSTAT(mz, idx);
528 }
529 return total;
530 }
531
532 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
533 {
534 return container_of(cgroup_subsys_state(cont,
535 mem_cgroup_subsys_id), struct mem_cgroup,
536 css);
537 }
538
539 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
540 {
541 /*
542 * mm_update_next_owner() may clear mm->owner to NULL
543 * if it races with swapoff, page migration, etc.
544 * So this can be called with p == NULL.
545 */
546 if (unlikely(!p))
547 return NULL;
548
549 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
550 struct mem_cgroup, css);
551 }
552
553 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
554 {
555 struct mem_cgroup *mem = NULL;
556
557 if (!mm)
558 return NULL;
559 /*
560 * Because we have no locks, mm->owner's may be being moved to other
561 * cgroup. We use css_tryget() here even if this looks
562 * pessimistic (rather than adding locks here).
563 */
564 rcu_read_lock();
565 do {
566 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
567 if (unlikely(!mem))
568 break;
569 } while (!css_tryget(&mem->css));
570 rcu_read_unlock();
571 return mem;
572 }
573
574 /*
575 * Call callback function against all cgroup under hierarchy tree.
576 */
577 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
578 int (*func)(struct mem_cgroup *, void *))
579 {
580 int found, ret, nextid;
581 struct cgroup_subsys_state *css;
582 struct mem_cgroup *mem;
583
584 if (!root->use_hierarchy)
585 return (*func)(root, data);
586
587 nextid = 1;
588 do {
589 ret = 0;
590 mem = NULL;
591
592 rcu_read_lock();
593 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
594 &found);
595 if (css && css_tryget(css))
596 mem = container_of(css, struct mem_cgroup, css);
597 rcu_read_unlock();
598
599 if (mem) {
600 ret = (*func)(mem, data);
601 css_put(&mem->css);
602 }
603 nextid = found + 1;
604 } while (!ret && css);
605
606 return ret;
607 }
608
609 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
610 {
611 return (mem == root_mem_cgroup);
612 }
613
614 /*
615 * Following LRU functions are allowed to be used without PCG_LOCK.
616 * Operations are called by routine of global LRU independently from memcg.
617 * What we have to take care of here is validness of pc->mem_cgroup.
618 *
619 * Changes to pc->mem_cgroup happens when
620 * 1. charge
621 * 2. moving account
622 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
623 * It is added to LRU before charge.
624 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
625 * When moving account, the page is not on LRU. It's isolated.
626 */
627
628 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
629 {
630 struct page_cgroup *pc;
631 struct mem_cgroup_per_zone *mz;
632
633 if (mem_cgroup_disabled())
634 return;
635 pc = lookup_page_cgroup(page);
636 /* can happen while we handle swapcache. */
637 if (!TestClearPageCgroupAcctLRU(pc))
638 return;
639 VM_BUG_ON(!pc->mem_cgroup);
640 /*
641 * We don't check PCG_USED bit. It's cleared when the "page" is finally
642 * removed from global LRU.
643 */
644 mz = page_cgroup_zoneinfo(pc);
645 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
646 if (mem_cgroup_is_root(pc->mem_cgroup))
647 return;
648 VM_BUG_ON(list_empty(&pc->lru));
649 list_del_init(&pc->lru);
650 return;
651 }
652
653 void mem_cgroup_del_lru(struct page *page)
654 {
655 mem_cgroup_del_lru_list(page, page_lru(page));
656 }
657
658 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
659 {
660 struct mem_cgroup_per_zone *mz;
661 struct page_cgroup *pc;
662
663 if (mem_cgroup_disabled())
664 return;
665
666 pc = lookup_page_cgroup(page);
667 /*
668 * Used bit is set without atomic ops but after smp_wmb().
669 * For making pc->mem_cgroup visible, insert smp_rmb() here.
670 */
671 smp_rmb();
672 /* unused or root page is not rotated. */
673 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
674 return;
675 mz = page_cgroup_zoneinfo(pc);
676 list_move(&pc->lru, &mz->lists[lru]);
677 }
678
679 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
680 {
681 struct page_cgroup *pc;
682 struct mem_cgroup_per_zone *mz;
683
684 if (mem_cgroup_disabled())
685 return;
686 pc = lookup_page_cgroup(page);
687 VM_BUG_ON(PageCgroupAcctLRU(pc));
688 /*
689 * Used bit is set without atomic ops but after smp_wmb().
690 * For making pc->mem_cgroup visible, insert smp_rmb() here.
691 */
692 smp_rmb();
693 if (!PageCgroupUsed(pc))
694 return;
695
696 mz = page_cgroup_zoneinfo(pc);
697 MEM_CGROUP_ZSTAT(mz, lru) += 1;
698 SetPageCgroupAcctLRU(pc);
699 if (mem_cgroup_is_root(pc->mem_cgroup))
700 return;
701 list_add(&pc->lru, &mz->lists[lru]);
702 }
703
704 /*
705 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
706 * lru because the page may.be reused after it's fully uncharged (because of
707 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
708 * it again. This function is only used to charge SwapCache. It's done under
709 * lock_page and expected that zone->lru_lock is never held.
710 */
711 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
712 {
713 unsigned long flags;
714 struct zone *zone = page_zone(page);
715 struct page_cgroup *pc = lookup_page_cgroup(page);
716
717 spin_lock_irqsave(&zone->lru_lock, flags);
718 /*
719 * Forget old LRU when this page_cgroup is *not* used. This Used bit
720 * is guarded by lock_page() because the page is SwapCache.
721 */
722 if (!PageCgroupUsed(pc))
723 mem_cgroup_del_lru_list(page, page_lru(page));
724 spin_unlock_irqrestore(&zone->lru_lock, flags);
725 }
726
727 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
728 {
729 unsigned long flags;
730 struct zone *zone = page_zone(page);
731 struct page_cgroup *pc = lookup_page_cgroup(page);
732
733 spin_lock_irqsave(&zone->lru_lock, flags);
734 /* link when the page is linked to LRU but page_cgroup isn't */
735 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
736 mem_cgroup_add_lru_list(page, page_lru(page));
737 spin_unlock_irqrestore(&zone->lru_lock, flags);
738 }
739
740
741 void mem_cgroup_move_lists(struct page *page,
742 enum lru_list from, enum lru_list to)
743 {
744 if (mem_cgroup_disabled())
745 return;
746 mem_cgroup_del_lru_list(page, from);
747 mem_cgroup_add_lru_list(page, to);
748 }
749
750 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
751 {
752 int ret;
753 struct mem_cgroup *curr = NULL;
754
755 task_lock(task);
756 rcu_read_lock();
757 curr = try_get_mem_cgroup_from_mm(task->mm);
758 rcu_read_unlock();
759 task_unlock(task);
760 if (!curr)
761 return 0;
762 if (curr->use_hierarchy)
763 ret = css_is_ancestor(&curr->css, &mem->css);
764 else
765 ret = (curr == mem);
766 css_put(&curr->css);
767 return ret;
768 }
769
770 /*
771 * prev_priority control...this will be used in memory reclaim path.
772 */
773 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
774 {
775 int prev_priority;
776
777 spin_lock(&mem->reclaim_param_lock);
778 prev_priority = mem->prev_priority;
779 spin_unlock(&mem->reclaim_param_lock);
780
781 return prev_priority;
782 }
783
784 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
785 {
786 spin_lock(&mem->reclaim_param_lock);
787 if (priority < mem->prev_priority)
788 mem->prev_priority = priority;
789 spin_unlock(&mem->reclaim_param_lock);
790 }
791
792 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
793 {
794 spin_lock(&mem->reclaim_param_lock);
795 mem->prev_priority = priority;
796 spin_unlock(&mem->reclaim_param_lock);
797 }
798
799 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
800 {
801 unsigned long active;
802 unsigned long inactive;
803 unsigned long gb;
804 unsigned long inactive_ratio;
805
806 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
807 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
808
809 gb = (inactive + active) >> (30 - PAGE_SHIFT);
810 if (gb)
811 inactive_ratio = int_sqrt(10 * gb);
812 else
813 inactive_ratio = 1;
814
815 if (present_pages) {
816 present_pages[0] = inactive;
817 present_pages[1] = active;
818 }
819
820 return inactive_ratio;
821 }
822
823 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
824 {
825 unsigned long active;
826 unsigned long inactive;
827 unsigned long present_pages[2];
828 unsigned long inactive_ratio;
829
830 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
831
832 inactive = present_pages[0];
833 active = present_pages[1];
834
835 if (inactive * inactive_ratio < active)
836 return 1;
837
838 return 0;
839 }
840
841 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
842 {
843 unsigned long active;
844 unsigned long inactive;
845
846 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
847 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
848
849 return (active > inactive);
850 }
851
852 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
853 struct zone *zone,
854 enum lru_list lru)
855 {
856 int nid = zone->zone_pgdat->node_id;
857 int zid = zone_idx(zone);
858 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
859
860 return MEM_CGROUP_ZSTAT(mz, lru);
861 }
862
863 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
864 struct zone *zone)
865 {
866 int nid = zone->zone_pgdat->node_id;
867 int zid = zone_idx(zone);
868 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
869
870 return &mz->reclaim_stat;
871 }
872
873 struct zone_reclaim_stat *
874 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
875 {
876 struct page_cgroup *pc;
877 struct mem_cgroup_per_zone *mz;
878
879 if (mem_cgroup_disabled())
880 return NULL;
881
882 pc = lookup_page_cgroup(page);
883 /*
884 * Used bit is set without atomic ops but after smp_wmb().
885 * For making pc->mem_cgroup visible, insert smp_rmb() here.
886 */
887 smp_rmb();
888 if (!PageCgroupUsed(pc))
889 return NULL;
890
891 mz = page_cgroup_zoneinfo(pc);
892 if (!mz)
893 return NULL;
894
895 return &mz->reclaim_stat;
896 }
897
898 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
899 struct list_head *dst,
900 unsigned long *scanned, int order,
901 int mode, struct zone *z,
902 struct mem_cgroup *mem_cont,
903 int active, int file)
904 {
905 unsigned long nr_taken = 0;
906 struct page *page;
907 unsigned long scan;
908 LIST_HEAD(pc_list);
909 struct list_head *src;
910 struct page_cgroup *pc, *tmp;
911 int nid = z->zone_pgdat->node_id;
912 int zid = zone_idx(z);
913 struct mem_cgroup_per_zone *mz;
914 int lru = LRU_FILE * file + active;
915 int ret;
916
917 BUG_ON(!mem_cont);
918 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
919 src = &mz->lists[lru];
920
921 scan = 0;
922 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
923 if (scan >= nr_to_scan)
924 break;
925
926 page = pc->page;
927 if (unlikely(!PageCgroupUsed(pc)))
928 continue;
929 if (unlikely(!PageLRU(page)))
930 continue;
931
932 scan++;
933 ret = __isolate_lru_page(page, mode, file);
934 switch (ret) {
935 case 0:
936 list_move(&page->lru, dst);
937 mem_cgroup_del_lru(page);
938 nr_taken++;
939 break;
940 case -EBUSY:
941 /* we don't affect global LRU but rotate in our LRU */
942 mem_cgroup_rotate_lru_list(page, page_lru(page));
943 break;
944 default:
945 break;
946 }
947 }
948
949 *scanned = scan;
950 return nr_taken;
951 }
952
953 #define mem_cgroup_from_res_counter(counter, member) \
954 container_of(counter, struct mem_cgroup, member)
955
956 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
957 {
958 if (do_swap_account) {
959 if (res_counter_check_under_limit(&mem->res) &&
960 res_counter_check_under_limit(&mem->memsw))
961 return true;
962 } else
963 if (res_counter_check_under_limit(&mem->res))
964 return true;
965 return false;
966 }
967
968 static unsigned int get_swappiness(struct mem_cgroup *memcg)
969 {
970 struct cgroup *cgrp = memcg->css.cgroup;
971 unsigned int swappiness;
972
973 /* root ? */
974 if (cgrp->parent == NULL)
975 return vm_swappiness;
976
977 spin_lock(&memcg->reclaim_param_lock);
978 swappiness = memcg->swappiness;
979 spin_unlock(&memcg->reclaim_param_lock);
980
981 return swappiness;
982 }
983
984 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
985 {
986 int *val = data;
987 (*val)++;
988 return 0;
989 }
990
991 /**
992 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
993 * @memcg: The memory cgroup that went over limit
994 * @p: Task that is going to be killed
995 *
996 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
997 * enabled
998 */
999 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1000 {
1001 struct cgroup *task_cgrp;
1002 struct cgroup *mem_cgrp;
1003 /*
1004 * Need a buffer in BSS, can't rely on allocations. The code relies
1005 * on the assumption that OOM is serialized for memory controller.
1006 * If this assumption is broken, revisit this code.
1007 */
1008 static char memcg_name[PATH_MAX];
1009 int ret;
1010
1011 if (!memcg)
1012 return;
1013
1014
1015 rcu_read_lock();
1016
1017 mem_cgrp = memcg->css.cgroup;
1018 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1019
1020 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1021 if (ret < 0) {
1022 /*
1023 * Unfortunately, we are unable to convert to a useful name
1024 * But we'll still print out the usage information
1025 */
1026 rcu_read_unlock();
1027 goto done;
1028 }
1029 rcu_read_unlock();
1030
1031 printk(KERN_INFO "Task in %s killed", memcg_name);
1032
1033 rcu_read_lock();
1034 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1035 if (ret < 0) {
1036 rcu_read_unlock();
1037 goto done;
1038 }
1039 rcu_read_unlock();
1040
1041 /*
1042 * Continues from above, so we don't need an KERN_ level
1043 */
1044 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1045 done:
1046
1047 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1048 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1049 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1050 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1051 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1052 "failcnt %llu\n",
1053 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1054 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1055 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1056 }
1057
1058 /*
1059 * This function returns the number of memcg under hierarchy tree. Returns
1060 * 1(self count) if no children.
1061 */
1062 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1063 {
1064 int num = 0;
1065 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
1066 return num;
1067 }
1068
1069 /*
1070 * Visit the first child (need not be the first child as per the ordering
1071 * of the cgroup list, since we track last_scanned_child) of @mem and use
1072 * that to reclaim free pages from.
1073 */
1074 static struct mem_cgroup *
1075 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1076 {
1077 struct mem_cgroup *ret = NULL;
1078 struct cgroup_subsys_state *css;
1079 int nextid, found;
1080
1081 if (!root_mem->use_hierarchy) {
1082 css_get(&root_mem->css);
1083 ret = root_mem;
1084 }
1085
1086 while (!ret) {
1087 rcu_read_lock();
1088 nextid = root_mem->last_scanned_child + 1;
1089 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1090 &found);
1091 if (css && css_tryget(css))
1092 ret = container_of(css, struct mem_cgroup, css);
1093
1094 rcu_read_unlock();
1095 /* Updates scanning parameter */
1096 spin_lock(&root_mem->reclaim_param_lock);
1097 if (!css) {
1098 /* this means start scan from ID:1 */
1099 root_mem->last_scanned_child = 0;
1100 } else
1101 root_mem->last_scanned_child = found;
1102 spin_unlock(&root_mem->reclaim_param_lock);
1103 }
1104
1105 return ret;
1106 }
1107
1108 /*
1109 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1110 * we reclaimed from, so that we don't end up penalizing one child extensively
1111 * based on its position in the children list.
1112 *
1113 * root_mem is the original ancestor that we've been reclaim from.
1114 *
1115 * We give up and return to the caller when we visit root_mem twice.
1116 * (other groups can be removed while we're walking....)
1117 *
1118 * If shrink==true, for avoiding to free too much, this returns immedieately.
1119 */
1120 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1121 struct zone *zone,
1122 gfp_t gfp_mask,
1123 unsigned long reclaim_options)
1124 {
1125 struct mem_cgroup *victim;
1126 int ret, total = 0;
1127 int loop = 0;
1128 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1129 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1130 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1131 unsigned long excess = mem_cgroup_get_excess(root_mem);
1132
1133 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1134 if (root_mem->memsw_is_minimum)
1135 noswap = true;
1136
1137 while (1) {
1138 victim = mem_cgroup_select_victim(root_mem);
1139 if (victim == root_mem) {
1140 loop++;
1141 if (loop >= 2) {
1142 /*
1143 * If we have not been able to reclaim
1144 * anything, it might because there are
1145 * no reclaimable pages under this hierarchy
1146 */
1147 if (!check_soft || !total) {
1148 css_put(&victim->css);
1149 break;
1150 }
1151 /*
1152 * We want to do more targetted reclaim.
1153 * excess >> 2 is not to excessive so as to
1154 * reclaim too much, nor too less that we keep
1155 * coming back to reclaim from this cgroup
1156 */
1157 if (total >= (excess >> 2) ||
1158 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1159 css_put(&victim->css);
1160 break;
1161 }
1162 }
1163 }
1164 if (!mem_cgroup_local_usage(&victim->stat)) {
1165 /* this cgroup's local usage == 0 */
1166 css_put(&victim->css);
1167 continue;
1168 }
1169 /* we use swappiness of local cgroup */
1170 if (check_soft)
1171 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1172 noswap, get_swappiness(victim), zone,
1173 zone->zone_pgdat->node_id);
1174 else
1175 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1176 noswap, get_swappiness(victim));
1177 css_put(&victim->css);
1178 /*
1179 * At shrinking usage, we can't check we should stop here or
1180 * reclaim more. It's depends on callers. last_scanned_child
1181 * will work enough for keeping fairness under tree.
1182 */
1183 if (shrink)
1184 return ret;
1185 total += ret;
1186 if (check_soft) {
1187 if (res_counter_check_under_soft_limit(&root_mem->res))
1188 return total;
1189 } else if (mem_cgroup_check_under_limit(root_mem))
1190 return 1 + total;
1191 }
1192 return total;
1193 }
1194
1195 bool mem_cgroup_oom_called(struct task_struct *task)
1196 {
1197 bool ret = false;
1198 struct mem_cgroup *mem;
1199 struct mm_struct *mm;
1200
1201 rcu_read_lock();
1202 mm = task->mm;
1203 if (!mm)
1204 mm = &init_mm;
1205 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
1206 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
1207 ret = true;
1208 rcu_read_unlock();
1209 return ret;
1210 }
1211
1212 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
1213 {
1214 mem->last_oom_jiffies = jiffies;
1215 return 0;
1216 }
1217
1218 static void record_last_oom(struct mem_cgroup *mem)
1219 {
1220 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
1221 }
1222
1223 /*
1224 * Currently used to update mapped file statistics, but the routine can be
1225 * generalized to update other statistics as well.
1226 */
1227 void mem_cgroup_update_mapped_file_stat(struct page *page, int val)
1228 {
1229 struct mem_cgroup *mem;
1230 struct mem_cgroup_stat *stat;
1231 struct mem_cgroup_stat_cpu *cpustat;
1232 int cpu;
1233 struct page_cgroup *pc;
1234
1235 if (!page_is_file_cache(page))
1236 return;
1237
1238 pc = lookup_page_cgroup(page);
1239 if (unlikely(!pc))
1240 return;
1241
1242 lock_page_cgroup(pc);
1243 mem = pc->mem_cgroup;
1244 if (!mem)
1245 goto done;
1246
1247 if (!PageCgroupUsed(pc))
1248 goto done;
1249
1250 /*
1251 * Preemption is already disabled, we don't need get_cpu()
1252 */
1253 cpu = smp_processor_id();
1254 stat = &mem->stat;
1255 cpustat = &stat->cpustat[cpu];
1256
1257 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE, val);
1258 done:
1259 unlock_page_cgroup(pc);
1260 }
1261
1262 /*
1263 * Unlike exported interface, "oom" parameter is added. if oom==true,
1264 * oom-killer can be invoked.
1265 */
1266 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1267 gfp_t gfp_mask, struct mem_cgroup **memcg,
1268 bool oom, struct page *page)
1269 {
1270 struct mem_cgroup *mem, *mem_over_limit;
1271 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1272 struct res_counter *fail_res;
1273
1274 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
1275 /* Don't account this! */
1276 *memcg = NULL;
1277 return 0;
1278 }
1279
1280 /*
1281 * We always charge the cgroup the mm_struct belongs to.
1282 * The mm_struct's mem_cgroup changes on task migration if the
1283 * thread group leader migrates. It's possible that mm is not
1284 * set, if so charge the init_mm (happens for pagecache usage).
1285 */
1286 mem = *memcg;
1287 if (likely(!mem)) {
1288 mem = try_get_mem_cgroup_from_mm(mm);
1289 *memcg = mem;
1290 } else {
1291 css_get(&mem->css);
1292 }
1293 if (unlikely(!mem))
1294 return 0;
1295
1296 VM_BUG_ON(css_is_removed(&mem->css));
1297
1298 while (1) {
1299 int ret = 0;
1300 unsigned long flags = 0;
1301
1302 if (mem_cgroup_is_root(mem))
1303 goto done;
1304 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
1305 if (likely(!ret)) {
1306 if (!do_swap_account)
1307 break;
1308 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
1309 &fail_res);
1310 if (likely(!ret))
1311 break;
1312 /* mem+swap counter fails */
1313 res_counter_uncharge(&mem->res, PAGE_SIZE);
1314 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1315 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1316 memsw);
1317 } else
1318 /* mem counter fails */
1319 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
1320 res);
1321
1322 if (!(gfp_mask & __GFP_WAIT))
1323 goto nomem;
1324
1325 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1326 gfp_mask, flags);
1327 if (ret)
1328 continue;
1329
1330 /*
1331 * try_to_free_mem_cgroup_pages() might not give us a full
1332 * picture of reclaim. Some pages are reclaimed and might be
1333 * moved to swap cache or just unmapped from the cgroup.
1334 * Check the limit again to see if the reclaim reduced the
1335 * current usage of the cgroup before giving up
1336 *
1337 */
1338 if (mem_cgroup_check_under_limit(mem_over_limit))
1339 continue;
1340
1341 if (!nr_retries--) {
1342 if (oom) {
1343 mutex_lock(&memcg_tasklist);
1344 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
1345 mutex_unlock(&memcg_tasklist);
1346 record_last_oom(mem_over_limit);
1347 }
1348 goto nomem;
1349 }
1350 }
1351 /*
1352 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
1353 * if they exceeds softlimit.
1354 */
1355 if (mem_cgroup_soft_limit_check(mem))
1356 mem_cgroup_update_tree(mem, page);
1357 done:
1358 return 0;
1359 nomem:
1360 css_put(&mem->css);
1361 return -ENOMEM;
1362 }
1363
1364 /*
1365 * A helper function to get mem_cgroup from ID. must be called under
1366 * rcu_read_lock(). The caller must check css_is_removed() or some if
1367 * it's concern. (dropping refcnt from swap can be called against removed
1368 * memcg.)
1369 */
1370 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1371 {
1372 struct cgroup_subsys_state *css;
1373
1374 /* ID 0 is unused ID */
1375 if (!id)
1376 return NULL;
1377 css = css_lookup(&mem_cgroup_subsys, id);
1378 if (!css)
1379 return NULL;
1380 return container_of(css, struct mem_cgroup, css);
1381 }
1382
1383 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1384 {
1385 struct mem_cgroup *mem;
1386 struct page_cgroup *pc;
1387 unsigned short id;
1388 swp_entry_t ent;
1389
1390 VM_BUG_ON(!PageLocked(page));
1391
1392 if (!PageSwapCache(page))
1393 return NULL;
1394
1395 pc = lookup_page_cgroup(page);
1396 lock_page_cgroup(pc);
1397 if (PageCgroupUsed(pc)) {
1398 mem = pc->mem_cgroup;
1399 if (mem && !css_tryget(&mem->css))
1400 mem = NULL;
1401 } else {
1402 ent.val = page_private(page);
1403 id = lookup_swap_cgroup(ent);
1404 rcu_read_lock();
1405 mem = mem_cgroup_lookup(id);
1406 if (mem && !css_tryget(&mem->css))
1407 mem = NULL;
1408 rcu_read_unlock();
1409 }
1410 unlock_page_cgroup(pc);
1411 return mem;
1412 }
1413
1414 /*
1415 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1416 * USED state. If already USED, uncharge and return.
1417 */
1418
1419 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1420 struct page_cgroup *pc,
1421 enum charge_type ctype)
1422 {
1423 /* try_charge() can return NULL to *memcg, taking care of it. */
1424 if (!mem)
1425 return;
1426
1427 lock_page_cgroup(pc);
1428 if (unlikely(PageCgroupUsed(pc))) {
1429 unlock_page_cgroup(pc);
1430 if (!mem_cgroup_is_root(mem)) {
1431 res_counter_uncharge(&mem->res, PAGE_SIZE);
1432 if (do_swap_account)
1433 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1434 }
1435 css_put(&mem->css);
1436 return;
1437 }
1438
1439 pc->mem_cgroup = mem;
1440 /*
1441 * We access a page_cgroup asynchronously without lock_page_cgroup().
1442 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
1443 * is accessed after testing USED bit. To make pc->mem_cgroup visible
1444 * before USED bit, we need memory barrier here.
1445 * See mem_cgroup_add_lru_list(), etc.
1446 */
1447 smp_wmb();
1448 switch (ctype) {
1449 case MEM_CGROUP_CHARGE_TYPE_CACHE:
1450 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
1451 SetPageCgroupCache(pc);
1452 SetPageCgroupUsed(pc);
1453 break;
1454 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1455 ClearPageCgroupCache(pc);
1456 SetPageCgroupUsed(pc);
1457 break;
1458 default:
1459 break;
1460 }
1461
1462 mem_cgroup_charge_statistics(mem, pc, true);
1463
1464 unlock_page_cgroup(pc);
1465 }
1466
1467 /**
1468 * mem_cgroup_move_account - move account of the page
1469 * @pc: page_cgroup of the page.
1470 * @from: mem_cgroup which the page is moved from.
1471 * @to: mem_cgroup which the page is moved to. @from != @to.
1472 *
1473 * The caller must confirm following.
1474 * - page is not on LRU (isolate_page() is useful.)
1475 *
1476 * returns 0 at success,
1477 * returns -EBUSY when lock is busy or "pc" is unstable.
1478 *
1479 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1480 * new cgroup. It should be done by a caller.
1481 */
1482
1483 static int mem_cgroup_move_account(struct page_cgroup *pc,
1484 struct mem_cgroup *from, struct mem_cgroup *to)
1485 {
1486 struct mem_cgroup_per_zone *from_mz, *to_mz;
1487 int nid, zid;
1488 int ret = -EBUSY;
1489 struct page *page;
1490 int cpu;
1491 struct mem_cgroup_stat *stat;
1492 struct mem_cgroup_stat_cpu *cpustat;
1493
1494 VM_BUG_ON(from == to);
1495 VM_BUG_ON(PageLRU(pc->page));
1496
1497 nid = page_cgroup_nid(pc);
1498 zid = page_cgroup_zid(pc);
1499 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1500 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1501
1502 if (!trylock_page_cgroup(pc))
1503 return ret;
1504
1505 if (!PageCgroupUsed(pc))
1506 goto out;
1507
1508 if (pc->mem_cgroup != from)
1509 goto out;
1510
1511 if (!mem_cgroup_is_root(from))
1512 res_counter_uncharge(&from->res, PAGE_SIZE);
1513 mem_cgroup_charge_statistics(from, pc, false);
1514
1515 page = pc->page;
1516 if (page_is_file_cache(page) && page_mapped(page)) {
1517 cpu = smp_processor_id();
1518 /* Update mapped_file data for mem_cgroup "from" */
1519 stat = &from->stat;
1520 cpustat = &stat->cpustat[cpu];
1521 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1522 -1);
1523
1524 /* Update mapped_file data for mem_cgroup "to" */
1525 stat = &to->stat;
1526 cpustat = &stat->cpustat[cpu];
1527 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_MAPPED_FILE,
1528 1);
1529 }
1530
1531 if (do_swap_account && !mem_cgroup_is_root(from))
1532 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1533 css_put(&from->css);
1534
1535 css_get(&to->css);
1536 pc->mem_cgroup = to;
1537 mem_cgroup_charge_statistics(to, pc, true);
1538 ret = 0;
1539 out:
1540 unlock_page_cgroup(pc);
1541 /*
1542 * We charges against "to" which may not have any tasks. Then, "to"
1543 * can be under rmdir(). But in current implementation, caller of
1544 * this function is just force_empty() and it's garanteed that
1545 * "to" is never removed. So, we don't check rmdir status here.
1546 */
1547 return ret;
1548 }
1549
1550 /*
1551 * move charges to its parent.
1552 */
1553
1554 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1555 struct mem_cgroup *child,
1556 gfp_t gfp_mask)
1557 {
1558 struct page *page = pc->page;
1559 struct cgroup *cg = child->css.cgroup;
1560 struct cgroup *pcg = cg->parent;
1561 struct mem_cgroup *parent;
1562 int ret;
1563
1564 /* Is ROOT ? */
1565 if (!pcg)
1566 return -EINVAL;
1567
1568
1569 parent = mem_cgroup_from_cont(pcg);
1570
1571
1572 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, page);
1573 if (ret || !parent)
1574 return ret;
1575
1576 if (!get_page_unless_zero(page)) {
1577 ret = -EBUSY;
1578 goto uncharge;
1579 }
1580
1581 ret = isolate_lru_page(page);
1582
1583 if (ret)
1584 goto cancel;
1585
1586 ret = mem_cgroup_move_account(pc, child, parent);
1587
1588 putback_lru_page(page);
1589 if (!ret) {
1590 put_page(page);
1591 /* drop extra refcnt by try_charge() */
1592 css_put(&parent->css);
1593 return 0;
1594 }
1595
1596 cancel:
1597 put_page(page);
1598 uncharge:
1599 /* drop extra refcnt by try_charge() */
1600 css_put(&parent->css);
1601 /* uncharge if move fails */
1602 if (!mem_cgroup_is_root(parent)) {
1603 res_counter_uncharge(&parent->res, PAGE_SIZE);
1604 if (do_swap_account)
1605 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1606 }
1607 return ret;
1608 }
1609
1610 /*
1611 * Charge the memory controller for page usage.
1612 * Return
1613 * 0 if the charge was successful
1614 * < 0 if the cgroup is over its limit
1615 */
1616 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1617 gfp_t gfp_mask, enum charge_type ctype,
1618 struct mem_cgroup *memcg)
1619 {
1620 struct mem_cgroup *mem;
1621 struct page_cgroup *pc;
1622 int ret;
1623
1624 pc = lookup_page_cgroup(page);
1625 /* can happen at boot */
1626 if (unlikely(!pc))
1627 return 0;
1628 prefetchw(pc);
1629
1630 mem = memcg;
1631 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page);
1632 if (ret || !mem)
1633 return ret;
1634
1635 __mem_cgroup_commit_charge(mem, pc, ctype);
1636 return 0;
1637 }
1638
1639 int mem_cgroup_newpage_charge(struct page *page,
1640 struct mm_struct *mm, gfp_t gfp_mask)
1641 {
1642 if (mem_cgroup_disabled())
1643 return 0;
1644 if (PageCompound(page))
1645 return 0;
1646 /*
1647 * If already mapped, we don't have to account.
1648 * If page cache, page->mapping has address_space.
1649 * But page->mapping may have out-of-use anon_vma pointer,
1650 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1651 * is NULL.
1652 */
1653 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1654 return 0;
1655 if (unlikely(!mm))
1656 mm = &init_mm;
1657 return mem_cgroup_charge_common(page, mm, gfp_mask,
1658 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1659 }
1660
1661 static void
1662 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1663 enum charge_type ctype);
1664
1665 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1666 gfp_t gfp_mask)
1667 {
1668 struct mem_cgroup *mem = NULL;
1669 int ret;
1670
1671 if (mem_cgroup_disabled())
1672 return 0;
1673 if (PageCompound(page))
1674 return 0;
1675 /*
1676 * Corner case handling. This is called from add_to_page_cache()
1677 * in usual. But some FS (shmem) precharges this page before calling it
1678 * and call add_to_page_cache() with GFP_NOWAIT.
1679 *
1680 * For GFP_NOWAIT case, the page may be pre-charged before calling
1681 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1682 * charge twice. (It works but has to pay a bit larger cost.)
1683 * And when the page is SwapCache, it should take swap information
1684 * into account. This is under lock_page() now.
1685 */
1686 if (!(gfp_mask & __GFP_WAIT)) {
1687 struct page_cgroup *pc;
1688
1689
1690 pc = lookup_page_cgroup(page);
1691 if (!pc)
1692 return 0;
1693 lock_page_cgroup(pc);
1694 if (PageCgroupUsed(pc)) {
1695 unlock_page_cgroup(pc);
1696 return 0;
1697 }
1698 unlock_page_cgroup(pc);
1699 }
1700
1701 if (unlikely(!mm && !mem))
1702 mm = &init_mm;
1703
1704 if (page_is_file_cache(page))
1705 return mem_cgroup_charge_common(page, mm, gfp_mask,
1706 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1707
1708 /* shmem */
1709 if (PageSwapCache(page)) {
1710 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
1711 if (!ret)
1712 __mem_cgroup_commit_charge_swapin(page, mem,
1713 MEM_CGROUP_CHARGE_TYPE_SHMEM);
1714 } else
1715 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1716 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1717
1718 return ret;
1719 }
1720
1721 /*
1722 * While swap-in, try_charge -> commit or cancel, the page is locked.
1723 * And when try_charge() successfully returns, one refcnt to memcg without
1724 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1725 * "commit()" or removed by "cancel()"
1726 */
1727 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1728 struct page *page,
1729 gfp_t mask, struct mem_cgroup **ptr)
1730 {
1731 struct mem_cgroup *mem;
1732 int ret;
1733
1734 if (mem_cgroup_disabled())
1735 return 0;
1736
1737 if (!do_swap_account)
1738 goto charge_cur_mm;
1739 /*
1740 * A racing thread's fault, or swapoff, may have already updated
1741 * the pte, and even removed page from swap cache: return success
1742 * to go on to do_swap_page()'s pte_same() test, which should fail.
1743 */
1744 if (!PageSwapCache(page))
1745 return 0;
1746 mem = try_get_mem_cgroup_from_swapcache(page);
1747 if (!mem)
1748 goto charge_cur_mm;
1749 *ptr = mem;
1750 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, page);
1751 /* drop extra refcnt from tryget */
1752 css_put(&mem->css);
1753 return ret;
1754 charge_cur_mm:
1755 if (unlikely(!mm))
1756 mm = &init_mm;
1757 return __mem_cgroup_try_charge(mm, mask, ptr, true, page);
1758 }
1759
1760 static void
1761 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
1762 enum charge_type ctype)
1763 {
1764 struct page_cgroup *pc;
1765
1766 if (mem_cgroup_disabled())
1767 return;
1768 if (!ptr)
1769 return;
1770 cgroup_exclude_rmdir(&ptr->css);
1771 pc = lookup_page_cgroup(page);
1772 mem_cgroup_lru_del_before_commit_swapcache(page);
1773 __mem_cgroup_commit_charge(ptr, pc, ctype);
1774 mem_cgroup_lru_add_after_commit_swapcache(page);
1775 /*
1776 * Now swap is on-memory. This means this page may be
1777 * counted both as mem and swap....double count.
1778 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1779 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1780 * may call delete_from_swap_cache() before reach here.
1781 */
1782 if (do_swap_account && PageSwapCache(page)) {
1783 swp_entry_t ent = {.val = page_private(page)};
1784 unsigned short id;
1785 struct mem_cgroup *memcg;
1786
1787 id = swap_cgroup_record(ent, 0);
1788 rcu_read_lock();
1789 memcg = mem_cgroup_lookup(id);
1790 if (memcg) {
1791 /*
1792 * This recorded memcg can be obsolete one. So, avoid
1793 * calling css_tryget
1794 */
1795 if (!mem_cgroup_is_root(memcg))
1796 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1797 mem_cgroup_swap_statistics(memcg, false);
1798 mem_cgroup_put(memcg);
1799 }
1800 rcu_read_unlock();
1801 }
1802 /*
1803 * At swapin, we may charge account against cgroup which has no tasks.
1804 * So, rmdir()->pre_destroy() can be called while we do this charge.
1805 * In that case, we need to call pre_destroy() again. check it here.
1806 */
1807 cgroup_release_and_wakeup_rmdir(&ptr->css);
1808 }
1809
1810 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1811 {
1812 __mem_cgroup_commit_charge_swapin(page, ptr,
1813 MEM_CGROUP_CHARGE_TYPE_MAPPED);
1814 }
1815
1816 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1817 {
1818 if (mem_cgroup_disabled())
1819 return;
1820 if (!mem)
1821 return;
1822 if (!mem_cgroup_is_root(mem)) {
1823 res_counter_uncharge(&mem->res, PAGE_SIZE);
1824 if (do_swap_account)
1825 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1826 }
1827 css_put(&mem->css);
1828 }
1829
1830
1831 /*
1832 * uncharge if !page_mapped(page)
1833 */
1834 static struct mem_cgroup *
1835 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1836 {
1837 struct page_cgroup *pc;
1838 struct mem_cgroup *mem = NULL;
1839 struct mem_cgroup_per_zone *mz;
1840
1841 if (mem_cgroup_disabled())
1842 return NULL;
1843
1844 if (PageSwapCache(page))
1845 return NULL;
1846
1847 /*
1848 * Check if our page_cgroup is valid
1849 */
1850 pc = lookup_page_cgroup(page);
1851 if (unlikely(!pc || !PageCgroupUsed(pc)))
1852 return NULL;
1853
1854 lock_page_cgroup(pc);
1855
1856 mem = pc->mem_cgroup;
1857
1858 if (!PageCgroupUsed(pc))
1859 goto unlock_out;
1860
1861 switch (ctype) {
1862 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1863 case MEM_CGROUP_CHARGE_TYPE_DROP:
1864 if (page_mapped(page))
1865 goto unlock_out;
1866 break;
1867 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1868 if (!PageAnon(page)) { /* Shared memory */
1869 if (page->mapping && !page_is_file_cache(page))
1870 goto unlock_out;
1871 } else if (page_mapped(page)) /* Anon */
1872 goto unlock_out;
1873 break;
1874 default:
1875 break;
1876 }
1877
1878 if (!mem_cgroup_is_root(mem)) {
1879 res_counter_uncharge(&mem->res, PAGE_SIZE);
1880 if (do_swap_account &&
1881 (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1882 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1883 }
1884 if (ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1885 mem_cgroup_swap_statistics(mem, true);
1886 mem_cgroup_charge_statistics(mem, pc, false);
1887
1888 ClearPageCgroupUsed(pc);
1889 /*
1890 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1891 * freed from LRU. This is safe because uncharged page is expected not
1892 * to be reused (freed soon). Exception is SwapCache, it's handled by
1893 * special functions.
1894 */
1895
1896 mz = page_cgroup_zoneinfo(pc);
1897 unlock_page_cgroup(pc);
1898
1899 if (mem_cgroup_soft_limit_check(mem))
1900 mem_cgroup_update_tree(mem, page);
1901 /* at swapout, this memcg will be accessed to record to swap */
1902 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1903 css_put(&mem->css);
1904
1905 return mem;
1906
1907 unlock_out:
1908 unlock_page_cgroup(pc);
1909 return NULL;
1910 }
1911
1912 void mem_cgroup_uncharge_page(struct page *page)
1913 {
1914 /* early check. */
1915 if (page_mapped(page))
1916 return;
1917 if (page->mapping && !PageAnon(page))
1918 return;
1919 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1920 }
1921
1922 void mem_cgroup_uncharge_cache_page(struct page *page)
1923 {
1924 VM_BUG_ON(page_mapped(page));
1925 VM_BUG_ON(page->mapping);
1926 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1927 }
1928
1929 #ifdef CONFIG_SWAP
1930 /*
1931 * called after __delete_from_swap_cache() and drop "page" account.
1932 * memcg information is recorded to swap_cgroup of "ent"
1933 */
1934 void
1935 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
1936 {
1937 struct mem_cgroup *memcg;
1938 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
1939
1940 if (!swapout) /* this was a swap cache but the swap is unused ! */
1941 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
1942
1943 memcg = __mem_cgroup_uncharge_common(page, ctype);
1944
1945 /* record memcg information */
1946 if (do_swap_account && swapout && memcg) {
1947 swap_cgroup_record(ent, css_id(&memcg->css));
1948 mem_cgroup_get(memcg);
1949 }
1950 if (swapout && memcg)
1951 css_put(&memcg->css);
1952 }
1953 #endif
1954
1955 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1956 /*
1957 * called from swap_entry_free(). remove record in swap_cgroup and
1958 * uncharge "memsw" account.
1959 */
1960 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1961 {
1962 struct mem_cgroup *memcg;
1963 unsigned short id;
1964
1965 if (!do_swap_account)
1966 return;
1967
1968 id = swap_cgroup_record(ent, 0);
1969 rcu_read_lock();
1970 memcg = mem_cgroup_lookup(id);
1971 if (memcg) {
1972 /*
1973 * We uncharge this because swap is freed.
1974 * This memcg can be obsolete one. We avoid calling css_tryget
1975 */
1976 if (!mem_cgroup_is_root(memcg))
1977 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1978 mem_cgroup_swap_statistics(memcg, false);
1979 mem_cgroup_put(memcg);
1980 }
1981 rcu_read_unlock();
1982 }
1983 #endif
1984
1985 /*
1986 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1987 * page belongs to.
1988 */
1989 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1990 {
1991 struct page_cgroup *pc;
1992 struct mem_cgroup *mem = NULL;
1993 int ret = 0;
1994
1995 if (mem_cgroup_disabled())
1996 return 0;
1997
1998 pc = lookup_page_cgroup(page);
1999 lock_page_cgroup(pc);
2000 if (PageCgroupUsed(pc)) {
2001 mem = pc->mem_cgroup;
2002 css_get(&mem->css);
2003 }
2004 unlock_page_cgroup(pc);
2005
2006 if (mem) {
2007 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
2008 page);
2009 css_put(&mem->css);
2010 }
2011 *ptr = mem;
2012 return ret;
2013 }
2014
2015 /* remove redundant charge if migration failed*/
2016 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2017 struct page *oldpage, struct page *newpage)
2018 {
2019 struct page *target, *unused;
2020 struct page_cgroup *pc;
2021 enum charge_type ctype;
2022
2023 if (!mem)
2024 return;
2025 cgroup_exclude_rmdir(&mem->css);
2026 /* at migration success, oldpage->mapping is NULL. */
2027 if (oldpage->mapping) {
2028 target = oldpage;
2029 unused = NULL;
2030 } else {
2031 target = newpage;
2032 unused = oldpage;
2033 }
2034
2035 if (PageAnon(target))
2036 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2037 else if (page_is_file_cache(target))
2038 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2039 else
2040 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2041
2042 /* unused page is not on radix-tree now. */
2043 if (unused)
2044 __mem_cgroup_uncharge_common(unused, ctype);
2045
2046 pc = lookup_page_cgroup(target);
2047 /*
2048 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
2049 * So, double-counting is effectively avoided.
2050 */
2051 __mem_cgroup_commit_charge(mem, pc, ctype);
2052
2053 /*
2054 * Both of oldpage and newpage are still under lock_page().
2055 * Then, we don't have to care about race in radix-tree.
2056 * But we have to be careful that this page is unmapped or not.
2057 *
2058 * There is a case for !page_mapped(). At the start of
2059 * migration, oldpage was mapped. But now, it's zapped.
2060 * But we know *target* page is not freed/reused under us.
2061 * mem_cgroup_uncharge_page() does all necessary checks.
2062 */
2063 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2064 mem_cgroup_uncharge_page(target);
2065 /*
2066 * At migration, we may charge account against cgroup which has no tasks
2067 * So, rmdir()->pre_destroy() can be called while we do this charge.
2068 * In that case, we need to call pre_destroy() again. check it here.
2069 */
2070 cgroup_release_and_wakeup_rmdir(&mem->css);
2071 }
2072
2073 /*
2074 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2075 * Calling hierarchical_reclaim is not enough because we should update
2076 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2077 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2078 * not from the memcg which this page would be charged to.
2079 * try_charge_swapin does all of these works properly.
2080 */
2081 int mem_cgroup_shmem_charge_fallback(struct page *page,
2082 struct mm_struct *mm,
2083 gfp_t gfp_mask)
2084 {
2085 struct mem_cgroup *mem = NULL;
2086 int ret;
2087
2088 if (mem_cgroup_disabled())
2089 return 0;
2090
2091 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2092 if (!ret)
2093 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2094
2095 return ret;
2096 }
2097
2098 static DEFINE_MUTEX(set_limit_mutex);
2099
2100 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2101 unsigned long long val)
2102 {
2103 int retry_count;
2104 int progress;
2105 u64 memswlimit;
2106 int ret = 0;
2107 int children = mem_cgroup_count_children(memcg);
2108 u64 curusage, oldusage;
2109
2110 /*
2111 * For keeping hierarchical_reclaim simple, how long we should retry
2112 * is depends on callers. We set our retry-count to be function
2113 * of # of children which we should visit in this loop.
2114 */
2115 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2116
2117 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2118
2119 while (retry_count) {
2120 if (signal_pending(current)) {
2121 ret = -EINTR;
2122 break;
2123 }
2124 /*
2125 * Rather than hide all in some function, I do this in
2126 * open coded manner. You see what this really does.
2127 * We have to guarantee mem->res.limit < mem->memsw.limit.
2128 */
2129 mutex_lock(&set_limit_mutex);
2130 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2131 if (memswlimit < val) {
2132 ret = -EINVAL;
2133 mutex_unlock(&set_limit_mutex);
2134 break;
2135 }
2136 ret = res_counter_set_limit(&memcg->res, val);
2137 if (!ret) {
2138 if (memswlimit == val)
2139 memcg->memsw_is_minimum = true;
2140 else
2141 memcg->memsw_is_minimum = false;
2142 }
2143 mutex_unlock(&set_limit_mutex);
2144
2145 if (!ret)
2146 break;
2147
2148 progress = mem_cgroup_hierarchical_reclaim(memcg, NULL,
2149 GFP_KERNEL,
2150 MEM_CGROUP_RECLAIM_SHRINK);
2151 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2152 /* Usage is reduced ? */
2153 if (curusage >= oldusage)
2154 retry_count--;
2155 else
2156 oldusage = curusage;
2157 }
2158
2159 return ret;
2160 }
2161
2162 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2163 unsigned long long val)
2164 {
2165 int retry_count;
2166 u64 memlimit, oldusage, curusage;
2167 int children = mem_cgroup_count_children(memcg);
2168 int ret = -EBUSY;
2169
2170 /* see mem_cgroup_resize_res_limit */
2171 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
2172 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2173 while (retry_count) {
2174 if (signal_pending(current)) {
2175 ret = -EINTR;
2176 break;
2177 }
2178 /*
2179 * Rather than hide all in some function, I do this in
2180 * open coded manner. You see what this really does.
2181 * We have to guarantee mem->res.limit < mem->memsw.limit.
2182 */
2183 mutex_lock(&set_limit_mutex);
2184 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2185 if (memlimit > val) {
2186 ret = -EINVAL;
2187 mutex_unlock(&set_limit_mutex);
2188 break;
2189 }
2190 ret = res_counter_set_limit(&memcg->memsw, val);
2191 if (!ret) {
2192 if (memlimit == val)
2193 memcg->memsw_is_minimum = true;
2194 else
2195 memcg->memsw_is_minimum = false;
2196 }
2197 mutex_unlock(&set_limit_mutex);
2198
2199 if (!ret)
2200 break;
2201
2202 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
2203 MEM_CGROUP_RECLAIM_NOSWAP |
2204 MEM_CGROUP_RECLAIM_SHRINK);
2205 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
2206 /* Usage is reduced ? */
2207 if (curusage >= oldusage)
2208 retry_count--;
2209 else
2210 oldusage = curusage;
2211 }
2212 return ret;
2213 }
2214
2215 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2216 gfp_t gfp_mask, int nid,
2217 int zid)
2218 {
2219 unsigned long nr_reclaimed = 0;
2220 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2221 unsigned long reclaimed;
2222 int loop = 0;
2223 struct mem_cgroup_tree_per_zone *mctz;
2224
2225 if (order > 0)
2226 return 0;
2227
2228 mctz = soft_limit_tree_node_zone(nid, zid);
2229 /*
2230 * This loop can run a while, specially if mem_cgroup's continuously
2231 * keep exceeding their soft limit and putting the system under
2232 * pressure
2233 */
2234 do {
2235 if (next_mz)
2236 mz = next_mz;
2237 else
2238 mz = mem_cgroup_largest_soft_limit_node(mctz);
2239 if (!mz)
2240 break;
2241
2242 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
2243 gfp_mask,
2244 MEM_CGROUP_RECLAIM_SOFT);
2245 nr_reclaimed += reclaimed;
2246 spin_lock(&mctz->lock);
2247
2248 /*
2249 * If we failed to reclaim anything from this memory cgroup
2250 * it is time to move on to the next cgroup
2251 */
2252 next_mz = NULL;
2253 if (!reclaimed) {
2254 do {
2255 /*
2256 * Loop until we find yet another one.
2257 *
2258 * By the time we get the soft_limit lock
2259 * again, someone might have aded the
2260 * group back on the RB tree. Iterate to
2261 * make sure we get a different mem.
2262 * mem_cgroup_largest_soft_limit_node returns
2263 * NULL if no other cgroup is present on
2264 * the tree
2265 */
2266 next_mz =
2267 __mem_cgroup_largest_soft_limit_node(mctz);
2268 if (next_mz == mz) {
2269 css_put(&next_mz->mem->css);
2270 next_mz = NULL;
2271 } else /* next_mz == NULL or other memcg */
2272 break;
2273 } while (1);
2274 }
2275 mz->usage_in_excess =
2276 res_counter_soft_limit_excess(&mz->mem->res);
2277 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
2278 /*
2279 * One school of thought says that we should not add
2280 * back the node to the tree if reclaim returns 0.
2281 * But our reclaim could return 0, simply because due
2282 * to priority we are exposing a smaller subset of
2283 * memory to reclaim from. Consider this as a longer
2284 * term TODO.
2285 */
2286 if (mz->usage_in_excess)
2287 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz);
2288 spin_unlock(&mctz->lock);
2289 css_put(&mz->mem->css);
2290 loop++;
2291 /*
2292 * Could not reclaim anything and there are no more
2293 * mem cgroups to try or we seem to be looping without
2294 * reclaiming anything.
2295 */
2296 if (!nr_reclaimed &&
2297 (next_mz == NULL ||
2298 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2299 break;
2300 } while (!nr_reclaimed);
2301 if (next_mz)
2302 css_put(&next_mz->mem->css);
2303 return nr_reclaimed;
2304 }
2305
2306 /*
2307 * This routine traverse page_cgroup in given list and drop them all.
2308 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
2309 */
2310 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
2311 int node, int zid, enum lru_list lru)
2312 {
2313 struct zone *zone;
2314 struct mem_cgroup_per_zone *mz;
2315 struct page_cgroup *pc, *busy;
2316 unsigned long flags, loop;
2317 struct list_head *list;
2318 int ret = 0;
2319
2320 zone = &NODE_DATA(node)->node_zones[zid];
2321 mz = mem_cgroup_zoneinfo(mem, node, zid);
2322 list = &mz->lists[lru];
2323
2324 loop = MEM_CGROUP_ZSTAT(mz, lru);
2325 /* give some margin against EBUSY etc...*/
2326 loop += 256;
2327 busy = NULL;
2328 while (loop--) {
2329 ret = 0;
2330 spin_lock_irqsave(&zone->lru_lock, flags);
2331 if (list_empty(list)) {
2332 spin_unlock_irqrestore(&zone->lru_lock, flags);
2333 break;
2334 }
2335 pc = list_entry(list->prev, struct page_cgroup, lru);
2336 if (busy == pc) {
2337 list_move(&pc->lru, list);
2338 busy = 0;
2339 spin_unlock_irqrestore(&zone->lru_lock, flags);
2340 continue;
2341 }
2342 spin_unlock_irqrestore(&zone->lru_lock, flags);
2343
2344 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
2345 if (ret == -ENOMEM)
2346 break;
2347
2348 if (ret == -EBUSY || ret == -EINVAL) {
2349 /* found lock contention or "pc" is obsolete. */
2350 busy = pc;
2351 cond_resched();
2352 } else
2353 busy = NULL;
2354 }
2355
2356 if (!ret && !list_empty(list))
2357 return -EBUSY;
2358 return ret;
2359 }
2360
2361 /*
2362 * make mem_cgroup's charge to be 0 if there is no task.
2363 * This enables deleting this mem_cgroup.
2364 */
2365 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
2366 {
2367 int ret;
2368 int node, zid, shrink;
2369 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2370 struct cgroup *cgrp = mem->css.cgroup;
2371
2372 css_get(&mem->css);
2373
2374 shrink = 0;
2375 /* should free all ? */
2376 if (free_all)
2377 goto try_to_free;
2378 move_account:
2379 while (mem->res.usage > 0) {
2380 ret = -EBUSY;
2381 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
2382 goto out;
2383 ret = -EINTR;
2384 if (signal_pending(current))
2385 goto out;
2386 /* This is for making all *used* pages to be on LRU. */
2387 lru_add_drain_all();
2388 ret = 0;
2389 for_each_node_state(node, N_HIGH_MEMORY) {
2390 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
2391 enum lru_list l;
2392 for_each_lru(l) {
2393 ret = mem_cgroup_force_empty_list(mem,
2394 node, zid, l);
2395 if (ret)
2396 break;
2397 }
2398 }
2399 if (ret)
2400 break;
2401 }
2402 /* it seems parent cgroup doesn't have enough mem */
2403 if (ret == -ENOMEM)
2404 goto try_to_free;
2405 cond_resched();
2406 }
2407 ret = 0;
2408 out:
2409 css_put(&mem->css);
2410 return ret;
2411
2412 try_to_free:
2413 /* returns EBUSY if there is a task or if we come here twice. */
2414 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
2415 ret = -EBUSY;
2416 goto out;
2417 }
2418 /* we call try-to-free pages for make this cgroup empty */
2419 lru_add_drain_all();
2420 /* try to free all pages in this cgroup */
2421 shrink = 1;
2422 while (nr_retries && mem->res.usage > 0) {
2423 int progress;
2424
2425 if (signal_pending(current)) {
2426 ret = -EINTR;
2427 goto out;
2428 }
2429 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
2430 false, get_swappiness(mem));
2431 if (!progress) {
2432 nr_retries--;
2433 /* maybe some writeback is necessary */
2434 congestion_wait(BLK_RW_ASYNC, HZ/10);
2435 }
2436
2437 }
2438 lru_add_drain();
2439 /* try move_account...there may be some *locked* pages. */
2440 if (mem->res.usage)
2441 goto move_account;
2442 ret = 0;
2443 goto out;
2444 }
2445
2446 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
2447 {
2448 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
2449 }
2450
2451
2452 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
2453 {
2454 return mem_cgroup_from_cont(cont)->use_hierarchy;
2455 }
2456
2457 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
2458 u64 val)
2459 {
2460 int retval = 0;
2461 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2462 struct cgroup *parent = cont->parent;
2463 struct mem_cgroup *parent_mem = NULL;
2464
2465 if (parent)
2466 parent_mem = mem_cgroup_from_cont(parent);
2467
2468 cgroup_lock();
2469 /*
2470 * If parent's use_hiearchy is set, we can't make any modifications
2471 * in the child subtrees. If it is unset, then the change can
2472 * occur, provided the current cgroup has no children.
2473 *
2474 * For the root cgroup, parent_mem is NULL, we allow value to be
2475 * set if there are no children.
2476 */
2477 if ((!parent_mem || !parent_mem->use_hierarchy) &&
2478 (val == 1 || val == 0)) {
2479 if (list_empty(&cont->children))
2480 mem->use_hierarchy = val;
2481 else
2482 retval = -EBUSY;
2483 } else
2484 retval = -EINVAL;
2485 cgroup_unlock();
2486
2487 return retval;
2488 }
2489
2490 struct mem_cgroup_idx_data {
2491 s64 val;
2492 enum mem_cgroup_stat_index idx;
2493 };
2494
2495 static int
2496 mem_cgroup_get_idx_stat(struct mem_cgroup *mem, void *data)
2497 {
2498 struct mem_cgroup_idx_data *d = data;
2499 d->val += mem_cgroup_read_stat(&mem->stat, d->idx);
2500 return 0;
2501 }
2502
2503 static void
2504 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
2505 enum mem_cgroup_stat_index idx, s64 *val)
2506 {
2507 struct mem_cgroup_idx_data d;
2508 d.idx = idx;
2509 d.val = 0;
2510 mem_cgroup_walk_tree(mem, &d, mem_cgroup_get_idx_stat);
2511 *val = d.val;
2512 }
2513
2514 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
2515 {
2516 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2517 u64 idx_val, val;
2518 int type, name;
2519
2520 type = MEMFILE_TYPE(cft->private);
2521 name = MEMFILE_ATTR(cft->private);
2522 switch (type) {
2523 case _MEM:
2524 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2525 mem_cgroup_get_recursive_idx_stat(mem,
2526 MEM_CGROUP_STAT_CACHE, &idx_val);
2527 val = idx_val;
2528 mem_cgroup_get_recursive_idx_stat(mem,
2529 MEM_CGROUP_STAT_RSS, &idx_val);
2530 val += idx_val;
2531 val <<= PAGE_SHIFT;
2532 } else
2533 val = res_counter_read_u64(&mem->res, name);
2534 break;
2535 case _MEMSWAP:
2536 if (name == RES_USAGE && mem_cgroup_is_root(mem)) {
2537 mem_cgroup_get_recursive_idx_stat(mem,
2538 MEM_CGROUP_STAT_CACHE, &idx_val);
2539 val = idx_val;
2540 mem_cgroup_get_recursive_idx_stat(mem,
2541 MEM_CGROUP_STAT_RSS, &idx_val);
2542 val += idx_val;
2543 mem_cgroup_get_recursive_idx_stat(mem,
2544 MEM_CGROUP_STAT_SWAPOUT, &idx_val);
2545 val <<= PAGE_SHIFT;
2546 } else
2547 val = res_counter_read_u64(&mem->memsw, name);
2548 break;
2549 default:
2550 BUG();
2551 break;
2552 }
2553 return val;
2554 }
2555 /*
2556 * The user of this function is...
2557 * RES_LIMIT.
2558 */
2559 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
2560 const char *buffer)
2561 {
2562 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2563 int type, name;
2564 unsigned long long val;
2565 int ret;
2566
2567 type = MEMFILE_TYPE(cft->private);
2568 name = MEMFILE_ATTR(cft->private);
2569 switch (name) {
2570 case RES_LIMIT:
2571 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2572 ret = -EINVAL;
2573 break;
2574 }
2575 /* This function does all necessary parse...reuse it */
2576 ret = res_counter_memparse_write_strategy(buffer, &val);
2577 if (ret)
2578 break;
2579 if (type == _MEM)
2580 ret = mem_cgroup_resize_limit(memcg, val);
2581 else
2582 ret = mem_cgroup_resize_memsw_limit(memcg, val);
2583 break;
2584 case RES_SOFT_LIMIT:
2585 ret = res_counter_memparse_write_strategy(buffer, &val);
2586 if (ret)
2587 break;
2588 /*
2589 * For memsw, soft limits are hard to implement in terms
2590 * of semantics, for now, we support soft limits for
2591 * control without swap
2592 */
2593 if (type == _MEM)
2594 ret = res_counter_set_soft_limit(&memcg->res, val);
2595 else
2596 ret = -EINVAL;
2597 break;
2598 default:
2599 ret = -EINVAL; /* should be BUG() ? */
2600 break;
2601 }
2602 return ret;
2603 }
2604
2605 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2606 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2607 {
2608 struct cgroup *cgroup;
2609 unsigned long long min_limit, min_memsw_limit, tmp;
2610
2611 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2612 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2613 cgroup = memcg->css.cgroup;
2614 if (!memcg->use_hierarchy)
2615 goto out;
2616
2617 while (cgroup->parent) {
2618 cgroup = cgroup->parent;
2619 memcg = mem_cgroup_from_cont(cgroup);
2620 if (!memcg->use_hierarchy)
2621 break;
2622 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2623 min_limit = min(min_limit, tmp);
2624 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2625 min_memsw_limit = min(min_memsw_limit, tmp);
2626 }
2627 out:
2628 *mem_limit = min_limit;
2629 *memsw_limit = min_memsw_limit;
2630 return;
2631 }
2632
2633 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2634 {
2635 struct mem_cgroup *mem;
2636 int type, name;
2637
2638 mem = mem_cgroup_from_cont(cont);
2639 type = MEMFILE_TYPE(event);
2640 name = MEMFILE_ATTR(event);
2641 switch (name) {
2642 case RES_MAX_USAGE:
2643 if (type == _MEM)
2644 res_counter_reset_max(&mem->res);
2645 else
2646 res_counter_reset_max(&mem->memsw);
2647 break;
2648 case RES_FAILCNT:
2649 if (type == _MEM)
2650 res_counter_reset_failcnt(&mem->res);
2651 else
2652 res_counter_reset_failcnt(&mem->memsw);
2653 break;
2654 }
2655
2656 return 0;
2657 }
2658
2659
2660 /* For read statistics */
2661 enum {
2662 MCS_CACHE,
2663 MCS_RSS,
2664 MCS_MAPPED_FILE,
2665 MCS_PGPGIN,
2666 MCS_PGPGOUT,
2667 MCS_SWAP,
2668 MCS_INACTIVE_ANON,
2669 MCS_ACTIVE_ANON,
2670 MCS_INACTIVE_FILE,
2671 MCS_ACTIVE_FILE,
2672 MCS_UNEVICTABLE,
2673 NR_MCS_STAT,
2674 };
2675
2676 struct mcs_total_stat {
2677 s64 stat[NR_MCS_STAT];
2678 };
2679
2680 struct {
2681 char *local_name;
2682 char *total_name;
2683 } memcg_stat_strings[NR_MCS_STAT] = {
2684 {"cache", "total_cache"},
2685 {"rss", "total_rss"},
2686 {"mapped_file", "total_mapped_file"},
2687 {"pgpgin", "total_pgpgin"},
2688 {"pgpgout", "total_pgpgout"},
2689 {"swap", "total_swap"},
2690 {"inactive_anon", "total_inactive_anon"},
2691 {"active_anon", "total_active_anon"},
2692 {"inactive_file", "total_inactive_file"},
2693 {"active_file", "total_active_file"},
2694 {"unevictable", "total_unevictable"}
2695 };
2696
2697
2698 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2699 {
2700 struct mcs_total_stat *s = data;
2701 s64 val;
2702
2703 /* per cpu stat */
2704 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2705 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2706 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2707 s->stat[MCS_RSS] += val * PAGE_SIZE;
2708 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_MAPPED_FILE);
2709 s->stat[MCS_MAPPED_FILE] += val * PAGE_SIZE;
2710 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2711 s->stat[MCS_PGPGIN] += val;
2712 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2713 s->stat[MCS_PGPGOUT] += val;
2714 if (do_swap_account) {
2715 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_SWAPOUT);
2716 s->stat[MCS_SWAP] += val * PAGE_SIZE;
2717 }
2718
2719 /* per zone stat */
2720 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2721 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2722 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2723 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2724 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2725 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2726 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2727 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2728 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2729 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2730 return 0;
2731 }
2732
2733 static void
2734 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2735 {
2736 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2737 }
2738
2739 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2740 struct cgroup_map_cb *cb)
2741 {
2742 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2743 struct mcs_total_stat mystat;
2744 int i;
2745
2746 memset(&mystat, 0, sizeof(mystat));
2747 mem_cgroup_get_local_stat(mem_cont, &mystat);
2748
2749 for (i = 0; i < NR_MCS_STAT; i++) {
2750 if (i == MCS_SWAP && !do_swap_account)
2751 continue;
2752 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2753 }
2754
2755 /* Hierarchical information */
2756 {
2757 unsigned long long limit, memsw_limit;
2758 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2759 cb->fill(cb, "hierarchical_memory_limit", limit);
2760 if (do_swap_account)
2761 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2762 }
2763
2764 memset(&mystat, 0, sizeof(mystat));
2765 mem_cgroup_get_total_stat(mem_cont, &mystat);
2766 for (i = 0; i < NR_MCS_STAT; i++) {
2767 if (i == MCS_SWAP && !do_swap_account)
2768 continue;
2769 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2770 }
2771
2772 #ifdef CONFIG_DEBUG_VM
2773 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2774
2775 {
2776 int nid, zid;
2777 struct mem_cgroup_per_zone *mz;
2778 unsigned long recent_rotated[2] = {0, 0};
2779 unsigned long recent_scanned[2] = {0, 0};
2780
2781 for_each_online_node(nid)
2782 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2783 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2784
2785 recent_rotated[0] +=
2786 mz->reclaim_stat.recent_rotated[0];
2787 recent_rotated[1] +=
2788 mz->reclaim_stat.recent_rotated[1];
2789 recent_scanned[0] +=
2790 mz->reclaim_stat.recent_scanned[0];
2791 recent_scanned[1] +=
2792 mz->reclaim_stat.recent_scanned[1];
2793 }
2794 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2795 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2796 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2797 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2798 }
2799 #endif
2800
2801 return 0;
2802 }
2803
2804 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2805 {
2806 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2807
2808 return get_swappiness(memcg);
2809 }
2810
2811 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2812 u64 val)
2813 {
2814 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2815 struct mem_cgroup *parent;
2816
2817 if (val > 100)
2818 return -EINVAL;
2819
2820 if (cgrp->parent == NULL)
2821 return -EINVAL;
2822
2823 parent = mem_cgroup_from_cont(cgrp->parent);
2824
2825 cgroup_lock();
2826
2827 /* If under hierarchy, only empty-root can set this value */
2828 if ((parent->use_hierarchy) ||
2829 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2830 cgroup_unlock();
2831 return -EINVAL;
2832 }
2833
2834 spin_lock(&memcg->reclaim_param_lock);
2835 memcg->swappiness = val;
2836 spin_unlock(&memcg->reclaim_param_lock);
2837
2838 cgroup_unlock();
2839
2840 return 0;
2841 }
2842
2843
2844 static struct cftype mem_cgroup_files[] = {
2845 {
2846 .name = "usage_in_bytes",
2847 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2848 .read_u64 = mem_cgroup_read,
2849 },
2850 {
2851 .name = "max_usage_in_bytes",
2852 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2853 .trigger = mem_cgroup_reset,
2854 .read_u64 = mem_cgroup_read,
2855 },
2856 {
2857 .name = "limit_in_bytes",
2858 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2859 .write_string = mem_cgroup_write,
2860 .read_u64 = mem_cgroup_read,
2861 },
2862 {
2863 .name = "soft_limit_in_bytes",
2864 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
2865 .write_string = mem_cgroup_write,
2866 .read_u64 = mem_cgroup_read,
2867 },
2868 {
2869 .name = "failcnt",
2870 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2871 .trigger = mem_cgroup_reset,
2872 .read_u64 = mem_cgroup_read,
2873 },
2874 {
2875 .name = "stat",
2876 .read_map = mem_control_stat_show,
2877 },
2878 {
2879 .name = "force_empty",
2880 .trigger = mem_cgroup_force_empty_write,
2881 },
2882 {
2883 .name = "use_hierarchy",
2884 .write_u64 = mem_cgroup_hierarchy_write,
2885 .read_u64 = mem_cgroup_hierarchy_read,
2886 },
2887 {
2888 .name = "swappiness",
2889 .read_u64 = mem_cgroup_swappiness_read,
2890 .write_u64 = mem_cgroup_swappiness_write,
2891 },
2892 };
2893
2894 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2895 static struct cftype memsw_cgroup_files[] = {
2896 {
2897 .name = "memsw.usage_in_bytes",
2898 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2899 .read_u64 = mem_cgroup_read,
2900 },
2901 {
2902 .name = "memsw.max_usage_in_bytes",
2903 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2904 .trigger = mem_cgroup_reset,
2905 .read_u64 = mem_cgroup_read,
2906 },
2907 {
2908 .name = "memsw.limit_in_bytes",
2909 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2910 .write_string = mem_cgroup_write,
2911 .read_u64 = mem_cgroup_read,
2912 },
2913 {
2914 .name = "memsw.failcnt",
2915 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2916 .trigger = mem_cgroup_reset,
2917 .read_u64 = mem_cgroup_read,
2918 },
2919 };
2920
2921 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2922 {
2923 if (!do_swap_account)
2924 return 0;
2925 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2926 ARRAY_SIZE(memsw_cgroup_files));
2927 };
2928 #else
2929 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2930 {
2931 return 0;
2932 }
2933 #endif
2934
2935 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2936 {
2937 struct mem_cgroup_per_node *pn;
2938 struct mem_cgroup_per_zone *mz;
2939 enum lru_list l;
2940 int zone, tmp = node;
2941 /*
2942 * This routine is called against possible nodes.
2943 * But it's BUG to call kmalloc() against offline node.
2944 *
2945 * TODO: this routine can waste much memory for nodes which will
2946 * never be onlined. It's better to use memory hotplug callback
2947 * function.
2948 */
2949 if (!node_state(node, N_NORMAL_MEMORY))
2950 tmp = -1;
2951 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2952 if (!pn)
2953 return 1;
2954
2955 mem->info.nodeinfo[node] = pn;
2956 memset(pn, 0, sizeof(*pn));
2957
2958 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2959 mz = &pn->zoneinfo[zone];
2960 for_each_lru(l)
2961 INIT_LIST_HEAD(&mz->lists[l]);
2962 mz->usage_in_excess = 0;
2963 mz->on_tree = false;
2964 mz->mem = mem;
2965 }
2966 return 0;
2967 }
2968
2969 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2970 {
2971 kfree(mem->info.nodeinfo[node]);
2972 }
2973
2974 static int mem_cgroup_size(void)
2975 {
2976 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2977 return sizeof(struct mem_cgroup) + cpustat_size;
2978 }
2979
2980 static struct mem_cgroup *mem_cgroup_alloc(void)
2981 {
2982 struct mem_cgroup *mem;
2983 int size = mem_cgroup_size();
2984
2985 if (size < PAGE_SIZE)
2986 mem = kmalloc(size, GFP_KERNEL);
2987 else
2988 mem = vmalloc(size);
2989
2990 if (mem)
2991 memset(mem, 0, size);
2992 return mem;
2993 }
2994
2995 /*
2996 * At destroying mem_cgroup, references from swap_cgroup can remain.
2997 * (scanning all at force_empty is too costly...)
2998 *
2999 * Instead of clearing all references at force_empty, we remember
3000 * the number of reference from swap_cgroup and free mem_cgroup when
3001 * it goes down to 0.
3002 *
3003 * Removal of cgroup itself succeeds regardless of refs from swap.
3004 */
3005
3006 static void __mem_cgroup_free(struct mem_cgroup *mem)
3007 {
3008 int node;
3009
3010 mem_cgroup_remove_from_trees(mem);
3011 free_css_id(&mem_cgroup_subsys, &mem->css);
3012
3013 for_each_node_state(node, N_POSSIBLE)
3014 free_mem_cgroup_per_zone_info(mem, node);
3015
3016 if (mem_cgroup_size() < PAGE_SIZE)
3017 kfree(mem);
3018 else
3019 vfree(mem);
3020 }
3021
3022 static void mem_cgroup_get(struct mem_cgroup *mem)
3023 {
3024 atomic_inc(&mem->refcnt);
3025 }
3026
3027 static void mem_cgroup_put(struct mem_cgroup *mem)
3028 {
3029 if (atomic_dec_and_test(&mem->refcnt)) {
3030 struct mem_cgroup *parent = parent_mem_cgroup(mem);
3031 __mem_cgroup_free(mem);
3032 if (parent)
3033 mem_cgroup_put(parent);
3034 }
3035 }
3036
3037 /*
3038 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
3039 */
3040 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
3041 {
3042 if (!mem->res.parent)
3043 return NULL;
3044 return mem_cgroup_from_res_counter(mem->res.parent, res);
3045 }
3046
3047 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3048 static void __init enable_swap_cgroup(void)
3049 {
3050 if (!mem_cgroup_disabled() && really_do_swap_account)
3051 do_swap_account = 1;
3052 }
3053 #else
3054 static void __init enable_swap_cgroup(void)
3055 {
3056 }
3057 #endif
3058
3059 static int mem_cgroup_soft_limit_tree_init(void)
3060 {
3061 struct mem_cgroup_tree_per_node *rtpn;
3062 struct mem_cgroup_tree_per_zone *rtpz;
3063 int tmp, node, zone;
3064
3065 for_each_node_state(node, N_POSSIBLE) {
3066 tmp = node;
3067 if (!node_state(node, N_NORMAL_MEMORY))
3068 tmp = -1;
3069 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
3070 if (!rtpn)
3071 return 1;
3072
3073 soft_limit_tree.rb_tree_per_node[node] = rtpn;
3074
3075 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
3076 rtpz = &rtpn->rb_tree_per_zone[zone];
3077 rtpz->rb_root = RB_ROOT;
3078 spin_lock_init(&rtpz->lock);
3079 }
3080 }
3081 return 0;
3082 }
3083
3084 static struct cgroup_subsys_state * __ref
3085 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
3086 {
3087 struct mem_cgroup *mem, *parent;
3088 long error = -ENOMEM;
3089 int node;
3090
3091 mem = mem_cgroup_alloc();
3092 if (!mem)
3093 return ERR_PTR(error);
3094
3095 for_each_node_state(node, N_POSSIBLE)
3096 if (alloc_mem_cgroup_per_zone_info(mem, node))
3097 goto free_out;
3098
3099 /* root ? */
3100 if (cont->parent == NULL) {
3101 enable_swap_cgroup();
3102 parent = NULL;
3103 root_mem_cgroup = mem;
3104 if (mem_cgroup_soft_limit_tree_init())
3105 goto free_out;
3106
3107 } else {
3108 parent = mem_cgroup_from_cont(cont->parent);
3109 mem->use_hierarchy = parent->use_hierarchy;
3110 }
3111
3112 if (parent && parent->use_hierarchy) {
3113 res_counter_init(&mem->res, &parent->res);
3114 res_counter_init(&mem->memsw, &parent->memsw);
3115 /*
3116 * We increment refcnt of the parent to ensure that we can
3117 * safely access it on res_counter_charge/uncharge.
3118 * This refcnt will be decremented when freeing this
3119 * mem_cgroup(see mem_cgroup_put).
3120 */
3121 mem_cgroup_get(parent);
3122 } else {
3123 res_counter_init(&mem->res, NULL);
3124 res_counter_init(&mem->memsw, NULL);
3125 }
3126 mem->last_scanned_child = 0;
3127 spin_lock_init(&mem->reclaim_param_lock);
3128
3129 if (parent)
3130 mem->swappiness = get_swappiness(parent);
3131 atomic_set(&mem->refcnt, 1);
3132 return &mem->css;
3133 free_out:
3134 __mem_cgroup_free(mem);
3135 root_mem_cgroup = NULL;
3136 return ERR_PTR(error);
3137 }
3138
3139 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
3140 struct cgroup *cont)
3141 {
3142 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3143
3144 return mem_cgroup_force_empty(mem, false);
3145 }
3146
3147 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
3148 struct cgroup *cont)
3149 {
3150 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3151
3152 mem_cgroup_put(mem);
3153 }
3154
3155 static int mem_cgroup_populate(struct cgroup_subsys *ss,
3156 struct cgroup *cont)
3157 {
3158 int ret;
3159
3160 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
3161 ARRAY_SIZE(mem_cgroup_files));
3162
3163 if (!ret)
3164 ret = register_memsw_files(cont, ss);
3165 return ret;
3166 }
3167
3168 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
3169 struct cgroup *cont,
3170 struct cgroup *old_cont,
3171 struct task_struct *p,
3172 bool threadgroup)
3173 {
3174 mutex_lock(&memcg_tasklist);
3175 /*
3176 * FIXME: It's better to move charges of this process from old
3177 * memcg to new memcg. But it's just on TODO-List now.
3178 */
3179 mutex_unlock(&memcg_tasklist);
3180 }
3181
3182 struct cgroup_subsys mem_cgroup_subsys = {
3183 .name = "memory",
3184 .subsys_id = mem_cgroup_subsys_id,
3185 .create = mem_cgroup_create,
3186 .pre_destroy = mem_cgroup_pre_destroy,
3187 .destroy = mem_cgroup_destroy,
3188 .populate = mem_cgroup_populate,
3189 .attach = mem_cgroup_move_task,
3190 .early_init = 0,
3191 .use_id = 1,
3192 };
3193
3194 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3195
3196 static int __init disable_swap_account(char *s)
3197 {
3198 really_do_swap_account = 0;
3199 return 1;
3200 }
3201 __setup("noswapaccount", disable_swap_account);
3202 #endif
This page took 0.091153 seconds and 6 git commands to generate.