Merge branch 'for-3.20/drivers' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 /* Whether the swap controller is active */
76 #ifdef CONFIG_MEMCG_SWAP
77 int do_swap_account __read_mostly;
78 #else
79 #define do_swap_account 0
80 #endif
81
82 static const char * const mem_cgroup_stat_names[] = {
83 "cache",
84 "rss",
85 "rss_huge",
86 "mapped_file",
87 "writeback",
88 "swap",
89 };
90
91 static const char * const mem_cgroup_events_names[] = {
92 "pgpgin",
93 "pgpgout",
94 "pgfault",
95 "pgmajfault",
96 };
97
98 static const char * const mem_cgroup_lru_names[] = {
99 "inactive_anon",
100 "active_anon",
101 "inactive_file",
102 "active_file",
103 "unevictable",
104 };
105
106 /*
107 * Per memcg event counter is incremented at every pagein/pageout. With THP,
108 * it will be incremated by the number of pages. This counter is used for
109 * for trigger some periodic events. This is straightforward and better
110 * than using jiffies etc. to handle periodic memcg event.
111 */
112 enum mem_cgroup_events_target {
113 MEM_CGROUP_TARGET_THRESH,
114 MEM_CGROUP_TARGET_SOFTLIMIT,
115 MEM_CGROUP_TARGET_NUMAINFO,
116 MEM_CGROUP_NTARGETS,
117 };
118 #define THRESHOLDS_EVENTS_TARGET 128
119 #define SOFTLIMIT_EVENTS_TARGET 1024
120 #define NUMAINFO_EVENTS_TARGET 1024
121
122 struct mem_cgroup_stat_cpu {
123 long count[MEM_CGROUP_STAT_NSTATS];
124 unsigned long events[MEMCG_NR_EVENTS];
125 unsigned long nr_page_events;
126 unsigned long targets[MEM_CGROUP_NTARGETS];
127 };
128
129 struct reclaim_iter {
130 struct mem_cgroup *position;
131 /* scan generation, increased every round-trip */
132 unsigned int generation;
133 };
134
135 /*
136 * per-zone information in memory controller.
137 */
138 struct mem_cgroup_per_zone {
139 struct lruvec lruvec;
140 unsigned long lru_size[NR_LRU_LISTS];
141
142 struct reclaim_iter iter[DEF_PRIORITY + 1];
143
144 struct rb_node tree_node; /* RB tree node */
145 unsigned long usage_in_excess;/* Set to the value by which */
146 /* the soft limit is exceeded*/
147 bool on_tree;
148 struct mem_cgroup *memcg; /* Back pointer, we cannot */
149 /* use container_of */
150 };
151
152 struct mem_cgroup_per_node {
153 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
154 };
155
156 /*
157 * Cgroups above their limits are maintained in a RB-Tree, independent of
158 * their hierarchy representation
159 */
160
161 struct mem_cgroup_tree_per_zone {
162 struct rb_root rb_root;
163 spinlock_t lock;
164 };
165
166 struct mem_cgroup_tree_per_node {
167 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
168 };
169
170 struct mem_cgroup_tree {
171 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
172 };
173
174 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
175
176 struct mem_cgroup_threshold {
177 struct eventfd_ctx *eventfd;
178 unsigned long threshold;
179 };
180
181 /* For threshold */
182 struct mem_cgroup_threshold_ary {
183 /* An array index points to threshold just below or equal to usage. */
184 int current_threshold;
185 /* Size of entries[] */
186 unsigned int size;
187 /* Array of thresholds */
188 struct mem_cgroup_threshold entries[0];
189 };
190
191 struct mem_cgroup_thresholds {
192 /* Primary thresholds array */
193 struct mem_cgroup_threshold_ary *primary;
194 /*
195 * Spare threshold array.
196 * This is needed to make mem_cgroup_unregister_event() "never fail".
197 * It must be able to store at least primary->size - 1 entries.
198 */
199 struct mem_cgroup_threshold_ary *spare;
200 };
201
202 /* for OOM */
203 struct mem_cgroup_eventfd_list {
204 struct list_head list;
205 struct eventfd_ctx *eventfd;
206 };
207
208 /*
209 * cgroup_event represents events which userspace want to receive.
210 */
211 struct mem_cgroup_event {
212 /*
213 * memcg which the event belongs to.
214 */
215 struct mem_cgroup *memcg;
216 /*
217 * eventfd to signal userspace about the event.
218 */
219 struct eventfd_ctx *eventfd;
220 /*
221 * Each of these stored in a list by the cgroup.
222 */
223 struct list_head list;
224 /*
225 * register_event() callback will be used to add new userspace
226 * waiter for changes related to this event. Use eventfd_signal()
227 * on eventfd to send notification to userspace.
228 */
229 int (*register_event)(struct mem_cgroup *memcg,
230 struct eventfd_ctx *eventfd, const char *args);
231 /*
232 * unregister_event() callback will be called when userspace closes
233 * the eventfd or on cgroup removing. This callback must be set,
234 * if you want provide notification functionality.
235 */
236 void (*unregister_event)(struct mem_cgroup *memcg,
237 struct eventfd_ctx *eventfd);
238 /*
239 * All fields below needed to unregister event when
240 * userspace closes eventfd.
241 */
242 poll_table pt;
243 wait_queue_head_t *wqh;
244 wait_queue_t wait;
245 struct work_struct remove;
246 };
247
248 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
249 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
250
251 /*
252 * The memory controller data structure. The memory controller controls both
253 * page cache and RSS per cgroup. We would eventually like to provide
254 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
255 * to help the administrator determine what knobs to tune.
256 *
257 * TODO: Add a water mark for the memory controller. Reclaim will begin when
258 * we hit the water mark. May be even add a low water mark, such that
259 * no reclaim occurs from a cgroup at it's low water mark, this is
260 * a feature that will be implemented much later in the future.
261 */
262 struct mem_cgroup {
263 struct cgroup_subsys_state css;
264
265 /* Accounted resources */
266 struct page_counter memory;
267 struct page_counter memsw;
268 struct page_counter kmem;
269
270 /* Normal memory consumption range */
271 unsigned long low;
272 unsigned long high;
273
274 unsigned long soft_limit;
275
276 /* vmpressure notifications */
277 struct vmpressure vmpressure;
278
279 /* css_online() has been completed */
280 int initialized;
281
282 /*
283 * Should the accounting and control be hierarchical, per subtree?
284 */
285 bool use_hierarchy;
286
287 bool oom_lock;
288 atomic_t under_oom;
289 atomic_t oom_wakeups;
290
291 int swappiness;
292 /* OOM-Killer disable */
293 int oom_kill_disable;
294
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
299 struct mem_cgroup_thresholds thresholds;
300
301 /* thresholds for mem+swap usage. RCU-protected */
302 struct mem_cgroup_thresholds memsw_thresholds;
303
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
306
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
318 struct task_struct *move_lock_task;
319 unsigned long move_lock_flags;
320 /*
321 * percpu counter.
322 */
323 struct mem_cgroup_stat_cpu __percpu *stat;
324 /*
325 * used when a cpu is offlined or other synchronizations
326 * See mem_cgroup_read_stat().
327 */
328 struct mem_cgroup_stat_cpu nocpu_base;
329 spinlock_t pcp_counter_lock;
330
331 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
332 struct cg_proto tcp_mem;
333 #endif
334 #if defined(CONFIG_MEMCG_KMEM)
335 /* Index in the kmem_cache->memcg_params->memcg_caches array */
336 int kmemcg_id;
337 #endif
338
339 int last_scanned_node;
340 #if MAX_NUMNODES > 1
341 nodemask_t scan_nodes;
342 atomic_t numainfo_events;
343 atomic_t numainfo_updating;
344 #endif
345
346 /* List of events which userspace want to receive */
347 struct list_head event_list;
348 spinlock_t event_list_lock;
349
350 struct mem_cgroup_per_node *nodeinfo[0];
351 /* WARNING: nodeinfo must be the last member here */
352 };
353
354 #ifdef CONFIG_MEMCG_KMEM
355 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
356 {
357 return memcg->kmemcg_id >= 0;
358 }
359 #endif
360
361 /* Stuffs for move charges at task migration. */
362 /*
363 * Types of charges to be moved.
364 */
365 #define MOVE_ANON 0x1U
366 #define MOVE_FILE 0x2U
367 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
368
369 /* "mc" and its members are protected by cgroup_mutex */
370 static struct move_charge_struct {
371 spinlock_t lock; /* for from, to */
372 struct mem_cgroup *from;
373 struct mem_cgroup *to;
374 unsigned long flags;
375 unsigned long precharge;
376 unsigned long moved_charge;
377 unsigned long moved_swap;
378 struct task_struct *moving_task; /* a task moving charges */
379 wait_queue_head_t waitq; /* a waitq for other context */
380 } mc = {
381 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
382 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
383 };
384
385 /*
386 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
387 * limit reclaim to prevent infinite loops, if they ever occur.
388 */
389 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
390 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
391
392 enum charge_type {
393 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
394 MEM_CGROUP_CHARGE_TYPE_ANON,
395 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
396 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
397 NR_CHARGE_TYPE,
398 };
399
400 /* for encoding cft->private value on file */
401 enum res_type {
402 _MEM,
403 _MEMSWAP,
404 _OOM_TYPE,
405 _KMEM,
406 };
407
408 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
409 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
410 #define MEMFILE_ATTR(val) ((val) & 0xffff)
411 /* Used for OOM nofiier */
412 #define OOM_CONTROL (0)
413
414 /*
415 * The memcg_create_mutex will be held whenever a new cgroup is created.
416 * As a consequence, any change that needs to protect against new child cgroups
417 * appearing has to hold it as well.
418 */
419 static DEFINE_MUTEX(memcg_create_mutex);
420
421 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
422 {
423 return s ? container_of(s, struct mem_cgroup, css) : NULL;
424 }
425
426 /* Some nice accessors for the vmpressure. */
427 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
428 {
429 if (!memcg)
430 memcg = root_mem_cgroup;
431 return &memcg->vmpressure;
432 }
433
434 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
435 {
436 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
437 }
438
439 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
440 {
441 return (memcg == root_mem_cgroup);
442 }
443
444 /*
445 * We restrict the id in the range of [1, 65535], so it can fit into
446 * an unsigned short.
447 */
448 #define MEM_CGROUP_ID_MAX USHRT_MAX
449
450 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
451 {
452 return memcg->css.id;
453 }
454
455 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
456 {
457 struct cgroup_subsys_state *css;
458
459 css = css_from_id(id, &memory_cgrp_subsys);
460 return mem_cgroup_from_css(css);
461 }
462
463 /* Writing them here to avoid exposing memcg's inner layout */
464 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
465
466 void sock_update_memcg(struct sock *sk)
467 {
468 if (mem_cgroup_sockets_enabled) {
469 struct mem_cgroup *memcg;
470 struct cg_proto *cg_proto;
471
472 BUG_ON(!sk->sk_prot->proto_cgroup);
473
474 /* Socket cloning can throw us here with sk_cgrp already
475 * filled. It won't however, necessarily happen from
476 * process context. So the test for root memcg given
477 * the current task's memcg won't help us in this case.
478 *
479 * Respecting the original socket's memcg is a better
480 * decision in this case.
481 */
482 if (sk->sk_cgrp) {
483 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
484 css_get(&sk->sk_cgrp->memcg->css);
485 return;
486 }
487
488 rcu_read_lock();
489 memcg = mem_cgroup_from_task(current);
490 cg_proto = sk->sk_prot->proto_cgroup(memcg);
491 if (!mem_cgroup_is_root(memcg) &&
492 memcg_proto_active(cg_proto) &&
493 css_tryget_online(&memcg->css)) {
494 sk->sk_cgrp = cg_proto;
495 }
496 rcu_read_unlock();
497 }
498 }
499 EXPORT_SYMBOL(sock_update_memcg);
500
501 void sock_release_memcg(struct sock *sk)
502 {
503 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
504 struct mem_cgroup *memcg;
505 WARN_ON(!sk->sk_cgrp->memcg);
506 memcg = sk->sk_cgrp->memcg;
507 css_put(&sk->sk_cgrp->memcg->css);
508 }
509 }
510
511 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
512 {
513 if (!memcg || mem_cgroup_is_root(memcg))
514 return NULL;
515
516 return &memcg->tcp_mem;
517 }
518 EXPORT_SYMBOL(tcp_proto_cgroup);
519
520 static void disarm_sock_keys(struct mem_cgroup *memcg)
521 {
522 if (!memcg_proto_activated(&memcg->tcp_mem))
523 return;
524 static_key_slow_dec(&memcg_socket_limit_enabled);
525 }
526 #else
527 static void disarm_sock_keys(struct mem_cgroup *memcg)
528 {
529 }
530 #endif
531
532 #ifdef CONFIG_MEMCG_KMEM
533 /*
534 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
535 * The main reason for not using cgroup id for this:
536 * this works better in sparse environments, where we have a lot of memcgs,
537 * but only a few kmem-limited. Or also, if we have, for instance, 200
538 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
539 * 200 entry array for that.
540 *
541 * The current size of the caches array is stored in
542 * memcg_limited_groups_array_size. It will double each time we have to
543 * increase it.
544 */
545 static DEFINE_IDA(kmem_limited_groups);
546 int memcg_limited_groups_array_size;
547
548 /*
549 * MIN_SIZE is different than 1, because we would like to avoid going through
550 * the alloc/free process all the time. In a small machine, 4 kmem-limited
551 * cgroups is a reasonable guess. In the future, it could be a parameter or
552 * tunable, but that is strictly not necessary.
553 *
554 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
555 * this constant directly from cgroup, but it is understandable that this is
556 * better kept as an internal representation in cgroup.c. In any case, the
557 * cgrp_id space is not getting any smaller, and we don't have to necessarily
558 * increase ours as well if it increases.
559 */
560 #define MEMCG_CACHES_MIN_SIZE 4
561 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
562
563 /*
564 * A lot of the calls to the cache allocation functions are expected to be
565 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
566 * conditional to this static branch, we'll have to allow modules that does
567 * kmem_cache_alloc and the such to see this symbol as well
568 */
569 struct static_key memcg_kmem_enabled_key;
570 EXPORT_SYMBOL(memcg_kmem_enabled_key);
571
572 static void memcg_free_cache_id(int id);
573
574 static void disarm_kmem_keys(struct mem_cgroup *memcg)
575 {
576 if (memcg_kmem_is_active(memcg)) {
577 static_key_slow_dec(&memcg_kmem_enabled_key);
578 memcg_free_cache_id(memcg->kmemcg_id);
579 }
580 /*
581 * This check can't live in kmem destruction function,
582 * since the charges will outlive the cgroup
583 */
584 WARN_ON(page_counter_read(&memcg->kmem));
585 }
586 #else
587 static void disarm_kmem_keys(struct mem_cgroup *memcg)
588 {
589 }
590 #endif /* CONFIG_MEMCG_KMEM */
591
592 static void disarm_static_keys(struct mem_cgroup *memcg)
593 {
594 disarm_sock_keys(memcg);
595 disarm_kmem_keys(memcg);
596 }
597
598 static struct mem_cgroup_per_zone *
599 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
600 {
601 int nid = zone_to_nid(zone);
602 int zid = zone_idx(zone);
603
604 return &memcg->nodeinfo[nid]->zoneinfo[zid];
605 }
606
607 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
608 {
609 return &memcg->css;
610 }
611
612 static struct mem_cgroup_per_zone *
613 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
614 {
615 int nid = page_to_nid(page);
616 int zid = page_zonenum(page);
617
618 return &memcg->nodeinfo[nid]->zoneinfo[zid];
619 }
620
621 static struct mem_cgroup_tree_per_zone *
622 soft_limit_tree_node_zone(int nid, int zid)
623 {
624 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
625 }
626
627 static struct mem_cgroup_tree_per_zone *
628 soft_limit_tree_from_page(struct page *page)
629 {
630 int nid = page_to_nid(page);
631 int zid = page_zonenum(page);
632
633 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
634 }
635
636 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
637 struct mem_cgroup_tree_per_zone *mctz,
638 unsigned long new_usage_in_excess)
639 {
640 struct rb_node **p = &mctz->rb_root.rb_node;
641 struct rb_node *parent = NULL;
642 struct mem_cgroup_per_zone *mz_node;
643
644 if (mz->on_tree)
645 return;
646
647 mz->usage_in_excess = new_usage_in_excess;
648 if (!mz->usage_in_excess)
649 return;
650 while (*p) {
651 parent = *p;
652 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
653 tree_node);
654 if (mz->usage_in_excess < mz_node->usage_in_excess)
655 p = &(*p)->rb_left;
656 /*
657 * We can't avoid mem cgroups that are over their soft
658 * limit by the same amount
659 */
660 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
661 p = &(*p)->rb_right;
662 }
663 rb_link_node(&mz->tree_node, parent, p);
664 rb_insert_color(&mz->tree_node, &mctz->rb_root);
665 mz->on_tree = true;
666 }
667
668 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
669 struct mem_cgroup_tree_per_zone *mctz)
670 {
671 if (!mz->on_tree)
672 return;
673 rb_erase(&mz->tree_node, &mctz->rb_root);
674 mz->on_tree = false;
675 }
676
677 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
678 struct mem_cgroup_tree_per_zone *mctz)
679 {
680 unsigned long flags;
681
682 spin_lock_irqsave(&mctz->lock, flags);
683 __mem_cgroup_remove_exceeded(mz, mctz);
684 spin_unlock_irqrestore(&mctz->lock, flags);
685 }
686
687 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
688 {
689 unsigned long nr_pages = page_counter_read(&memcg->memory);
690 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
691 unsigned long excess = 0;
692
693 if (nr_pages > soft_limit)
694 excess = nr_pages - soft_limit;
695
696 return excess;
697 }
698
699 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
700 {
701 unsigned long excess;
702 struct mem_cgroup_per_zone *mz;
703 struct mem_cgroup_tree_per_zone *mctz;
704
705 mctz = soft_limit_tree_from_page(page);
706 /*
707 * Necessary to update all ancestors when hierarchy is used.
708 * because their event counter is not touched.
709 */
710 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
711 mz = mem_cgroup_page_zoneinfo(memcg, page);
712 excess = soft_limit_excess(memcg);
713 /*
714 * We have to update the tree if mz is on RB-tree or
715 * mem is over its softlimit.
716 */
717 if (excess || mz->on_tree) {
718 unsigned long flags;
719
720 spin_lock_irqsave(&mctz->lock, flags);
721 /* if on-tree, remove it */
722 if (mz->on_tree)
723 __mem_cgroup_remove_exceeded(mz, mctz);
724 /*
725 * Insert again. mz->usage_in_excess will be updated.
726 * If excess is 0, no tree ops.
727 */
728 __mem_cgroup_insert_exceeded(mz, mctz, excess);
729 spin_unlock_irqrestore(&mctz->lock, flags);
730 }
731 }
732 }
733
734 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
735 {
736 struct mem_cgroup_tree_per_zone *mctz;
737 struct mem_cgroup_per_zone *mz;
738 int nid, zid;
739
740 for_each_node(nid) {
741 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
742 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
743 mctz = soft_limit_tree_node_zone(nid, zid);
744 mem_cgroup_remove_exceeded(mz, mctz);
745 }
746 }
747 }
748
749 static struct mem_cgroup_per_zone *
750 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
751 {
752 struct rb_node *rightmost = NULL;
753 struct mem_cgroup_per_zone *mz;
754
755 retry:
756 mz = NULL;
757 rightmost = rb_last(&mctz->rb_root);
758 if (!rightmost)
759 goto done; /* Nothing to reclaim from */
760
761 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
762 /*
763 * Remove the node now but someone else can add it back,
764 * we will to add it back at the end of reclaim to its correct
765 * position in the tree.
766 */
767 __mem_cgroup_remove_exceeded(mz, mctz);
768 if (!soft_limit_excess(mz->memcg) ||
769 !css_tryget_online(&mz->memcg->css))
770 goto retry;
771 done:
772 return mz;
773 }
774
775 static struct mem_cgroup_per_zone *
776 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
777 {
778 struct mem_cgroup_per_zone *mz;
779
780 spin_lock_irq(&mctz->lock);
781 mz = __mem_cgroup_largest_soft_limit_node(mctz);
782 spin_unlock_irq(&mctz->lock);
783 return mz;
784 }
785
786 /*
787 * Implementation Note: reading percpu statistics for memcg.
788 *
789 * Both of vmstat[] and percpu_counter has threshold and do periodic
790 * synchronization to implement "quick" read. There are trade-off between
791 * reading cost and precision of value. Then, we may have a chance to implement
792 * a periodic synchronizion of counter in memcg's counter.
793 *
794 * But this _read() function is used for user interface now. The user accounts
795 * memory usage by memory cgroup and he _always_ requires exact value because
796 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
797 * have to visit all online cpus and make sum. So, for now, unnecessary
798 * synchronization is not implemented. (just implemented for cpu hotplug)
799 *
800 * If there are kernel internal actions which can make use of some not-exact
801 * value, and reading all cpu value can be performance bottleneck in some
802 * common workload, threashold and synchonization as vmstat[] should be
803 * implemented.
804 */
805 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
806 enum mem_cgroup_stat_index idx)
807 {
808 long val = 0;
809 int cpu;
810
811 get_online_cpus();
812 for_each_online_cpu(cpu)
813 val += per_cpu(memcg->stat->count[idx], cpu);
814 #ifdef CONFIG_HOTPLUG_CPU
815 spin_lock(&memcg->pcp_counter_lock);
816 val += memcg->nocpu_base.count[idx];
817 spin_unlock(&memcg->pcp_counter_lock);
818 #endif
819 put_online_cpus();
820 return val;
821 }
822
823 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
824 enum mem_cgroup_events_index idx)
825 {
826 unsigned long val = 0;
827 int cpu;
828
829 get_online_cpus();
830 for_each_online_cpu(cpu)
831 val += per_cpu(memcg->stat->events[idx], cpu);
832 #ifdef CONFIG_HOTPLUG_CPU
833 spin_lock(&memcg->pcp_counter_lock);
834 val += memcg->nocpu_base.events[idx];
835 spin_unlock(&memcg->pcp_counter_lock);
836 #endif
837 put_online_cpus();
838 return val;
839 }
840
841 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
842 struct page *page,
843 int nr_pages)
844 {
845 /*
846 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
847 * counted as CACHE even if it's on ANON LRU.
848 */
849 if (PageAnon(page))
850 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
851 nr_pages);
852 else
853 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
854 nr_pages);
855
856 if (PageTransHuge(page))
857 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
858 nr_pages);
859
860 /* pagein of a big page is an event. So, ignore page size */
861 if (nr_pages > 0)
862 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
863 else {
864 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
865 nr_pages = -nr_pages; /* for event */
866 }
867
868 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
869 }
870
871 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
872 {
873 struct mem_cgroup_per_zone *mz;
874
875 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
876 return mz->lru_size[lru];
877 }
878
879 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
880 int nid,
881 unsigned int lru_mask)
882 {
883 unsigned long nr = 0;
884 int zid;
885
886 VM_BUG_ON((unsigned)nid >= nr_node_ids);
887
888 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
889 struct mem_cgroup_per_zone *mz;
890 enum lru_list lru;
891
892 for_each_lru(lru) {
893 if (!(BIT(lru) & lru_mask))
894 continue;
895 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
896 nr += mz->lru_size[lru];
897 }
898 }
899 return nr;
900 }
901
902 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
903 unsigned int lru_mask)
904 {
905 unsigned long nr = 0;
906 int nid;
907
908 for_each_node_state(nid, N_MEMORY)
909 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
910 return nr;
911 }
912
913 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
914 enum mem_cgroup_events_target target)
915 {
916 unsigned long val, next;
917
918 val = __this_cpu_read(memcg->stat->nr_page_events);
919 next = __this_cpu_read(memcg->stat->targets[target]);
920 /* from time_after() in jiffies.h */
921 if ((long)next - (long)val < 0) {
922 switch (target) {
923 case MEM_CGROUP_TARGET_THRESH:
924 next = val + THRESHOLDS_EVENTS_TARGET;
925 break;
926 case MEM_CGROUP_TARGET_SOFTLIMIT:
927 next = val + SOFTLIMIT_EVENTS_TARGET;
928 break;
929 case MEM_CGROUP_TARGET_NUMAINFO:
930 next = val + NUMAINFO_EVENTS_TARGET;
931 break;
932 default:
933 break;
934 }
935 __this_cpu_write(memcg->stat->targets[target], next);
936 return true;
937 }
938 return false;
939 }
940
941 /*
942 * Check events in order.
943 *
944 */
945 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
946 {
947 /* threshold event is triggered in finer grain than soft limit */
948 if (unlikely(mem_cgroup_event_ratelimit(memcg,
949 MEM_CGROUP_TARGET_THRESH))) {
950 bool do_softlimit;
951 bool do_numainfo __maybe_unused;
952
953 do_softlimit = mem_cgroup_event_ratelimit(memcg,
954 MEM_CGROUP_TARGET_SOFTLIMIT);
955 #if MAX_NUMNODES > 1
956 do_numainfo = mem_cgroup_event_ratelimit(memcg,
957 MEM_CGROUP_TARGET_NUMAINFO);
958 #endif
959 mem_cgroup_threshold(memcg);
960 if (unlikely(do_softlimit))
961 mem_cgroup_update_tree(memcg, page);
962 #if MAX_NUMNODES > 1
963 if (unlikely(do_numainfo))
964 atomic_inc(&memcg->numainfo_events);
965 #endif
966 }
967 }
968
969 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
970 {
971 /*
972 * mm_update_next_owner() may clear mm->owner to NULL
973 * if it races with swapoff, page migration, etc.
974 * So this can be called with p == NULL.
975 */
976 if (unlikely(!p))
977 return NULL;
978
979 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
980 }
981
982 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
983 {
984 struct mem_cgroup *memcg = NULL;
985
986 rcu_read_lock();
987 do {
988 /*
989 * Page cache insertions can happen withou an
990 * actual mm context, e.g. during disk probing
991 * on boot, loopback IO, acct() writes etc.
992 */
993 if (unlikely(!mm))
994 memcg = root_mem_cgroup;
995 else {
996 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
997 if (unlikely(!memcg))
998 memcg = root_mem_cgroup;
999 }
1000 } while (!css_tryget_online(&memcg->css));
1001 rcu_read_unlock();
1002 return memcg;
1003 }
1004
1005 /**
1006 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1007 * @root: hierarchy root
1008 * @prev: previously returned memcg, NULL on first invocation
1009 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1010 *
1011 * Returns references to children of the hierarchy below @root, or
1012 * @root itself, or %NULL after a full round-trip.
1013 *
1014 * Caller must pass the return value in @prev on subsequent
1015 * invocations for reference counting, or use mem_cgroup_iter_break()
1016 * to cancel a hierarchy walk before the round-trip is complete.
1017 *
1018 * Reclaimers can specify a zone and a priority level in @reclaim to
1019 * divide up the memcgs in the hierarchy among all concurrent
1020 * reclaimers operating on the same zone and priority.
1021 */
1022 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1023 struct mem_cgroup *prev,
1024 struct mem_cgroup_reclaim_cookie *reclaim)
1025 {
1026 struct reclaim_iter *uninitialized_var(iter);
1027 struct cgroup_subsys_state *css = NULL;
1028 struct mem_cgroup *memcg = NULL;
1029 struct mem_cgroup *pos = NULL;
1030
1031 if (mem_cgroup_disabled())
1032 return NULL;
1033
1034 if (!root)
1035 root = root_mem_cgroup;
1036
1037 if (prev && !reclaim)
1038 pos = prev;
1039
1040 if (!root->use_hierarchy && root != root_mem_cgroup) {
1041 if (prev)
1042 goto out;
1043 return root;
1044 }
1045
1046 rcu_read_lock();
1047
1048 if (reclaim) {
1049 struct mem_cgroup_per_zone *mz;
1050
1051 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1052 iter = &mz->iter[reclaim->priority];
1053
1054 if (prev && reclaim->generation != iter->generation)
1055 goto out_unlock;
1056
1057 do {
1058 pos = ACCESS_ONCE(iter->position);
1059 /*
1060 * A racing update may change the position and
1061 * put the last reference, hence css_tryget(),
1062 * or retry to see the updated position.
1063 */
1064 } while (pos && !css_tryget(&pos->css));
1065 }
1066
1067 if (pos)
1068 css = &pos->css;
1069
1070 for (;;) {
1071 css = css_next_descendant_pre(css, &root->css);
1072 if (!css) {
1073 /*
1074 * Reclaimers share the hierarchy walk, and a
1075 * new one might jump in right at the end of
1076 * the hierarchy - make sure they see at least
1077 * one group and restart from the beginning.
1078 */
1079 if (!prev)
1080 continue;
1081 break;
1082 }
1083
1084 /*
1085 * Verify the css and acquire a reference. The root
1086 * is provided by the caller, so we know it's alive
1087 * and kicking, and don't take an extra reference.
1088 */
1089 memcg = mem_cgroup_from_css(css);
1090
1091 if (css == &root->css)
1092 break;
1093
1094 if (css_tryget(css)) {
1095 /*
1096 * Make sure the memcg is initialized:
1097 * mem_cgroup_css_online() orders the the
1098 * initialization against setting the flag.
1099 */
1100 if (smp_load_acquire(&memcg->initialized))
1101 break;
1102
1103 css_put(css);
1104 }
1105
1106 memcg = NULL;
1107 }
1108
1109 if (reclaim) {
1110 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1111 if (memcg)
1112 css_get(&memcg->css);
1113 if (pos)
1114 css_put(&pos->css);
1115 }
1116
1117 /*
1118 * pairs with css_tryget when dereferencing iter->position
1119 * above.
1120 */
1121 if (pos)
1122 css_put(&pos->css);
1123
1124 if (!memcg)
1125 iter->generation++;
1126 else if (!prev)
1127 reclaim->generation = iter->generation;
1128 }
1129
1130 out_unlock:
1131 rcu_read_unlock();
1132 out:
1133 if (prev && prev != root)
1134 css_put(&prev->css);
1135
1136 return memcg;
1137 }
1138
1139 /**
1140 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1141 * @root: hierarchy root
1142 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1143 */
1144 void mem_cgroup_iter_break(struct mem_cgroup *root,
1145 struct mem_cgroup *prev)
1146 {
1147 if (!root)
1148 root = root_mem_cgroup;
1149 if (prev && prev != root)
1150 css_put(&prev->css);
1151 }
1152
1153 /*
1154 * Iteration constructs for visiting all cgroups (under a tree). If
1155 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1156 * be used for reference counting.
1157 */
1158 #define for_each_mem_cgroup_tree(iter, root) \
1159 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1160 iter != NULL; \
1161 iter = mem_cgroup_iter(root, iter, NULL))
1162
1163 #define for_each_mem_cgroup(iter) \
1164 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1165 iter != NULL; \
1166 iter = mem_cgroup_iter(NULL, iter, NULL))
1167
1168 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1169 {
1170 struct mem_cgroup *memcg;
1171
1172 rcu_read_lock();
1173 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1174 if (unlikely(!memcg))
1175 goto out;
1176
1177 switch (idx) {
1178 case PGFAULT:
1179 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1180 break;
1181 case PGMAJFAULT:
1182 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1183 break;
1184 default:
1185 BUG();
1186 }
1187 out:
1188 rcu_read_unlock();
1189 }
1190 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1191
1192 /**
1193 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1194 * @zone: zone of the wanted lruvec
1195 * @memcg: memcg of the wanted lruvec
1196 *
1197 * Returns the lru list vector holding pages for the given @zone and
1198 * @mem. This can be the global zone lruvec, if the memory controller
1199 * is disabled.
1200 */
1201 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1202 struct mem_cgroup *memcg)
1203 {
1204 struct mem_cgroup_per_zone *mz;
1205 struct lruvec *lruvec;
1206
1207 if (mem_cgroup_disabled()) {
1208 lruvec = &zone->lruvec;
1209 goto out;
1210 }
1211
1212 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1213 lruvec = &mz->lruvec;
1214 out:
1215 /*
1216 * Since a node can be onlined after the mem_cgroup was created,
1217 * we have to be prepared to initialize lruvec->zone here;
1218 * and if offlined then reonlined, we need to reinitialize it.
1219 */
1220 if (unlikely(lruvec->zone != zone))
1221 lruvec->zone = zone;
1222 return lruvec;
1223 }
1224
1225 /**
1226 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1227 * @page: the page
1228 * @zone: zone of the page
1229 *
1230 * This function is only safe when following the LRU page isolation
1231 * and putback protocol: the LRU lock must be held, and the page must
1232 * either be PageLRU() or the caller must have isolated/allocated it.
1233 */
1234 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1235 {
1236 struct mem_cgroup_per_zone *mz;
1237 struct mem_cgroup *memcg;
1238 struct lruvec *lruvec;
1239
1240 if (mem_cgroup_disabled()) {
1241 lruvec = &zone->lruvec;
1242 goto out;
1243 }
1244
1245 memcg = page->mem_cgroup;
1246 /*
1247 * Swapcache readahead pages are added to the LRU - and
1248 * possibly migrated - before they are charged.
1249 */
1250 if (!memcg)
1251 memcg = root_mem_cgroup;
1252
1253 mz = mem_cgroup_page_zoneinfo(memcg, page);
1254 lruvec = &mz->lruvec;
1255 out:
1256 /*
1257 * Since a node can be onlined after the mem_cgroup was created,
1258 * we have to be prepared to initialize lruvec->zone here;
1259 * and if offlined then reonlined, we need to reinitialize it.
1260 */
1261 if (unlikely(lruvec->zone != zone))
1262 lruvec->zone = zone;
1263 return lruvec;
1264 }
1265
1266 /**
1267 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1268 * @lruvec: mem_cgroup per zone lru vector
1269 * @lru: index of lru list the page is sitting on
1270 * @nr_pages: positive when adding or negative when removing
1271 *
1272 * This function must be called when a page is added to or removed from an
1273 * lru list.
1274 */
1275 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1276 int nr_pages)
1277 {
1278 struct mem_cgroup_per_zone *mz;
1279 unsigned long *lru_size;
1280
1281 if (mem_cgroup_disabled())
1282 return;
1283
1284 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1285 lru_size = mz->lru_size + lru;
1286 *lru_size += nr_pages;
1287 VM_BUG_ON((long)(*lru_size) < 0);
1288 }
1289
1290 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1291 {
1292 if (root == memcg)
1293 return true;
1294 if (!root->use_hierarchy)
1295 return false;
1296 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1297 }
1298
1299 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1300 {
1301 struct mem_cgroup *task_memcg;
1302 struct task_struct *p;
1303 bool ret;
1304
1305 p = find_lock_task_mm(task);
1306 if (p) {
1307 task_memcg = get_mem_cgroup_from_mm(p->mm);
1308 task_unlock(p);
1309 } else {
1310 /*
1311 * All threads may have already detached their mm's, but the oom
1312 * killer still needs to detect if they have already been oom
1313 * killed to prevent needlessly killing additional tasks.
1314 */
1315 rcu_read_lock();
1316 task_memcg = mem_cgroup_from_task(task);
1317 css_get(&task_memcg->css);
1318 rcu_read_unlock();
1319 }
1320 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1321 css_put(&task_memcg->css);
1322 return ret;
1323 }
1324
1325 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1326 {
1327 unsigned long inactive_ratio;
1328 unsigned long inactive;
1329 unsigned long active;
1330 unsigned long gb;
1331
1332 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1333 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1334
1335 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1336 if (gb)
1337 inactive_ratio = int_sqrt(10 * gb);
1338 else
1339 inactive_ratio = 1;
1340
1341 return inactive * inactive_ratio < active;
1342 }
1343
1344 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1345 {
1346 struct mem_cgroup_per_zone *mz;
1347 struct mem_cgroup *memcg;
1348
1349 if (mem_cgroup_disabled())
1350 return true;
1351
1352 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1353 memcg = mz->memcg;
1354
1355 return !!(memcg->css.flags & CSS_ONLINE);
1356 }
1357
1358 #define mem_cgroup_from_counter(counter, member) \
1359 container_of(counter, struct mem_cgroup, member)
1360
1361 /**
1362 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1363 * @memcg: the memory cgroup
1364 *
1365 * Returns the maximum amount of memory @mem can be charged with, in
1366 * pages.
1367 */
1368 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1369 {
1370 unsigned long margin = 0;
1371 unsigned long count;
1372 unsigned long limit;
1373
1374 count = page_counter_read(&memcg->memory);
1375 limit = ACCESS_ONCE(memcg->memory.limit);
1376 if (count < limit)
1377 margin = limit - count;
1378
1379 if (do_swap_account) {
1380 count = page_counter_read(&memcg->memsw);
1381 limit = ACCESS_ONCE(memcg->memsw.limit);
1382 if (count <= limit)
1383 margin = min(margin, limit - count);
1384 }
1385
1386 return margin;
1387 }
1388
1389 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1390 {
1391 /* root ? */
1392 if (mem_cgroup_disabled() || !memcg->css.parent)
1393 return vm_swappiness;
1394
1395 return memcg->swappiness;
1396 }
1397
1398 /*
1399 * A routine for checking "mem" is under move_account() or not.
1400 *
1401 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1402 * moving cgroups. This is for waiting at high-memory pressure
1403 * caused by "move".
1404 */
1405 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1406 {
1407 struct mem_cgroup *from;
1408 struct mem_cgroup *to;
1409 bool ret = false;
1410 /*
1411 * Unlike task_move routines, we access mc.to, mc.from not under
1412 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1413 */
1414 spin_lock(&mc.lock);
1415 from = mc.from;
1416 to = mc.to;
1417 if (!from)
1418 goto unlock;
1419
1420 ret = mem_cgroup_is_descendant(from, memcg) ||
1421 mem_cgroup_is_descendant(to, memcg);
1422 unlock:
1423 spin_unlock(&mc.lock);
1424 return ret;
1425 }
1426
1427 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1428 {
1429 if (mc.moving_task && current != mc.moving_task) {
1430 if (mem_cgroup_under_move(memcg)) {
1431 DEFINE_WAIT(wait);
1432 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1433 /* moving charge context might have finished. */
1434 if (mc.moving_task)
1435 schedule();
1436 finish_wait(&mc.waitq, &wait);
1437 return true;
1438 }
1439 }
1440 return false;
1441 }
1442
1443 #define K(x) ((x) << (PAGE_SHIFT-10))
1444 /**
1445 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1446 * @memcg: The memory cgroup that went over limit
1447 * @p: Task that is going to be killed
1448 *
1449 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1450 * enabled
1451 */
1452 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1453 {
1454 /* oom_info_lock ensures that parallel ooms do not interleave */
1455 static DEFINE_MUTEX(oom_info_lock);
1456 struct mem_cgroup *iter;
1457 unsigned int i;
1458
1459 if (!p)
1460 return;
1461
1462 mutex_lock(&oom_info_lock);
1463 rcu_read_lock();
1464
1465 pr_info("Task in ");
1466 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1467 pr_cont(" killed as a result of limit of ");
1468 pr_cont_cgroup_path(memcg->css.cgroup);
1469 pr_cont("\n");
1470
1471 rcu_read_unlock();
1472
1473 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1474 K((u64)page_counter_read(&memcg->memory)),
1475 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1476 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1477 K((u64)page_counter_read(&memcg->memsw)),
1478 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1479 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1480 K((u64)page_counter_read(&memcg->kmem)),
1481 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1482
1483 for_each_mem_cgroup_tree(iter, memcg) {
1484 pr_info("Memory cgroup stats for ");
1485 pr_cont_cgroup_path(iter->css.cgroup);
1486 pr_cont(":");
1487
1488 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1489 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1490 continue;
1491 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1492 K(mem_cgroup_read_stat(iter, i)));
1493 }
1494
1495 for (i = 0; i < NR_LRU_LISTS; i++)
1496 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1497 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1498
1499 pr_cont("\n");
1500 }
1501 mutex_unlock(&oom_info_lock);
1502 }
1503
1504 /*
1505 * This function returns the number of memcg under hierarchy tree. Returns
1506 * 1(self count) if no children.
1507 */
1508 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1509 {
1510 int num = 0;
1511 struct mem_cgroup *iter;
1512
1513 for_each_mem_cgroup_tree(iter, memcg)
1514 num++;
1515 return num;
1516 }
1517
1518 /*
1519 * Return the memory (and swap, if configured) limit for a memcg.
1520 */
1521 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1522 {
1523 unsigned long limit;
1524
1525 limit = memcg->memory.limit;
1526 if (mem_cgroup_swappiness(memcg)) {
1527 unsigned long memsw_limit;
1528
1529 memsw_limit = memcg->memsw.limit;
1530 limit = min(limit + total_swap_pages, memsw_limit);
1531 }
1532 return limit;
1533 }
1534
1535 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1536 int order)
1537 {
1538 struct mem_cgroup *iter;
1539 unsigned long chosen_points = 0;
1540 unsigned long totalpages;
1541 unsigned int points = 0;
1542 struct task_struct *chosen = NULL;
1543
1544 /*
1545 * If current has a pending SIGKILL or is exiting, then automatically
1546 * select it. The goal is to allow it to allocate so that it may
1547 * quickly exit and free its memory.
1548 */
1549 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1550 mark_tsk_oom_victim(current);
1551 return;
1552 }
1553
1554 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1555 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1556 for_each_mem_cgroup_tree(iter, memcg) {
1557 struct css_task_iter it;
1558 struct task_struct *task;
1559
1560 css_task_iter_start(&iter->css, &it);
1561 while ((task = css_task_iter_next(&it))) {
1562 switch (oom_scan_process_thread(task, totalpages, NULL,
1563 false)) {
1564 case OOM_SCAN_SELECT:
1565 if (chosen)
1566 put_task_struct(chosen);
1567 chosen = task;
1568 chosen_points = ULONG_MAX;
1569 get_task_struct(chosen);
1570 /* fall through */
1571 case OOM_SCAN_CONTINUE:
1572 continue;
1573 case OOM_SCAN_ABORT:
1574 css_task_iter_end(&it);
1575 mem_cgroup_iter_break(memcg, iter);
1576 if (chosen)
1577 put_task_struct(chosen);
1578 return;
1579 case OOM_SCAN_OK:
1580 break;
1581 };
1582 points = oom_badness(task, memcg, NULL, totalpages);
1583 if (!points || points < chosen_points)
1584 continue;
1585 /* Prefer thread group leaders for display purposes */
1586 if (points == chosen_points &&
1587 thread_group_leader(chosen))
1588 continue;
1589
1590 if (chosen)
1591 put_task_struct(chosen);
1592 chosen = task;
1593 chosen_points = points;
1594 get_task_struct(chosen);
1595 }
1596 css_task_iter_end(&it);
1597 }
1598
1599 if (!chosen)
1600 return;
1601 points = chosen_points * 1000 / totalpages;
1602 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1603 NULL, "Memory cgroup out of memory");
1604 }
1605
1606 #if MAX_NUMNODES > 1
1607
1608 /**
1609 * test_mem_cgroup_node_reclaimable
1610 * @memcg: the target memcg
1611 * @nid: the node ID to be checked.
1612 * @noswap : specify true here if the user wants flle only information.
1613 *
1614 * This function returns whether the specified memcg contains any
1615 * reclaimable pages on a node. Returns true if there are any reclaimable
1616 * pages in the node.
1617 */
1618 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1619 int nid, bool noswap)
1620 {
1621 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1622 return true;
1623 if (noswap || !total_swap_pages)
1624 return false;
1625 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1626 return true;
1627 return false;
1628
1629 }
1630
1631 /*
1632 * Always updating the nodemask is not very good - even if we have an empty
1633 * list or the wrong list here, we can start from some node and traverse all
1634 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1635 *
1636 */
1637 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1638 {
1639 int nid;
1640 /*
1641 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1642 * pagein/pageout changes since the last update.
1643 */
1644 if (!atomic_read(&memcg->numainfo_events))
1645 return;
1646 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1647 return;
1648
1649 /* make a nodemask where this memcg uses memory from */
1650 memcg->scan_nodes = node_states[N_MEMORY];
1651
1652 for_each_node_mask(nid, node_states[N_MEMORY]) {
1653
1654 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1655 node_clear(nid, memcg->scan_nodes);
1656 }
1657
1658 atomic_set(&memcg->numainfo_events, 0);
1659 atomic_set(&memcg->numainfo_updating, 0);
1660 }
1661
1662 /*
1663 * Selecting a node where we start reclaim from. Because what we need is just
1664 * reducing usage counter, start from anywhere is O,K. Considering
1665 * memory reclaim from current node, there are pros. and cons.
1666 *
1667 * Freeing memory from current node means freeing memory from a node which
1668 * we'll use or we've used. So, it may make LRU bad. And if several threads
1669 * hit limits, it will see a contention on a node. But freeing from remote
1670 * node means more costs for memory reclaim because of memory latency.
1671 *
1672 * Now, we use round-robin. Better algorithm is welcomed.
1673 */
1674 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1675 {
1676 int node;
1677
1678 mem_cgroup_may_update_nodemask(memcg);
1679 node = memcg->last_scanned_node;
1680
1681 node = next_node(node, memcg->scan_nodes);
1682 if (node == MAX_NUMNODES)
1683 node = first_node(memcg->scan_nodes);
1684 /*
1685 * We call this when we hit limit, not when pages are added to LRU.
1686 * No LRU may hold pages because all pages are UNEVICTABLE or
1687 * memcg is too small and all pages are not on LRU. In that case,
1688 * we use curret node.
1689 */
1690 if (unlikely(node == MAX_NUMNODES))
1691 node = numa_node_id();
1692
1693 memcg->last_scanned_node = node;
1694 return node;
1695 }
1696 #else
1697 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1698 {
1699 return 0;
1700 }
1701 #endif
1702
1703 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1704 struct zone *zone,
1705 gfp_t gfp_mask,
1706 unsigned long *total_scanned)
1707 {
1708 struct mem_cgroup *victim = NULL;
1709 int total = 0;
1710 int loop = 0;
1711 unsigned long excess;
1712 unsigned long nr_scanned;
1713 struct mem_cgroup_reclaim_cookie reclaim = {
1714 .zone = zone,
1715 .priority = 0,
1716 };
1717
1718 excess = soft_limit_excess(root_memcg);
1719
1720 while (1) {
1721 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1722 if (!victim) {
1723 loop++;
1724 if (loop >= 2) {
1725 /*
1726 * If we have not been able to reclaim
1727 * anything, it might because there are
1728 * no reclaimable pages under this hierarchy
1729 */
1730 if (!total)
1731 break;
1732 /*
1733 * We want to do more targeted reclaim.
1734 * excess >> 2 is not to excessive so as to
1735 * reclaim too much, nor too less that we keep
1736 * coming back to reclaim from this cgroup
1737 */
1738 if (total >= (excess >> 2) ||
1739 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1740 break;
1741 }
1742 continue;
1743 }
1744 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1745 zone, &nr_scanned);
1746 *total_scanned += nr_scanned;
1747 if (!soft_limit_excess(root_memcg))
1748 break;
1749 }
1750 mem_cgroup_iter_break(root_memcg, victim);
1751 return total;
1752 }
1753
1754 #ifdef CONFIG_LOCKDEP
1755 static struct lockdep_map memcg_oom_lock_dep_map = {
1756 .name = "memcg_oom_lock",
1757 };
1758 #endif
1759
1760 static DEFINE_SPINLOCK(memcg_oom_lock);
1761
1762 /*
1763 * Check OOM-Killer is already running under our hierarchy.
1764 * If someone is running, return false.
1765 */
1766 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1767 {
1768 struct mem_cgroup *iter, *failed = NULL;
1769
1770 spin_lock(&memcg_oom_lock);
1771
1772 for_each_mem_cgroup_tree(iter, memcg) {
1773 if (iter->oom_lock) {
1774 /*
1775 * this subtree of our hierarchy is already locked
1776 * so we cannot give a lock.
1777 */
1778 failed = iter;
1779 mem_cgroup_iter_break(memcg, iter);
1780 break;
1781 } else
1782 iter->oom_lock = true;
1783 }
1784
1785 if (failed) {
1786 /*
1787 * OK, we failed to lock the whole subtree so we have
1788 * to clean up what we set up to the failing subtree
1789 */
1790 for_each_mem_cgroup_tree(iter, memcg) {
1791 if (iter == failed) {
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
1794 }
1795 iter->oom_lock = false;
1796 }
1797 } else
1798 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1799
1800 spin_unlock(&memcg_oom_lock);
1801
1802 return !failed;
1803 }
1804
1805 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1806 {
1807 struct mem_cgroup *iter;
1808
1809 spin_lock(&memcg_oom_lock);
1810 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1811 for_each_mem_cgroup_tree(iter, memcg)
1812 iter->oom_lock = false;
1813 spin_unlock(&memcg_oom_lock);
1814 }
1815
1816 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1817 {
1818 struct mem_cgroup *iter;
1819
1820 for_each_mem_cgroup_tree(iter, memcg)
1821 atomic_inc(&iter->under_oom);
1822 }
1823
1824 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1825 {
1826 struct mem_cgroup *iter;
1827
1828 /*
1829 * When a new child is created while the hierarchy is under oom,
1830 * mem_cgroup_oom_lock() may not be called. We have to use
1831 * atomic_add_unless() here.
1832 */
1833 for_each_mem_cgroup_tree(iter, memcg)
1834 atomic_add_unless(&iter->under_oom, -1, 0);
1835 }
1836
1837 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1838
1839 struct oom_wait_info {
1840 struct mem_cgroup *memcg;
1841 wait_queue_t wait;
1842 };
1843
1844 static int memcg_oom_wake_function(wait_queue_t *wait,
1845 unsigned mode, int sync, void *arg)
1846 {
1847 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1848 struct mem_cgroup *oom_wait_memcg;
1849 struct oom_wait_info *oom_wait_info;
1850
1851 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1852 oom_wait_memcg = oom_wait_info->memcg;
1853
1854 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1855 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1856 return 0;
1857 return autoremove_wake_function(wait, mode, sync, arg);
1858 }
1859
1860 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1861 {
1862 atomic_inc(&memcg->oom_wakeups);
1863 /* for filtering, pass "memcg" as argument. */
1864 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1865 }
1866
1867 static void memcg_oom_recover(struct mem_cgroup *memcg)
1868 {
1869 if (memcg && atomic_read(&memcg->under_oom))
1870 memcg_wakeup_oom(memcg);
1871 }
1872
1873 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1874 {
1875 if (!current->memcg_oom.may_oom)
1876 return;
1877 /*
1878 * We are in the middle of the charge context here, so we
1879 * don't want to block when potentially sitting on a callstack
1880 * that holds all kinds of filesystem and mm locks.
1881 *
1882 * Also, the caller may handle a failed allocation gracefully
1883 * (like optional page cache readahead) and so an OOM killer
1884 * invocation might not even be necessary.
1885 *
1886 * That's why we don't do anything here except remember the
1887 * OOM context and then deal with it at the end of the page
1888 * fault when the stack is unwound, the locks are released,
1889 * and when we know whether the fault was overall successful.
1890 */
1891 css_get(&memcg->css);
1892 current->memcg_oom.memcg = memcg;
1893 current->memcg_oom.gfp_mask = mask;
1894 current->memcg_oom.order = order;
1895 }
1896
1897 /**
1898 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1899 * @handle: actually kill/wait or just clean up the OOM state
1900 *
1901 * This has to be called at the end of a page fault if the memcg OOM
1902 * handler was enabled.
1903 *
1904 * Memcg supports userspace OOM handling where failed allocations must
1905 * sleep on a waitqueue until the userspace task resolves the
1906 * situation. Sleeping directly in the charge context with all kinds
1907 * of locks held is not a good idea, instead we remember an OOM state
1908 * in the task and mem_cgroup_oom_synchronize() has to be called at
1909 * the end of the page fault to complete the OOM handling.
1910 *
1911 * Returns %true if an ongoing memcg OOM situation was detected and
1912 * completed, %false otherwise.
1913 */
1914 bool mem_cgroup_oom_synchronize(bool handle)
1915 {
1916 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1917 struct oom_wait_info owait;
1918 bool locked;
1919
1920 /* OOM is global, do not handle */
1921 if (!memcg)
1922 return false;
1923
1924 if (!handle || oom_killer_disabled)
1925 goto cleanup;
1926
1927 owait.memcg = memcg;
1928 owait.wait.flags = 0;
1929 owait.wait.func = memcg_oom_wake_function;
1930 owait.wait.private = current;
1931 INIT_LIST_HEAD(&owait.wait.task_list);
1932
1933 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1934 mem_cgroup_mark_under_oom(memcg);
1935
1936 locked = mem_cgroup_oom_trylock(memcg);
1937
1938 if (locked)
1939 mem_cgroup_oom_notify(memcg);
1940
1941 if (locked && !memcg->oom_kill_disable) {
1942 mem_cgroup_unmark_under_oom(memcg);
1943 finish_wait(&memcg_oom_waitq, &owait.wait);
1944 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1945 current->memcg_oom.order);
1946 } else {
1947 schedule();
1948 mem_cgroup_unmark_under_oom(memcg);
1949 finish_wait(&memcg_oom_waitq, &owait.wait);
1950 }
1951
1952 if (locked) {
1953 mem_cgroup_oom_unlock(memcg);
1954 /*
1955 * There is no guarantee that an OOM-lock contender
1956 * sees the wakeups triggered by the OOM kill
1957 * uncharges. Wake any sleepers explicitely.
1958 */
1959 memcg_oom_recover(memcg);
1960 }
1961 cleanup:
1962 current->memcg_oom.memcg = NULL;
1963 css_put(&memcg->css);
1964 return true;
1965 }
1966
1967 /**
1968 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1969 * @page: page that is going to change accounted state
1970 *
1971 * This function must mark the beginning of an accounted page state
1972 * change to prevent double accounting when the page is concurrently
1973 * being moved to another memcg:
1974 *
1975 * memcg = mem_cgroup_begin_page_stat(page);
1976 * if (TestClearPageState(page))
1977 * mem_cgroup_update_page_stat(memcg, state, -1);
1978 * mem_cgroup_end_page_stat(memcg);
1979 */
1980 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
1981 {
1982 struct mem_cgroup *memcg;
1983 unsigned long flags;
1984
1985 /*
1986 * The RCU lock is held throughout the transaction. The fast
1987 * path can get away without acquiring the memcg->move_lock
1988 * because page moving starts with an RCU grace period.
1989 *
1990 * The RCU lock also protects the memcg from being freed when
1991 * the page state that is going to change is the only thing
1992 * preventing the page from being uncharged.
1993 * E.g. end-writeback clearing PageWriteback(), which allows
1994 * migration to go ahead and uncharge the page before the
1995 * account transaction might be complete.
1996 */
1997 rcu_read_lock();
1998
1999 if (mem_cgroup_disabled())
2000 return NULL;
2001 again:
2002 memcg = page->mem_cgroup;
2003 if (unlikely(!memcg))
2004 return NULL;
2005
2006 if (atomic_read(&memcg->moving_account) <= 0)
2007 return memcg;
2008
2009 spin_lock_irqsave(&memcg->move_lock, flags);
2010 if (memcg != page->mem_cgroup) {
2011 spin_unlock_irqrestore(&memcg->move_lock, flags);
2012 goto again;
2013 }
2014
2015 /*
2016 * When charge migration first begins, we can have locked and
2017 * unlocked page stat updates happening concurrently. Track
2018 * the task who has the lock for mem_cgroup_end_page_stat().
2019 */
2020 memcg->move_lock_task = current;
2021 memcg->move_lock_flags = flags;
2022
2023 return memcg;
2024 }
2025
2026 /**
2027 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2028 * @memcg: the memcg that was accounted against
2029 */
2030 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2031 {
2032 if (memcg && memcg->move_lock_task == current) {
2033 unsigned long flags = memcg->move_lock_flags;
2034
2035 memcg->move_lock_task = NULL;
2036 memcg->move_lock_flags = 0;
2037
2038 spin_unlock_irqrestore(&memcg->move_lock, flags);
2039 }
2040
2041 rcu_read_unlock();
2042 }
2043
2044 /**
2045 * mem_cgroup_update_page_stat - update page state statistics
2046 * @memcg: memcg to account against
2047 * @idx: page state item to account
2048 * @val: number of pages (positive or negative)
2049 *
2050 * See mem_cgroup_begin_page_stat() for locking requirements.
2051 */
2052 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2053 enum mem_cgroup_stat_index idx, int val)
2054 {
2055 VM_BUG_ON(!rcu_read_lock_held());
2056
2057 if (memcg)
2058 this_cpu_add(memcg->stat->count[idx], val);
2059 }
2060
2061 /*
2062 * size of first charge trial. "32" comes from vmscan.c's magic value.
2063 * TODO: maybe necessary to use big numbers in big irons.
2064 */
2065 #define CHARGE_BATCH 32U
2066 struct memcg_stock_pcp {
2067 struct mem_cgroup *cached; /* this never be root cgroup */
2068 unsigned int nr_pages;
2069 struct work_struct work;
2070 unsigned long flags;
2071 #define FLUSHING_CACHED_CHARGE 0
2072 };
2073 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2074 static DEFINE_MUTEX(percpu_charge_mutex);
2075
2076 /**
2077 * consume_stock: Try to consume stocked charge on this cpu.
2078 * @memcg: memcg to consume from.
2079 * @nr_pages: how many pages to charge.
2080 *
2081 * The charges will only happen if @memcg matches the current cpu's memcg
2082 * stock, and at least @nr_pages are available in that stock. Failure to
2083 * service an allocation will refill the stock.
2084 *
2085 * returns true if successful, false otherwise.
2086 */
2087 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2088 {
2089 struct memcg_stock_pcp *stock;
2090 bool ret = false;
2091
2092 if (nr_pages > CHARGE_BATCH)
2093 return ret;
2094
2095 stock = &get_cpu_var(memcg_stock);
2096 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2097 stock->nr_pages -= nr_pages;
2098 ret = true;
2099 }
2100 put_cpu_var(memcg_stock);
2101 return ret;
2102 }
2103
2104 /*
2105 * Returns stocks cached in percpu and reset cached information.
2106 */
2107 static void drain_stock(struct memcg_stock_pcp *stock)
2108 {
2109 struct mem_cgroup *old = stock->cached;
2110
2111 if (stock->nr_pages) {
2112 page_counter_uncharge(&old->memory, stock->nr_pages);
2113 if (do_swap_account)
2114 page_counter_uncharge(&old->memsw, stock->nr_pages);
2115 css_put_many(&old->css, stock->nr_pages);
2116 stock->nr_pages = 0;
2117 }
2118 stock->cached = NULL;
2119 }
2120
2121 /*
2122 * This must be called under preempt disabled or must be called by
2123 * a thread which is pinned to local cpu.
2124 */
2125 static void drain_local_stock(struct work_struct *dummy)
2126 {
2127 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2128 drain_stock(stock);
2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2130 }
2131
2132 /*
2133 * Cache charges(val) to local per_cpu area.
2134 * This will be consumed by consume_stock() function, later.
2135 */
2136 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2137 {
2138 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2139
2140 if (stock->cached != memcg) { /* reset if necessary */
2141 drain_stock(stock);
2142 stock->cached = memcg;
2143 }
2144 stock->nr_pages += nr_pages;
2145 put_cpu_var(memcg_stock);
2146 }
2147
2148 /*
2149 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2150 * of the hierarchy under it.
2151 */
2152 static void drain_all_stock(struct mem_cgroup *root_memcg)
2153 {
2154 int cpu, curcpu;
2155
2156 /* If someone's already draining, avoid adding running more workers. */
2157 if (!mutex_trylock(&percpu_charge_mutex))
2158 return;
2159 /* Notify other cpus that system-wide "drain" is running */
2160 get_online_cpus();
2161 curcpu = get_cpu();
2162 for_each_online_cpu(cpu) {
2163 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2164 struct mem_cgroup *memcg;
2165
2166 memcg = stock->cached;
2167 if (!memcg || !stock->nr_pages)
2168 continue;
2169 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2170 continue;
2171 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2172 if (cpu == curcpu)
2173 drain_local_stock(&stock->work);
2174 else
2175 schedule_work_on(cpu, &stock->work);
2176 }
2177 }
2178 put_cpu();
2179 put_online_cpus();
2180 mutex_unlock(&percpu_charge_mutex);
2181 }
2182
2183 /*
2184 * This function drains percpu counter value from DEAD cpu and
2185 * move it to local cpu. Note that this function can be preempted.
2186 */
2187 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2188 {
2189 int i;
2190
2191 spin_lock(&memcg->pcp_counter_lock);
2192 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2193 long x = per_cpu(memcg->stat->count[i], cpu);
2194
2195 per_cpu(memcg->stat->count[i], cpu) = 0;
2196 memcg->nocpu_base.count[i] += x;
2197 }
2198 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2199 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2200
2201 per_cpu(memcg->stat->events[i], cpu) = 0;
2202 memcg->nocpu_base.events[i] += x;
2203 }
2204 spin_unlock(&memcg->pcp_counter_lock);
2205 }
2206
2207 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2208 unsigned long action,
2209 void *hcpu)
2210 {
2211 int cpu = (unsigned long)hcpu;
2212 struct memcg_stock_pcp *stock;
2213 struct mem_cgroup *iter;
2214
2215 if (action == CPU_ONLINE)
2216 return NOTIFY_OK;
2217
2218 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2219 return NOTIFY_OK;
2220
2221 for_each_mem_cgroup(iter)
2222 mem_cgroup_drain_pcp_counter(iter, cpu);
2223
2224 stock = &per_cpu(memcg_stock, cpu);
2225 drain_stock(stock);
2226 return NOTIFY_OK;
2227 }
2228
2229 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2230 unsigned int nr_pages)
2231 {
2232 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2233 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2234 struct mem_cgroup *mem_over_limit;
2235 struct page_counter *counter;
2236 unsigned long nr_reclaimed;
2237 bool may_swap = true;
2238 bool drained = false;
2239 int ret = 0;
2240
2241 if (mem_cgroup_is_root(memcg))
2242 goto done;
2243 retry:
2244 if (consume_stock(memcg, nr_pages))
2245 goto done;
2246
2247 if (!do_swap_account ||
2248 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2249 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2250 goto done_restock;
2251 if (do_swap_account)
2252 page_counter_uncharge(&memcg->memsw, batch);
2253 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2254 } else {
2255 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2256 may_swap = false;
2257 }
2258
2259 if (batch > nr_pages) {
2260 batch = nr_pages;
2261 goto retry;
2262 }
2263
2264 /*
2265 * Unlike in global OOM situations, memcg is not in a physical
2266 * memory shortage. Allow dying and OOM-killed tasks to
2267 * bypass the last charges so that they can exit quickly and
2268 * free their memory.
2269 */
2270 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2271 fatal_signal_pending(current) ||
2272 current->flags & PF_EXITING))
2273 goto bypass;
2274
2275 if (unlikely(task_in_memcg_oom(current)))
2276 goto nomem;
2277
2278 if (!(gfp_mask & __GFP_WAIT))
2279 goto nomem;
2280
2281 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2282
2283 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2284 gfp_mask, may_swap);
2285
2286 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2287 goto retry;
2288
2289 if (!drained) {
2290 drain_all_stock(mem_over_limit);
2291 drained = true;
2292 goto retry;
2293 }
2294
2295 if (gfp_mask & __GFP_NORETRY)
2296 goto nomem;
2297 /*
2298 * Even though the limit is exceeded at this point, reclaim
2299 * may have been able to free some pages. Retry the charge
2300 * before killing the task.
2301 *
2302 * Only for regular pages, though: huge pages are rather
2303 * unlikely to succeed so close to the limit, and we fall back
2304 * to regular pages anyway in case of failure.
2305 */
2306 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2307 goto retry;
2308 /*
2309 * At task move, charge accounts can be doubly counted. So, it's
2310 * better to wait until the end of task_move if something is going on.
2311 */
2312 if (mem_cgroup_wait_acct_move(mem_over_limit))
2313 goto retry;
2314
2315 if (nr_retries--)
2316 goto retry;
2317
2318 if (gfp_mask & __GFP_NOFAIL)
2319 goto bypass;
2320
2321 if (fatal_signal_pending(current))
2322 goto bypass;
2323
2324 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2325
2326 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2327 nomem:
2328 if (!(gfp_mask & __GFP_NOFAIL))
2329 return -ENOMEM;
2330 bypass:
2331 return -EINTR;
2332
2333 done_restock:
2334 css_get_many(&memcg->css, batch);
2335 if (batch > nr_pages)
2336 refill_stock(memcg, batch - nr_pages);
2337 /*
2338 * If the hierarchy is above the normal consumption range,
2339 * make the charging task trim their excess contribution.
2340 */
2341 do {
2342 if (page_counter_read(&memcg->memory) <= memcg->high)
2343 continue;
2344 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2345 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2346 } while ((memcg = parent_mem_cgroup(memcg)));
2347 done:
2348 return ret;
2349 }
2350
2351 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2352 {
2353 if (mem_cgroup_is_root(memcg))
2354 return;
2355
2356 page_counter_uncharge(&memcg->memory, nr_pages);
2357 if (do_swap_account)
2358 page_counter_uncharge(&memcg->memsw, nr_pages);
2359
2360 css_put_many(&memcg->css, nr_pages);
2361 }
2362
2363 /*
2364 * A helper function to get mem_cgroup from ID. must be called under
2365 * rcu_read_lock(). The caller is responsible for calling
2366 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2367 * refcnt from swap can be called against removed memcg.)
2368 */
2369 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2370 {
2371 /* ID 0 is unused ID */
2372 if (!id)
2373 return NULL;
2374 return mem_cgroup_from_id(id);
2375 }
2376
2377 /*
2378 * try_get_mem_cgroup_from_page - look up page's memcg association
2379 * @page: the page
2380 *
2381 * Look up, get a css reference, and return the memcg that owns @page.
2382 *
2383 * The page must be locked to prevent racing with swap-in and page
2384 * cache charges. If coming from an unlocked page table, the caller
2385 * must ensure the page is on the LRU or this can race with charging.
2386 */
2387 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2388 {
2389 struct mem_cgroup *memcg;
2390 unsigned short id;
2391 swp_entry_t ent;
2392
2393 VM_BUG_ON_PAGE(!PageLocked(page), page);
2394
2395 memcg = page->mem_cgroup;
2396 if (memcg) {
2397 if (!css_tryget_online(&memcg->css))
2398 memcg = NULL;
2399 } else if (PageSwapCache(page)) {
2400 ent.val = page_private(page);
2401 id = lookup_swap_cgroup_id(ent);
2402 rcu_read_lock();
2403 memcg = mem_cgroup_lookup(id);
2404 if (memcg && !css_tryget_online(&memcg->css))
2405 memcg = NULL;
2406 rcu_read_unlock();
2407 }
2408 return memcg;
2409 }
2410
2411 static void lock_page_lru(struct page *page, int *isolated)
2412 {
2413 struct zone *zone = page_zone(page);
2414
2415 spin_lock_irq(&zone->lru_lock);
2416 if (PageLRU(page)) {
2417 struct lruvec *lruvec;
2418
2419 lruvec = mem_cgroup_page_lruvec(page, zone);
2420 ClearPageLRU(page);
2421 del_page_from_lru_list(page, lruvec, page_lru(page));
2422 *isolated = 1;
2423 } else
2424 *isolated = 0;
2425 }
2426
2427 static void unlock_page_lru(struct page *page, int isolated)
2428 {
2429 struct zone *zone = page_zone(page);
2430
2431 if (isolated) {
2432 struct lruvec *lruvec;
2433
2434 lruvec = mem_cgroup_page_lruvec(page, zone);
2435 VM_BUG_ON_PAGE(PageLRU(page), page);
2436 SetPageLRU(page);
2437 add_page_to_lru_list(page, lruvec, page_lru(page));
2438 }
2439 spin_unlock_irq(&zone->lru_lock);
2440 }
2441
2442 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2443 bool lrucare)
2444 {
2445 int isolated;
2446
2447 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2448
2449 /*
2450 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2451 * may already be on some other mem_cgroup's LRU. Take care of it.
2452 */
2453 if (lrucare)
2454 lock_page_lru(page, &isolated);
2455
2456 /*
2457 * Nobody should be changing or seriously looking at
2458 * page->mem_cgroup at this point:
2459 *
2460 * - the page is uncharged
2461 *
2462 * - the page is off-LRU
2463 *
2464 * - an anonymous fault has exclusive page access, except for
2465 * a locked page table
2466 *
2467 * - a page cache insertion, a swapin fault, or a migration
2468 * have the page locked
2469 */
2470 page->mem_cgroup = memcg;
2471
2472 if (lrucare)
2473 unlock_page_lru(page, isolated);
2474 }
2475
2476 #ifdef CONFIG_MEMCG_KMEM
2477 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2478 unsigned long nr_pages)
2479 {
2480 struct page_counter *counter;
2481 int ret = 0;
2482
2483 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2484 if (ret < 0)
2485 return ret;
2486
2487 ret = try_charge(memcg, gfp, nr_pages);
2488 if (ret == -EINTR) {
2489 /*
2490 * try_charge() chose to bypass to root due to OOM kill or
2491 * fatal signal. Since our only options are to either fail
2492 * the allocation or charge it to this cgroup, do it as a
2493 * temporary condition. But we can't fail. From a kmem/slab
2494 * perspective, the cache has already been selected, by
2495 * mem_cgroup_kmem_get_cache(), so it is too late to change
2496 * our minds.
2497 *
2498 * This condition will only trigger if the task entered
2499 * memcg_charge_kmem in a sane state, but was OOM-killed
2500 * during try_charge() above. Tasks that were already dying
2501 * when the allocation triggers should have been already
2502 * directed to the root cgroup in memcontrol.h
2503 */
2504 page_counter_charge(&memcg->memory, nr_pages);
2505 if (do_swap_account)
2506 page_counter_charge(&memcg->memsw, nr_pages);
2507 css_get_many(&memcg->css, nr_pages);
2508 ret = 0;
2509 } else if (ret)
2510 page_counter_uncharge(&memcg->kmem, nr_pages);
2511
2512 return ret;
2513 }
2514
2515 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2516 {
2517 page_counter_uncharge(&memcg->memory, nr_pages);
2518 if (do_swap_account)
2519 page_counter_uncharge(&memcg->memsw, nr_pages);
2520
2521 page_counter_uncharge(&memcg->kmem, nr_pages);
2522
2523 css_put_many(&memcg->css, nr_pages);
2524 }
2525
2526 /*
2527 * helper for acessing a memcg's index. It will be used as an index in the
2528 * child cache array in kmem_cache, and also to derive its name. This function
2529 * will return -1 when this is not a kmem-limited memcg.
2530 */
2531 int memcg_cache_id(struct mem_cgroup *memcg)
2532 {
2533 return memcg ? memcg->kmemcg_id : -1;
2534 }
2535
2536 static int memcg_alloc_cache_id(void)
2537 {
2538 int id, size;
2539 int err;
2540
2541 id = ida_simple_get(&kmem_limited_groups,
2542 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2543 if (id < 0)
2544 return id;
2545
2546 if (id < memcg_limited_groups_array_size)
2547 return id;
2548
2549 /*
2550 * There's no space for the new id in memcg_caches arrays,
2551 * so we have to grow them.
2552 */
2553
2554 size = 2 * (id + 1);
2555 if (size < MEMCG_CACHES_MIN_SIZE)
2556 size = MEMCG_CACHES_MIN_SIZE;
2557 else if (size > MEMCG_CACHES_MAX_SIZE)
2558 size = MEMCG_CACHES_MAX_SIZE;
2559
2560 err = memcg_update_all_caches(size);
2561 if (err) {
2562 ida_simple_remove(&kmem_limited_groups, id);
2563 return err;
2564 }
2565 return id;
2566 }
2567
2568 static void memcg_free_cache_id(int id)
2569 {
2570 ida_simple_remove(&kmem_limited_groups, id);
2571 }
2572
2573 /*
2574 * We should update the current array size iff all caches updates succeed. This
2575 * can only be done from the slab side. The slab mutex needs to be held when
2576 * calling this.
2577 */
2578 void memcg_update_array_size(int num)
2579 {
2580 memcg_limited_groups_array_size = num;
2581 }
2582
2583 struct memcg_kmem_cache_create_work {
2584 struct mem_cgroup *memcg;
2585 struct kmem_cache *cachep;
2586 struct work_struct work;
2587 };
2588
2589 static void memcg_kmem_cache_create_func(struct work_struct *w)
2590 {
2591 struct memcg_kmem_cache_create_work *cw =
2592 container_of(w, struct memcg_kmem_cache_create_work, work);
2593 struct mem_cgroup *memcg = cw->memcg;
2594 struct kmem_cache *cachep = cw->cachep;
2595
2596 memcg_create_kmem_cache(memcg, cachep);
2597
2598 css_put(&memcg->css);
2599 kfree(cw);
2600 }
2601
2602 /*
2603 * Enqueue the creation of a per-memcg kmem_cache.
2604 */
2605 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2606 struct kmem_cache *cachep)
2607 {
2608 struct memcg_kmem_cache_create_work *cw;
2609
2610 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2611 if (!cw)
2612 return;
2613
2614 css_get(&memcg->css);
2615
2616 cw->memcg = memcg;
2617 cw->cachep = cachep;
2618 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2619
2620 schedule_work(&cw->work);
2621 }
2622
2623 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2624 struct kmem_cache *cachep)
2625 {
2626 /*
2627 * We need to stop accounting when we kmalloc, because if the
2628 * corresponding kmalloc cache is not yet created, the first allocation
2629 * in __memcg_schedule_kmem_cache_create will recurse.
2630 *
2631 * However, it is better to enclose the whole function. Depending on
2632 * the debugging options enabled, INIT_WORK(), for instance, can
2633 * trigger an allocation. This too, will make us recurse. Because at
2634 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2635 * the safest choice is to do it like this, wrapping the whole function.
2636 */
2637 current->memcg_kmem_skip_account = 1;
2638 __memcg_schedule_kmem_cache_create(memcg, cachep);
2639 current->memcg_kmem_skip_account = 0;
2640 }
2641
2642 /*
2643 * Return the kmem_cache we're supposed to use for a slab allocation.
2644 * We try to use the current memcg's version of the cache.
2645 *
2646 * If the cache does not exist yet, if we are the first user of it,
2647 * we either create it immediately, if possible, or create it asynchronously
2648 * in a workqueue.
2649 * In the latter case, we will let the current allocation go through with
2650 * the original cache.
2651 *
2652 * Can't be called in interrupt context or from kernel threads.
2653 * This function needs to be called with rcu_read_lock() held.
2654 */
2655 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2656 {
2657 struct mem_cgroup *memcg;
2658 struct kmem_cache *memcg_cachep;
2659
2660 VM_BUG_ON(!cachep->memcg_params);
2661 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2662
2663 if (current->memcg_kmem_skip_account)
2664 return cachep;
2665
2666 memcg = get_mem_cgroup_from_mm(current->mm);
2667 if (!memcg_kmem_is_active(memcg))
2668 goto out;
2669
2670 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2671 if (likely(memcg_cachep))
2672 return memcg_cachep;
2673
2674 /*
2675 * If we are in a safe context (can wait, and not in interrupt
2676 * context), we could be be predictable and return right away.
2677 * This would guarantee that the allocation being performed
2678 * already belongs in the new cache.
2679 *
2680 * However, there are some clashes that can arrive from locking.
2681 * For instance, because we acquire the slab_mutex while doing
2682 * memcg_create_kmem_cache, this means no further allocation
2683 * could happen with the slab_mutex held. So it's better to
2684 * defer everything.
2685 */
2686 memcg_schedule_kmem_cache_create(memcg, cachep);
2687 out:
2688 css_put(&memcg->css);
2689 return cachep;
2690 }
2691
2692 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2693 {
2694 if (!is_root_cache(cachep))
2695 css_put(&cachep->memcg_params->memcg->css);
2696 }
2697
2698 /*
2699 * We need to verify if the allocation against current->mm->owner's memcg is
2700 * possible for the given order. But the page is not allocated yet, so we'll
2701 * need a further commit step to do the final arrangements.
2702 *
2703 * It is possible for the task to switch cgroups in this mean time, so at
2704 * commit time, we can't rely on task conversion any longer. We'll then use
2705 * the handle argument to return to the caller which cgroup we should commit
2706 * against. We could also return the memcg directly and avoid the pointer
2707 * passing, but a boolean return value gives better semantics considering
2708 * the compiled-out case as well.
2709 *
2710 * Returning true means the allocation is possible.
2711 */
2712 bool
2713 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2714 {
2715 struct mem_cgroup *memcg;
2716 int ret;
2717
2718 *_memcg = NULL;
2719
2720 memcg = get_mem_cgroup_from_mm(current->mm);
2721
2722 if (!memcg_kmem_is_active(memcg)) {
2723 css_put(&memcg->css);
2724 return true;
2725 }
2726
2727 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2728 if (!ret)
2729 *_memcg = memcg;
2730
2731 css_put(&memcg->css);
2732 return (ret == 0);
2733 }
2734
2735 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2736 int order)
2737 {
2738 VM_BUG_ON(mem_cgroup_is_root(memcg));
2739
2740 /* The page allocation failed. Revert */
2741 if (!page) {
2742 memcg_uncharge_kmem(memcg, 1 << order);
2743 return;
2744 }
2745 page->mem_cgroup = memcg;
2746 }
2747
2748 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2749 {
2750 struct mem_cgroup *memcg = page->mem_cgroup;
2751
2752 if (!memcg)
2753 return;
2754
2755 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2756
2757 memcg_uncharge_kmem(memcg, 1 << order);
2758 page->mem_cgroup = NULL;
2759 }
2760 #endif /* CONFIG_MEMCG_KMEM */
2761
2762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2763
2764 /*
2765 * Because tail pages are not marked as "used", set it. We're under
2766 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2767 * charge/uncharge will be never happen and move_account() is done under
2768 * compound_lock(), so we don't have to take care of races.
2769 */
2770 void mem_cgroup_split_huge_fixup(struct page *head)
2771 {
2772 int i;
2773
2774 if (mem_cgroup_disabled())
2775 return;
2776
2777 for (i = 1; i < HPAGE_PMD_NR; i++)
2778 head[i].mem_cgroup = head->mem_cgroup;
2779
2780 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2781 HPAGE_PMD_NR);
2782 }
2783 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2784
2785 /**
2786 * mem_cgroup_move_account - move account of the page
2787 * @page: the page
2788 * @nr_pages: number of regular pages (>1 for huge pages)
2789 * @from: mem_cgroup which the page is moved from.
2790 * @to: mem_cgroup which the page is moved to. @from != @to.
2791 *
2792 * The caller must confirm following.
2793 * - page is not on LRU (isolate_page() is useful.)
2794 * - compound_lock is held when nr_pages > 1
2795 *
2796 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2797 * from old cgroup.
2798 */
2799 static int mem_cgroup_move_account(struct page *page,
2800 unsigned int nr_pages,
2801 struct mem_cgroup *from,
2802 struct mem_cgroup *to)
2803 {
2804 unsigned long flags;
2805 int ret;
2806
2807 VM_BUG_ON(from == to);
2808 VM_BUG_ON_PAGE(PageLRU(page), page);
2809 /*
2810 * The page is isolated from LRU. So, collapse function
2811 * will not handle this page. But page splitting can happen.
2812 * Do this check under compound_page_lock(). The caller should
2813 * hold it.
2814 */
2815 ret = -EBUSY;
2816 if (nr_pages > 1 && !PageTransHuge(page))
2817 goto out;
2818
2819 /*
2820 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2821 * of its source page while we change it: page migration takes
2822 * both pages off the LRU, but page cache replacement doesn't.
2823 */
2824 if (!trylock_page(page))
2825 goto out;
2826
2827 ret = -EINVAL;
2828 if (page->mem_cgroup != from)
2829 goto out_unlock;
2830
2831 spin_lock_irqsave(&from->move_lock, flags);
2832
2833 if (!PageAnon(page) && page_mapped(page)) {
2834 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2835 nr_pages);
2836 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2837 nr_pages);
2838 }
2839
2840 if (PageWriteback(page)) {
2841 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2842 nr_pages);
2843 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2844 nr_pages);
2845 }
2846
2847 /*
2848 * It is safe to change page->mem_cgroup here because the page
2849 * is referenced, charged, and isolated - we can't race with
2850 * uncharging, charging, migration, or LRU putback.
2851 */
2852
2853 /* caller should have done css_get */
2854 page->mem_cgroup = to;
2855 spin_unlock_irqrestore(&from->move_lock, flags);
2856
2857 ret = 0;
2858
2859 local_irq_disable();
2860 mem_cgroup_charge_statistics(to, page, nr_pages);
2861 memcg_check_events(to, page);
2862 mem_cgroup_charge_statistics(from, page, -nr_pages);
2863 memcg_check_events(from, page);
2864 local_irq_enable();
2865 out_unlock:
2866 unlock_page(page);
2867 out:
2868 return ret;
2869 }
2870
2871 #ifdef CONFIG_MEMCG_SWAP
2872 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2873 bool charge)
2874 {
2875 int val = (charge) ? 1 : -1;
2876 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2877 }
2878
2879 /**
2880 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2881 * @entry: swap entry to be moved
2882 * @from: mem_cgroup which the entry is moved from
2883 * @to: mem_cgroup which the entry is moved to
2884 *
2885 * It succeeds only when the swap_cgroup's record for this entry is the same
2886 * as the mem_cgroup's id of @from.
2887 *
2888 * Returns 0 on success, -EINVAL on failure.
2889 *
2890 * The caller must have charged to @to, IOW, called page_counter_charge() about
2891 * both res and memsw, and called css_get().
2892 */
2893 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2894 struct mem_cgroup *from, struct mem_cgroup *to)
2895 {
2896 unsigned short old_id, new_id;
2897
2898 old_id = mem_cgroup_id(from);
2899 new_id = mem_cgroup_id(to);
2900
2901 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2902 mem_cgroup_swap_statistics(from, false);
2903 mem_cgroup_swap_statistics(to, true);
2904 return 0;
2905 }
2906 return -EINVAL;
2907 }
2908 #else
2909 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2910 struct mem_cgroup *from, struct mem_cgroup *to)
2911 {
2912 return -EINVAL;
2913 }
2914 #endif
2915
2916 static DEFINE_MUTEX(memcg_limit_mutex);
2917
2918 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2919 unsigned long limit)
2920 {
2921 unsigned long curusage;
2922 unsigned long oldusage;
2923 bool enlarge = false;
2924 int retry_count;
2925 int ret;
2926
2927 /*
2928 * For keeping hierarchical_reclaim simple, how long we should retry
2929 * is depends on callers. We set our retry-count to be function
2930 * of # of children which we should visit in this loop.
2931 */
2932 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2933 mem_cgroup_count_children(memcg);
2934
2935 oldusage = page_counter_read(&memcg->memory);
2936
2937 do {
2938 if (signal_pending(current)) {
2939 ret = -EINTR;
2940 break;
2941 }
2942
2943 mutex_lock(&memcg_limit_mutex);
2944 if (limit > memcg->memsw.limit) {
2945 mutex_unlock(&memcg_limit_mutex);
2946 ret = -EINVAL;
2947 break;
2948 }
2949 if (limit > memcg->memory.limit)
2950 enlarge = true;
2951 ret = page_counter_limit(&memcg->memory, limit);
2952 mutex_unlock(&memcg_limit_mutex);
2953
2954 if (!ret)
2955 break;
2956
2957 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2958
2959 curusage = page_counter_read(&memcg->memory);
2960 /* Usage is reduced ? */
2961 if (curusage >= oldusage)
2962 retry_count--;
2963 else
2964 oldusage = curusage;
2965 } while (retry_count);
2966
2967 if (!ret && enlarge)
2968 memcg_oom_recover(memcg);
2969
2970 return ret;
2971 }
2972
2973 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2974 unsigned long limit)
2975 {
2976 unsigned long curusage;
2977 unsigned long oldusage;
2978 bool enlarge = false;
2979 int retry_count;
2980 int ret;
2981
2982 /* see mem_cgroup_resize_res_limit */
2983 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2984 mem_cgroup_count_children(memcg);
2985
2986 oldusage = page_counter_read(&memcg->memsw);
2987
2988 do {
2989 if (signal_pending(current)) {
2990 ret = -EINTR;
2991 break;
2992 }
2993
2994 mutex_lock(&memcg_limit_mutex);
2995 if (limit < memcg->memory.limit) {
2996 mutex_unlock(&memcg_limit_mutex);
2997 ret = -EINVAL;
2998 break;
2999 }
3000 if (limit > memcg->memsw.limit)
3001 enlarge = true;
3002 ret = page_counter_limit(&memcg->memsw, limit);
3003 mutex_unlock(&memcg_limit_mutex);
3004
3005 if (!ret)
3006 break;
3007
3008 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3009
3010 curusage = page_counter_read(&memcg->memsw);
3011 /* Usage is reduced ? */
3012 if (curusage >= oldusage)
3013 retry_count--;
3014 else
3015 oldusage = curusage;
3016 } while (retry_count);
3017
3018 if (!ret && enlarge)
3019 memcg_oom_recover(memcg);
3020
3021 return ret;
3022 }
3023
3024 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3025 gfp_t gfp_mask,
3026 unsigned long *total_scanned)
3027 {
3028 unsigned long nr_reclaimed = 0;
3029 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3030 unsigned long reclaimed;
3031 int loop = 0;
3032 struct mem_cgroup_tree_per_zone *mctz;
3033 unsigned long excess;
3034 unsigned long nr_scanned;
3035
3036 if (order > 0)
3037 return 0;
3038
3039 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3040 /*
3041 * This loop can run a while, specially if mem_cgroup's continuously
3042 * keep exceeding their soft limit and putting the system under
3043 * pressure
3044 */
3045 do {
3046 if (next_mz)
3047 mz = next_mz;
3048 else
3049 mz = mem_cgroup_largest_soft_limit_node(mctz);
3050 if (!mz)
3051 break;
3052
3053 nr_scanned = 0;
3054 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3055 gfp_mask, &nr_scanned);
3056 nr_reclaimed += reclaimed;
3057 *total_scanned += nr_scanned;
3058 spin_lock_irq(&mctz->lock);
3059 __mem_cgroup_remove_exceeded(mz, mctz);
3060
3061 /*
3062 * If we failed to reclaim anything from this memory cgroup
3063 * it is time to move on to the next cgroup
3064 */
3065 next_mz = NULL;
3066 if (!reclaimed)
3067 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3068
3069 excess = soft_limit_excess(mz->memcg);
3070 /*
3071 * One school of thought says that we should not add
3072 * back the node to the tree if reclaim returns 0.
3073 * But our reclaim could return 0, simply because due
3074 * to priority we are exposing a smaller subset of
3075 * memory to reclaim from. Consider this as a longer
3076 * term TODO.
3077 */
3078 /* If excess == 0, no tree ops */
3079 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3080 spin_unlock_irq(&mctz->lock);
3081 css_put(&mz->memcg->css);
3082 loop++;
3083 /*
3084 * Could not reclaim anything and there are no more
3085 * mem cgroups to try or we seem to be looping without
3086 * reclaiming anything.
3087 */
3088 if (!nr_reclaimed &&
3089 (next_mz == NULL ||
3090 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3091 break;
3092 } while (!nr_reclaimed);
3093 if (next_mz)
3094 css_put(&next_mz->memcg->css);
3095 return nr_reclaimed;
3096 }
3097
3098 /*
3099 * Test whether @memcg has children, dead or alive. Note that this
3100 * function doesn't care whether @memcg has use_hierarchy enabled and
3101 * returns %true if there are child csses according to the cgroup
3102 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3103 */
3104 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3105 {
3106 bool ret;
3107
3108 /*
3109 * The lock does not prevent addition or deletion of children, but
3110 * it prevents a new child from being initialized based on this
3111 * parent in css_online(), so it's enough to decide whether
3112 * hierarchically inherited attributes can still be changed or not.
3113 */
3114 lockdep_assert_held(&memcg_create_mutex);
3115
3116 rcu_read_lock();
3117 ret = css_next_child(NULL, &memcg->css);
3118 rcu_read_unlock();
3119 return ret;
3120 }
3121
3122 /*
3123 * Reclaims as many pages from the given memcg as possible and moves
3124 * the rest to the parent.
3125 *
3126 * Caller is responsible for holding css reference for memcg.
3127 */
3128 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3129 {
3130 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3131
3132 /* we call try-to-free pages for make this cgroup empty */
3133 lru_add_drain_all();
3134 /* try to free all pages in this cgroup */
3135 while (nr_retries && page_counter_read(&memcg->memory)) {
3136 int progress;
3137
3138 if (signal_pending(current))
3139 return -EINTR;
3140
3141 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3142 GFP_KERNEL, true);
3143 if (!progress) {
3144 nr_retries--;
3145 /* maybe some writeback is necessary */
3146 congestion_wait(BLK_RW_ASYNC, HZ/10);
3147 }
3148
3149 }
3150
3151 return 0;
3152 }
3153
3154 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3155 char *buf, size_t nbytes,
3156 loff_t off)
3157 {
3158 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3159
3160 if (mem_cgroup_is_root(memcg))
3161 return -EINVAL;
3162 return mem_cgroup_force_empty(memcg) ?: nbytes;
3163 }
3164
3165 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3166 struct cftype *cft)
3167 {
3168 return mem_cgroup_from_css(css)->use_hierarchy;
3169 }
3170
3171 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3172 struct cftype *cft, u64 val)
3173 {
3174 int retval = 0;
3175 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3176 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3177
3178 mutex_lock(&memcg_create_mutex);
3179
3180 if (memcg->use_hierarchy == val)
3181 goto out;
3182
3183 /*
3184 * If parent's use_hierarchy is set, we can't make any modifications
3185 * in the child subtrees. If it is unset, then the change can
3186 * occur, provided the current cgroup has no children.
3187 *
3188 * For the root cgroup, parent_mem is NULL, we allow value to be
3189 * set if there are no children.
3190 */
3191 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3192 (val == 1 || val == 0)) {
3193 if (!memcg_has_children(memcg))
3194 memcg->use_hierarchy = val;
3195 else
3196 retval = -EBUSY;
3197 } else
3198 retval = -EINVAL;
3199
3200 out:
3201 mutex_unlock(&memcg_create_mutex);
3202
3203 return retval;
3204 }
3205
3206 static unsigned long tree_stat(struct mem_cgroup *memcg,
3207 enum mem_cgroup_stat_index idx)
3208 {
3209 struct mem_cgroup *iter;
3210 long val = 0;
3211
3212 /* Per-cpu values can be negative, use a signed accumulator */
3213 for_each_mem_cgroup_tree(iter, memcg)
3214 val += mem_cgroup_read_stat(iter, idx);
3215
3216 if (val < 0) /* race ? */
3217 val = 0;
3218 return val;
3219 }
3220
3221 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3222 {
3223 u64 val;
3224
3225 if (mem_cgroup_is_root(memcg)) {
3226 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3227 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3228 if (swap)
3229 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3230 } else {
3231 if (!swap)
3232 val = page_counter_read(&memcg->memory);
3233 else
3234 val = page_counter_read(&memcg->memsw);
3235 }
3236 return val << PAGE_SHIFT;
3237 }
3238
3239 enum {
3240 RES_USAGE,
3241 RES_LIMIT,
3242 RES_MAX_USAGE,
3243 RES_FAILCNT,
3244 RES_SOFT_LIMIT,
3245 };
3246
3247 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3248 struct cftype *cft)
3249 {
3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251 struct page_counter *counter;
3252
3253 switch (MEMFILE_TYPE(cft->private)) {
3254 case _MEM:
3255 counter = &memcg->memory;
3256 break;
3257 case _MEMSWAP:
3258 counter = &memcg->memsw;
3259 break;
3260 case _KMEM:
3261 counter = &memcg->kmem;
3262 break;
3263 default:
3264 BUG();
3265 }
3266
3267 switch (MEMFILE_ATTR(cft->private)) {
3268 case RES_USAGE:
3269 if (counter == &memcg->memory)
3270 return mem_cgroup_usage(memcg, false);
3271 if (counter == &memcg->memsw)
3272 return mem_cgroup_usage(memcg, true);
3273 return (u64)page_counter_read(counter) * PAGE_SIZE;
3274 case RES_LIMIT:
3275 return (u64)counter->limit * PAGE_SIZE;
3276 case RES_MAX_USAGE:
3277 return (u64)counter->watermark * PAGE_SIZE;
3278 case RES_FAILCNT:
3279 return counter->failcnt;
3280 case RES_SOFT_LIMIT:
3281 return (u64)memcg->soft_limit * PAGE_SIZE;
3282 default:
3283 BUG();
3284 }
3285 }
3286
3287 #ifdef CONFIG_MEMCG_KMEM
3288 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3289 unsigned long nr_pages)
3290 {
3291 int err = 0;
3292 int memcg_id;
3293
3294 if (memcg_kmem_is_active(memcg))
3295 return 0;
3296
3297 /*
3298 * For simplicity, we won't allow this to be disabled. It also can't
3299 * be changed if the cgroup has children already, or if tasks had
3300 * already joined.
3301 *
3302 * If tasks join before we set the limit, a person looking at
3303 * kmem.usage_in_bytes will have no way to determine when it took
3304 * place, which makes the value quite meaningless.
3305 *
3306 * After it first became limited, changes in the value of the limit are
3307 * of course permitted.
3308 */
3309 mutex_lock(&memcg_create_mutex);
3310 if (cgroup_has_tasks(memcg->css.cgroup) ||
3311 (memcg->use_hierarchy && memcg_has_children(memcg)))
3312 err = -EBUSY;
3313 mutex_unlock(&memcg_create_mutex);
3314 if (err)
3315 goto out;
3316
3317 memcg_id = memcg_alloc_cache_id();
3318 if (memcg_id < 0) {
3319 err = memcg_id;
3320 goto out;
3321 }
3322
3323 /*
3324 * We couldn't have accounted to this cgroup, because it hasn't got
3325 * activated yet, so this should succeed.
3326 */
3327 err = page_counter_limit(&memcg->kmem, nr_pages);
3328 VM_BUG_ON(err);
3329
3330 static_key_slow_inc(&memcg_kmem_enabled_key);
3331 /*
3332 * A memory cgroup is considered kmem-active as soon as it gets
3333 * kmemcg_id. Setting the id after enabling static branching will
3334 * guarantee no one starts accounting before all call sites are
3335 * patched.
3336 */
3337 memcg->kmemcg_id = memcg_id;
3338 out:
3339 return err;
3340 }
3341
3342 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3343 unsigned long limit)
3344 {
3345 int ret;
3346
3347 mutex_lock(&memcg_limit_mutex);
3348 if (!memcg_kmem_is_active(memcg))
3349 ret = memcg_activate_kmem(memcg, limit);
3350 else
3351 ret = page_counter_limit(&memcg->kmem, limit);
3352 mutex_unlock(&memcg_limit_mutex);
3353 return ret;
3354 }
3355
3356 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3357 {
3358 int ret = 0;
3359 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3360
3361 if (!parent)
3362 return 0;
3363
3364 mutex_lock(&memcg_limit_mutex);
3365 /*
3366 * If the parent cgroup is not kmem-active now, it cannot be activated
3367 * after this point, because it has at least one child already.
3368 */
3369 if (memcg_kmem_is_active(parent))
3370 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3371 mutex_unlock(&memcg_limit_mutex);
3372 return ret;
3373 }
3374 #else
3375 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3376 unsigned long limit)
3377 {
3378 return -EINVAL;
3379 }
3380 #endif /* CONFIG_MEMCG_KMEM */
3381
3382 /*
3383 * The user of this function is...
3384 * RES_LIMIT.
3385 */
3386 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3387 char *buf, size_t nbytes, loff_t off)
3388 {
3389 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3390 unsigned long nr_pages;
3391 int ret;
3392
3393 buf = strstrip(buf);
3394 ret = page_counter_memparse(buf, "-1", &nr_pages);
3395 if (ret)
3396 return ret;
3397
3398 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3399 case RES_LIMIT:
3400 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3401 ret = -EINVAL;
3402 break;
3403 }
3404 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3405 case _MEM:
3406 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3407 break;
3408 case _MEMSWAP:
3409 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3410 break;
3411 case _KMEM:
3412 ret = memcg_update_kmem_limit(memcg, nr_pages);
3413 break;
3414 }
3415 break;
3416 case RES_SOFT_LIMIT:
3417 memcg->soft_limit = nr_pages;
3418 ret = 0;
3419 break;
3420 }
3421 return ret ?: nbytes;
3422 }
3423
3424 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3425 size_t nbytes, loff_t off)
3426 {
3427 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3428 struct page_counter *counter;
3429
3430 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3431 case _MEM:
3432 counter = &memcg->memory;
3433 break;
3434 case _MEMSWAP:
3435 counter = &memcg->memsw;
3436 break;
3437 case _KMEM:
3438 counter = &memcg->kmem;
3439 break;
3440 default:
3441 BUG();
3442 }
3443
3444 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3445 case RES_MAX_USAGE:
3446 page_counter_reset_watermark(counter);
3447 break;
3448 case RES_FAILCNT:
3449 counter->failcnt = 0;
3450 break;
3451 default:
3452 BUG();
3453 }
3454
3455 return nbytes;
3456 }
3457
3458 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3459 struct cftype *cft)
3460 {
3461 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3462 }
3463
3464 #ifdef CONFIG_MMU
3465 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3466 struct cftype *cft, u64 val)
3467 {
3468 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3469
3470 if (val & ~MOVE_MASK)
3471 return -EINVAL;
3472
3473 /*
3474 * No kind of locking is needed in here, because ->can_attach() will
3475 * check this value once in the beginning of the process, and then carry
3476 * on with stale data. This means that changes to this value will only
3477 * affect task migrations starting after the change.
3478 */
3479 memcg->move_charge_at_immigrate = val;
3480 return 0;
3481 }
3482 #else
3483 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3484 struct cftype *cft, u64 val)
3485 {
3486 return -ENOSYS;
3487 }
3488 #endif
3489
3490 #ifdef CONFIG_NUMA
3491 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3492 {
3493 struct numa_stat {
3494 const char *name;
3495 unsigned int lru_mask;
3496 };
3497
3498 static const struct numa_stat stats[] = {
3499 { "total", LRU_ALL },
3500 { "file", LRU_ALL_FILE },
3501 { "anon", LRU_ALL_ANON },
3502 { "unevictable", BIT(LRU_UNEVICTABLE) },
3503 };
3504 const struct numa_stat *stat;
3505 int nid;
3506 unsigned long nr;
3507 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3508
3509 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3510 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3511 seq_printf(m, "%s=%lu", stat->name, nr);
3512 for_each_node_state(nid, N_MEMORY) {
3513 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3514 stat->lru_mask);
3515 seq_printf(m, " N%d=%lu", nid, nr);
3516 }
3517 seq_putc(m, '\n');
3518 }
3519
3520 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3521 struct mem_cgroup *iter;
3522
3523 nr = 0;
3524 for_each_mem_cgroup_tree(iter, memcg)
3525 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3526 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3527 for_each_node_state(nid, N_MEMORY) {
3528 nr = 0;
3529 for_each_mem_cgroup_tree(iter, memcg)
3530 nr += mem_cgroup_node_nr_lru_pages(
3531 iter, nid, stat->lru_mask);
3532 seq_printf(m, " N%d=%lu", nid, nr);
3533 }
3534 seq_putc(m, '\n');
3535 }
3536
3537 return 0;
3538 }
3539 #endif /* CONFIG_NUMA */
3540
3541 static int memcg_stat_show(struct seq_file *m, void *v)
3542 {
3543 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3544 unsigned long memory, memsw;
3545 struct mem_cgroup *mi;
3546 unsigned int i;
3547
3548 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3549 MEM_CGROUP_STAT_NSTATS);
3550 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3551 MEM_CGROUP_EVENTS_NSTATS);
3552 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3553
3554 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3555 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3556 continue;
3557 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3558 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3559 }
3560
3561 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3562 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3563 mem_cgroup_read_events(memcg, i));
3564
3565 for (i = 0; i < NR_LRU_LISTS; i++)
3566 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3567 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3568
3569 /* Hierarchical information */
3570 memory = memsw = PAGE_COUNTER_MAX;
3571 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3572 memory = min(memory, mi->memory.limit);
3573 memsw = min(memsw, mi->memsw.limit);
3574 }
3575 seq_printf(m, "hierarchical_memory_limit %llu\n",
3576 (u64)memory * PAGE_SIZE);
3577 if (do_swap_account)
3578 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3579 (u64)memsw * PAGE_SIZE);
3580
3581 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3582 long long val = 0;
3583
3584 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3585 continue;
3586 for_each_mem_cgroup_tree(mi, memcg)
3587 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3588 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3589 }
3590
3591 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3592 unsigned long long val = 0;
3593
3594 for_each_mem_cgroup_tree(mi, memcg)
3595 val += mem_cgroup_read_events(mi, i);
3596 seq_printf(m, "total_%s %llu\n",
3597 mem_cgroup_events_names[i], val);
3598 }
3599
3600 for (i = 0; i < NR_LRU_LISTS; i++) {
3601 unsigned long long val = 0;
3602
3603 for_each_mem_cgroup_tree(mi, memcg)
3604 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3605 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3606 }
3607
3608 #ifdef CONFIG_DEBUG_VM
3609 {
3610 int nid, zid;
3611 struct mem_cgroup_per_zone *mz;
3612 struct zone_reclaim_stat *rstat;
3613 unsigned long recent_rotated[2] = {0, 0};
3614 unsigned long recent_scanned[2] = {0, 0};
3615
3616 for_each_online_node(nid)
3617 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3618 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3619 rstat = &mz->lruvec.reclaim_stat;
3620
3621 recent_rotated[0] += rstat->recent_rotated[0];
3622 recent_rotated[1] += rstat->recent_rotated[1];
3623 recent_scanned[0] += rstat->recent_scanned[0];
3624 recent_scanned[1] += rstat->recent_scanned[1];
3625 }
3626 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3627 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3628 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3629 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3630 }
3631 #endif
3632
3633 return 0;
3634 }
3635
3636 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3637 struct cftype *cft)
3638 {
3639 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3640
3641 return mem_cgroup_swappiness(memcg);
3642 }
3643
3644 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3645 struct cftype *cft, u64 val)
3646 {
3647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3648
3649 if (val > 100)
3650 return -EINVAL;
3651
3652 if (css->parent)
3653 memcg->swappiness = val;
3654 else
3655 vm_swappiness = val;
3656
3657 return 0;
3658 }
3659
3660 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3661 {
3662 struct mem_cgroup_threshold_ary *t;
3663 unsigned long usage;
3664 int i;
3665
3666 rcu_read_lock();
3667 if (!swap)
3668 t = rcu_dereference(memcg->thresholds.primary);
3669 else
3670 t = rcu_dereference(memcg->memsw_thresholds.primary);
3671
3672 if (!t)
3673 goto unlock;
3674
3675 usage = mem_cgroup_usage(memcg, swap);
3676
3677 /*
3678 * current_threshold points to threshold just below or equal to usage.
3679 * If it's not true, a threshold was crossed after last
3680 * call of __mem_cgroup_threshold().
3681 */
3682 i = t->current_threshold;
3683
3684 /*
3685 * Iterate backward over array of thresholds starting from
3686 * current_threshold and check if a threshold is crossed.
3687 * If none of thresholds below usage is crossed, we read
3688 * only one element of the array here.
3689 */
3690 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3691 eventfd_signal(t->entries[i].eventfd, 1);
3692
3693 /* i = current_threshold + 1 */
3694 i++;
3695
3696 /*
3697 * Iterate forward over array of thresholds starting from
3698 * current_threshold+1 and check if a threshold is crossed.
3699 * If none of thresholds above usage is crossed, we read
3700 * only one element of the array here.
3701 */
3702 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3703 eventfd_signal(t->entries[i].eventfd, 1);
3704
3705 /* Update current_threshold */
3706 t->current_threshold = i - 1;
3707 unlock:
3708 rcu_read_unlock();
3709 }
3710
3711 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3712 {
3713 while (memcg) {
3714 __mem_cgroup_threshold(memcg, false);
3715 if (do_swap_account)
3716 __mem_cgroup_threshold(memcg, true);
3717
3718 memcg = parent_mem_cgroup(memcg);
3719 }
3720 }
3721
3722 static int compare_thresholds(const void *a, const void *b)
3723 {
3724 const struct mem_cgroup_threshold *_a = a;
3725 const struct mem_cgroup_threshold *_b = b;
3726
3727 if (_a->threshold > _b->threshold)
3728 return 1;
3729
3730 if (_a->threshold < _b->threshold)
3731 return -1;
3732
3733 return 0;
3734 }
3735
3736 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3737 {
3738 struct mem_cgroup_eventfd_list *ev;
3739
3740 spin_lock(&memcg_oom_lock);
3741
3742 list_for_each_entry(ev, &memcg->oom_notify, list)
3743 eventfd_signal(ev->eventfd, 1);
3744
3745 spin_unlock(&memcg_oom_lock);
3746 return 0;
3747 }
3748
3749 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3750 {
3751 struct mem_cgroup *iter;
3752
3753 for_each_mem_cgroup_tree(iter, memcg)
3754 mem_cgroup_oom_notify_cb(iter);
3755 }
3756
3757 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3758 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3759 {
3760 struct mem_cgroup_thresholds *thresholds;
3761 struct mem_cgroup_threshold_ary *new;
3762 unsigned long threshold;
3763 unsigned long usage;
3764 int i, size, ret;
3765
3766 ret = page_counter_memparse(args, "-1", &threshold);
3767 if (ret)
3768 return ret;
3769
3770 mutex_lock(&memcg->thresholds_lock);
3771
3772 if (type == _MEM) {
3773 thresholds = &memcg->thresholds;
3774 usage = mem_cgroup_usage(memcg, false);
3775 } else if (type == _MEMSWAP) {
3776 thresholds = &memcg->memsw_thresholds;
3777 usage = mem_cgroup_usage(memcg, true);
3778 } else
3779 BUG();
3780
3781 /* Check if a threshold crossed before adding a new one */
3782 if (thresholds->primary)
3783 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3784
3785 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3786
3787 /* Allocate memory for new array of thresholds */
3788 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3789 GFP_KERNEL);
3790 if (!new) {
3791 ret = -ENOMEM;
3792 goto unlock;
3793 }
3794 new->size = size;
3795
3796 /* Copy thresholds (if any) to new array */
3797 if (thresholds->primary) {
3798 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3799 sizeof(struct mem_cgroup_threshold));
3800 }
3801
3802 /* Add new threshold */
3803 new->entries[size - 1].eventfd = eventfd;
3804 new->entries[size - 1].threshold = threshold;
3805
3806 /* Sort thresholds. Registering of new threshold isn't time-critical */
3807 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3808 compare_thresholds, NULL);
3809
3810 /* Find current threshold */
3811 new->current_threshold = -1;
3812 for (i = 0; i < size; i++) {
3813 if (new->entries[i].threshold <= usage) {
3814 /*
3815 * new->current_threshold will not be used until
3816 * rcu_assign_pointer(), so it's safe to increment
3817 * it here.
3818 */
3819 ++new->current_threshold;
3820 } else
3821 break;
3822 }
3823
3824 /* Free old spare buffer and save old primary buffer as spare */
3825 kfree(thresholds->spare);
3826 thresholds->spare = thresholds->primary;
3827
3828 rcu_assign_pointer(thresholds->primary, new);
3829
3830 /* To be sure that nobody uses thresholds */
3831 synchronize_rcu();
3832
3833 unlock:
3834 mutex_unlock(&memcg->thresholds_lock);
3835
3836 return ret;
3837 }
3838
3839 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3840 struct eventfd_ctx *eventfd, const char *args)
3841 {
3842 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3843 }
3844
3845 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3846 struct eventfd_ctx *eventfd, const char *args)
3847 {
3848 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3849 }
3850
3851 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3852 struct eventfd_ctx *eventfd, enum res_type type)
3853 {
3854 struct mem_cgroup_thresholds *thresholds;
3855 struct mem_cgroup_threshold_ary *new;
3856 unsigned long usage;
3857 int i, j, size;
3858
3859 mutex_lock(&memcg->thresholds_lock);
3860
3861 if (type == _MEM) {
3862 thresholds = &memcg->thresholds;
3863 usage = mem_cgroup_usage(memcg, false);
3864 } else if (type == _MEMSWAP) {
3865 thresholds = &memcg->memsw_thresholds;
3866 usage = mem_cgroup_usage(memcg, true);
3867 } else
3868 BUG();
3869
3870 if (!thresholds->primary)
3871 goto unlock;
3872
3873 /* Check if a threshold crossed before removing */
3874 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3875
3876 /* Calculate new number of threshold */
3877 size = 0;
3878 for (i = 0; i < thresholds->primary->size; i++) {
3879 if (thresholds->primary->entries[i].eventfd != eventfd)
3880 size++;
3881 }
3882
3883 new = thresholds->spare;
3884
3885 /* Set thresholds array to NULL if we don't have thresholds */
3886 if (!size) {
3887 kfree(new);
3888 new = NULL;
3889 goto swap_buffers;
3890 }
3891
3892 new->size = size;
3893
3894 /* Copy thresholds and find current threshold */
3895 new->current_threshold = -1;
3896 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3897 if (thresholds->primary->entries[i].eventfd == eventfd)
3898 continue;
3899
3900 new->entries[j] = thresholds->primary->entries[i];
3901 if (new->entries[j].threshold <= usage) {
3902 /*
3903 * new->current_threshold will not be used
3904 * until rcu_assign_pointer(), so it's safe to increment
3905 * it here.
3906 */
3907 ++new->current_threshold;
3908 }
3909 j++;
3910 }
3911
3912 swap_buffers:
3913 /* Swap primary and spare array */
3914 thresholds->spare = thresholds->primary;
3915 /* If all events are unregistered, free the spare array */
3916 if (!new) {
3917 kfree(thresholds->spare);
3918 thresholds->spare = NULL;
3919 }
3920
3921 rcu_assign_pointer(thresholds->primary, new);
3922
3923 /* To be sure that nobody uses thresholds */
3924 synchronize_rcu();
3925 unlock:
3926 mutex_unlock(&memcg->thresholds_lock);
3927 }
3928
3929 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3930 struct eventfd_ctx *eventfd)
3931 {
3932 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3933 }
3934
3935 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3936 struct eventfd_ctx *eventfd)
3937 {
3938 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3939 }
3940
3941 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3942 struct eventfd_ctx *eventfd, const char *args)
3943 {
3944 struct mem_cgroup_eventfd_list *event;
3945
3946 event = kmalloc(sizeof(*event), GFP_KERNEL);
3947 if (!event)
3948 return -ENOMEM;
3949
3950 spin_lock(&memcg_oom_lock);
3951
3952 event->eventfd = eventfd;
3953 list_add(&event->list, &memcg->oom_notify);
3954
3955 /* already in OOM ? */
3956 if (atomic_read(&memcg->under_oom))
3957 eventfd_signal(eventfd, 1);
3958 spin_unlock(&memcg_oom_lock);
3959
3960 return 0;
3961 }
3962
3963 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3964 struct eventfd_ctx *eventfd)
3965 {
3966 struct mem_cgroup_eventfd_list *ev, *tmp;
3967
3968 spin_lock(&memcg_oom_lock);
3969
3970 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3971 if (ev->eventfd == eventfd) {
3972 list_del(&ev->list);
3973 kfree(ev);
3974 }
3975 }
3976
3977 spin_unlock(&memcg_oom_lock);
3978 }
3979
3980 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3981 {
3982 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3983
3984 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3985 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3986 return 0;
3987 }
3988
3989 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3990 struct cftype *cft, u64 val)
3991 {
3992 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3993
3994 /* cannot set to root cgroup and only 0 and 1 are allowed */
3995 if (!css->parent || !((val == 0) || (val == 1)))
3996 return -EINVAL;
3997
3998 memcg->oom_kill_disable = val;
3999 if (!val)
4000 memcg_oom_recover(memcg);
4001
4002 return 0;
4003 }
4004
4005 #ifdef CONFIG_MEMCG_KMEM
4006 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4007 {
4008 int ret;
4009
4010 ret = memcg_propagate_kmem(memcg);
4011 if (ret)
4012 return ret;
4013
4014 return mem_cgroup_sockets_init(memcg, ss);
4015 }
4016
4017 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4018 {
4019 memcg_destroy_kmem_caches(memcg);
4020 mem_cgroup_sockets_destroy(memcg);
4021 }
4022 #else
4023 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4024 {
4025 return 0;
4026 }
4027
4028 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4029 {
4030 }
4031 #endif
4032
4033 /*
4034 * DO NOT USE IN NEW FILES.
4035 *
4036 * "cgroup.event_control" implementation.
4037 *
4038 * This is way over-engineered. It tries to support fully configurable
4039 * events for each user. Such level of flexibility is completely
4040 * unnecessary especially in the light of the planned unified hierarchy.
4041 *
4042 * Please deprecate this and replace with something simpler if at all
4043 * possible.
4044 */
4045
4046 /*
4047 * Unregister event and free resources.
4048 *
4049 * Gets called from workqueue.
4050 */
4051 static void memcg_event_remove(struct work_struct *work)
4052 {
4053 struct mem_cgroup_event *event =
4054 container_of(work, struct mem_cgroup_event, remove);
4055 struct mem_cgroup *memcg = event->memcg;
4056
4057 remove_wait_queue(event->wqh, &event->wait);
4058
4059 event->unregister_event(memcg, event->eventfd);
4060
4061 /* Notify userspace the event is going away. */
4062 eventfd_signal(event->eventfd, 1);
4063
4064 eventfd_ctx_put(event->eventfd);
4065 kfree(event);
4066 css_put(&memcg->css);
4067 }
4068
4069 /*
4070 * Gets called on POLLHUP on eventfd when user closes it.
4071 *
4072 * Called with wqh->lock held and interrupts disabled.
4073 */
4074 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4075 int sync, void *key)
4076 {
4077 struct mem_cgroup_event *event =
4078 container_of(wait, struct mem_cgroup_event, wait);
4079 struct mem_cgroup *memcg = event->memcg;
4080 unsigned long flags = (unsigned long)key;
4081
4082 if (flags & POLLHUP) {
4083 /*
4084 * If the event has been detached at cgroup removal, we
4085 * can simply return knowing the other side will cleanup
4086 * for us.
4087 *
4088 * We can't race against event freeing since the other
4089 * side will require wqh->lock via remove_wait_queue(),
4090 * which we hold.
4091 */
4092 spin_lock(&memcg->event_list_lock);
4093 if (!list_empty(&event->list)) {
4094 list_del_init(&event->list);
4095 /*
4096 * We are in atomic context, but cgroup_event_remove()
4097 * may sleep, so we have to call it in workqueue.
4098 */
4099 schedule_work(&event->remove);
4100 }
4101 spin_unlock(&memcg->event_list_lock);
4102 }
4103
4104 return 0;
4105 }
4106
4107 static void memcg_event_ptable_queue_proc(struct file *file,
4108 wait_queue_head_t *wqh, poll_table *pt)
4109 {
4110 struct mem_cgroup_event *event =
4111 container_of(pt, struct mem_cgroup_event, pt);
4112
4113 event->wqh = wqh;
4114 add_wait_queue(wqh, &event->wait);
4115 }
4116
4117 /*
4118 * DO NOT USE IN NEW FILES.
4119 *
4120 * Parse input and register new cgroup event handler.
4121 *
4122 * Input must be in format '<event_fd> <control_fd> <args>'.
4123 * Interpretation of args is defined by control file implementation.
4124 */
4125 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4126 char *buf, size_t nbytes, loff_t off)
4127 {
4128 struct cgroup_subsys_state *css = of_css(of);
4129 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4130 struct mem_cgroup_event *event;
4131 struct cgroup_subsys_state *cfile_css;
4132 unsigned int efd, cfd;
4133 struct fd efile;
4134 struct fd cfile;
4135 const char *name;
4136 char *endp;
4137 int ret;
4138
4139 buf = strstrip(buf);
4140
4141 efd = simple_strtoul(buf, &endp, 10);
4142 if (*endp != ' ')
4143 return -EINVAL;
4144 buf = endp + 1;
4145
4146 cfd = simple_strtoul(buf, &endp, 10);
4147 if ((*endp != ' ') && (*endp != '\0'))
4148 return -EINVAL;
4149 buf = endp + 1;
4150
4151 event = kzalloc(sizeof(*event), GFP_KERNEL);
4152 if (!event)
4153 return -ENOMEM;
4154
4155 event->memcg = memcg;
4156 INIT_LIST_HEAD(&event->list);
4157 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4158 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4159 INIT_WORK(&event->remove, memcg_event_remove);
4160
4161 efile = fdget(efd);
4162 if (!efile.file) {
4163 ret = -EBADF;
4164 goto out_kfree;
4165 }
4166
4167 event->eventfd = eventfd_ctx_fileget(efile.file);
4168 if (IS_ERR(event->eventfd)) {
4169 ret = PTR_ERR(event->eventfd);
4170 goto out_put_efile;
4171 }
4172
4173 cfile = fdget(cfd);
4174 if (!cfile.file) {
4175 ret = -EBADF;
4176 goto out_put_eventfd;
4177 }
4178
4179 /* the process need read permission on control file */
4180 /* AV: shouldn't we check that it's been opened for read instead? */
4181 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4182 if (ret < 0)
4183 goto out_put_cfile;
4184
4185 /*
4186 * Determine the event callbacks and set them in @event. This used
4187 * to be done via struct cftype but cgroup core no longer knows
4188 * about these events. The following is crude but the whole thing
4189 * is for compatibility anyway.
4190 *
4191 * DO NOT ADD NEW FILES.
4192 */
4193 name = cfile.file->f_path.dentry->d_name.name;
4194
4195 if (!strcmp(name, "memory.usage_in_bytes")) {
4196 event->register_event = mem_cgroup_usage_register_event;
4197 event->unregister_event = mem_cgroup_usage_unregister_event;
4198 } else if (!strcmp(name, "memory.oom_control")) {
4199 event->register_event = mem_cgroup_oom_register_event;
4200 event->unregister_event = mem_cgroup_oom_unregister_event;
4201 } else if (!strcmp(name, "memory.pressure_level")) {
4202 event->register_event = vmpressure_register_event;
4203 event->unregister_event = vmpressure_unregister_event;
4204 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4205 event->register_event = memsw_cgroup_usage_register_event;
4206 event->unregister_event = memsw_cgroup_usage_unregister_event;
4207 } else {
4208 ret = -EINVAL;
4209 goto out_put_cfile;
4210 }
4211
4212 /*
4213 * Verify @cfile should belong to @css. Also, remaining events are
4214 * automatically removed on cgroup destruction but the removal is
4215 * asynchronous, so take an extra ref on @css.
4216 */
4217 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4218 &memory_cgrp_subsys);
4219 ret = -EINVAL;
4220 if (IS_ERR(cfile_css))
4221 goto out_put_cfile;
4222 if (cfile_css != css) {
4223 css_put(cfile_css);
4224 goto out_put_cfile;
4225 }
4226
4227 ret = event->register_event(memcg, event->eventfd, buf);
4228 if (ret)
4229 goto out_put_css;
4230
4231 efile.file->f_op->poll(efile.file, &event->pt);
4232
4233 spin_lock(&memcg->event_list_lock);
4234 list_add(&event->list, &memcg->event_list);
4235 spin_unlock(&memcg->event_list_lock);
4236
4237 fdput(cfile);
4238 fdput(efile);
4239
4240 return nbytes;
4241
4242 out_put_css:
4243 css_put(css);
4244 out_put_cfile:
4245 fdput(cfile);
4246 out_put_eventfd:
4247 eventfd_ctx_put(event->eventfd);
4248 out_put_efile:
4249 fdput(efile);
4250 out_kfree:
4251 kfree(event);
4252
4253 return ret;
4254 }
4255
4256 static struct cftype mem_cgroup_legacy_files[] = {
4257 {
4258 .name = "usage_in_bytes",
4259 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4260 .read_u64 = mem_cgroup_read_u64,
4261 },
4262 {
4263 .name = "max_usage_in_bytes",
4264 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4265 .write = mem_cgroup_reset,
4266 .read_u64 = mem_cgroup_read_u64,
4267 },
4268 {
4269 .name = "limit_in_bytes",
4270 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4271 .write = mem_cgroup_write,
4272 .read_u64 = mem_cgroup_read_u64,
4273 },
4274 {
4275 .name = "soft_limit_in_bytes",
4276 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4277 .write = mem_cgroup_write,
4278 .read_u64 = mem_cgroup_read_u64,
4279 },
4280 {
4281 .name = "failcnt",
4282 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4283 .write = mem_cgroup_reset,
4284 .read_u64 = mem_cgroup_read_u64,
4285 },
4286 {
4287 .name = "stat",
4288 .seq_show = memcg_stat_show,
4289 },
4290 {
4291 .name = "force_empty",
4292 .write = mem_cgroup_force_empty_write,
4293 },
4294 {
4295 .name = "use_hierarchy",
4296 .write_u64 = mem_cgroup_hierarchy_write,
4297 .read_u64 = mem_cgroup_hierarchy_read,
4298 },
4299 {
4300 .name = "cgroup.event_control", /* XXX: for compat */
4301 .write = memcg_write_event_control,
4302 .flags = CFTYPE_NO_PREFIX,
4303 .mode = S_IWUGO,
4304 },
4305 {
4306 .name = "swappiness",
4307 .read_u64 = mem_cgroup_swappiness_read,
4308 .write_u64 = mem_cgroup_swappiness_write,
4309 },
4310 {
4311 .name = "move_charge_at_immigrate",
4312 .read_u64 = mem_cgroup_move_charge_read,
4313 .write_u64 = mem_cgroup_move_charge_write,
4314 },
4315 {
4316 .name = "oom_control",
4317 .seq_show = mem_cgroup_oom_control_read,
4318 .write_u64 = mem_cgroup_oom_control_write,
4319 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4320 },
4321 {
4322 .name = "pressure_level",
4323 },
4324 #ifdef CONFIG_NUMA
4325 {
4326 .name = "numa_stat",
4327 .seq_show = memcg_numa_stat_show,
4328 },
4329 #endif
4330 #ifdef CONFIG_MEMCG_KMEM
4331 {
4332 .name = "kmem.limit_in_bytes",
4333 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4334 .write = mem_cgroup_write,
4335 .read_u64 = mem_cgroup_read_u64,
4336 },
4337 {
4338 .name = "kmem.usage_in_bytes",
4339 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4340 .read_u64 = mem_cgroup_read_u64,
4341 },
4342 {
4343 .name = "kmem.failcnt",
4344 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4345 .write = mem_cgroup_reset,
4346 .read_u64 = mem_cgroup_read_u64,
4347 },
4348 {
4349 .name = "kmem.max_usage_in_bytes",
4350 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4351 .write = mem_cgroup_reset,
4352 .read_u64 = mem_cgroup_read_u64,
4353 },
4354 #ifdef CONFIG_SLABINFO
4355 {
4356 .name = "kmem.slabinfo",
4357 .seq_start = slab_start,
4358 .seq_next = slab_next,
4359 .seq_stop = slab_stop,
4360 .seq_show = memcg_slab_show,
4361 },
4362 #endif
4363 #endif
4364 { }, /* terminate */
4365 };
4366
4367 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4368 {
4369 struct mem_cgroup_per_node *pn;
4370 struct mem_cgroup_per_zone *mz;
4371 int zone, tmp = node;
4372 /*
4373 * This routine is called against possible nodes.
4374 * But it's BUG to call kmalloc() against offline node.
4375 *
4376 * TODO: this routine can waste much memory for nodes which will
4377 * never be onlined. It's better to use memory hotplug callback
4378 * function.
4379 */
4380 if (!node_state(node, N_NORMAL_MEMORY))
4381 tmp = -1;
4382 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4383 if (!pn)
4384 return 1;
4385
4386 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4387 mz = &pn->zoneinfo[zone];
4388 lruvec_init(&mz->lruvec);
4389 mz->usage_in_excess = 0;
4390 mz->on_tree = false;
4391 mz->memcg = memcg;
4392 }
4393 memcg->nodeinfo[node] = pn;
4394 return 0;
4395 }
4396
4397 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4398 {
4399 kfree(memcg->nodeinfo[node]);
4400 }
4401
4402 static struct mem_cgroup *mem_cgroup_alloc(void)
4403 {
4404 struct mem_cgroup *memcg;
4405 size_t size;
4406
4407 size = sizeof(struct mem_cgroup);
4408 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4409
4410 memcg = kzalloc(size, GFP_KERNEL);
4411 if (!memcg)
4412 return NULL;
4413
4414 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4415 if (!memcg->stat)
4416 goto out_free;
4417 spin_lock_init(&memcg->pcp_counter_lock);
4418 return memcg;
4419
4420 out_free:
4421 kfree(memcg);
4422 return NULL;
4423 }
4424
4425 /*
4426 * At destroying mem_cgroup, references from swap_cgroup can remain.
4427 * (scanning all at force_empty is too costly...)
4428 *
4429 * Instead of clearing all references at force_empty, we remember
4430 * the number of reference from swap_cgroup and free mem_cgroup when
4431 * it goes down to 0.
4432 *
4433 * Removal of cgroup itself succeeds regardless of refs from swap.
4434 */
4435
4436 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4437 {
4438 int node;
4439
4440 mem_cgroup_remove_from_trees(memcg);
4441
4442 for_each_node(node)
4443 free_mem_cgroup_per_zone_info(memcg, node);
4444
4445 free_percpu(memcg->stat);
4446
4447 disarm_static_keys(memcg);
4448 kfree(memcg);
4449 }
4450
4451 /*
4452 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4453 */
4454 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4455 {
4456 if (!memcg->memory.parent)
4457 return NULL;
4458 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4459 }
4460 EXPORT_SYMBOL(parent_mem_cgroup);
4461
4462 static struct cgroup_subsys_state * __ref
4463 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4464 {
4465 struct mem_cgroup *memcg;
4466 long error = -ENOMEM;
4467 int node;
4468
4469 memcg = mem_cgroup_alloc();
4470 if (!memcg)
4471 return ERR_PTR(error);
4472
4473 for_each_node(node)
4474 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4475 goto free_out;
4476
4477 /* root ? */
4478 if (parent_css == NULL) {
4479 root_mem_cgroup = memcg;
4480 page_counter_init(&memcg->memory, NULL);
4481 memcg->high = PAGE_COUNTER_MAX;
4482 memcg->soft_limit = PAGE_COUNTER_MAX;
4483 page_counter_init(&memcg->memsw, NULL);
4484 page_counter_init(&memcg->kmem, NULL);
4485 }
4486
4487 memcg->last_scanned_node = MAX_NUMNODES;
4488 INIT_LIST_HEAD(&memcg->oom_notify);
4489 memcg->move_charge_at_immigrate = 0;
4490 mutex_init(&memcg->thresholds_lock);
4491 spin_lock_init(&memcg->move_lock);
4492 vmpressure_init(&memcg->vmpressure);
4493 INIT_LIST_HEAD(&memcg->event_list);
4494 spin_lock_init(&memcg->event_list_lock);
4495 #ifdef CONFIG_MEMCG_KMEM
4496 memcg->kmemcg_id = -1;
4497 #endif
4498
4499 return &memcg->css;
4500
4501 free_out:
4502 __mem_cgroup_free(memcg);
4503 return ERR_PTR(error);
4504 }
4505
4506 static int
4507 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4508 {
4509 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4510 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4511 int ret;
4512
4513 if (css->id > MEM_CGROUP_ID_MAX)
4514 return -ENOSPC;
4515
4516 if (!parent)
4517 return 0;
4518
4519 mutex_lock(&memcg_create_mutex);
4520
4521 memcg->use_hierarchy = parent->use_hierarchy;
4522 memcg->oom_kill_disable = parent->oom_kill_disable;
4523 memcg->swappiness = mem_cgroup_swappiness(parent);
4524
4525 if (parent->use_hierarchy) {
4526 page_counter_init(&memcg->memory, &parent->memory);
4527 memcg->high = PAGE_COUNTER_MAX;
4528 memcg->soft_limit = PAGE_COUNTER_MAX;
4529 page_counter_init(&memcg->memsw, &parent->memsw);
4530 page_counter_init(&memcg->kmem, &parent->kmem);
4531
4532 /*
4533 * No need to take a reference to the parent because cgroup
4534 * core guarantees its existence.
4535 */
4536 } else {
4537 page_counter_init(&memcg->memory, NULL);
4538 memcg->high = PAGE_COUNTER_MAX;
4539 memcg->soft_limit = PAGE_COUNTER_MAX;
4540 page_counter_init(&memcg->memsw, NULL);
4541 page_counter_init(&memcg->kmem, NULL);
4542 /*
4543 * Deeper hierachy with use_hierarchy == false doesn't make
4544 * much sense so let cgroup subsystem know about this
4545 * unfortunate state in our controller.
4546 */
4547 if (parent != root_mem_cgroup)
4548 memory_cgrp_subsys.broken_hierarchy = true;
4549 }
4550 mutex_unlock(&memcg_create_mutex);
4551
4552 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4553 if (ret)
4554 return ret;
4555
4556 /*
4557 * Make sure the memcg is initialized: mem_cgroup_iter()
4558 * orders reading memcg->initialized against its callers
4559 * reading the memcg members.
4560 */
4561 smp_store_release(&memcg->initialized, 1);
4562
4563 return 0;
4564 }
4565
4566 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4567 {
4568 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4569 struct mem_cgroup_event *event, *tmp;
4570
4571 /*
4572 * Unregister events and notify userspace.
4573 * Notify userspace about cgroup removing only after rmdir of cgroup
4574 * directory to avoid race between userspace and kernelspace.
4575 */
4576 spin_lock(&memcg->event_list_lock);
4577 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4578 list_del_init(&event->list);
4579 schedule_work(&event->remove);
4580 }
4581 spin_unlock(&memcg->event_list_lock);
4582
4583 vmpressure_cleanup(&memcg->vmpressure);
4584 }
4585
4586 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4587 {
4588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4589
4590 memcg_destroy_kmem(memcg);
4591 __mem_cgroup_free(memcg);
4592 }
4593
4594 /**
4595 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4596 * @css: the target css
4597 *
4598 * Reset the states of the mem_cgroup associated with @css. This is
4599 * invoked when the userland requests disabling on the default hierarchy
4600 * but the memcg is pinned through dependency. The memcg should stop
4601 * applying policies and should revert to the vanilla state as it may be
4602 * made visible again.
4603 *
4604 * The current implementation only resets the essential configurations.
4605 * This needs to be expanded to cover all the visible parts.
4606 */
4607 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4608 {
4609 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4610
4611 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4612 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4613 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4614 memcg->low = 0;
4615 memcg->high = PAGE_COUNTER_MAX;
4616 memcg->soft_limit = PAGE_COUNTER_MAX;
4617 }
4618
4619 #ifdef CONFIG_MMU
4620 /* Handlers for move charge at task migration. */
4621 static int mem_cgroup_do_precharge(unsigned long count)
4622 {
4623 int ret;
4624
4625 /* Try a single bulk charge without reclaim first */
4626 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4627 if (!ret) {
4628 mc.precharge += count;
4629 return ret;
4630 }
4631 if (ret == -EINTR) {
4632 cancel_charge(root_mem_cgroup, count);
4633 return ret;
4634 }
4635
4636 /* Try charges one by one with reclaim */
4637 while (count--) {
4638 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4639 /*
4640 * In case of failure, any residual charges against
4641 * mc.to will be dropped by mem_cgroup_clear_mc()
4642 * later on. However, cancel any charges that are
4643 * bypassed to root right away or they'll be lost.
4644 */
4645 if (ret == -EINTR)
4646 cancel_charge(root_mem_cgroup, 1);
4647 if (ret)
4648 return ret;
4649 mc.precharge++;
4650 cond_resched();
4651 }
4652 return 0;
4653 }
4654
4655 /**
4656 * get_mctgt_type - get target type of moving charge
4657 * @vma: the vma the pte to be checked belongs
4658 * @addr: the address corresponding to the pte to be checked
4659 * @ptent: the pte to be checked
4660 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4661 *
4662 * Returns
4663 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4664 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4665 * move charge. if @target is not NULL, the page is stored in target->page
4666 * with extra refcnt got(Callers should handle it).
4667 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4668 * target for charge migration. if @target is not NULL, the entry is stored
4669 * in target->ent.
4670 *
4671 * Called with pte lock held.
4672 */
4673 union mc_target {
4674 struct page *page;
4675 swp_entry_t ent;
4676 };
4677
4678 enum mc_target_type {
4679 MC_TARGET_NONE = 0,
4680 MC_TARGET_PAGE,
4681 MC_TARGET_SWAP,
4682 };
4683
4684 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4685 unsigned long addr, pte_t ptent)
4686 {
4687 struct page *page = vm_normal_page(vma, addr, ptent);
4688
4689 if (!page || !page_mapped(page))
4690 return NULL;
4691 if (PageAnon(page)) {
4692 if (!(mc.flags & MOVE_ANON))
4693 return NULL;
4694 } else {
4695 if (!(mc.flags & MOVE_FILE))
4696 return NULL;
4697 }
4698 if (!get_page_unless_zero(page))
4699 return NULL;
4700
4701 return page;
4702 }
4703
4704 #ifdef CONFIG_SWAP
4705 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4706 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4707 {
4708 struct page *page = NULL;
4709 swp_entry_t ent = pte_to_swp_entry(ptent);
4710
4711 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4712 return NULL;
4713 /*
4714 * Because lookup_swap_cache() updates some statistics counter,
4715 * we call find_get_page() with swapper_space directly.
4716 */
4717 page = find_get_page(swap_address_space(ent), ent.val);
4718 if (do_swap_account)
4719 entry->val = ent.val;
4720
4721 return page;
4722 }
4723 #else
4724 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4725 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4726 {
4727 return NULL;
4728 }
4729 #endif
4730
4731 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4732 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4733 {
4734 struct page *page = NULL;
4735 struct address_space *mapping;
4736 pgoff_t pgoff;
4737
4738 if (!vma->vm_file) /* anonymous vma */
4739 return NULL;
4740 if (!(mc.flags & MOVE_FILE))
4741 return NULL;
4742
4743 mapping = vma->vm_file->f_mapping;
4744 pgoff = linear_page_index(vma, addr);
4745
4746 /* page is moved even if it's not RSS of this task(page-faulted). */
4747 #ifdef CONFIG_SWAP
4748 /* shmem/tmpfs may report page out on swap: account for that too. */
4749 if (shmem_mapping(mapping)) {
4750 page = find_get_entry(mapping, pgoff);
4751 if (radix_tree_exceptional_entry(page)) {
4752 swp_entry_t swp = radix_to_swp_entry(page);
4753 if (do_swap_account)
4754 *entry = swp;
4755 page = find_get_page(swap_address_space(swp), swp.val);
4756 }
4757 } else
4758 page = find_get_page(mapping, pgoff);
4759 #else
4760 page = find_get_page(mapping, pgoff);
4761 #endif
4762 return page;
4763 }
4764
4765 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4766 unsigned long addr, pte_t ptent, union mc_target *target)
4767 {
4768 struct page *page = NULL;
4769 enum mc_target_type ret = MC_TARGET_NONE;
4770 swp_entry_t ent = { .val = 0 };
4771
4772 if (pte_present(ptent))
4773 page = mc_handle_present_pte(vma, addr, ptent);
4774 else if (is_swap_pte(ptent))
4775 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4776 else if (pte_none(ptent))
4777 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4778
4779 if (!page && !ent.val)
4780 return ret;
4781 if (page) {
4782 /*
4783 * Do only loose check w/o serialization.
4784 * mem_cgroup_move_account() checks the page is valid or
4785 * not under LRU exclusion.
4786 */
4787 if (page->mem_cgroup == mc.from) {
4788 ret = MC_TARGET_PAGE;
4789 if (target)
4790 target->page = page;
4791 }
4792 if (!ret || !target)
4793 put_page(page);
4794 }
4795 /* There is a swap entry and a page doesn't exist or isn't charged */
4796 if (ent.val && !ret &&
4797 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4798 ret = MC_TARGET_SWAP;
4799 if (target)
4800 target->ent = ent;
4801 }
4802 return ret;
4803 }
4804
4805 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4806 /*
4807 * We don't consider swapping or file mapped pages because THP does not
4808 * support them for now.
4809 * Caller should make sure that pmd_trans_huge(pmd) is true.
4810 */
4811 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4812 unsigned long addr, pmd_t pmd, union mc_target *target)
4813 {
4814 struct page *page = NULL;
4815 enum mc_target_type ret = MC_TARGET_NONE;
4816
4817 page = pmd_page(pmd);
4818 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4819 if (!(mc.flags & MOVE_ANON))
4820 return ret;
4821 if (page->mem_cgroup == mc.from) {
4822 ret = MC_TARGET_PAGE;
4823 if (target) {
4824 get_page(page);
4825 target->page = page;
4826 }
4827 }
4828 return ret;
4829 }
4830 #else
4831 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4832 unsigned long addr, pmd_t pmd, union mc_target *target)
4833 {
4834 return MC_TARGET_NONE;
4835 }
4836 #endif
4837
4838 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4839 unsigned long addr, unsigned long end,
4840 struct mm_walk *walk)
4841 {
4842 struct vm_area_struct *vma = walk->vma;
4843 pte_t *pte;
4844 spinlock_t *ptl;
4845
4846 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4847 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4848 mc.precharge += HPAGE_PMD_NR;
4849 spin_unlock(ptl);
4850 return 0;
4851 }
4852
4853 if (pmd_trans_unstable(pmd))
4854 return 0;
4855 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4856 for (; addr != end; pte++, addr += PAGE_SIZE)
4857 if (get_mctgt_type(vma, addr, *pte, NULL))
4858 mc.precharge++; /* increment precharge temporarily */
4859 pte_unmap_unlock(pte - 1, ptl);
4860 cond_resched();
4861
4862 return 0;
4863 }
4864
4865 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4866 {
4867 unsigned long precharge;
4868
4869 struct mm_walk mem_cgroup_count_precharge_walk = {
4870 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4871 .mm = mm,
4872 };
4873 down_read(&mm->mmap_sem);
4874 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4875 up_read(&mm->mmap_sem);
4876
4877 precharge = mc.precharge;
4878 mc.precharge = 0;
4879
4880 return precharge;
4881 }
4882
4883 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4884 {
4885 unsigned long precharge = mem_cgroup_count_precharge(mm);
4886
4887 VM_BUG_ON(mc.moving_task);
4888 mc.moving_task = current;
4889 return mem_cgroup_do_precharge(precharge);
4890 }
4891
4892 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4893 static void __mem_cgroup_clear_mc(void)
4894 {
4895 struct mem_cgroup *from = mc.from;
4896 struct mem_cgroup *to = mc.to;
4897
4898 /* we must uncharge all the leftover precharges from mc.to */
4899 if (mc.precharge) {
4900 cancel_charge(mc.to, mc.precharge);
4901 mc.precharge = 0;
4902 }
4903 /*
4904 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4905 * we must uncharge here.
4906 */
4907 if (mc.moved_charge) {
4908 cancel_charge(mc.from, mc.moved_charge);
4909 mc.moved_charge = 0;
4910 }
4911 /* we must fixup refcnts and charges */
4912 if (mc.moved_swap) {
4913 /* uncharge swap account from the old cgroup */
4914 if (!mem_cgroup_is_root(mc.from))
4915 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4916
4917 /*
4918 * we charged both to->memory and to->memsw, so we
4919 * should uncharge to->memory.
4920 */
4921 if (!mem_cgroup_is_root(mc.to))
4922 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4923
4924 css_put_many(&mc.from->css, mc.moved_swap);
4925
4926 /* we've already done css_get(mc.to) */
4927 mc.moved_swap = 0;
4928 }
4929 memcg_oom_recover(from);
4930 memcg_oom_recover(to);
4931 wake_up_all(&mc.waitq);
4932 }
4933
4934 static void mem_cgroup_clear_mc(void)
4935 {
4936 /*
4937 * we must clear moving_task before waking up waiters at the end of
4938 * task migration.
4939 */
4940 mc.moving_task = NULL;
4941 __mem_cgroup_clear_mc();
4942 spin_lock(&mc.lock);
4943 mc.from = NULL;
4944 mc.to = NULL;
4945 spin_unlock(&mc.lock);
4946 }
4947
4948 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
4949 struct cgroup_taskset *tset)
4950 {
4951 struct task_struct *p = cgroup_taskset_first(tset);
4952 int ret = 0;
4953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4954 unsigned long move_flags;
4955
4956 /*
4957 * We are now commited to this value whatever it is. Changes in this
4958 * tunable will only affect upcoming migrations, not the current one.
4959 * So we need to save it, and keep it going.
4960 */
4961 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
4962 if (move_flags) {
4963 struct mm_struct *mm;
4964 struct mem_cgroup *from = mem_cgroup_from_task(p);
4965
4966 VM_BUG_ON(from == memcg);
4967
4968 mm = get_task_mm(p);
4969 if (!mm)
4970 return 0;
4971 /* We move charges only when we move a owner of the mm */
4972 if (mm->owner == p) {
4973 VM_BUG_ON(mc.from);
4974 VM_BUG_ON(mc.to);
4975 VM_BUG_ON(mc.precharge);
4976 VM_BUG_ON(mc.moved_charge);
4977 VM_BUG_ON(mc.moved_swap);
4978
4979 spin_lock(&mc.lock);
4980 mc.from = from;
4981 mc.to = memcg;
4982 mc.flags = move_flags;
4983 spin_unlock(&mc.lock);
4984 /* We set mc.moving_task later */
4985
4986 ret = mem_cgroup_precharge_mc(mm);
4987 if (ret)
4988 mem_cgroup_clear_mc();
4989 }
4990 mmput(mm);
4991 }
4992 return ret;
4993 }
4994
4995 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
4996 struct cgroup_taskset *tset)
4997 {
4998 if (mc.to)
4999 mem_cgroup_clear_mc();
5000 }
5001
5002 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5003 unsigned long addr, unsigned long end,
5004 struct mm_walk *walk)
5005 {
5006 int ret = 0;
5007 struct vm_area_struct *vma = walk->vma;
5008 pte_t *pte;
5009 spinlock_t *ptl;
5010 enum mc_target_type target_type;
5011 union mc_target target;
5012 struct page *page;
5013
5014 /*
5015 * We don't take compound_lock() here but no race with splitting thp
5016 * happens because:
5017 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5018 * under splitting, which means there's no concurrent thp split,
5019 * - if another thread runs into split_huge_page() just after we
5020 * entered this if-block, the thread must wait for page table lock
5021 * to be unlocked in __split_huge_page_splitting(), where the main
5022 * part of thp split is not executed yet.
5023 */
5024 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5025 if (mc.precharge < HPAGE_PMD_NR) {
5026 spin_unlock(ptl);
5027 return 0;
5028 }
5029 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5030 if (target_type == MC_TARGET_PAGE) {
5031 page = target.page;
5032 if (!isolate_lru_page(page)) {
5033 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5034 mc.from, mc.to)) {
5035 mc.precharge -= HPAGE_PMD_NR;
5036 mc.moved_charge += HPAGE_PMD_NR;
5037 }
5038 putback_lru_page(page);
5039 }
5040 put_page(page);
5041 }
5042 spin_unlock(ptl);
5043 return 0;
5044 }
5045
5046 if (pmd_trans_unstable(pmd))
5047 return 0;
5048 retry:
5049 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5050 for (; addr != end; addr += PAGE_SIZE) {
5051 pte_t ptent = *(pte++);
5052 swp_entry_t ent;
5053
5054 if (!mc.precharge)
5055 break;
5056
5057 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5058 case MC_TARGET_PAGE:
5059 page = target.page;
5060 if (isolate_lru_page(page))
5061 goto put;
5062 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5063 mc.precharge--;
5064 /* we uncharge from mc.from later. */
5065 mc.moved_charge++;
5066 }
5067 putback_lru_page(page);
5068 put: /* get_mctgt_type() gets the page */
5069 put_page(page);
5070 break;
5071 case MC_TARGET_SWAP:
5072 ent = target.ent;
5073 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5074 mc.precharge--;
5075 /* we fixup refcnts and charges later. */
5076 mc.moved_swap++;
5077 }
5078 break;
5079 default:
5080 break;
5081 }
5082 }
5083 pte_unmap_unlock(pte - 1, ptl);
5084 cond_resched();
5085
5086 if (addr != end) {
5087 /*
5088 * We have consumed all precharges we got in can_attach().
5089 * We try charge one by one, but don't do any additional
5090 * charges to mc.to if we have failed in charge once in attach()
5091 * phase.
5092 */
5093 ret = mem_cgroup_do_precharge(1);
5094 if (!ret)
5095 goto retry;
5096 }
5097
5098 return ret;
5099 }
5100
5101 static void mem_cgroup_move_charge(struct mm_struct *mm)
5102 {
5103 struct mm_walk mem_cgroup_move_charge_walk = {
5104 .pmd_entry = mem_cgroup_move_charge_pte_range,
5105 .mm = mm,
5106 };
5107
5108 lru_add_drain_all();
5109 /*
5110 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5111 * move_lock while we're moving its pages to another memcg.
5112 * Then wait for already started RCU-only updates to finish.
5113 */
5114 atomic_inc(&mc.from->moving_account);
5115 synchronize_rcu();
5116 retry:
5117 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5118 /*
5119 * Someone who are holding the mmap_sem might be waiting in
5120 * waitq. So we cancel all extra charges, wake up all waiters,
5121 * and retry. Because we cancel precharges, we might not be able
5122 * to move enough charges, but moving charge is a best-effort
5123 * feature anyway, so it wouldn't be a big problem.
5124 */
5125 __mem_cgroup_clear_mc();
5126 cond_resched();
5127 goto retry;
5128 }
5129 /*
5130 * When we have consumed all precharges and failed in doing
5131 * additional charge, the page walk just aborts.
5132 */
5133 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5134 up_read(&mm->mmap_sem);
5135 atomic_dec(&mc.from->moving_account);
5136 }
5137
5138 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5139 struct cgroup_taskset *tset)
5140 {
5141 struct task_struct *p = cgroup_taskset_first(tset);
5142 struct mm_struct *mm = get_task_mm(p);
5143
5144 if (mm) {
5145 if (mc.to)
5146 mem_cgroup_move_charge(mm);
5147 mmput(mm);
5148 }
5149 if (mc.to)
5150 mem_cgroup_clear_mc();
5151 }
5152 #else /* !CONFIG_MMU */
5153 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5154 struct cgroup_taskset *tset)
5155 {
5156 return 0;
5157 }
5158 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5159 struct cgroup_taskset *tset)
5160 {
5161 }
5162 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5163 struct cgroup_taskset *tset)
5164 {
5165 }
5166 #endif
5167
5168 /*
5169 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5170 * to verify whether we're attached to the default hierarchy on each mount
5171 * attempt.
5172 */
5173 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5174 {
5175 /*
5176 * use_hierarchy is forced on the default hierarchy. cgroup core
5177 * guarantees that @root doesn't have any children, so turning it
5178 * on for the root memcg is enough.
5179 */
5180 if (cgroup_on_dfl(root_css->cgroup))
5181 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5182 }
5183
5184 static u64 memory_current_read(struct cgroup_subsys_state *css,
5185 struct cftype *cft)
5186 {
5187 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5188 }
5189
5190 static int memory_low_show(struct seq_file *m, void *v)
5191 {
5192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5193 unsigned long low = ACCESS_ONCE(memcg->low);
5194
5195 if (low == PAGE_COUNTER_MAX)
5196 seq_puts(m, "infinity\n");
5197 else
5198 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5199
5200 return 0;
5201 }
5202
5203 static ssize_t memory_low_write(struct kernfs_open_file *of,
5204 char *buf, size_t nbytes, loff_t off)
5205 {
5206 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5207 unsigned long low;
5208 int err;
5209
5210 buf = strstrip(buf);
5211 err = page_counter_memparse(buf, "infinity", &low);
5212 if (err)
5213 return err;
5214
5215 memcg->low = low;
5216
5217 return nbytes;
5218 }
5219
5220 static int memory_high_show(struct seq_file *m, void *v)
5221 {
5222 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5223 unsigned long high = ACCESS_ONCE(memcg->high);
5224
5225 if (high == PAGE_COUNTER_MAX)
5226 seq_puts(m, "infinity\n");
5227 else
5228 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5229
5230 return 0;
5231 }
5232
5233 static ssize_t memory_high_write(struct kernfs_open_file *of,
5234 char *buf, size_t nbytes, loff_t off)
5235 {
5236 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5237 unsigned long high;
5238 int err;
5239
5240 buf = strstrip(buf);
5241 err = page_counter_memparse(buf, "infinity", &high);
5242 if (err)
5243 return err;
5244
5245 memcg->high = high;
5246
5247 return nbytes;
5248 }
5249
5250 static int memory_max_show(struct seq_file *m, void *v)
5251 {
5252 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5253 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5254
5255 if (max == PAGE_COUNTER_MAX)
5256 seq_puts(m, "infinity\n");
5257 else
5258 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5259
5260 return 0;
5261 }
5262
5263 static ssize_t memory_max_write(struct kernfs_open_file *of,
5264 char *buf, size_t nbytes, loff_t off)
5265 {
5266 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5267 unsigned long max;
5268 int err;
5269
5270 buf = strstrip(buf);
5271 err = page_counter_memparse(buf, "infinity", &max);
5272 if (err)
5273 return err;
5274
5275 err = mem_cgroup_resize_limit(memcg, max);
5276 if (err)
5277 return err;
5278
5279 return nbytes;
5280 }
5281
5282 static int memory_events_show(struct seq_file *m, void *v)
5283 {
5284 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5285
5286 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5287 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5288 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5289 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5290
5291 return 0;
5292 }
5293
5294 static struct cftype memory_files[] = {
5295 {
5296 .name = "current",
5297 .read_u64 = memory_current_read,
5298 },
5299 {
5300 .name = "low",
5301 .flags = CFTYPE_NOT_ON_ROOT,
5302 .seq_show = memory_low_show,
5303 .write = memory_low_write,
5304 },
5305 {
5306 .name = "high",
5307 .flags = CFTYPE_NOT_ON_ROOT,
5308 .seq_show = memory_high_show,
5309 .write = memory_high_write,
5310 },
5311 {
5312 .name = "max",
5313 .flags = CFTYPE_NOT_ON_ROOT,
5314 .seq_show = memory_max_show,
5315 .write = memory_max_write,
5316 },
5317 {
5318 .name = "events",
5319 .flags = CFTYPE_NOT_ON_ROOT,
5320 .seq_show = memory_events_show,
5321 },
5322 { } /* terminate */
5323 };
5324
5325 struct cgroup_subsys memory_cgrp_subsys = {
5326 .css_alloc = mem_cgroup_css_alloc,
5327 .css_online = mem_cgroup_css_online,
5328 .css_offline = mem_cgroup_css_offline,
5329 .css_free = mem_cgroup_css_free,
5330 .css_reset = mem_cgroup_css_reset,
5331 .can_attach = mem_cgroup_can_attach,
5332 .cancel_attach = mem_cgroup_cancel_attach,
5333 .attach = mem_cgroup_move_task,
5334 .bind = mem_cgroup_bind,
5335 .dfl_cftypes = memory_files,
5336 .legacy_cftypes = mem_cgroup_legacy_files,
5337 .early_init = 0,
5338 };
5339
5340 /**
5341 * mem_cgroup_events - count memory events against a cgroup
5342 * @memcg: the memory cgroup
5343 * @idx: the event index
5344 * @nr: the number of events to account for
5345 */
5346 void mem_cgroup_events(struct mem_cgroup *memcg,
5347 enum mem_cgroup_events_index idx,
5348 unsigned int nr)
5349 {
5350 this_cpu_add(memcg->stat->events[idx], nr);
5351 }
5352
5353 /**
5354 * mem_cgroup_low - check if memory consumption is below the normal range
5355 * @root: the highest ancestor to consider
5356 * @memcg: the memory cgroup to check
5357 *
5358 * Returns %true if memory consumption of @memcg, and that of all
5359 * configurable ancestors up to @root, is below the normal range.
5360 */
5361 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5362 {
5363 if (mem_cgroup_disabled())
5364 return false;
5365
5366 /*
5367 * The toplevel group doesn't have a configurable range, so
5368 * it's never low when looked at directly, and it is not
5369 * considered an ancestor when assessing the hierarchy.
5370 */
5371
5372 if (memcg == root_mem_cgroup)
5373 return false;
5374
5375 if (page_counter_read(&memcg->memory) > memcg->low)
5376 return false;
5377
5378 while (memcg != root) {
5379 memcg = parent_mem_cgroup(memcg);
5380
5381 if (memcg == root_mem_cgroup)
5382 break;
5383
5384 if (page_counter_read(&memcg->memory) > memcg->low)
5385 return false;
5386 }
5387 return true;
5388 }
5389
5390 /**
5391 * mem_cgroup_try_charge - try charging a page
5392 * @page: page to charge
5393 * @mm: mm context of the victim
5394 * @gfp_mask: reclaim mode
5395 * @memcgp: charged memcg return
5396 *
5397 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5398 * pages according to @gfp_mask if necessary.
5399 *
5400 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5401 * Otherwise, an error code is returned.
5402 *
5403 * After page->mapping has been set up, the caller must finalize the
5404 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5405 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5406 */
5407 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5408 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5409 {
5410 struct mem_cgroup *memcg = NULL;
5411 unsigned int nr_pages = 1;
5412 int ret = 0;
5413
5414 if (mem_cgroup_disabled())
5415 goto out;
5416
5417 if (PageSwapCache(page)) {
5418 /*
5419 * Every swap fault against a single page tries to charge the
5420 * page, bail as early as possible. shmem_unuse() encounters
5421 * already charged pages, too. The USED bit is protected by
5422 * the page lock, which serializes swap cache removal, which
5423 * in turn serializes uncharging.
5424 */
5425 if (page->mem_cgroup)
5426 goto out;
5427 }
5428
5429 if (PageTransHuge(page)) {
5430 nr_pages <<= compound_order(page);
5431 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5432 }
5433
5434 if (do_swap_account && PageSwapCache(page))
5435 memcg = try_get_mem_cgroup_from_page(page);
5436 if (!memcg)
5437 memcg = get_mem_cgroup_from_mm(mm);
5438
5439 ret = try_charge(memcg, gfp_mask, nr_pages);
5440
5441 css_put(&memcg->css);
5442
5443 if (ret == -EINTR) {
5444 memcg = root_mem_cgroup;
5445 ret = 0;
5446 }
5447 out:
5448 *memcgp = memcg;
5449 return ret;
5450 }
5451
5452 /**
5453 * mem_cgroup_commit_charge - commit a page charge
5454 * @page: page to charge
5455 * @memcg: memcg to charge the page to
5456 * @lrucare: page might be on LRU already
5457 *
5458 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5459 * after page->mapping has been set up. This must happen atomically
5460 * as part of the page instantiation, i.e. under the page table lock
5461 * for anonymous pages, under the page lock for page and swap cache.
5462 *
5463 * In addition, the page must not be on the LRU during the commit, to
5464 * prevent racing with task migration. If it might be, use @lrucare.
5465 *
5466 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5467 */
5468 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5469 bool lrucare)
5470 {
5471 unsigned int nr_pages = 1;
5472
5473 VM_BUG_ON_PAGE(!page->mapping, page);
5474 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5475
5476 if (mem_cgroup_disabled())
5477 return;
5478 /*
5479 * Swap faults will attempt to charge the same page multiple
5480 * times. But reuse_swap_page() might have removed the page
5481 * from swapcache already, so we can't check PageSwapCache().
5482 */
5483 if (!memcg)
5484 return;
5485
5486 commit_charge(page, memcg, lrucare);
5487
5488 if (PageTransHuge(page)) {
5489 nr_pages <<= compound_order(page);
5490 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5491 }
5492
5493 local_irq_disable();
5494 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5495 memcg_check_events(memcg, page);
5496 local_irq_enable();
5497
5498 if (do_swap_account && PageSwapCache(page)) {
5499 swp_entry_t entry = { .val = page_private(page) };
5500 /*
5501 * The swap entry might not get freed for a long time,
5502 * let's not wait for it. The page already received a
5503 * memory+swap charge, drop the swap entry duplicate.
5504 */
5505 mem_cgroup_uncharge_swap(entry);
5506 }
5507 }
5508
5509 /**
5510 * mem_cgroup_cancel_charge - cancel a page charge
5511 * @page: page to charge
5512 * @memcg: memcg to charge the page to
5513 *
5514 * Cancel a charge transaction started by mem_cgroup_try_charge().
5515 */
5516 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5517 {
5518 unsigned int nr_pages = 1;
5519
5520 if (mem_cgroup_disabled())
5521 return;
5522 /*
5523 * Swap faults will attempt to charge the same page multiple
5524 * times. But reuse_swap_page() might have removed the page
5525 * from swapcache already, so we can't check PageSwapCache().
5526 */
5527 if (!memcg)
5528 return;
5529
5530 if (PageTransHuge(page)) {
5531 nr_pages <<= compound_order(page);
5532 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5533 }
5534
5535 cancel_charge(memcg, nr_pages);
5536 }
5537
5538 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5539 unsigned long nr_anon, unsigned long nr_file,
5540 unsigned long nr_huge, struct page *dummy_page)
5541 {
5542 unsigned long nr_pages = nr_anon + nr_file;
5543 unsigned long flags;
5544
5545 if (!mem_cgroup_is_root(memcg)) {
5546 page_counter_uncharge(&memcg->memory, nr_pages);
5547 if (do_swap_account)
5548 page_counter_uncharge(&memcg->memsw, nr_pages);
5549 memcg_oom_recover(memcg);
5550 }
5551
5552 local_irq_save(flags);
5553 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5554 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5555 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5556 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5557 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5558 memcg_check_events(memcg, dummy_page);
5559 local_irq_restore(flags);
5560
5561 if (!mem_cgroup_is_root(memcg))
5562 css_put_many(&memcg->css, nr_pages);
5563 }
5564
5565 static void uncharge_list(struct list_head *page_list)
5566 {
5567 struct mem_cgroup *memcg = NULL;
5568 unsigned long nr_anon = 0;
5569 unsigned long nr_file = 0;
5570 unsigned long nr_huge = 0;
5571 unsigned long pgpgout = 0;
5572 struct list_head *next;
5573 struct page *page;
5574
5575 next = page_list->next;
5576 do {
5577 unsigned int nr_pages = 1;
5578
5579 page = list_entry(next, struct page, lru);
5580 next = page->lru.next;
5581
5582 VM_BUG_ON_PAGE(PageLRU(page), page);
5583 VM_BUG_ON_PAGE(page_count(page), page);
5584
5585 if (!page->mem_cgroup)
5586 continue;
5587
5588 /*
5589 * Nobody should be changing or seriously looking at
5590 * page->mem_cgroup at this point, we have fully
5591 * exclusive access to the page.
5592 */
5593
5594 if (memcg != page->mem_cgroup) {
5595 if (memcg) {
5596 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5597 nr_huge, page);
5598 pgpgout = nr_anon = nr_file = nr_huge = 0;
5599 }
5600 memcg = page->mem_cgroup;
5601 }
5602
5603 if (PageTransHuge(page)) {
5604 nr_pages <<= compound_order(page);
5605 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5606 nr_huge += nr_pages;
5607 }
5608
5609 if (PageAnon(page))
5610 nr_anon += nr_pages;
5611 else
5612 nr_file += nr_pages;
5613
5614 page->mem_cgroup = NULL;
5615
5616 pgpgout++;
5617 } while (next != page_list);
5618
5619 if (memcg)
5620 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5621 nr_huge, page);
5622 }
5623
5624 /**
5625 * mem_cgroup_uncharge - uncharge a page
5626 * @page: page to uncharge
5627 *
5628 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5629 * mem_cgroup_commit_charge().
5630 */
5631 void mem_cgroup_uncharge(struct page *page)
5632 {
5633 if (mem_cgroup_disabled())
5634 return;
5635
5636 /* Don't touch page->lru of any random page, pre-check: */
5637 if (!page->mem_cgroup)
5638 return;
5639
5640 INIT_LIST_HEAD(&page->lru);
5641 uncharge_list(&page->lru);
5642 }
5643
5644 /**
5645 * mem_cgroup_uncharge_list - uncharge a list of page
5646 * @page_list: list of pages to uncharge
5647 *
5648 * Uncharge a list of pages previously charged with
5649 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5650 */
5651 void mem_cgroup_uncharge_list(struct list_head *page_list)
5652 {
5653 if (mem_cgroup_disabled())
5654 return;
5655
5656 if (!list_empty(page_list))
5657 uncharge_list(page_list);
5658 }
5659
5660 /**
5661 * mem_cgroup_migrate - migrate a charge to another page
5662 * @oldpage: currently charged page
5663 * @newpage: page to transfer the charge to
5664 * @lrucare: either or both pages might be on the LRU already
5665 *
5666 * Migrate the charge from @oldpage to @newpage.
5667 *
5668 * Both pages must be locked, @newpage->mapping must be set up.
5669 */
5670 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5671 bool lrucare)
5672 {
5673 struct mem_cgroup *memcg;
5674 int isolated;
5675
5676 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5677 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5678 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5679 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5680 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5681 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5682 newpage);
5683
5684 if (mem_cgroup_disabled())
5685 return;
5686
5687 /* Page cache replacement: new page already charged? */
5688 if (newpage->mem_cgroup)
5689 return;
5690
5691 /*
5692 * Swapcache readahead pages can get migrated before being
5693 * charged, and migration from compaction can happen to an
5694 * uncharged page when the PFN walker finds a page that
5695 * reclaim just put back on the LRU but has not released yet.
5696 */
5697 memcg = oldpage->mem_cgroup;
5698 if (!memcg)
5699 return;
5700
5701 if (lrucare)
5702 lock_page_lru(oldpage, &isolated);
5703
5704 oldpage->mem_cgroup = NULL;
5705
5706 if (lrucare)
5707 unlock_page_lru(oldpage, isolated);
5708
5709 commit_charge(newpage, memcg, lrucare);
5710 }
5711
5712 /*
5713 * subsys_initcall() for memory controller.
5714 *
5715 * Some parts like hotcpu_notifier() have to be initialized from this context
5716 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5717 * everything that doesn't depend on a specific mem_cgroup structure should
5718 * be initialized from here.
5719 */
5720 static int __init mem_cgroup_init(void)
5721 {
5722 int cpu, node;
5723
5724 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5725
5726 for_each_possible_cpu(cpu)
5727 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5728 drain_local_stock);
5729
5730 for_each_node(node) {
5731 struct mem_cgroup_tree_per_node *rtpn;
5732 int zone;
5733
5734 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5735 node_online(node) ? node : NUMA_NO_NODE);
5736
5737 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5738 struct mem_cgroup_tree_per_zone *rtpz;
5739
5740 rtpz = &rtpn->rb_tree_per_zone[zone];
5741 rtpz->rb_root = RB_ROOT;
5742 spin_lock_init(&rtpz->lock);
5743 }
5744 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5745 }
5746
5747 return 0;
5748 }
5749 subsys_initcall(mem_cgroup_init);
5750
5751 #ifdef CONFIG_MEMCG_SWAP
5752 /**
5753 * mem_cgroup_swapout - transfer a memsw charge to swap
5754 * @page: page whose memsw charge to transfer
5755 * @entry: swap entry to move the charge to
5756 *
5757 * Transfer the memsw charge of @page to @entry.
5758 */
5759 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5760 {
5761 struct mem_cgroup *memcg;
5762 unsigned short oldid;
5763
5764 VM_BUG_ON_PAGE(PageLRU(page), page);
5765 VM_BUG_ON_PAGE(page_count(page), page);
5766
5767 if (!do_swap_account)
5768 return;
5769
5770 memcg = page->mem_cgroup;
5771
5772 /* Readahead page, never charged */
5773 if (!memcg)
5774 return;
5775
5776 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5777 VM_BUG_ON_PAGE(oldid, page);
5778 mem_cgroup_swap_statistics(memcg, true);
5779
5780 page->mem_cgroup = NULL;
5781
5782 if (!mem_cgroup_is_root(memcg))
5783 page_counter_uncharge(&memcg->memory, 1);
5784
5785 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5786 VM_BUG_ON(!irqs_disabled());
5787
5788 mem_cgroup_charge_statistics(memcg, page, -1);
5789 memcg_check_events(memcg, page);
5790 }
5791
5792 /**
5793 * mem_cgroup_uncharge_swap - uncharge a swap entry
5794 * @entry: swap entry to uncharge
5795 *
5796 * Drop the memsw charge associated with @entry.
5797 */
5798 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5799 {
5800 struct mem_cgroup *memcg;
5801 unsigned short id;
5802
5803 if (!do_swap_account)
5804 return;
5805
5806 id = swap_cgroup_record(entry, 0);
5807 rcu_read_lock();
5808 memcg = mem_cgroup_lookup(id);
5809 if (memcg) {
5810 if (!mem_cgroup_is_root(memcg))
5811 page_counter_uncharge(&memcg->memsw, 1);
5812 mem_cgroup_swap_statistics(memcg, false);
5813 css_put(&memcg->css);
5814 }
5815 rcu_read_unlock();
5816 }
5817
5818 /* for remember boot option*/
5819 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5820 static int really_do_swap_account __initdata = 1;
5821 #else
5822 static int really_do_swap_account __initdata;
5823 #endif
5824
5825 static int __init enable_swap_account(char *s)
5826 {
5827 if (!strcmp(s, "1"))
5828 really_do_swap_account = 1;
5829 else if (!strcmp(s, "0"))
5830 really_do_swap_account = 0;
5831 return 1;
5832 }
5833 __setup("swapaccount=", enable_swap_account);
5834
5835 static struct cftype memsw_cgroup_files[] = {
5836 {
5837 .name = "memsw.usage_in_bytes",
5838 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5839 .read_u64 = mem_cgroup_read_u64,
5840 },
5841 {
5842 .name = "memsw.max_usage_in_bytes",
5843 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5844 .write = mem_cgroup_reset,
5845 .read_u64 = mem_cgroup_read_u64,
5846 },
5847 {
5848 .name = "memsw.limit_in_bytes",
5849 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5850 .write = mem_cgroup_write,
5851 .read_u64 = mem_cgroup_read_u64,
5852 },
5853 {
5854 .name = "memsw.failcnt",
5855 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5856 .write = mem_cgroup_reset,
5857 .read_u64 = mem_cgroup_read_u64,
5858 },
5859 { }, /* terminate */
5860 };
5861
5862 static int __init mem_cgroup_swap_init(void)
5863 {
5864 if (!mem_cgroup_disabled() && really_do_swap_account) {
5865 do_swap_account = 1;
5866 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5867 memsw_cgroup_files));
5868 }
5869 return 0;
5870 }
5871 subsys_initcall(mem_cgroup_swap_init);
5872
5873 #endif /* CONFIG_MEMCG_SWAP */
This page took 0.159378 seconds and 6 git commands to generate.