memcg: change page_cgroup_zoneinfo signature
[deliverable/linux.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account (0)
74 #endif
75
76 /*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87 * Statistics for memory cgroup.
88 */
89 enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
103
104 MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112 * per-zone information in memory controller.
113 */
114 struct mem_cgroup_per_zone {
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
120
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
219 */
220 struct mem_cgroup_lru_info info;
221
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
227 /*
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
230 */
231 int last_scanned_child;
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
238
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
242
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
251
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
254
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
263 /*
264 * percpu counter.
265 */
266 struct mem_cgroup_stat_cpu *stat;
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
328 };
329
330 /* for encoding cft->private value on file */
331 #define _MEM (0)
332 #define _MEMSWAP (1)
333 #define _OOM_TYPE (2)
334 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
335 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
336 #define MEMFILE_ATTR(val) ((val) & 0xffff)
337 /* Used for OOM nofiier */
338 #define OOM_CONTROL (0)
339
340 /*
341 * Reclaim flags for mem_cgroup_hierarchical_reclaim
342 */
343 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
344 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
345 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
346 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
347 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
348 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
349
350 static void mem_cgroup_get(struct mem_cgroup *mem);
351 static void mem_cgroup_put(struct mem_cgroup *mem);
352 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
353 static void drain_all_stock_async(void);
354
355 static struct mem_cgroup_per_zone *
356 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
357 {
358 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
359 }
360
361 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
362 {
363 return &mem->css;
364 }
365
366 static struct mem_cgroup_per_zone *
367 page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
368 {
369 int nid = page_to_nid(page);
370 int zid = page_zonenum(page);
371
372 return mem_cgroup_zoneinfo(mem, nid, zid);
373 }
374
375 static struct mem_cgroup_tree_per_zone *
376 soft_limit_tree_node_zone(int nid, int zid)
377 {
378 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
379 }
380
381 static struct mem_cgroup_tree_per_zone *
382 soft_limit_tree_from_page(struct page *page)
383 {
384 int nid = page_to_nid(page);
385 int zid = page_zonenum(page);
386
387 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
388 }
389
390 static void
391 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
392 struct mem_cgroup_per_zone *mz,
393 struct mem_cgroup_tree_per_zone *mctz,
394 unsigned long long new_usage_in_excess)
395 {
396 struct rb_node **p = &mctz->rb_root.rb_node;
397 struct rb_node *parent = NULL;
398 struct mem_cgroup_per_zone *mz_node;
399
400 if (mz->on_tree)
401 return;
402
403 mz->usage_in_excess = new_usage_in_excess;
404 if (!mz->usage_in_excess)
405 return;
406 while (*p) {
407 parent = *p;
408 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
409 tree_node);
410 if (mz->usage_in_excess < mz_node->usage_in_excess)
411 p = &(*p)->rb_left;
412 /*
413 * We can't avoid mem cgroups that are over their soft
414 * limit by the same amount
415 */
416 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
417 p = &(*p)->rb_right;
418 }
419 rb_link_node(&mz->tree_node, parent, p);
420 rb_insert_color(&mz->tree_node, &mctz->rb_root);
421 mz->on_tree = true;
422 }
423
424 static void
425 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
426 struct mem_cgroup_per_zone *mz,
427 struct mem_cgroup_tree_per_zone *mctz)
428 {
429 if (!mz->on_tree)
430 return;
431 rb_erase(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = false;
433 }
434
435 static void
436 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439 {
440 spin_lock(&mctz->lock);
441 __mem_cgroup_remove_exceeded(mem, mz, mctz);
442 spin_unlock(&mctz->lock);
443 }
444
445
446 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
447 {
448 unsigned long long excess;
449 struct mem_cgroup_per_zone *mz;
450 struct mem_cgroup_tree_per_zone *mctz;
451 int nid = page_to_nid(page);
452 int zid = page_zonenum(page);
453 mctz = soft_limit_tree_from_page(page);
454
455 /*
456 * Necessary to update all ancestors when hierarchy is used.
457 * because their event counter is not touched.
458 */
459 for (; mem; mem = parent_mem_cgroup(mem)) {
460 mz = mem_cgroup_zoneinfo(mem, nid, zid);
461 excess = res_counter_soft_limit_excess(&mem->res);
462 /*
463 * We have to update the tree if mz is on RB-tree or
464 * mem is over its softlimit.
465 */
466 if (excess || mz->on_tree) {
467 spin_lock(&mctz->lock);
468 /* if on-tree, remove it */
469 if (mz->on_tree)
470 __mem_cgroup_remove_exceeded(mem, mz, mctz);
471 /*
472 * Insert again. mz->usage_in_excess will be updated.
473 * If excess is 0, no tree ops.
474 */
475 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
476 spin_unlock(&mctz->lock);
477 }
478 }
479 }
480
481 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
482 {
483 int node, zone;
484 struct mem_cgroup_per_zone *mz;
485 struct mem_cgroup_tree_per_zone *mctz;
486
487 for_each_node_state(node, N_POSSIBLE) {
488 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
489 mz = mem_cgroup_zoneinfo(mem, node, zone);
490 mctz = soft_limit_tree_node_zone(node, zone);
491 mem_cgroup_remove_exceeded(mem, mz, mctz);
492 }
493 }
494 }
495
496 static struct mem_cgroup_per_zone *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
498 {
499 struct rb_node *rightmost = NULL;
500 struct mem_cgroup_per_zone *mz;
501
502 retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
508 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
514 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
515 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
516 !css_tryget(&mz->mem->css))
517 goto retry;
518 done:
519 return mz;
520 }
521
522 static struct mem_cgroup_per_zone *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524 {
525 struct mem_cgroup_per_zone *mz;
526
527 spin_lock(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock(&mctz->lock);
530 return mz;
531 }
532
533 /*
534 * Implementation Note: reading percpu statistics for memcg.
535 *
536 * Both of vmstat[] and percpu_counter has threshold and do periodic
537 * synchronization to implement "quick" read. There are trade-off between
538 * reading cost and precision of value. Then, we may have a chance to implement
539 * a periodic synchronizion of counter in memcg's counter.
540 *
541 * But this _read() function is used for user interface now. The user accounts
542 * memory usage by memory cgroup and he _always_ requires exact value because
543 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
544 * have to visit all online cpus and make sum. So, for now, unnecessary
545 * synchronization is not implemented. (just implemented for cpu hotplug)
546 *
547 * If there are kernel internal actions which can make use of some not-exact
548 * value, and reading all cpu value can be performance bottleneck in some
549 * common workload, threashold and synchonization as vmstat[] should be
550 * implemented.
551 */
552 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
553 enum mem_cgroup_stat_index idx)
554 {
555 int cpu;
556 s64 val = 0;
557
558 get_online_cpus();
559 for_each_online_cpu(cpu)
560 val += per_cpu(mem->stat->count[idx], cpu);
561 #ifdef CONFIG_HOTPLUG_CPU
562 spin_lock(&mem->pcp_counter_lock);
563 val += mem->nocpu_base.count[idx];
564 spin_unlock(&mem->pcp_counter_lock);
565 #endif
566 put_online_cpus();
567 return val;
568 }
569
570 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
571 {
572 s64 ret;
573
574 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
575 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
576 return ret;
577 }
578
579 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
580 bool charge)
581 {
582 int val = (charge) ? 1 : -1;
583 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
584 }
585
586 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
587 bool file, int nr_pages)
588 {
589 preempt_disable();
590
591 if (file)
592 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
593 else
594 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
595
596 /* pagein of a big page is an event. So, ignore page size */
597 if (nr_pages > 0)
598 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
599 else {
600 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
601 nr_pages = -nr_pages; /* for event */
602 }
603
604 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
605
606 preempt_enable();
607 }
608
609 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
610 enum lru_list idx)
611 {
612 int nid, zid;
613 struct mem_cgroup_per_zone *mz;
614 u64 total = 0;
615
616 for_each_online_node(nid)
617 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
618 mz = mem_cgroup_zoneinfo(mem, nid, zid);
619 total += MEM_CGROUP_ZSTAT(mz, idx);
620 }
621 return total;
622 }
623
624 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
625 {
626 s64 val;
627
628 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
629
630 return !(val & ((1 << event_mask_shift) - 1));
631 }
632
633 /*
634 * Check events in order.
635 *
636 */
637 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
638 {
639 /* threshold event is triggered in finer grain than soft limit */
640 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
641 mem_cgroup_threshold(mem);
642 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
643 mem_cgroup_update_tree(mem, page);
644 }
645 }
646
647 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
648 {
649 return container_of(cgroup_subsys_state(cont,
650 mem_cgroup_subsys_id), struct mem_cgroup,
651 css);
652 }
653
654 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
655 {
656 /*
657 * mm_update_next_owner() may clear mm->owner to NULL
658 * if it races with swapoff, page migration, etc.
659 * So this can be called with p == NULL.
660 */
661 if (unlikely(!p))
662 return NULL;
663
664 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
665 struct mem_cgroup, css);
666 }
667
668 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
669 {
670 struct mem_cgroup *mem = NULL;
671
672 if (!mm)
673 return NULL;
674 /*
675 * Because we have no locks, mm->owner's may be being moved to other
676 * cgroup. We use css_tryget() here even if this looks
677 * pessimistic (rather than adding locks here).
678 */
679 rcu_read_lock();
680 do {
681 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
682 if (unlikely(!mem))
683 break;
684 } while (!css_tryget(&mem->css));
685 rcu_read_unlock();
686 return mem;
687 }
688
689 /* The caller has to guarantee "mem" exists before calling this */
690 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
691 {
692 struct cgroup_subsys_state *css;
693 int found;
694
695 if (!mem) /* ROOT cgroup has the smallest ID */
696 return root_mem_cgroup; /*css_put/get against root is ignored*/
697 if (!mem->use_hierarchy) {
698 if (css_tryget(&mem->css))
699 return mem;
700 return NULL;
701 }
702 rcu_read_lock();
703 /*
704 * searching a memory cgroup which has the smallest ID under given
705 * ROOT cgroup. (ID >= 1)
706 */
707 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
708 if (css && css_tryget(css))
709 mem = container_of(css, struct mem_cgroup, css);
710 else
711 mem = NULL;
712 rcu_read_unlock();
713 return mem;
714 }
715
716 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
717 struct mem_cgroup *root,
718 bool cond)
719 {
720 int nextid = css_id(&iter->css) + 1;
721 int found;
722 int hierarchy_used;
723 struct cgroup_subsys_state *css;
724
725 hierarchy_used = iter->use_hierarchy;
726
727 css_put(&iter->css);
728 /* If no ROOT, walk all, ignore hierarchy */
729 if (!cond || (root && !hierarchy_used))
730 return NULL;
731
732 if (!root)
733 root = root_mem_cgroup;
734
735 do {
736 iter = NULL;
737 rcu_read_lock();
738
739 css = css_get_next(&mem_cgroup_subsys, nextid,
740 &root->css, &found);
741 if (css && css_tryget(css))
742 iter = container_of(css, struct mem_cgroup, css);
743 rcu_read_unlock();
744 /* If css is NULL, no more cgroups will be found */
745 nextid = found + 1;
746 } while (css && !iter);
747
748 return iter;
749 }
750 /*
751 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
752 * be careful that "break" loop is not allowed. We have reference count.
753 * Instead of that modify "cond" to be false and "continue" to exit the loop.
754 */
755 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
756 for (iter = mem_cgroup_start_loop(root);\
757 iter != NULL;\
758 iter = mem_cgroup_get_next(iter, root, cond))
759
760 #define for_each_mem_cgroup_tree(iter, root) \
761 for_each_mem_cgroup_tree_cond(iter, root, true)
762
763 #define for_each_mem_cgroup_all(iter) \
764 for_each_mem_cgroup_tree_cond(iter, NULL, true)
765
766
767 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
768 {
769 return (mem == root_mem_cgroup);
770 }
771
772 /*
773 * Following LRU functions are allowed to be used without PCG_LOCK.
774 * Operations are called by routine of global LRU independently from memcg.
775 * What we have to take care of here is validness of pc->mem_cgroup.
776 *
777 * Changes to pc->mem_cgroup happens when
778 * 1. charge
779 * 2. moving account
780 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
781 * It is added to LRU before charge.
782 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
783 * When moving account, the page is not on LRU. It's isolated.
784 */
785
786 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
787 {
788 struct page_cgroup *pc;
789 struct mem_cgroup_per_zone *mz;
790
791 if (mem_cgroup_disabled())
792 return;
793 pc = lookup_page_cgroup(page);
794 /* can happen while we handle swapcache. */
795 if (!TestClearPageCgroupAcctLRU(pc))
796 return;
797 VM_BUG_ON(!pc->mem_cgroup);
798 /*
799 * We don't check PCG_USED bit. It's cleared when the "page" is finally
800 * removed from global LRU.
801 */
802 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
803 /* huge page split is done under lru_lock. so, we have no races. */
804 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
805 if (mem_cgroup_is_root(pc->mem_cgroup))
806 return;
807 VM_BUG_ON(list_empty(&pc->lru));
808 list_del_init(&pc->lru);
809 }
810
811 void mem_cgroup_del_lru(struct page *page)
812 {
813 mem_cgroup_del_lru_list(page, page_lru(page));
814 }
815
816 /*
817 * Writeback is about to end against a page which has been marked for immediate
818 * reclaim. If it still appears to be reclaimable, move it to the tail of the
819 * inactive list.
820 */
821 void mem_cgroup_rotate_reclaimable_page(struct page *page)
822 {
823 struct mem_cgroup_per_zone *mz;
824 struct page_cgroup *pc;
825 enum lru_list lru = page_lru(page);
826
827 if (mem_cgroup_disabled())
828 return;
829
830 pc = lookup_page_cgroup(page);
831 /* unused or root page is not rotated. */
832 if (!PageCgroupUsed(pc))
833 return;
834 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
835 smp_rmb();
836 if (mem_cgroup_is_root(pc->mem_cgroup))
837 return;
838 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
839 list_move_tail(&pc->lru, &mz->lists[lru]);
840 }
841
842 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
843 {
844 struct mem_cgroup_per_zone *mz;
845 struct page_cgroup *pc;
846
847 if (mem_cgroup_disabled())
848 return;
849
850 pc = lookup_page_cgroup(page);
851 /* unused or root page is not rotated. */
852 if (!PageCgroupUsed(pc))
853 return;
854 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
855 smp_rmb();
856 if (mem_cgroup_is_root(pc->mem_cgroup))
857 return;
858 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
859 list_move(&pc->lru, &mz->lists[lru]);
860 }
861
862 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
863 {
864 struct page_cgroup *pc;
865 struct mem_cgroup_per_zone *mz;
866
867 if (mem_cgroup_disabled())
868 return;
869 pc = lookup_page_cgroup(page);
870 VM_BUG_ON(PageCgroupAcctLRU(pc));
871 if (!PageCgroupUsed(pc))
872 return;
873 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
874 smp_rmb();
875 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
876 /* huge page split is done under lru_lock. so, we have no races. */
877 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
878 SetPageCgroupAcctLRU(pc);
879 if (mem_cgroup_is_root(pc->mem_cgroup))
880 return;
881 list_add(&pc->lru, &mz->lists[lru]);
882 }
883
884 /*
885 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
886 * lru because the page may.be reused after it's fully uncharged (because of
887 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
888 * it again. This function is only used to charge SwapCache. It's done under
889 * lock_page and expected that zone->lru_lock is never held.
890 */
891 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
892 {
893 unsigned long flags;
894 struct zone *zone = page_zone(page);
895 struct page_cgroup *pc = lookup_page_cgroup(page);
896
897 spin_lock_irqsave(&zone->lru_lock, flags);
898 /*
899 * Forget old LRU when this page_cgroup is *not* used. This Used bit
900 * is guarded by lock_page() because the page is SwapCache.
901 */
902 if (!PageCgroupUsed(pc))
903 mem_cgroup_del_lru_list(page, page_lru(page));
904 spin_unlock_irqrestore(&zone->lru_lock, flags);
905 }
906
907 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
908 {
909 unsigned long flags;
910 struct zone *zone = page_zone(page);
911 struct page_cgroup *pc = lookup_page_cgroup(page);
912
913 spin_lock_irqsave(&zone->lru_lock, flags);
914 /* link when the page is linked to LRU but page_cgroup isn't */
915 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
916 mem_cgroup_add_lru_list(page, page_lru(page));
917 spin_unlock_irqrestore(&zone->lru_lock, flags);
918 }
919
920
921 void mem_cgroup_move_lists(struct page *page,
922 enum lru_list from, enum lru_list to)
923 {
924 if (mem_cgroup_disabled())
925 return;
926 mem_cgroup_del_lru_list(page, from);
927 mem_cgroup_add_lru_list(page, to);
928 }
929
930 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
931 {
932 int ret;
933 struct mem_cgroup *curr = NULL;
934 struct task_struct *p;
935
936 p = find_lock_task_mm(task);
937 if (!p)
938 return 0;
939 curr = try_get_mem_cgroup_from_mm(p->mm);
940 task_unlock(p);
941 if (!curr)
942 return 0;
943 /*
944 * We should check use_hierarchy of "mem" not "curr". Because checking
945 * use_hierarchy of "curr" here make this function true if hierarchy is
946 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
947 * hierarchy(even if use_hierarchy is disabled in "mem").
948 */
949 if (mem->use_hierarchy)
950 ret = css_is_ancestor(&curr->css, &mem->css);
951 else
952 ret = (curr == mem);
953 css_put(&curr->css);
954 return ret;
955 }
956
957 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
958 {
959 unsigned long active;
960 unsigned long inactive;
961 unsigned long gb;
962 unsigned long inactive_ratio;
963
964 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
965 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
966
967 gb = (inactive + active) >> (30 - PAGE_SHIFT);
968 if (gb)
969 inactive_ratio = int_sqrt(10 * gb);
970 else
971 inactive_ratio = 1;
972
973 if (present_pages) {
974 present_pages[0] = inactive;
975 present_pages[1] = active;
976 }
977
978 return inactive_ratio;
979 }
980
981 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
982 {
983 unsigned long active;
984 unsigned long inactive;
985 unsigned long present_pages[2];
986 unsigned long inactive_ratio;
987
988 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
989
990 inactive = present_pages[0];
991 active = present_pages[1];
992
993 if (inactive * inactive_ratio < active)
994 return 1;
995
996 return 0;
997 }
998
999 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1000 {
1001 unsigned long active;
1002 unsigned long inactive;
1003
1004 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1005 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1006
1007 return (active > inactive);
1008 }
1009
1010 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1011 struct zone *zone,
1012 enum lru_list lru)
1013 {
1014 int nid = zone_to_nid(zone);
1015 int zid = zone_idx(zone);
1016 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1017
1018 return MEM_CGROUP_ZSTAT(mz, lru);
1019 }
1020
1021 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1022 struct zone *zone)
1023 {
1024 int nid = zone_to_nid(zone);
1025 int zid = zone_idx(zone);
1026 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1027
1028 return &mz->reclaim_stat;
1029 }
1030
1031 struct zone_reclaim_stat *
1032 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1033 {
1034 struct page_cgroup *pc;
1035 struct mem_cgroup_per_zone *mz;
1036
1037 if (mem_cgroup_disabled())
1038 return NULL;
1039
1040 pc = lookup_page_cgroup(page);
1041 if (!PageCgroupUsed(pc))
1042 return NULL;
1043 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1044 smp_rmb();
1045 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1046 if (!mz)
1047 return NULL;
1048
1049 return &mz->reclaim_stat;
1050 }
1051
1052 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1053 struct list_head *dst,
1054 unsigned long *scanned, int order,
1055 int mode, struct zone *z,
1056 struct mem_cgroup *mem_cont,
1057 int active, int file)
1058 {
1059 unsigned long nr_taken = 0;
1060 struct page *page;
1061 unsigned long scan;
1062 LIST_HEAD(pc_list);
1063 struct list_head *src;
1064 struct page_cgroup *pc, *tmp;
1065 int nid = zone_to_nid(z);
1066 int zid = zone_idx(z);
1067 struct mem_cgroup_per_zone *mz;
1068 int lru = LRU_FILE * file + active;
1069 int ret;
1070
1071 BUG_ON(!mem_cont);
1072 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1073 src = &mz->lists[lru];
1074
1075 scan = 0;
1076 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1077 if (scan >= nr_to_scan)
1078 break;
1079
1080 page = pc->page;
1081 if (unlikely(!PageCgroupUsed(pc)))
1082 continue;
1083 if (unlikely(!PageLRU(page)))
1084 continue;
1085
1086 scan++;
1087 ret = __isolate_lru_page(page, mode, file);
1088 switch (ret) {
1089 case 0:
1090 list_move(&page->lru, dst);
1091 mem_cgroup_del_lru(page);
1092 nr_taken += hpage_nr_pages(page);
1093 break;
1094 case -EBUSY:
1095 /* we don't affect global LRU but rotate in our LRU */
1096 mem_cgroup_rotate_lru_list(page, page_lru(page));
1097 break;
1098 default:
1099 break;
1100 }
1101 }
1102
1103 *scanned = scan;
1104
1105 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1106 0, 0, 0, mode);
1107
1108 return nr_taken;
1109 }
1110
1111 #define mem_cgroup_from_res_counter(counter, member) \
1112 container_of(counter, struct mem_cgroup, member)
1113
1114 /**
1115 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1116 * @mem: the memory cgroup
1117 *
1118 * Returns the maximum amount of memory @mem can be charged with, in
1119 * bytes.
1120 */
1121 static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
1122 {
1123 unsigned long long margin;
1124
1125 margin = res_counter_margin(&mem->res);
1126 if (do_swap_account)
1127 margin = min(margin, res_counter_margin(&mem->memsw));
1128 return margin;
1129 }
1130
1131 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1132 {
1133 struct cgroup *cgrp = memcg->css.cgroup;
1134 unsigned int swappiness;
1135
1136 /* root ? */
1137 if (cgrp->parent == NULL)
1138 return vm_swappiness;
1139
1140 spin_lock(&memcg->reclaim_param_lock);
1141 swappiness = memcg->swappiness;
1142 spin_unlock(&memcg->reclaim_param_lock);
1143
1144 return swappiness;
1145 }
1146
1147 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1148 {
1149 int cpu;
1150
1151 get_online_cpus();
1152 spin_lock(&mem->pcp_counter_lock);
1153 for_each_online_cpu(cpu)
1154 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1155 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1156 spin_unlock(&mem->pcp_counter_lock);
1157 put_online_cpus();
1158
1159 synchronize_rcu();
1160 }
1161
1162 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1163 {
1164 int cpu;
1165
1166 if (!mem)
1167 return;
1168 get_online_cpus();
1169 spin_lock(&mem->pcp_counter_lock);
1170 for_each_online_cpu(cpu)
1171 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1172 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1173 spin_unlock(&mem->pcp_counter_lock);
1174 put_online_cpus();
1175 }
1176 /*
1177 * 2 routines for checking "mem" is under move_account() or not.
1178 *
1179 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1180 * for avoiding race in accounting. If true,
1181 * pc->mem_cgroup may be overwritten.
1182 *
1183 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1184 * under hierarchy of moving cgroups. This is for
1185 * waiting at hith-memory prressure caused by "move".
1186 */
1187
1188 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1189 {
1190 VM_BUG_ON(!rcu_read_lock_held());
1191 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1192 }
1193
1194 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1195 {
1196 struct mem_cgroup *from;
1197 struct mem_cgroup *to;
1198 bool ret = false;
1199 /*
1200 * Unlike task_move routines, we access mc.to, mc.from not under
1201 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1202 */
1203 spin_lock(&mc.lock);
1204 from = mc.from;
1205 to = mc.to;
1206 if (!from)
1207 goto unlock;
1208 if (from == mem || to == mem
1209 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1210 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1211 ret = true;
1212 unlock:
1213 spin_unlock(&mc.lock);
1214 return ret;
1215 }
1216
1217 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1218 {
1219 if (mc.moving_task && current != mc.moving_task) {
1220 if (mem_cgroup_under_move(mem)) {
1221 DEFINE_WAIT(wait);
1222 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1223 /* moving charge context might have finished. */
1224 if (mc.moving_task)
1225 schedule();
1226 finish_wait(&mc.waitq, &wait);
1227 return true;
1228 }
1229 }
1230 return false;
1231 }
1232
1233 /**
1234 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1235 * @memcg: The memory cgroup that went over limit
1236 * @p: Task that is going to be killed
1237 *
1238 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1239 * enabled
1240 */
1241 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1242 {
1243 struct cgroup *task_cgrp;
1244 struct cgroup *mem_cgrp;
1245 /*
1246 * Need a buffer in BSS, can't rely on allocations. The code relies
1247 * on the assumption that OOM is serialized for memory controller.
1248 * If this assumption is broken, revisit this code.
1249 */
1250 static char memcg_name[PATH_MAX];
1251 int ret;
1252
1253 if (!memcg || !p)
1254 return;
1255
1256
1257 rcu_read_lock();
1258
1259 mem_cgrp = memcg->css.cgroup;
1260 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1261
1262 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1263 if (ret < 0) {
1264 /*
1265 * Unfortunately, we are unable to convert to a useful name
1266 * But we'll still print out the usage information
1267 */
1268 rcu_read_unlock();
1269 goto done;
1270 }
1271 rcu_read_unlock();
1272
1273 printk(KERN_INFO "Task in %s killed", memcg_name);
1274
1275 rcu_read_lock();
1276 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1277 if (ret < 0) {
1278 rcu_read_unlock();
1279 goto done;
1280 }
1281 rcu_read_unlock();
1282
1283 /*
1284 * Continues from above, so we don't need an KERN_ level
1285 */
1286 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1287 done:
1288
1289 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1290 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1291 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1292 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1293 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1294 "failcnt %llu\n",
1295 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1296 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1297 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1298 }
1299
1300 /*
1301 * This function returns the number of memcg under hierarchy tree. Returns
1302 * 1(self count) if no children.
1303 */
1304 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1305 {
1306 int num = 0;
1307 struct mem_cgroup *iter;
1308
1309 for_each_mem_cgroup_tree(iter, mem)
1310 num++;
1311 return num;
1312 }
1313
1314 /*
1315 * Return the memory (and swap, if configured) limit for a memcg.
1316 */
1317 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1318 {
1319 u64 limit;
1320 u64 memsw;
1321
1322 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1323 limit += total_swap_pages << PAGE_SHIFT;
1324
1325 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1326 /*
1327 * If memsw is finite and limits the amount of swap space available
1328 * to this memcg, return that limit.
1329 */
1330 return min(limit, memsw);
1331 }
1332
1333 /*
1334 * Visit the first child (need not be the first child as per the ordering
1335 * of the cgroup list, since we track last_scanned_child) of @mem and use
1336 * that to reclaim free pages from.
1337 */
1338 static struct mem_cgroup *
1339 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1340 {
1341 struct mem_cgroup *ret = NULL;
1342 struct cgroup_subsys_state *css;
1343 int nextid, found;
1344
1345 if (!root_mem->use_hierarchy) {
1346 css_get(&root_mem->css);
1347 ret = root_mem;
1348 }
1349
1350 while (!ret) {
1351 rcu_read_lock();
1352 nextid = root_mem->last_scanned_child + 1;
1353 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1354 &found);
1355 if (css && css_tryget(css))
1356 ret = container_of(css, struct mem_cgroup, css);
1357
1358 rcu_read_unlock();
1359 /* Updates scanning parameter */
1360 spin_lock(&root_mem->reclaim_param_lock);
1361 if (!css) {
1362 /* this means start scan from ID:1 */
1363 root_mem->last_scanned_child = 0;
1364 } else
1365 root_mem->last_scanned_child = found;
1366 spin_unlock(&root_mem->reclaim_param_lock);
1367 }
1368
1369 return ret;
1370 }
1371
1372 /*
1373 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1374 * we reclaimed from, so that we don't end up penalizing one child extensively
1375 * based on its position in the children list.
1376 *
1377 * root_mem is the original ancestor that we've been reclaim from.
1378 *
1379 * We give up and return to the caller when we visit root_mem twice.
1380 * (other groups can be removed while we're walking....)
1381 *
1382 * If shrink==true, for avoiding to free too much, this returns immedieately.
1383 */
1384 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1385 struct zone *zone,
1386 gfp_t gfp_mask,
1387 unsigned long reclaim_options)
1388 {
1389 struct mem_cgroup *victim;
1390 int ret, total = 0;
1391 int loop = 0;
1392 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1393 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1394 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1395 unsigned long excess;
1396
1397 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
1398
1399 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1400 if (root_mem->memsw_is_minimum)
1401 noswap = true;
1402
1403 while (1) {
1404 victim = mem_cgroup_select_victim(root_mem);
1405 if (victim == root_mem) {
1406 loop++;
1407 if (loop >= 1)
1408 drain_all_stock_async();
1409 if (loop >= 2) {
1410 /*
1411 * If we have not been able to reclaim
1412 * anything, it might because there are
1413 * no reclaimable pages under this hierarchy
1414 */
1415 if (!check_soft || !total) {
1416 css_put(&victim->css);
1417 break;
1418 }
1419 /*
1420 * We want to do more targetted reclaim.
1421 * excess >> 2 is not to excessive so as to
1422 * reclaim too much, nor too less that we keep
1423 * coming back to reclaim from this cgroup
1424 */
1425 if (total >= (excess >> 2) ||
1426 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1427 css_put(&victim->css);
1428 break;
1429 }
1430 }
1431 }
1432 if (!mem_cgroup_local_usage(victim)) {
1433 /* this cgroup's local usage == 0 */
1434 css_put(&victim->css);
1435 continue;
1436 }
1437 /* we use swappiness of local cgroup */
1438 if (check_soft)
1439 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1440 noswap, get_swappiness(victim), zone);
1441 else
1442 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1443 noswap, get_swappiness(victim));
1444 css_put(&victim->css);
1445 /*
1446 * At shrinking usage, we can't check we should stop here or
1447 * reclaim more. It's depends on callers. last_scanned_child
1448 * will work enough for keeping fairness under tree.
1449 */
1450 if (shrink)
1451 return ret;
1452 total += ret;
1453 if (check_soft) {
1454 if (!res_counter_soft_limit_excess(&root_mem->res))
1455 return total;
1456 } else if (mem_cgroup_margin(root_mem))
1457 return 1 + total;
1458 }
1459 return total;
1460 }
1461
1462 /*
1463 * Check OOM-Killer is already running under our hierarchy.
1464 * If someone is running, return false.
1465 */
1466 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1467 {
1468 int x, lock_count = 0;
1469 struct mem_cgroup *iter;
1470
1471 for_each_mem_cgroup_tree(iter, mem) {
1472 x = atomic_inc_return(&iter->oom_lock);
1473 lock_count = max(x, lock_count);
1474 }
1475
1476 if (lock_count == 1)
1477 return true;
1478 return false;
1479 }
1480
1481 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1482 {
1483 struct mem_cgroup *iter;
1484
1485 /*
1486 * When a new child is created while the hierarchy is under oom,
1487 * mem_cgroup_oom_lock() may not be called. We have to use
1488 * atomic_add_unless() here.
1489 */
1490 for_each_mem_cgroup_tree(iter, mem)
1491 atomic_add_unless(&iter->oom_lock, -1, 0);
1492 return 0;
1493 }
1494
1495
1496 static DEFINE_MUTEX(memcg_oom_mutex);
1497 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1498
1499 struct oom_wait_info {
1500 struct mem_cgroup *mem;
1501 wait_queue_t wait;
1502 };
1503
1504 static int memcg_oom_wake_function(wait_queue_t *wait,
1505 unsigned mode, int sync, void *arg)
1506 {
1507 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1508 struct oom_wait_info *oom_wait_info;
1509
1510 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1511
1512 if (oom_wait_info->mem == wake_mem)
1513 goto wakeup;
1514 /* if no hierarchy, no match */
1515 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1516 return 0;
1517 /*
1518 * Both of oom_wait_info->mem and wake_mem are stable under us.
1519 * Then we can use css_is_ancestor without taking care of RCU.
1520 */
1521 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1522 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1523 return 0;
1524
1525 wakeup:
1526 return autoremove_wake_function(wait, mode, sync, arg);
1527 }
1528
1529 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1530 {
1531 /* for filtering, pass "mem" as argument. */
1532 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1533 }
1534
1535 static void memcg_oom_recover(struct mem_cgroup *mem)
1536 {
1537 if (mem && atomic_read(&mem->oom_lock))
1538 memcg_wakeup_oom(mem);
1539 }
1540
1541 /*
1542 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1543 */
1544 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1545 {
1546 struct oom_wait_info owait;
1547 bool locked, need_to_kill;
1548
1549 owait.mem = mem;
1550 owait.wait.flags = 0;
1551 owait.wait.func = memcg_oom_wake_function;
1552 owait.wait.private = current;
1553 INIT_LIST_HEAD(&owait.wait.task_list);
1554 need_to_kill = true;
1555 /* At first, try to OOM lock hierarchy under mem.*/
1556 mutex_lock(&memcg_oom_mutex);
1557 locked = mem_cgroup_oom_lock(mem);
1558 /*
1559 * Even if signal_pending(), we can't quit charge() loop without
1560 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1561 * under OOM is always welcomed, use TASK_KILLABLE here.
1562 */
1563 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1564 if (!locked || mem->oom_kill_disable)
1565 need_to_kill = false;
1566 if (locked)
1567 mem_cgroup_oom_notify(mem);
1568 mutex_unlock(&memcg_oom_mutex);
1569
1570 if (need_to_kill) {
1571 finish_wait(&memcg_oom_waitq, &owait.wait);
1572 mem_cgroup_out_of_memory(mem, mask);
1573 } else {
1574 schedule();
1575 finish_wait(&memcg_oom_waitq, &owait.wait);
1576 }
1577 mutex_lock(&memcg_oom_mutex);
1578 mem_cgroup_oom_unlock(mem);
1579 memcg_wakeup_oom(mem);
1580 mutex_unlock(&memcg_oom_mutex);
1581
1582 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1583 return false;
1584 /* Give chance to dying process */
1585 schedule_timeout(1);
1586 return true;
1587 }
1588
1589 /*
1590 * Currently used to update mapped file statistics, but the routine can be
1591 * generalized to update other statistics as well.
1592 *
1593 * Notes: Race condition
1594 *
1595 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1596 * it tends to be costly. But considering some conditions, we doesn't need
1597 * to do so _always_.
1598 *
1599 * Considering "charge", lock_page_cgroup() is not required because all
1600 * file-stat operations happen after a page is attached to radix-tree. There
1601 * are no race with "charge".
1602 *
1603 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1604 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1605 * if there are race with "uncharge". Statistics itself is properly handled
1606 * by flags.
1607 *
1608 * Considering "move", this is an only case we see a race. To make the race
1609 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1610 * possibility of race condition. If there is, we take a lock.
1611 */
1612
1613 void mem_cgroup_update_page_stat(struct page *page,
1614 enum mem_cgroup_page_stat_item idx, int val)
1615 {
1616 struct mem_cgroup *mem;
1617 struct page_cgroup *pc = lookup_page_cgroup(page);
1618 bool need_unlock = false;
1619 unsigned long uninitialized_var(flags);
1620
1621 if (unlikely(!pc))
1622 return;
1623
1624 rcu_read_lock();
1625 mem = pc->mem_cgroup;
1626 if (unlikely(!mem || !PageCgroupUsed(pc)))
1627 goto out;
1628 /* pc->mem_cgroup is unstable ? */
1629 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1630 /* take a lock against to access pc->mem_cgroup */
1631 move_lock_page_cgroup(pc, &flags);
1632 need_unlock = true;
1633 mem = pc->mem_cgroup;
1634 if (!mem || !PageCgroupUsed(pc))
1635 goto out;
1636 }
1637
1638 switch (idx) {
1639 case MEMCG_NR_FILE_MAPPED:
1640 if (val > 0)
1641 SetPageCgroupFileMapped(pc);
1642 else if (!page_mapped(page))
1643 ClearPageCgroupFileMapped(pc);
1644 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1645 break;
1646 default:
1647 BUG();
1648 }
1649
1650 this_cpu_add(mem->stat->count[idx], val);
1651
1652 out:
1653 if (unlikely(need_unlock))
1654 move_unlock_page_cgroup(pc, &flags);
1655 rcu_read_unlock();
1656 return;
1657 }
1658 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1659
1660 /*
1661 * size of first charge trial. "32" comes from vmscan.c's magic value.
1662 * TODO: maybe necessary to use big numbers in big irons.
1663 */
1664 #define CHARGE_SIZE (32 * PAGE_SIZE)
1665 struct memcg_stock_pcp {
1666 struct mem_cgroup *cached; /* this never be root cgroup */
1667 int charge;
1668 struct work_struct work;
1669 };
1670 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1671 static atomic_t memcg_drain_count;
1672
1673 /*
1674 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1675 * from local stock and true is returned. If the stock is 0 or charges from a
1676 * cgroup which is not current target, returns false. This stock will be
1677 * refilled.
1678 */
1679 static bool consume_stock(struct mem_cgroup *mem)
1680 {
1681 struct memcg_stock_pcp *stock;
1682 bool ret = true;
1683
1684 stock = &get_cpu_var(memcg_stock);
1685 if (mem == stock->cached && stock->charge)
1686 stock->charge -= PAGE_SIZE;
1687 else /* need to call res_counter_charge */
1688 ret = false;
1689 put_cpu_var(memcg_stock);
1690 return ret;
1691 }
1692
1693 /*
1694 * Returns stocks cached in percpu to res_counter and reset cached information.
1695 */
1696 static void drain_stock(struct memcg_stock_pcp *stock)
1697 {
1698 struct mem_cgroup *old = stock->cached;
1699
1700 if (stock->charge) {
1701 res_counter_uncharge(&old->res, stock->charge);
1702 if (do_swap_account)
1703 res_counter_uncharge(&old->memsw, stock->charge);
1704 }
1705 stock->cached = NULL;
1706 stock->charge = 0;
1707 }
1708
1709 /*
1710 * This must be called under preempt disabled or must be called by
1711 * a thread which is pinned to local cpu.
1712 */
1713 static void drain_local_stock(struct work_struct *dummy)
1714 {
1715 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1716 drain_stock(stock);
1717 }
1718
1719 /*
1720 * Cache charges(val) which is from res_counter, to local per_cpu area.
1721 * This will be consumed by consume_stock() function, later.
1722 */
1723 static void refill_stock(struct mem_cgroup *mem, int val)
1724 {
1725 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1726
1727 if (stock->cached != mem) { /* reset if necessary */
1728 drain_stock(stock);
1729 stock->cached = mem;
1730 }
1731 stock->charge += val;
1732 put_cpu_var(memcg_stock);
1733 }
1734
1735 /*
1736 * Tries to drain stocked charges in other cpus. This function is asynchronous
1737 * and just put a work per cpu for draining localy on each cpu. Caller can
1738 * expects some charges will be back to res_counter later but cannot wait for
1739 * it.
1740 */
1741 static void drain_all_stock_async(void)
1742 {
1743 int cpu;
1744 /* This function is for scheduling "drain" in asynchronous way.
1745 * The result of "drain" is not directly handled by callers. Then,
1746 * if someone is calling drain, we don't have to call drain more.
1747 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1748 * there is a race. We just do loose check here.
1749 */
1750 if (atomic_read(&memcg_drain_count))
1751 return;
1752 /* Notify other cpus that system-wide "drain" is running */
1753 atomic_inc(&memcg_drain_count);
1754 get_online_cpus();
1755 for_each_online_cpu(cpu) {
1756 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1757 schedule_work_on(cpu, &stock->work);
1758 }
1759 put_online_cpus();
1760 atomic_dec(&memcg_drain_count);
1761 /* We don't wait for flush_work */
1762 }
1763
1764 /* This is a synchronous drain interface. */
1765 static void drain_all_stock_sync(void)
1766 {
1767 /* called when force_empty is called */
1768 atomic_inc(&memcg_drain_count);
1769 schedule_on_each_cpu(drain_local_stock);
1770 atomic_dec(&memcg_drain_count);
1771 }
1772
1773 /*
1774 * This function drains percpu counter value from DEAD cpu and
1775 * move it to local cpu. Note that this function can be preempted.
1776 */
1777 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1778 {
1779 int i;
1780
1781 spin_lock(&mem->pcp_counter_lock);
1782 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1783 s64 x = per_cpu(mem->stat->count[i], cpu);
1784
1785 per_cpu(mem->stat->count[i], cpu) = 0;
1786 mem->nocpu_base.count[i] += x;
1787 }
1788 /* need to clear ON_MOVE value, works as a kind of lock. */
1789 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1790 spin_unlock(&mem->pcp_counter_lock);
1791 }
1792
1793 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1794 {
1795 int idx = MEM_CGROUP_ON_MOVE;
1796
1797 spin_lock(&mem->pcp_counter_lock);
1798 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1799 spin_unlock(&mem->pcp_counter_lock);
1800 }
1801
1802 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1803 unsigned long action,
1804 void *hcpu)
1805 {
1806 int cpu = (unsigned long)hcpu;
1807 struct memcg_stock_pcp *stock;
1808 struct mem_cgroup *iter;
1809
1810 if ((action == CPU_ONLINE)) {
1811 for_each_mem_cgroup_all(iter)
1812 synchronize_mem_cgroup_on_move(iter, cpu);
1813 return NOTIFY_OK;
1814 }
1815
1816 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1817 return NOTIFY_OK;
1818
1819 for_each_mem_cgroup_all(iter)
1820 mem_cgroup_drain_pcp_counter(iter, cpu);
1821
1822 stock = &per_cpu(memcg_stock, cpu);
1823 drain_stock(stock);
1824 return NOTIFY_OK;
1825 }
1826
1827
1828 /* See __mem_cgroup_try_charge() for details */
1829 enum {
1830 CHARGE_OK, /* success */
1831 CHARGE_RETRY, /* need to retry but retry is not bad */
1832 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1833 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1834 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1835 };
1836
1837 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1838 int csize, bool oom_check)
1839 {
1840 struct mem_cgroup *mem_over_limit;
1841 struct res_counter *fail_res;
1842 unsigned long flags = 0;
1843 int ret;
1844
1845 ret = res_counter_charge(&mem->res, csize, &fail_res);
1846
1847 if (likely(!ret)) {
1848 if (!do_swap_account)
1849 return CHARGE_OK;
1850 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1851 if (likely(!ret))
1852 return CHARGE_OK;
1853
1854 res_counter_uncharge(&mem->res, csize);
1855 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1856 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1857 } else
1858 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1859 /*
1860 * csize can be either a huge page (HPAGE_SIZE), a batch of
1861 * regular pages (CHARGE_SIZE), or a single regular page
1862 * (PAGE_SIZE).
1863 *
1864 * Never reclaim on behalf of optional batching, retry with a
1865 * single page instead.
1866 */
1867 if (csize == CHARGE_SIZE)
1868 return CHARGE_RETRY;
1869
1870 if (!(gfp_mask & __GFP_WAIT))
1871 return CHARGE_WOULDBLOCK;
1872
1873 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1874 gfp_mask, flags);
1875 if (mem_cgroup_margin(mem_over_limit) >= csize)
1876 return CHARGE_RETRY;
1877 /*
1878 * Even though the limit is exceeded at this point, reclaim
1879 * may have been able to free some pages. Retry the charge
1880 * before killing the task.
1881 *
1882 * Only for regular pages, though: huge pages are rather
1883 * unlikely to succeed so close to the limit, and we fall back
1884 * to regular pages anyway in case of failure.
1885 */
1886 if (csize == PAGE_SIZE && ret)
1887 return CHARGE_RETRY;
1888
1889 /*
1890 * At task move, charge accounts can be doubly counted. So, it's
1891 * better to wait until the end of task_move if something is going on.
1892 */
1893 if (mem_cgroup_wait_acct_move(mem_over_limit))
1894 return CHARGE_RETRY;
1895
1896 /* If we don't need to call oom-killer at el, return immediately */
1897 if (!oom_check)
1898 return CHARGE_NOMEM;
1899 /* check OOM */
1900 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1901 return CHARGE_OOM_DIE;
1902
1903 return CHARGE_RETRY;
1904 }
1905
1906 /*
1907 * Unlike exported interface, "oom" parameter is added. if oom==true,
1908 * oom-killer can be invoked.
1909 */
1910 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1911 gfp_t gfp_mask,
1912 struct mem_cgroup **memcg, bool oom,
1913 int page_size)
1914 {
1915 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1916 struct mem_cgroup *mem = NULL;
1917 int ret;
1918 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1919
1920 /*
1921 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1922 * in system level. So, allow to go ahead dying process in addition to
1923 * MEMDIE process.
1924 */
1925 if (unlikely(test_thread_flag(TIF_MEMDIE)
1926 || fatal_signal_pending(current)))
1927 goto bypass;
1928
1929 /*
1930 * We always charge the cgroup the mm_struct belongs to.
1931 * The mm_struct's mem_cgroup changes on task migration if the
1932 * thread group leader migrates. It's possible that mm is not
1933 * set, if so charge the init_mm (happens for pagecache usage).
1934 */
1935 if (!*memcg && !mm)
1936 goto bypass;
1937 again:
1938 if (*memcg) { /* css should be a valid one */
1939 mem = *memcg;
1940 VM_BUG_ON(css_is_removed(&mem->css));
1941 if (mem_cgroup_is_root(mem))
1942 goto done;
1943 if (page_size == PAGE_SIZE && consume_stock(mem))
1944 goto done;
1945 css_get(&mem->css);
1946 } else {
1947 struct task_struct *p;
1948
1949 rcu_read_lock();
1950 p = rcu_dereference(mm->owner);
1951 /*
1952 * Because we don't have task_lock(), "p" can exit.
1953 * In that case, "mem" can point to root or p can be NULL with
1954 * race with swapoff. Then, we have small risk of mis-accouning.
1955 * But such kind of mis-account by race always happens because
1956 * we don't have cgroup_mutex(). It's overkill and we allo that
1957 * small race, here.
1958 * (*) swapoff at el will charge against mm-struct not against
1959 * task-struct. So, mm->owner can be NULL.
1960 */
1961 mem = mem_cgroup_from_task(p);
1962 if (!mem || mem_cgroup_is_root(mem)) {
1963 rcu_read_unlock();
1964 goto done;
1965 }
1966 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1967 /*
1968 * It seems dagerous to access memcg without css_get().
1969 * But considering how consume_stok works, it's not
1970 * necessary. If consume_stock success, some charges
1971 * from this memcg are cached on this cpu. So, we
1972 * don't need to call css_get()/css_tryget() before
1973 * calling consume_stock().
1974 */
1975 rcu_read_unlock();
1976 goto done;
1977 }
1978 /* after here, we may be blocked. we need to get refcnt */
1979 if (!css_tryget(&mem->css)) {
1980 rcu_read_unlock();
1981 goto again;
1982 }
1983 rcu_read_unlock();
1984 }
1985
1986 do {
1987 bool oom_check;
1988
1989 /* If killed, bypass charge */
1990 if (fatal_signal_pending(current)) {
1991 css_put(&mem->css);
1992 goto bypass;
1993 }
1994
1995 oom_check = false;
1996 if (oom && !nr_oom_retries) {
1997 oom_check = true;
1998 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1999 }
2000
2001 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
2002
2003 switch (ret) {
2004 case CHARGE_OK:
2005 break;
2006 case CHARGE_RETRY: /* not in OOM situation but retry */
2007 csize = page_size;
2008 css_put(&mem->css);
2009 mem = NULL;
2010 goto again;
2011 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2012 css_put(&mem->css);
2013 goto nomem;
2014 case CHARGE_NOMEM: /* OOM routine works */
2015 if (!oom) {
2016 css_put(&mem->css);
2017 goto nomem;
2018 }
2019 /* If oom, we never return -ENOMEM */
2020 nr_oom_retries--;
2021 break;
2022 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2023 css_put(&mem->css);
2024 goto bypass;
2025 }
2026 } while (ret != CHARGE_OK);
2027
2028 if (csize > page_size)
2029 refill_stock(mem, csize - page_size);
2030 css_put(&mem->css);
2031 done:
2032 *memcg = mem;
2033 return 0;
2034 nomem:
2035 *memcg = NULL;
2036 return -ENOMEM;
2037 bypass:
2038 *memcg = NULL;
2039 return 0;
2040 }
2041
2042 /*
2043 * Somemtimes we have to undo a charge we got by try_charge().
2044 * This function is for that and do uncharge, put css's refcnt.
2045 * gotten by try_charge().
2046 */
2047 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2048 unsigned long count)
2049 {
2050 if (!mem_cgroup_is_root(mem)) {
2051 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2052 if (do_swap_account)
2053 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2054 }
2055 }
2056
2057 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2058 int page_size)
2059 {
2060 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2061 }
2062
2063 /*
2064 * A helper function to get mem_cgroup from ID. must be called under
2065 * rcu_read_lock(). The caller must check css_is_removed() or some if
2066 * it's concern. (dropping refcnt from swap can be called against removed
2067 * memcg.)
2068 */
2069 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2070 {
2071 struct cgroup_subsys_state *css;
2072
2073 /* ID 0 is unused ID */
2074 if (!id)
2075 return NULL;
2076 css = css_lookup(&mem_cgroup_subsys, id);
2077 if (!css)
2078 return NULL;
2079 return container_of(css, struct mem_cgroup, css);
2080 }
2081
2082 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2083 {
2084 struct mem_cgroup *mem = NULL;
2085 struct page_cgroup *pc;
2086 unsigned short id;
2087 swp_entry_t ent;
2088
2089 VM_BUG_ON(!PageLocked(page));
2090
2091 pc = lookup_page_cgroup(page);
2092 lock_page_cgroup(pc);
2093 if (PageCgroupUsed(pc)) {
2094 mem = pc->mem_cgroup;
2095 if (mem && !css_tryget(&mem->css))
2096 mem = NULL;
2097 } else if (PageSwapCache(page)) {
2098 ent.val = page_private(page);
2099 id = lookup_swap_cgroup(ent);
2100 rcu_read_lock();
2101 mem = mem_cgroup_lookup(id);
2102 if (mem && !css_tryget(&mem->css))
2103 mem = NULL;
2104 rcu_read_unlock();
2105 }
2106 unlock_page_cgroup(pc);
2107 return mem;
2108 }
2109
2110 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2111 struct page_cgroup *pc,
2112 enum charge_type ctype,
2113 int page_size)
2114 {
2115 int nr_pages = page_size >> PAGE_SHIFT;
2116
2117 lock_page_cgroup(pc);
2118 if (unlikely(PageCgroupUsed(pc))) {
2119 unlock_page_cgroup(pc);
2120 mem_cgroup_cancel_charge(mem, page_size);
2121 return;
2122 }
2123 /*
2124 * we don't need page_cgroup_lock about tail pages, becase they are not
2125 * accessed by any other context at this point.
2126 */
2127 pc->mem_cgroup = mem;
2128 /*
2129 * We access a page_cgroup asynchronously without lock_page_cgroup().
2130 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2131 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2132 * before USED bit, we need memory barrier here.
2133 * See mem_cgroup_add_lru_list(), etc.
2134 */
2135 smp_wmb();
2136 switch (ctype) {
2137 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2138 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2139 SetPageCgroupCache(pc);
2140 SetPageCgroupUsed(pc);
2141 break;
2142 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2143 ClearPageCgroupCache(pc);
2144 SetPageCgroupUsed(pc);
2145 break;
2146 default:
2147 break;
2148 }
2149
2150 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2151 unlock_page_cgroup(pc);
2152 /*
2153 * "charge_statistics" updated event counter. Then, check it.
2154 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2155 * if they exceeds softlimit.
2156 */
2157 memcg_check_events(mem, pc->page);
2158 }
2159
2160 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2161
2162 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2163 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2164 /*
2165 * Because tail pages are not marked as "used", set it. We're under
2166 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2167 */
2168 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2169 {
2170 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2171 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2172 unsigned long flags;
2173
2174 if (mem_cgroup_disabled())
2175 return;
2176 /*
2177 * We have no races with charge/uncharge but will have races with
2178 * page state accounting.
2179 */
2180 move_lock_page_cgroup(head_pc, &flags);
2181
2182 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2183 smp_wmb(); /* see __commit_charge() */
2184 if (PageCgroupAcctLRU(head_pc)) {
2185 enum lru_list lru;
2186 struct mem_cgroup_per_zone *mz;
2187
2188 /*
2189 * LRU flags cannot be copied because we need to add tail
2190 *.page to LRU by generic call and our hook will be called.
2191 * We hold lru_lock, then, reduce counter directly.
2192 */
2193 lru = page_lru(head);
2194 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2195 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2196 }
2197 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2198 move_unlock_page_cgroup(head_pc, &flags);
2199 }
2200 #endif
2201
2202 /**
2203 * __mem_cgroup_move_account - move account of the page
2204 * @pc: page_cgroup of the page.
2205 * @from: mem_cgroup which the page is moved from.
2206 * @to: mem_cgroup which the page is moved to. @from != @to.
2207 * @uncharge: whether we should call uncharge and css_put against @from.
2208 *
2209 * The caller must confirm following.
2210 * - page is not on LRU (isolate_page() is useful.)
2211 * - the pc is locked, used, and ->mem_cgroup points to @from.
2212 *
2213 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2214 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2215 * true, this function does "uncharge" from old cgroup, but it doesn't if
2216 * @uncharge is false, so a caller should do "uncharge".
2217 */
2218
2219 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2220 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2221 int charge_size)
2222 {
2223 int nr_pages = charge_size >> PAGE_SHIFT;
2224
2225 VM_BUG_ON(from == to);
2226 VM_BUG_ON(PageLRU(pc->page));
2227 VM_BUG_ON(!page_is_cgroup_locked(pc));
2228 VM_BUG_ON(!PageCgroupUsed(pc));
2229 VM_BUG_ON(pc->mem_cgroup != from);
2230
2231 if (PageCgroupFileMapped(pc)) {
2232 /* Update mapped_file data for mem_cgroup */
2233 preempt_disable();
2234 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2235 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2236 preempt_enable();
2237 }
2238 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2239 if (uncharge)
2240 /* This is not "cancel", but cancel_charge does all we need. */
2241 mem_cgroup_cancel_charge(from, charge_size);
2242
2243 /* caller should have done css_get */
2244 pc->mem_cgroup = to;
2245 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2246 /*
2247 * We charges against "to" which may not have any tasks. Then, "to"
2248 * can be under rmdir(). But in current implementation, caller of
2249 * this function is just force_empty() and move charge, so it's
2250 * garanteed that "to" is never removed. So, we don't check rmdir
2251 * status here.
2252 */
2253 }
2254
2255 /*
2256 * check whether the @pc is valid for moving account and call
2257 * __mem_cgroup_move_account()
2258 */
2259 static int mem_cgroup_move_account(struct page_cgroup *pc,
2260 struct mem_cgroup *from, struct mem_cgroup *to,
2261 bool uncharge, int charge_size)
2262 {
2263 int ret = -EINVAL;
2264 unsigned long flags;
2265 /*
2266 * The page is isolated from LRU. So, collapse function
2267 * will not handle this page. But page splitting can happen.
2268 * Do this check under compound_page_lock(). The caller should
2269 * hold it.
2270 */
2271 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2272 return -EBUSY;
2273
2274 lock_page_cgroup(pc);
2275 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2276 move_lock_page_cgroup(pc, &flags);
2277 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2278 move_unlock_page_cgroup(pc, &flags);
2279 ret = 0;
2280 }
2281 unlock_page_cgroup(pc);
2282 /*
2283 * check events
2284 */
2285 memcg_check_events(to, pc->page);
2286 memcg_check_events(from, pc->page);
2287 return ret;
2288 }
2289
2290 /*
2291 * move charges to its parent.
2292 */
2293
2294 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2295 struct mem_cgroup *child,
2296 gfp_t gfp_mask)
2297 {
2298 struct page *page = pc->page;
2299 struct cgroup *cg = child->css.cgroup;
2300 struct cgroup *pcg = cg->parent;
2301 struct mem_cgroup *parent;
2302 int page_size = PAGE_SIZE;
2303 unsigned long flags;
2304 int ret;
2305
2306 /* Is ROOT ? */
2307 if (!pcg)
2308 return -EINVAL;
2309
2310 ret = -EBUSY;
2311 if (!get_page_unless_zero(page))
2312 goto out;
2313 if (isolate_lru_page(page))
2314 goto put;
2315
2316 if (PageTransHuge(page))
2317 page_size = HPAGE_SIZE;
2318
2319 parent = mem_cgroup_from_cont(pcg);
2320 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2321 &parent, false, page_size);
2322 if (ret || !parent)
2323 goto put_back;
2324
2325 if (page_size > PAGE_SIZE)
2326 flags = compound_lock_irqsave(page);
2327
2328 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2329 if (ret)
2330 mem_cgroup_cancel_charge(parent, page_size);
2331
2332 if (page_size > PAGE_SIZE)
2333 compound_unlock_irqrestore(page, flags);
2334 put_back:
2335 putback_lru_page(page);
2336 put:
2337 put_page(page);
2338 out:
2339 return ret;
2340 }
2341
2342 /*
2343 * Charge the memory controller for page usage.
2344 * Return
2345 * 0 if the charge was successful
2346 * < 0 if the cgroup is over its limit
2347 */
2348 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2349 gfp_t gfp_mask, enum charge_type ctype)
2350 {
2351 struct mem_cgroup *mem = NULL;
2352 int page_size = PAGE_SIZE;
2353 struct page_cgroup *pc;
2354 bool oom = true;
2355 int ret;
2356
2357 if (PageTransHuge(page)) {
2358 page_size <<= compound_order(page);
2359 VM_BUG_ON(!PageTransHuge(page));
2360 /*
2361 * Never OOM-kill a process for a huge page. The
2362 * fault handler will fall back to regular pages.
2363 */
2364 oom = false;
2365 }
2366
2367 pc = lookup_page_cgroup(page);
2368 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
2369
2370 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
2371 if (ret || !mem)
2372 return ret;
2373
2374 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2375 return 0;
2376 }
2377
2378 int mem_cgroup_newpage_charge(struct page *page,
2379 struct mm_struct *mm, gfp_t gfp_mask)
2380 {
2381 if (mem_cgroup_disabled())
2382 return 0;
2383 /*
2384 * If already mapped, we don't have to account.
2385 * If page cache, page->mapping has address_space.
2386 * But page->mapping may have out-of-use anon_vma pointer,
2387 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2388 * is NULL.
2389 */
2390 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2391 return 0;
2392 if (unlikely(!mm))
2393 mm = &init_mm;
2394 return mem_cgroup_charge_common(page, mm, gfp_mask,
2395 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2396 }
2397
2398 static void
2399 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2400 enum charge_type ctype);
2401
2402 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2403 gfp_t gfp_mask)
2404 {
2405 int ret;
2406
2407 if (mem_cgroup_disabled())
2408 return 0;
2409 if (PageCompound(page))
2410 return 0;
2411 /*
2412 * Corner case handling. This is called from add_to_page_cache()
2413 * in usual. But some FS (shmem) precharges this page before calling it
2414 * and call add_to_page_cache() with GFP_NOWAIT.
2415 *
2416 * For GFP_NOWAIT case, the page may be pre-charged before calling
2417 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2418 * charge twice. (It works but has to pay a bit larger cost.)
2419 * And when the page is SwapCache, it should take swap information
2420 * into account. This is under lock_page() now.
2421 */
2422 if (!(gfp_mask & __GFP_WAIT)) {
2423 struct page_cgroup *pc;
2424
2425 pc = lookup_page_cgroup(page);
2426 if (!pc)
2427 return 0;
2428 lock_page_cgroup(pc);
2429 if (PageCgroupUsed(pc)) {
2430 unlock_page_cgroup(pc);
2431 return 0;
2432 }
2433 unlock_page_cgroup(pc);
2434 }
2435
2436 if (unlikely(!mm))
2437 mm = &init_mm;
2438
2439 if (page_is_file_cache(page))
2440 return mem_cgroup_charge_common(page, mm, gfp_mask,
2441 MEM_CGROUP_CHARGE_TYPE_CACHE);
2442
2443 /* shmem */
2444 if (PageSwapCache(page)) {
2445 struct mem_cgroup *mem;
2446
2447 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2448 if (!ret)
2449 __mem_cgroup_commit_charge_swapin(page, mem,
2450 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2451 } else
2452 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2453 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2454
2455 return ret;
2456 }
2457
2458 /*
2459 * While swap-in, try_charge -> commit or cancel, the page is locked.
2460 * And when try_charge() successfully returns, one refcnt to memcg without
2461 * struct page_cgroup is acquired. This refcnt will be consumed by
2462 * "commit()" or removed by "cancel()"
2463 */
2464 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2465 struct page *page,
2466 gfp_t mask, struct mem_cgroup **ptr)
2467 {
2468 struct mem_cgroup *mem;
2469 int ret;
2470
2471 *ptr = NULL;
2472
2473 if (mem_cgroup_disabled())
2474 return 0;
2475
2476 if (!do_swap_account)
2477 goto charge_cur_mm;
2478 /*
2479 * A racing thread's fault, or swapoff, may have already updated
2480 * the pte, and even removed page from swap cache: in those cases
2481 * do_swap_page()'s pte_same() test will fail; but there's also a
2482 * KSM case which does need to charge the page.
2483 */
2484 if (!PageSwapCache(page))
2485 goto charge_cur_mm;
2486 mem = try_get_mem_cgroup_from_page(page);
2487 if (!mem)
2488 goto charge_cur_mm;
2489 *ptr = mem;
2490 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2491 css_put(&mem->css);
2492 return ret;
2493 charge_cur_mm:
2494 if (unlikely(!mm))
2495 mm = &init_mm;
2496 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2497 }
2498
2499 static void
2500 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2501 enum charge_type ctype)
2502 {
2503 struct page_cgroup *pc;
2504
2505 if (mem_cgroup_disabled())
2506 return;
2507 if (!ptr)
2508 return;
2509 cgroup_exclude_rmdir(&ptr->css);
2510 pc = lookup_page_cgroup(page);
2511 mem_cgroup_lru_del_before_commit_swapcache(page);
2512 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2513 mem_cgroup_lru_add_after_commit_swapcache(page);
2514 /*
2515 * Now swap is on-memory. This means this page may be
2516 * counted both as mem and swap....double count.
2517 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2518 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2519 * may call delete_from_swap_cache() before reach here.
2520 */
2521 if (do_swap_account && PageSwapCache(page)) {
2522 swp_entry_t ent = {.val = page_private(page)};
2523 unsigned short id;
2524 struct mem_cgroup *memcg;
2525
2526 id = swap_cgroup_record(ent, 0);
2527 rcu_read_lock();
2528 memcg = mem_cgroup_lookup(id);
2529 if (memcg) {
2530 /*
2531 * This recorded memcg can be obsolete one. So, avoid
2532 * calling css_tryget
2533 */
2534 if (!mem_cgroup_is_root(memcg))
2535 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2536 mem_cgroup_swap_statistics(memcg, false);
2537 mem_cgroup_put(memcg);
2538 }
2539 rcu_read_unlock();
2540 }
2541 /*
2542 * At swapin, we may charge account against cgroup which has no tasks.
2543 * So, rmdir()->pre_destroy() can be called while we do this charge.
2544 * In that case, we need to call pre_destroy() again. check it here.
2545 */
2546 cgroup_release_and_wakeup_rmdir(&ptr->css);
2547 }
2548
2549 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2550 {
2551 __mem_cgroup_commit_charge_swapin(page, ptr,
2552 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2553 }
2554
2555 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2556 {
2557 if (mem_cgroup_disabled())
2558 return;
2559 if (!mem)
2560 return;
2561 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2562 }
2563
2564 static void
2565 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2566 int page_size)
2567 {
2568 struct memcg_batch_info *batch = NULL;
2569 bool uncharge_memsw = true;
2570 /* If swapout, usage of swap doesn't decrease */
2571 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2572 uncharge_memsw = false;
2573
2574 batch = &current->memcg_batch;
2575 /*
2576 * In usual, we do css_get() when we remember memcg pointer.
2577 * But in this case, we keep res->usage until end of a series of
2578 * uncharges. Then, it's ok to ignore memcg's refcnt.
2579 */
2580 if (!batch->memcg)
2581 batch->memcg = mem;
2582 /*
2583 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2584 * In those cases, all pages freed continously can be expected to be in
2585 * the same cgroup and we have chance to coalesce uncharges.
2586 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2587 * because we want to do uncharge as soon as possible.
2588 */
2589
2590 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2591 goto direct_uncharge;
2592
2593 if (page_size != PAGE_SIZE)
2594 goto direct_uncharge;
2595
2596 /*
2597 * In typical case, batch->memcg == mem. This means we can
2598 * merge a series of uncharges to an uncharge of res_counter.
2599 * If not, we uncharge res_counter ony by one.
2600 */
2601 if (batch->memcg != mem)
2602 goto direct_uncharge;
2603 /* remember freed charge and uncharge it later */
2604 batch->bytes += PAGE_SIZE;
2605 if (uncharge_memsw)
2606 batch->memsw_bytes += PAGE_SIZE;
2607 return;
2608 direct_uncharge:
2609 res_counter_uncharge(&mem->res, page_size);
2610 if (uncharge_memsw)
2611 res_counter_uncharge(&mem->memsw, page_size);
2612 if (unlikely(batch->memcg != mem))
2613 memcg_oom_recover(mem);
2614 return;
2615 }
2616
2617 /*
2618 * uncharge if !page_mapped(page)
2619 */
2620 static struct mem_cgroup *
2621 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2622 {
2623 int count;
2624 struct page_cgroup *pc;
2625 struct mem_cgroup *mem = NULL;
2626 int page_size = PAGE_SIZE;
2627
2628 if (mem_cgroup_disabled())
2629 return NULL;
2630
2631 if (PageSwapCache(page))
2632 return NULL;
2633
2634 if (PageTransHuge(page)) {
2635 page_size <<= compound_order(page);
2636 VM_BUG_ON(!PageTransHuge(page));
2637 }
2638
2639 count = page_size >> PAGE_SHIFT;
2640 /*
2641 * Check if our page_cgroup is valid
2642 */
2643 pc = lookup_page_cgroup(page);
2644 if (unlikely(!pc || !PageCgroupUsed(pc)))
2645 return NULL;
2646
2647 lock_page_cgroup(pc);
2648
2649 mem = pc->mem_cgroup;
2650
2651 if (!PageCgroupUsed(pc))
2652 goto unlock_out;
2653
2654 switch (ctype) {
2655 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2656 case MEM_CGROUP_CHARGE_TYPE_DROP:
2657 /* See mem_cgroup_prepare_migration() */
2658 if (page_mapped(page) || PageCgroupMigration(pc))
2659 goto unlock_out;
2660 break;
2661 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2662 if (!PageAnon(page)) { /* Shared memory */
2663 if (page->mapping && !page_is_file_cache(page))
2664 goto unlock_out;
2665 } else if (page_mapped(page)) /* Anon */
2666 goto unlock_out;
2667 break;
2668 default:
2669 break;
2670 }
2671
2672 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2673
2674 ClearPageCgroupUsed(pc);
2675 /*
2676 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2677 * freed from LRU. This is safe because uncharged page is expected not
2678 * to be reused (freed soon). Exception is SwapCache, it's handled by
2679 * special functions.
2680 */
2681
2682 unlock_page_cgroup(pc);
2683 /*
2684 * even after unlock, we have mem->res.usage here and this memcg
2685 * will never be freed.
2686 */
2687 memcg_check_events(mem, page);
2688 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2689 mem_cgroup_swap_statistics(mem, true);
2690 mem_cgroup_get(mem);
2691 }
2692 if (!mem_cgroup_is_root(mem))
2693 __do_uncharge(mem, ctype, page_size);
2694
2695 return mem;
2696
2697 unlock_out:
2698 unlock_page_cgroup(pc);
2699 return NULL;
2700 }
2701
2702 void mem_cgroup_uncharge_page(struct page *page)
2703 {
2704 /* early check. */
2705 if (page_mapped(page))
2706 return;
2707 if (page->mapping && !PageAnon(page))
2708 return;
2709 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2710 }
2711
2712 void mem_cgroup_uncharge_cache_page(struct page *page)
2713 {
2714 VM_BUG_ON(page_mapped(page));
2715 VM_BUG_ON(page->mapping);
2716 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2717 }
2718
2719 /*
2720 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2721 * In that cases, pages are freed continuously and we can expect pages
2722 * are in the same memcg. All these calls itself limits the number of
2723 * pages freed at once, then uncharge_start/end() is called properly.
2724 * This may be called prural(2) times in a context,
2725 */
2726
2727 void mem_cgroup_uncharge_start(void)
2728 {
2729 current->memcg_batch.do_batch++;
2730 /* We can do nest. */
2731 if (current->memcg_batch.do_batch == 1) {
2732 current->memcg_batch.memcg = NULL;
2733 current->memcg_batch.bytes = 0;
2734 current->memcg_batch.memsw_bytes = 0;
2735 }
2736 }
2737
2738 void mem_cgroup_uncharge_end(void)
2739 {
2740 struct memcg_batch_info *batch = &current->memcg_batch;
2741
2742 if (!batch->do_batch)
2743 return;
2744
2745 batch->do_batch--;
2746 if (batch->do_batch) /* If stacked, do nothing. */
2747 return;
2748
2749 if (!batch->memcg)
2750 return;
2751 /*
2752 * This "batch->memcg" is valid without any css_get/put etc...
2753 * bacause we hide charges behind us.
2754 */
2755 if (batch->bytes)
2756 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2757 if (batch->memsw_bytes)
2758 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2759 memcg_oom_recover(batch->memcg);
2760 /* forget this pointer (for sanity check) */
2761 batch->memcg = NULL;
2762 }
2763
2764 #ifdef CONFIG_SWAP
2765 /*
2766 * called after __delete_from_swap_cache() and drop "page" account.
2767 * memcg information is recorded to swap_cgroup of "ent"
2768 */
2769 void
2770 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2771 {
2772 struct mem_cgroup *memcg;
2773 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2774
2775 if (!swapout) /* this was a swap cache but the swap is unused ! */
2776 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2777
2778 memcg = __mem_cgroup_uncharge_common(page, ctype);
2779
2780 /*
2781 * record memcg information, if swapout && memcg != NULL,
2782 * mem_cgroup_get() was called in uncharge().
2783 */
2784 if (do_swap_account && swapout && memcg)
2785 swap_cgroup_record(ent, css_id(&memcg->css));
2786 }
2787 #endif
2788
2789 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2790 /*
2791 * called from swap_entry_free(). remove record in swap_cgroup and
2792 * uncharge "memsw" account.
2793 */
2794 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2795 {
2796 struct mem_cgroup *memcg;
2797 unsigned short id;
2798
2799 if (!do_swap_account)
2800 return;
2801
2802 id = swap_cgroup_record(ent, 0);
2803 rcu_read_lock();
2804 memcg = mem_cgroup_lookup(id);
2805 if (memcg) {
2806 /*
2807 * We uncharge this because swap is freed.
2808 * This memcg can be obsolete one. We avoid calling css_tryget
2809 */
2810 if (!mem_cgroup_is_root(memcg))
2811 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2812 mem_cgroup_swap_statistics(memcg, false);
2813 mem_cgroup_put(memcg);
2814 }
2815 rcu_read_unlock();
2816 }
2817
2818 /**
2819 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2820 * @entry: swap entry to be moved
2821 * @from: mem_cgroup which the entry is moved from
2822 * @to: mem_cgroup which the entry is moved to
2823 * @need_fixup: whether we should fixup res_counters and refcounts.
2824 *
2825 * It succeeds only when the swap_cgroup's record for this entry is the same
2826 * as the mem_cgroup's id of @from.
2827 *
2828 * Returns 0 on success, -EINVAL on failure.
2829 *
2830 * The caller must have charged to @to, IOW, called res_counter_charge() about
2831 * both res and memsw, and called css_get().
2832 */
2833 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2834 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2835 {
2836 unsigned short old_id, new_id;
2837
2838 old_id = css_id(&from->css);
2839 new_id = css_id(&to->css);
2840
2841 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2842 mem_cgroup_swap_statistics(from, false);
2843 mem_cgroup_swap_statistics(to, true);
2844 /*
2845 * This function is only called from task migration context now.
2846 * It postpones res_counter and refcount handling till the end
2847 * of task migration(mem_cgroup_clear_mc()) for performance
2848 * improvement. But we cannot postpone mem_cgroup_get(to)
2849 * because if the process that has been moved to @to does
2850 * swap-in, the refcount of @to might be decreased to 0.
2851 */
2852 mem_cgroup_get(to);
2853 if (need_fixup) {
2854 if (!mem_cgroup_is_root(from))
2855 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2856 mem_cgroup_put(from);
2857 /*
2858 * we charged both to->res and to->memsw, so we should
2859 * uncharge to->res.
2860 */
2861 if (!mem_cgroup_is_root(to))
2862 res_counter_uncharge(&to->res, PAGE_SIZE);
2863 }
2864 return 0;
2865 }
2866 return -EINVAL;
2867 }
2868 #else
2869 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2870 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2871 {
2872 return -EINVAL;
2873 }
2874 #endif
2875
2876 /*
2877 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2878 * page belongs to.
2879 */
2880 int mem_cgroup_prepare_migration(struct page *page,
2881 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
2882 {
2883 struct page_cgroup *pc;
2884 struct mem_cgroup *mem = NULL;
2885 enum charge_type ctype;
2886 int ret = 0;
2887
2888 *ptr = NULL;
2889
2890 VM_BUG_ON(PageTransHuge(page));
2891 if (mem_cgroup_disabled())
2892 return 0;
2893
2894 pc = lookup_page_cgroup(page);
2895 lock_page_cgroup(pc);
2896 if (PageCgroupUsed(pc)) {
2897 mem = pc->mem_cgroup;
2898 css_get(&mem->css);
2899 /*
2900 * At migrating an anonymous page, its mapcount goes down
2901 * to 0 and uncharge() will be called. But, even if it's fully
2902 * unmapped, migration may fail and this page has to be
2903 * charged again. We set MIGRATION flag here and delay uncharge
2904 * until end_migration() is called
2905 *
2906 * Corner Case Thinking
2907 * A)
2908 * When the old page was mapped as Anon and it's unmap-and-freed
2909 * while migration was ongoing.
2910 * If unmap finds the old page, uncharge() of it will be delayed
2911 * until end_migration(). If unmap finds a new page, it's
2912 * uncharged when it make mapcount to be 1->0. If unmap code
2913 * finds swap_migration_entry, the new page will not be mapped
2914 * and end_migration() will find it(mapcount==0).
2915 *
2916 * B)
2917 * When the old page was mapped but migraion fails, the kernel
2918 * remaps it. A charge for it is kept by MIGRATION flag even
2919 * if mapcount goes down to 0. We can do remap successfully
2920 * without charging it again.
2921 *
2922 * C)
2923 * The "old" page is under lock_page() until the end of
2924 * migration, so, the old page itself will not be swapped-out.
2925 * If the new page is swapped out before end_migraton, our
2926 * hook to usual swap-out path will catch the event.
2927 */
2928 if (PageAnon(page))
2929 SetPageCgroupMigration(pc);
2930 }
2931 unlock_page_cgroup(pc);
2932 /*
2933 * If the page is not charged at this point,
2934 * we return here.
2935 */
2936 if (!mem)
2937 return 0;
2938
2939 *ptr = mem;
2940 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
2941 css_put(&mem->css);/* drop extra refcnt */
2942 if (ret || *ptr == NULL) {
2943 if (PageAnon(page)) {
2944 lock_page_cgroup(pc);
2945 ClearPageCgroupMigration(pc);
2946 unlock_page_cgroup(pc);
2947 /*
2948 * The old page may be fully unmapped while we kept it.
2949 */
2950 mem_cgroup_uncharge_page(page);
2951 }
2952 return -ENOMEM;
2953 }
2954 /*
2955 * We charge new page before it's used/mapped. So, even if unlock_page()
2956 * is called before end_migration, we can catch all events on this new
2957 * page. In the case new page is migrated but not remapped, new page's
2958 * mapcount will be finally 0 and we call uncharge in end_migration().
2959 */
2960 pc = lookup_page_cgroup(newpage);
2961 if (PageAnon(page))
2962 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2963 else if (page_is_file_cache(page))
2964 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2965 else
2966 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2967 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2968 return ret;
2969 }
2970
2971 /* remove redundant charge if migration failed*/
2972 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2973 struct page *oldpage, struct page *newpage, bool migration_ok)
2974 {
2975 struct page *used, *unused;
2976 struct page_cgroup *pc;
2977
2978 if (!mem)
2979 return;
2980 /* blocks rmdir() */
2981 cgroup_exclude_rmdir(&mem->css);
2982 if (!migration_ok) {
2983 used = oldpage;
2984 unused = newpage;
2985 } else {
2986 used = newpage;
2987 unused = oldpage;
2988 }
2989 /*
2990 * We disallowed uncharge of pages under migration because mapcount
2991 * of the page goes down to zero, temporarly.
2992 * Clear the flag and check the page should be charged.
2993 */
2994 pc = lookup_page_cgroup(oldpage);
2995 lock_page_cgroup(pc);
2996 ClearPageCgroupMigration(pc);
2997 unlock_page_cgroup(pc);
2998
2999 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3000
3001 /*
3002 * If a page is a file cache, radix-tree replacement is very atomic
3003 * and we can skip this check. When it was an Anon page, its mapcount
3004 * goes down to 0. But because we added MIGRATION flage, it's not
3005 * uncharged yet. There are several case but page->mapcount check
3006 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3007 * check. (see prepare_charge() also)
3008 */
3009 if (PageAnon(used))
3010 mem_cgroup_uncharge_page(used);
3011 /*
3012 * At migration, we may charge account against cgroup which has no
3013 * tasks.
3014 * So, rmdir()->pre_destroy() can be called while we do this charge.
3015 * In that case, we need to call pre_destroy() again. check it here.
3016 */
3017 cgroup_release_and_wakeup_rmdir(&mem->css);
3018 }
3019
3020 /*
3021 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3022 * Calling hierarchical_reclaim is not enough because we should update
3023 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3024 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3025 * not from the memcg which this page would be charged to.
3026 * try_charge_swapin does all of these works properly.
3027 */
3028 int mem_cgroup_shmem_charge_fallback(struct page *page,
3029 struct mm_struct *mm,
3030 gfp_t gfp_mask)
3031 {
3032 struct mem_cgroup *mem;
3033 int ret;
3034
3035 if (mem_cgroup_disabled())
3036 return 0;
3037
3038 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3039 if (!ret)
3040 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3041
3042 return ret;
3043 }
3044
3045 #ifdef CONFIG_DEBUG_VM
3046 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3047 {
3048 struct page_cgroup *pc;
3049
3050 pc = lookup_page_cgroup(page);
3051 if (likely(pc) && PageCgroupUsed(pc))
3052 return pc;
3053 return NULL;
3054 }
3055
3056 bool mem_cgroup_bad_page_check(struct page *page)
3057 {
3058 if (mem_cgroup_disabled())
3059 return false;
3060
3061 return lookup_page_cgroup_used(page) != NULL;
3062 }
3063
3064 void mem_cgroup_print_bad_page(struct page *page)
3065 {
3066 struct page_cgroup *pc;
3067
3068 pc = lookup_page_cgroup_used(page);
3069 if (pc) {
3070 int ret = -1;
3071 char *path;
3072
3073 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3074 pc, pc->flags, pc->mem_cgroup);
3075
3076 path = kmalloc(PATH_MAX, GFP_KERNEL);
3077 if (path) {
3078 rcu_read_lock();
3079 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3080 path, PATH_MAX);
3081 rcu_read_unlock();
3082 }
3083
3084 printk(KERN_CONT "(%s)\n",
3085 (ret < 0) ? "cannot get the path" : path);
3086 kfree(path);
3087 }
3088 }
3089 #endif
3090
3091 static DEFINE_MUTEX(set_limit_mutex);
3092
3093 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3094 unsigned long long val)
3095 {
3096 int retry_count;
3097 u64 memswlimit, memlimit;
3098 int ret = 0;
3099 int children = mem_cgroup_count_children(memcg);
3100 u64 curusage, oldusage;
3101 int enlarge;
3102
3103 /*
3104 * For keeping hierarchical_reclaim simple, how long we should retry
3105 * is depends on callers. We set our retry-count to be function
3106 * of # of children which we should visit in this loop.
3107 */
3108 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3109
3110 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3111
3112 enlarge = 0;
3113 while (retry_count) {
3114 if (signal_pending(current)) {
3115 ret = -EINTR;
3116 break;
3117 }
3118 /*
3119 * Rather than hide all in some function, I do this in
3120 * open coded manner. You see what this really does.
3121 * We have to guarantee mem->res.limit < mem->memsw.limit.
3122 */
3123 mutex_lock(&set_limit_mutex);
3124 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3125 if (memswlimit < val) {
3126 ret = -EINVAL;
3127 mutex_unlock(&set_limit_mutex);
3128 break;
3129 }
3130
3131 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3132 if (memlimit < val)
3133 enlarge = 1;
3134
3135 ret = res_counter_set_limit(&memcg->res, val);
3136 if (!ret) {
3137 if (memswlimit == val)
3138 memcg->memsw_is_minimum = true;
3139 else
3140 memcg->memsw_is_minimum = false;
3141 }
3142 mutex_unlock(&set_limit_mutex);
3143
3144 if (!ret)
3145 break;
3146
3147 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3148 MEM_CGROUP_RECLAIM_SHRINK);
3149 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3150 /* Usage is reduced ? */
3151 if (curusage >= oldusage)
3152 retry_count--;
3153 else
3154 oldusage = curusage;
3155 }
3156 if (!ret && enlarge)
3157 memcg_oom_recover(memcg);
3158
3159 return ret;
3160 }
3161
3162 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3163 unsigned long long val)
3164 {
3165 int retry_count;
3166 u64 memlimit, memswlimit, oldusage, curusage;
3167 int children = mem_cgroup_count_children(memcg);
3168 int ret = -EBUSY;
3169 int enlarge = 0;
3170
3171 /* see mem_cgroup_resize_res_limit */
3172 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3173 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3174 while (retry_count) {
3175 if (signal_pending(current)) {
3176 ret = -EINTR;
3177 break;
3178 }
3179 /*
3180 * Rather than hide all in some function, I do this in
3181 * open coded manner. You see what this really does.
3182 * We have to guarantee mem->res.limit < mem->memsw.limit.
3183 */
3184 mutex_lock(&set_limit_mutex);
3185 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3186 if (memlimit > val) {
3187 ret = -EINVAL;
3188 mutex_unlock(&set_limit_mutex);
3189 break;
3190 }
3191 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3192 if (memswlimit < val)
3193 enlarge = 1;
3194 ret = res_counter_set_limit(&memcg->memsw, val);
3195 if (!ret) {
3196 if (memlimit == val)
3197 memcg->memsw_is_minimum = true;
3198 else
3199 memcg->memsw_is_minimum = false;
3200 }
3201 mutex_unlock(&set_limit_mutex);
3202
3203 if (!ret)
3204 break;
3205
3206 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3207 MEM_CGROUP_RECLAIM_NOSWAP |
3208 MEM_CGROUP_RECLAIM_SHRINK);
3209 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3210 /* Usage is reduced ? */
3211 if (curusage >= oldusage)
3212 retry_count--;
3213 else
3214 oldusage = curusage;
3215 }
3216 if (!ret && enlarge)
3217 memcg_oom_recover(memcg);
3218 return ret;
3219 }
3220
3221 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3222 gfp_t gfp_mask)
3223 {
3224 unsigned long nr_reclaimed = 0;
3225 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3226 unsigned long reclaimed;
3227 int loop = 0;
3228 struct mem_cgroup_tree_per_zone *mctz;
3229 unsigned long long excess;
3230
3231 if (order > 0)
3232 return 0;
3233
3234 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3235 /*
3236 * This loop can run a while, specially if mem_cgroup's continuously
3237 * keep exceeding their soft limit and putting the system under
3238 * pressure
3239 */
3240 do {
3241 if (next_mz)
3242 mz = next_mz;
3243 else
3244 mz = mem_cgroup_largest_soft_limit_node(mctz);
3245 if (!mz)
3246 break;
3247
3248 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3249 gfp_mask,
3250 MEM_CGROUP_RECLAIM_SOFT);
3251 nr_reclaimed += reclaimed;
3252 spin_lock(&mctz->lock);
3253
3254 /*
3255 * If we failed to reclaim anything from this memory cgroup
3256 * it is time to move on to the next cgroup
3257 */
3258 next_mz = NULL;
3259 if (!reclaimed) {
3260 do {
3261 /*
3262 * Loop until we find yet another one.
3263 *
3264 * By the time we get the soft_limit lock
3265 * again, someone might have aded the
3266 * group back on the RB tree. Iterate to
3267 * make sure we get a different mem.
3268 * mem_cgroup_largest_soft_limit_node returns
3269 * NULL if no other cgroup is present on
3270 * the tree
3271 */
3272 next_mz =
3273 __mem_cgroup_largest_soft_limit_node(mctz);
3274 if (next_mz == mz) {
3275 css_put(&next_mz->mem->css);
3276 next_mz = NULL;
3277 } else /* next_mz == NULL or other memcg */
3278 break;
3279 } while (1);
3280 }
3281 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3282 excess = res_counter_soft_limit_excess(&mz->mem->res);
3283 /*
3284 * One school of thought says that we should not add
3285 * back the node to the tree if reclaim returns 0.
3286 * But our reclaim could return 0, simply because due
3287 * to priority we are exposing a smaller subset of
3288 * memory to reclaim from. Consider this as a longer
3289 * term TODO.
3290 */
3291 /* If excess == 0, no tree ops */
3292 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3293 spin_unlock(&mctz->lock);
3294 css_put(&mz->mem->css);
3295 loop++;
3296 /*
3297 * Could not reclaim anything and there are no more
3298 * mem cgroups to try or we seem to be looping without
3299 * reclaiming anything.
3300 */
3301 if (!nr_reclaimed &&
3302 (next_mz == NULL ||
3303 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3304 break;
3305 } while (!nr_reclaimed);
3306 if (next_mz)
3307 css_put(&next_mz->mem->css);
3308 return nr_reclaimed;
3309 }
3310
3311 /*
3312 * This routine traverse page_cgroup in given list and drop them all.
3313 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3314 */
3315 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3316 int node, int zid, enum lru_list lru)
3317 {
3318 struct zone *zone;
3319 struct mem_cgroup_per_zone *mz;
3320 struct page_cgroup *pc, *busy;
3321 unsigned long flags, loop;
3322 struct list_head *list;
3323 int ret = 0;
3324
3325 zone = &NODE_DATA(node)->node_zones[zid];
3326 mz = mem_cgroup_zoneinfo(mem, node, zid);
3327 list = &mz->lists[lru];
3328
3329 loop = MEM_CGROUP_ZSTAT(mz, lru);
3330 /* give some margin against EBUSY etc...*/
3331 loop += 256;
3332 busy = NULL;
3333 while (loop--) {
3334 ret = 0;
3335 spin_lock_irqsave(&zone->lru_lock, flags);
3336 if (list_empty(list)) {
3337 spin_unlock_irqrestore(&zone->lru_lock, flags);
3338 break;
3339 }
3340 pc = list_entry(list->prev, struct page_cgroup, lru);
3341 if (busy == pc) {
3342 list_move(&pc->lru, list);
3343 busy = NULL;
3344 spin_unlock_irqrestore(&zone->lru_lock, flags);
3345 continue;
3346 }
3347 spin_unlock_irqrestore(&zone->lru_lock, flags);
3348
3349 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3350 if (ret == -ENOMEM)
3351 break;
3352
3353 if (ret == -EBUSY || ret == -EINVAL) {
3354 /* found lock contention or "pc" is obsolete. */
3355 busy = pc;
3356 cond_resched();
3357 } else
3358 busy = NULL;
3359 }
3360
3361 if (!ret && !list_empty(list))
3362 return -EBUSY;
3363 return ret;
3364 }
3365
3366 /*
3367 * make mem_cgroup's charge to be 0 if there is no task.
3368 * This enables deleting this mem_cgroup.
3369 */
3370 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3371 {
3372 int ret;
3373 int node, zid, shrink;
3374 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3375 struct cgroup *cgrp = mem->css.cgroup;
3376
3377 css_get(&mem->css);
3378
3379 shrink = 0;
3380 /* should free all ? */
3381 if (free_all)
3382 goto try_to_free;
3383 move_account:
3384 do {
3385 ret = -EBUSY;
3386 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3387 goto out;
3388 ret = -EINTR;
3389 if (signal_pending(current))
3390 goto out;
3391 /* This is for making all *used* pages to be on LRU. */
3392 lru_add_drain_all();
3393 drain_all_stock_sync();
3394 ret = 0;
3395 mem_cgroup_start_move(mem);
3396 for_each_node_state(node, N_HIGH_MEMORY) {
3397 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3398 enum lru_list l;
3399 for_each_lru(l) {
3400 ret = mem_cgroup_force_empty_list(mem,
3401 node, zid, l);
3402 if (ret)
3403 break;
3404 }
3405 }
3406 if (ret)
3407 break;
3408 }
3409 mem_cgroup_end_move(mem);
3410 memcg_oom_recover(mem);
3411 /* it seems parent cgroup doesn't have enough mem */
3412 if (ret == -ENOMEM)
3413 goto try_to_free;
3414 cond_resched();
3415 /* "ret" should also be checked to ensure all lists are empty. */
3416 } while (mem->res.usage > 0 || ret);
3417 out:
3418 css_put(&mem->css);
3419 return ret;
3420
3421 try_to_free:
3422 /* returns EBUSY if there is a task or if we come here twice. */
3423 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3424 ret = -EBUSY;
3425 goto out;
3426 }
3427 /* we call try-to-free pages for make this cgroup empty */
3428 lru_add_drain_all();
3429 /* try to free all pages in this cgroup */
3430 shrink = 1;
3431 while (nr_retries && mem->res.usage > 0) {
3432 int progress;
3433
3434 if (signal_pending(current)) {
3435 ret = -EINTR;
3436 goto out;
3437 }
3438 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3439 false, get_swappiness(mem));
3440 if (!progress) {
3441 nr_retries--;
3442 /* maybe some writeback is necessary */
3443 congestion_wait(BLK_RW_ASYNC, HZ/10);
3444 }
3445
3446 }
3447 lru_add_drain();
3448 /* try move_account...there may be some *locked* pages. */
3449 goto move_account;
3450 }
3451
3452 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3453 {
3454 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3455 }
3456
3457
3458 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3459 {
3460 return mem_cgroup_from_cont(cont)->use_hierarchy;
3461 }
3462
3463 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3464 u64 val)
3465 {
3466 int retval = 0;
3467 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3468 struct cgroup *parent = cont->parent;
3469 struct mem_cgroup *parent_mem = NULL;
3470
3471 if (parent)
3472 parent_mem = mem_cgroup_from_cont(parent);
3473
3474 cgroup_lock();
3475 /*
3476 * If parent's use_hierarchy is set, we can't make any modifications
3477 * in the child subtrees. If it is unset, then the change can
3478 * occur, provided the current cgroup has no children.
3479 *
3480 * For the root cgroup, parent_mem is NULL, we allow value to be
3481 * set if there are no children.
3482 */
3483 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3484 (val == 1 || val == 0)) {
3485 if (list_empty(&cont->children))
3486 mem->use_hierarchy = val;
3487 else
3488 retval = -EBUSY;
3489 } else
3490 retval = -EINVAL;
3491 cgroup_unlock();
3492
3493 return retval;
3494 }
3495
3496
3497 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3498 enum mem_cgroup_stat_index idx)
3499 {
3500 struct mem_cgroup *iter;
3501 s64 val = 0;
3502
3503 /* each per cpu's value can be minus.Then, use s64 */
3504 for_each_mem_cgroup_tree(iter, mem)
3505 val += mem_cgroup_read_stat(iter, idx);
3506
3507 if (val < 0) /* race ? */
3508 val = 0;
3509 return val;
3510 }
3511
3512 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3513 {
3514 u64 val;
3515
3516 if (!mem_cgroup_is_root(mem)) {
3517 if (!swap)
3518 return res_counter_read_u64(&mem->res, RES_USAGE);
3519 else
3520 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3521 }
3522
3523 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3524 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3525
3526 if (swap)
3527 val += mem_cgroup_get_recursive_idx_stat(mem,
3528 MEM_CGROUP_STAT_SWAPOUT);
3529
3530 return val << PAGE_SHIFT;
3531 }
3532
3533 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3534 {
3535 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3536 u64 val;
3537 int type, name;
3538
3539 type = MEMFILE_TYPE(cft->private);
3540 name = MEMFILE_ATTR(cft->private);
3541 switch (type) {
3542 case _MEM:
3543 if (name == RES_USAGE)
3544 val = mem_cgroup_usage(mem, false);
3545 else
3546 val = res_counter_read_u64(&mem->res, name);
3547 break;
3548 case _MEMSWAP:
3549 if (name == RES_USAGE)
3550 val = mem_cgroup_usage(mem, true);
3551 else
3552 val = res_counter_read_u64(&mem->memsw, name);
3553 break;
3554 default:
3555 BUG();
3556 break;
3557 }
3558 return val;
3559 }
3560 /*
3561 * The user of this function is...
3562 * RES_LIMIT.
3563 */
3564 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3565 const char *buffer)
3566 {
3567 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3568 int type, name;
3569 unsigned long long val;
3570 int ret;
3571
3572 type = MEMFILE_TYPE(cft->private);
3573 name = MEMFILE_ATTR(cft->private);
3574 switch (name) {
3575 case RES_LIMIT:
3576 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3577 ret = -EINVAL;
3578 break;
3579 }
3580 /* This function does all necessary parse...reuse it */
3581 ret = res_counter_memparse_write_strategy(buffer, &val);
3582 if (ret)
3583 break;
3584 if (type == _MEM)
3585 ret = mem_cgroup_resize_limit(memcg, val);
3586 else
3587 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3588 break;
3589 case RES_SOFT_LIMIT:
3590 ret = res_counter_memparse_write_strategy(buffer, &val);
3591 if (ret)
3592 break;
3593 /*
3594 * For memsw, soft limits are hard to implement in terms
3595 * of semantics, for now, we support soft limits for
3596 * control without swap
3597 */
3598 if (type == _MEM)
3599 ret = res_counter_set_soft_limit(&memcg->res, val);
3600 else
3601 ret = -EINVAL;
3602 break;
3603 default:
3604 ret = -EINVAL; /* should be BUG() ? */
3605 break;
3606 }
3607 return ret;
3608 }
3609
3610 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3611 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3612 {
3613 struct cgroup *cgroup;
3614 unsigned long long min_limit, min_memsw_limit, tmp;
3615
3616 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3617 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3618 cgroup = memcg->css.cgroup;
3619 if (!memcg->use_hierarchy)
3620 goto out;
3621
3622 while (cgroup->parent) {
3623 cgroup = cgroup->parent;
3624 memcg = mem_cgroup_from_cont(cgroup);
3625 if (!memcg->use_hierarchy)
3626 break;
3627 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3628 min_limit = min(min_limit, tmp);
3629 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3630 min_memsw_limit = min(min_memsw_limit, tmp);
3631 }
3632 out:
3633 *mem_limit = min_limit;
3634 *memsw_limit = min_memsw_limit;
3635 return;
3636 }
3637
3638 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3639 {
3640 struct mem_cgroup *mem;
3641 int type, name;
3642
3643 mem = mem_cgroup_from_cont(cont);
3644 type = MEMFILE_TYPE(event);
3645 name = MEMFILE_ATTR(event);
3646 switch (name) {
3647 case RES_MAX_USAGE:
3648 if (type == _MEM)
3649 res_counter_reset_max(&mem->res);
3650 else
3651 res_counter_reset_max(&mem->memsw);
3652 break;
3653 case RES_FAILCNT:
3654 if (type == _MEM)
3655 res_counter_reset_failcnt(&mem->res);
3656 else
3657 res_counter_reset_failcnt(&mem->memsw);
3658 break;
3659 }
3660
3661 return 0;
3662 }
3663
3664 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3665 struct cftype *cft)
3666 {
3667 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3668 }
3669
3670 #ifdef CONFIG_MMU
3671 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3672 struct cftype *cft, u64 val)
3673 {
3674 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3675
3676 if (val >= (1 << NR_MOVE_TYPE))
3677 return -EINVAL;
3678 /*
3679 * We check this value several times in both in can_attach() and
3680 * attach(), so we need cgroup lock to prevent this value from being
3681 * inconsistent.
3682 */
3683 cgroup_lock();
3684 mem->move_charge_at_immigrate = val;
3685 cgroup_unlock();
3686
3687 return 0;
3688 }
3689 #else
3690 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3691 struct cftype *cft, u64 val)
3692 {
3693 return -ENOSYS;
3694 }
3695 #endif
3696
3697
3698 /* For read statistics */
3699 enum {
3700 MCS_CACHE,
3701 MCS_RSS,
3702 MCS_FILE_MAPPED,
3703 MCS_PGPGIN,
3704 MCS_PGPGOUT,
3705 MCS_SWAP,
3706 MCS_INACTIVE_ANON,
3707 MCS_ACTIVE_ANON,
3708 MCS_INACTIVE_FILE,
3709 MCS_ACTIVE_FILE,
3710 MCS_UNEVICTABLE,
3711 NR_MCS_STAT,
3712 };
3713
3714 struct mcs_total_stat {
3715 s64 stat[NR_MCS_STAT];
3716 };
3717
3718 struct {
3719 char *local_name;
3720 char *total_name;
3721 } memcg_stat_strings[NR_MCS_STAT] = {
3722 {"cache", "total_cache"},
3723 {"rss", "total_rss"},
3724 {"mapped_file", "total_mapped_file"},
3725 {"pgpgin", "total_pgpgin"},
3726 {"pgpgout", "total_pgpgout"},
3727 {"swap", "total_swap"},
3728 {"inactive_anon", "total_inactive_anon"},
3729 {"active_anon", "total_active_anon"},
3730 {"inactive_file", "total_inactive_file"},
3731 {"active_file", "total_active_file"},
3732 {"unevictable", "total_unevictable"}
3733 };
3734
3735
3736 static void
3737 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3738 {
3739 s64 val;
3740
3741 /* per cpu stat */
3742 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3743 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3744 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3745 s->stat[MCS_RSS] += val * PAGE_SIZE;
3746 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3747 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3748 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3749 s->stat[MCS_PGPGIN] += val;
3750 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3751 s->stat[MCS_PGPGOUT] += val;
3752 if (do_swap_account) {
3753 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3754 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3755 }
3756
3757 /* per zone stat */
3758 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3759 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3760 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3761 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3762 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3763 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3764 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3765 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3766 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3767 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3768 }
3769
3770 static void
3771 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3772 {
3773 struct mem_cgroup *iter;
3774
3775 for_each_mem_cgroup_tree(iter, mem)
3776 mem_cgroup_get_local_stat(iter, s);
3777 }
3778
3779 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3780 struct cgroup_map_cb *cb)
3781 {
3782 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3783 struct mcs_total_stat mystat;
3784 int i;
3785
3786 memset(&mystat, 0, sizeof(mystat));
3787 mem_cgroup_get_local_stat(mem_cont, &mystat);
3788
3789 for (i = 0; i < NR_MCS_STAT; i++) {
3790 if (i == MCS_SWAP && !do_swap_account)
3791 continue;
3792 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3793 }
3794
3795 /* Hierarchical information */
3796 {
3797 unsigned long long limit, memsw_limit;
3798 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3799 cb->fill(cb, "hierarchical_memory_limit", limit);
3800 if (do_swap_account)
3801 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3802 }
3803
3804 memset(&mystat, 0, sizeof(mystat));
3805 mem_cgroup_get_total_stat(mem_cont, &mystat);
3806 for (i = 0; i < NR_MCS_STAT; i++) {
3807 if (i == MCS_SWAP && !do_swap_account)
3808 continue;
3809 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3810 }
3811
3812 #ifdef CONFIG_DEBUG_VM
3813 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3814
3815 {
3816 int nid, zid;
3817 struct mem_cgroup_per_zone *mz;
3818 unsigned long recent_rotated[2] = {0, 0};
3819 unsigned long recent_scanned[2] = {0, 0};
3820
3821 for_each_online_node(nid)
3822 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3823 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3824
3825 recent_rotated[0] +=
3826 mz->reclaim_stat.recent_rotated[0];
3827 recent_rotated[1] +=
3828 mz->reclaim_stat.recent_rotated[1];
3829 recent_scanned[0] +=
3830 mz->reclaim_stat.recent_scanned[0];
3831 recent_scanned[1] +=
3832 mz->reclaim_stat.recent_scanned[1];
3833 }
3834 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3835 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3836 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3837 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3838 }
3839 #endif
3840
3841 return 0;
3842 }
3843
3844 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3845 {
3846 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3847
3848 return get_swappiness(memcg);
3849 }
3850
3851 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3852 u64 val)
3853 {
3854 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3855 struct mem_cgroup *parent;
3856
3857 if (val > 100)
3858 return -EINVAL;
3859
3860 if (cgrp->parent == NULL)
3861 return -EINVAL;
3862
3863 parent = mem_cgroup_from_cont(cgrp->parent);
3864
3865 cgroup_lock();
3866
3867 /* If under hierarchy, only empty-root can set this value */
3868 if ((parent->use_hierarchy) ||
3869 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3870 cgroup_unlock();
3871 return -EINVAL;
3872 }
3873
3874 spin_lock(&memcg->reclaim_param_lock);
3875 memcg->swappiness = val;
3876 spin_unlock(&memcg->reclaim_param_lock);
3877
3878 cgroup_unlock();
3879
3880 return 0;
3881 }
3882
3883 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3884 {
3885 struct mem_cgroup_threshold_ary *t;
3886 u64 usage;
3887 int i;
3888
3889 rcu_read_lock();
3890 if (!swap)
3891 t = rcu_dereference(memcg->thresholds.primary);
3892 else
3893 t = rcu_dereference(memcg->memsw_thresholds.primary);
3894
3895 if (!t)
3896 goto unlock;
3897
3898 usage = mem_cgroup_usage(memcg, swap);
3899
3900 /*
3901 * current_threshold points to threshold just below usage.
3902 * If it's not true, a threshold was crossed after last
3903 * call of __mem_cgroup_threshold().
3904 */
3905 i = t->current_threshold;
3906
3907 /*
3908 * Iterate backward over array of thresholds starting from
3909 * current_threshold and check if a threshold is crossed.
3910 * If none of thresholds below usage is crossed, we read
3911 * only one element of the array here.
3912 */
3913 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3914 eventfd_signal(t->entries[i].eventfd, 1);
3915
3916 /* i = current_threshold + 1 */
3917 i++;
3918
3919 /*
3920 * Iterate forward over array of thresholds starting from
3921 * current_threshold+1 and check if a threshold is crossed.
3922 * If none of thresholds above usage is crossed, we read
3923 * only one element of the array here.
3924 */
3925 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3926 eventfd_signal(t->entries[i].eventfd, 1);
3927
3928 /* Update current_threshold */
3929 t->current_threshold = i - 1;
3930 unlock:
3931 rcu_read_unlock();
3932 }
3933
3934 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3935 {
3936 while (memcg) {
3937 __mem_cgroup_threshold(memcg, false);
3938 if (do_swap_account)
3939 __mem_cgroup_threshold(memcg, true);
3940
3941 memcg = parent_mem_cgroup(memcg);
3942 }
3943 }
3944
3945 static int compare_thresholds(const void *a, const void *b)
3946 {
3947 const struct mem_cgroup_threshold *_a = a;
3948 const struct mem_cgroup_threshold *_b = b;
3949
3950 return _a->threshold - _b->threshold;
3951 }
3952
3953 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3954 {
3955 struct mem_cgroup_eventfd_list *ev;
3956
3957 list_for_each_entry(ev, &mem->oom_notify, list)
3958 eventfd_signal(ev->eventfd, 1);
3959 return 0;
3960 }
3961
3962 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3963 {
3964 struct mem_cgroup *iter;
3965
3966 for_each_mem_cgroup_tree(iter, mem)
3967 mem_cgroup_oom_notify_cb(iter);
3968 }
3969
3970 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3971 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3972 {
3973 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3974 struct mem_cgroup_thresholds *thresholds;
3975 struct mem_cgroup_threshold_ary *new;
3976 int type = MEMFILE_TYPE(cft->private);
3977 u64 threshold, usage;
3978 int i, size, ret;
3979
3980 ret = res_counter_memparse_write_strategy(args, &threshold);
3981 if (ret)
3982 return ret;
3983
3984 mutex_lock(&memcg->thresholds_lock);
3985
3986 if (type == _MEM)
3987 thresholds = &memcg->thresholds;
3988 else if (type == _MEMSWAP)
3989 thresholds = &memcg->memsw_thresholds;
3990 else
3991 BUG();
3992
3993 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3994
3995 /* Check if a threshold crossed before adding a new one */
3996 if (thresholds->primary)
3997 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3998
3999 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4000
4001 /* Allocate memory for new array of thresholds */
4002 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4003 GFP_KERNEL);
4004 if (!new) {
4005 ret = -ENOMEM;
4006 goto unlock;
4007 }
4008 new->size = size;
4009
4010 /* Copy thresholds (if any) to new array */
4011 if (thresholds->primary) {
4012 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4013 sizeof(struct mem_cgroup_threshold));
4014 }
4015
4016 /* Add new threshold */
4017 new->entries[size - 1].eventfd = eventfd;
4018 new->entries[size - 1].threshold = threshold;
4019
4020 /* Sort thresholds. Registering of new threshold isn't time-critical */
4021 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4022 compare_thresholds, NULL);
4023
4024 /* Find current threshold */
4025 new->current_threshold = -1;
4026 for (i = 0; i < size; i++) {
4027 if (new->entries[i].threshold < usage) {
4028 /*
4029 * new->current_threshold will not be used until
4030 * rcu_assign_pointer(), so it's safe to increment
4031 * it here.
4032 */
4033 ++new->current_threshold;
4034 }
4035 }
4036
4037 /* Free old spare buffer and save old primary buffer as spare */
4038 kfree(thresholds->spare);
4039 thresholds->spare = thresholds->primary;
4040
4041 rcu_assign_pointer(thresholds->primary, new);
4042
4043 /* To be sure that nobody uses thresholds */
4044 synchronize_rcu();
4045
4046 unlock:
4047 mutex_unlock(&memcg->thresholds_lock);
4048
4049 return ret;
4050 }
4051
4052 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4053 struct cftype *cft, struct eventfd_ctx *eventfd)
4054 {
4055 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4056 struct mem_cgroup_thresholds *thresholds;
4057 struct mem_cgroup_threshold_ary *new;
4058 int type = MEMFILE_TYPE(cft->private);
4059 u64 usage;
4060 int i, j, size;
4061
4062 mutex_lock(&memcg->thresholds_lock);
4063 if (type == _MEM)
4064 thresholds = &memcg->thresholds;
4065 else if (type == _MEMSWAP)
4066 thresholds = &memcg->memsw_thresholds;
4067 else
4068 BUG();
4069
4070 /*
4071 * Something went wrong if we trying to unregister a threshold
4072 * if we don't have thresholds
4073 */
4074 BUG_ON(!thresholds);
4075
4076 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4077
4078 /* Check if a threshold crossed before removing */
4079 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4080
4081 /* Calculate new number of threshold */
4082 size = 0;
4083 for (i = 0; i < thresholds->primary->size; i++) {
4084 if (thresholds->primary->entries[i].eventfd != eventfd)
4085 size++;
4086 }
4087
4088 new = thresholds->spare;
4089
4090 /* Set thresholds array to NULL if we don't have thresholds */
4091 if (!size) {
4092 kfree(new);
4093 new = NULL;
4094 goto swap_buffers;
4095 }
4096
4097 new->size = size;
4098
4099 /* Copy thresholds and find current threshold */
4100 new->current_threshold = -1;
4101 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4102 if (thresholds->primary->entries[i].eventfd == eventfd)
4103 continue;
4104
4105 new->entries[j] = thresholds->primary->entries[i];
4106 if (new->entries[j].threshold < usage) {
4107 /*
4108 * new->current_threshold will not be used
4109 * until rcu_assign_pointer(), so it's safe to increment
4110 * it here.
4111 */
4112 ++new->current_threshold;
4113 }
4114 j++;
4115 }
4116
4117 swap_buffers:
4118 /* Swap primary and spare array */
4119 thresholds->spare = thresholds->primary;
4120 rcu_assign_pointer(thresholds->primary, new);
4121
4122 /* To be sure that nobody uses thresholds */
4123 synchronize_rcu();
4124
4125 mutex_unlock(&memcg->thresholds_lock);
4126 }
4127
4128 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4129 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4130 {
4131 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4132 struct mem_cgroup_eventfd_list *event;
4133 int type = MEMFILE_TYPE(cft->private);
4134
4135 BUG_ON(type != _OOM_TYPE);
4136 event = kmalloc(sizeof(*event), GFP_KERNEL);
4137 if (!event)
4138 return -ENOMEM;
4139
4140 mutex_lock(&memcg_oom_mutex);
4141
4142 event->eventfd = eventfd;
4143 list_add(&event->list, &memcg->oom_notify);
4144
4145 /* already in OOM ? */
4146 if (atomic_read(&memcg->oom_lock))
4147 eventfd_signal(eventfd, 1);
4148 mutex_unlock(&memcg_oom_mutex);
4149
4150 return 0;
4151 }
4152
4153 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4154 struct cftype *cft, struct eventfd_ctx *eventfd)
4155 {
4156 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4157 struct mem_cgroup_eventfd_list *ev, *tmp;
4158 int type = MEMFILE_TYPE(cft->private);
4159
4160 BUG_ON(type != _OOM_TYPE);
4161
4162 mutex_lock(&memcg_oom_mutex);
4163
4164 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4165 if (ev->eventfd == eventfd) {
4166 list_del(&ev->list);
4167 kfree(ev);
4168 }
4169 }
4170
4171 mutex_unlock(&memcg_oom_mutex);
4172 }
4173
4174 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4175 struct cftype *cft, struct cgroup_map_cb *cb)
4176 {
4177 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4178
4179 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4180
4181 if (atomic_read(&mem->oom_lock))
4182 cb->fill(cb, "under_oom", 1);
4183 else
4184 cb->fill(cb, "under_oom", 0);
4185 return 0;
4186 }
4187
4188 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4189 struct cftype *cft, u64 val)
4190 {
4191 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4192 struct mem_cgroup *parent;
4193
4194 /* cannot set to root cgroup and only 0 and 1 are allowed */
4195 if (!cgrp->parent || !((val == 0) || (val == 1)))
4196 return -EINVAL;
4197
4198 parent = mem_cgroup_from_cont(cgrp->parent);
4199
4200 cgroup_lock();
4201 /* oom-kill-disable is a flag for subhierarchy. */
4202 if ((parent->use_hierarchy) ||
4203 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4204 cgroup_unlock();
4205 return -EINVAL;
4206 }
4207 mem->oom_kill_disable = val;
4208 if (!val)
4209 memcg_oom_recover(mem);
4210 cgroup_unlock();
4211 return 0;
4212 }
4213
4214 static struct cftype mem_cgroup_files[] = {
4215 {
4216 .name = "usage_in_bytes",
4217 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4218 .read_u64 = mem_cgroup_read,
4219 .register_event = mem_cgroup_usage_register_event,
4220 .unregister_event = mem_cgroup_usage_unregister_event,
4221 },
4222 {
4223 .name = "max_usage_in_bytes",
4224 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4225 .trigger = mem_cgroup_reset,
4226 .read_u64 = mem_cgroup_read,
4227 },
4228 {
4229 .name = "limit_in_bytes",
4230 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4231 .write_string = mem_cgroup_write,
4232 .read_u64 = mem_cgroup_read,
4233 },
4234 {
4235 .name = "soft_limit_in_bytes",
4236 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4237 .write_string = mem_cgroup_write,
4238 .read_u64 = mem_cgroup_read,
4239 },
4240 {
4241 .name = "failcnt",
4242 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4243 .trigger = mem_cgroup_reset,
4244 .read_u64 = mem_cgroup_read,
4245 },
4246 {
4247 .name = "stat",
4248 .read_map = mem_control_stat_show,
4249 },
4250 {
4251 .name = "force_empty",
4252 .trigger = mem_cgroup_force_empty_write,
4253 },
4254 {
4255 .name = "use_hierarchy",
4256 .write_u64 = mem_cgroup_hierarchy_write,
4257 .read_u64 = mem_cgroup_hierarchy_read,
4258 },
4259 {
4260 .name = "swappiness",
4261 .read_u64 = mem_cgroup_swappiness_read,
4262 .write_u64 = mem_cgroup_swappiness_write,
4263 },
4264 {
4265 .name = "move_charge_at_immigrate",
4266 .read_u64 = mem_cgroup_move_charge_read,
4267 .write_u64 = mem_cgroup_move_charge_write,
4268 },
4269 {
4270 .name = "oom_control",
4271 .read_map = mem_cgroup_oom_control_read,
4272 .write_u64 = mem_cgroup_oom_control_write,
4273 .register_event = mem_cgroup_oom_register_event,
4274 .unregister_event = mem_cgroup_oom_unregister_event,
4275 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4276 },
4277 };
4278
4279 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4280 static struct cftype memsw_cgroup_files[] = {
4281 {
4282 .name = "memsw.usage_in_bytes",
4283 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4284 .read_u64 = mem_cgroup_read,
4285 .register_event = mem_cgroup_usage_register_event,
4286 .unregister_event = mem_cgroup_usage_unregister_event,
4287 },
4288 {
4289 .name = "memsw.max_usage_in_bytes",
4290 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4291 .trigger = mem_cgroup_reset,
4292 .read_u64 = mem_cgroup_read,
4293 },
4294 {
4295 .name = "memsw.limit_in_bytes",
4296 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4297 .write_string = mem_cgroup_write,
4298 .read_u64 = mem_cgroup_read,
4299 },
4300 {
4301 .name = "memsw.failcnt",
4302 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4303 .trigger = mem_cgroup_reset,
4304 .read_u64 = mem_cgroup_read,
4305 },
4306 };
4307
4308 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4309 {
4310 if (!do_swap_account)
4311 return 0;
4312 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4313 ARRAY_SIZE(memsw_cgroup_files));
4314 };
4315 #else
4316 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4317 {
4318 return 0;
4319 }
4320 #endif
4321
4322 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4323 {
4324 struct mem_cgroup_per_node *pn;
4325 struct mem_cgroup_per_zone *mz;
4326 enum lru_list l;
4327 int zone, tmp = node;
4328 /*
4329 * This routine is called against possible nodes.
4330 * But it's BUG to call kmalloc() against offline node.
4331 *
4332 * TODO: this routine can waste much memory for nodes which will
4333 * never be onlined. It's better to use memory hotplug callback
4334 * function.
4335 */
4336 if (!node_state(node, N_NORMAL_MEMORY))
4337 tmp = -1;
4338 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4339 if (!pn)
4340 return 1;
4341
4342 mem->info.nodeinfo[node] = pn;
4343 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4344 mz = &pn->zoneinfo[zone];
4345 for_each_lru(l)
4346 INIT_LIST_HEAD(&mz->lists[l]);
4347 mz->usage_in_excess = 0;
4348 mz->on_tree = false;
4349 mz->mem = mem;
4350 }
4351 return 0;
4352 }
4353
4354 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4355 {
4356 kfree(mem->info.nodeinfo[node]);
4357 }
4358
4359 static struct mem_cgroup *mem_cgroup_alloc(void)
4360 {
4361 struct mem_cgroup *mem;
4362 int size = sizeof(struct mem_cgroup);
4363
4364 /* Can be very big if MAX_NUMNODES is very big */
4365 if (size < PAGE_SIZE)
4366 mem = kzalloc(size, GFP_KERNEL);
4367 else
4368 mem = vzalloc(size);
4369
4370 if (!mem)
4371 return NULL;
4372
4373 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4374 if (!mem->stat)
4375 goto out_free;
4376 spin_lock_init(&mem->pcp_counter_lock);
4377 return mem;
4378
4379 out_free:
4380 if (size < PAGE_SIZE)
4381 kfree(mem);
4382 else
4383 vfree(mem);
4384 return NULL;
4385 }
4386
4387 /*
4388 * At destroying mem_cgroup, references from swap_cgroup can remain.
4389 * (scanning all at force_empty is too costly...)
4390 *
4391 * Instead of clearing all references at force_empty, we remember
4392 * the number of reference from swap_cgroup and free mem_cgroup when
4393 * it goes down to 0.
4394 *
4395 * Removal of cgroup itself succeeds regardless of refs from swap.
4396 */
4397
4398 static void __mem_cgroup_free(struct mem_cgroup *mem)
4399 {
4400 int node;
4401
4402 mem_cgroup_remove_from_trees(mem);
4403 free_css_id(&mem_cgroup_subsys, &mem->css);
4404
4405 for_each_node_state(node, N_POSSIBLE)
4406 free_mem_cgroup_per_zone_info(mem, node);
4407
4408 free_percpu(mem->stat);
4409 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4410 kfree(mem);
4411 else
4412 vfree(mem);
4413 }
4414
4415 static void mem_cgroup_get(struct mem_cgroup *mem)
4416 {
4417 atomic_inc(&mem->refcnt);
4418 }
4419
4420 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4421 {
4422 if (atomic_sub_and_test(count, &mem->refcnt)) {
4423 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4424 __mem_cgroup_free(mem);
4425 if (parent)
4426 mem_cgroup_put(parent);
4427 }
4428 }
4429
4430 static void mem_cgroup_put(struct mem_cgroup *mem)
4431 {
4432 __mem_cgroup_put(mem, 1);
4433 }
4434
4435 /*
4436 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4437 */
4438 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4439 {
4440 if (!mem->res.parent)
4441 return NULL;
4442 return mem_cgroup_from_res_counter(mem->res.parent, res);
4443 }
4444
4445 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4446 static void __init enable_swap_cgroup(void)
4447 {
4448 if (!mem_cgroup_disabled() && really_do_swap_account)
4449 do_swap_account = 1;
4450 }
4451 #else
4452 static void __init enable_swap_cgroup(void)
4453 {
4454 }
4455 #endif
4456
4457 static int mem_cgroup_soft_limit_tree_init(void)
4458 {
4459 struct mem_cgroup_tree_per_node *rtpn;
4460 struct mem_cgroup_tree_per_zone *rtpz;
4461 int tmp, node, zone;
4462
4463 for_each_node_state(node, N_POSSIBLE) {
4464 tmp = node;
4465 if (!node_state(node, N_NORMAL_MEMORY))
4466 tmp = -1;
4467 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4468 if (!rtpn)
4469 return 1;
4470
4471 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4472
4473 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4474 rtpz = &rtpn->rb_tree_per_zone[zone];
4475 rtpz->rb_root = RB_ROOT;
4476 spin_lock_init(&rtpz->lock);
4477 }
4478 }
4479 return 0;
4480 }
4481
4482 static struct cgroup_subsys_state * __ref
4483 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4484 {
4485 struct mem_cgroup *mem, *parent;
4486 long error = -ENOMEM;
4487 int node;
4488
4489 mem = mem_cgroup_alloc();
4490 if (!mem)
4491 return ERR_PTR(error);
4492
4493 for_each_node_state(node, N_POSSIBLE)
4494 if (alloc_mem_cgroup_per_zone_info(mem, node))
4495 goto free_out;
4496
4497 /* root ? */
4498 if (cont->parent == NULL) {
4499 int cpu;
4500 enable_swap_cgroup();
4501 parent = NULL;
4502 root_mem_cgroup = mem;
4503 if (mem_cgroup_soft_limit_tree_init())
4504 goto free_out;
4505 for_each_possible_cpu(cpu) {
4506 struct memcg_stock_pcp *stock =
4507 &per_cpu(memcg_stock, cpu);
4508 INIT_WORK(&stock->work, drain_local_stock);
4509 }
4510 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4511 } else {
4512 parent = mem_cgroup_from_cont(cont->parent);
4513 mem->use_hierarchy = parent->use_hierarchy;
4514 mem->oom_kill_disable = parent->oom_kill_disable;
4515 }
4516
4517 if (parent && parent->use_hierarchy) {
4518 res_counter_init(&mem->res, &parent->res);
4519 res_counter_init(&mem->memsw, &parent->memsw);
4520 /*
4521 * We increment refcnt of the parent to ensure that we can
4522 * safely access it on res_counter_charge/uncharge.
4523 * This refcnt will be decremented when freeing this
4524 * mem_cgroup(see mem_cgroup_put).
4525 */
4526 mem_cgroup_get(parent);
4527 } else {
4528 res_counter_init(&mem->res, NULL);
4529 res_counter_init(&mem->memsw, NULL);
4530 }
4531 mem->last_scanned_child = 0;
4532 spin_lock_init(&mem->reclaim_param_lock);
4533 INIT_LIST_HEAD(&mem->oom_notify);
4534
4535 if (parent)
4536 mem->swappiness = get_swappiness(parent);
4537 atomic_set(&mem->refcnt, 1);
4538 mem->move_charge_at_immigrate = 0;
4539 mutex_init(&mem->thresholds_lock);
4540 return &mem->css;
4541 free_out:
4542 __mem_cgroup_free(mem);
4543 root_mem_cgroup = NULL;
4544 return ERR_PTR(error);
4545 }
4546
4547 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4548 struct cgroup *cont)
4549 {
4550 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4551
4552 return mem_cgroup_force_empty(mem, false);
4553 }
4554
4555 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4556 struct cgroup *cont)
4557 {
4558 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4559
4560 mem_cgroup_put(mem);
4561 }
4562
4563 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4564 struct cgroup *cont)
4565 {
4566 int ret;
4567
4568 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4569 ARRAY_SIZE(mem_cgroup_files));
4570
4571 if (!ret)
4572 ret = register_memsw_files(cont, ss);
4573 return ret;
4574 }
4575
4576 #ifdef CONFIG_MMU
4577 /* Handlers for move charge at task migration. */
4578 #define PRECHARGE_COUNT_AT_ONCE 256
4579 static int mem_cgroup_do_precharge(unsigned long count)
4580 {
4581 int ret = 0;
4582 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4583 struct mem_cgroup *mem = mc.to;
4584
4585 if (mem_cgroup_is_root(mem)) {
4586 mc.precharge += count;
4587 /* we don't need css_get for root */
4588 return ret;
4589 }
4590 /* try to charge at once */
4591 if (count > 1) {
4592 struct res_counter *dummy;
4593 /*
4594 * "mem" cannot be under rmdir() because we've already checked
4595 * by cgroup_lock_live_cgroup() that it is not removed and we
4596 * are still under the same cgroup_mutex. So we can postpone
4597 * css_get().
4598 */
4599 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4600 goto one_by_one;
4601 if (do_swap_account && res_counter_charge(&mem->memsw,
4602 PAGE_SIZE * count, &dummy)) {
4603 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4604 goto one_by_one;
4605 }
4606 mc.precharge += count;
4607 return ret;
4608 }
4609 one_by_one:
4610 /* fall back to one by one charge */
4611 while (count--) {
4612 if (signal_pending(current)) {
4613 ret = -EINTR;
4614 break;
4615 }
4616 if (!batch_count--) {
4617 batch_count = PRECHARGE_COUNT_AT_ONCE;
4618 cond_resched();
4619 }
4620 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4621 PAGE_SIZE);
4622 if (ret || !mem)
4623 /* mem_cgroup_clear_mc() will do uncharge later */
4624 return -ENOMEM;
4625 mc.precharge++;
4626 }
4627 return ret;
4628 }
4629
4630 /**
4631 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4632 * @vma: the vma the pte to be checked belongs
4633 * @addr: the address corresponding to the pte to be checked
4634 * @ptent: the pte to be checked
4635 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4636 *
4637 * Returns
4638 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4639 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4640 * move charge. if @target is not NULL, the page is stored in target->page
4641 * with extra refcnt got(Callers should handle it).
4642 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4643 * target for charge migration. if @target is not NULL, the entry is stored
4644 * in target->ent.
4645 *
4646 * Called with pte lock held.
4647 */
4648 union mc_target {
4649 struct page *page;
4650 swp_entry_t ent;
4651 };
4652
4653 enum mc_target_type {
4654 MC_TARGET_NONE, /* not used */
4655 MC_TARGET_PAGE,
4656 MC_TARGET_SWAP,
4657 };
4658
4659 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4660 unsigned long addr, pte_t ptent)
4661 {
4662 struct page *page = vm_normal_page(vma, addr, ptent);
4663
4664 if (!page || !page_mapped(page))
4665 return NULL;
4666 if (PageAnon(page)) {
4667 /* we don't move shared anon */
4668 if (!move_anon() || page_mapcount(page) > 2)
4669 return NULL;
4670 } else if (!move_file())
4671 /* we ignore mapcount for file pages */
4672 return NULL;
4673 if (!get_page_unless_zero(page))
4674 return NULL;
4675
4676 return page;
4677 }
4678
4679 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4680 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4681 {
4682 int usage_count;
4683 struct page *page = NULL;
4684 swp_entry_t ent = pte_to_swp_entry(ptent);
4685
4686 if (!move_anon() || non_swap_entry(ent))
4687 return NULL;
4688 usage_count = mem_cgroup_count_swap_user(ent, &page);
4689 if (usage_count > 1) { /* we don't move shared anon */
4690 if (page)
4691 put_page(page);
4692 return NULL;
4693 }
4694 if (do_swap_account)
4695 entry->val = ent.val;
4696
4697 return page;
4698 }
4699
4700 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4701 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4702 {
4703 struct page *page = NULL;
4704 struct inode *inode;
4705 struct address_space *mapping;
4706 pgoff_t pgoff;
4707
4708 if (!vma->vm_file) /* anonymous vma */
4709 return NULL;
4710 if (!move_file())
4711 return NULL;
4712
4713 inode = vma->vm_file->f_path.dentry->d_inode;
4714 mapping = vma->vm_file->f_mapping;
4715 if (pte_none(ptent))
4716 pgoff = linear_page_index(vma, addr);
4717 else /* pte_file(ptent) is true */
4718 pgoff = pte_to_pgoff(ptent);
4719
4720 /* page is moved even if it's not RSS of this task(page-faulted). */
4721 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4722 page = find_get_page(mapping, pgoff);
4723 } else { /* shmem/tmpfs file. we should take account of swap too. */
4724 swp_entry_t ent;
4725 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4726 if (do_swap_account)
4727 entry->val = ent.val;
4728 }
4729
4730 return page;
4731 }
4732
4733 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4734 unsigned long addr, pte_t ptent, union mc_target *target)
4735 {
4736 struct page *page = NULL;
4737 struct page_cgroup *pc;
4738 int ret = 0;
4739 swp_entry_t ent = { .val = 0 };
4740
4741 if (pte_present(ptent))
4742 page = mc_handle_present_pte(vma, addr, ptent);
4743 else if (is_swap_pte(ptent))
4744 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4745 else if (pte_none(ptent) || pte_file(ptent))
4746 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4747
4748 if (!page && !ent.val)
4749 return 0;
4750 if (page) {
4751 pc = lookup_page_cgroup(page);
4752 /*
4753 * Do only loose check w/o page_cgroup lock.
4754 * mem_cgroup_move_account() checks the pc is valid or not under
4755 * the lock.
4756 */
4757 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4758 ret = MC_TARGET_PAGE;
4759 if (target)
4760 target->page = page;
4761 }
4762 if (!ret || !target)
4763 put_page(page);
4764 }
4765 /* There is a swap entry and a page doesn't exist or isn't charged */
4766 if (ent.val && !ret &&
4767 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4768 ret = MC_TARGET_SWAP;
4769 if (target)
4770 target->ent = ent;
4771 }
4772 return ret;
4773 }
4774
4775 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4776 unsigned long addr, unsigned long end,
4777 struct mm_walk *walk)
4778 {
4779 struct vm_area_struct *vma = walk->private;
4780 pte_t *pte;
4781 spinlock_t *ptl;
4782
4783 split_huge_page_pmd(walk->mm, pmd);
4784
4785 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4786 for (; addr != end; pte++, addr += PAGE_SIZE)
4787 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4788 mc.precharge++; /* increment precharge temporarily */
4789 pte_unmap_unlock(pte - 1, ptl);
4790 cond_resched();
4791
4792 return 0;
4793 }
4794
4795 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4796 {
4797 unsigned long precharge;
4798 struct vm_area_struct *vma;
4799
4800 down_read(&mm->mmap_sem);
4801 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4802 struct mm_walk mem_cgroup_count_precharge_walk = {
4803 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4804 .mm = mm,
4805 .private = vma,
4806 };
4807 if (is_vm_hugetlb_page(vma))
4808 continue;
4809 walk_page_range(vma->vm_start, vma->vm_end,
4810 &mem_cgroup_count_precharge_walk);
4811 }
4812 up_read(&mm->mmap_sem);
4813
4814 precharge = mc.precharge;
4815 mc.precharge = 0;
4816
4817 return precharge;
4818 }
4819
4820 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4821 {
4822 unsigned long precharge = mem_cgroup_count_precharge(mm);
4823
4824 VM_BUG_ON(mc.moving_task);
4825 mc.moving_task = current;
4826 return mem_cgroup_do_precharge(precharge);
4827 }
4828
4829 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4830 static void __mem_cgroup_clear_mc(void)
4831 {
4832 struct mem_cgroup *from = mc.from;
4833 struct mem_cgroup *to = mc.to;
4834
4835 /* we must uncharge all the leftover precharges from mc.to */
4836 if (mc.precharge) {
4837 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4838 mc.precharge = 0;
4839 }
4840 /*
4841 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4842 * we must uncharge here.
4843 */
4844 if (mc.moved_charge) {
4845 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4846 mc.moved_charge = 0;
4847 }
4848 /* we must fixup refcnts and charges */
4849 if (mc.moved_swap) {
4850 /* uncharge swap account from the old cgroup */
4851 if (!mem_cgroup_is_root(mc.from))
4852 res_counter_uncharge(&mc.from->memsw,
4853 PAGE_SIZE * mc.moved_swap);
4854 __mem_cgroup_put(mc.from, mc.moved_swap);
4855
4856 if (!mem_cgroup_is_root(mc.to)) {
4857 /*
4858 * we charged both to->res and to->memsw, so we should
4859 * uncharge to->res.
4860 */
4861 res_counter_uncharge(&mc.to->res,
4862 PAGE_SIZE * mc.moved_swap);
4863 }
4864 /* we've already done mem_cgroup_get(mc.to) */
4865 mc.moved_swap = 0;
4866 }
4867 memcg_oom_recover(from);
4868 memcg_oom_recover(to);
4869 wake_up_all(&mc.waitq);
4870 }
4871
4872 static void mem_cgroup_clear_mc(void)
4873 {
4874 struct mem_cgroup *from = mc.from;
4875
4876 /*
4877 * we must clear moving_task before waking up waiters at the end of
4878 * task migration.
4879 */
4880 mc.moving_task = NULL;
4881 __mem_cgroup_clear_mc();
4882 spin_lock(&mc.lock);
4883 mc.from = NULL;
4884 mc.to = NULL;
4885 spin_unlock(&mc.lock);
4886 mem_cgroup_end_move(from);
4887 }
4888
4889 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4890 struct cgroup *cgroup,
4891 struct task_struct *p,
4892 bool threadgroup)
4893 {
4894 int ret = 0;
4895 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4896
4897 if (mem->move_charge_at_immigrate) {
4898 struct mm_struct *mm;
4899 struct mem_cgroup *from = mem_cgroup_from_task(p);
4900
4901 VM_BUG_ON(from == mem);
4902
4903 mm = get_task_mm(p);
4904 if (!mm)
4905 return 0;
4906 /* We move charges only when we move a owner of the mm */
4907 if (mm->owner == p) {
4908 VM_BUG_ON(mc.from);
4909 VM_BUG_ON(mc.to);
4910 VM_BUG_ON(mc.precharge);
4911 VM_BUG_ON(mc.moved_charge);
4912 VM_BUG_ON(mc.moved_swap);
4913 mem_cgroup_start_move(from);
4914 spin_lock(&mc.lock);
4915 mc.from = from;
4916 mc.to = mem;
4917 spin_unlock(&mc.lock);
4918 /* We set mc.moving_task later */
4919
4920 ret = mem_cgroup_precharge_mc(mm);
4921 if (ret)
4922 mem_cgroup_clear_mc();
4923 }
4924 mmput(mm);
4925 }
4926 return ret;
4927 }
4928
4929 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4930 struct cgroup *cgroup,
4931 struct task_struct *p,
4932 bool threadgroup)
4933 {
4934 mem_cgroup_clear_mc();
4935 }
4936
4937 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4938 unsigned long addr, unsigned long end,
4939 struct mm_walk *walk)
4940 {
4941 int ret = 0;
4942 struct vm_area_struct *vma = walk->private;
4943 pte_t *pte;
4944 spinlock_t *ptl;
4945
4946 split_huge_page_pmd(walk->mm, pmd);
4947 retry:
4948 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4949 for (; addr != end; addr += PAGE_SIZE) {
4950 pte_t ptent = *(pte++);
4951 union mc_target target;
4952 int type;
4953 struct page *page;
4954 struct page_cgroup *pc;
4955 swp_entry_t ent;
4956
4957 if (!mc.precharge)
4958 break;
4959
4960 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4961 switch (type) {
4962 case MC_TARGET_PAGE:
4963 page = target.page;
4964 if (isolate_lru_page(page))
4965 goto put;
4966 pc = lookup_page_cgroup(page);
4967 if (!mem_cgroup_move_account(pc,
4968 mc.from, mc.to, false, PAGE_SIZE)) {
4969 mc.precharge--;
4970 /* we uncharge from mc.from later. */
4971 mc.moved_charge++;
4972 }
4973 putback_lru_page(page);
4974 put: /* is_target_pte_for_mc() gets the page */
4975 put_page(page);
4976 break;
4977 case MC_TARGET_SWAP:
4978 ent = target.ent;
4979 if (!mem_cgroup_move_swap_account(ent,
4980 mc.from, mc.to, false)) {
4981 mc.precharge--;
4982 /* we fixup refcnts and charges later. */
4983 mc.moved_swap++;
4984 }
4985 break;
4986 default:
4987 break;
4988 }
4989 }
4990 pte_unmap_unlock(pte - 1, ptl);
4991 cond_resched();
4992
4993 if (addr != end) {
4994 /*
4995 * We have consumed all precharges we got in can_attach().
4996 * We try charge one by one, but don't do any additional
4997 * charges to mc.to if we have failed in charge once in attach()
4998 * phase.
4999 */
5000 ret = mem_cgroup_do_precharge(1);
5001 if (!ret)
5002 goto retry;
5003 }
5004
5005 return ret;
5006 }
5007
5008 static void mem_cgroup_move_charge(struct mm_struct *mm)
5009 {
5010 struct vm_area_struct *vma;
5011
5012 lru_add_drain_all();
5013 retry:
5014 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5015 /*
5016 * Someone who are holding the mmap_sem might be waiting in
5017 * waitq. So we cancel all extra charges, wake up all waiters,
5018 * and retry. Because we cancel precharges, we might not be able
5019 * to move enough charges, but moving charge is a best-effort
5020 * feature anyway, so it wouldn't be a big problem.
5021 */
5022 __mem_cgroup_clear_mc();
5023 cond_resched();
5024 goto retry;
5025 }
5026 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5027 int ret;
5028 struct mm_walk mem_cgroup_move_charge_walk = {
5029 .pmd_entry = mem_cgroup_move_charge_pte_range,
5030 .mm = mm,
5031 .private = vma,
5032 };
5033 if (is_vm_hugetlb_page(vma))
5034 continue;
5035 ret = walk_page_range(vma->vm_start, vma->vm_end,
5036 &mem_cgroup_move_charge_walk);
5037 if (ret)
5038 /*
5039 * means we have consumed all precharges and failed in
5040 * doing additional charge. Just abandon here.
5041 */
5042 break;
5043 }
5044 up_read(&mm->mmap_sem);
5045 }
5046
5047 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5048 struct cgroup *cont,
5049 struct cgroup *old_cont,
5050 struct task_struct *p,
5051 bool threadgroup)
5052 {
5053 struct mm_struct *mm;
5054
5055 if (!mc.to)
5056 /* no need to move charge */
5057 return;
5058
5059 mm = get_task_mm(p);
5060 if (mm) {
5061 mem_cgroup_move_charge(mm);
5062 mmput(mm);
5063 }
5064 mem_cgroup_clear_mc();
5065 }
5066 #else /* !CONFIG_MMU */
5067 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5068 struct cgroup *cgroup,
5069 struct task_struct *p,
5070 bool threadgroup)
5071 {
5072 return 0;
5073 }
5074 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5075 struct cgroup *cgroup,
5076 struct task_struct *p,
5077 bool threadgroup)
5078 {
5079 }
5080 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5081 struct cgroup *cont,
5082 struct cgroup *old_cont,
5083 struct task_struct *p,
5084 bool threadgroup)
5085 {
5086 }
5087 #endif
5088
5089 struct cgroup_subsys mem_cgroup_subsys = {
5090 .name = "memory",
5091 .subsys_id = mem_cgroup_subsys_id,
5092 .create = mem_cgroup_create,
5093 .pre_destroy = mem_cgroup_pre_destroy,
5094 .destroy = mem_cgroup_destroy,
5095 .populate = mem_cgroup_populate,
5096 .can_attach = mem_cgroup_can_attach,
5097 .cancel_attach = mem_cgroup_cancel_attach,
5098 .attach = mem_cgroup_move_task,
5099 .early_init = 0,
5100 .use_id = 1,
5101 };
5102
5103 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5104 static int __init enable_swap_account(char *s)
5105 {
5106 /* consider enabled if no parameter or 1 is given */
5107 if (!(*s) || !strcmp(s, "=1"))
5108 really_do_swap_account = 1;
5109 else if (!strcmp(s, "=0"))
5110 really_do_swap_account = 0;
5111 return 1;
5112 }
5113 __setup("swapaccount", enable_swap_account);
5114
5115 static int __init disable_swap_account(char *s)
5116 {
5117 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5118 enable_swap_account("=0");
5119 return 1;
5120 }
5121 __setup("noswapaccount", disable_swap_account);
5122 #endif
This page took 0.228099 seconds and 6 git commands to generate.