Merge branch 'for-3.16' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/libata
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list, but per-memcg;
361 * protected by memcg_slab_mutex */
362 struct list_head memcg_slab_caches;
363 /* Index in the kmem_cache->memcg_params->memcg_caches array */
364 int kmemcg_id;
365 #endif
366
367 int last_scanned_node;
368 #if MAX_NUMNODES > 1
369 nodemask_t scan_nodes;
370 atomic_t numainfo_events;
371 atomic_t numainfo_updating;
372 #endif
373
374 /* List of events which userspace want to receive */
375 struct list_head event_list;
376 spinlock_t event_list_lock;
377
378 struct mem_cgroup_per_node *nodeinfo[0];
379 /* WARNING: nodeinfo must be the last member here */
380 };
381
382 /* internal only representation about the status of kmem accounting. */
383 enum {
384 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
385 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
386 };
387
388 #ifdef CONFIG_MEMCG_KMEM
389 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
390 {
391 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
392 }
393
394 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
395 {
396 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
397 }
398
399 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
400 {
401 /*
402 * Our caller must use css_get() first, because memcg_uncharge_kmem()
403 * will call css_put() if it sees the memcg is dead.
404 */
405 smp_wmb();
406 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
407 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
408 }
409
410 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
411 {
412 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
413 &memcg->kmem_account_flags);
414 }
415 #endif
416
417 /* Stuffs for move charges at task migration. */
418 /*
419 * Types of charges to be moved. "move_charge_at_immitgrate" and
420 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
421 */
422 enum move_type {
423 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
424 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
425 NR_MOVE_TYPE,
426 };
427
428 /* "mc" and its members are protected by cgroup_mutex */
429 static struct move_charge_struct {
430 spinlock_t lock; /* for from, to */
431 struct mem_cgroup *from;
432 struct mem_cgroup *to;
433 unsigned long immigrate_flags;
434 unsigned long precharge;
435 unsigned long moved_charge;
436 unsigned long moved_swap;
437 struct task_struct *moving_task; /* a task moving charges */
438 wait_queue_head_t waitq; /* a waitq for other context */
439 } mc = {
440 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
441 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
442 };
443
444 static bool move_anon(void)
445 {
446 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
447 }
448
449 static bool move_file(void)
450 {
451 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
452 }
453
454 /*
455 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
456 * limit reclaim to prevent infinite loops, if they ever occur.
457 */
458 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
459 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
460
461 enum charge_type {
462 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
463 MEM_CGROUP_CHARGE_TYPE_ANON,
464 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
465 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
466 NR_CHARGE_TYPE,
467 };
468
469 /* for encoding cft->private value on file */
470 enum res_type {
471 _MEM,
472 _MEMSWAP,
473 _OOM_TYPE,
474 _KMEM,
475 };
476
477 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
478 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
479 #define MEMFILE_ATTR(val) ((val) & 0xffff)
480 /* Used for OOM nofiier */
481 #define OOM_CONTROL (0)
482
483 /*
484 * Reclaim flags for mem_cgroup_hierarchical_reclaim
485 */
486 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
487 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
488 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
489 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
490
491 /*
492 * The memcg_create_mutex will be held whenever a new cgroup is created.
493 * As a consequence, any change that needs to protect against new child cgroups
494 * appearing has to hold it as well.
495 */
496 static DEFINE_MUTEX(memcg_create_mutex);
497
498 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
499 {
500 return s ? container_of(s, struct mem_cgroup, css) : NULL;
501 }
502
503 /* Some nice accessors for the vmpressure. */
504 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
505 {
506 if (!memcg)
507 memcg = root_mem_cgroup;
508 return &memcg->vmpressure;
509 }
510
511 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
512 {
513 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
514 }
515
516 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
517 {
518 return (memcg == root_mem_cgroup);
519 }
520
521 /*
522 * We restrict the id in the range of [1, 65535], so it can fit into
523 * an unsigned short.
524 */
525 #define MEM_CGROUP_ID_MAX USHRT_MAX
526
527 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
528 {
529 /*
530 * The ID of the root cgroup is 0, but memcg treat 0 as an
531 * invalid ID, so we return (cgroup_id + 1).
532 */
533 return memcg->css.cgroup->id + 1;
534 }
535
536 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
537 {
538 struct cgroup_subsys_state *css;
539
540 css = css_from_id(id - 1, &memory_cgrp_subsys);
541 return mem_cgroup_from_css(css);
542 }
543
544 /* Writing them here to avoid exposing memcg's inner layout */
545 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
546
547 void sock_update_memcg(struct sock *sk)
548 {
549 if (mem_cgroup_sockets_enabled) {
550 struct mem_cgroup *memcg;
551 struct cg_proto *cg_proto;
552
553 BUG_ON(!sk->sk_prot->proto_cgroup);
554
555 /* Socket cloning can throw us here with sk_cgrp already
556 * filled. It won't however, necessarily happen from
557 * process context. So the test for root memcg given
558 * the current task's memcg won't help us in this case.
559 *
560 * Respecting the original socket's memcg is a better
561 * decision in this case.
562 */
563 if (sk->sk_cgrp) {
564 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
565 css_get(&sk->sk_cgrp->memcg->css);
566 return;
567 }
568
569 rcu_read_lock();
570 memcg = mem_cgroup_from_task(current);
571 cg_proto = sk->sk_prot->proto_cgroup(memcg);
572 if (!mem_cgroup_is_root(memcg) &&
573 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
574 sk->sk_cgrp = cg_proto;
575 }
576 rcu_read_unlock();
577 }
578 }
579 EXPORT_SYMBOL(sock_update_memcg);
580
581 void sock_release_memcg(struct sock *sk)
582 {
583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
587 css_put(&sk->sk_cgrp->memcg->css);
588 }
589 }
590
591 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592 {
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
595
596 return &memcg->tcp_mem;
597 }
598 EXPORT_SYMBOL(tcp_proto_cgroup);
599
600 static void disarm_sock_keys(struct mem_cgroup *memcg)
601 {
602 if (!memcg_proto_activated(&memcg->tcp_mem))
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
605 }
606 #else
607 static void disarm_sock_keys(struct mem_cgroup *memcg)
608 {
609 }
610 #endif
611
612 #ifdef CONFIG_MEMCG_KMEM
613 /*
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
615 * The main reason for not using cgroup id for this:
616 * this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
620 *
621 * The current size of the caches array is stored in
622 * memcg_limited_groups_array_size. It will double each time we have to
623 * increase it.
624 */
625 static DEFINE_IDA(kmem_limited_groups);
626 int memcg_limited_groups_array_size;
627
628 /*
629 * MIN_SIZE is different than 1, because we would like to avoid going through
630 * the alloc/free process all the time. In a small machine, 4 kmem-limited
631 * cgroups is a reasonable guess. In the future, it could be a parameter or
632 * tunable, but that is strictly not necessary.
633 *
634 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
635 * this constant directly from cgroup, but it is understandable that this is
636 * better kept as an internal representation in cgroup.c. In any case, the
637 * cgrp_id space is not getting any smaller, and we don't have to necessarily
638 * increase ours as well if it increases.
639 */
640 #define MEMCG_CACHES_MIN_SIZE 4
641 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
642
643 /*
644 * A lot of the calls to the cache allocation functions are expected to be
645 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
646 * conditional to this static branch, we'll have to allow modules that does
647 * kmem_cache_alloc and the such to see this symbol as well
648 */
649 struct static_key memcg_kmem_enabled_key;
650 EXPORT_SYMBOL(memcg_kmem_enabled_key);
651
652 static void disarm_kmem_keys(struct mem_cgroup *memcg)
653 {
654 if (memcg_kmem_is_active(memcg)) {
655 static_key_slow_dec(&memcg_kmem_enabled_key);
656 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
657 }
658 /*
659 * This check can't live in kmem destruction function,
660 * since the charges will outlive the cgroup
661 */
662 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
663 }
664 #else
665 static void disarm_kmem_keys(struct mem_cgroup *memcg)
666 {
667 }
668 #endif /* CONFIG_MEMCG_KMEM */
669
670 static void disarm_static_keys(struct mem_cgroup *memcg)
671 {
672 disarm_sock_keys(memcg);
673 disarm_kmem_keys(memcg);
674 }
675
676 static void drain_all_stock_async(struct mem_cgroup *memcg);
677
678 static struct mem_cgroup_per_zone *
679 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
680 {
681 int nid = zone_to_nid(zone);
682 int zid = zone_idx(zone);
683
684 return &memcg->nodeinfo[nid]->zoneinfo[zid];
685 }
686
687 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
688 {
689 return &memcg->css;
690 }
691
692 static struct mem_cgroup_per_zone *
693 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
694 {
695 int nid = page_to_nid(page);
696 int zid = page_zonenum(page);
697
698 return &memcg->nodeinfo[nid]->zoneinfo[zid];
699 }
700
701 static struct mem_cgroup_tree_per_zone *
702 soft_limit_tree_node_zone(int nid, int zid)
703 {
704 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
705 }
706
707 static struct mem_cgroup_tree_per_zone *
708 soft_limit_tree_from_page(struct page *page)
709 {
710 int nid = page_to_nid(page);
711 int zid = page_zonenum(page);
712
713 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
714 }
715
716 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz,
718 unsigned long long new_usage_in_excess)
719 {
720 struct rb_node **p = &mctz->rb_root.rb_node;
721 struct rb_node *parent = NULL;
722 struct mem_cgroup_per_zone *mz_node;
723
724 if (mz->on_tree)
725 return;
726
727 mz->usage_in_excess = new_usage_in_excess;
728 if (!mz->usage_in_excess)
729 return;
730 while (*p) {
731 parent = *p;
732 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
733 tree_node);
734 if (mz->usage_in_excess < mz_node->usage_in_excess)
735 p = &(*p)->rb_left;
736 /*
737 * We can't avoid mem cgroups that are over their soft
738 * limit by the same amount
739 */
740 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
741 p = &(*p)->rb_right;
742 }
743 rb_link_node(&mz->tree_node, parent, p);
744 rb_insert_color(&mz->tree_node, &mctz->rb_root);
745 mz->on_tree = true;
746 }
747
748 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
749 struct mem_cgroup_tree_per_zone *mctz)
750 {
751 if (!mz->on_tree)
752 return;
753 rb_erase(&mz->tree_node, &mctz->rb_root);
754 mz->on_tree = false;
755 }
756
757 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
758 struct mem_cgroup_tree_per_zone *mctz)
759 {
760 spin_lock(&mctz->lock);
761 __mem_cgroup_remove_exceeded(mz, mctz);
762 spin_unlock(&mctz->lock);
763 }
764
765
766 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
767 {
768 unsigned long long excess;
769 struct mem_cgroup_per_zone *mz;
770 struct mem_cgroup_tree_per_zone *mctz;
771
772 mctz = soft_limit_tree_from_page(page);
773 /*
774 * Necessary to update all ancestors when hierarchy is used.
775 * because their event counter is not touched.
776 */
777 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
778 mz = mem_cgroup_page_zoneinfo(memcg, page);
779 excess = res_counter_soft_limit_excess(&memcg->res);
780 /*
781 * We have to update the tree if mz is on RB-tree or
782 * mem is over its softlimit.
783 */
784 if (excess || mz->on_tree) {
785 spin_lock(&mctz->lock);
786 /* if on-tree, remove it */
787 if (mz->on_tree)
788 __mem_cgroup_remove_exceeded(mz, mctz);
789 /*
790 * Insert again. mz->usage_in_excess will be updated.
791 * If excess is 0, no tree ops.
792 */
793 __mem_cgroup_insert_exceeded(mz, mctz, excess);
794 spin_unlock(&mctz->lock);
795 }
796 }
797 }
798
799 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
800 {
801 struct mem_cgroup_tree_per_zone *mctz;
802 struct mem_cgroup_per_zone *mz;
803 int nid, zid;
804
805 for_each_node(nid) {
806 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
807 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
808 mctz = soft_limit_tree_node_zone(nid, zid);
809 mem_cgroup_remove_exceeded(mz, mctz);
810 }
811 }
812 }
813
814 static struct mem_cgroup_per_zone *
815 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816 {
817 struct rb_node *rightmost = NULL;
818 struct mem_cgroup_per_zone *mz;
819
820 retry:
821 mz = NULL;
822 rightmost = rb_last(&mctz->rb_root);
823 if (!rightmost)
824 goto done; /* Nothing to reclaim from */
825
826 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
827 /*
828 * Remove the node now but someone else can add it back,
829 * we will to add it back at the end of reclaim to its correct
830 * position in the tree.
831 */
832 __mem_cgroup_remove_exceeded(mz, mctz);
833 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
834 !css_tryget(&mz->memcg->css))
835 goto retry;
836 done:
837 return mz;
838 }
839
840 static struct mem_cgroup_per_zone *
841 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
842 {
843 struct mem_cgroup_per_zone *mz;
844
845 spin_lock(&mctz->lock);
846 mz = __mem_cgroup_largest_soft_limit_node(mctz);
847 spin_unlock(&mctz->lock);
848 return mz;
849 }
850
851 /*
852 * Implementation Note: reading percpu statistics for memcg.
853 *
854 * Both of vmstat[] and percpu_counter has threshold and do periodic
855 * synchronization to implement "quick" read. There are trade-off between
856 * reading cost and precision of value. Then, we may have a chance to implement
857 * a periodic synchronizion of counter in memcg's counter.
858 *
859 * But this _read() function is used for user interface now. The user accounts
860 * memory usage by memory cgroup and he _always_ requires exact value because
861 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
862 * have to visit all online cpus and make sum. So, for now, unnecessary
863 * synchronization is not implemented. (just implemented for cpu hotplug)
864 *
865 * If there are kernel internal actions which can make use of some not-exact
866 * value, and reading all cpu value can be performance bottleneck in some
867 * common workload, threashold and synchonization as vmstat[] should be
868 * implemented.
869 */
870 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
871 enum mem_cgroup_stat_index idx)
872 {
873 long val = 0;
874 int cpu;
875
876 get_online_cpus();
877 for_each_online_cpu(cpu)
878 val += per_cpu(memcg->stat->count[idx], cpu);
879 #ifdef CONFIG_HOTPLUG_CPU
880 spin_lock(&memcg->pcp_counter_lock);
881 val += memcg->nocpu_base.count[idx];
882 spin_unlock(&memcg->pcp_counter_lock);
883 #endif
884 put_online_cpus();
885 return val;
886 }
887
888 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
889 bool charge)
890 {
891 int val = (charge) ? 1 : -1;
892 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
893 }
894
895 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
896 enum mem_cgroup_events_index idx)
897 {
898 unsigned long val = 0;
899 int cpu;
900
901 get_online_cpus();
902 for_each_online_cpu(cpu)
903 val += per_cpu(memcg->stat->events[idx], cpu);
904 #ifdef CONFIG_HOTPLUG_CPU
905 spin_lock(&memcg->pcp_counter_lock);
906 val += memcg->nocpu_base.events[idx];
907 spin_unlock(&memcg->pcp_counter_lock);
908 #endif
909 put_online_cpus();
910 return val;
911 }
912
913 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
914 struct page *page,
915 bool anon, int nr_pages)
916 {
917 /*
918 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
919 * counted as CACHE even if it's on ANON LRU.
920 */
921 if (anon)
922 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
923 nr_pages);
924 else
925 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
926 nr_pages);
927
928 if (PageTransHuge(page))
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
930 nr_pages);
931
932 /* pagein of a big page is an event. So, ignore page size */
933 if (nr_pages > 0)
934 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
935 else {
936 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
937 nr_pages = -nr_pages; /* for event */
938 }
939
940 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
941 }
942
943 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
944 {
945 struct mem_cgroup_per_zone *mz;
946
947 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
948 return mz->lru_size[lru];
949 }
950
951 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
952 int nid,
953 unsigned int lru_mask)
954 {
955 unsigned long nr = 0;
956 int zid;
957
958 VM_BUG_ON((unsigned)nid >= nr_node_ids);
959
960 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
961 struct mem_cgroup_per_zone *mz;
962 enum lru_list lru;
963
964 for_each_lru(lru) {
965 if (!(BIT(lru) & lru_mask))
966 continue;
967 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
968 nr += mz->lru_size[lru];
969 }
970 }
971 return nr;
972 }
973
974 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
975 unsigned int lru_mask)
976 {
977 unsigned long nr = 0;
978 int nid;
979
980 for_each_node_state(nid, N_MEMORY)
981 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
982 return nr;
983 }
984
985 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
986 enum mem_cgroup_events_target target)
987 {
988 unsigned long val, next;
989
990 val = __this_cpu_read(memcg->stat->nr_page_events);
991 next = __this_cpu_read(memcg->stat->targets[target]);
992 /* from time_after() in jiffies.h */
993 if ((long)next - (long)val < 0) {
994 switch (target) {
995 case MEM_CGROUP_TARGET_THRESH:
996 next = val + THRESHOLDS_EVENTS_TARGET;
997 break;
998 case MEM_CGROUP_TARGET_SOFTLIMIT:
999 next = val + SOFTLIMIT_EVENTS_TARGET;
1000 break;
1001 case MEM_CGROUP_TARGET_NUMAINFO:
1002 next = val + NUMAINFO_EVENTS_TARGET;
1003 break;
1004 default:
1005 break;
1006 }
1007 __this_cpu_write(memcg->stat->targets[target], next);
1008 return true;
1009 }
1010 return false;
1011 }
1012
1013 /*
1014 * Check events in order.
1015 *
1016 */
1017 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1018 {
1019 preempt_disable();
1020 /* threshold event is triggered in finer grain than soft limit */
1021 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1022 MEM_CGROUP_TARGET_THRESH))) {
1023 bool do_softlimit;
1024 bool do_numainfo __maybe_unused;
1025
1026 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1027 MEM_CGROUP_TARGET_SOFTLIMIT);
1028 #if MAX_NUMNODES > 1
1029 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1030 MEM_CGROUP_TARGET_NUMAINFO);
1031 #endif
1032 preempt_enable();
1033
1034 mem_cgroup_threshold(memcg);
1035 if (unlikely(do_softlimit))
1036 mem_cgroup_update_tree(memcg, page);
1037 #if MAX_NUMNODES > 1
1038 if (unlikely(do_numainfo))
1039 atomic_inc(&memcg->numainfo_events);
1040 #endif
1041 } else
1042 preempt_enable();
1043 }
1044
1045 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1046 {
1047 /*
1048 * mm_update_next_owner() may clear mm->owner to NULL
1049 * if it races with swapoff, page migration, etc.
1050 * So this can be called with p == NULL.
1051 */
1052 if (unlikely(!p))
1053 return NULL;
1054
1055 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1056 }
1057
1058 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1059 {
1060 struct mem_cgroup *memcg = NULL;
1061
1062 rcu_read_lock();
1063 do {
1064 /*
1065 * Page cache insertions can happen withou an
1066 * actual mm context, e.g. during disk probing
1067 * on boot, loopback IO, acct() writes etc.
1068 */
1069 if (unlikely(!mm))
1070 memcg = root_mem_cgroup;
1071 else {
1072 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1073 if (unlikely(!memcg))
1074 memcg = root_mem_cgroup;
1075 }
1076 } while (!css_tryget(&memcg->css));
1077 rcu_read_unlock();
1078 return memcg;
1079 }
1080
1081 /*
1082 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1083 * ref. count) or NULL if the whole root's subtree has been visited.
1084 *
1085 * helper function to be used by mem_cgroup_iter
1086 */
1087 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1088 struct mem_cgroup *last_visited)
1089 {
1090 struct cgroup_subsys_state *prev_css, *next_css;
1091
1092 prev_css = last_visited ? &last_visited->css : NULL;
1093 skip_node:
1094 next_css = css_next_descendant_pre(prev_css, &root->css);
1095
1096 /*
1097 * Even if we found a group we have to make sure it is
1098 * alive. css && !memcg means that the groups should be
1099 * skipped and we should continue the tree walk.
1100 * last_visited css is safe to use because it is
1101 * protected by css_get and the tree walk is rcu safe.
1102 *
1103 * We do not take a reference on the root of the tree walk
1104 * because we might race with the root removal when it would
1105 * be the only node in the iterated hierarchy and mem_cgroup_iter
1106 * would end up in an endless loop because it expects that at
1107 * least one valid node will be returned. Root cannot disappear
1108 * because caller of the iterator should hold it already so
1109 * skipping css reference should be safe.
1110 */
1111 if (next_css) {
1112 if ((next_css == &root->css) ||
1113 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1114 return mem_cgroup_from_css(next_css);
1115
1116 prev_css = next_css;
1117 goto skip_node;
1118 }
1119
1120 return NULL;
1121 }
1122
1123 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1124 {
1125 /*
1126 * When a group in the hierarchy below root is destroyed, the
1127 * hierarchy iterator can no longer be trusted since it might
1128 * have pointed to the destroyed group. Invalidate it.
1129 */
1130 atomic_inc(&root->dead_count);
1131 }
1132
1133 static struct mem_cgroup *
1134 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1135 struct mem_cgroup *root,
1136 int *sequence)
1137 {
1138 struct mem_cgroup *position = NULL;
1139 /*
1140 * A cgroup destruction happens in two stages: offlining and
1141 * release. They are separated by a RCU grace period.
1142 *
1143 * If the iterator is valid, we may still race with an
1144 * offlining. The RCU lock ensures the object won't be
1145 * released, tryget will fail if we lost the race.
1146 */
1147 *sequence = atomic_read(&root->dead_count);
1148 if (iter->last_dead_count == *sequence) {
1149 smp_rmb();
1150 position = iter->last_visited;
1151
1152 /*
1153 * We cannot take a reference to root because we might race
1154 * with root removal and returning NULL would end up in
1155 * an endless loop on the iterator user level when root
1156 * would be returned all the time.
1157 */
1158 if (position && position != root &&
1159 !css_tryget(&position->css))
1160 position = NULL;
1161 }
1162 return position;
1163 }
1164
1165 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1166 struct mem_cgroup *last_visited,
1167 struct mem_cgroup *new_position,
1168 struct mem_cgroup *root,
1169 int sequence)
1170 {
1171 /* root reference counting symmetric to mem_cgroup_iter_load */
1172 if (last_visited && last_visited != root)
1173 css_put(&last_visited->css);
1174 /*
1175 * We store the sequence count from the time @last_visited was
1176 * loaded successfully instead of rereading it here so that we
1177 * don't lose destruction events in between. We could have
1178 * raced with the destruction of @new_position after all.
1179 */
1180 iter->last_visited = new_position;
1181 smp_wmb();
1182 iter->last_dead_count = sequence;
1183 }
1184
1185 /**
1186 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1187 * @root: hierarchy root
1188 * @prev: previously returned memcg, NULL on first invocation
1189 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1190 *
1191 * Returns references to children of the hierarchy below @root, or
1192 * @root itself, or %NULL after a full round-trip.
1193 *
1194 * Caller must pass the return value in @prev on subsequent
1195 * invocations for reference counting, or use mem_cgroup_iter_break()
1196 * to cancel a hierarchy walk before the round-trip is complete.
1197 *
1198 * Reclaimers can specify a zone and a priority level in @reclaim to
1199 * divide up the memcgs in the hierarchy among all concurrent
1200 * reclaimers operating on the same zone and priority.
1201 */
1202 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1203 struct mem_cgroup *prev,
1204 struct mem_cgroup_reclaim_cookie *reclaim)
1205 {
1206 struct mem_cgroup *memcg = NULL;
1207 struct mem_cgroup *last_visited = NULL;
1208
1209 if (mem_cgroup_disabled())
1210 return NULL;
1211
1212 if (!root)
1213 root = root_mem_cgroup;
1214
1215 if (prev && !reclaim)
1216 last_visited = prev;
1217
1218 if (!root->use_hierarchy && root != root_mem_cgroup) {
1219 if (prev)
1220 goto out_css_put;
1221 return root;
1222 }
1223
1224 rcu_read_lock();
1225 while (!memcg) {
1226 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1227 int uninitialized_var(seq);
1228
1229 if (reclaim) {
1230 struct mem_cgroup_per_zone *mz;
1231
1232 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1233 iter = &mz->reclaim_iter[reclaim->priority];
1234 if (prev && reclaim->generation != iter->generation) {
1235 iter->last_visited = NULL;
1236 goto out_unlock;
1237 }
1238
1239 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1240 }
1241
1242 memcg = __mem_cgroup_iter_next(root, last_visited);
1243
1244 if (reclaim) {
1245 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1246 seq);
1247
1248 if (!memcg)
1249 iter->generation++;
1250 else if (!prev && memcg)
1251 reclaim->generation = iter->generation;
1252 }
1253
1254 if (prev && !memcg)
1255 goto out_unlock;
1256 }
1257 out_unlock:
1258 rcu_read_unlock();
1259 out_css_put:
1260 if (prev && prev != root)
1261 css_put(&prev->css);
1262
1263 return memcg;
1264 }
1265
1266 /**
1267 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1268 * @root: hierarchy root
1269 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1270 */
1271 void mem_cgroup_iter_break(struct mem_cgroup *root,
1272 struct mem_cgroup *prev)
1273 {
1274 if (!root)
1275 root = root_mem_cgroup;
1276 if (prev && prev != root)
1277 css_put(&prev->css);
1278 }
1279
1280 /*
1281 * Iteration constructs for visiting all cgroups (under a tree). If
1282 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1283 * be used for reference counting.
1284 */
1285 #define for_each_mem_cgroup_tree(iter, root) \
1286 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1287 iter != NULL; \
1288 iter = mem_cgroup_iter(root, iter, NULL))
1289
1290 #define for_each_mem_cgroup(iter) \
1291 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1292 iter != NULL; \
1293 iter = mem_cgroup_iter(NULL, iter, NULL))
1294
1295 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1296 {
1297 struct mem_cgroup *memcg;
1298
1299 rcu_read_lock();
1300 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1301 if (unlikely(!memcg))
1302 goto out;
1303
1304 switch (idx) {
1305 case PGFAULT:
1306 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1307 break;
1308 case PGMAJFAULT:
1309 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1310 break;
1311 default:
1312 BUG();
1313 }
1314 out:
1315 rcu_read_unlock();
1316 }
1317 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1318
1319 /**
1320 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1321 * @zone: zone of the wanted lruvec
1322 * @memcg: memcg of the wanted lruvec
1323 *
1324 * Returns the lru list vector holding pages for the given @zone and
1325 * @mem. This can be the global zone lruvec, if the memory controller
1326 * is disabled.
1327 */
1328 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1329 struct mem_cgroup *memcg)
1330 {
1331 struct mem_cgroup_per_zone *mz;
1332 struct lruvec *lruvec;
1333
1334 if (mem_cgroup_disabled()) {
1335 lruvec = &zone->lruvec;
1336 goto out;
1337 }
1338
1339 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1340 lruvec = &mz->lruvec;
1341 out:
1342 /*
1343 * Since a node can be onlined after the mem_cgroup was created,
1344 * we have to be prepared to initialize lruvec->zone here;
1345 * and if offlined then reonlined, we need to reinitialize it.
1346 */
1347 if (unlikely(lruvec->zone != zone))
1348 lruvec->zone = zone;
1349 return lruvec;
1350 }
1351
1352 /*
1353 * Following LRU functions are allowed to be used without PCG_LOCK.
1354 * Operations are called by routine of global LRU independently from memcg.
1355 * What we have to take care of here is validness of pc->mem_cgroup.
1356 *
1357 * Changes to pc->mem_cgroup happens when
1358 * 1. charge
1359 * 2. moving account
1360 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1361 * It is added to LRU before charge.
1362 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1363 * When moving account, the page is not on LRU. It's isolated.
1364 */
1365
1366 /**
1367 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1368 * @page: the page
1369 * @zone: zone of the page
1370 */
1371 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1372 {
1373 struct mem_cgroup_per_zone *mz;
1374 struct mem_cgroup *memcg;
1375 struct page_cgroup *pc;
1376 struct lruvec *lruvec;
1377
1378 if (mem_cgroup_disabled()) {
1379 lruvec = &zone->lruvec;
1380 goto out;
1381 }
1382
1383 pc = lookup_page_cgroup(page);
1384 memcg = pc->mem_cgroup;
1385
1386 /*
1387 * Surreptitiously switch any uncharged offlist page to root:
1388 * an uncharged page off lru does nothing to secure
1389 * its former mem_cgroup from sudden removal.
1390 *
1391 * Our caller holds lru_lock, and PageCgroupUsed is updated
1392 * under page_cgroup lock: between them, they make all uses
1393 * of pc->mem_cgroup safe.
1394 */
1395 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1396 pc->mem_cgroup = memcg = root_mem_cgroup;
1397
1398 mz = mem_cgroup_page_zoneinfo(memcg, page);
1399 lruvec = &mz->lruvec;
1400 out:
1401 /*
1402 * Since a node can be onlined after the mem_cgroup was created,
1403 * we have to be prepared to initialize lruvec->zone here;
1404 * and if offlined then reonlined, we need to reinitialize it.
1405 */
1406 if (unlikely(lruvec->zone != zone))
1407 lruvec->zone = zone;
1408 return lruvec;
1409 }
1410
1411 /**
1412 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1413 * @lruvec: mem_cgroup per zone lru vector
1414 * @lru: index of lru list the page is sitting on
1415 * @nr_pages: positive when adding or negative when removing
1416 *
1417 * This function must be called when a page is added to or removed from an
1418 * lru list.
1419 */
1420 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1421 int nr_pages)
1422 {
1423 struct mem_cgroup_per_zone *mz;
1424 unsigned long *lru_size;
1425
1426 if (mem_cgroup_disabled())
1427 return;
1428
1429 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1430 lru_size = mz->lru_size + lru;
1431 *lru_size += nr_pages;
1432 VM_BUG_ON((long)(*lru_size) < 0);
1433 }
1434
1435 /*
1436 * Checks whether given mem is same or in the root_mem_cgroup's
1437 * hierarchy subtree
1438 */
1439 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1440 struct mem_cgroup *memcg)
1441 {
1442 if (root_memcg == memcg)
1443 return true;
1444 if (!root_memcg->use_hierarchy || !memcg)
1445 return false;
1446 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1447 }
1448
1449 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1450 struct mem_cgroup *memcg)
1451 {
1452 bool ret;
1453
1454 rcu_read_lock();
1455 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1456 rcu_read_unlock();
1457 return ret;
1458 }
1459
1460 bool task_in_mem_cgroup(struct task_struct *task,
1461 const struct mem_cgroup *memcg)
1462 {
1463 struct mem_cgroup *curr = NULL;
1464 struct task_struct *p;
1465 bool ret;
1466
1467 p = find_lock_task_mm(task);
1468 if (p) {
1469 curr = get_mem_cgroup_from_mm(p->mm);
1470 task_unlock(p);
1471 } else {
1472 /*
1473 * All threads may have already detached their mm's, but the oom
1474 * killer still needs to detect if they have already been oom
1475 * killed to prevent needlessly killing additional tasks.
1476 */
1477 rcu_read_lock();
1478 curr = mem_cgroup_from_task(task);
1479 if (curr)
1480 css_get(&curr->css);
1481 rcu_read_unlock();
1482 }
1483 /*
1484 * We should check use_hierarchy of "memcg" not "curr". Because checking
1485 * use_hierarchy of "curr" here make this function true if hierarchy is
1486 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1487 * hierarchy(even if use_hierarchy is disabled in "memcg").
1488 */
1489 ret = mem_cgroup_same_or_subtree(memcg, curr);
1490 css_put(&curr->css);
1491 return ret;
1492 }
1493
1494 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1495 {
1496 unsigned long inactive_ratio;
1497 unsigned long inactive;
1498 unsigned long active;
1499 unsigned long gb;
1500
1501 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1502 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1503
1504 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1505 if (gb)
1506 inactive_ratio = int_sqrt(10 * gb);
1507 else
1508 inactive_ratio = 1;
1509
1510 return inactive * inactive_ratio < active;
1511 }
1512
1513 #define mem_cgroup_from_res_counter(counter, member) \
1514 container_of(counter, struct mem_cgroup, member)
1515
1516 /**
1517 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1518 * @memcg: the memory cgroup
1519 *
1520 * Returns the maximum amount of memory @mem can be charged with, in
1521 * pages.
1522 */
1523 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1524 {
1525 unsigned long long margin;
1526
1527 margin = res_counter_margin(&memcg->res);
1528 if (do_swap_account)
1529 margin = min(margin, res_counter_margin(&memcg->memsw));
1530 return margin >> PAGE_SHIFT;
1531 }
1532
1533 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1534 {
1535 /* root ? */
1536 if (mem_cgroup_disabled() || !css_parent(&memcg->css))
1537 return vm_swappiness;
1538
1539 return memcg->swappiness;
1540 }
1541
1542 /*
1543 * memcg->moving_account is used for checking possibility that some thread is
1544 * calling move_account(). When a thread on CPU-A starts moving pages under
1545 * a memcg, other threads should check memcg->moving_account under
1546 * rcu_read_lock(), like this:
1547 *
1548 * CPU-A CPU-B
1549 * rcu_read_lock()
1550 * memcg->moving_account+1 if (memcg->mocing_account)
1551 * take heavy locks.
1552 * synchronize_rcu() update something.
1553 * rcu_read_unlock()
1554 * start move here.
1555 */
1556
1557 /* for quick checking without looking up memcg */
1558 atomic_t memcg_moving __read_mostly;
1559
1560 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1561 {
1562 atomic_inc(&memcg_moving);
1563 atomic_inc(&memcg->moving_account);
1564 synchronize_rcu();
1565 }
1566
1567 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1568 {
1569 /*
1570 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1571 * We check NULL in callee rather than caller.
1572 */
1573 if (memcg) {
1574 atomic_dec(&memcg_moving);
1575 atomic_dec(&memcg->moving_account);
1576 }
1577 }
1578
1579 /*
1580 * A routine for checking "mem" is under move_account() or not.
1581 *
1582 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1583 * moving cgroups. This is for waiting at high-memory pressure
1584 * caused by "move".
1585 */
1586 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1587 {
1588 struct mem_cgroup *from;
1589 struct mem_cgroup *to;
1590 bool ret = false;
1591 /*
1592 * Unlike task_move routines, we access mc.to, mc.from not under
1593 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1594 */
1595 spin_lock(&mc.lock);
1596 from = mc.from;
1597 to = mc.to;
1598 if (!from)
1599 goto unlock;
1600
1601 ret = mem_cgroup_same_or_subtree(memcg, from)
1602 || mem_cgroup_same_or_subtree(memcg, to);
1603 unlock:
1604 spin_unlock(&mc.lock);
1605 return ret;
1606 }
1607
1608 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1609 {
1610 if (mc.moving_task && current != mc.moving_task) {
1611 if (mem_cgroup_under_move(memcg)) {
1612 DEFINE_WAIT(wait);
1613 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1614 /* moving charge context might have finished. */
1615 if (mc.moving_task)
1616 schedule();
1617 finish_wait(&mc.waitq, &wait);
1618 return true;
1619 }
1620 }
1621 return false;
1622 }
1623
1624 /*
1625 * Take this lock when
1626 * - a code tries to modify page's memcg while it's USED.
1627 * - a code tries to modify page state accounting in a memcg.
1628 */
1629 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1630 unsigned long *flags)
1631 {
1632 spin_lock_irqsave(&memcg->move_lock, *flags);
1633 }
1634
1635 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1636 unsigned long *flags)
1637 {
1638 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1639 }
1640
1641 #define K(x) ((x) << (PAGE_SHIFT-10))
1642 /**
1643 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1644 * @memcg: The memory cgroup that went over limit
1645 * @p: Task that is going to be killed
1646 *
1647 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1648 * enabled
1649 */
1650 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1651 {
1652 /* oom_info_lock ensures that parallel ooms do not interleave */
1653 static DEFINE_MUTEX(oom_info_lock);
1654 struct mem_cgroup *iter;
1655 unsigned int i;
1656
1657 if (!p)
1658 return;
1659
1660 mutex_lock(&oom_info_lock);
1661 rcu_read_lock();
1662
1663 pr_info("Task in ");
1664 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1665 pr_info(" killed as a result of limit of ");
1666 pr_cont_cgroup_path(memcg->css.cgroup);
1667 pr_info("\n");
1668
1669 rcu_read_unlock();
1670
1671 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1672 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1673 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1674 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1675 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1676 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1677 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1678 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1679 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1680 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1681 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1682 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1683
1684 for_each_mem_cgroup_tree(iter, memcg) {
1685 pr_info("Memory cgroup stats for ");
1686 pr_cont_cgroup_path(iter->css.cgroup);
1687 pr_cont(":");
1688
1689 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1690 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1691 continue;
1692 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1693 K(mem_cgroup_read_stat(iter, i)));
1694 }
1695
1696 for (i = 0; i < NR_LRU_LISTS; i++)
1697 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1698 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1699
1700 pr_cont("\n");
1701 }
1702 mutex_unlock(&oom_info_lock);
1703 }
1704
1705 /*
1706 * This function returns the number of memcg under hierarchy tree. Returns
1707 * 1(self count) if no children.
1708 */
1709 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1710 {
1711 int num = 0;
1712 struct mem_cgroup *iter;
1713
1714 for_each_mem_cgroup_tree(iter, memcg)
1715 num++;
1716 return num;
1717 }
1718
1719 /*
1720 * Return the memory (and swap, if configured) limit for a memcg.
1721 */
1722 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1723 {
1724 u64 limit;
1725
1726 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1727
1728 /*
1729 * Do not consider swap space if we cannot swap due to swappiness
1730 */
1731 if (mem_cgroup_swappiness(memcg)) {
1732 u64 memsw;
1733
1734 limit += total_swap_pages << PAGE_SHIFT;
1735 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1736
1737 /*
1738 * If memsw is finite and limits the amount of swap space
1739 * available to this memcg, return that limit.
1740 */
1741 limit = min(limit, memsw);
1742 }
1743
1744 return limit;
1745 }
1746
1747 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1748 int order)
1749 {
1750 struct mem_cgroup *iter;
1751 unsigned long chosen_points = 0;
1752 unsigned long totalpages;
1753 unsigned int points = 0;
1754 struct task_struct *chosen = NULL;
1755
1756 /*
1757 * If current has a pending SIGKILL or is exiting, then automatically
1758 * select it. The goal is to allow it to allocate so that it may
1759 * quickly exit and free its memory.
1760 */
1761 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1762 set_thread_flag(TIF_MEMDIE);
1763 return;
1764 }
1765
1766 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1767 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1768 for_each_mem_cgroup_tree(iter, memcg) {
1769 struct css_task_iter it;
1770 struct task_struct *task;
1771
1772 css_task_iter_start(&iter->css, &it);
1773 while ((task = css_task_iter_next(&it))) {
1774 switch (oom_scan_process_thread(task, totalpages, NULL,
1775 false)) {
1776 case OOM_SCAN_SELECT:
1777 if (chosen)
1778 put_task_struct(chosen);
1779 chosen = task;
1780 chosen_points = ULONG_MAX;
1781 get_task_struct(chosen);
1782 /* fall through */
1783 case OOM_SCAN_CONTINUE:
1784 continue;
1785 case OOM_SCAN_ABORT:
1786 css_task_iter_end(&it);
1787 mem_cgroup_iter_break(memcg, iter);
1788 if (chosen)
1789 put_task_struct(chosen);
1790 return;
1791 case OOM_SCAN_OK:
1792 break;
1793 };
1794 points = oom_badness(task, memcg, NULL, totalpages);
1795 if (!points || points < chosen_points)
1796 continue;
1797 /* Prefer thread group leaders for display purposes */
1798 if (points == chosen_points &&
1799 thread_group_leader(chosen))
1800 continue;
1801
1802 if (chosen)
1803 put_task_struct(chosen);
1804 chosen = task;
1805 chosen_points = points;
1806 get_task_struct(chosen);
1807 }
1808 css_task_iter_end(&it);
1809 }
1810
1811 if (!chosen)
1812 return;
1813 points = chosen_points * 1000 / totalpages;
1814 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1815 NULL, "Memory cgroup out of memory");
1816 }
1817
1818 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1819 gfp_t gfp_mask,
1820 unsigned long flags)
1821 {
1822 unsigned long total = 0;
1823 bool noswap = false;
1824 int loop;
1825
1826 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1827 noswap = true;
1828 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1829 noswap = true;
1830
1831 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1832 if (loop)
1833 drain_all_stock_async(memcg);
1834 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1835 /*
1836 * Allow limit shrinkers, which are triggered directly
1837 * by userspace, to catch signals and stop reclaim
1838 * after minimal progress, regardless of the margin.
1839 */
1840 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1841 break;
1842 if (mem_cgroup_margin(memcg))
1843 break;
1844 /*
1845 * If nothing was reclaimed after two attempts, there
1846 * may be no reclaimable pages in this hierarchy.
1847 */
1848 if (loop && !total)
1849 break;
1850 }
1851 return total;
1852 }
1853
1854 /**
1855 * test_mem_cgroup_node_reclaimable
1856 * @memcg: the target memcg
1857 * @nid: the node ID to be checked.
1858 * @noswap : specify true here if the user wants flle only information.
1859 *
1860 * This function returns whether the specified memcg contains any
1861 * reclaimable pages on a node. Returns true if there are any reclaimable
1862 * pages in the node.
1863 */
1864 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1865 int nid, bool noswap)
1866 {
1867 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1868 return true;
1869 if (noswap || !total_swap_pages)
1870 return false;
1871 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1872 return true;
1873 return false;
1874
1875 }
1876 #if MAX_NUMNODES > 1
1877
1878 /*
1879 * Always updating the nodemask is not very good - even if we have an empty
1880 * list or the wrong list here, we can start from some node and traverse all
1881 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1882 *
1883 */
1884 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1885 {
1886 int nid;
1887 /*
1888 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1889 * pagein/pageout changes since the last update.
1890 */
1891 if (!atomic_read(&memcg->numainfo_events))
1892 return;
1893 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1894 return;
1895
1896 /* make a nodemask where this memcg uses memory from */
1897 memcg->scan_nodes = node_states[N_MEMORY];
1898
1899 for_each_node_mask(nid, node_states[N_MEMORY]) {
1900
1901 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1902 node_clear(nid, memcg->scan_nodes);
1903 }
1904
1905 atomic_set(&memcg->numainfo_events, 0);
1906 atomic_set(&memcg->numainfo_updating, 0);
1907 }
1908
1909 /*
1910 * Selecting a node where we start reclaim from. Because what we need is just
1911 * reducing usage counter, start from anywhere is O,K. Considering
1912 * memory reclaim from current node, there are pros. and cons.
1913 *
1914 * Freeing memory from current node means freeing memory from a node which
1915 * we'll use or we've used. So, it may make LRU bad. And if several threads
1916 * hit limits, it will see a contention on a node. But freeing from remote
1917 * node means more costs for memory reclaim because of memory latency.
1918 *
1919 * Now, we use round-robin. Better algorithm is welcomed.
1920 */
1921 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1922 {
1923 int node;
1924
1925 mem_cgroup_may_update_nodemask(memcg);
1926 node = memcg->last_scanned_node;
1927
1928 node = next_node(node, memcg->scan_nodes);
1929 if (node == MAX_NUMNODES)
1930 node = first_node(memcg->scan_nodes);
1931 /*
1932 * We call this when we hit limit, not when pages are added to LRU.
1933 * No LRU may hold pages because all pages are UNEVICTABLE or
1934 * memcg is too small and all pages are not on LRU. In that case,
1935 * we use curret node.
1936 */
1937 if (unlikely(node == MAX_NUMNODES))
1938 node = numa_node_id();
1939
1940 memcg->last_scanned_node = node;
1941 return node;
1942 }
1943
1944 /*
1945 * Check all nodes whether it contains reclaimable pages or not.
1946 * For quick scan, we make use of scan_nodes. This will allow us to skip
1947 * unused nodes. But scan_nodes is lazily updated and may not cotain
1948 * enough new information. We need to do double check.
1949 */
1950 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1951 {
1952 int nid;
1953
1954 /*
1955 * quick check...making use of scan_node.
1956 * We can skip unused nodes.
1957 */
1958 if (!nodes_empty(memcg->scan_nodes)) {
1959 for (nid = first_node(memcg->scan_nodes);
1960 nid < MAX_NUMNODES;
1961 nid = next_node(nid, memcg->scan_nodes)) {
1962
1963 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1964 return true;
1965 }
1966 }
1967 /*
1968 * Check rest of nodes.
1969 */
1970 for_each_node_state(nid, N_MEMORY) {
1971 if (node_isset(nid, memcg->scan_nodes))
1972 continue;
1973 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1974 return true;
1975 }
1976 return false;
1977 }
1978
1979 #else
1980 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1981 {
1982 return 0;
1983 }
1984
1985 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1986 {
1987 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1988 }
1989 #endif
1990
1991 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1992 struct zone *zone,
1993 gfp_t gfp_mask,
1994 unsigned long *total_scanned)
1995 {
1996 struct mem_cgroup *victim = NULL;
1997 int total = 0;
1998 int loop = 0;
1999 unsigned long excess;
2000 unsigned long nr_scanned;
2001 struct mem_cgroup_reclaim_cookie reclaim = {
2002 .zone = zone,
2003 .priority = 0,
2004 };
2005
2006 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2007
2008 while (1) {
2009 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2010 if (!victim) {
2011 loop++;
2012 if (loop >= 2) {
2013 /*
2014 * If we have not been able to reclaim
2015 * anything, it might because there are
2016 * no reclaimable pages under this hierarchy
2017 */
2018 if (!total)
2019 break;
2020 /*
2021 * We want to do more targeted reclaim.
2022 * excess >> 2 is not to excessive so as to
2023 * reclaim too much, nor too less that we keep
2024 * coming back to reclaim from this cgroup
2025 */
2026 if (total >= (excess >> 2) ||
2027 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2028 break;
2029 }
2030 continue;
2031 }
2032 if (!mem_cgroup_reclaimable(victim, false))
2033 continue;
2034 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2035 zone, &nr_scanned);
2036 *total_scanned += nr_scanned;
2037 if (!res_counter_soft_limit_excess(&root_memcg->res))
2038 break;
2039 }
2040 mem_cgroup_iter_break(root_memcg, victim);
2041 return total;
2042 }
2043
2044 #ifdef CONFIG_LOCKDEP
2045 static struct lockdep_map memcg_oom_lock_dep_map = {
2046 .name = "memcg_oom_lock",
2047 };
2048 #endif
2049
2050 static DEFINE_SPINLOCK(memcg_oom_lock);
2051
2052 /*
2053 * Check OOM-Killer is already running under our hierarchy.
2054 * If someone is running, return false.
2055 */
2056 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2057 {
2058 struct mem_cgroup *iter, *failed = NULL;
2059
2060 spin_lock(&memcg_oom_lock);
2061
2062 for_each_mem_cgroup_tree(iter, memcg) {
2063 if (iter->oom_lock) {
2064 /*
2065 * this subtree of our hierarchy is already locked
2066 * so we cannot give a lock.
2067 */
2068 failed = iter;
2069 mem_cgroup_iter_break(memcg, iter);
2070 break;
2071 } else
2072 iter->oom_lock = true;
2073 }
2074
2075 if (failed) {
2076 /*
2077 * OK, we failed to lock the whole subtree so we have
2078 * to clean up what we set up to the failing subtree
2079 */
2080 for_each_mem_cgroup_tree(iter, memcg) {
2081 if (iter == failed) {
2082 mem_cgroup_iter_break(memcg, iter);
2083 break;
2084 }
2085 iter->oom_lock = false;
2086 }
2087 } else
2088 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2089
2090 spin_unlock(&memcg_oom_lock);
2091
2092 return !failed;
2093 }
2094
2095 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2096 {
2097 struct mem_cgroup *iter;
2098
2099 spin_lock(&memcg_oom_lock);
2100 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2101 for_each_mem_cgroup_tree(iter, memcg)
2102 iter->oom_lock = false;
2103 spin_unlock(&memcg_oom_lock);
2104 }
2105
2106 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2107 {
2108 struct mem_cgroup *iter;
2109
2110 for_each_mem_cgroup_tree(iter, memcg)
2111 atomic_inc(&iter->under_oom);
2112 }
2113
2114 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2115 {
2116 struct mem_cgroup *iter;
2117
2118 /*
2119 * When a new child is created while the hierarchy is under oom,
2120 * mem_cgroup_oom_lock() may not be called. We have to use
2121 * atomic_add_unless() here.
2122 */
2123 for_each_mem_cgroup_tree(iter, memcg)
2124 atomic_add_unless(&iter->under_oom, -1, 0);
2125 }
2126
2127 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2128
2129 struct oom_wait_info {
2130 struct mem_cgroup *memcg;
2131 wait_queue_t wait;
2132 };
2133
2134 static int memcg_oom_wake_function(wait_queue_t *wait,
2135 unsigned mode, int sync, void *arg)
2136 {
2137 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2138 struct mem_cgroup *oom_wait_memcg;
2139 struct oom_wait_info *oom_wait_info;
2140
2141 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2142 oom_wait_memcg = oom_wait_info->memcg;
2143
2144 /*
2145 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2146 * Then we can use css_is_ancestor without taking care of RCU.
2147 */
2148 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2149 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2150 return 0;
2151 return autoremove_wake_function(wait, mode, sync, arg);
2152 }
2153
2154 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2155 {
2156 atomic_inc(&memcg->oom_wakeups);
2157 /* for filtering, pass "memcg" as argument. */
2158 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2159 }
2160
2161 static void memcg_oom_recover(struct mem_cgroup *memcg)
2162 {
2163 if (memcg && atomic_read(&memcg->under_oom))
2164 memcg_wakeup_oom(memcg);
2165 }
2166
2167 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2168 {
2169 if (!current->memcg_oom.may_oom)
2170 return;
2171 /*
2172 * We are in the middle of the charge context here, so we
2173 * don't want to block when potentially sitting on a callstack
2174 * that holds all kinds of filesystem and mm locks.
2175 *
2176 * Also, the caller may handle a failed allocation gracefully
2177 * (like optional page cache readahead) and so an OOM killer
2178 * invocation might not even be necessary.
2179 *
2180 * That's why we don't do anything here except remember the
2181 * OOM context and then deal with it at the end of the page
2182 * fault when the stack is unwound, the locks are released,
2183 * and when we know whether the fault was overall successful.
2184 */
2185 css_get(&memcg->css);
2186 current->memcg_oom.memcg = memcg;
2187 current->memcg_oom.gfp_mask = mask;
2188 current->memcg_oom.order = order;
2189 }
2190
2191 /**
2192 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2193 * @handle: actually kill/wait or just clean up the OOM state
2194 *
2195 * This has to be called at the end of a page fault if the memcg OOM
2196 * handler was enabled.
2197 *
2198 * Memcg supports userspace OOM handling where failed allocations must
2199 * sleep on a waitqueue until the userspace task resolves the
2200 * situation. Sleeping directly in the charge context with all kinds
2201 * of locks held is not a good idea, instead we remember an OOM state
2202 * in the task and mem_cgroup_oom_synchronize() has to be called at
2203 * the end of the page fault to complete the OOM handling.
2204 *
2205 * Returns %true if an ongoing memcg OOM situation was detected and
2206 * completed, %false otherwise.
2207 */
2208 bool mem_cgroup_oom_synchronize(bool handle)
2209 {
2210 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2211 struct oom_wait_info owait;
2212 bool locked;
2213
2214 /* OOM is global, do not handle */
2215 if (!memcg)
2216 return false;
2217
2218 if (!handle)
2219 goto cleanup;
2220
2221 owait.memcg = memcg;
2222 owait.wait.flags = 0;
2223 owait.wait.func = memcg_oom_wake_function;
2224 owait.wait.private = current;
2225 INIT_LIST_HEAD(&owait.wait.task_list);
2226
2227 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2228 mem_cgroup_mark_under_oom(memcg);
2229
2230 locked = mem_cgroup_oom_trylock(memcg);
2231
2232 if (locked)
2233 mem_cgroup_oom_notify(memcg);
2234
2235 if (locked && !memcg->oom_kill_disable) {
2236 mem_cgroup_unmark_under_oom(memcg);
2237 finish_wait(&memcg_oom_waitq, &owait.wait);
2238 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2239 current->memcg_oom.order);
2240 } else {
2241 schedule();
2242 mem_cgroup_unmark_under_oom(memcg);
2243 finish_wait(&memcg_oom_waitq, &owait.wait);
2244 }
2245
2246 if (locked) {
2247 mem_cgroup_oom_unlock(memcg);
2248 /*
2249 * There is no guarantee that an OOM-lock contender
2250 * sees the wakeups triggered by the OOM kill
2251 * uncharges. Wake any sleepers explicitely.
2252 */
2253 memcg_oom_recover(memcg);
2254 }
2255 cleanup:
2256 current->memcg_oom.memcg = NULL;
2257 css_put(&memcg->css);
2258 return true;
2259 }
2260
2261 /*
2262 * Used to update mapped file or writeback or other statistics.
2263 *
2264 * Notes: Race condition
2265 *
2266 * We usually use lock_page_cgroup() for accessing page_cgroup member but
2267 * it tends to be costly. But considering some conditions, we doesn't need
2268 * to do so _always_.
2269 *
2270 * Considering "charge", lock_page_cgroup() is not required because all
2271 * file-stat operations happen after a page is attached to radix-tree. There
2272 * are no race with "charge".
2273 *
2274 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2275 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2276 * if there are race with "uncharge". Statistics itself is properly handled
2277 * by flags.
2278 *
2279 * Considering "move", this is an only case we see a race. To make the race
2280 * small, we check memcg->moving_account and detect there are possibility
2281 * of race or not. If there is, we take a lock.
2282 */
2283
2284 void __mem_cgroup_begin_update_page_stat(struct page *page,
2285 bool *locked, unsigned long *flags)
2286 {
2287 struct mem_cgroup *memcg;
2288 struct page_cgroup *pc;
2289
2290 pc = lookup_page_cgroup(page);
2291 again:
2292 memcg = pc->mem_cgroup;
2293 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2294 return;
2295 /*
2296 * If this memory cgroup is not under account moving, we don't
2297 * need to take move_lock_mem_cgroup(). Because we already hold
2298 * rcu_read_lock(), any calls to move_account will be delayed until
2299 * rcu_read_unlock().
2300 */
2301 VM_BUG_ON(!rcu_read_lock_held());
2302 if (atomic_read(&memcg->moving_account) <= 0)
2303 return;
2304
2305 move_lock_mem_cgroup(memcg, flags);
2306 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2307 move_unlock_mem_cgroup(memcg, flags);
2308 goto again;
2309 }
2310 *locked = true;
2311 }
2312
2313 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2314 {
2315 struct page_cgroup *pc = lookup_page_cgroup(page);
2316
2317 /*
2318 * It's guaranteed that pc->mem_cgroup never changes while
2319 * lock is held because a routine modifies pc->mem_cgroup
2320 * should take move_lock_mem_cgroup().
2321 */
2322 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2323 }
2324
2325 void mem_cgroup_update_page_stat(struct page *page,
2326 enum mem_cgroup_stat_index idx, int val)
2327 {
2328 struct mem_cgroup *memcg;
2329 struct page_cgroup *pc = lookup_page_cgroup(page);
2330 unsigned long uninitialized_var(flags);
2331
2332 if (mem_cgroup_disabled())
2333 return;
2334
2335 VM_BUG_ON(!rcu_read_lock_held());
2336 memcg = pc->mem_cgroup;
2337 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2338 return;
2339
2340 this_cpu_add(memcg->stat->count[idx], val);
2341 }
2342
2343 /*
2344 * size of first charge trial. "32" comes from vmscan.c's magic value.
2345 * TODO: maybe necessary to use big numbers in big irons.
2346 */
2347 #define CHARGE_BATCH 32U
2348 struct memcg_stock_pcp {
2349 struct mem_cgroup *cached; /* this never be root cgroup */
2350 unsigned int nr_pages;
2351 struct work_struct work;
2352 unsigned long flags;
2353 #define FLUSHING_CACHED_CHARGE 0
2354 };
2355 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2356 static DEFINE_MUTEX(percpu_charge_mutex);
2357
2358 /**
2359 * consume_stock: Try to consume stocked charge on this cpu.
2360 * @memcg: memcg to consume from.
2361 * @nr_pages: how many pages to charge.
2362 *
2363 * The charges will only happen if @memcg matches the current cpu's memcg
2364 * stock, and at least @nr_pages are available in that stock. Failure to
2365 * service an allocation will refill the stock.
2366 *
2367 * returns true if successful, false otherwise.
2368 */
2369 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2370 {
2371 struct memcg_stock_pcp *stock;
2372 bool ret = true;
2373
2374 if (nr_pages > CHARGE_BATCH)
2375 return false;
2376
2377 stock = &get_cpu_var(memcg_stock);
2378 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2379 stock->nr_pages -= nr_pages;
2380 else /* need to call res_counter_charge */
2381 ret = false;
2382 put_cpu_var(memcg_stock);
2383 return ret;
2384 }
2385
2386 /*
2387 * Returns stocks cached in percpu to res_counter and reset cached information.
2388 */
2389 static void drain_stock(struct memcg_stock_pcp *stock)
2390 {
2391 struct mem_cgroup *old = stock->cached;
2392
2393 if (stock->nr_pages) {
2394 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2395
2396 res_counter_uncharge(&old->res, bytes);
2397 if (do_swap_account)
2398 res_counter_uncharge(&old->memsw, bytes);
2399 stock->nr_pages = 0;
2400 }
2401 stock->cached = NULL;
2402 }
2403
2404 /*
2405 * This must be called under preempt disabled or must be called by
2406 * a thread which is pinned to local cpu.
2407 */
2408 static void drain_local_stock(struct work_struct *dummy)
2409 {
2410 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2411 drain_stock(stock);
2412 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2413 }
2414
2415 static void __init memcg_stock_init(void)
2416 {
2417 int cpu;
2418
2419 for_each_possible_cpu(cpu) {
2420 struct memcg_stock_pcp *stock =
2421 &per_cpu(memcg_stock, cpu);
2422 INIT_WORK(&stock->work, drain_local_stock);
2423 }
2424 }
2425
2426 /*
2427 * Cache charges(val) which is from res_counter, to local per_cpu area.
2428 * This will be consumed by consume_stock() function, later.
2429 */
2430 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2431 {
2432 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2433
2434 if (stock->cached != memcg) { /* reset if necessary */
2435 drain_stock(stock);
2436 stock->cached = memcg;
2437 }
2438 stock->nr_pages += nr_pages;
2439 put_cpu_var(memcg_stock);
2440 }
2441
2442 /*
2443 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2444 * of the hierarchy under it. sync flag says whether we should block
2445 * until the work is done.
2446 */
2447 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2448 {
2449 int cpu, curcpu;
2450
2451 /* Notify other cpus that system-wide "drain" is running */
2452 get_online_cpus();
2453 curcpu = get_cpu();
2454 for_each_online_cpu(cpu) {
2455 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2456 struct mem_cgroup *memcg;
2457
2458 memcg = stock->cached;
2459 if (!memcg || !stock->nr_pages)
2460 continue;
2461 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2462 continue;
2463 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2464 if (cpu == curcpu)
2465 drain_local_stock(&stock->work);
2466 else
2467 schedule_work_on(cpu, &stock->work);
2468 }
2469 }
2470 put_cpu();
2471
2472 if (!sync)
2473 goto out;
2474
2475 for_each_online_cpu(cpu) {
2476 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2477 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2478 flush_work(&stock->work);
2479 }
2480 out:
2481 put_online_cpus();
2482 }
2483
2484 /*
2485 * Tries to drain stocked charges in other cpus. This function is asynchronous
2486 * and just put a work per cpu for draining localy on each cpu. Caller can
2487 * expects some charges will be back to res_counter later but cannot wait for
2488 * it.
2489 */
2490 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2491 {
2492 /*
2493 * If someone calls draining, avoid adding more kworker runs.
2494 */
2495 if (!mutex_trylock(&percpu_charge_mutex))
2496 return;
2497 drain_all_stock(root_memcg, false);
2498 mutex_unlock(&percpu_charge_mutex);
2499 }
2500
2501 /* This is a synchronous drain interface. */
2502 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2503 {
2504 /* called when force_empty is called */
2505 mutex_lock(&percpu_charge_mutex);
2506 drain_all_stock(root_memcg, true);
2507 mutex_unlock(&percpu_charge_mutex);
2508 }
2509
2510 /*
2511 * This function drains percpu counter value from DEAD cpu and
2512 * move it to local cpu. Note that this function can be preempted.
2513 */
2514 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2515 {
2516 int i;
2517
2518 spin_lock(&memcg->pcp_counter_lock);
2519 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2520 long x = per_cpu(memcg->stat->count[i], cpu);
2521
2522 per_cpu(memcg->stat->count[i], cpu) = 0;
2523 memcg->nocpu_base.count[i] += x;
2524 }
2525 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2526 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2527
2528 per_cpu(memcg->stat->events[i], cpu) = 0;
2529 memcg->nocpu_base.events[i] += x;
2530 }
2531 spin_unlock(&memcg->pcp_counter_lock);
2532 }
2533
2534 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2535 unsigned long action,
2536 void *hcpu)
2537 {
2538 int cpu = (unsigned long)hcpu;
2539 struct memcg_stock_pcp *stock;
2540 struct mem_cgroup *iter;
2541
2542 if (action == CPU_ONLINE)
2543 return NOTIFY_OK;
2544
2545 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2546 return NOTIFY_OK;
2547
2548 for_each_mem_cgroup(iter)
2549 mem_cgroup_drain_pcp_counter(iter, cpu);
2550
2551 stock = &per_cpu(memcg_stock, cpu);
2552 drain_stock(stock);
2553 return NOTIFY_OK;
2554 }
2555
2556
2557 /* See mem_cgroup_try_charge() for details */
2558 enum {
2559 CHARGE_OK, /* success */
2560 CHARGE_RETRY, /* need to retry but retry is not bad */
2561 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2562 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2563 };
2564
2565 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2566 unsigned int nr_pages, unsigned int min_pages,
2567 bool invoke_oom)
2568 {
2569 unsigned long csize = nr_pages * PAGE_SIZE;
2570 struct mem_cgroup *mem_over_limit;
2571 struct res_counter *fail_res;
2572 unsigned long flags = 0;
2573 int ret;
2574
2575 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2576
2577 if (likely(!ret)) {
2578 if (!do_swap_account)
2579 return CHARGE_OK;
2580 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2581 if (likely(!ret))
2582 return CHARGE_OK;
2583
2584 res_counter_uncharge(&memcg->res, csize);
2585 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2586 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2587 } else
2588 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2589 /*
2590 * Never reclaim on behalf of optional batching, retry with a
2591 * single page instead.
2592 */
2593 if (nr_pages > min_pages)
2594 return CHARGE_RETRY;
2595
2596 if (!(gfp_mask & __GFP_WAIT))
2597 return CHARGE_WOULDBLOCK;
2598
2599 if (gfp_mask & __GFP_NORETRY)
2600 return CHARGE_NOMEM;
2601
2602 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2603 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2604 return CHARGE_RETRY;
2605 /*
2606 * Even though the limit is exceeded at this point, reclaim
2607 * may have been able to free some pages. Retry the charge
2608 * before killing the task.
2609 *
2610 * Only for regular pages, though: huge pages are rather
2611 * unlikely to succeed so close to the limit, and we fall back
2612 * to regular pages anyway in case of failure.
2613 */
2614 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2615 return CHARGE_RETRY;
2616
2617 /*
2618 * At task move, charge accounts can be doubly counted. So, it's
2619 * better to wait until the end of task_move if something is going on.
2620 */
2621 if (mem_cgroup_wait_acct_move(mem_over_limit))
2622 return CHARGE_RETRY;
2623
2624 if (invoke_oom)
2625 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2626
2627 return CHARGE_NOMEM;
2628 }
2629
2630 /**
2631 * mem_cgroup_try_charge - try charging a memcg
2632 * @memcg: memcg to charge
2633 * @nr_pages: number of pages to charge
2634 * @oom: trigger OOM if reclaim fails
2635 *
2636 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2637 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2638 */
2639 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2640 gfp_t gfp_mask,
2641 unsigned int nr_pages,
2642 bool oom)
2643 {
2644 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2645 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2646 int ret;
2647
2648 if (mem_cgroup_is_root(memcg))
2649 goto done;
2650 /*
2651 * Unlike in global OOM situations, memcg is not in a physical
2652 * memory shortage. Allow dying and OOM-killed tasks to
2653 * bypass the last charges so that they can exit quickly and
2654 * free their memory.
2655 */
2656 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2657 fatal_signal_pending(current) ||
2658 current->flags & PF_EXITING))
2659 goto bypass;
2660
2661 if (unlikely(task_in_memcg_oom(current)))
2662 goto nomem;
2663
2664 if (gfp_mask & __GFP_NOFAIL)
2665 oom = false;
2666 again:
2667 if (consume_stock(memcg, nr_pages))
2668 goto done;
2669
2670 do {
2671 bool invoke_oom = oom && !nr_oom_retries;
2672
2673 /* If killed, bypass charge */
2674 if (fatal_signal_pending(current))
2675 goto bypass;
2676
2677 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2678 nr_pages, invoke_oom);
2679 switch (ret) {
2680 case CHARGE_OK:
2681 break;
2682 case CHARGE_RETRY: /* not in OOM situation but retry */
2683 batch = nr_pages;
2684 goto again;
2685 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2686 goto nomem;
2687 case CHARGE_NOMEM: /* OOM routine works */
2688 if (!oom || invoke_oom)
2689 goto nomem;
2690 nr_oom_retries--;
2691 break;
2692 }
2693 } while (ret != CHARGE_OK);
2694
2695 if (batch > nr_pages)
2696 refill_stock(memcg, batch - nr_pages);
2697 done:
2698 return 0;
2699 nomem:
2700 if (!(gfp_mask & __GFP_NOFAIL))
2701 return -ENOMEM;
2702 bypass:
2703 return -EINTR;
2704 }
2705
2706 /**
2707 * mem_cgroup_try_charge_mm - try charging a mm
2708 * @mm: mm_struct to charge
2709 * @nr_pages: number of pages to charge
2710 * @oom: trigger OOM if reclaim fails
2711 *
2712 * Returns the charged mem_cgroup associated with the given mm_struct or
2713 * NULL the charge failed.
2714 */
2715 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2716 gfp_t gfp_mask,
2717 unsigned int nr_pages,
2718 bool oom)
2719
2720 {
2721 struct mem_cgroup *memcg;
2722 int ret;
2723
2724 memcg = get_mem_cgroup_from_mm(mm);
2725 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2726 css_put(&memcg->css);
2727 if (ret == -EINTR)
2728 memcg = root_mem_cgroup;
2729 else if (ret)
2730 memcg = NULL;
2731
2732 return memcg;
2733 }
2734
2735 /*
2736 * Somemtimes we have to undo a charge we got by try_charge().
2737 * This function is for that and do uncharge, put css's refcnt.
2738 * gotten by try_charge().
2739 */
2740 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2741 unsigned int nr_pages)
2742 {
2743 if (!mem_cgroup_is_root(memcg)) {
2744 unsigned long bytes = nr_pages * PAGE_SIZE;
2745
2746 res_counter_uncharge(&memcg->res, bytes);
2747 if (do_swap_account)
2748 res_counter_uncharge(&memcg->memsw, bytes);
2749 }
2750 }
2751
2752 /*
2753 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2754 * This is useful when moving usage to parent cgroup.
2755 */
2756 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2757 unsigned int nr_pages)
2758 {
2759 unsigned long bytes = nr_pages * PAGE_SIZE;
2760
2761 if (mem_cgroup_is_root(memcg))
2762 return;
2763
2764 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2765 if (do_swap_account)
2766 res_counter_uncharge_until(&memcg->memsw,
2767 memcg->memsw.parent, bytes);
2768 }
2769
2770 /*
2771 * A helper function to get mem_cgroup from ID. must be called under
2772 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2773 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2774 * called against removed memcg.)
2775 */
2776 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2777 {
2778 /* ID 0 is unused ID */
2779 if (!id)
2780 return NULL;
2781 return mem_cgroup_from_id(id);
2782 }
2783
2784 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2785 {
2786 struct mem_cgroup *memcg = NULL;
2787 struct page_cgroup *pc;
2788 unsigned short id;
2789 swp_entry_t ent;
2790
2791 VM_BUG_ON_PAGE(!PageLocked(page), page);
2792
2793 pc = lookup_page_cgroup(page);
2794 lock_page_cgroup(pc);
2795 if (PageCgroupUsed(pc)) {
2796 memcg = pc->mem_cgroup;
2797 if (memcg && !css_tryget(&memcg->css))
2798 memcg = NULL;
2799 } else if (PageSwapCache(page)) {
2800 ent.val = page_private(page);
2801 id = lookup_swap_cgroup_id(ent);
2802 rcu_read_lock();
2803 memcg = mem_cgroup_lookup(id);
2804 if (memcg && !css_tryget(&memcg->css))
2805 memcg = NULL;
2806 rcu_read_unlock();
2807 }
2808 unlock_page_cgroup(pc);
2809 return memcg;
2810 }
2811
2812 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2813 struct page *page,
2814 unsigned int nr_pages,
2815 enum charge_type ctype,
2816 bool lrucare)
2817 {
2818 struct page_cgroup *pc = lookup_page_cgroup(page);
2819 struct zone *uninitialized_var(zone);
2820 struct lruvec *lruvec;
2821 bool was_on_lru = false;
2822 bool anon;
2823
2824 lock_page_cgroup(pc);
2825 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2826 /*
2827 * we don't need page_cgroup_lock about tail pages, becase they are not
2828 * accessed by any other context at this point.
2829 */
2830
2831 /*
2832 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2833 * may already be on some other mem_cgroup's LRU. Take care of it.
2834 */
2835 if (lrucare) {
2836 zone = page_zone(page);
2837 spin_lock_irq(&zone->lru_lock);
2838 if (PageLRU(page)) {
2839 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2840 ClearPageLRU(page);
2841 del_page_from_lru_list(page, lruvec, page_lru(page));
2842 was_on_lru = true;
2843 }
2844 }
2845
2846 pc->mem_cgroup = memcg;
2847 /*
2848 * We access a page_cgroup asynchronously without lock_page_cgroup().
2849 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2850 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2851 * before USED bit, we need memory barrier here.
2852 * See mem_cgroup_add_lru_list(), etc.
2853 */
2854 smp_wmb();
2855 SetPageCgroupUsed(pc);
2856
2857 if (lrucare) {
2858 if (was_on_lru) {
2859 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2860 VM_BUG_ON_PAGE(PageLRU(page), page);
2861 SetPageLRU(page);
2862 add_page_to_lru_list(page, lruvec, page_lru(page));
2863 }
2864 spin_unlock_irq(&zone->lru_lock);
2865 }
2866
2867 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2868 anon = true;
2869 else
2870 anon = false;
2871
2872 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2873 unlock_page_cgroup(pc);
2874
2875 /*
2876 * "charge_statistics" updated event counter. Then, check it.
2877 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2878 * if they exceeds softlimit.
2879 */
2880 memcg_check_events(memcg, page);
2881 }
2882
2883 static DEFINE_MUTEX(set_limit_mutex);
2884
2885 #ifdef CONFIG_MEMCG_KMEM
2886 /*
2887 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2888 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2889 */
2890 static DEFINE_MUTEX(memcg_slab_mutex);
2891
2892 static DEFINE_MUTEX(activate_kmem_mutex);
2893
2894 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2895 {
2896 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2897 memcg_kmem_is_active(memcg);
2898 }
2899
2900 /*
2901 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2902 * in the memcg_cache_params struct.
2903 */
2904 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2905 {
2906 struct kmem_cache *cachep;
2907
2908 VM_BUG_ON(p->is_root_cache);
2909 cachep = p->root_cache;
2910 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2911 }
2912
2913 #ifdef CONFIG_SLABINFO
2914 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2915 {
2916 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2917 struct memcg_cache_params *params;
2918
2919 if (!memcg_can_account_kmem(memcg))
2920 return -EIO;
2921
2922 print_slabinfo_header(m);
2923
2924 mutex_lock(&memcg_slab_mutex);
2925 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2926 cache_show(memcg_params_to_cache(params), m);
2927 mutex_unlock(&memcg_slab_mutex);
2928
2929 return 0;
2930 }
2931 #endif
2932
2933 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2934 {
2935 struct res_counter *fail_res;
2936 int ret = 0;
2937
2938 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2939 if (ret)
2940 return ret;
2941
2942 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2943 oom_gfp_allowed(gfp));
2944 if (ret == -EINTR) {
2945 /*
2946 * mem_cgroup_try_charge() chosed to bypass to root due to
2947 * OOM kill or fatal signal. Since our only options are to
2948 * either fail the allocation or charge it to this cgroup, do
2949 * it as a temporary condition. But we can't fail. From a
2950 * kmem/slab perspective, the cache has already been selected,
2951 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2952 * our minds.
2953 *
2954 * This condition will only trigger if the task entered
2955 * memcg_charge_kmem in a sane state, but was OOM-killed during
2956 * mem_cgroup_try_charge() above. Tasks that were already
2957 * dying when the allocation triggers should have been already
2958 * directed to the root cgroup in memcontrol.h
2959 */
2960 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2961 if (do_swap_account)
2962 res_counter_charge_nofail(&memcg->memsw, size,
2963 &fail_res);
2964 ret = 0;
2965 } else if (ret)
2966 res_counter_uncharge(&memcg->kmem, size);
2967
2968 return ret;
2969 }
2970
2971 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2972 {
2973 res_counter_uncharge(&memcg->res, size);
2974 if (do_swap_account)
2975 res_counter_uncharge(&memcg->memsw, size);
2976
2977 /* Not down to 0 */
2978 if (res_counter_uncharge(&memcg->kmem, size))
2979 return;
2980
2981 /*
2982 * Releases a reference taken in kmem_cgroup_css_offline in case
2983 * this last uncharge is racing with the offlining code or it is
2984 * outliving the memcg existence.
2985 *
2986 * The memory barrier imposed by test&clear is paired with the
2987 * explicit one in memcg_kmem_mark_dead().
2988 */
2989 if (memcg_kmem_test_and_clear_dead(memcg))
2990 css_put(&memcg->css);
2991 }
2992
2993 /*
2994 * helper for acessing a memcg's index. It will be used as an index in the
2995 * child cache array in kmem_cache, and also to derive its name. This function
2996 * will return -1 when this is not a kmem-limited memcg.
2997 */
2998 int memcg_cache_id(struct mem_cgroup *memcg)
2999 {
3000 return memcg ? memcg->kmemcg_id : -1;
3001 }
3002
3003 static size_t memcg_caches_array_size(int num_groups)
3004 {
3005 ssize_t size;
3006 if (num_groups <= 0)
3007 return 0;
3008
3009 size = 2 * num_groups;
3010 if (size < MEMCG_CACHES_MIN_SIZE)
3011 size = MEMCG_CACHES_MIN_SIZE;
3012 else if (size > MEMCG_CACHES_MAX_SIZE)
3013 size = MEMCG_CACHES_MAX_SIZE;
3014
3015 return size;
3016 }
3017
3018 /*
3019 * We should update the current array size iff all caches updates succeed. This
3020 * can only be done from the slab side. The slab mutex needs to be held when
3021 * calling this.
3022 */
3023 void memcg_update_array_size(int num)
3024 {
3025 if (num > memcg_limited_groups_array_size)
3026 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3027 }
3028
3029 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3030 {
3031 struct memcg_cache_params *cur_params = s->memcg_params;
3032
3033 VM_BUG_ON(!is_root_cache(s));
3034
3035 if (num_groups > memcg_limited_groups_array_size) {
3036 int i;
3037 struct memcg_cache_params *new_params;
3038 ssize_t size = memcg_caches_array_size(num_groups);
3039
3040 size *= sizeof(void *);
3041 size += offsetof(struct memcg_cache_params, memcg_caches);
3042
3043 new_params = kzalloc(size, GFP_KERNEL);
3044 if (!new_params)
3045 return -ENOMEM;
3046
3047 new_params->is_root_cache = true;
3048
3049 /*
3050 * There is the chance it will be bigger than
3051 * memcg_limited_groups_array_size, if we failed an allocation
3052 * in a cache, in which case all caches updated before it, will
3053 * have a bigger array.
3054 *
3055 * But if that is the case, the data after
3056 * memcg_limited_groups_array_size is certainly unused
3057 */
3058 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3059 if (!cur_params->memcg_caches[i])
3060 continue;
3061 new_params->memcg_caches[i] =
3062 cur_params->memcg_caches[i];
3063 }
3064
3065 /*
3066 * Ideally, we would wait until all caches succeed, and only
3067 * then free the old one. But this is not worth the extra
3068 * pointer per-cache we'd have to have for this.
3069 *
3070 * It is not a big deal if some caches are left with a size
3071 * bigger than the others. And all updates will reset this
3072 * anyway.
3073 */
3074 rcu_assign_pointer(s->memcg_params, new_params);
3075 if (cur_params)
3076 kfree_rcu(cur_params, rcu_head);
3077 }
3078 return 0;
3079 }
3080
3081 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3082 struct kmem_cache *root_cache)
3083 {
3084 size_t size;
3085
3086 if (!memcg_kmem_enabled())
3087 return 0;
3088
3089 if (!memcg) {
3090 size = offsetof(struct memcg_cache_params, memcg_caches);
3091 size += memcg_limited_groups_array_size * sizeof(void *);
3092 } else
3093 size = sizeof(struct memcg_cache_params);
3094
3095 s->memcg_params = kzalloc(size, GFP_KERNEL);
3096 if (!s->memcg_params)
3097 return -ENOMEM;
3098
3099 if (memcg) {
3100 s->memcg_params->memcg = memcg;
3101 s->memcg_params->root_cache = root_cache;
3102 css_get(&memcg->css);
3103 } else
3104 s->memcg_params->is_root_cache = true;
3105
3106 return 0;
3107 }
3108
3109 void memcg_free_cache_params(struct kmem_cache *s)
3110 {
3111 if (!s->memcg_params)
3112 return;
3113 if (!s->memcg_params->is_root_cache)
3114 css_put(&s->memcg_params->memcg->css);
3115 kfree(s->memcg_params);
3116 }
3117
3118 static void memcg_register_cache(struct mem_cgroup *memcg,
3119 struct kmem_cache *root_cache)
3120 {
3121 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
3122 memcg_slab_mutex */
3123 struct kmem_cache *cachep;
3124 int id;
3125
3126 lockdep_assert_held(&memcg_slab_mutex);
3127
3128 id = memcg_cache_id(memcg);
3129
3130 /*
3131 * Since per-memcg caches are created asynchronously on first
3132 * allocation (see memcg_kmem_get_cache()), several threads can try to
3133 * create the same cache, but only one of them may succeed.
3134 */
3135 if (cache_from_memcg_idx(root_cache, id))
3136 return;
3137
3138 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
3139 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
3140 /*
3141 * If we could not create a memcg cache, do not complain, because
3142 * that's not critical at all as we can always proceed with the root
3143 * cache.
3144 */
3145 if (!cachep)
3146 return;
3147
3148 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3149
3150 /*
3151 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3152 * barrier here to ensure nobody will see the kmem_cache partially
3153 * initialized.
3154 */
3155 smp_wmb();
3156
3157 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
3158 root_cache->memcg_params->memcg_caches[id] = cachep;
3159 }
3160
3161 static void memcg_unregister_cache(struct kmem_cache *cachep)
3162 {
3163 struct kmem_cache *root_cache;
3164 struct mem_cgroup *memcg;
3165 int id;
3166
3167 lockdep_assert_held(&memcg_slab_mutex);
3168
3169 BUG_ON(is_root_cache(cachep));
3170
3171 root_cache = cachep->memcg_params->root_cache;
3172 memcg = cachep->memcg_params->memcg;
3173 id = memcg_cache_id(memcg);
3174
3175 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
3176 root_cache->memcg_params->memcg_caches[id] = NULL;
3177
3178 list_del(&cachep->memcg_params->list);
3179
3180 kmem_cache_destroy(cachep);
3181 }
3182
3183 /*
3184 * During the creation a new cache, we need to disable our accounting mechanism
3185 * altogether. This is true even if we are not creating, but rather just
3186 * enqueing new caches to be created.
3187 *
3188 * This is because that process will trigger allocations; some visible, like
3189 * explicit kmallocs to auxiliary data structures, name strings and internal
3190 * cache structures; some well concealed, like INIT_WORK() that can allocate
3191 * objects during debug.
3192 *
3193 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3194 * to it. This may not be a bounded recursion: since the first cache creation
3195 * failed to complete (waiting on the allocation), we'll just try to create the
3196 * cache again, failing at the same point.
3197 *
3198 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3199 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3200 * inside the following two functions.
3201 */
3202 static inline void memcg_stop_kmem_account(void)
3203 {
3204 VM_BUG_ON(!current->mm);
3205 current->memcg_kmem_skip_account++;
3206 }
3207
3208 static inline void memcg_resume_kmem_account(void)
3209 {
3210 VM_BUG_ON(!current->mm);
3211 current->memcg_kmem_skip_account--;
3212 }
3213
3214 int __memcg_cleanup_cache_params(struct kmem_cache *s)
3215 {
3216 struct kmem_cache *c;
3217 int i, failed = 0;
3218
3219 mutex_lock(&memcg_slab_mutex);
3220 for_each_memcg_cache_index(i) {
3221 c = cache_from_memcg_idx(s, i);
3222 if (!c)
3223 continue;
3224
3225 memcg_unregister_cache(c);
3226
3227 if (cache_from_memcg_idx(s, i))
3228 failed++;
3229 }
3230 mutex_unlock(&memcg_slab_mutex);
3231 return failed;
3232 }
3233
3234 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3235 {
3236 struct kmem_cache *cachep;
3237 struct memcg_cache_params *params, *tmp;
3238
3239 if (!memcg_kmem_is_active(memcg))
3240 return;
3241
3242 mutex_lock(&memcg_slab_mutex);
3243 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
3244 cachep = memcg_params_to_cache(params);
3245 kmem_cache_shrink(cachep);
3246 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3247 memcg_unregister_cache(cachep);
3248 }
3249 mutex_unlock(&memcg_slab_mutex);
3250 }
3251
3252 struct memcg_register_cache_work {
3253 struct mem_cgroup *memcg;
3254 struct kmem_cache *cachep;
3255 struct work_struct work;
3256 };
3257
3258 static void memcg_register_cache_func(struct work_struct *w)
3259 {
3260 struct memcg_register_cache_work *cw =
3261 container_of(w, struct memcg_register_cache_work, work);
3262 struct mem_cgroup *memcg = cw->memcg;
3263 struct kmem_cache *cachep = cw->cachep;
3264
3265 mutex_lock(&memcg_slab_mutex);
3266 memcg_register_cache(memcg, cachep);
3267 mutex_unlock(&memcg_slab_mutex);
3268
3269 css_put(&memcg->css);
3270 kfree(cw);
3271 }
3272
3273 /*
3274 * Enqueue the creation of a per-memcg kmem_cache.
3275 */
3276 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
3277 struct kmem_cache *cachep)
3278 {
3279 struct memcg_register_cache_work *cw;
3280
3281 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
3282 if (cw == NULL) {
3283 css_put(&memcg->css);
3284 return;
3285 }
3286
3287 cw->memcg = memcg;
3288 cw->cachep = cachep;
3289
3290 INIT_WORK(&cw->work, memcg_register_cache_func);
3291 schedule_work(&cw->work);
3292 }
3293
3294 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
3295 struct kmem_cache *cachep)
3296 {
3297 /*
3298 * We need to stop accounting when we kmalloc, because if the
3299 * corresponding kmalloc cache is not yet created, the first allocation
3300 * in __memcg_schedule_register_cache will recurse.
3301 *
3302 * However, it is better to enclose the whole function. Depending on
3303 * the debugging options enabled, INIT_WORK(), for instance, can
3304 * trigger an allocation. This too, will make us recurse. Because at
3305 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3306 * the safest choice is to do it like this, wrapping the whole function.
3307 */
3308 memcg_stop_kmem_account();
3309 __memcg_schedule_register_cache(memcg, cachep);
3310 memcg_resume_kmem_account();
3311 }
3312
3313 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
3314 {
3315 int res;
3316
3317 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp,
3318 PAGE_SIZE << order);
3319 if (!res)
3320 atomic_add(1 << order, &cachep->memcg_params->nr_pages);
3321 return res;
3322 }
3323
3324 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
3325 {
3326 memcg_uncharge_kmem(cachep->memcg_params->memcg, PAGE_SIZE << order);
3327 atomic_sub(1 << order, &cachep->memcg_params->nr_pages);
3328 }
3329
3330 /*
3331 * Return the kmem_cache we're supposed to use for a slab allocation.
3332 * We try to use the current memcg's version of the cache.
3333 *
3334 * If the cache does not exist yet, if we are the first user of it,
3335 * we either create it immediately, if possible, or create it asynchronously
3336 * in a workqueue.
3337 * In the latter case, we will let the current allocation go through with
3338 * the original cache.
3339 *
3340 * Can't be called in interrupt context or from kernel threads.
3341 * This function needs to be called with rcu_read_lock() held.
3342 */
3343 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3344 gfp_t gfp)
3345 {
3346 struct mem_cgroup *memcg;
3347 struct kmem_cache *memcg_cachep;
3348
3349 VM_BUG_ON(!cachep->memcg_params);
3350 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3351
3352 if (!current->mm || current->memcg_kmem_skip_account)
3353 return cachep;
3354
3355 rcu_read_lock();
3356 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3357
3358 if (!memcg_can_account_kmem(memcg))
3359 goto out;
3360
3361 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3362 if (likely(memcg_cachep)) {
3363 cachep = memcg_cachep;
3364 goto out;
3365 }
3366
3367 /* The corresponding put will be done in the workqueue. */
3368 if (!css_tryget(&memcg->css))
3369 goto out;
3370 rcu_read_unlock();
3371
3372 /*
3373 * If we are in a safe context (can wait, and not in interrupt
3374 * context), we could be be predictable and return right away.
3375 * This would guarantee that the allocation being performed
3376 * already belongs in the new cache.
3377 *
3378 * However, there are some clashes that can arrive from locking.
3379 * For instance, because we acquire the slab_mutex while doing
3380 * memcg_create_kmem_cache, this means no further allocation
3381 * could happen with the slab_mutex held. So it's better to
3382 * defer everything.
3383 */
3384 memcg_schedule_register_cache(memcg, cachep);
3385 return cachep;
3386 out:
3387 rcu_read_unlock();
3388 return cachep;
3389 }
3390
3391 /*
3392 * We need to verify if the allocation against current->mm->owner's memcg is
3393 * possible for the given order. But the page is not allocated yet, so we'll
3394 * need a further commit step to do the final arrangements.
3395 *
3396 * It is possible for the task to switch cgroups in this mean time, so at
3397 * commit time, we can't rely on task conversion any longer. We'll then use
3398 * the handle argument to return to the caller which cgroup we should commit
3399 * against. We could also return the memcg directly and avoid the pointer
3400 * passing, but a boolean return value gives better semantics considering
3401 * the compiled-out case as well.
3402 *
3403 * Returning true means the allocation is possible.
3404 */
3405 bool
3406 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3407 {
3408 struct mem_cgroup *memcg;
3409 int ret;
3410
3411 *_memcg = NULL;
3412
3413 /*
3414 * Disabling accounting is only relevant for some specific memcg
3415 * internal allocations. Therefore we would initially not have such
3416 * check here, since direct calls to the page allocator that are
3417 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3418 * outside memcg core. We are mostly concerned with cache allocations,
3419 * and by having this test at memcg_kmem_get_cache, we are already able
3420 * to relay the allocation to the root cache and bypass the memcg cache
3421 * altogether.
3422 *
3423 * There is one exception, though: the SLUB allocator does not create
3424 * large order caches, but rather service large kmallocs directly from
3425 * the page allocator. Therefore, the following sequence when backed by
3426 * the SLUB allocator:
3427 *
3428 * memcg_stop_kmem_account();
3429 * kmalloc(<large_number>)
3430 * memcg_resume_kmem_account();
3431 *
3432 * would effectively ignore the fact that we should skip accounting,
3433 * since it will drive us directly to this function without passing
3434 * through the cache selector memcg_kmem_get_cache. Such large
3435 * allocations are extremely rare but can happen, for instance, for the
3436 * cache arrays. We bring this test here.
3437 */
3438 if (!current->mm || current->memcg_kmem_skip_account)
3439 return true;
3440
3441 memcg = get_mem_cgroup_from_mm(current->mm);
3442
3443 if (!memcg_can_account_kmem(memcg)) {
3444 css_put(&memcg->css);
3445 return true;
3446 }
3447
3448 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3449 if (!ret)
3450 *_memcg = memcg;
3451
3452 css_put(&memcg->css);
3453 return (ret == 0);
3454 }
3455
3456 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3457 int order)
3458 {
3459 struct page_cgroup *pc;
3460
3461 VM_BUG_ON(mem_cgroup_is_root(memcg));
3462
3463 /* The page allocation failed. Revert */
3464 if (!page) {
3465 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3466 return;
3467 }
3468
3469 pc = lookup_page_cgroup(page);
3470 lock_page_cgroup(pc);
3471 pc->mem_cgroup = memcg;
3472 SetPageCgroupUsed(pc);
3473 unlock_page_cgroup(pc);
3474 }
3475
3476 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3477 {
3478 struct mem_cgroup *memcg = NULL;
3479 struct page_cgroup *pc;
3480
3481
3482 pc = lookup_page_cgroup(page);
3483 /*
3484 * Fast unlocked return. Theoretically might have changed, have to
3485 * check again after locking.
3486 */
3487 if (!PageCgroupUsed(pc))
3488 return;
3489
3490 lock_page_cgroup(pc);
3491 if (PageCgroupUsed(pc)) {
3492 memcg = pc->mem_cgroup;
3493 ClearPageCgroupUsed(pc);
3494 }
3495 unlock_page_cgroup(pc);
3496
3497 /*
3498 * We trust that only if there is a memcg associated with the page, it
3499 * is a valid allocation
3500 */
3501 if (!memcg)
3502 return;
3503
3504 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3505 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3506 }
3507 #else
3508 static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
3509 {
3510 }
3511 #endif /* CONFIG_MEMCG_KMEM */
3512
3513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3514
3515 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3516 /*
3517 * Because tail pages are not marked as "used", set it. We're under
3518 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3519 * charge/uncharge will be never happen and move_account() is done under
3520 * compound_lock(), so we don't have to take care of races.
3521 */
3522 void mem_cgroup_split_huge_fixup(struct page *head)
3523 {
3524 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3525 struct page_cgroup *pc;
3526 struct mem_cgroup *memcg;
3527 int i;
3528
3529 if (mem_cgroup_disabled())
3530 return;
3531
3532 memcg = head_pc->mem_cgroup;
3533 for (i = 1; i < HPAGE_PMD_NR; i++) {
3534 pc = head_pc + i;
3535 pc->mem_cgroup = memcg;
3536 smp_wmb();/* see __commit_charge() */
3537 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3538 }
3539 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3540 HPAGE_PMD_NR);
3541 }
3542 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3543
3544 /**
3545 * mem_cgroup_move_account - move account of the page
3546 * @page: the page
3547 * @nr_pages: number of regular pages (>1 for huge pages)
3548 * @pc: page_cgroup of the page.
3549 * @from: mem_cgroup which the page is moved from.
3550 * @to: mem_cgroup which the page is moved to. @from != @to.
3551 *
3552 * The caller must confirm following.
3553 * - page is not on LRU (isolate_page() is useful.)
3554 * - compound_lock is held when nr_pages > 1
3555 *
3556 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3557 * from old cgroup.
3558 */
3559 static int mem_cgroup_move_account(struct page *page,
3560 unsigned int nr_pages,
3561 struct page_cgroup *pc,
3562 struct mem_cgroup *from,
3563 struct mem_cgroup *to)
3564 {
3565 unsigned long flags;
3566 int ret;
3567 bool anon = PageAnon(page);
3568
3569 VM_BUG_ON(from == to);
3570 VM_BUG_ON_PAGE(PageLRU(page), page);
3571 /*
3572 * The page is isolated from LRU. So, collapse function
3573 * will not handle this page. But page splitting can happen.
3574 * Do this check under compound_page_lock(). The caller should
3575 * hold it.
3576 */
3577 ret = -EBUSY;
3578 if (nr_pages > 1 && !PageTransHuge(page))
3579 goto out;
3580
3581 lock_page_cgroup(pc);
3582
3583 ret = -EINVAL;
3584 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3585 goto unlock;
3586
3587 move_lock_mem_cgroup(from, &flags);
3588
3589 if (!anon && page_mapped(page)) {
3590 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3591 nr_pages);
3592 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3593 nr_pages);
3594 }
3595
3596 if (PageWriteback(page)) {
3597 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3598 nr_pages);
3599 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3600 nr_pages);
3601 }
3602
3603 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3604
3605 /* caller should have done css_get */
3606 pc->mem_cgroup = to;
3607 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3608 move_unlock_mem_cgroup(from, &flags);
3609 ret = 0;
3610 unlock:
3611 unlock_page_cgroup(pc);
3612 /*
3613 * check events
3614 */
3615 memcg_check_events(to, page);
3616 memcg_check_events(from, page);
3617 out:
3618 return ret;
3619 }
3620
3621 /**
3622 * mem_cgroup_move_parent - moves page to the parent group
3623 * @page: the page to move
3624 * @pc: page_cgroup of the page
3625 * @child: page's cgroup
3626 *
3627 * move charges to its parent or the root cgroup if the group has no
3628 * parent (aka use_hierarchy==0).
3629 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3630 * mem_cgroup_move_account fails) the failure is always temporary and
3631 * it signals a race with a page removal/uncharge or migration. In the
3632 * first case the page is on the way out and it will vanish from the LRU
3633 * on the next attempt and the call should be retried later.
3634 * Isolation from the LRU fails only if page has been isolated from
3635 * the LRU since we looked at it and that usually means either global
3636 * reclaim or migration going on. The page will either get back to the
3637 * LRU or vanish.
3638 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3639 * (!PageCgroupUsed) or moved to a different group. The page will
3640 * disappear in the next attempt.
3641 */
3642 static int mem_cgroup_move_parent(struct page *page,
3643 struct page_cgroup *pc,
3644 struct mem_cgroup *child)
3645 {
3646 struct mem_cgroup *parent;
3647 unsigned int nr_pages;
3648 unsigned long uninitialized_var(flags);
3649 int ret;
3650
3651 VM_BUG_ON(mem_cgroup_is_root(child));
3652
3653 ret = -EBUSY;
3654 if (!get_page_unless_zero(page))
3655 goto out;
3656 if (isolate_lru_page(page))
3657 goto put;
3658
3659 nr_pages = hpage_nr_pages(page);
3660
3661 parent = parent_mem_cgroup(child);
3662 /*
3663 * If no parent, move charges to root cgroup.
3664 */
3665 if (!parent)
3666 parent = root_mem_cgroup;
3667
3668 if (nr_pages > 1) {
3669 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3670 flags = compound_lock_irqsave(page);
3671 }
3672
3673 ret = mem_cgroup_move_account(page, nr_pages,
3674 pc, child, parent);
3675 if (!ret)
3676 __mem_cgroup_cancel_local_charge(child, nr_pages);
3677
3678 if (nr_pages > 1)
3679 compound_unlock_irqrestore(page, flags);
3680 putback_lru_page(page);
3681 put:
3682 put_page(page);
3683 out:
3684 return ret;
3685 }
3686
3687 int mem_cgroup_charge_anon(struct page *page,
3688 struct mm_struct *mm, gfp_t gfp_mask)
3689 {
3690 unsigned int nr_pages = 1;
3691 struct mem_cgroup *memcg;
3692 bool oom = true;
3693
3694 if (mem_cgroup_disabled())
3695 return 0;
3696
3697 VM_BUG_ON_PAGE(page_mapped(page), page);
3698 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3699 VM_BUG_ON(!mm);
3700
3701 if (PageTransHuge(page)) {
3702 nr_pages <<= compound_order(page);
3703 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3704 /*
3705 * Never OOM-kill a process for a huge page. The
3706 * fault handler will fall back to regular pages.
3707 */
3708 oom = false;
3709 }
3710
3711 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3712 if (!memcg)
3713 return -ENOMEM;
3714 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3715 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3716 return 0;
3717 }
3718
3719 /*
3720 * While swap-in, try_charge -> commit or cancel, the page is locked.
3721 * And when try_charge() successfully returns, one refcnt to memcg without
3722 * struct page_cgroup is acquired. This refcnt will be consumed by
3723 * "commit()" or removed by "cancel()"
3724 */
3725 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3726 struct page *page,
3727 gfp_t mask,
3728 struct mem_cgroup **memcgp)
3729 {
3730 struct mem_cgroup *memcg = NULL;
3731 struct page_cgroup *pc;
3732 int ret;
3733
3734 pc = lookup_page_cgroup(page);
3735 /*
3736 * Every swap fault against a single page tries to charge the
3737 * page, bail as early as possible. shmem_unuse() encounters
3738 * already charged pages, too. The USED bit is protected by
3739 * the page lock, which serializes swap cache removal, which
3740 * in turn serializes uncharging.
3741 */
3742 if (PageCgroupUsed(pc))
3743 goto out;
3744 if (do_swap_account)
3745 memcg = try_get_mem_cgroup_from_page(page);
3746 if (!memcg)
3747 memcg = get_mem_cgroup_from_mm(mm);
3748 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3749 css_put(&memcg->css);
3750 if (ret == -EINTR)
3751 memcg = root_mem_cgroup;
3752 else if (ret)
3753 return ret;
3754 out:
3755 *memcgp = memcg;
3756 return 0;
3757 }
3758
3759 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3760 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3761 {
3762 if (mem_cgroup_disabled()) {
3763 *memcgp = NULL;
3764 return 0;
3765 }
3766 /*
3767 * A racing thread's fault, or swapoff, may have already
3768 * updated the pte, and even removed page from swap cache: in
3769 * those cases unuse_pte()'s pte_same() test will fail; but
3770 * there's also a KSM case which does need to charge the page.
3771 */
3772 if (!PageSwapCache(page)) {
3773 struct mem_cgroup *memcg;
3774
3775 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3776 if (!memcg)
3777 return -ENOMEM;
3778 *memcgp = memcg;
3779 return 0;
3780 }
3781 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3782 }
3783
3784 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3785 {
3786 if (mem_cgroup_disabled())
3787 return;
3788 if (!memcg)
3789 return;
3790 __mem_cgroup_cancel_charge(memcg, 1);
3791 }
3792
3793 static void
3794 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3795 enum charge_type ctype)
3796 {
3797 if (mem_cgroup_disabled())
3798 return;
3799 if (!memcg)
3800 return;
3801
3802 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3803 /*
3804 * Now swap is on-memory. This means this page may be
3805 * counted both as mem and swap....double count.
3806 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3807 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3808 * may call delete_from_swap_cache() before reach here.
3809 */
3810 if (do_swap_account && PageSwapCache(page)) {
3811 swp_entry_t ent = {.val = page_private(page)};
3812 mem_cgroup_uncharge_swap(ent);
3813 }
3814 }
3815
3816 void mem_cgroup_commit_charge_swapin(struct page *page,
3817 struct mem_cgroup *memcg)
3818 {
3819 __mem_cgroup_commit_charge_swapin(page, memcg,
3820 MEM_CGROUP_CHARGE_TYPE_ANON);
3821 }
3822
3823 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3824 gfp_t gfp_mask)
3825 {
3826 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3827 struct mem_cgroup *memcg;
3828 int ret;
3829
3830 if (mem_cgroup_disabled())
3831 return 0;
3832 if (PageCompound(page))
3833 return 0;
3834
3835 if (PageSwapCache(page)) { /* shmem */
3836 ret = __mem_cgroup_try_charge_swapin(mm, page,
3837 gfp_mask, &memcg);
3838 if (ret)
3839 return ret;
3840 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3841 return 0;
3842 }
3843
3844 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3845 if (!memcg)
3846 return -ENOMEM;
3847 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3848 return 0;
3849 }
3850
3851 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3852 unsigned int nr_pages,
3853 const enum charge_type ctype)
3854 {
3855 struct memcg_batch_info *batch = NULL;
3856 bool uncharge_memsw = true;
3857
3858 /* If swapout, usage of swap doesn't decrease */
3859 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3860 uncharge_memsw = false;
3861
3862 batch = &current->memcg_batch;
3863 /*
3864 * In usual, we do css_get() when we remember memcg pointer.
3865 * But in this case, we keep res->usage until end of a series of
3866 * uncharges. Then, it's ok to ignore memcg's refcnt.
3867 */
3868 if (!batch->memcg)
3869 batch->memcg = memcg;
3870 /*
3871 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3872 * In those cases, all pages freed continuously can be expected to be in
3873 * the same cgroup and we have chance to coalesce uncharges.
3874 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3875 * because we want to do uncharge as soon as possible.
3876 */
3877
3878 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3879 goto direct_uncharge;
3880
3881 if (nr_pages > 1)
3882 goto direct_uncharge;
3883
3884 /*
3885 * In typical case, batch->memcg == mem. This means we can
3886 * merge a series of uncharges to an uncharge of res_counter.
3887 * If not, we uncharge res_counter ony by one.
3888 */
3889 if (batch->memcg != memcg)
3890 goto direct_uncharge;
3891 /* remember freed charge and uncharge it later */
3892 batch->nr_pages++;
3893 if (uncharge_memsw)
3894 batch->memsw_nr_pages++;
3895 return;
3896 direct_uncharge:
3897 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
3898 if (uncharge_memsw)
3899 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3900 if (unlikely(batch->memcg != memcg))
3901 memcg_oom_recover(memcg);
3902 }
3903
3904 /*
3905 * uncharge if !page_mapped(page)
3906 */
3907 static struct mem_cgroup *
3908 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3909 bool end_migration)
3910 {
3911 struct mem_cgroup *memcg = NULL;
3912 unsigned int nr_pages = 1;
3913 struct page_cgroup *pc;
3914 bool anon;
3915
3916 if (mem_cgroup_disabled())
3917 return NULL;
3918
3919 if (PageTransHuge(page)) {
3920 nr_pages <<= compound_order(page);
3921 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3922 }
3923 /*
3924 * Check if our page_cgroup is valid
3925 */
3926 pc = lookup_page_cgroup(page);
3927 if (unlikely(!PageCgroupUsed(pc)))
3928 return NULL;
3929
3930 lock_page_cgroup(pc);
3931
3932 memcg = pc->mem_cgroup;
3933
3934 if (!PageCgroupUsed(pc))
3935 goto unlock_out;
3936
3937 anon = PageAnon(page);
3938
3939 switch (ctype) {
3940 case MEM_CGROUP_CHARGE_TYPE_ANON:
3941 /*
3942 * Generally PageAnon tells if it's the anon statistics to be
3943 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3944 * used before page reached the stage of being marked PageAnon.
3945 */
3946 anon = true;
3947 /* fallthrough */
3948 case MEM_CGROUP_CHARGE_TYPE_DROP:
3949 /* See mem_cgroup_prepare_migration() */
3950 if (page_mapped(page))
3951 goto unlock_out;
3952 /*
3953 * Pages under migration may not be uncharged. But
3954 * end_migration() /must/ be the one uncharging the
3955 * unused post-migration page and so it has to call
3956 * here with the migration bit still set. See the
3957 * res_counter handling below.
3958 */
3959 if (!end_migration && PageCgroupMigration(pc))
3960 goto unlock_out;
3961 break;
3962 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3963 if (!PageAnon(page)) { /* Shared memory */
3964 if (page->mapping && !page_is_file_cache(page))
3965 goto unlock_out;
3966 } else if (page_mapped(page)) /* Anon */
3967 goto unlock_out;
3968 break;
3969 default:
3970 break;
3971 }
3972
3973 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
3974
3975 ClearPageCgroupUsed(pc);
3976 /*
3977 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3978 * freed from LRU. This is safe because uncharged page is expected not
3979 * to be reused (freed soon). Exception is SwapCache, it's handled by
3980 * special functions.
3981 */
3982
3983 unlock_page_cgroup(pc);
3984 /*
3985 * even after unlock, we have memcg->res.usage here and this memcg
3986 * will never be freed, so it's safe to call css_get().
3987 */
3988 memcg_check_events(memcg, page);
3989 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3990 mem_cgroup_swap_statistics(memcg, true);
3991 css_get(&memcg->css);
3992 }
3993 /*
3994 * Migration does not charge the res_counter for the
3995 * replacement page, so leave it alone when phasing out the
3996 * page that is unused after the migration.
3997 */
3998 if (!end_migration && !mem_cgroup_is_root(memcg))
3999 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4000
4001 return memcg;
4002
4003 unlock_out:
4004 unlock_page_cgroup(pc);
4005 return NULL;
4006 }
4007
4008 void mem_cgroup_uncharge_page(struct page *page)
4009 {
4010 /* early check. */
4011 if (page_mapped(page))
4012 return;
4013 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4014 /*
4015 * If the page is in swap cache, uncharge should be deferred
4016 * to the swap path, which also properly accounts swap usage
4017 * and handles memcg lifetime.
4018 *
4019 * Note that this check is not stable and reclaim may add the
4020 * page to swap cache at any time after this. However, if the
4021 * page is not in swap cache by the time page->mapcount hits
4022 * 0, there won't be any page table references to the swap
4023 * slot, and reclaim will free it and not actually write the
4024 * page to disk.
4025 */
4026 if (PageSwapCache(page))
4027 return;
4028 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4029 }
4030
4031 void mem_cgroup_uncharge_cache_page(struct page *page)
4032 {
4033 VM_BUG_ON_PAGE(page_mapped(page), page);
4034 VM_BUG_ON_PAGE(page->mapping, page);
4035 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4036 }
4037
4038 /*
4039 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4040 * In that cases, pages are freed continuously and we can expect pages
4041 * are in the same memcg. All these calls itself limits the number of
4042 * pages freed at once, then uncharge_start/end() is called properly.
4043 * This may be called prural(2) times in a context,
4044 */
4045
4046 void mem_cgroup_uncharge_start(void)
4047 {
4048 current->memcg_batch.do_batch++;
4049 /* We can do nest. */
4050 if (current->memcg_batch.do_batch == 1) {
4051 current->memcg_batch.memcg = NULL;
4052 current->memcg_batch.nr_pages = 0;
4053 current->memcg_batch.memsw_nr_pages = 0;
4054 }
4055 }
4056
4057 void mem_cgroup_uncharge_end(void)
4058 {
4059 struct memcg_batch_info *batch = &current->memcg_batch;
4060
4061 if (!batch->do_batch)
4062 return;
4063
4064 batch->do_batch--;
4065 if (batch->do_batch) /* If stacked, do nothing. */
4066 return;
4067
4068 if (!batch->memcg)
4069 return;
4070 /*
4071 * This "batch->memcg" is valid without any css_get/put etc...
4072 * bacause we hide charges behind us.
4073 */
4074 if (batch->nr_pages)
4075 res_counter_uncharge(&batch->memcg->res,
4076 batch->nr_pages * PAGE_SIZE);
4077 if (batch->memsw_nr_pages)
4078 res_counter_uncharge(&batch->memcg->memsw,
4079 batch->memsw_nr_pages * PAGE_SIZE);
4080 memcg_oom_recover(batch->memcg);
4081 /* forget this pointer (for sanity check) */
4082 batch->memcg = NULL;
4083 }
4084
4085 #ifdef CONFIG_SWAP
4086 /*
4087 * called after __delete_from_swap_cache() and drop "page" account.
4088 * memcg information is recorded to swap_cgroup of "ent"
4089 */
4090 void
4091 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4092 {
4093 struct mem_cgroup *memcg;
4094 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4095
4096 if (!swapout) /* this was a swap cache but the swap is unused ! */
4097 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4098
4099 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4100
4101 /*
4102 * record memcg information, if swapout && memcg != NULL,
4103 * css_get() was called in uncharge().
4104 */
4105 if (do_swap_account && swapout && memcg)
4106 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4107 }
4108 #endif
4109
4110 #ifdef CONFIG_MEMCG_SWAP
4111 /*
4112 * called from swap_entry_free(). remove record in swap_cgroup and
4113 * uncharge "memsw" account.
4114 */
4115 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4116 {
4117 struct mem_cgroup *memcg;
4118 unsigned short id;
4119
4120 if (!do_swap_account)
4121 return;
4122
4123 id = swap_cgroup_record(ent, 0);
4124 rcu_read_lock();
4125 memcg = mem_cgroup_lookup(id);
4126 if (memcg) {
4127 /*
4128 * We uncharge this because swap is freed.
4129 * This memcg can be obsolete one. We avoid calling css_tryget
4130 */
4131 if (!mem_cgroup_is_root(memcg))
4132 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4133 mem_cgroup_swap_statistics(memcg, false);
4134 css_put(&memcg->css);
4135 }
4136 rcu_read_unlock();
4137 }
4138
4139 /**
4140 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4141 * @entry: swap entry to be moved
4142 * @from: mem_cgroup which the entry is moved from
4143 * @to: mem_cgroup which the entry is moved to
4144 *
4145 * It succeeds only when the swap_cgroup's record for this entry is the same
4146 * as the mem_cgroup's id of @from.
4147 *
4148 * Returns 0 on success, -EINVAL on failure.
4149 *
4150 * The caller must have charged to @to, IOW, called res_counter_charge() about
4151 * both res and memsw, and called css_get().
4152 */
4153 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4154 struct mem_cgroup *from, struct mem_cgroup *to)
4155 {
4156 unsigned short old_id, new_id;
4157
4158 old_id = mem_cgroup_id(from);
4159 new_id = mem_cgroup_id(to);
4160
4161 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4162 mem_cgroup_swap_statistics(from, false);
4163 mem_cgroup_swap_statistics(to, true);
4164 /*
4165 * This function is only called from task migration context now.
4166 * It postpones res_counter and refcount handling till the end
4167 * of task migration(mem_cgroup_clear_mc()) for performance
4168 * improvement. But we cannot postpone css_get(to) because if
4169 * the process that has been moved to @to does swap-in, the
4170 * refcount of @to might be decreased to 0.
4171 *
4172 * We are in attach() phase, so the cgroup is guaranteed to be
4173 * alive, so we can just call css_get().
4174 */
4175 css_get(&to->css);
4176 return 0;
4177 }
4178 return -EINVAL;
4179 }
4180 #else
4181 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4182 struct mem_cgroup *from, struct mem_cgroup *to)
4183 {
4184 return -EINVAL;
4185 }
4186 #endif
4187
4188 /*
4189 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4190 * page belongs to.
4191 */
4192 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4193 struct mem_cgroup **memcgp)
4194 {
4195 struct mem_cgroup *memcg = NULL;
4196 unsigned int nr_pages = 1;
4197 struct page_cgroup *pc;
4198 enum charge_type ctype;
4199
4200 *memcgp = NULL;
4201
4202 if (mem_cgroup_disabled())
4203 return;
4204
4205 if (PageTransHuge(page))
4206 nr_pages <<= compound_order(page);
4207
4208 pc = lookup_page_cgroup(page);
4209 lock_page_cgroup(pc);
4210 if (PageCgroupUsed(pc)) {
4211 memcg = pc->mem_cgroup;
4212 css_get(&memcg->css);
4213 /*
4214 * At migrating an anonymous page, its mapcount goes down
4215 * to 0 and uncharge() will be called. But, even if it's fully
4216 * unmapped, migration may fail and this page has to be
4217 * charged again. We set MIGRATION flag here and delay uncharge
4218 * until end_migration() is called
4219 *
4220 * Corner Case Thinking
4221 * A)
4222 * When the old page was mapped as Anon and it's unmap-and-freed
4223 * while migration was ongoing.
4224 * If unmap finds the old page, uncharge() of it will be delayed
4225 * until end_migration(). If unmap finds a new page, it's
4226 * uncharged when it make mapcount to be 1->0. If unmap code
4227 * finds swap_migration_entry, the new page will not be mapped
4228 * and end_migration() will find it(mapcount==0).
4229 *
4230 * B)
4231 * When the old page was mapped but migraion fails, the kernel
4232 * remaps it. A charge for it is kept by MIGRATION flag even
4233 * if mapcount goes down to 0. We can do remap successfully
4234 * without charging it again.
4235 *
4236 * C)
4237 * The "old" page is under lock_page() until the end of
4238 * migration, so, the old page itself will not be swapped-out.
4239 * If the new page is swapped out before end_migraton, our
4240 * hook to usual swap-out path will catch the event.
4241 */
4242 if (PageAnon(page))
4243 SetPageCgroupMigration(pc);
4244 }
4245 unlock_page_cgroup(pc);
4246 /*
4247 * If the page is not charged at this point,
4248 * we return here.
4249 */
4250 if (!memcg)
4251 return;
4252
4253 *memcgp = memcg;
4254 /*
4255 * We charge new page before it's used/mapped. So, even if unlock_page()
4256 * is called before end_migration, we can catch all events on this new
4257 * page. In the case new page is migrated but not remapped, new page's
4258 * mapcount will be finally 0 and we call uncharge in end_migration().
4259 */
4260 if (PageAnon(page))
4261 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4262 else
4263 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4264 /*
4265 * The page is committed to the memcg, but it's not actually
4266 * charged to the res_counter since we plan on replacing the
4267 * old one and only one page is going to be left afterwards.
4268 */
4269 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4270 }
4271
4272 /* remove redundant charge if migration failed*/
4273 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4274 struct page *oldpage, struct page *newpage, bool migration_ok)
4275 {
4276 struct page *used, *unused;
4277 struct page_cgroup *pc;
4278 bool anon;
4279
4280 if (!memcg)
4281 return;
4282
4283 if (!migration_ok) {
4284 used = oldpage;
4285 unused = newpage;
4286 } else {
4287 used = newpage;
4288 unused = oldpage;
4289 }
4290 anon = PageAnon(used);
4291 __mem_cgroup_uncharge_common(unused,
4292 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4293 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4294 true);
4295 css_put(&memcg->css);
4296 /*
4297 * We disallowed uncharge of pages under migration because mapcount
4298 * of the page goes down to zero, temporarly.
4299 * Clear the flag and check the page should be charged.
4300 */
4301 pc = lookup_page_cgroup(oldpage);
4302 lock_page_cgroup(pc);
4303 ClearPageCgroupMigration(pc);
4304 unlock_page_cgroup(pc);
4305
4306 /*
4307 * If a page is a file cache, radix-tree replacement is very atomic
4308 * and we can skip this check. When it was an Anon page, its mapcount
4309 * goes down to 0. But because we added MIGRATION flage, it's not
4310 * uncharged yet. There are several case but page->mapcount check
4311 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4312 * check. (see prepare_charge() also)
4313 */
4314 if (anon)
4315 mem_cgroup_uncharge_page(used);
4316 }
4317
4318 /*
4319 * At replace page cache, newpage is not under any memcg but it's on
4320 * LRU. So, this function doesn't touch res_counter but handles LRU
4321 * in correct way. Both pages are locked so we cannot race with uncharge.
4322 */
4323 void mem_cgroup_replace_page_cache(struct page *oldpage,
4324 struct page *newpage)
4325 {
4326 struct mem_cgroup *memcg = NULL;
4327 struct page_cgroup *pc;
4328 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4329
4330 if (mem_cgroup_disabled())
4331 return;
4332
4333 pc = lookup_page_cgroup(oldpage);
4334 /* fix accounting on old pages */
4335 lock_page_cgroup(pc);
4336 if (PageCgroupUsed(pc)) {
4337 memcg = pc->mem_cgroup;
4338 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4339 ClearPageCgroupUsed(pc);
4340 }
4341 unlock_page_cgroup(pc);
4342
4343 /*
4344 * When called from shmem_replace_page(), in some cases the
4345 * oldpage has already been charged, and in some cases not.
4346 */
4347 if (!memcg)
4348 return;
4349 /*
4350 * Even if newpage->mapping was NULL before starting replacement,
4351 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4352 * LRU while we overwrite pc->mem_cgroup.
4353 */
4354 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4355 }
4356
4357 #ifdef CONFIG_DEBUG_VM
4358 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4359 {
4360 struct page_cgroup *pc;
4361
4362 pc = lookup_page_cgroup(page);
4363 /*
4364 * Can be NULL while feeding pages into the page allocator for
4365 * the first time, i.e. during boot or memory hotplug;
4366 * or when mem_cgroup_disabled().
4367 */
4368 if (likely(pc) && PageCgroupUsed(pc))
4369 return pc;
4370 return NULL;
4371 }
4372
4373 bool mem_cgroup_bad_page_check(struct page *page)
4374 {
4375 if (mem_cgroup_disabled())
4376 return false;
4377
4378 return lookup_page_cgroup_used(page) != NULL;
4379 }
4380
4381 void mem_cgroup_print_bad_page(struct page *page)
4382 {
4383 struct page_cgroup *pc;
4384
4385 pc = lookup_page_cgroup_used(page);
4386 if (pc) {
4387 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4388 pc, pc->flags, pc->mem_cgroup);
4389 }
4390 }
4391 #endif
4392
4393 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4394 unsigned long long val)
4395 {
4396 int retry_count;
4397 u64 memswlimit, memlimit;
4398 int ret = 0;
4399 int children = mem_cgroup_count_children(memcg);
4400 u64 curusage, oldusage;
4401 int enlarge;
4402
4403 /*
4404 * For keeping hierarchical_reclaim simple, how long we should retry
4405 * is depends on callers. We set our retry-count to be function
4406 * of # of children which we should visit in this loop.
4407 */
4408 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4409
4410 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4411
4412 enlarge = 0;
4413 while (retry_count) {
4414 if (signal_pending(current)) {
4415 ret = -EINTR;
4416 break;
4417 }
4418 /*
4419 * Rather than hide all in some function, I do this in
4420 * open coded manner. You see what this really does.
4421 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4422 */
4423 mutex_lock(&set_limit_mutex);
4424 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4425 if (memswlimit < val) {
4426 ret = -EINVAL;
4427 mutex_unlock(&set_limit_mutex);
4428 break;
4429 }
4430
4431 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4432 if (memlimit < val)
4433 enlarge = 1;
4434
4435 ret = res_counter_set_limit(&memcg->res, val);
4436 if (!ret) {
4437 if (memswlimit == val)
4438 memcg->memsw_is_minimum = true;
4439 else
4440 memcg->memsw_is_minimum = false;
4441 }
4442 mutex_unlock(&set_limit_mutex);
4443
4444 if (!ret)
4445 break;
4446
4447 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4448 MEM_CGROUP_RECLAIM_SHRINK);
4449 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4450 /* Usage is reduced ? */
4451 if (curusage >= oldusage)
4452 retry_count--;
4453 else
4454 oldusage = curusage;
4455 }
4456 if (!ret && enlarge)
4457 memcg_oom_recover(memcg);
4458
4459 return ret;
4460 }
4461
4462 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4463 unsigned long long val)
4464 {
4465 int retry_count;
4466 u64 memlimit, memswlimit, oldusage, curusage;
4467 int children = mem_cgroup_count_children(memcg);
4468 int ret = -EBUSY;
4469 int enlarge = 0;
4470
4471 /* see mem_cgroup_resize_res_limit */
4472 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4473 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4474 while (retry_count) {
4475 if (signal_pending(current)) {
4476 ret = -EINTR;
4477 break;
4478 }
4479 /*
4480 * Rather than hide all in some function, I do this in
4481 * open coded manner. You see what this really does.
4482 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4483 */
4484 mutex_lock(&set_limit_mutex);
4485 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4486 if (memlimit > val) {
4487 ret = -EINVAL;
4488 mutex_unlock(&set_limit_mutex);
4489 break;
4490 }
4491 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4492 if (memswlimit < val)
4493 enlarge = 1;
4494 ret = res_counter_set_limit(&memcg->memsw, val);
4495 if (!ret) {
4496 if (memlimit == val)
4497 memcg->memsw_is_minimum = true;
4498 else
4499 memcg->memsw_is_minimum = false;
4500 }
4501 mutex_unlock(&set_limit_mutex);
4502
4503 if (!ret)
4504 break;
4505
4506 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4507 MEM_CGROUP_RECLAIM_NOSWAP |
4508 MEM_CGROUP_RECLAIM_SHRINK);
4509 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4510 /* Usage is reduced ? */
4511 if (curusage >= oldusage)
4512 retry_count--;
4513 else
4514 oldusage = curusage;
4515 }
4516 if (!ret && enlarge)
4517 memcg_oom_recover(memcg);
4518 return ret;
4519 }
4520
4521 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4522 gfp_t gfp_mask,
4523 unsigned long *total_scanned)
4524 {
4525 unsigned long nr_reclaimed = 0;
4526 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4527 unsigned long reclaimed;
4528 int loop = 0;
4529 struct mem_cgroup_tree_per_zone *mctz;
4530 unsigned long long excess;
4531 unsigned long nr_scanned;
4532
4533 if (order > 0)
4534 return 0;
4535
4536 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4537 /*
4538 * This loop can run a while, specially if mem_cgroup's continuously
4539 * keep exceeding their soft limit and putting the system under
4540 * pressure
4541 */
4542 do {
4543 if (next_mz)
4544 mz = next_mz;
4545 else
4546 mz = mem_cgroup_largest_soft_limit_node(mctz);
4547 if (!mz)
4548 break;
4549
4550 nr_scanned = 0;
4551 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4552 gfp_mask, &nr_scanned);
4553 nr_reclaimed += reclaimed;
4554 *total_scanned += nr_scanned;
4555 spin_lock(&mctz->lock);
4556
4557 /*
4558 * If we failed to reclaim anything from this memory cgroup
4559 * it is time to move on to the next cgroup
4560 */
4561 next_mz = NULL;
4562 if (!reclaimed) {
4563 do {
4564 /*
4565 * Loop until we find yet another one.
4566 *
4567 * By the time we get the soft_limit lock
4568 * again, someone might have aded the
4569 * group back on the RB tree. Iterate to
4570 * make sure we get a different mem.
4571 * mem_cgroup_largest_soft_limit_node returns
4572 * NULL if no other cgroup is present on
4573 * the tree
4574 */
4575 next_mz =
4576 __mem_cgroup_largest_soft_limit_node(mctz);
4577 if (next_mz == mz)
4578 css_put(&next_mz->memcg->css);
4579 else /* next_mz == NULL or other memcg */
4580 break;
4581 } while (1);
4582 }
4583 __mem_cgroup_remove_exceeded(mz, mctz);
4584 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4585 /*
4586 * One school of thought says that we should not add
4587 * back the node to the tree if reclaim returns 0.
4588 * But our reclaim could return 0, simply because due
4589 * to priority we are exposing a smaller subset of
4590 * memory to reclaim from. Consider this as a longer
4591 * term TODO.
4592 */
4593 /* If excess == 0, no tree ops */
4594 __mem_cgroup_insert_exceeded(mz, mctz, excess);
4595 spin_unlock(&mctz->lock);
4596 css_put(&mz->memcg->css);
4597 loop++;
4598 /*
4599 * Could not reclaim anything and there are no more
4600 * mem cgroups to try or we seem to be looping without
4601 * reclaiming anything.
4602 */
4603 if (!nr_reclaimed &&
4604 (next_mz == NULL ||
4605 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4606 break;
4607 } while (!nr_reclaimed);
4608 if (next_mz)
4609 css_put(&next_mz->memcg->css);
4610 return nr_reclaimed;
4611 }
4612
4613 /**
4614 * mem_cgroup_force_empty_list - clears LRU of a group
4615 * @memcg: group to clear
4616 * @node: NUMA node
4617 * @zid: zone id
4618 * @lru: lru to to clear
4619 *
4620 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4621 * reclaim the pages page themselves - pages are moved to the parent (or root)
4622 * group.
4623 */
4624 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4625 int node, int zid, enum lru_list lru)
4626 {
4627 struct lruvec *lruvec;
4628 unsigned long flags;
4629 struct list_head *list;
4630 struct page *busy;
4631 struct zone *zone;
4632
4633 zone = &NODE_DATA(node)->node_zones[zid];
4634 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4635 list = &lruvec->lists[lru];
4636
4637 busy = NULL;
4638 do {
4639 struct page_cgroup *pc;
4640 struct page *page;
4641
4642 spin_lock_irqsave(&zone->lru_lock, flags);
4643 if (list_empty(list)) {
4644 spin_unlock_irqrestore(&zone->lru_lock, flags);
4645 break;
4646 }
4647 page = list_entry(list->prev, struct page, lru);
4648 if (busy == page) {
4649 list_move(&page->lru, list);
4650 busy = NULL;
4651 spin_unlock_irqrestore(&zone->lru_lock, flags);
4652 continue;
4653 }
4654 spin_unlock_irqrestore(&zone->lru_lock, flags);
4655
4656 pc = lookup_page_cgroup(page);
4657
4658 if (mem_cgroup_move_parent(page, pc, memcg)) {
4659 /* found lock contention or "pc" is obsolete. */
4660 busy = page;
4661 } else
4662 busy = NULL;
4663 cond_resched();
4664 } while (!list_empty(list));
4665 }
4666
4667 /*
4668 * make mem_cgroup's charge to be 0 if there is no task by moving
4669 * all the charges and pages to the parent.
4670 * This enables deleting this mem_cgroup.
4671 *
4672 * Caller is responsible for holding css reference on the memcg.
4673 */
4674 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4675 {
4676 int node, zid;
4677 u64 usage;
4678
4679 do {
4680 /* This is for making all *used* pages to be on LRU. */
4681 lru_add_drain_all();
4682 drain_all_stock_sync(memcg);
4683 mem_cgroup_start_move(memcg);
4684 for_each_node_state(node, N_MEMORY) {
4685 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4686 enum lru_list lru;
4687 for_each_lru(lru) {
4688 mem_cgroup_force_empty_list(memcg,
4689 node, zid, lru);
4690 }
4691 }
4692 }
4693 mem_cgroup_end_move(memcg);
4694 memcg_oom_recover(memcg);
4695 cond_resched();
4696
4697 /*
4698 * Kernel memory may not necessarily be trackable to a specific
4699 * process. So they are not migrated, and therefore we can't
4700 * expect their value to drop to 0 here.
4701 * Having res filled up with kmem only is enough.
4702 *
4703 * This is a safety check because mem_cgroup_force_empty_list
4704 * could have raced with mem_cgroup_replace_page_cache callers
4705 * so the lru seemed empty but the page could have been added
4706 * right after the check. RES_USAGE should be safe as we always
4707 * charge before adding to the LRU.
4708 */
4709 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4710 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4711 } while (usage > 0);
4712 }
4713
4714 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4715 {
4716 lockdep_assert_held(&memcg_create_mutex);
4717 /*
4718 * The lock does not prevent addition or deletion to the list
4719 * of children, but it prevents a new child from being
4720 * initialized based on this parent in css_online(), so it's
4721 * enough to decide whether hierarchically inherited
4722 * attributes can still be changed or not.
4723 */
4724 return memcg->use_hierarchy &&
4725 !list_empty(&memcg->css.cgroup->children);
4726 }
4727
4728 /*
4729 * Reclaims as many pages from the given memcg as possible and moves
4730 * the rest to the parent.
4731 *
4732 * Caller is responsible for holding css reference for memcg.
4733 */
4734 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4735 {
4736 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4737 struct cgroup *cgrp = memcg->css.cgroup;
4738
4739 /* returns EBUSY if there is a task or if we come here twice. */
4740 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4741 return -EBUSY;
4742
4743 /* we call try-to-free pages for make this cgroup empty */
4744 lru_add_drain_all();
4745 /* try to free all pages in this cgroup */
4746 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4747 int progress;
4748
4749 if (signal_pending(current))
4750 return -EINTR;
4751
4752 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4753 false);
4754 if (!progress) {
4755 nr_retries--;
4756 /* maybe some writeback is necessary */
4757 congestion_wait(BLK_RW_ASYNC, HZ/10);
4758 }
4759
4760 }
4761 lru_add_drain();
4762 mem_cgroup_reparent_charges(memcg);
4763
4764 return 0;
4765 }
4766
4767 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4768 unsigned int event)
4769 {
4770 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4771
4772 if (mem_cgroup_is_root(memcg))
4773 return -EINVAL;
4774 return mem_cgroup_force_empty(memcg);
4775 }
4776
4777 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4778 struct cftype *cft)
4779 {
4780 return mem_cgroup_from_css(css)->use_hierarchy;
4781 }
4782
4783 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4784 struct cftype *cft, u64 val)
4785 {
4786 int retval = 0;
4787 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4788 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4789
4790 mutex_lock(&memcg_create_mutex);
4791
4792 if (memcg->use_hierarchy == val)
4793 goto out;
4794
4795 /*
4796 * If parent's use_hierarchy is set, we can't make any modifications
4797 * in the child subtrees. If it is unset, then the change can
4798 * occur, provided the current cgroup has no children.
4799 *
4800 * For the root cgroup, parent_mem is NULL, we allow value to be
4801 * set if there are no children.
4802 */
4803 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4804 (val == 1 || val == 0)) {
4805 if (list_empty(&memcg->css.cgroup->children))
4806 memcg->use_hierarchy = val;
4807 else
4808 retval = -EBUSY;
4809 } else
4810 retval = -EINVAL;
4811
4812 out:
4813 mutex_unlock(&memcg_create_mutex);
4814
4815 return retval;
4816 }
4817
4818
4819 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4820 enum mem_cgroup_stat_index idx)
4821 {
4822 struct mem_cgroup *iter;
4823 long val = 0;
4824
4825 /* Per-cpu values can be negative, use a signed accumulator */
4826 for_each_mem_cgroup_tree(iter, memcg)
4827 val += mem_cgroup_read_stat(iter, idx);
4828
4829 if (val < 0) /* race ? */
4830 val = 0;
4831 return val;
4832 }
4833
4834 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4835 {
4836 u64 val;
4837
4838 if (!mem_cgroup_is_root(memcg)) {
4839 if (!swap)
4840 return res_counter_read_u64(&memcg->res, RES_USAGE);
4841 else
4842 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4843 }
4844
4845 /*
4846 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4847 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4848 */
4849 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4850 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4851
4852 if (swap)
4853 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4854
4855 return val << PAGE_SHIFT;
4856 }
4857
4858 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4859 struct cftype *cft)
4860 {
4861 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4862 u64 val;
4863 int name;
4864 enum res_type type;
4865
4866 type = MEMFILE_TYPE(cft->private);
4867 name = MEMFILE_ATTR(cft->private);
4868
4869 switch (type) {
4870 case _MEM:
4871 if (name == RES_USAGE)
4872 val = mem_cgroup_usage(memcg, false);
4873 else
4874 val = res_counter_read_u64(&memcg->res, name);
4875 break;
4876 case _MEMSWAP:
4877 if (name == RES_USAGE)
4878 val = mem_cgroup_usage(memcg, true);
4879 else
4880 val = res_counter_read_u64(&memcg->memsw, name);
4881 break;
4882 case _KMEM:
4883 val = res_counter_read_u64(&memcg->kmem, name);
4884 break;
4885 default:
4886 BUG();
4887 }
4888
4889 return val;
4890 }
4891
4892 #ifdef CONFIG_MEMCG_KMEM
4893 /* should be called with activate_kmem_mutex held */
4894 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
4895 unsigned long long limit)
4896 {
4897 int err = 0;
4898 int memcg_id;
4899
4900 if (memcg_kmem_is_active(memcg))
4901 return 0;
4902
4903 /*
4904 * We are going to allocate memory for data shared by all memory
4905 * cgroups so let's stop accounting here.
4906 */
4907 memcg_stop_kmem_account();
4908
4909 /*
4910 * For simplicity, we won't allow this to be disabled. It also can't
4911 * be changed if the cgroup has children already, or if tasks had
4912 * already joined.
4913 *
4914 * If tasks join before we set the limit, a person looking at
4915 * kmem.usage_in_bytes will have no way to determine when it took
4916 * place, which makes the value quite meaningless.
4917 *
4918 * After it first became limited, changes in the value of the limit are
4919 * of course permitted.
4920 */
4921 mutex_lock(&memcg_create_mutex);
4922 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
4923 err = -EBUSY;
4924 mutex_unlock(&memcg_create_mutex);
4925 if (err)
4926 goto out;
4927
4928 memcg_id = ida_simple_get(&kmem_limited_groups,
4929 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
4930 if (memcg_id < 0) {
4931 err = memcg_id;
4932 goto out;
4933 }
4934
4935 /*
4936 * Make sure we have enough space for this cgroup in each root cache's
4937 * memcg_params.
4938 */
4939 mutex_lock(&memcg_slab_mutex);
4940 err = memcg_update_all_caches(memcg_id + 1);
4941 mutex_unlock(&memcg_slab_mutex);
4942 if (err)
4943 goto out_rmid;
4944
4945 memcg->kmemcg_id = memcg_id;
4946 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4947
4948 /*
4949 * We couldn't have accounted to this cgroup, because it hasn't got the
4950 * active bit set yet, so this should succeed.
4951 */
4952 err = res_counter_set_limit(&memcg->kmem, limit);
4953 VM_BUG_ON(err);
4954
4955 static_key_slow_inc(&memcg_kmem_enabled_key);
4956 /*
4957 * Setting the active bit after enabling static branching will
4958 * guarantee no one starts accounting before all call sites are
4959 * patched.
4960 */
4961 memcg_kmem_set_active(memcg);
4962 out:
4963 memcg_resume_kmem_account();
4964 return err;
4965
4966 out_rmid:
4967 ida_simple_remove(&kmem_limited_groups, memcg_id);
4968 goto out;
4969 }
4970
4971 static int memcg_activate_kmem(struct mem_cgroup *memcg,
4972 unsigned long long limit)
4973 {
4974 int ret;
4975
4976 mutex_lock(&activate_kmem_mutex);
4977 ret = __memcg_activate_kmem(memcg, limit);
4978 mutex_unlock(&activate_kmem_mutex);
4979 return ret;
4980 }
4981
4982 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
4983 unsigned long long val)
4984 {
4985 int ret;
4986
4987 if (!memcg_kmem_is_active(memcg))
4988 ret = memcg_activate_kmem(memcg, val);
4989 else
4990 ret = res_counter_set_limit(&memcg->kmem, val);
4991 return ret;
4992 }
4993
4994 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
4995 {
4996 int ret = 0;
4997 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4998
4999 if (!parent)
5000 return 0;
5001
5002 mutex_lock(&activate_kmem_mutex);
5003 /*
5004 * If the parent cgroup is not kmem-active now, it cannot be activated
5005 * after this point, because it has at least one child already.
5006 */
5007 if (memcg_kmem_is_active(parent))
5008 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5009 mutex_unlock(&activate_kmem_mutex);
5010 return ret;
5011 }
5012 #else
5013 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5014 unsigned long long val)
5015 {
5016 return -EINVAL;
5017 }
5018 #endif /* CONFIG_MEMCG_KMEM */
5019
5020 /*
5021 * The user of this function is...
5022 * RES_LIMIT.
5023 */
5024 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5025 char *buffer)
5026 {
5027 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5028 enum res_type type;
5029 int name;
5030 unsigned long long val;
5031 int ret;
5032
5033 type = MEMFILE_TYPE(cft->private);
5034 name = MEMFILE_ATTR(cft->private);
5035
5036 switch (name) {
5037 case RES_LIMIT:
5038 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5039 ret = -EINVAL;
5040 break;
5041 }
5042 /* This function does all necessary parse...reuse it */
5043 ret = res_counter_memparse_write_strategy(buffer, &val);
5044 if (ret)
5045 break;
5046 if (type == _MEM)
5047 ret = mem_cgroup_resize_limit(memcg, val);
5048 else if (type == _MEMSWAP)
5049 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5050 else if (type == _KMEM)
5051 ret = memcg_update_kmem_limit(memcg, val);
5052 else
5053 return -EINVAL;
5054 break;
5055 case RES_SOFT_LIMIT:
5056 ret = res_counter_memparse_write_strategy(buffer, &val);
5057 if (ret)
5058 break;
5059 /*
5060 * For memsw, soft limits are hard to implement in terms
5061 * of semantics, for now, we support soft limits for
5062 * control without swap
5063 */
5064 if (type == _MEM)
5065 ret = res_counter_set_soft_limit(&memcg->res, val);
5066 else
5067 ret = -EINVAL;
5068 break;
5069 default:
5070 ret = -EINVAL; /* should be BUG() ? */
5071 break;
5072 }
5073 return ret;
5074 }
5075
5076 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5077 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5078 {
5079 unsigned long long min_limit, min_memsw_limit, tmp;
5080
5081 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5082 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5083 if (!memcg->use_hierarchy)
5084 goto out;
5085
5086 while (css_parent(&memcg->css)) {
5087 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5088 if (!memcg->use_hierarchy)
5089 break;
5090 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5091 min_limit = min(min_limit, tmp);
5092 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5093 min_memsw_limit = min(min_memsw_limit, tmp);
5094 }
5095 out:
5096 *mem_limit = min_limit;
5097 *memsw_limit = min_memsw_limit;
5098 }
5099
5100 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5101 {
5102 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5103 int name;
5104 enum res_type type;
5105
5106 type = MEMFILE_TYPE(event);
5107 name = MEMFILE_ATTR(event);
5108
5109 switch (name) {
5110 case RES_MAX_USAGE:
5111 if (type == _MEM)
5112 res_counter_reset_max(&memcg->res);
5113 else if (type == _MEMSWAP)
5114 res_counter_reset_max(&memcg->memsw);
5115 else if (type == _KMEM)
5116 res_counter_reset_max(&memcg->kmem);
5117 else
5118 return -EINVAL;
5119 break;
5120 case RES_FAILCNT:
5121 if (type == _MEM)
5122 res_counter_reset_failcnt(&memcg->res);
5123 else if (type == _MEMSWAP)
5124 res_counter_reset_failcnt(&memcg->memsw);
5125 else if (type == _KMEM)
5126 res_counter_reset_failcnt(&memcg->kmem);
5127 else
5128 return -EINVAL;
5129 break;
5130 }
5131
5132 return 0;
5133 }
5134
5135 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5136 struct cftype *cft)
5137 {
5138 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5139 }
5140
5141 #ifdef CONFIG_MMU
5142 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5143 struct cftype *cft, u64 val)
5144 {
5145 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5146
5147 if (val >= (1 << NR_MOVE_TYPE))
5148 return -EINVAL;
5149
5150 /*
5151 * No kind of locking is needed in here, because ->can_attach() will
5152 * check this value once in the beginning of the process, and then carry
5153 * on with stale data. This means that changes to this value will only
5154 * affect task migrations starting after the change.
5155 */
5156 memcg->move_charge_at_immigrate = val;
5157 return 0;
5158 }
5159 #else
5160 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5161 struct cftype *cft, u64 val)
5162 {
5163 return -ENOSYS;
5164 }
5165 #endif
5166
5167 #ifdef CONFIG_NUMA
5168 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5169 {
5170 struct numa_stat {
5171 const char *name;
5172 unsigned int lru_mask;
5173 };
5174
5175 static const struct numa_stat stats[] = {
5176 { "total", LRU_ALL },
5177 { "file", LRU_ALL_FILE },
5178 { "anon", LRU_ALL_ANON },
5179 { "unevictable", BIT(LRU_UNEVICTABLE) },
5180 };
5181 const struct numa_stat *stat;
5182 int nid;
5183 unsigned long nr;
5184 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5185
5186 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5187 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5188 seq_printf(m, "%s=%lu", stat->name, nr);
5189 for_each_node_state(nid, N_MEMORY) {
5190 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5191 stat->lru_mask);
5192 seq_printf(m, " N%d=%lu", nid, nr);
5193 }
5194 seq_putc(m, '\n');
5195 }
5196
5197 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5198 struct mem_cgroup *iter;
5199
5200 nr = 0;
5201 for_each_mem_cgroup_tree(iter, memcg)
5202 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5203 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5204 for_each_node_state(nid, N_MEMORY) {
5205 nr = 0;
5206 for_each_mem_cgroup_tree(iter, memcg)
5207 nr += mem_cgroup_node_nr_lru_pages(
5208 iter, nid, stat->lru_mask);
5209 seq_printf(m, " N%d=%lu", nid, nr);
5210 }
5211 seq_putc(m, '\n');
5212 }
5213
5214 return 0;
5215 }
5216 #endif /* CONFIG_NUMA */
5217
5218 static inline void mem_cgroup_lru_names_not_uptodate(void)
5219 {
5220 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5221 }
5222
5223 static int memcg_stat_show(struct seq_file *m, void *v)
5224 {
5225 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5226 struct mem_cgroup *mi;
5227 unsigned int i;
5228
5229 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5230 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5231 continue;
5232 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5233 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5234 }
5235
5236 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5237 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5238 mem_cgroup_read_events(memcg, i));
5239
5240 for (i = 0; i < NR_LRU_LISTS; i++)
5241 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5242 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5243
5244 /* Hierarchical information */
5245 {
5246 unsigned long long limit, memsw_limit;
5247 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5248 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5249 if (do_swap_account)
5250 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5251 memsw_limit);
5252 }
5253
5254 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5255 long long val = 0;
5256
5257 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5258 continue;
5259 for_each_mem_cgroup_tree(mi, memcg)
5260 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5261 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5262 }
5263
5264 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5265 unsigned long long val = 0;
5266
5267 for_each_mem_cgroup_tree(mi, memcg)
5268 val += mem_cgroup_read_events(mi, i);
5269 seq_printf(m, "total_%s %llu\n",
5270 mem_cgroup_events_names[i], val);
5271 }
5272
5273 for (i = 0; i < NR_LRU_LISTS; i++) {
5274 unsigned long long val = 0;
5275
5276 for_each_mem_cgroup_tree(mi, memcg)
5277 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5278 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5279 }
5280
5281 #ifdef CONFIG_DEBUG_VM
5282 {
5283 int nid, zid;
5284 struct mem_cgroup_per_zone *mz;
5285 struct zone_reclaim_stat *rstat;
5286 unsigned long recent_rotated[2] = {0, 0};
5287 unsigned long recent_scanned[2] = {0, 0};
5288
5289 for_each_online_node(nid)
5290 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5291 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
5292 rstat = &mz->lruvec.reclaim_stat;
5293
5294 recent_rotated[0] += rstat->recent_rotated[0];
5295 recent_rotated[1] += rstat->recent_rotated[1];
5296 recent_scanned[0] += rstat->recent_scanned[0];
5297 recent_scanned[1] += rstat->recent_scanned[1];
5298 }
5299 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5300 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5301 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5302 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5303 }
5304 #endif
5305
5306 return 0;
5307 }
5308
5309 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5310 struct cftype *cft)
5311 {
5312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5313
5314 return mem_cgroup_swappiness(memcg);
5315 }
5316
5317 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5318 struct cftype *cft, u64 val)
5319 {
5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5321
5322 if (val > 100)
5323 return -EINVAL;
5324
5325 if (css_parent(css))
5326 memcg->swappiness = val;
5327 else
5328 vm_swappiness = val;
5329
5330 return 0;
5331 }
5332
5333 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5334 {
5335 struct mem_cgroup_threshold_ary *t;
5336 u64 usage;
5337 int i;
5338
5339 rcu_read_lock();
5340 if (!swap)
5341 t = rcu_dereference(memcg->thresholds.primary);
5342 else
5343 t = rcu_dereference(memcg->memsw_thresholds.primary);
5344
5345 if (!t)
5346 goto unlock;
5347
5348 usage = mem_cgroup_usage(memcg, swap);
5349
5350 /*
5351 * current_threshold points to threshold just below or equal to usage.
5352 * If it's not true, a threshold was crossed after last
5353 * call of __mem_cgroup_threshold().
5354 */
5355 i = t->current_threshold;
5356
5357 /*
5358 * Iterate backward over array of thresholds starting from
5359 * current_threshold and check if a threshold is crossed.
5360 * If none of thresholds below usage is crossed, we read
5361 * only one element of the array here.
5362 */
5363 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5364 eventfd_signal(t->entries[i].eventfd, 1);
5365
5366 /* i = current_threshold + 1 */
5367 i++;
5368
5369 /*
5370 * Iterate forward over array of thresholds starting from
5371 * current_threshold+1 and check if a threshold is crossed.
5372 * If none of thresholds above usage is crossed, we read
5373 * only one element of the array here.
5374 */
5375 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5376 eventfd_signal(t->entries[i].eventfd, 1);
5377
5378 /* Update current_threshold */
5379 t->current_threshold = i - 1;
5380 unlock:
5381 rcu_read_unlock();
5382 }
5383
5384 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5385 {
5386 while (memcg) {
5387 __mem_cgroup_threshold(memcg, false);
5388 if (do_swap_account)
5389 __mem_cgroup_threshold(memcg, true);
5390
5391 memcg = parent_mem_cgroup(memcg);
5392 }
5393 }
5394
5395 static int compare_thresholds(const void *a, const void *b)
5396 {
5397 const struct mem_cgroup_threshold *_a = a;
5398 const struct mem_cgroup_threshold *_b = b;
5399
5400 if (_a->threshold > _b->threshold)
5401 return 1;
5402
5403 if (_a->threshold < _b->threshold)
5404 return -1;
5405
5406 return 0;
5407 }
5408
5409 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5410 {
5411 struct mem_cgroup_eventfd_list *ev;
5412
5413 list_for_each_entry(ev, &memcg->oom_notify, list)
5414 eventfd_signal(ev->eventfd, 1);
5415 return 0;
5416 }
5417
5418 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5419 {
5420 struct mem_cgroup *iter;
5421
5422 for_each_mem_cgroup_tree(iter, memcg)
5423 mem_cgroup_oom_notify_cb(iter);
5424 }
5425
5426 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5427 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5428 {
5429 struct mem_cgroup_thresholds *thresholds;
5430 struct mem_cgroup_threshold_ary *new;
5431 u64 threshold, usage;
5432 int i, size, ret;
5433
5434 ret = res_counter_memparse_write_strategy(args, &threshold);
5435 if (ret)
5436 return ret;
5437
5438 mutex_lock(&memcg->thresholds_lock);
5439
5440 if (type == _MEM)
5441 thresholds = &memcg->thresholds;
5442 else if (type == _MEMSWAP)
5443 thresholds = &memcg->memsw_thresholds;
5444 else
5445 BUG();
5446
5447 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5448
5449 /* Check if a threshold crossed before adding a new one */
5450 if (thresholds->primary)
5451 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5452
5453 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5454
5455 /* Allocate memory for new array of thresholds */
5456 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5457 GFP_KERNEL);
5458 if (!new) {
5459 ret = -ENOMEM;
5460 goto unlock;
5461 }
5462 new->size = size;
5463
5464 /* Copy thresholds (if any) to new array */
5465 if (thresholds->primary) {
5466 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5467 sizeof(struct mem_cgroup_threshold));
5468 }
5469
5470 /* Add new threshold */
5471 new->entries[size - 1].eventfd = eventfd;
5472 new->entries[size - 1].threshold = threshold;
5473
5474 /* Sort thresholds. Registering of new threshold isn't time-critical */
5475 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5476 compare_thresholds, NULL);
5477
5478 /* Find current threshold */
5479 new->current_threshold = -1;
5480 for (i = 0; i < size; i++) {
5481 if (new->entries[i].threshold <= usage) {
5482 /*
5483 * new->current_threshold will not be used until
5484 * rcu_assign_pointer(), so it's safe to increment
5485 * it here.
5486 */
5487 ++new->current_threshold;
5488 } else
5489 break;
5490 }
5491
5492 /* Free old spare buffer and save old primary buffer as spare */
5493 kfree(thresholds->spare);
5494 thresholds->spare = thresholds->primary;
5495
5496 rcu_assign_pointer(thresholds->primary, new);
5497
5498 /* To be sure that nobody uses thresholds */
5499 synchronize_rcu();
5500
5501 unlock:
5502 mutex_unlock(&memcg->thresholds_lock);
5503
5504 return ret;
5505 }
5506
5507 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5508 struct eventfd_ctx *eventfd, const char *args)
5509 {
5510 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5511 }
5512
5513 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5514 struct eventfd_ctx *eventfd, const char *args)
5515 {
5516 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5517 }
5518
5519 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5520 struct eventfd_ctx *eventfd, enum res_type type)
5521 {
5522 struct mem_cgroup_thresholds *thresholds;
5523 struct mem_cgroup_threshold_ary *new;
5524 u64 usage;
5525 int i, j, size;
5526
5527 mutex_lock(&memcg->thresholds_lock);
5528 if (type == _MEM)
5529 thresholds = &memcg->thresholds;
5530 else if (type == _MEMSWAP)
5531 thresholds = &memcg->memsw_thresholds;
5532 else
5533 BUG();
5534
5535 if (!thresholds->primary)
5536 goto unlock;
5537
5538 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5539
5540 /* Check if a threshold crossed before removing */
5541 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5542
5543 /* Calculate new number of threshold */
5544 size = 0;
5545 for (i = 0; i < thresholds->primary->size; i++) {
5546 if (thresholds->primary->entries[i].eventfd != eventfd)
5547 size++;
5548 }
5549
5550 new = thresholds->spare;
5551
5552 /* Set thresholds array to NULL if we don't have thresholds */
5553 if (!size) {
5554 kfree(new);
5555 new = NULL;
5556 goto swap_buffers;
5557 }
5558
5559 new->size = size;
5560
5561 /* Copy thresholds and find current threshold */
5562 new->current_threshold = -1;
5563 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5564 if (thresholds->primary->entries[i].eventfd == eventfd)
5565 continue;
5566
5567 new->entries[j] = thresholds->primary->entries[i];
5568 if (new->entries[j].threshold <= usage) {
5569 /*
5570 * new->current_threshold will not be used
5571 * until rcu_assign_pointer(), so it's safe to increment
5572 * it here.
5573 */
5574 ++new->current_threshold;
5575 }
5576 j++;
5577 }
5578
5579 swap_buffers:
5580 /* Swap primary and spare array */
5581 thresholds->spare = thresholds->primary;
5582 /* If all events are unregistered, free the spare array */
5583 if (!new) {
5584 kfree(thresholds->spare);
5585 thresholds->spare = NULL;
5586 }
5587
5588 rcu_assign_pointer(thresholds->primary, new);
5589
5590 /* To be sure that nobody uses thresholds */
5591 synchronize_rcu();
5592 unlock:
5593 mutex_unlock(&memcg->thresholds_lock);
5594 }
5595
5596 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5597 struct eventfd_ctx *eventfd)
5598 {
5599 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5600 }
5601
5602 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5603 struct eventfd_ctx *eventfd)
5604 {
5605 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5606 }
5607
5608 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5609 struct eventfd_ctx *eventfd, const char *args)
5610 {
5611 struct mem_cgroup_eventfd_list *event;
5612
5613 event = kmalloc(sizeof(*event), GFP_KERNEL);
5614 if (!event)
5615 return -ENOMEM;
5616
5617 spin_lock(&memcg_oom_lock);
5618
5619 event->eventfd = eventfd;
5620 list_add(&event->list, &memcg->oom_notify);
5621
5622 /* already in OOM ? */
5623 if (atomic_read(&memcg->under_oom))
5624 eventfd_signal(eventfd, 1);
5625 spin_unlock(&memcg_oom_lock);
5626
5627 return 0;
5628 }
5629
5630 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5631 struct eventfd_ctx *eventfd)
5632 {
5633 struct mem_cgroup_eventfd_list *ev, *tmp;
5634
5635 spin_lock(&memcg_oom_lock);
5636
5637 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5638 if (ev->eventfd == eventfd) {
5639 list_del(&ev->list);
5640 kfree(ev);
5641 }
5642 }
5643
5644 spin_unlock(&memcg_oom_lock);
5645 }
5646
5647 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5648 {
5649 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5650
5651 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5652 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5653 return 0;
5654 }
5655
5656 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5657 struct cftype *cft, u64 val)
5658 {
5659 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5660
5661 /* cannot set to root cgroup and only 0 and 1 are allowed */
5662 if (!css_parent(css) || !((val == 0) || (val == 1)))
5663 return -EINVAL;
5664
5665 memcg->oom_kill_disable = val;
5666 if (!val)
5667 memcg_oom_recover(memcg);
5668
5669 return 0;
5670 }
5671
5672 #ifdef CONFIG_MEMCG_KMEM
5673 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5674 {
5675 int ret;
5676
5677 memcg->kmemcg_id = -1;
5678 ret = memcg_propagate_kmem(memcg);
5679 if (ret)
5680 return ret;
5681
5682 return mem_cgroup_sockets_init(memcg, ss);
5683 }
5684
5685 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5686 {
5687 mem_cgroup_sockets_destroy(memcg);
5688 }
5689
5690 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5691 {
5692 if (!memcg_kmem_is_active(memcg))
5693 return;
5694
5695 /*
5696 * kmem charges can outlive the cgroup. In the case of slab
5697 * pages, for instance, a page contain objects from various
5698 * processes. As we prevent from taking a reference for every
5699 * such allocation we have to be careful when doing uncharge
5700 * (see memcg_uncharge_kmem) and here during offlining.
5701 *
5702 * The idea is that that only the _last_ uncharge which sees
5703 * the dead memcg will drop the last reference. An additional
5704 * reference is taken here before the group is marked dead
5705 * which is then paired with css_put during uncharge resp. here.
5706 *
5707 * Although this might sound strange as this path is called from
5708 * css_offline() when the referencemight have dropped down to 0
5709 * and shouldn't be incremented anymore (css_tryget would fail)
5710 * we do not have other options because of the kmem allocations
5711 * lifetime.
5712 */
5713 css_get(&memcg->css);
5714
5715 memcg_kmem_mark_dead(memcg);
5716
5717 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5718 return;
5719
5720 if (memcg_kmem_test_and_clear_dead(memcg))
5721 css_put(&memcg->css);
5722 }
5723 #else
5724 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5725 {
5726 return 0;
5727 }
5728
5729 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5730 {
5731 }
5732
5733 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5734 {
5735 }
5736 #endif
5737
5738 /*
5739 * DO NOT USE IN NEW FILES.
5740 *
5741 * "cgroup.event_control" implementation.
5742 *
5743 * This is way over-engineered. It tries to support fully configurable
5744 * events for each user. Such level of flexibility is completely
5745 * unnecessary especially in the light of the planned unified hierarchy.
5746 *
5747 * Please deprecate this and replace with something simpler if at all
5748 * possible.
5749 */
5750
5751 /*
5752 * Unregister event and free resources.
5753 *
5754 * Gets called from workqueue.
5755 */
5756 static void memcg_event_remove(struct work_struct *work)
5757 {
5758 struct mem_cgroup_event *event =
5759 container_of(work, struct mem_cgroup_event, remove);
5760 struct mem_cgroup *memcg = event->memcg;
5761
5762 remove_wait_queue(event->wqh, &event->wait);
5763
5764 event->unregister_event(memcg, event->eventfd);
5765
5766 /* Notify userspace the event is going away. */
5767 eventfd_signal(event->eventfd, 1);
5768
5769 eventfd_ctx_put(event->eventfd);
5770 kfree(event);
5771 css_put(&memcg->css);
5772 }
5773
5774 /*
5775 * Gets called on POLLHUP on eventfd when user closes it.
5776 *
5777 * Called with wqh->lock held and interrupts disabled.
5778 */
5779 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5780 int sync, void *key)
5781 {
5782 struct mem_cgroup_event *event =
5783 container_of(wait, struct mem_cgroup_event, wait);
5784 struct mem_cgroup *memcg = event->memcg;
5785 unsigned long flags = (unsigned long)key;
5786
5787 if (flags & POLLHUP) {
5788 /*
5789 * If the event has been detached at cgroup removal, we
5790 * can simply return knowing the other side will cleanup
5791 * for us.
5792 *
5793 * We can't race against event freeing since the other
5794 * side will require wqh->lock via remove_wait_queue(),
5795 * which we hold.
5796 */
5797 spin_lock(&memcg->event_list_lock);
5798 if (!list_empty(&event->list)) {
5799 list_del_init(&event->list);
5800 /*
5801 * We are in atomic context, but cgroup_event_remove()
5802 * may sleep, so we have to call it in workqueue.
5803 */
5804 schedule_work(&event->remove);
5805 }
5806 spin_unlock(&memcg->event_list_lock);
5807 }
5808
5809 return 0;
5810 }
5811
5812 static void memcg_event_ptable_queue_proc(struct file *file,
5813 wait_queue_head_t *wqh, poll_table *pt)
5814 {
5815 struct mem_cgroup_event *event =
5816 container_of(pt, struct mem_cgroup_event, pt);
5817
5818 event->wqh = wqh;
5819 add_wait_queue(wqh, &event->wait);
5820 }
5821
5822 /*
5823 * DO NOT USE IN NEW FILES.
5824 *
5825 * Parse input and register new cgroup event handler.
5826 *
5827 * Input must be in format '<event_fd> <control_fd> <args>'.
5828 * Interpretation of args is defined by control file implementation.
5829 */
5830 static int memcg_write_event_control(struct cgroup_subsys_state *css,
5831 struct cftype *cft, char *buffer)
5832 {
5833 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5834 struct mem_cgroup_event *event;
5835 struct cgroup_subsys_state *cfile_css;
5836 unsigned int efd, cfd;
5837 struct fd efile;
5838 struct fd cfile;
5839 const char *name;
5840 char *endp;
5841 int ret;
5842
5843 efd = simple_strtoul(buffer, &endp, 10);
5844 if (*endp != ' ')
5845 return -EINVAL;
5846 buffer = endp + 1;
5847
5848 cfd = simple_strtoul(buffer, &endp, 10);
5849 if ((*endp != ' ') && (*endp != '\0'))
5850 return -EINVAL;
5851 buffer = endp + 1;
5852
5853 event = kzalloc(sizeof(*event), GFP_KERNEL);
5854 if (!event)
5855 return -ENOMEM;
5856
5857 event->memcg = memcg;
5858 INIT_LIST_HEAD(&event->list);
5859 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5860 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5861 INIT_WORK(&event->remove, memcg_event_remove);
5862
5863 efile = fdget(efd);
5864 if (!efile.file) {
5865 ret = -EBADF;
5866 goto out_kfree;
5867 }
5868
5869 event->eventfd = eventfd_ctx_fileget(efile.file);
5870 if (IS_ERR(event->eventfd)) {
5871 ret = PTR_ERR(event->eventfd);
5872 goto out_put_efile;
5873 }
5874
5875 cfile = fdget(cfd);
5876 if (!cfile.file) {
5877 ret = -EBADF;
5878 goto out_put_eventfd;
5879 }
5880
5881 /* the process need read permission on control file */
5882 /* AV: shouldn't we check that it's been opened for read instead? */
5883 ret = inode_permission(file_inode(cfile.file), MAY_READ);
5884 if (ret < 0)
5885 goto out_put_cfile;
5886
5887 /*
5888 * Determine the event callbacks and set them in @event. This used
5889 * to be done via struct cftype but cgroup core no longer knows
5890 * about these events. The following is crude but the whole thing
5891 * is for compatibility anyway.
5892 *
5893 * DO NOT ADD NEW FILES.
5894 */
5895 name = cfile.file->f_dentry->d_name.name;
5896
5897 if (!strcmp(name, "memory.usage_in_bytes")) {
5898 event->register_event = mem_cgroup_usage_register_event;
5899 event->unregister_event = mem_cgroup_usage_unregister_event;
5900 } else if (!strcmp(name, "memory.oom_control")) {
5901 event->register_event = mem_cgroup_oom_register_event;
5902 event->unregister_event = mem_cgroup_oom_unregister_event;
5903 } else if (!strcmp(name, "memory.pressure_level")) {
5904 event->register_event = vmpressure_register_event;
5905 event->unregister_event = vmpressure_unregister_event;
5906 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5907 event->register_event = memsw_cgroup_usage_register_event;
5908 event->unregister_event = memsw_cgroup_usage_unregister_event;
5909 } else {
5910 ret = -EINVAL;
5911 goto out_put_cfile;
5912 }
5913
5914 /*
5915 * Verify @cfile should belong to @css. Also, remaining events are
5916 * automatically removed on cgroup destruction but the removal is
5917 * asynchronous, so take an extra ref on @css.
5918 */
5919 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
5920 &memory_cgrp_subsys);
5921 ret = -EINVAL;
5922 if (IS_ERR(cfile_css))
5923 goto out_put_cfile;
5924 if (cfile_css != css) {
5925 css_put(cfile_css);
5926 goto out_put_cfile;
5927 }
5928
5929 ret = event->register_event(memcg, event->eventfd, buffer);
5930 if (ret)
5931 goto out_put_css;
5932
5933 efile.file->f_op->poll(efile.file, &event->pt);
5934
5935 spin_lock(&memcg->event_list_lock);
5936 list_add(&event->list, &memcg->event_list);
5937 spin_unlock(&memcg->event_list_lock);
5938
5939 fdput(cfile);
5940 fdput(efile);
5941
5942 return 0;
5943
5944 out_put_css:
5945 css_put(css);
5946 out_put_cfile:
5947 fdput(cfile);
5948 out_put_eventfd:
5949 eventfd_ctx_put(event->eventfd);
5950 out_put_efile:
5951 fdput(efile);
5952 out_kfree:
5953 kfree(event);
5954
5955 return ret;
5956 }
5957
5958 static struct cftype mem_cgroup_files[] = {
5959 {
5960 .name = "usage_in_bytes",
5961 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5962 .read_u64 = mem_cgroup_read_u64,
5963 },
5964 {
5965 .name = "max_usage_in_bytes",
5966 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5967 .trigger = mem_cgroup_reset,
5968 .read_u64 = mem_cgroup_read_u64,
5969 },
5970 {
5971 .name = "limit_in_bytes",
5972 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5973 .write_string = mem_cgroup_write,
5974 .read_u64 = mem_cgroup_read_u64,
5975 },
5976 {
5977 .name = "soft_limit_in_bytes",
5978 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5979 .write_string = mem_cgroup_write,
5980 .read_u64 = mem_cgroup_read_u64,
5981 },
5982 {
5983 .name = "failcnt",
5984 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5985 .trigger = mem_cgroup_reset,
5986 .read_u64 = mem_cgroup_read_u64,
5987 },
5988 {
5989 .name = "stat",
5990 .seq_show = memcg_stat_show,
5991 },
5992 {
5993 .name = "force_empty",
5994 .trigger = mem_cgroup_force_empty_write,
5995 },
5996 {
5997 .name = "use_hierarchy",
5998 .flags = CFTYPE_INSANE,
5999 .write_u64 = mem_cgroup_hierarchy_write,
6000 .read_u64 = mem_cgroup_hierarchy_read,
6001 },
6002 {
6003 .name = "cgroup.event_control", /* XXX: for compat */
6004 .write_string = memcg_write_event_control,
6005 .flags = CFTYPE_NO_PREFIX,
6006 .mode = S_IWUGO,
6007 },
6008 {
6009 .name = "swappiness",
6010 .read_u64 = mem_cgroup_swappiness_read,
6011 .write_u64 = mem_cgroup_swappiness_write,
6012 },
6013 {
6014 .name = "move_charge_at_immigrate",
6015 .read_u64 = mem_cgroup_move_charge_read,
6016 .write_u64 = mem_cgroup_move_charge_write,
6017 },
6018 {
6019 .name = "oom_control",
6020 .seq_show = mem_cgroup_oom_control_read,
6021 .write_u64 = mem_cgroup_oom_control_write,
6022 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6023 },
6024 {
6025 .name = "pressure_level",
6026 },
6027 #ifdef CONFIG_NUMA
6028 {
6029 .name = "numa_stat",
6030 .seq_show = memcg_numa_stat_show,
6031 },
6032 #endif
6033 #ifdef CONFIG_MEMCG_KMEM
6034 {
6035 .name = "kmem.limit_in_bytes",
6036 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6037 .write_string = mem_cgroup_write,
6038 .read_u64 = mem_cgroup_read_u64,
6039 },
6040 {
6041 .name = "kmem.usage_in_bytes",
6042 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6043 .read_u64 = mem_cgroup_read_u64,
6044 },
6045 {
6046 .name = "kmem.failcnt",
6047 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6048 .trigger = mem_cgroup_reset,
6049 .read_u64 = mem_cgroup_read_u64,
6050 },
6051 {
6052 .name = "kmem.max_usage_in_bytes",
6053 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6054 .trigger = mem_cgroup_reset,
6055 .read_u64 = mem_cgroup_read_u64,
6056 },
6057 #ifdef CONFIG_SLABINFO
6058 {
6059 .name = "kmem.slabinfo",
6060 .seq_show = mem_cgroup_slabinfo_read,
6061 },
6062 #endif
6063 #endif
6064 { }, /* terminate */
6065 };
6066
6067 #ifdef CONFIG_MEMCG_SWAP
6068 static struct cftype memsw_cgroup_files[] = {
6069 {
6070 .name = "memsw.usage_in_bytes",
6071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6072 .read_u64 = mem_cgroup_read_u64,
6073 },
6074 {
6075 .name = "memsw.max_usage_in_bytes",
6076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6077 .trigger = mem_cgroup_reset,
6078 .read_u64 = mem_cgroup_read_u64,
6079 },
6080 {
6081 .name = "memsw.limit_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6083 .write_string = mem_cgroup_write,
6084 .read_u64 = mem_cgroup_read_u64,
6085 },
6086 {
6087 .name = "memsw.failcnt",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6089 .trigger = mem_cgroup_reset,
6090 .read_u64 = mem_cgroup_read_u64,
6091 },
6092 { }, /* terminate */
6093 };
6094 #endif
6095 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6096 {
6097 struct mem_cgroup_per_node *pn;
6098 struct mem_cgroup_per_zone *mz;
6099 int zone, tmp = node;
6100 /*
6101 * This routine is called against possible nodes.
6102 * But it's BUG to call kmalloc() against offline node.
6103 *
6104 * TODO: this routine can waste much memory for nodes which will
6105 * never be onlined. It's better to use memory hotplug callback
6106 * function.
6107 */
6108 if (!node_state(node, N_NORMAL_MEMORY))
6109 tmp = -1;
6110 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6111 if (!pn)
6112 return 1;
6113
6114 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6115 mz = &pn->zoneinfo[zone];
6116 lruvec_init(&mz->lruvec);
6117 mz->usage_in_excess = 0;
6118 mz->on_tree = false;
6119 mz->memcg = memcg;
6120 }
6121 memcg->nodeinfo[node] = pn;
6122 return 0;
6123 }
6124
6125 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6126 {
6127 kfree(memcg->nodeinfo[node]);
6128 }
6129
6130 static struct mem_cgroup *mem_cgroup_alloc(void)
6131 {
6132 struct mem_cgroup *memcg;
6133 size_t size;
6134
6135 size = sizeof(struct mem_cgroup);
6136 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6137
6138 memcg = kzalloc(size, GFP_KERNEL);
6139 if (!memcg)
6140 return NULL;
6141
6142 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6143 if (!memcg->stat)
6144 goto out_free;
6145 spin_lock_init(&memcg->pcp_counter_lock);
6146 return memcg;
6147
6148 out_free:
6149 kfree(memcg);
6150 return NULL;
6151 }
6152
6153 /*
6154 * At destroying mem_cgroup, references from swap_cgroup can remain.
6155 * (scanning all at force_empty is too costly...)
6156 *
6157 * Instead of clearing all references at force_empty, we remember
6158 * the number of reference from swap_cgroup and free mem_cgroup when
6159 * it goes down to 0.
6160 *
6161 * Removal of cgroup itself succeeds regardless of refs from swap.
6162 */
6163
6164 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6165 {
6166 int node;
6167
6168 mem_cgroup_remove_from_trees(memcg);
6169
6170 for_each_node(node)
6171 free_mem_cgroup_per_zone_info(memcg, node);
6172
6173 free_percpu(memcg->stat);
6174
6175 /*
6176 * We need to make sure that (at least for now), the jump label
6177 * destruction code runs outside of the cgroup lock. This is because
6178 * get_online_cpus(), which is called from the static_branch update,
6179 * can't be called inside the cgroup_lock. cpusets are the ones
6180 * enforcing this dependency, so if they ever change, we might as well.
6181 *
6182 * schedule_work() will guarantee this happens. Be careful if you need
6183 * to move this code around, and make sure it is outside
6184 * the cgroup_lock.
6185 */
6186 disarm_static_keys(memcg);
6187 kfree(memcg);
6188 }
6189
6190 /*
6191 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6192 */
6193 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6194 {
6195 if (!memcg->res.parent)
6196 return NULL;
6197 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6198 }
6199 EXPORT_SYMBOL(parent_mem_cgroup);
6200
6201 static void __init mem_cgroup_soft_limit_tree_init(void)
6202 {
6203 struct mem_cgroup_tree_per_node *rtpn;
6204 struct mem_cgroup_tree_per_zone *rtpz;
6205 int tmp, node, zone;
6206
6207 for_each_node(node) {
6208 tmp = node;
6209 if (!node_state(node, N_NORMAL_MEMORY))
6210 tmp = -1;
6211 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6212 BUG_ON(!rtpn);
6213
6214 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6215
6216 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6217 rtpz = &rtpn->rb_tree_per_zone[zone];
6218 rtpz->rb_root = RB_ROOT;
6219 spin_lock_init(&rtpz->lock);
6220 }
6221 }
6222 }
6223
6224 static struct cgroup_subsys_state * __ref
6225 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6226 {
6227 struct mem_cgroup *memcg;
6228 long error = -ENOMEM;
6229 int node;
6230
6231 memcg = mem_cgroup_alloc();
6232 if (!memcg)
6233 return ERR_PTR(error);
6234
6235 for_each_node(node)
6236 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6237 goto free_out;
6238
6239 /* root ? */
6240 if (parent_css == NULL) {
6241 root_mem_cgroup = memcg;
6242 res_counter_init(&memcg->res, NULL);
6243 res_counter_init(&memcg->memsw, NULL);
6244 res_counter_init(&memcg->kmem, NULL);
6245 }
6246
6247 memcg->last_scanned_node = MAX_NUMNODES;
6248 INIT_LIST_HEAD(&memcg->oom_notify);
6249 memcg->move_charge_at_immigrate = 0;
6250 mutex_init(&memcg->thresholds_lock);
6251 spin_lock_init(&memcg->move_lock);
6252 vmpressure_init(&memcg->vmpressure);
6253 INIT_LIST_HEAD(&memcg->event_list);
6254 spin_lock_init(&memcg->event_list_lock);
6255
6256 return &memcg->css;
6257
6258 free_out:
6259 __mem_cgroup_free(memcg);
6260 return ERR_PTR(error);
6261 }
6262
6263 static int
6264 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6265 {
6266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6267 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6268
6269 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6270 return -ENOSPC;
6271
6272 if (!parent)
6273 return 0;
6274
6275 mutex_lock(&memcg_create_mutex);
6276
6277 memcg->use_hierarchy = parent->use_hierarchy;
6278 memcg->oom_kill_disable = parent->oom_kill_disable;
6279 memcg->swappiness = mem_cgroup_swappiness(parent);
6280
6281 if (parent->use_hierarchy) {
6282 res_counter_init(&memcg->res, &parent->res);
6283 res_counter_init(&memcg->memsw, &parent->memsw);
6284 res_counter_init(&memcg->kmem, &parent->kmem);
6285
6286 /*
6287 * No need to take a reference to the parent because cgroup
6288 * core guarantees its existence.
6289 */
6290 } else {
6291 res_counter_init(&memcg->res, NULL);
6292 res_counter_init(&memcg->memsw, NULL);
6293 res_counter_init(&memcg->kmem, NULL);
6294 /*
6295 * Deeper hierachy with use_hierarchy == false doesn't make
6296 * much sense so let cgroup subsystem know about this
6297 * unfortunate state in our controller.
6298 */
6299 if (parent != root_mem_cgroup)
6300 memory_cgrp_subsys.broken_hierarchy = true;
6301 }
6302 mutex_unlock(&memcg_create_mutex);
6303
6304 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6305 }
6306
6307 /*
6308 * Announce all parents that a group from their hierarchy is gone.
6309 */
6310 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6311 {
6312 struct mem_cgroup *parent = memcg;
6313
6314 while ((parent = parent_mem_cgroup(parent)))
6315 mem_cgroup_iter_invalidate(parent);
6316
6317 /*
6318 * if the root memcg is not hierarchical we have to check it
6319 * explicitely.
6320 */
6321 if (!root_mem_cgroup->use_hierarchy)
6322 mem_cgroup_iter_invalidate(root_mem_cgroup);
6323 }
6324
6325 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6326 {
6327 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6328 struct mem_cgroup_event *event, *tmp;
6329 struct cgroup_subsys_state *iter;
6330
6331 /*
6332 * Unregister events and notify userspace.
6333 * Notify userspace about cgroup removing only after rmdir of cgroup
6334 * directory to avoid race between userspace and kernelspace.
6335 */
6336 spin_lock(&memcg->event_list_lock);
6337 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6338 list_del_init(&event->list);
6339 schedule_work(&event->remove);
6340 }
6341 spin_unlock(&memcg->event_list_lock);
6342
6343 kmem_cgroup_css_offline(memcg);
6344
6345 mem_cgroup_invalidate_reclaim_iterators(memcg);
6346
6347 /*
6348 * This requires that offlining is serialized. Right now that is
6349 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6350 */
6351 css_for_each_descendant_post(iter, css)
6352 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6353
6354 memcg_unregister_all_caches(memcg);
6355 vmpressure_cleanup(&memcg->vmpressure);
6356 }
6357
6358 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6359 {
6360 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6361 /*
6362 * XXX: css_offline() would be where we should reparent all
6363 * memory to prepare the cgroup for destruction. However,
6364 * memcg does not do css_tryget() and res_counter charging
6365 * under the same RCU lock region, which means that charging
6366 * could race with offlining. Offlining only happens to
6367 * cgroups with no tasks in them but charges can show up
6368 * without any tasks from the swapin path when the target
6369 * memcg is looked up from the swapout record and not from the
6370 * current task as it usually is. A race like this can leak
6371 * charges and put pages with stale cgroup pointers into
6372 * circulation:
6373 *
6374 * #0 #1
6375 * lookup_swap_cgroup_id()
6376 * rcu_read_lock()
6377 * mem_cgroup_lookup()
6378 * css_tryget()
6379 * rcu_read_unlock()
6380 * disable css_tryget()
6381 * call_rcu()
6382 * offline_css()
6383 * reparent_charges()
6384 * res_counter_charge()
6385 * css_put()
6386 * css_free()
6387 * pc->mem_cgroup = dead memcg
6388 * add page to lru
6389 *
6390 * The bulk of the charges are still moved in offline_css() to
6391 * avoid pinning a lot of pages in case a long-term reference
6392 * like a swapout record is deferring the css_free() to long
6393 * after offlining. But this makes sure we catch any charges
6394 * made after offlining:
6395 */
6396 mem_cgroup_reparent_charges(memcg);
6397
6398 memcg_destroy_kmem(memcg);
6399 __mem_cgroup_free(memcg);
6400 }
6401
6402 #ifdef CONFIG_MMU
6403 /* Handlers for move charge at task migration. */
6404 #define PRECHARGE_COUNT_AT_ONCE 256
6405 static int mem_cgroup_do_precharge(unsigned long count)
6406 {
6407 int ret = 0;
6408 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6409 struct mem_cgroup *memcg = mc.to;
6410
6411 if (mem_cgroup_is_root(memcg)) {
6412 mc.precharge += count;
6413 /* we don't need css_get for root */
6414 return ret;
6415 }
6416 /* try to charge at once */
6417 if (count > 1) {
6418 struct res_counter *dummy;
6419 /*
6420 * "memcg" cannot be under rmdir() because we've already checked
6421 * by cgroup_lock_live_cgroup() that it is not removed and we
6422 * are still under the same cgroup_mutex. So we can postpone
6423 * css_get().
6424 */
6425 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6426 goto one_by_one;
6427 if (do_swap_account && res_counter_charge(&memcg->memsw,
6428 PAGE_SIZE * count, &dummy)) {
6429 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6430 goto one_by_one;
6431 }
6432 mc.precharge += count;
6433 return ret;
6434 }
6435 one_by_one:
6436 /* fall back to one by one charge */
6437 while (count--) {
6438 if (signal_pending(current)) {
6439 ret = -EINTR;
6440 break;
6441 }
6442 if (!batch_count--) {
6443 batch_count = PRECHARGE_COUNT_AT_ONCE;
6444 cond_resched();
6445 }
6446 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6447 if (ret)
6448 /* mem_cgroup_clear_mc() will do uncharge later */
6449 return ret;
6450 mc.precharge++;
6451 }
6452 return ret;
6453 }
6454
6455 /**
6456 * get_mctgt_type - get target type of moving charge
6457 * @vma: the vma the pte to be checked belongs
6458 * @addr: the address corresponding to the pte to be checked
6459 * @ptent: the pte to be checked
6460 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6461 *
6462 * Returns
6463 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6464 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6465 * move charge. if @target is not NULL, the page is stored in target->page
6466 * with extra refcnt got(Callers should handle it).
6467 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6468 * target for charge migration. if @target is not NULL, the entry is stored
6469 * in target->ent.
6470 *
6471 * Called with pte lock held.
6472 */
6473 union mc_target {
6474 struct page *page;
6475 swp_entry_t ent;
6476 };
6477
6478 enum mc_target_type {
6479 MC_TARGET_NONE = 0,
6480 MC_TARGET_PAGE,
6481 MC_TARGET_SWAP,
6482 };
6483
6484 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6485 unsigned long addr, pte_t ptent)
6486 {
6487 struct page *page = vm_normal_page(vma, addr, ptent);
6488
6489 if (!page || !page_mapped(page))
6490 return NULL;
6491 if (PageAnon(page)) {
6492 /* we don't move shared anon */
6493 if (!move_anon())
6494 return NULL;
6495 } else if (!move_file())
6496 /* we ignore mapcount for file pages */
6497 return NULL;
6498 if (!get_page_unless_zero(page))
6499 return NULL;
6500
6501 return page;
6502 }
6503
6504 #ifdef CONFIG_SWAP
6505 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6506 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6507 {
6508 struct page *page = NULL;
6509 swp_entry_t ent = pte_to_swp_entry(ptent);
6510
6511 if (!move_anon() || non_swap_entry(ent))
6512 return NULL;
6513 /*
6514 * Because lookup_swap_cache() updates some statistics counter,
6515 * we call find_get_page() with swapper_space directly.
6516 */
6517 page = find_get_page(swap_address_space(ent), ent.val);
6518 if (do_swap_account)
6519 entry->val = ent.val;
6520
6521 return page;
6522 }
6523 #else
6524 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6525 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6526 {
6527 return NULL;
6528 }
6529 #endif
6530
6531 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6532 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6533 {
6534 struct page *page = NULL;
6535 struct address_space *mapping;
6536 pgoff_t pgoff;
6537
6538 if (!vma->vm_file) /* anonymous vma */
6539 return NULL;
6540 if (!move_file())
6541 return NULL;
6542
6543 mapping = vma->vm_file->f_mapping;
6544 if (pte_none(ptent))
6545 pgoff = linear_page_index(vma, addr);
6546 else /* pte_file(ptent) is true */
6547 pgoff = pte_to_pgoff(ptent);
6548
6549 /* page is moved even if it's not RSS of this task(page-faulted). */
6550 #ifdef CONFIG_SWAP
6551 /* shmem/tmpfs may report page out on swap: account for that too. */
6552 if (shmem_mapping(mapping)) {
6553 page = find_get_entry(mapping, pgoff);
6554 if (radix_tree_exceptional_entry(page)) {
6555 swp_entry_t swp = radix_to_swp_entry(page);
6556 if (do_swap_account)
6557 *entry = swp;
6558 page = find_get_page(swap_address_space(swp), swp.val);
6559 }
6560 } else
6561 page = find_get_page(mapping, pgoff);
6562 #else
6563 page = find_get_page(mapping, pgoff);
6564 #endif
6565 return page;
6566 }
6567
6568 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6569 unsigned long addr, pte_t ptent, union mc_target *target)
6570 {
6571 struct page *page = NULL;
6572 struct page_cgroup *pc;
6573 enum mc_target_type ret = MC_TARGET_NONE;
6574 swp_entry_t ent = { .val = 0 };
6575
6576 if (pte_present(ptent))
6577 page = mc_handle_present_pte(vma, addr, ptent);
6578 else if (is_swap_pte(ptent))
6579 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6580 else if (pte_none(ptent) || pte_file(ptent))
6581 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6582
6583 if (!page && !ent.val)
6584 return ret;
6585 if (page) {
6586 pc = lookup_page_cgroup(page);
6587 /*
6588 * Do only loose check w/o page_cgroup lock.
6589 * mem_cgroup_move_account() checks the pc is valid or not under
6590 * the lock.
6591 */
6592 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6593 ret = MC_TARGET_PAGE;
6594 if (target)
6595 target->page = page;
6596 }
6597 if (!ret || !target)
6598 put_page(page);
6599 }
6600 /* There is a swap entry and a page doesn't exist or isn't charged */
6601 if (ent.val && !ret &&
6602 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6603 ret = MC_TARGET_SWAP;
6604 if (target)
6605 target->ent = ent;
6606 }
6607 return ret;
6608 }
6609
6610 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6611 /*
6612 * We don't consider swapping or file mapped pages because THP does not
6613 * support them for now.
6614 * Caller should make sure that pmd_trans_huge(pmd) is true.
6615 */
6616 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6617 unsigned long addr, pmd_t pmd, union mc_target *target)
6618 {
6619 struct page *page = NULL;
6620 struct page_cgroup *pc;
6621 enum mc_target_type ret = MC_TARGET_NONE;
6622
6623 page = pmd_page(pmd);
6624 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6625 if (!move_anon())
6626 return ret;
6627 pc = lookup_page_cgroup(page);
6628 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6629 ret = MC_TARGET_PAGE;
6630 if (target) {
6631 get_page(page);
6632 target->page = page;
6633 }
6634 }
6635 return ret;
6636 }
6637 #else
6638 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6639 unsigned long addr, pmd_t pmd, union mc_target *target)
6640 {
6641 return MC_TARGET_NONE;
6642 }
6643 #endif
6644
6645 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6646 unsigned long addr, unsigned long end,
6647 struct mm_walk *walk)
6648 {
6649 struct vm_area_struct *vma = walk->private;
6650 pte_t *pte;
6651 spinlock_t *ptl;
6652
6653 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6654 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6655 mc.precharge += HPAGE_PMD_NR;
6656 spin_unlock(ptl);
6657 return 0;
6658 }
6659
6660 if (pmd_trans_unstable(pmd))
6661 return 0;
6662 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6663 for (; addr != end; pte++, addr += PAGE_SIZE)
6664 if (get_mctgt_type(vma, addr, *pte, NULL))
6665 mc.precharge++; /* increment precharge temporarily */
6666 pte_unmap_unlock(pte - 1, ptl);
6667 cond_resched();
6668
6669 return 0;
6670 }
6671
6672 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6673 {
6674 unsigned long precharge;
6675 struct vm_area_struct *vma;
6676
6677 down_read(&mm->mmap_sem);
6678 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6679 struct mm_walk mem_cgroup_count_precharge_walk = {
6680 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6681 .mm = mm,
6682 .private = vma,
6683 };
6684 if (is_vm_hugetlb_page(vma))
6685 continue;
6686 walk_page_range(vma->vm_start, vma->vm_end,
6687 &mem_cgroup_count_precharge_walk);
6688 }
6689 up_read(&mm->mmap_sem);
6690
6691 precharge = mc.precharge;
6692 mc.precharge = 0;
6693
6694 return precharge;
6695 }
6696
6697 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6698 {
6699 unsigned long precharge = mem_cgroup_count_precharge(mm);
6700
6701 VM_BUG_ON(mc.moving_task);
6702 mc.moving_task = current;
6703 return mem_cgroup_do_precharge(precharge);
6704 }
6705
6706 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6707 static void __mem_cgroup_clear_mc(void)
6708 {
6709 struct mem_cgroup *from = mc.from;
6710 struct mem_cgroup *to = mc.to;
6711 int i;
6712
6713 /* we must uncharge all the leftover precharges from mc.to */
6714 if (mc.precharge) {
6715 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6716 mc.precharge = 0;
6717 }
6718 /*
6719 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6720 * we must uncharge here.
6721 */
6722 if (mc.moved_charge) {
6723 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6724 mc.moved_charge = 0;
6725 }
6726 /* we must fixup refcnts and charges */
6727 if (mc.moved_swap) {
6728 /* uncharge swap account from the old cgroup */
6729 if (!mem_cgroup_is_root(mc.from))
6730 res_counter_uncharge(&mc.from->memsw,
6731 PAGE_SIZE * mc.moved_swap);
6732
6733 for (i = 0; i < mc.moved_swap; i++)
6734 css_put(&mc.from->css);
6735
6736 if (!mem_cgroup_is_root(mc.to)) {
6737 /*
6738 * we charged both to->res and to->memsw, so we should
6739 * uncharge to->res.
6740 */
6741 res_counter_uncharge(&mc.to->res,
6742 PAGE_SIZE * mc.moved_swap);
6743 }
6744 /* we've already done css_get(mc.to) */
6745 mc.moved_swap = 0;
6746 }
6747 memcg_oom_recover(from);
6748 memcg_oom_recover(to);
6749 wake_up_all(&mc.waitq);
6750 }
6751
6752 static void mem_cgroup_clear_mc(void)
6753 {
6754 struct mem_cgroup *from = mc.from;
6755
6756 /*
6757 * we must clear moving_task before waking up waiters at the end of
6758 * task migration.
6759 */
6760 mc.moving_task = NULL;
6761 __mem_cgroup_clear_mc();
6762 spin_lock(&mc.lock);
6763 mc.from = NULL;
6764 mc.to = NULL;
6765 spin_unlock(&mc.lock);
6766 mem_cgroup_end_move(from);
6767 }
6768
6769 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6770 struct cgroup_taskset *tset)
6771 {
6772 struct task_struct *p = cgroup_taskset_first(tset);
6773 int ret = 0;
6774 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6775 unsigned long move_charge_at_immigrate;
6776
6777 /*
6778 * We are now commited to this value whatever it is. Changes in this
6779 * tunable will only affect upcoming migrations, not the current one.
6780 * So we need to save it, and keep it going.
6781 */
6782 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6783 if (move_charge_at_immigrate) {
6784 struct mm_struct *mm;
6785 struct mem_cgroup *from = mem_cgroup_from_task(p);
6786
6787 VM_BUG_ON(from == memcg);
6788
6789 mm = get_task_mm(p);
6790 if (!mm)
6791 return 0;
6792 /* We move charges only when we move a owner of the mm */
6793 if (mm->owner == p) {
6794 VM_BUG_ON(mc.from);
6795 VM_BUG_ON(mc.to);
6796 VM_BUG_ON(mc.precharge);
6797 VM_BUG_ON(mc.moved_charge);
6798 VM_BUG_ON(mc.moved_swap);
6799 mem_cgroup_start_move(from);
6800 spin_lock(&mc.lock);
6801 mc.from = from;
6802 mc.to = memcg;
6803 mc.immigrate_flags = move_charge_at_immigrate;
6804 spin_unlock(&mc.lock);
6805 /* We set mc.moving_task later */
6806
6807 ret = mem_cgroup_precharge_mc(mm);
6808 if (ret)
6809 mem_cgroup_clear_mc();
6810 }
6811 mmput(mm);
6812 }
6813 return ret;
6814 }
6815
6816 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6817 struct cgroup_taskset *tset)
6818 {
6819 mem_cgroup_clear_mc();
6820 }
6821
6822 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6823 unsigned long addr, unsigned long end,
6824 struct mm_walk *walk)
6825 {
6826 int ret = 0;
6827 struct vm_area_struct *vma = walk->private;
6828 pte_t *pte;
6829 spinlock_t *ptl;
6830 enum mc_target_type target_type;
6831 union mc_target target;
6832 struct page *page;
6833 struct page_cgroup *pc;
6834
6835 /*
6836 * We don't take compound_lock() here but no race with splitting thp
6837 * happens because:
6838 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6839 * under splitting, which means there's no concurrent thp split,
6840 * - if another thread runs into split_huge_page() just after we
6841 * entered this if-block, the thread must wait for page table lock
6842 * to be unlocked in __split_huge_page_splitting(), where the main
6843 * part of thp split is not executed yet.
6844 */
6845 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6846 if (mc.precharge < HPAGE_PMD_NR) {
6847 spin_unlock(ptl);
6848 return 0;
6849 }
6850 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6851 if (target_type == MC_TARGET_PAGE) {
6852 page = target.page;
6853 if (!isolate_lru_page(page)) {
6854 pc = lookup_page_cgroup(page);
6855 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6856 pc, mc.from, mc.to)) {
6857 mc.precharge -= HPAGE_PMD_NR;
6858 mc.moved_charge += HPAGE_PMD_NR;
6859 }
6860 putback_lru_page(page);
6861 }
6862 put_page(page);
6863 }
6864 spin_unlock(ptl);
6865 return 0;
6866 }
6867
6868 if (pmd_trans_unstable(pmd))
6869 return 0;
6870 retry:
6871 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6872 for (; addr != end; addr += PAGE_SIZE) {
6873 pte_t ptent = *(pte++);
6874 swp_entry_t ent;
6875
6876 if (!mc.precharge)
6877 break;
6878
6879 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6880 case MC_TARGET_PAGE:
6881 page = target.page;
6882 if (isolate_lru_page(page))
6883 goto put;
6884 pc = lookup_page_cgroup(page);
6885 if (!mem_cgroup_move_account(page, 1, pc,
6886 mc.from, mc.to)) {
6887 mc.precharge--;
6888 /* we uncharge from mc.from later. */
6889 mc.moved_charge++;
6890 }
6891 putback_lru_page(page);
6892 put: /* get_mctgt_type() gets the page */
6893 put_page(page);
6894 break;
6895 case MC_TARGET_SWAP:
6896 ent = target.ent;
6897 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6898 mc.precharge--;
6899 /* we fixup refcnts and charges later. */
6900 mc.moved_swap++;
6901 }
6902 break;
6903 default:
6904 break;
6905 }
6906 }
6907 pte_unmap_unlock(pte - 1, ptl);
6908 cond_resched();
6909
6910 if (addr != end) {
6911 /*
6912 * We have consumed all precharges we got in can_attach().
6913 * We try charge one by one, but don't do any additional
6914 * charges to mc.to if we have failed in charge once in attach()
6915 * phase.
6916 */
6917 ret = mem_cgroup_do_precharge(1);
6918 if (!ret)
6919 goto retry;
6920 }
6921
6922 return ret;
6923 }
6924
6925 static void mem_cgroup_move_charge(struct mm_struct *mm)
6926 {
6927 struct vm_area_struct *vma;
6928
6929 lru_add_drain_all();
6930 retry:
6931 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6932 /*
6933 * Someone who are holding the mmap_sem might be waiting in
6934 * waitq. So we cancel all extra charges, wake up all waiters,
6935 * and retry. Because we cancel precharges, we might not be able
6936 * to move enough charges, but moving charge is a best-effort
6937 * feature anyway, so it wouldn't be a big problem.
6938 */
6939 __mem_cgroup_clear_mc();
6940 cond_resched();
6941 goto retry;
6942 }
6943 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6944 int ret;
6945 struct mm_walk mem_cgroup_move_charge_walk = {
6946 .pmd_entry = mem_cgroup_move_charge_pte_range,
6947 .mm = mm,
6948 .private = vma,
6949 };
6950 if (is_vm_hugetlb_page(vma))
6951 continue;
6952 ret = walk_page_range(vma->vm_start, vma->vm_end,
6953 &mem_cgroup_move_charge_walk);
6954 if (ret)
6955 /*
6956 * means we have consumed all precharges and failed in
6957 * doing additional charge. Just abandon here.
6958 */
6959 break;
6960 }
6961 up_read(&mm->mmap_sem);
6962 }
6963
6964 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6965 struct cgroup_taskset *tset)
6966 {
6967 struct task_struct *p = cgroup_taskset_first(tset);
6968 struct mm_struct *mm = get_task_mm(p);
6969
6970 if (mm) {
6971 if (mc.to)
6972 mem_cgroup_move_charge(mm);
6973 mmput(mm);
6974 }
6975 if (mc.to)
6976 mem_cgroup_clear_mc();
6977 }
6978 #else /* !CONFIG_MMU */
6979 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6980 struct cgroup_taskset *tset)
6981 {
6982 return 0;
6983 }
6984 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6985 struct cgroup_taskset *tset)
6986 {
6987 }
6988 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6989 struct cgroup_taskset *tset)
6990 {
6991 }
6992 #endif
6993
6994 /*
6995 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6996 * to verify sane_behavior flag on each mount attempt.
6997 */
6998 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6999 {
7000 /*
7001 * use_hierarchy is forced with sane_behavior. cgroup core
7002 * guarantees that @root doesn't have any children, so turning it
7003 * on for the root memcg is enough.
7004 */
7005 if (cgroup_sane_behavior(root_css->cgroup))
7006 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7007 }
7008
7009 struct cgroup_subsys memory_cgrp_subsys = {
7010 .css_alloc = mem_cgroup_css_alloc,
7011 .css_online = mem_cgroup_css_online,
7012 .css_offline = mem_cgroup_css_offline,
7013 .css_free = mem_cgroup_css_free,
7014 .can_attach = mem_cgroup_can_attach,
7015 .cancel_attach = mem_cgroup_cancel_attach,
7016 .attach = mem_cgroup_move_task,
7017 .bind = mem_cgroup_bind,
7018 .base_cftypes = mem_cgroup_files,
7019 .early_init = 0,
7020 };
7021
7022 #ifdef CONFIG_MEMCG_SWAP
7023 static int __init enable_swap_account(char *s)
7024 {
7025 if (!strcmp(s, "1"))
7026 really_do_swap_account = 1;
7027 else if (!strcmp(s, "0"))
7028 really_do_swap_account = 0;
7029 return 1;
7030 }
7031 __setup("swapaccount=", enable_swap_account);
7032
7033 static void __init memsw_file_init(void)
7034 {
7035 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7036 }
7037
7038 static void __init enable_swap_cgroup(void)
7039 {
7040 if (!mem_cgroup_disabled() && really_do_swap_account) {
7041 do_swap_account = 1;
7042 memsw_file_init();
7043 }
7044 }
7045
7046 #else
7047 static void __init enable_swap_cgroup(void)
7048 {
7049 }
7050 #endif
7051
7052 /*
7053 * subsys_initcall() for memory controller.
7054 *
7055 * Some parts like hotcpu_notifier() have to be initialized from this context
7056 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7057 * everything that doesn't depend on a specific mem_cgroup structure should
7058 * be initialized from here.
7059 */
7060 static int __init mem_cgroup_init(void)
7061 {
7062 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7063 enable_swap_cgroup();
7064 mem_cgroup_soft_limit_tree_init();
7065 memcg_stock_init();
7066 return 0;
7067 }
7068 subsys_initcall(mem_cgroup_init);
This page took 0.270947 seconds and 6 git commands to generate.