Merge tag 'pm+acpi-3.18-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71
72 #include "internal.h"
73
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86
87 /*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94 void * high_memory;
95
96 EXPORT_SYMBOL(high_memory);
97
98 /*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 1;
107 #else
108 2;
109 #endif
110
111 static int __init disable_randmaps(char *s)
112 {
113 randomize_va_space = 0;
114 return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120
121 EXPORT_SYMBOL(zero_pfn);
122
123 /*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126 static int __init init_zero_pfn(void)
127 {
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130 }
131 core_initcall(init_zero_pfn);
132
133
134 #if defined(SPLIT_RSS_COUNTING)
135
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
144 }
145 }
146 current->rss_stat.events = 0;
147 }
148
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH (64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178
179 #endif /* SPLIT_RSS_COUNTING */
180
181 #ifdef HAVE_GENERIC_MMU_GATHER
182
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
200 tlb->batch_count++;
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209 }
210
211 /* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 tlb->mm = mm;
219
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
222 tlb->need_flush_all = 0;
223 tlb->start = start;
224 tlb->end = end;
225 tlb->need_flush = 0;
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
230 tlb->batch_count = 0;
231
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234 #endif
235 }
236
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239 tlb->need_flush = 0;
240 tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb);
243 #endif
244 }
245
246 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
247 {
248 struct mmu_gather_batch *batch;
249
250 for (batch = &tlb->local; batch; batch = batch->next) {
251 free_pages_and_swap_cache(batch->pages, batch->nr);
252 batch->nr = 0;
253 }
254 tlb->active = &tlb->local;
255 }
256
257 void tlb_flush_mmu(struct mmu_gather *tlb)
258 {
259 if (!tlb->need_flush)
260 return;
261 tlb_flush_mmu_tlbonly(tlb);
262 tlb_flush_mmu_free(tlb);
263 }
264
265 /* tlb_finish_mmu
266 * Called at the end of the shootdown operation to free up any resources
267 * that were required.
268 */
269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270 {
271 struct mmu_gather_batch *batch, *next;
272
273 tlb_flush_mmu(tlb);
274
275 /* keep the page table cache within bounds */
276 check_pgt_cache();
277
278 for (batch = tlb->local.next; batch; batch = next) {
279 next = batch->next;
280 free_pages((unsigned long)batch, 0);
281 }
282 tlb->local.next = NULL;
283 }
284
285 /* __tlb_remove_page
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
290 */
291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292 {
293 struct mmu_gather_batch *batch;
294
295 VM_BUG_ON(!tlb->need_flush);
296
297 batch = tlb->active;
298 batch->pages[batch->nr++] = page;
299 if (batch->nr == batch->max) {
300 if (!tlb_next_batch(tlb))
301 return 0;
302 batch = tlb->active;
303 }
304 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
305
306 return batch->max - batch->nr;
307 }
308
309 #endif /* HAVE_GENERIC_MMU_GATHER */
310
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312
313 /*
314 * See the comment near struct mmu_table_batch.
315 */
316
317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319 /* Simply deliver the interrupt */
320 }
321
322 static void tlb_remove_table_one(void *table)
323 {
324 /*
325 * This isn't an RCU grace period and hence the page-tables cannot be
326 * assumed to be actually RCU-freed.
327 *
328 * It is however sufficient for software page-table walkers that rely on
329 * IRQ disabling. See the comment near struct mmu_table_batch.
330 */
331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 __tlb_remove_table(table);
333 }
334
335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337 struct mmu_table_batch *batch;
338 int i;
339
340 batch = container_of(head, struct mmu_table_batch, rcu);
341
342 for (i = 0; i < batch->nr; i++)
343 __tlb_remove_table(batch->tables[i]);
344
345 free_page((unsigned long)batch);
346 }
347
348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350 struct mmu_table_batch **batch = &tlb->batch;
351
352 if (*batch) {
353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 *batch = NULL;
355 }
356 }
357
358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360 struct mmu_table_batch **batch = &tlb->batch;
361
362 tlb->need_flush = 1;
363
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384 }
385
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387
388 /*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
394 {
395 pgtable_t token = pmd_pgtable(*pmd);
396 pmd_clear(pmd);
397 pte_free_tlb(tlb, token, addr);
398 atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
404 {
405 pmd_t *pmd;
406 unsigned long next;
407 unsigned long start;
408
409 start = addr;
410 pmd = pmd_offset(pud, addr);
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
415 free_pte_range(tlb, pmd, addr);
416 } while (pmd++, addr = next, addr != end);
417
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
425 }
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
431 pmd_free_tlb(tlb, pmd, start);
432 }
433
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 unsigned long addr, unsigned long end,
436 unsigned long floor, unsigned long ceiling)
437 {
438 pud_t *pud;
439 unsigned long next;
440 unsigned long start;
441
442 start = addr;
443 pud = pud_offset(pgd, addr);
444 do {
445 next = pud_addr_end(addr, end);
446 if (pud_none_or_clear_bad(pud))
447 continue;
448 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 } while (pud++, addr = next, addr != end);
450
451 start &= PGDIR_MASK;
452 if (start < floor)
453 return;
454 if (ceiling) {
455 ceiling &= PGDIR_MASK;
456 if (!ceiling)
457 return;
458 }
459 if (end - 1 > ceiling - 1)
460 return;
461
462 pud = pud_offset(pgd, start);
463 pgd_clear(pgd);
464 pud_free_tlb(tlb, pud, start);
465 }
466
467 /*
468 * This function frees user-level page tables of a process.
469 */
470 void free_pgd_range(struct mmu_gather *tlb,
471 unsigned long addr, unsigned long end,
472 unsigned long floor, unsigned long ceiling)
473 {
474 pgd_t *pgd;
475 unsigned long next;
476
477 /*
478 * The next few lines have given us lots of grief...
479 *
480 * Why are we testing PMD* at this top level? Because often
481 * there will be no work to do at all, and we'd prefer not to
482 * go all the way down to the bottom just to discover that.
483 *
484 * Why all these "- 1"s? Because 0 represents both the bottom
485 * of the address space and the top of it (using -1 for the
486 * top wouldn't help much: the masks would do the wrong thing).
487 * The rule is that addr 0 and floor 0 refer to the bottom of
488 * the address space, but end 0 and ceiling 0 refer to the top
489 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 * that end 0 case should be mythical).
491 *
492 * Wherever addr is brought up or ceiling brought down, we must
493 * be careful to reject "the opposite 0" before it confuses the
494 * subsequent tests. But what about where end is brought down
495 * by PMD_SIZE below? no, end can't go down to 0 there.
496 *
497 * Whereas we round start (addr) and ceiling down, by different
498 * masks at different levels, in order to test whether a table
499 * now has no other vmas using it, so can be freed, we don't
500 * bother to round floor or end up - the tests don't need that.
501 */
502
503 addr &= PMD_MASK;
504 if (addr < floor) {
505 addr += PMD_SIZE;
506 if (!addr)
507 return;
508 }
509 if (ceiling) {
510 ceiling &= PMD_MASK;
511 if (!ceiling)
512 return;
513 }
514 if (end - 1 > ceiling - 1)
515 end -= PMD_SIZE;
516 if (addr > end - 1)
517 return;
518
519 pgd = pgd_offset(tlb->mm, addr);
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(pgd))
523 continue;
524 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 } while (pgd++, addr = next, addr != end);
526 }
527
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 unsigned long floor, unsigned long ceiling)
530 {
531 while (vma) {
532 struct vm_area_struct *next = vma->vm_next;
533 unsigned long addr = vma->vm_start;
534
535 /*
536 * Hide vma from rmap and truncate_pagecache before freeing
537 * pgtables
538 */
539 unlink_anon_vmas(vma);
540 unlink_file_vma(vma);
541
542 if (is_vm_hugetlb_page(vma)) {
543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 floor, next? next->vm_start: ceiling);
545 } else {
546 /*
547 * Optimization: gather nearby vmas into one call down
548 */
549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 && !is_vm_hugetlb_page(next)) {
551 vma = next;
552 next = vma->vm_next;
553 unlink_anon_vmas(vma);
554 unlink_file_vma(vma);
555 }
556 free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 }
559 vma = next;
560 }
561 }
562
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 pmd_t *pmd, unsigned long address)
565 {
566 spinlock_t *ptl;
567 pgtable_t new = pte_alloc_one(mm, address);
568 int wait_split_huge_page;
569 if (!new)
570 return -ENOMEM;
571
572 /*
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
576 *
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
584 */
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
587 ptl = pmd_lock(mm, pmd);
588 wait_split_huge_page = 0;
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
590 atomic_long_inc(&mm->nr_ptes);
591 pmd_populate(mm, pmd, new);
592 new = NULL;
593 } else if (unlikely(pmd_trans_splitting(*pmd)))
594 wait_split_huge_page = 1;
595 spin_unlock(ptl);
596 if (new)
597 pte_free(mm, new);
598 if (wait_split_huge_page)
599 wait_split_huge_page(vma->anon_vma, pmd);
600 return 0;
601 }
602
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 if (!new)
607 return -ENOMEM;
608
609 smp_wmb(); /* See comment in __pte_alloc */
610
611 spin_lock(&init_mm.page_table_lock);
612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
613 pmd_populate_kernel(&init_mm, pmd, new);
614 new = NULL;
615 } else
616 VM_BUG_ON(pmd_trans_splitting(*pmd));
617 spin_unlock(&init_mm.page_table_lock);
618 if (new)
619 pte_free_kernel(&init_mm, new);
620 return 0;
621 }
622
623 static inline void init_rss_vec(int *rss)
624 {
625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630 int i;
631
632 if (current->mm == mm)
633 sync_mm_rss(mm);
634 for (i = 0; i < NR_MM_COUNTERS; i++)
635 if (rss[i])
636 add_mm_counter(mm, i, rss[i]);
637 }
638
639 /*
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
643 *
644 * The calling function must still handle the error.
645 */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte, struct page *page)
648 {
649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 pud_t *pud = pud_offset(pgd, addr);
651 pmd_t *pmd = pmd_offset(pud, addr);
652 struct address_space *mapping;
653 pgoff_t index;
654 static unsigned long resume;
655 static unsigned long nr_shown;
656 static unsigned long nr_unshown;
657
658 /*
659 * Allow a burst of 60 reports, then keep quiet for that minute;
660 * or allow a steady drip of one report per second.
661 */
662 if (nr_shown == 60) {
663 if (time_before(jiffies, resume)) {
664 nr_unshown++;
665 return;
666 }
667 if (nr_unshown) {
668 printk(KERN_ALERT
669 "BUG: Bad page map: %lu messages suppressed\n",
670 nr_unshown);
671 nr_unshown = 0;
672 }
673 nr_shown = 0;
674 }
675 if (nr_shown++ == 0)
676 resume = jiffies + 60 * HZ;
677
678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 index = linear_page_index(vma, addr);
680
681 printk(KERN_ALERT
682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
683 current->comm,
684 (long long)pte_val(pte), (long long)pmd_val(*pmd));
685 if (page)
686 dump_page(page, "bad pte");
687 printk(KERN_ALERT
688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 /*
691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 */
693 if (vma->vm_ops)
694 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 vma->vm_ops->fault);
696 if (vma->vm_file)
697 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 vma->vm_file->f_op->mmap);
699 dump_stack();
700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702
703 /*
704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
705 *
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
709 *
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
718 *
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
732 *
733 *
734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
744 */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
752 {
753 unsigned long pfn = pte_pfn(pte);
754
755 if (HAVE_PTE_SPECIAL) {
756 if (likely(!pte_special(pte)))
757 goto check_pfn;
758 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
759 return NULL;
760 if (!is_zero_pfn(pfn))
761 print_bad_pte(vma, addr, pte, NULL);
762 return NULL;
763 }
764
765 /* !HAVE_PTE_SPECIAL case follows: */
766
767 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
768 if (vma->vm_flags & VM_MIXEDMAP) {
769 if (!pfn_valid(pfn))
770 return NULL;
771 goto out;
772 } else {
773 unsigned long off;
774 off = (addr - vma->vm_start) >> PAGE_SHIFT;
775 if (pfn == vma->vm_pgoff + off)
776 return NULL;
777 if (!is_cow_mapping(vma->vm_flags))
778 return NULL;
779 }
780 }
781
782 if (is_zero_pfn(pfn))
783 return NULL;
784 check_pfn:
785 if (unlikely(pfn > highest_memmap_pfn)) {
786 print_bad_pte(vma, addr, pte, NULL);
787 return NULL;
788 }
789
790 /*
791 * NOTE! We still have PageReserved() pages in the page tables.
792 * eg. VDSO mappings can cause them to exist.
793 */
794 out:
795 return pfn_to_page(pfn);
796 }
797
798 /*
799 * copy one vm_area from one task to the other. Assumes the page tables
800 * already present in the new task to be cleared in the whole range
801 * covered by this vma.
802 */
803
804 static inline unsigned long
805 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
806 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
807 unsigned long addr, int *rss)
808 {
809 unsigned long vm_flags = vma->vm_flags;
810 pte_t pte = *src_pte;
811 struct page *page;
812
813 /* pte contains position in swap or file, so copy. */
814 if (unlikely(!pte_present(pte))) {
815 if (!pte_file(pte)) {
816 swp_entry_t entry = pte_to_swp_entry(pte);
817
818 if (swap_duplicate(entry) < 0)
819 return entry.val;
820
821 /* make sure dst_mm is on swapoff's mmlist. */
822 if (unlikely(list_empty(&dst_mm->mmlist))) {
823 spin_lock(&mmlist_lock);
824 if (list_empty(&dst_mm->mmlist))
825 list_add(&dst_mm->mmlist,
826 &src_mm->mmlist);
827 spin_unlock(&mmlist_lock);
828 }
829 if (likely(!non_swap_entry(entry)))
830 rss[MM_SWAPENTS]++;
831 else if (is_migration_entry(entry)) {
832 page = migration_entry_to_page(entry);
833
834 if (PageAnon(page))
835 rss[MM_ANONPAGES]++;
836 else
837 rss[MM_FILEPAGES]++;
838
839 if (is_write_migration_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 /*
842 * COW mappings require pages in both
843 * parent and child to be set to read.
844 */
845 make_migration_entry_read(&entry);
846 pte = swp_entry_to_pte(entry);
847 if (pte_swp_soft_dirty(*src_pte))
848 pte = pte_swp_mksoft_dirty(pte);
849 set_pte_at(src_mm, addr, src_pte, pte);
850 }
851 }
852 }
853 goto out_set_pte;
854 }
855
856 /*
857 * If it's a COW mapping, write protect it both
858 * in the parent and the child
859 */
860 if (is_cow_mapping(vm_flags)) {
861 ptep_set_wrprotect(src_mm, addr, src_pte);
862 pte = pte_wrprotect(pte);
863 }
864
865 /*
866 * If it's a shared mapping, mark it clean in
867 * the child
868 */
869 if (vm_flags & VM_SHARED)
870 pte = pte_mkclean(pte);
871 pte = pte_mkold(pte);
872
873 page = vm_normal_page(vma, addr, pte);
874 if (page) {
875 get_page(page);
876 page_dup_rmap(page);
877 if (PageAnon(page))
878 rss[MM_ANONPAGES]++;
879 else
880 rss[MM_FILEPAGES]++;
881 }
882
883 out_set_pte:
884 set_pte_at(dst_mm, addr, dst_pte, pte);
885 return 0;
886 }
887
888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 unsigned long addr, unsigned long end)
891 {
892 pte_t *orig_src_pte, *orig_dst_pte;
893 pte_t *src_pte, *dst_pte;
894 spinlock_t *src_ptl, *dst_ptl;
895 int progress = 0;
896 int rss[NR_MM_COUNTERS];
897 swp_entry_t entry = (swp_entry_t){0};
898
899 again:
900 init_rss_vec(rss);
901
902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
903 if (!dst_pte)
904 return -ENOMEM;
905 src_pte = pte_offset_map(src_pmd, addr);
906 src_ptl = pte_lockptr(src_mm, src_pmd);
907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
908 orig_src_pte = src_pte;
909 orig_dst_pte = dst_pte;
910 arch_enter_lazy_mmu_mode();
911
912 do {
913 /*
914 * We are holding two locks at this point - either of them
915 * could generate latencies in another task on another CPU.
916 */
917 if (progress >= 32) {
918 progress = 0;
919 if (need_resched() ||
920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
921 break;
922 }
923 if (pte_none(*src_pte)) {
924 progress++;
925 continue;
926 }
927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 vma, addr, rss);
929 if (entry.val)
930 break;
931 progress += 8;
932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933
934 arch_leave_lazy_mmu_mode();
935 spin_unlock(src_ptl);
936 pte_unmap(orig_src_pte);
937 add_mm_rss_vec(dst_mm, rss);
938 pte_unmap_unlock(orig_dst_pte, dst_ptl);
939 cond_resched();
940
941 if (entry.val) {
942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 return -ENOMEM;
944 progress = 0;
945 }
946 if (addr != end)
947 goto again;
948 return 0;
949 }
950
951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 unsigned long addr, unsigned long end)
954 {
955 pmd_t *src_pmd, *dst_pmd;
956 unsigned long next;
957
958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 if (!dst_pmd)
960 return -ENOMEM;
961 src_pmd = pmd_offset(src_pud, addr);
962 do {
963 next = pmd_addr_end(addr, end);
964 if (pmd_trans_huge(*src_pmd)) {
965 int err;
966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
967 err = copy_huge_pmd(dst_mm, src_mm,
968 dst_pmd, src_pmd, addr, vma);
969 if (err == -ENOMEM)
970 return -ENOMEM;
971 if (!err)
972 continue;
973 /* fall through */
974 }
975 if (pmd_none_or_clear_bad(src_pmd))
976 continue;
977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 vma, addr, next))
979 return -ENOMEM;
980 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 return 0;
982 }
983
984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 unsigned long addr, unsigned long end)
987 {
988 pud_t *src_pud, *dst_pud;
989 unsigned long next;
990
991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 if (!dst_pud)
993 return -ENOMEM;
994 src_pud = pud_offset(src_pgd, addr);
995 do {
996 next = pud_addr_end(addr, end);
997 if (pud_none_or_clear_bad(src_pud))
998 continue;
999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pud++, src_pud++, addr = next, addr != end);
1003 return 0;
1004 }
1005
1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 struct vm_area_struct *vma)
1008 {
1009 pgd_t *src_pgd, *dst_pgd;
1010 unsigned long next;
1011 unsigned long addr = vma->vm_start;
1012 unsigned long end = vma->vm_end;
1013 unsigned long mmun_start; /* For mmu_notifiers */
1014 unsigned long mmun_end; /* For mmu_notifiers */
1015 bool is_cow;
1016 int ret;
1017
1018 /*
1019 * Don't copy ptes where a page fault will fill them correctly.
1020 * Fork becomes much lighter when there are big shared or private
1021 * readonly mappings. The tradeoff is that copy_page_range is more
1022 * efficient than faulting.
1023 */
1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1025 VM_PFNMAP | VM_MIXEDMAP))) {
1026 if (!vma->anon_vma)
1027 return 0;
1028 }
1029
1030 if (is_vm_hugetlb_page(vma))
1031 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1032
1033 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1034 /*
1035 * We do not free on error cases below as remove_vma
1036 * gets called on error from higher level routine
1037 */
1038 ret = track_pfn_copy(vma);
1039 if (ret)
1040 return ret;
1041 }
1042
1043 /*
1044 * We need to invalidate the secondary MMU mappings only when
1045 * there could be a permission downgrade on the ptes of the
1046 * parent mm. And a permission downgrade will only happen if
1047 * is_cow_mapping() returns true.
1048 */
1049 is_cow = is_cow_mapping(vma->vm_flags);
1050 mmun_start = addr;
1051 mmun_end = end;
1052 if (is_cow)
1053 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1054 mmun_end);
1055
1056 ret = 0;
1057 dst_pgd = pgd_offset(dst_mm, addr);
1058 src_pgd = pgd_offset(src_mm, addr);
1059 do {
1060 next = pgd_addr_end(addr, end);
1061 if (pgd_none_or_clear_bad(src_pgd))
1062 continue;
1063 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1064 vma, addr, next))) {
1065 ret = -ENOMEM;
1066 break;
1067 }
1068 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1069
1070 if (is_cow)
1071 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1072 return ret;
1073 }
1074
1075 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1076 struct vm_area_struct *vma, pmd_t *pmd,
1077 unsigned long addr, unsigned long end,
1078 struct zap_details *details)
1079 {
1080 struct mm_struct *mm = tlb->mm;
1081 int force_flush = 0;
1082 int rss[NR_MM_COUNTERS];
1083 spinlock_t *ptl;
1084 pte_t *start_pte;
1085 pte_t *pte;
1086
1087 again:
1088 init_rss_vec(rss);
1089 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1090 pte = start_pte;
1091 arch_enter_lazy_mmu_mode();
1092 do {
1093 pte_t ptent = *pte;
1094 if (pte_none(ptent)) {
1095 continue;
1096 }
1097
1098 if (pte_present(ptent)) {
1099 struct page *page;
1100
1101 page = vm_normal_page(vma, addr, ptent);
1102 if (unlikely(details) && page) {
1103 /*
1104 * unmap_shared_mapping_pages() wants to
1105 * invalidate cache without truncating:
1106 * unmap shared but keep private pages.
1107 */
1108 if (details->check_mapping &&
1109 details->check_mapping != page->mapping)
1110 continue;
1111 /*
1112 * Each page->index must be checked when
1113 * invalidating or truncating nonlinear.
1114 */
1115 if (details->nonlinear_vma &&
1116 (page->index < details->first_index ||
1117 page->index > details->last_index))
1118 continue;
1119 }
1120 ptent = ptep_get_and_clear_full(mm, addr, pte,
1121 tlb->fullmm);
1122 tlb_remove_tlb_entry(tlb, pte, addr);
1123 if (unlikely(!page))
1124 continue;
1125 if (unlikely(details) && details->nonlinear_vma
1126 && linear_page_index(details->nonlinear_vma,
1127 addr) != page->index) {
1128 pte_t ptfile = pgoff_to_pte(page->index);
1129 if (pte_soft_dirty(ptent))
1130 ptfile = pte_file_mksoft_dirty(ptfile);
1131 set_pte_at(mm, addr, pte, ptfile);
1132 }
1133 if (PageAnon(page))
1134 rss[MM_ANONPAGES]--;
1135 else {
1136 if (pte_dirty(ptent)) {
1137 force_flush = 1;
1138 set_page_dirty(page);
1139 }
1140 if (pte_young(ptent) &&
1141 likely(!(vma->vm_flags & VM_SEQ_READ)))
1142 mark_page_accessed(page);
1143 rss[MM_FILEPAGES]--;
1144 }
1145 page_remove_rmap(page);
1146 if (unlikely(page_mapcount(page) < 0))
1147 print_bad_pte(vma, addr, ptent, page);
1148 if (unlikely(!__tlb_remove_page(tlb, page))) {
1149 force_flush = 1;
1150 break;
1151 }
1152 continue;
1153 }
1154 /*
1155 * If details->check_mapping, we leave swap entries;
1156 * if details->nonlinear_vma, we leave file entries.
1157 */
1158 if (unlikely(details))
1159 continue;
1160 if (pte_file(ptent)) {
1161 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1162 print_bad_pte(vma, addr, ptent, NULL);
1163 } else {
1164 swp_entry_t entry = pte_to_swp_entry(ptent);
1165
1166 if (!non_swap_entry(entry))
1167 rss[MM_SWAPENTS]--;
1168 else if (is_migration_entry(entry)) {
1169 struct page *page;
1170
1171 page = migration_entry_to_page(entry);
1172
1173 if (PageAnon(page))
1174 rss[MM_ANONPAGES]--;
1175 else
1176 rss[MM_FILEPAGES]--;
1177 }
1178 if (unlikely(!free_swap_and_cache(entry)))
1179 print_bad_pte(vma, addr, ptent, NULL);
1180 }
1181 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1182 } while (pte++, addr += PAGE_SIZE, addr != end);
1183
1184 add_mm_rss_vec(mm, rss);
1185 arch_leave_lazy_mmu_mode();
1186
1187 /* Do the actual TLB flush before dropping ptl */
1188 if (force_flush) {
1189 unsigned long old_end;
1190
1191 /*
1192 * Flush the TLB just for the previous segment,
1193 * then update the range to be the remaining
1194 * TLB range.
1195 */
1196 old_end = tlb->end;
1197 tlb->end = addr;
1198 tlb_flush_mmu_tlbonly(tlb);
1199 tlb->start = addr;
1200 tlb->end = old_end;
1201 }
1202 pte_unmap_unlock(start_pte, ptl);
1203
1204 /*
1205 * If we forced a TLB flush (either due to running out of
1206 * batch buffers or because we needed to flush dirty TLB
1207 * entries before releasing the ptl), free the batched
1208 * memory too. Restart if we didn't do everything.
1209 */
1210 if (force_flush) {
1211 force_flush = 0;
1212 tlb_flush_mmu_free(tlb);
1213
1214 if (addr != end)
1215 goto again;
1216 }
1217
1218 return addr;
1219 }
1220
1221 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1222 struct vm_area_struct *vma, pud_t *pud,
1223 unsigned long addr, unsigned long end,
1224 struct zap_details *details)
1225 {
1226 pmd_t *pmd;
1227 unsigned long next;
1228
1229 pmd = pmd_offset(pud, addr);
1230 do {
1231 next = pmd_addr_end(addr, end);
1232 if (pmd_trans_huge(*pmd)) {
1233 if (next - addr != HPAGE_PMD_SIZE) {
1234 #ifdef CONFIG_DEBUG_VM
1235 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1236 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1237 __func__, addr, end,
1238 vma->vm_start,
1239 vma->vm_end);
1240 BUG();
1241 }
1242 #endif
1243 split_huge_page_pmd(vma, addr, pmd);
1244 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1245 goto next;
1246 /* fall through */
1247 }
1248 /*
1249 * Here there can be other concurrent MADV_DONTNEED or
1250 * trans huge page faults running, and if the pmd is
1251 * none or trans huge it can change under us. This is
1252 * because MADV_DONTNEED holds the mmap_sem in read
1253 * mode.
1254 */
1255 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1256 goto next;
1257 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1258 next:
1259 cond_resched();
1260 } while (pmd++, addr = next, addr != end);
1261
1262 return addr;
1263 }
1264
1265 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1266 struct vm_area_struct *vma, pgd_t *pgd,
1267 unsigned long addr, unsigned long end,
1268 struct zap_details *details)
1269 {
1270 pud_t *pud;
1271 unsigned long next;
1272
1273 pud = pud_offset(pgd, addr);
1274 do {
1275 next = pud_addr_end(addr, end);
1276 if (pud_none_or_clear_bad(pud))
1277 continue;
1278 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1279 } while (pud++, addr = next, addr != end);
1280
1281 return addr;
1282 }
1283
1284 static void unmap_page_range(struct mmu_gather *tlb,
1285 struct vm_area_struct *vma,
1286 unsigned long addr, unsigned long end,
1287 struct zap_details *details)
1288 {
1289 pgd_t *pgd;
1290 unsigned long next;
1291
1292 if (details && !details->check_mapping && !details->nonlinear_vma)
1293 details = NULL;
1294
1295 BUG_ON(addr >= end);
1296 tlb_start_vma(tlb, vma);
1297 pgd = pgd_offset(vma->vm_mm, addr);
1298 do {
1299 next = pgd_addr_end(addr, end);
1300 if (pgd_none_or_clear_bad(pgd))
1301 continue;
1302 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1303 } while (pgd++, addr = next, addr != end);
1304 tlb_end_vma(tlb, vma);
1305 }
1306
1307
1308 static void unmap_single_vma(struct mmu_gather *tlb,
1309 struct vm_area_struct *vma, unsigned long start_addr,
1310 unsigned long end_addr,
1311 struct zap_details *details)
1312 {
1313 unsigned long start = max(vma->vm_start, start_addr);
1314 unsigned long end;
1315
1316 if (start >= vma->vm_end)
1317 return;
1318 end = min(vma->vm_end, end_addr);
1319 if (end <= vma->vm_start)
1320 return;
1321
1322 if (vma->vm_file)
1323 uprobe_munmap(vma, start, end);
1324
1325 if (unlikely(vma->vm_flags & VM_PFNMAP))
1326 untrack_pfn(vma, 0, 0);
1327
1328 if (start != end) {
1329 if (unlikely(is_vm_hugetlb_page(vma))) {
1330 /*
1331 * It is undesirable to test vma->vm_file as it
1332 * should be non-null for valid hugetlb area.
1333 * However, vm_file will be NULL in the error
1334 * cleanup path of mmap_region. When
1335 * hugetlbfs ->mmap method fails,
1336 * mmap_region() nullifies vma->vm_file
1337 * before calling this function to clean up.
1338 * Since no pte has actually been setup, it is
1339 * safe to do nothing in this case.
1340 */
1341 if (vma->vm_file) {
1342 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1344 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345 }
1346 } else
1347 unmap_page_range(tlb, vma, start, end, details);
1348 }
1349 }
1350
1351 /**
1352 * unmap_vmas - unmap a range of memory covered by a list of vma's
1353 * @tlb: address of the caller's struct mmu_gather
1354 * @vma: the starting vma
1355 * @start_addr: virtual address at which to start unmapping
1356 * @end_addr: virtual address at which to end unmapping
1357 *
1358 * Unmap all pages in the vma list.
1359 *
1360 * Only addresses between `start' and `end' will be unmapped.
1361 *
1362 * The VMA list must be sorted in ascending virtual address order.
1363 *
1364 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1365 * range after unmap_vmas() returns. So the only responsibility here is to
1366 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1367 * drops the lock and schedules.
1368 */
1369 void unmap_vmas(struct mmu_gather *tlb,
1370 struct vm_area_struct *vma, unsigned long start_addr,
1371 unsigned long end_addr)
1372 {
1373 struct mm_struct *mm = vma->vm_mm;
1374
1375 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1376 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1377 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1378 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379 }
1380
1381 /**
1382 * zap_page_range - remove user pages in a given range
1383 * @vma: vm_area_struct holding the applicable pages
1384 * @start: starting address of pages to zap
1385 * @size: number of bytes to zap
1386 * @details: details of nonlinear truncation or shared cache invalidation
1387 *
1388 * Caller must protect the VMA list
1389 */
1390 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1391 unsigned long size, struct zap_details *details)
1392 {
1393 struct mm_struct *mm = vma->vm_mm;
1394 struct mmu_gather tlb;
1395 unsigned long end = start + size;
1396
1397 lru_add_drain();
1398 tlb_gather_mmu(&tlb, mm, start, end);
1399 update_hiwater_rss(mm);
1400 mmu_notifier_invalidate_range_start(mm, start, end);
1401 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1402 unmap_single_vma(&tlb, vma, start, end, details);
1403 mmu_notifier_invalidate_range_end(mm, start, end);
1404 tlb_finish_mmu(&tlb, start, end);
1405 }
1406
1407 /**
1408 * zap_page_range_single - remove user pages in a given range
1409 * @vma: vm_area_struct holding the applicable pages
1410 * @address: starting address of pages to zap
1411 * @size: number of bytes to zap
1412 * @details: details of nonlinear truncation or shared cache invalidation
1413 *
1414 * The range must fit into one VMA.
1415 */
1416 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1417 unsigned long size, struct zap_details *details)
1418 {
1419 struct mm_struct *mm = vma->vm_mm;
1420 struct mmu_gather tlb;
1421 unsigned long end = address + size;
1422
1423 lru_add_drain();
1424 tlb_gather_mmu(&tlb, mm, address, end);
1425 update_hiwater_rss(mm);
1426 mmu_notifier_invalidate_range_start(mm, address, end);
1427 unmap_single_vma(&tlb, vma, address, end, details);
1428 mmu_notifier_invalidate_range_end(mm, address, end);
1429 tlb_finish_mmu(&tlb, address, end);
1430 }
1431
1432 /**
1433 * zap_vma_ptes - remove ptes mapping the vma
1434 * @vma: vm_area_struct holding ptes to be zapped
1435 * @address: starting address of pages to zap
1436 * @size: number of bytes to zap
1437 *
1438 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1439 *
1440 * The entire address range must be fully contained within the vma.
1441 *
1442 * Returns 0 if successful.
1443 */
1444 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445 unsigned long size)
1446 {
1447 if (address < vma->vm_start || address + size > vma->vm_end ||
1448 !(vma->vm_flags & VM_PFNMAP))
1449 return -1;
1450 zap_page_range_single(vma, address, size, NULL);
1451 return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1454
1455 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1456 spinlock_t **ptl)
1457 {
1458 pgd_t * pgd = pgd_offset(mm, addr);
1459 pud_t * pud = pud_alloc(mm, pgd, addr);
1460 if (pud) {
1461 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1462 if (pmd) {
1463 VM_BUG_ON(pmd_trans_huge(*pmd));
1464 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1465 }
1466 }
1467 return NULL;
1468 }
1469
1470 /*
1471 * This is the old fallback for page remapping.
1472 *
1473 * For historical reasons, it only allows reserved pages. Only
1474 * old drivers should use this, and they needed to mark their
1475 * pages reserved for the old functions anyway.
1476 */
1477 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1478 struct page *page, pgprot_t prot)
1479 {
1480 struct mm_struct *mm = vma->vm_mm;
1481 int retval;
1482 pte_t *pte;
1483 spinlock_t *ptl;
1484
1485 retval = -EINVAL;
1486 if (PageAnon(page))
1487 goto out;
1488 retval = -ENOMEM;
1489 flush_dcache_page(page);
1490 pte = get_locked_pte(mm, addr, &ptl);
1491 if (!pte)
1492 goto out;
1493 retval = -EBUSY;
1494 if (!pte_none(*pte))
1495 goto out_unlock;
1496
1497 /* Ok, finally just insert the thing.. */
1498 get_page(page);
1499 inc_mm_counter_fast(mm, MM_FILEPAGES);
1500 page_add_file_rmap(page);
1501 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1502
1503 retval = 0;
1504 pte_unmap_unlock(pte, ptl);
1505 return retval;
1506 out_unlock:
1507 pte_unmap_unlock(pte, ptl);
1508 out:
1509 return retval;
1510 }
1511
1512 /**
1513 * vm_insert_page - insert single page into user vma
1514 * @vma: user vma to map to
1515 * @addr: target user address of this page
1516 * @page: source kernel page
1517 *
1518 * This allows drivers to insert individual pages they've allocated
1519 * into a user vma.
1520 *
1521 * The page has to be a nice clean _individual_ kernel allocation.
1522 * If you allocate a compound page, you need to have marked it as
1523 * such (__GFP_COMP), or manually just split the page up yourself
1524 * (see split_page()).
1525 *
1526 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1527 * took an arbitrary page protection parameter. This doesn't allow
1528 * that. Your vma protection will have to be set up correctly, which
1529 * means that if you want a shared writable mapping, you'd better
1530 * ask for a shared writable mapping!
1531 *
1532 * The page does not need to be reserved.
1533 *
1534 * Usually this function is called from f_op->mmap() handler
1535 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1536 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1537 * function from other places, for example from page-fault handler.
1538 */
1539 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1540 struct page *page)
1541 {
1542 if (addr < vma->vm_start || addr >= vma->vm_end)
1543 return -EFAULT;
1544 if (!page_count(page))
1545 return -EINVAL;
1546 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1547 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1548 BUG_ON(vma->vm_flags & VM_PFNMAP);
1549 vma->vm_flags |= VM_MIXEDMAP;
1550 }
1551 return insert_page(vma, addr, page, vma->vm_page_prot);
1552 }
1553 EXPORT_SYMBOL(vm_insert_page);
1554
1555 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1556 unsigned long pfn, pgprot_t prot)
1557 {
1558 struct mm_struct *mm = vma->vm_mm;
1559 int retval;
1560 pte_t *pte, entry;
1561 spinlock_t *ptl;
1562
1563 retval = -ENOMEM;
1564 pte = get_locked_pte(mm, addr, &ptl);
1565 if (!pte)
1566 goto out;
1567 retval = -EBUSY;
1568 if (!pte_none(*pte))
1569 goto out_unlock;
1570
1571 /* Ok, finally just insert the thing.. */
1572 entry = pte_mkspecial(pfn_pte(pfn, prot));
1573 set_pte_at(mm, addr, pte, entry);
1574 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1575
1576 retval = 0;
1577 out_unlock:
1578 pte_unmap_unlock(pte, ptl);
1579 out:
1580 return retval;
1581 }
1582
1583 /**
1584 * vm_insert_pfn - insert single pfn into user vma
1585 * @vma: user vma to map to
1586 * @addr: target user address of this page
1587 * @pfn: source kernel pfn
1588 *
1589 * Similar to vm_insert_page, this allows drivers to insert individual pages
1590 * they've allocated into a user vma. Same comments apply.
1591 *
1592 * This function should only be called from a vm_ops->fault handler, and
1593 * in that case the handler should return NULL.
1594 *
1595 * vma cannot be a COW mapping.
1596 *
1597 * As this is called only for pages that do not currently exist, we
1598 * do not need to flush old virtual caches or the TLB.
1599 */
1600 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1601 unsigned long pfn)
1602 {
1603 int ret;
1604 pgprot_t pgprot = vma->vm_page_prot;
1605 /*
1606 * Technically, architectures with pte_special can avoid all these
1607 * restrictions (same for remap_pfn_range). However we would like
1608 * consistency in testing and feature parity among all, so we should
1609 * try to keep these invariants in place for everybody.
1610 */
1611 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1612 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1613 (VM_PFNMAP|VM_MIXEDMAP));
1614 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1615 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1616
1617 if (addr < vma->vm_start || addr >= vma->vm_end)
1618 return -EFAULT;
1619 if (track_pfn_insert(vma, &pgprot, pfn))
1620 return -EINVAL;
1621
1622 ret = insert_pfn(vma, addr, pfn, pgprot);
1623
1624 return ret;
1625 }
1626 EXPORT_SYMBOL(vm_insert_pfn);
1627
1628 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1629 unsigned long pfn)
1630 {
1631 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1632
1633 if (addr < vma->vm_start || addr >= vma->vm_end)
1634 return -EFAULT;
1635
1636 /*
1637 * If we don't have pte special, then we have to use the pfn_valid()
1638 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1639 * refcount the page if pfn_valid is true (hence insert_page rather
1640 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1641 * without pte special, it would there be refcounted as a normal page.
1642 */
1643 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1644 struct page *page;
1645
1646 page = pfn_to_page(pfn);
1647 return insert_page(vma, addr, page, vma->vm_page_prot);
1648 }
1649 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1650 }
1651 EXPORT_SYMBOL(vm_insert_mixed);
1652
1653 /*
1654 * maps a range of physical memory into the requested pages. the old
1655 * mappings are removed. any references to nonexistent pages results
1656 * in null mappings (currently treated as "copy-on-access")
1657 */
1658 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1659 unsigned long addr, unsigned long end,
1660 unsigned long pfn, pgprot_t prot)
1661 {
1662 pte_t *pte;
1663 spinlock_t *ptl;
1664
1665 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1666 if (!pte)
1667 return -ENOMEM;
1668 arch_enter_lazy_mmu_mode();
1669 do {
1670 BUG_ON(!pte_none(*pte));
1671 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1672 pfn++;
1673 } while (pte++, addr += PAGE_SIZE, addr != end);
1674 arch_leave_lazy_mmu_mode();
1675 pte_unmap_unlock(pte - 1, ptl);
1676 return 0;
1677 }
1678
1679 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1680 unsigned long addr, unsigned long end,
1681 unsigned long pfn, pgprot_t prot)
1682 {
1683 pmd_t *pmd;
1684 unsigned long next;
1685
1686 pfn -= addr >> PAGE_SHIFT;
1687 pmd = pmd_alloc(mm, pud, addr);
1688 if (!pmd)
1689 return -ENOMEM;
1690 VM_BUG_ON(pmd_trans_huge(*pmd));
1691 do {
1692 next = pmd_addr_end(addr, end);
1693 if (remap_pte_range(mm, pmd, addr, next,
1694 pfn + (addr >> PAGE_SHIFT), prot))
1695 return -ENOMEM;
1696 } while (pmd++, addr = next, addr != end);
1697 return 0;
1698 }
1699
1700 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1701 unsigned long addr, unsigned long end,
1702 unsigned long pfn, pgprot_t prot)
1703 {
1704 pud_t *pud;
1705 unsigned long next;
1706
1707 pfn -= addr >> PAGE_SHIFT;
1708 pud = pud_alloc(mm, pgd, addr);
1709 if (!pud)
1710 return -ENOMEM;
1711 do {
1712 next = pud_addr_end(addr, end);
1713 if (remap_pmd_range(mm, pud, addr, next,
1714 pfn + (addr >> PAGE_SHIFT), prot))
1715 return -ENOMEM;
1716 } while (pud++, addr = next, addr != end);
1717 return 0;
1718 }
1719
1720 /**
1721 * remap_pfn_range - remap kernel memory to userspace
1722 * @vma: user vma to map to
1723 * @addr: target user address to start at
1724 * @pfn: physical address of kernel memory
1725 * @size: size of map area
1726 * @prot: page protection flags for this mapping
1727 *
1728 * Note: this is only safe if the mm semaphore is held when called.
1729 */
1730 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1731 unsigned long pfn, unsigned long size, pgprot_t prot)
1732 {
1733 pgd_t *pgd;
1734 unsigned long next;
1735 unsigned long end = addr + PAGE_ALIGN(size);
1736 struct mm_struct *mm = vma->vm_mm;
1737 int err;
1738
1739 /*
1740 * Physically remapped pages are special. Tell the
1741 * rest of the world about it:
1742 * VM_IO tells people not to look at these pages
1743 * (accesses can have side effects).
1744 * VM_PFNMAP tells the core MM that the base pages are just
1745 * raw PFN mappings, and do not have a "struct page" associated
1746 * with them.
1747 * VM_DONTEXPAND
1748 * Disable vma merging and expanding with mremap().
1749 * VM_DONTDUMP
1750 * Omit vma from core dump, even when VM_IO turned off.
1751 *
1752 * There's a horrible special case to handle copy-on-write
1753 * behaviour that some programs depend on. We mark the "original"
1754 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1755 * See vm_normal_page() for details.
1756 */
1757 if (is_cow_mapping(vma->vm_flags)) {
1758 if (addr != vma->vm_start || end != vma->vm_end)
1759 return -EINVAL;
1760 vma->vm_pgoff = pfn;
1761 }
1762
1763 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1764 if (err)
1765 return -EINVAL;
1766
1767 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1768
1769 BUG_ON(addr >= end);
1770 pfn -= addr >> PAGE_SHIFT;
1771 pgd = pgd_offset(mm, addr);
1772 flush_cache_range(vma, addr, end);
1773 do {
1774 next = pgd_addr_end(addr, end);
1775 err = remap_pud_range(mm, pgd, addr, next,
1776 pfn + (addr >> PAGE_SHIFT), prot);
1777 if (err)
1778 break;
1779 } while (pgd++, addr = next, addr != end);
1780
1781 if (err)
1782 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1783
1784 return err;
1785 }
1786 EXPORT_SYMBOL(remap_pfn_range);
1787
1788 /**
1789 * vm_iomap_memory - remap memory to userspace
1790 * @vma: user vma to map to
1791 * @start: start of area
1792 * @len: size of area
1793 *
1794 * This is a simplified io_remap_pfn_range() for common driver use. The
1795 * driver just needs to give us the physical memory range to be mapped,
1796 * we'll figure out the rest from the vma information.
1797 *
1798 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1799 * whatever write-combining details or similar.
1800 */
1801 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1802 {
1803 unsigned long vm_len, pfn, pages;
1804
1805 /* Check that the physical memory area passed in looks valid */
1806 if (start + len < start)
1807 return -EINVAL;
1808 /*
1809 * You *really* shouldn't map things that aren't page-aligned,
1810 * but we've historically allowed it because IO memory might
1811 * just have smaller alignment.
1812 */
1813 len += start & ~PAGE_MASK;
1814 pfn = start >> PAGE_SHIFT;
1815 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1816 if (pfn + pages < pfn)
1817 return -EINVAL;
1818
1819 /* We start the mapping 'vm_pgoff' pages into the area */
1820 if (vma->vm_pgoff > pages)
1821 return -EINVAL;
1822 pfn += vma->vm_pgoff;
1823 pages -= vma->vm_pgoff;
1824
1825 /* Can we fit all of the mapping? */
1826 vm_len = vma->vm_end - vma->vm_start;
1827 if (vm_len >> PAGE_SHIFT > pages)
1828 return -EINVAL;
1829
1830 /* Ok, let it rip */
1831 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1832 }
1833 EXPORT_SYMBOL(vm_iomap_memory);
1834
1835 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1836 unsigned long addr, unsigned long end,
1837 pte_fn_t fn, void *data)
1838 {
1839 pte_t *pte;
1840 int err;
1841 pgtable_t token;
1842 spinlock_t *uninitialized_var(ptl);
1843
1844 pte = (mm == &init_mm) ?
1845 pte_alloc_kernel(pmd, addr) :
1846 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1847 if (!pte)
1848 return -ENOMEM;
1849
1850 BUG_ON(pmd_huge(*pmd));
1851
1852 arch_enter_lazy_mmu_mode();
1853
1854 token = pmd_pgtable(*pmd);
1855
1856 do {
1857 err = fn(pte++, token, addr, data);
1858 if (err)
1859 break;
1860 } while (addr += PAGE_SIZE, addr != end);
1861
1862 arch_leave_lazy_mmu_mode();
1863
1864 if (mm != &init_mm)
1865 pte_unmap_unlock(pte-1, ptl);
1866 return err;
1867 }
1868
1869 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1870 unsigned long addr, unsigned long end,
1871 pte_fn_t fn, void *data)
1872 {
1873 pmd_t *pmd;
1874 unsigned long next;
1875 int err;
1876
1877 BUG_ON(pud_huge(*pud));
1878
1879 pmd = pmd_alloc(mm, pud, addr);
1880 if (!pmd)
1881 return -ENOMEM;
1882 do {
1883 next = pmd_addr_end(addr, end);
1884 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1885 if (err)
1886 break;
1887 } while (pmd++, addr = next, addr != end);
1888 return err;
1889 }
1890
1891 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1892 unsigned long addr, unsigned long end,
1893 pte_fn_t fn, void *data)
1894 {
1895 pud_t *pud;
1896 unsigned long next;
1897 int err;
1898
1899 pud = pud_alloc(mm, pgd, addr);
1900 if (!pud)
1901 return -ENOMEM;
1902 do {
1903 next = pud_addr_end(addr, end);
1904 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1905 if (err)
1906 break;
1907 } while (pud++, addr = next, addr != end);
1908 return err;
1909 }
1910
1911 /*
1912 * Scan a region of virtual memory, filling in page tables as necessary
1913 * and calling a provided function on each leaf page table.
1914 */
1915 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1916 unsigned long size, pte_fn_t fn, void *data)
1917 {
1918 pgd_t *pgd;
1919 unsigned long next;
1920 unsigned long end = addr + size;
1921 int err;
1922
1923 BUG_ON(addr >= end);
1924 pgd = pgd_offset(mm, addr);
1925 do {
1926 next = pgd_addr_end(addr, end);
1927 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1928 if (err)
1929 break;
1930 } while (pgd++, addr = next, addr != end);
1931
1932 return err;
1933 }
1934 EXPORT_SYMBOL_GPL(apply_to_page_range);
1935
1936 /*
1937 * handle_pte_fault chooses page fault handler according to an entry
1938 * which was read non-atomically. Before making any commitment, on
1939 * those architectures or configurations (e.g. i386 with PAE) which
1940 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1941 * must check under lock before unmapping the pte and proceeding
1942 * (but do_wp_page is only called after already making such a check;
1943 * and do_anonymous_page can safely check later on).
1944 */
1945 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1946 pte_t *page_table, pte_t orig_pte)
1947 {
1948 int same = 1;
1949 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1950 if (sizeof(pte_t) > sizeof(unsigned long)) {
1951 spinlock_t *ptl = pte_lockptr(mm, pmd);
1952 spin_lock(ptl);
1953 same = pte_same(*page_table, orig_pte);
1954 spin_unlock(ptl);
1955 }
1956 #endif
1957 pte_unmap(page_table);
1958 return same;
1959 }
1960
1961 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1962 {
1963 debug_dma_assert_idle(src);
1964
1965 /*
1966 * If the source page was a PFN mapping, we don't have
1967 * a "struct page" for it. We do a best-effort copy by
1968 * just copying from the original user address. If that
1969 * fails, we just zero-fill it. Live with it.
1970 */
1971 if (unlikely(!src)) {
1972 void *kaddr = kmap_atomic(dst);
1973 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1974
1975 /*
1976 * This really shouldn't fail, because the page is there
1977 * in the page tables. But it might just be unreadable,
1978 * in which case we just give up and fill the result with
1979 * zeroes.
1980 */
1981 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1982 clear_page(kaddr);
1983 kunmap_atomic(kaddr);
1984 flush_dcache_page(dst);
1985 } else
1986 copy_user_highpage(dst, src, va, vma);
1987 }
1988
1989 /*
1990 * Notify the address space that the page is about to become writable so that
1991 * it can prohibit this or wait for the page to get into an appropriate state.
1992 *
1993 * We do this without the lock held, so that it can sleep if it needs to.
1994 */
1995 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1996 unsigned long address)
1997 {
1998 struct vm_fault vmf;
1999 int ret;
2000
2001 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2002 vmf.pgoff = page->index;
2003 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2004 vmf.page = page;
2005
2006 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2007 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2008 return ret;
2009 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2010 lock_page(page);
2011 if (!page->mapping) {
2012 unlock_page(page);
2013 return 0; /* retry */
2014 }
2015 ret |= VM_FAULT_LOCKED;
2016 } else
2017 VM_BUG_ON_PAGE(!PageLocked(page), page);
2018 return ret;
2019 }
2020
2021 /*
2022 * This routine handles present pages, when users try to write
2023 * to a shared page. It is done by copying the page to a new address
2024 * and decrementing the shared-page counter for the old page.
2025 *
2026 * Note that this routine assumes that the protection checks have been
2027 * done by the caller (the low-level page fault routine in most cases).
2028 * Thus we can safely just mark it writable once we've done any necessary
2029 * COW.
2030 *
2031 * We also mark the page dirty at this point even though the page will
2032 * change only once the write actually happens. This avoids a few races,
2033 * and potentially makes it more efficient.
2034 *
2035 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2036 * but allow concurrent faults), with pte both mapped and locked.
2037 * We return with mmap_sem still held, but pte unmapped and unlocked.
2038 */
2039 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2040 unsigned long address, pte_t *page_table, pmd_t *pmd,
2041 spinlock_t *ptl, pte_t orig_pte)
2042 __releases(ptl)
2043 {
2044 struct page *old_page, *new_page = NULL;
2045 pte_t entry;
2046 int ret = 0;
2047 int page_mkwrite = 0;
2048 struct page *dirty_page = NULL;
2049 unsigned long mmun_start = 0; /* For mmu_notifiers */
2050 unsigned long mmun_end = 0; /* For mmu_notifiers */
2051 struct mem_cgroup *memcg;
2052
2053 old_page = vm_normal_page(vma, address, orig_pte);
2054 if (!old_page) {
2055 /*
2056 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2057 * VM_PFNMAP VMA.
2058 *
2059 * We should not cow pages in a shared writeable mapping.
2060 * Just mark the pages writable as we can't do any dirty
2061 * accounting on raw pfn maps.
2062 */
2063 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2064 (VM_WRITE|VM_SHARED))
2065 goto reuse;
2066 goto gotten;
2067 }
2068
2069 /*
2070 * Take out anonymous pages first, anonymous shared vmas are
2071 * not dirty accountable.
2072 */
2073 if (PageAnon(old_page) && !PageKsm(old_page)) {
2074 if (!trylock_page(old_page)) {
2075 page_cache_get(old_page);
2076 pte_unmap_unlock(page_table, ptl);
2077 lock_page(old_page);
2078 page_table = pte_offset_map_lock(mm, pmd, address,
2079 &ptl);
2080 if (!pte_same(*page_table, orig_pte)) {
2081 unlock_page(old_page);
2082 goto unlock;
2083 }
2084 page_cache_release(old_page);
2085 }
2086 if (reuse_swap_page(old_page)) {
2087 /*
2088 * The page is all ours. Move it to our anon_vma so
2089 * the rmap code will not search our parent or siblings.
2090 * Protected against the rmap code by the page lock.
2091 */
2092 page_move_anon_rmap(old_page, vma, address);
2093 unlock_page(old_page);
2094 goto reuse;
2095 }
2096 unlock_page(old_page);
2097 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2098 (VM_WRITE|VM_SHARED))) {
2099 /*
2100 * Only catch write-faults on shared writable pages,
2101 * read-only shared pages can get COWed by
2102 * get_user_pages(.write=1, .force=1).
2103 */
2104 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2105 int tmp;
2106 page_cache_get(old_page);
2107 pte_unmap_unlock(page_table, ptl);
2108 tmp = do_page_mkwrite(vma, old_page, address);
2109 if (unlikely(!tmp || (tmp &
2110 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2111 page_cache_release(old_page);
2112 return tmp;
2113 }
2114 /*
2115 * Since we dropped the lock we need to revalidate
2116 * the PTE as someone else may have changed it. If
2117 * they did, we just return, as we can count on the
2118 * MMU to tell us if they didn't also make it writable.
2119 */
2120 page_table = pte_offset_map_lock(mm, pmd, address,
2121 &ptl);
2122 if (!pte_same(*page_table, orig_pte)) {
2123 unlock_page(old_page);
2124 goto unlock;
2125 }
2126
2127 page_mkwrite = 1;
2128 }
2129 dirty_page = old_page;
2130 get_page(dirty_page);
2131
2132 reuse:
2133 /*
2134 * Clear the pages cpupid information as the existing
2135 * information potentially belongs to a now completely
2136 * unrelated process.
2137 */
2138 if (old_page)
2139 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2140
2141 flush_cache_page(vma, address, pte_pfn(orig_pte));
2142 entry = pte_mkyoung(orig_pte);
2143 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2144 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2145 update_mmu_cache(vma, address, page_table);
2146 pte_unmap_unlock(page_table, ptl);
2147 ret |= VM_FAULT_WRITE;
2148
2149 if (!dirty_page)
2150 return ret;
2151
2152 /*
2153 * Yes, Virginia, this is actually required to prevent a race
2154 * with clear_page_dirty_for_io() from clearing the page dirty
2155 * bit after it clear all dirty ptes, but before a racing
2156 * do_wp_page installs a dirty pte.
2157 *
2158 * do_shared_fault is protected similarly.
2159 */
2160 if (!page_mkwrite) {
2161 wait_on_page_locked(dirty_page);
2162 set_page_dirty_balance(dirty_page);
2163 /* file_update_time outside page_lock */
2164 if (vma->vm_file)
2165 file_update_time(vma->vm_file);
2166 }
2167 put_page(dirty_page);
2168 if (page_mkwrite) {
2169 struct address_space *mapping = dirty_page->mapping;
2170
2171 set_page_dirty(dirty_page);
2172 unlock_page(dirty_page);
2173 page_cache_release(dirty_page);
2174 if (mapping) {
2175 /*
2176 * Some device drivers do not set page.mapping
2177 * but still dirty their pages
2178 */
2179 balance_dirty_pages_ratelimited(mapping);
2180 }
2181 }
2182
2183 return ret;
2184 }
2185
2186 /*
2187 * Ok, we need to copy. Oh, well..
2188 */
2189 page_cache_get(old_page);
2190 gotten:
2191 pte_unmap_unlock(page_table, ptl);
2192
2193 if (unlikely(anon_vma_prepare(vma)))
2194 goto oom;
2195
2196 if (is_zero_pfn(pte_pfn(orig_pte))) {
2197 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2198 if (!new_page)
2199 goto oom;
2200 } else {
2201 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2202 if (!new_page)
2203 goto oom;
2204 cow_user_page(new_page, old_page, address, vma);
2205 }
2206 __SetPageUptodate(new_page);
2207
2208 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2209 goto oom_free_new;
2210
2211 mmun_start = address & PAGE_MASK;
2212 mmun_end = mmun_start + PAGE_SIZE;
2213 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2214
2215 /*
2216 * Re-check the pte - we dropped the lock
2217 */
2218 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2219 if (likely(pte_same(*page_table, orig_pte))) {
2220 if (old_page) {
2221 if (!PageAnon(old_page)) {
2222 dec_mm_counter_fast(mm, MM_FILEPAGES);
2223 inc_mm_counter_fast(mm, MM_ANONPAGES);
2224 }
2225 } else
2226 inc_mm_counter_fast(mm, MM_ANONPAGES);
2227 flush_cache_page(vma, address, pte_pfn(orig_pte));
2228 entry = mk_pte(new_page, vma->vm_page_prot);
2229 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2230 /*
2231 * Clear the pte entry and flush it first, before updating the
2232 * pte with the new entry. This will avoid a race condition
2233 * seen in the presence of one thread doing SMC and another
2234 * thread doing COW.
2235 */
2236 ptep_clear_flush(vma, address, page_table);
2237 page_add_new_anon_rmap(new_page, vma, address);
2238 mem_cgroup_commit_charge(new_page, memcg, false);
2239 lru_cache_add_active_or_unevictable(new_page, vma);
2240 /*
2241 * We call the notify macro here because, when using secondary
2242 * mmu page tables (such as kvm shadow page tables), we want the
2243 * new page to be mapped directly into the secondary page table.
2244 */
2245 set_pte_at_notify(mm, address, page_table, entry);
2246 update_mmu_cache(vma, address, page_table);
2247 if (old_page) {
2248 /*
2249 * Only after switching the pte to the new page may
2250 * we remove the mapcount here. Otherwise another
2251 * process may come and find the rmap count decremented
2252 * before the pte is switched to the new page, and
2253 * "reuse" the old page writing into it while our pte
2254 * here still points into it and can be read by other
2255 * threads.
2256 *
2257 * The critical issue is to order this
2258 * page_remove_rmap with the ptp_clear_flush above.
2259 * Those stores are ordered by (if nothing else,)
2260 * the barrier present in the atomic_add_negative
2261 * in page_remove_rmap.
2262 *
2263 * Then the TLB flush in ptep_clear_flush ensures that
2264 * no process can access the old page before the
2265 * decremented mapcount is visible. And the old page
2266 * cannot be reused until after the decremented
2267 * mapcount is visible. So transitively, TLBs to
2268 * old page will be flushed before it can be reused.
2269 */
2270 page_remove_rmap(old_page);
2271 }
2272
2273 /* Free the old page.. */
2274 new_page = old_page;
2275 ret |= VM_FAULT_WRITE;
2276 } else
2277 mem_cgroup_cancel_charge(new_page, memcg);
2278
2279 if (new_page)
2280 page_cache_release(new_page);
2281 unlock:
2282 pte_unmap_unlock(page_table, ptl);
2283 if (mmun_end > mmun_start)
2284 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2285 if (old_page) {
2286 /*
2287 * Don't let another task, with possibly unlocked vma,
2288 * keep the mlocked page.
2289 */
2290 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2291 lock_page(old_page); /* LRU manipulation */
2292 munlock_vma_page(old_page);
2293 unlock_page(old_page);
2294 }
2295 page_cache_release(old_page);
2296 }
2297 return ret;
2298 oom_free_new:
2299 page_cache_release(new_page);
2300 oom:
2301 if (old_page)
2302 page_cache_release(old_page);
2303 return VM_FAULT_OOM;
2304 }
2305
2306 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2307 unsigned long start_addr, unsigned long end_addr,
2308 struct zap_details *details)
2309 {
2310 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2311 }
2312
2313 static inline void unmap_mapping_range_tree(struct rb_root *root,
2314 struct zap_details *details)
2315 {
2316 struct vm_area_struct *vma;
2317 pgoff_t vba, vea, zba, zea;
2318
2319 vma_interval_tree_foreach(vma, root,
2320 details->first_index, details->last_index) {
2321
2322 vba = vma->vm_pgoff;
2323 vea = vba + vma_pages(vma) - 1;
2324 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2325 zba = details->first_index;
2326 if (zba < vba)
2327 zba = vba;
2328 zea = details->last_index;
2329 if (zea > vea)
2330 zea = vea;
2331
2332 unmap_mapping_range_vma(vma,
2333 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2334 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2335 details);
2336 }
2337 }
2338
2339 static inline void unmap_mapping_range_list(struct list_head *head,
2340 struct zap_details *details)
2341 {
2342 struct vm_area_struct *vma;
2343
2344 /*
2345 * In nonlinear VMAs there is no correspondence between virtual address
2346 * offset and file offset. So we must perform an exhaustive search
2347 * across *all* the pages in each nonlinear VMA, not just the pages
2348 * whose virtual address lies outside the file truncation point.
2349 */
2350 list_for_each_entry(vma, head, shared.nonlinear) {
2351 details->nonlinear_vma = vma;
2352 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2353 }
2354 }
2355
2356 /**
2357 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2358 * @mapping: the address space containing mmaps to be unmapped.
2359 * @holebegin: byte in first page to unmap, relative to the start of
2360 * the underlying file. This will be rounded down to a PAGE_SIZE
2361 * boundary. Note that this is different from truncate_pagecache(), which
2362 * must keep the partial page. In contrast, we must get rid of
2363 * partial pages.
2364 * @holelen: size of prospective hole in bytes. This will be rounded
2365 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2366 * end of the file.
2367 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2368 * but 0 when invalidating pagecache, don't throw away private data.
2369 */
2370 void unmap_mapping_range(struct address_space *mapping,
2371 loff_t const holebegin, loff_t const holelen, int even_cows)
2372 {
2373 struct zap_details details;
2374 pgoff_t hba = holebegin >> PAGE_SHIFT;
2375 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2376
2377 /* Check for overflow. */
2378 if (sizeof(holelen) > sizeof(hlen)) {
2379 long long holeend =
2380 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2381 if (holeend & ~(long long)ULONG_MAX)
2382 hlen = ULONG_MAX - hba + 1;
2383 }
2384
2385 details.check_mapping = even_cows? NULL: mapping;
2386 details.nonlinear_vma = NULL;
2387 details.first_index = hba;
2388 details.last_index = hba + hlen - 1;
2389 if (details.last_index < details.first_index)
2390 details.last_index = ULONG_MAX;
2391
2392
2393 mutex_lock(&mapping->i_mmap_mutex);
2394 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2395 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2396 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2397 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2398 mutex_unlock(&mapping->i_mmap_mutex);
2399 }
2400 EXPORT_SYMBOL(unmap_mapping_range);
2401
2402 /*
2403 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2404 * but allow concurrent faults), and pte mapped but not yet locked.
2405 * We return with pte unmapped and unlocked.
2406 *
2407 * We return with the mmap_sem locked or unlocked in the same cases
2408 * as does filemap_fault().
2409 */
2410 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2411 unsigned long address, pte_t *page_table, pmd_t *pmd,
2412 unsigned int flags, pte_t orig_pte)
2413 {
2414 spinlock_t *ptl;
2415 struct page *page, *swapcache;
2416 struct mem_cgroup *memcg;
2417 swp_entry_t entry;
2418 pte_t pte;
2419 int locked;
2420 int exclusive = 0;
2421 int ret = 0;
2422
2423 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2424 goto out;
2425
2426 entry = pte_to_swp_entry(orig_pte);
2427 if (unlikely(non_swap_entry(entry))) {
2428 if (is_migration_entry(entry)) {
2429 migration_entry_wait(mm, pmd, address);
2430 } else if (is_hwpoison_entry(entry)) {
2431 ret = VM_FAULT_HWPOISON;
2432 } else {
2433 print_bad_pte(vma, address, orig_pte, NULL);
2434 ret = VM_FAULT_SIGBUS;
2435 }
2436 goto out;
2437 }
2438 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2439 page = lookup_swap_cache(entry);
2440 if (!page) {
2441 page = swapin_readahead(entry,
2442 GFP_HIGHUSER_MOVABLE, vma, address);
2443 if (!page) {
2444 /*
2445 * Back out if somebody else faulted in this pte
2446 * while we released the pte lock.
2447 */
2448 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2449 if (likely(pte_same(*page_table, orig_pte)))
2450 ret = VM_FAULT_OOM;
2451 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2452 goto unlock;
2453 }
2454
2455 /* Had to read the page from swap area: Major fault */
2456 ret = VM_FAULT_MAJOR;
2457 count_vm_event(PGMAJFAULT);
2458 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2459 } else if (PageHWPoison(page)) {
2460 /*
2461 * hwpoisoned dirty swapcache pages are kept for killing
2462 * owner processes (which may be unknown at hwpoison time)
2463 */
2464 ret = VM_FAULT_HWPOISON;
2465 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2466 swapcache = page;
2467 goto out_release;
2468 }
2469
2470 swapcache = page;
2471 locked = lock_page_or_retry(page, mm, flags);
2472
2473 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2474 if (!locked) {
2475 ret |= VM_FAULT_RETRY;
2476 goto out_release;
2477 }
2478
2479 /*
2480 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2481 * release the swapcache from under us. The page pin, and pte_same
2482 * test below, are not enough to exclude that. Even if it is still
2483 * swapcache, we need to check that the page's swap has not changed.
2484 */
2485 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2486 goto out_page;
2487
2488 page = ksm_might_need_to_copy(page, vma, address);
2489 if (unlikely(!page)) {
2490 ret = VM_FAULT_OOM;
2491 page = swapcache;
2492 goto out_page;
2493 }
2494
2495 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2496 ret = VM_FAULT_OOM;
2497 goto out_page;
2498 }
2499
2500 /*
2501 * Back out if somebody else already faulted in this pte.
2502 */
2503 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2504 if (unlikely(!pte_same(*page_table, orig_pte)))
2505 goto out_nomap;
2506
2507 if (unlikely(!PageUptodate(page))) {
2508 ret = VM_FAULT_SIGBUS;
2509 goto out_nomap;
2510 }
2511
2512 /*
2513 * The page isn't present yet, go ahead with the fault.
2514 *
2515 * Be careful about the sequence of operations here.
2516 * To get its accounting right, reuse_swap_page() must be called
2517 * while the page is counted on swap but not yet in mapcount i.e.
2518 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2519 * must be called after the swap_free(), or it will never succeed.
2520 */
2521
2522 inc_mm_counter_fast(mm, MM_ANONPAGES);
2523 dec_mm_counter_fast(mm, MM_SWAPENTS);
2524 pte = mk_pte(page, vma->vm_page_prot);
2525 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2526 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2527 flags &= ~FAULT_FLAG_WRITE;
2528 ret |= VM_FAULT_WRITE;
2529 exclusive = 1;
2530 }
2531 flush_icache_page(vma, page);
2532 if (pte_swp_soft_dirty(orig_pte))
2533 pte = pte_mksoft_dirty(pte);
2534 set_pte_at(mm, address, page_table, pte);
2535 if (page == swapcache) {
2536 do_page_add_anon_rmap(page, vma, address, exclusive);
2537 mem_cgroup_commit_charge(page, memcg, true);
2538 } else { /* ksm created a completely new copy */
2539 page_add_new_anon_rmap(page, vma, address);
2540 mem_cgroup_commit_charge(page, memcg, false);
2541 lru_cache_add_active_or_unevictable(page, vma);
2542 }
2543
2544 swap_free(entry);
2545 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2546 try_to_free_swap(page);
2547 unlock_page(page);
2548 if (page != swapcache) {
2549 /*
2550 * Hold the lock to avoid the swap entry to be reused
2551 * until we take the PT lock for the pte_same() check
2552 * (to avoid false positives from pte_same). For
2553 * further safety release the lock after the swap_free
2554 * so that the swap count won't change under a
2555 * parallel locked swapcache.
2556 */
2557 unlock_page(swapcache);
2558 page_cache_release(swapcache);
2559 }
2560
2561 if (flags & FAULT_FLAG_WRITE) {
2562 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2563 if (ret & VM_FAULT_ERROR)
2564 ret &= VM_FAULT_ERROR;
2565 goto out;
2566 }
2567
2568 /* No need to invalidate - it was non-present before */
2569 update_mmu_cache(vma, address, page_table);
2570 unlock:
2571 pte_unmap_unlock(page_table, ptl);
2572 out:
2573 return ret;
2574 out_nomap:
2575 mem_cgroup_cancel_charge(page, memcg);
2576 pte_unmap_unlock(page_table, ptl);
2577 out_page:
2578 unlock_page(page);
2579 out_release:
2580 page_cache_release(page);
2581 if (page != swapcache) {
2582 unlock_page(swapcache);
2583 page_cache_release(swapcache);
2584 }
2585 return ret;
2586 }
2587
2588 /*
2589 * This is like a special single-page "expand_{down|up}wards()",
2590 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2591 * doesn't hit another vma.
2592 */
2593 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2594 {
2595 address &= PAGE_MASK;
2596 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2597 struct vm_area_struct *prev = vma->vm_prev;
2598
2599 /*
2600 * Is there a mapping abutting this one below?
2601 *
2602 * That's only ok if it's the same stack mapping
2603 * that has gotten split..
2604 */
2605 if (prev && prev->vm_end == address)
2606 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2607
2608 expand_downwards(vma, address - PAGE_SIZE);
2609 }
2610 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2611 struct vm_area_struct *next = vma->vm_next;
2612
2613 /* As VM_GROWSDOWN but s/below/above/ */
2614 if (next && next->vm_start == address + PAGE_SIZE)
2615 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2616
2617 expand_upwards(vma, address + PAGE_SIZE);
2618 }
2619 return 0;
2620 }
2621
2622 /*
2623 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2624 * but allow concurrent faults), and pte mapped but not yet locked.
2625 * We return with mmap_sem still held, but pte unmapped and unlocked.
2626 */
2627 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2628 unsigned long address, pte_t *page_table, pmd_t *pmd,
2629 unsigned int flags)
2630 {
2631 struct mem_cgroup *memcg;
2632 struct page *page;
2633 spinlock_t *ptl;
2634 pte_t entry;
2635
2636 pte_unmap(page_table);
2637
2638 /* Check if we need to add a guard page to the stack */
2639 if (check_stack_guard_page(vma, address) < 0)
2640 return VM_FAULT_SIGBUS;
2641
2642 /* Use the zero-page for reads */
2643 if (!(flags & FAULT_FLAG_WRITE)) {
2644 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2645 vma->vm_page_prot));
2646 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2647 if (!pte_none(*page_table))
2648 goto unlock;
2649 goto setpte;
2650 }
2651
2652 /* Allocate our own private page. */
2653 if (unlikely(anon_vma_prepare(vma)))
2654 goto oom;
2655 page = alloc_zeroed_user_highpage_movable(vma, address);
2656 if (!page)
2657 goto oom;
2658 /*
2659 * The memory barrier inside __SetPageUptodate makes sure that
2660 * preceeding stores to the page contents become visible before
2661 * the set_pte_at() write.
2662 */
2663 __SetPageUptodate(page);
2664
2665 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2666 goto oom_free_page;
2667
2668 entry = mk_pte(page, vma->vm_page_prot);
2669 if (vma->vm_flags & VM_WRITE)
2670 entry = pte_mkwrite(pte_mkdirty(entry));
2671
2672 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2673 if (!pte_none(*page_table))
2674 goto release;
2675
2676 inc_mm_counter_fast(mm, MM_ANONPAGES);
2677 page_add_new_anon_rmap(page, vma, address);
2678 mem_cgroup_commit_charge(page, memcg, false);
2679 lru_cache_add_active_or_unevictable(page, vma);
2680 setpte:
2681 set_pte_at(mm, address, page_table, entry);
2682
2683 /* No need to invalidate - it was non-present before */
2684 update_mmu_cache(vma, address, page_table);
2685 unlock:
2686 pte_unmap_unlock(page_table, ptl);
2687 return 0;
2688 release:
2689 mem_cgroup_cancel_charge(page, memcg);
2690 page_cache_release(page);
2691 goto unlock;
2692 oom_free_page:
2693 page_cache_release(page);
2694 oom:
2695 return VM_FAULT_OOM;
2696 }
2697
2698 /*
2699 * The mmap_sem must have been held on entry, and may have been
2700 * released depending on flags and vma->vm_ops->fault() return value.
2701 * See filemap_fault() and __lock_page_retry().
2702 */
2703 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2704 pgoff_t pgoff, unsigned int flags, struct page **page)
2705 {
2706 struct vm_fault vmf;
2707 int ret;
2708
2709 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2710 vmf.pgoff = pgoff;
2711 vmf.flags = flags;
2712 vmf.page = NULL;
2713
2714 ret = vma->vm_ops->fault(vma, &vmf);
2715 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2716 return ret;
2717
2718 if (unlikely(PageHWPoison(vmf.page))) {
2719 if (ret & VM_FAULT_LOCKED)
2720 unlock_page(vmf.page);
2721 page_cache_release(vmf.page);
2722 return VM_FAULT_HWPOISON;
2723 }
2724
2725 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2726 lock_page(vmf.page);
2727 else
2728 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2729
2730 *page = vmf.page;
2731 return ret;
2732 }
2733
2734 /**
2735 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2736 *
2737 * @vma: virtual memory area
2738 * @address: user virtual address
2739 * @page: page to map
2740 * @pte: pointer to target page table entry
2741 * @write: true, if new entry is writable
2742 * @anon: true, if it's anonymous page
2743 *
2744 * Caller must hold page table lock relevant for @pte.
2745 *
2746 * Target users are page handler itself and implementations of
2747 * vm_ops->map_pages.
2748 */
2749 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2750 struct page *page, pte_t *pte, bool write, bool anon)
2751 {
2752 pte_t entry;
2753
2754 flush_icache_page(vma, page);
2755 entry = mk_pte(page, vma->vm_page_prot);
2756 if (write)
2757 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2758 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2759 entry = pte_mksoft_dirty(entry);
2760 if (anon) {
2761 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2762 page_add_new_anon_rmap(page, vma, address);
2763 } else {
2764 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2765 page_add_file_rmap(page);
2766 }
2767 set_pte_at(vma->vm_mm, address, pte, entry);
2768
2769 /* no need to invalidate: a not-present page won't be cached */
2770 update_mmu_cache(vma, address, pte);
2771 }
2772
2773 static unsigned long fault_around_bytes __read_mostly =
2774 rounddown_pow_of_two(65536);
2775
2776 #ifdef CONFIG_DEBUG_FS
2777 static int fault_around_bytes_get(void *data, u64 *val)
2778 {
2779 *val = fault_around_bytes;
2780 return 0;
2781 }
2782
2783 /*
2784 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2785 * rounded down to nearest page order. It's what do_fault_around() expects to
2786 * see.
2787 */
2788 static int fault_around_bytes_set(void *data, u64 val)
2789 {
2790 if (val / PAGE_SIZE > PTRS_PER_PTE)
2791 return -EINVAL;
2792 if (val > PAGE_SIZE)
2793 fault_around_bytes = rounddown_pow_of_two(val);
2794 else
2795 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2796 return 0;
2797 }
2798 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2799 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2800
2801 static int __init fault_around_debugfs(void)
2802 {
2803 void *ret;
2804
2805 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2806 &fault_around_bytes_fops);
2807 if (!ret)
2808 pr_warn("Failed to create fault_around_bytes in debugfs");
2809 return 0;
2810 }
2811 late_initcall(fault_around_debugfs);
2812 #endif
2813
2814 /*
2815 * do_fault_around() tries to map few pages around the fault address. The hope
2816 * is that the pages will be needed soon and this will lower the number of
2817 * faults to handle.
2818 *
2819 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2820 * not ready to be mapped: not up-to-date, locked, etc.
2821 *
2822 * This function is called with the page table lock taken. In the split ptlock
2823 * case the page table lock only protects only those entries which belong to
2824 * the page table corresponding to the fault address.
2825 *
2826 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2827 * only once.
2828 *
2829 * fault_around_pages() defines how many pages we'll try to map.
2830 * do_fault_around() expects it to return a power of two less than or equal to
2831 * PTRS_PER_PTE.
2832 *
2833 * The virtual address of the area that we map is naturally aligned to the
2834 * fault_around_pages() value (and therefore to page order). This way it's
2835 * easier to guarantee that we don't cross page table boundaries.
2836 */
2837 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2838 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2839 {
2840 unsigned long start_addr, nr_pages, mask;
2841 pgoff_t max_pgoff;
2842 struct vm_fault vmf;
2843 int off;
2844
2845 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2846 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2847
2848 start_addr = max(address & mask, vma->vm_start);
2849 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2850 pte -= off;
2851 pgoff -= off;
2852
2853 /*
2854 * max_pgoff is either end of page table or end of vma
2855 * or fault_around_pages() from pgoff, depending what is nearest.
2856 */
2857 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2858 PTRS_PER_PTE - 1;
2859 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2860 pgoff + nr_pages - 1);
2861
2862 /* Check if it makes any sense to call ->map_pages */
2863 while (!pte_none(*pte)) {
2864 if (++pgoff > max_pgoff)
2865 return;
2866 start_addr += PAGE_SIZE;
2867 if (start_addr >= vma->vm_end)
2868 return;
2869 pte++;
2870 }
2871
2872 vmf.virtual_address = (void __user *) start_addr;
2873 vmf.pte = pte;
2874 vmf.pgoff = pgoff;
2875 vmf.max_pgoff = max_pgoff;
2876 vmf.flags = flags;
2877 vma->vm_ops->map_pages(vma, &vmf);
2878 }
2879
2880 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2881 unsigned long address, pmd_t *pmd,
2882 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2883 {
2884 struct page *fault_page;
2885 spinlock_t *ptl;
2886 pte_t *pte;
2887 int ret = 0;
2888
2889 /*
2890 * Let's call ->map_pages() first and use ->fault() as fallback
2891 * if page by the offset is not ready to be mapped (cold cache or
2892 * something).
2893 */
2894 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2895 fault_around_bytes >> PAGE_SHIFT > 1) {
2896 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2897 do_fault_around(vma, address, pte, pgoff, flags);
2898 if (!pte_same(*pte, orig_pte))
2899 goto unlock_out;
2900 pte_unmap_unlock(pte, ptl);
2901 }
2902
2903 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2904 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2905 return ret;
2906
2907 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2908 if (unlikely(!pte_same(*pte, orig_pte))) {
2909 pte_unmap_unlock(pte, ptl);
2910 unlock_page(fault_page);
2911 page_cache_release(fault_page);
2912 return ret;
2913 }
2914 do_set_pte(vma, address, fault_page, pte, false, false);
2915 unlock_page(fault_page);
2916 unlock_out:
2917 pte_unmap_unlock(pte, ptl);
2918 return ret;
2919 }
2920
2921 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2922 unsigned long address, pmd_t *pmd,
2923 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2924 {
2925 struct page *fault_page, *new_page;
2926 struct mem_cgroup *memcg;
2927 spinlock_t *ptl;
2928 pte_t *pte;
2929 int ret;
2930
2931 if (unlikely(anon_vma_prepare(vma)))
2932 return VM_FAULT_OOM;
2933
2934 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2935 if (!new_page)
2936 return VM_FAULT_OOM;
2937
2938 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2939 page_cache_release(new_page);
2940 return VM_FAULT_OOM;
2941 }
2942
2943 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2944 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2945 goto uncharge_out;
2946
2947 copy_user_highpage(new_page, fault_page, address, vma);
2948 __SetPageUptodate(new_page);
2949
2950 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2951 if (unlikely(!pte_same(*pte, orig_pte))) {
2952 pte_unmap_unlock(pte, ptl);
2953 unlock_page(fault_page);
2954 page_cache_release(fault_page);
2955 goto uncharge_out;
2956 }
2957 do_set_pte(vma, address, new_page, pte, true, true);
2958 mem_cgroup_commit_charge(new_page, memcg, false);
2959 lru_cache_add_active_or_unevictable(new_page, vma);
2960 pte_unmap_unlock(pte, ptl);
2961 unlock_page(fault_page);
2962 page_cache_release(fault_page);
2963 return ret;
2964 uncharge_out:
2965 mem_cgroup_cancel_charge(new_page, memcg);
2966 page_cache_release(new_page);
2967 return ret;
2968 }
2969
2970 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2971 unsigned long address, pmd_t *pmd,
2972 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2973 {
2974 struct page *fault_page;
2975 struct address_space *mapping;
2976 spinlock_t *ptl;
2977 pte_t *pte;
2978 int dirtied = 0;
2979 int ret, tmp;
2980
2981 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2982 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2983 return ret;
2984
2985 /*
2986 * Check if the backing address space wants to know that the page is
2987 * about to become writable
2988 */
2989 if (vma->vm_ops->page_mkwrite) {
2990 unlock_page(fault_page);
2991 tmp = do_page_mkwrite(vma, fault_page, address);
2992 if (unlikely(!tmp ||
2993 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2994 page_cache_release(fault_page);
2995 return tmp;
2996 }
2997 }
2998
2999 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3000 if (unlikely(!pte_same(*pte, orig_pte))) {
3001 pte_unmap_unlock(pte, ptl);
3002 unlock_page(fault_page);
3003 page_cache_release(fault_page);
3004 return ret;
3005 }
3006 do_set_pte(vma, address, fault_page, pte, true, false);
3007 pte_unmap_unlock(pte, ptl);
3008
3009 if (set_page_dirty(fault_page))
3010 dirtied = 1;
3011 mapping = fault_page->mapping;
3012 unlock_page(fault_page);
3013 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3014 /*
3015 * Some device drivers do not set page.mapping but still
3016 * dirty their pages
3017 */
3018 balance_dirty_pages_ratelimited(mapping);
3019 }
3020
3021 /* file_update_time outside page_lock */
3022 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3023 file_update_time(vma->vm_file);
3024
3025 return ret;
3026 }
3027
3028 /*
3029 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3030 * but allow concurrent faults).
3031 * The mmap_sem may have been released depending on flags and our
3032 * return value. See filemap_fault() and __lock_page_or_retry().
3033 */
3034 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3035 unsigned long address, pte_t *page_table, pmd_t *pmd,
3036 unsigned int flags, pte_t orig_pte)
3037 {
3038 pgoff_t pgoff = (((address & PAGE_MASK)
3039 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3040
3041 pte_unmap(page_table);
3042 if (!(flags & FAULT_FLAG_WRITE))
3043 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3044 orig_pte);
3045 if (!(vma->vm_flags & VM_SHARED))
3046 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3047 orig_pte);
3048 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3049 }
3050
3051 /*
3052 * Fault of a previously existing named mapping. Repopulate the pte
3053 * from the encoded file_pte if possible. This enables swappable
3054 * nonlinear vmas.
3055 *
3056 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3057 * but allow concurrent faults), and pte mapped but not yet locked.
3058 * We return with pte unmapped and unlocked.
3059 * The mmap_sem may have been released depending on flags and our
3060 * return value. See filemap_fault() and __lock_page_or_retry().
3061 */
3062 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3063 unsigned long address, pte_t *page_table, pmd_t *pmd,
3064 unsigned int flags, pte_t orig_pte)
3065 {
3066 pgoff_t pgoff;
3067
3068 flags |= FAULT_FLAG_NONLINEAR;
3069
3070 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3071 return 0;
3072
3073 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3074 /*
3075 * Page table corrupted: show pte and kill process.
3076 */
3077 print_bad_pte(vma, address, orig_pte, NULL);
3078 return VM_FAULT_SIGBUS;
3079 }
3080
3081 pgoff = pte_to_pgoff(orig_pte);
3082 if (!(flags & FAULT_FLAG_WRITE))
3083 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3084 orig_pte);
3085 if (!(vma->vm_flags & VM_SHARED))
3086 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3087 orig_pte);
3088 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3089 }
3090
3091 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3092 unsigned long addr, int page_nid,
3093 int *flags)
3094 {
3095 get_page(page);
3096
3097 count_vm_numa_event(NUMA_HINT_FAULTS);
3098 if (page_nid == numa_node_id()) {
3099 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3100 *flags |= TNF_FAULT_LOCAL;
3101 }
3102
3103 return mpol_misplaced(page, vma, addr);
3104 }
3105
3106 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3107 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3108 {
3109 struct page *page = NULL;
3110 spinlock_t *ptl;
3111 int page_nid = -1;
3112 int last_cpupid;
3113 int target_nid;
3114 bool migrated = false;
3115 int flags = 0;
3116
3117 /*
3118 * The "pte" at this point cannot be used safely without
3119 * validation through pte_unmap_same(). It's of NUMA type but
3120 * the pfn may be screwed if the read is non atomic.
3121 *
3122 * ptep_modify_prot_start is not called as this is clearing
3123 * the _PAGE_NUMA bit and it is not really expected that there
3124 * would be concurrent hardware modifications to the PTE.
3125 */
3126 ptl = pte_lockptr(mm, pmd);
3127 spin_lock(ptl);
3128 if (unlikely(!pte_same(*ptep, pte))) {
3129 pte_unmap_unlock(ptep, ptl);
3130 goto out;
3131 }
3132
3133 pte = pte_mknonnuma(pte);
3134 set_pte_at(mm, addr, ptep, pte);
3135 update_mmu_cache(vma, addr, ptep);
3136
3137 page = vm_normal_page(vma, addr, pte);
3138 if (!page) {
3139 pte_unmap_unlock(ptep, ptl);
3140 return 0;
3141 }
3142 BUG_ON(is_zero_pfn(page_to_pfn(page)));
3143
3144 /*
3145 * Avoid grouping on DSO/COW pages in specific and RO pages
3146 * in general, RO pages shouldn't hurt as much anyway since
3147 * they can be in shared cache state.
3148 */
3149 if (!pte_write(pte))
3150 flags |= TNF_NO_GROUP;
3151
3152 /*
3153 * Flag if the page is shared between multiple address spaces. This
3154 * is later used when determining whether to group tasks together
3155 */
3156 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3157 flags |= TNF_SHARED;
3158
3159 last_cpupid = page_cpupid_last(page);
3160 page_nid = page_to_nid(page);
3161 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3162 pte_unmap_unlock(ptep, ptl);
3163 if (target_nid == -1) {
3164 put_page(page);
3165 goto out;
3166 }
3167
3168 /* Migrate to the requested node */
3169 migrated = migrate_misplaced_page(page, vma, target_nid);
3170 if (migrated) {
3171 page_nid = target_nid;
3172 flags |= TNF_MIGRATED;
3173 }
3174
3175 out:
3176 if (page_nid != -1)
3177 task_numa_fault(last_cpupid, page_nid, 1, flags);
3178 return 0;
3179 }
3180
3181 /*
3182 * These routines also need to handle stuff like marking pages dirty
3183 * and/or accessed for architectures that don't do it in hardware (most
3184 * RISC architectures). The early dirtying is also good on the i386.
3185 *
3186 * There is also a hook called "update_mmu_cache()" that architectures
3187 * with external mmu caches can use to update those (ie the Sparc or
3188 * PowerPC hashed page tables that act as extended TLBs).
3189 *
3190 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3191 * but allow concurrent faults), and pte mapped but not yet locked.
3192 * We return with pte unmapped and unlocked.
3193 *
3194 * The mmap_sem may have been released depending on flags and our
3195 * return value. See filemap_fault() and __lock_page_or_retry().
3196 */
3197 static int handle_pte_fault(struct mm_struct *mm,
3198 struct vm_area_struct *vma, unsigned long address,
3199 pte_t *pte, pmd_t *pmd, unsigned int flags)
3200 {
3201 pte_t entry;
3202 spinlock_t *ptl;
3203
3204 entry = ACCESS_ONCE(*pte);
3205 if (!pte_present(entry)) {
3206 if (pte_none(entry)) {
3207 if (vma->vm_ops) {
3208 if (likely(vma->vm_ops->fault))
3209 return do_linear_fault(mm, vma, address,
3210 pte, pmd, flags, entry);
3211 }
3212 return do_anonymous_page(mm, vma, address,
3213 pte, pmd, flags);
3214 }
3215 if (pte_file(entry))
3216 return do_nonlinear_fault(mm, vma, address,
3217 pte, pmd, flags, entry);
3218 return do_swap_page(mm, vma, address,
3219 pte, pmd, flags, entry);
3220 }
3221
3222 if (pte_numa(entry))
3223 return do_numa_page(mm, vma, address, entry, pte, pmd);
3224
3225 ptl = pte_lockptr(mm, pmd);
3226 spin_lock(ptl);
3227 if (unlikely(!pte_same(*pte, entry)))
3228 goto unlock;
3229 if (flags & FAULT_FLAG_WRITE) {
3230 if (!pte_write(entry))
3231 return do_wp_page(mm, vma, address,
3232 pte, pmd, ptl, entry);
3233 entry = pte_mkdirty(entry);
3234 }
3235 entry = pte_mkyoung(entry);
3236 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3237 update_mmu_cache(vma, address, pte);
3238 } else {
3239 /*
3240 * This is needed only for protection faults but the arch code
3241 * is not yet telling us if this is a protection fault or not.
3242 * This still avoids useless tlb flushes for .text page faults
3243 * with threads.
3244 */
3245 if (flags & FAULT_FLAG_WRITE)
3246 flush_tlb_fix_spurious_fault(vma, address);
3247 }
3248 unlock:
3249 pte_unmap_unlock(pte, ptl);
3250 return 0;
3251 }
3252
3253 /*
3254 * By the time we get here, we already hold the mm semaphore
3255 *
3256 * The mmap_sem may have been released depending on flags and our
3257 * return value. See filemap_fault() and __lock_page_or_retry().
3258 */
3259 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3260 unsigned long address, unsigned int flags)
3261 {
3262 pgd_t *pgd;
3263 pud_t *pud;
3264 pmd_t *pmd;
3265 pte_t *pte;
3266
3267 if (unlikely(is_vm_hugetlb_page(vma)))
3268 return hugetlb_fault(mm, vma, address, flags);
3269
3270 pgd = pgd_offset(mm, address);
3271 pud = pud_alloc(mm, pgd, address);
3272 if (!pud)
3273 return VM_FAULT_OOM;
3274 pmd = pmd_alloc(mm, pud, address);
3275 if (!pmd)
3276 return VM_FAULT_OOM;
3277 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3278 int ret = VM_FAULT_FALLBACK;
3279 if (!vma->vm_ops)
3280 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3281 pmd, flags);
3282 if (!(ret & VM_FAULT_FALLBACK))
3283 return ret;
3284 } else {
3285 pmd_t orig_pmd = *pmd;
3286 int ret;
3287
3288 barrier();
3289 if (pmd_trans_huge(orig_pmd)) {
3290 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3291
3292 /*
3293 * If the pmd is splitting, return and retry the
3294 * the fault. Alternative: wait until the split
3295 * is done, and goto retry.
3296 */
3297 if (pmd_trans_splitting(orig_pmd))
3298 return 0;
3299
3300 if (pmd_numa(orig_pmd))
3301 return do_huge_pmd_numa_page(mm, vma, address,
3302 orig_pmd, pmd);
3303
3304 if (dirty && !pmd_write(orig_pmd)) {
3305 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3306 orig_pmd);
3307 if (!(ret & VM_FAULT_FALLBACK))
3308 return ret;
3309 } else {
3310 huge_pmd_set_accessed(mm, vma, address, pmd,
3311 orig_pmd, dirty);
3312 return 0;
3313 }
3314 }
3315 }
3316
3317 /*
3318 * Use __pte_alloc instead of pte_alloc_map, because we can't
3319 * run pte_offset_map on the pmd, if an huge pmd could
3320 * materialize from under us from a different thread.
3321 */
3322 if (unlikely(pmd_none(*pmd)) &&
3323 unlikely(__pte_alloc(mm, vma, pmd, address)))
3324 return VM_FAULT_OOM;
3325 /* if an huge pmd materialized from under us just retry later */
3326 if (unlikely(pmd_trans_huge(*pmd)))
3327 return 0;
3328 /*
3329 * A regular pmd is established and it can't morph into a huge pmd
3330 * from under us anymore at this point because we hold the mmap_sem
3331 * read mode and khugepaged takes it in write mode. So now it's
3332 * safe to run pte_offset_map().
3333 */
3334 pte = pte_offset_map(pmd, address);
3335
3336 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3337 }
3338
3339 /*
3340 * By the time we get here, we already hold the mm semaphore
3341 *
3342 * The mmap_sem may have been released depending on flags and our
3343 * return value. See filemap_fault() and __lock_page_or_retry().
3344 */
3345 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3346 unsigned long address, unsigned int flags)
3347 {
3348 int ret;
3349
3350 __set_current_state(TASK_RUNNING);
3351
3352 count_vm_event(PGFAULT);
3353 mem_cgroup_count_vm_event(mm, PGFAULT);
3354
3355 /* do counter updates before entering really critical section. */
3356 check_sync_rss_stat(current);
3357
3358 /*
3359 * Enable the memcg OOM handling for faults triggered in user
3360 * space. Kernel faults are handled more gracefully.
3361 */
3362 if (flags & FAULT_FLAG_USER)
3363 mem_cgroup_oom_enable();
3364
3365 ret = __handle_mm_fault(mm, vma, address, flags);
3366
3367 if (flags & FAULT_FLAG_USER) {
3368 mem_cgroup_oom_disable();
3369 /*
3370 * The task may have entered a memcg OOM situation but
3371 * if the allocation error was handled gracefully (no
3372 * VM_FAULT_OOM), there is no need to kill anything.
3373 * Just clean up the OOM state peacefully.
3374 */
3375 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3376 mem_cgroup_oom_synchronize(false);
3377 }
3378
3379 return ret;
3380 }
3381
3382 #ifndef __PAGETABLE_PUD_FOLDED
3383 /*
3384 * Allocate page upper directory.
3385 * We've already handled the fast-path in-line.
3386 */
3387 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3388 {
3389 pud_t *new = pud_alloc_one(mm, address);
3390 if (!new)
3391 return -ENOMEM;
3392
3393 smp_wmb(); /* See comment in __pte_alloc */
3394
3395 spin_lock(&mm->page_table_lock);
3396 if (pgd_present(*pgd)) /* Another has populated it */
3397 pud_free(mm, new);
3398 else
3399 pgd_populate(mm, pgd, new);
3400 spin_unlock(&mm->page_table_lock);
3401 return 0;
3402 }
3403 #endif /* __PAGETABLE_PUD_FOLDED */
3404
3405 #ifndef __PAGETABLE_PMD_FOLDED
3406 /*
3407 * Allocate page middle directory.
3408 * We've already handled the fast-path in-line.
3409 */
3410 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3411 {
3412 pmd_t *new = pmd_alloc_one(mm, address);
3413 if (!new)
3414 return -ENOMEM;
3415
3416 smp_wmb(); /* See comment in __pte_alloc */
3417
3418 spin_lock(&mm->page_table_lock);
3419 #ifndef __ARCH_HAS_4LEVEL_HACK
3420 if (pud_present(*pud)) /* Another has populated it */
3421 pmd_free(mm, new);
3422 else
3423 pud_populate(mm, pud, new);
3424 #else
3425 if (pgd_present(*pud)) /* Another has populated it */
3426 pmd_free(mm, new);
3427 else
3428 pgd_populate(mm, pud, new);
3429 #endif /* __ARCH_HAS_4LEVEL_HACK */
3430 spin_unlock(&mm->page_table_lock);
3431 return 0;
3432 }
3433 #endif /* __PAGETABLE_PMD_FOLDED */
3434
3435 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3436 pte_t **ptepp, spinlock_t **ptlp)
3437 {
3438 pgd_t *pgd;
3439 pud_t *pud;
3440 pmd_t *pmd;
3441 pte_t *ptep;
3442
3443 pgd = pgd_offset(mm, address);
3444 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3445 goto out;
3446
3447 pud = pud_offset(pgd, address);
3448 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3449 goto out;
3450
3451 pmd = pmd_offset(pud, address);
3452 VM_BUG_ON(pmd_trans_huge(*pmd));
3453 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3454 goto out;
3455
3456 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3457 if (pmd_huge(*pmd))
3458 goto out;
3459
3460 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3461 if (!ptep)
3462 goto out;
3463 if (!pte_present(*ptep))
3464 goto unlock;
3465 *ptepp = ptep;
3466 return 0;
3467 unlock:
3468 pte_unmap_unlock(ptep, *ptlp);
3469 out:
3470 return -EINVAL;
3471 }
3472
3473 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3474 pte_t **ptepp, spinlock_t **ptlp)
3475 {
3476 int res;
3477
3478 /* (void) is needed to make gcc happy */
3479 (void) __cond_lock(*ptlp,
3480 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3481 return res;
3482 }
3483
3484 /**
3485 * follow_pfn - look up PFN at a user virtual address
3486 * @vma: memory mapping
3487 * @address: user virtual address
3488 * @pfn: location to store found PFN
3489 *
3490 * Only IO mappings and raw PFN mappings are allowed.
3491 *
3492 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3493 */
3494 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3495 unsigned long *pfn)
3496 {
3497 int ret = -EINVAL;
3498 spinlock_t *ptl;
3499 pte_t *ptep;
3500
3501 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3502 return ret;
3503
3504 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3505 if (ret)
3506 return ret;
3507 *pfn = pte_pfn(*ptep);
3508 pte_unmap_unlock(ptep, ptl);
3509 return 0;
3510 }
3511 EXPORT_SYMBOL(follow_pfn);
3512
3513 #ifdef CONFIG_HAVE_IOREMAP_PROT
3514 int follow_phys(struct vm_area_struct *vma,
3515 unsigned long address, unsigned int flags,
3516 unsigned long *prot, resource_size_t *phys)
3517 {
3518 int ret = -EINVAL;
3519 pte_t *ptep, pte;
3520 spinlock_t *ptl;
3521
3522 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3523 goto out;
3524
3525 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3526 goto out;
3527 pte = *ptep;
3528
3529 if ((flags & FOLL_WRITE) && !pte_write(pte))
3530 goto unlock;
3531
3532 *prot = pgprot_val(pte_pgprot(pte));
3533 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3534
3535 ret = 0;
3536 unlock:
3537 pte_unmap_unlock(ptep, ptl);
3538 out:
3539 return ret;
3540 }
3541
3542 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3543 void *buf, int len, int write)
3544 {
3545 resource_size_t phys_addr;
3546 unsigned long prot = 0;
3547 void __iomem *maddr;
3548 int offset = addr & (PAGE_SIZE-1);
3549
3550 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3551 return -EINVAL;
3552
3553 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3554 if (write)
3555 memcpy_toio(maddr + offset, buf, len);
3556 else
3557 memcpy_fromio(buf, maddr + offset, len);
3558 iounmap(maddr);
3559
3560 return len;
3561 }
3562 EXPORT_SYMBOL_GPL(generic_access_phys);
3563 #endif
3564
3565 /*
3566 * Access another process' address space as given in mm. If non-NULL, use the
3567 * given task for page fault accounting.
3568 */
3569 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3570 unsigned long addr, void *buf, int len, int write)
3571 {
3572 struct vm_area_struct *vma;
3573 void *old_buf = buf;
3574
3575 down_read(&mm->mmap_sem);
3576 /* ignore errors, just check how much was successfully transferred */
3577 while (len) {
3578 int bytes, ret, offset;
3579 void *maddr;
3580 struct page *page = NULL;
3581
3582 ret = get_user_pages(tsk, mm, addr, 1,
3583 write, 1, &page, &vma);
3584 if (ret <= 0) {
3585 #ifndef CONFIG_HAVE_IOREMAP_PROT
3586 break;
3587 #else
3588 /*
3589 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3590 * we can access using slightly different code.
3591 */
3592 vma = find_vma(mm, addr);
3593 if (!vma || vma->vm_start > addr)
3594 break;
3595 if (vma->vm_ops && vma->vm_ops->access)
3596 ret = vma->vm_ops->access(vma, addr, buf,
3597 len, write);
3598 if (ret <= 0)
3599 break;
3600 bytes = ret;
3601 #endif
3602 } else {
3603 bytes = len;
3604 offset = addr & (PAGE_SIZE-1);
3605 if (bytes > PAGE_SIZE-offset)
3606 bytes = PAGE_SIZE-offset;
3607
3608 maddr = kmap(page);
3609 if (write) {
3610 copy_to_user_page(vma, page, addr,
3611 maddr + offset, buf, bytes);
3612 set_page_dirty_lock(page);
3613 } else {
3614 copy_from_user_page(vma, page, addr,
3615 buf, maddr + offset, bytes);
3616 }
3617 kunmap(page);
3618 page_cache_release(page);
3619 }
3620 len -= bytes;
3621 buf += bytes;
3622 addr += bytes;
3623 }
3624 up_read(&mm->mmap_sem);
3625
3626 return buf - old_buf;
3627 }
3628
3629 /**
3630 * access_remote_vm - access another process' address space
3631 * @mm: the mm_struct of the target address space
3632 * @addr: start address to access
3633 * @buf: source or destination buffer
3634 * @len: number of bytes to transfer
3635 * @write: whether the access is a write
3636 *
3637 * The caller must hold a reference on @mm.
3638 */
3639 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3640 void *buf, int len, int write)
3641 {
3642 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3643 }
3644
3645 /*
3646 * Access another process' address space.
3647 * Source/target buffer must be kernel space,
3648 * Do not walk the page table directly, use get_user_pages
3649 */
3650 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3651 void *buf, int len, int write)
3652 {
3653 struct mm_struct *mm;
3654 int ret;
3655
3656 mm = get_task_mm(tsk);
3657 if (!mm)
3658 return 0;
3659
3660 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3661 mmput(mm);
3662
3663 return ret;
3664 }
3665
3666 /*
3667 * Print the name of a VMA.
3668 */
3669 void print_vma_addr(char *prefix, unsigned long ip)
3670 {
3671 struct mm_struct *mm = current->mm;
3672 struct vm_area_struct *vma;
3673
3674 /*
3675 * Do not print if we are in atomic
3676 * contexts (in exception stacks, etc.):
3677 */
3678 if (preempt_count())
3679 return;
3680
3681 down_read(&mm->mmap_sem);
3682 vma = find_vma(mm, ip);
3683 if (vma && vma->vm_file) {
3684 struct file *f = vma->vm_file;
3685 char *buf = (char *)__get_free_page(GFP_KERNEL);
3686 if (buf) {
3687 char *p;
3688
3689 p = d_path(&f->f_path, buf, PAGE_SIZE);
3690 if (IS_ERR(p))
3691 p = "?";
3692 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3693 vma->vm_start,
3694 vma->vm_end - vma->vm_start);
3695 free_page((unsigned long)buf);
3696 }
3697 }
3698 up_read(&mm->mmap_sem);
3699 }
3700
3701 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3702 void might_fault(void)
3703 {
3704 /*
3705 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3706 * holding the mmap_sem, this is safe because kernel memory doesn't
3707 * get paged out, therefore we'll never actually fault, and the
3708 * below annotations will generate false positives.
3709 */
3710 if (segment_eq(get_fs(), KERNEL_DS))
3711 return;
3712
3713 /*
3714 * it would be nicer only to annotate paths which are not under
3715 * pagefault_disable, however that requires a larger audit and
3716 * providing helpers like get_user_atomic.
3717 */
3718 if (in_atomic())
3719 return;
3720
3721 __might_sleep(__FILE__, __LINE__, 0);
3722
3723 if (current->mm)
3724 might_lock_read(&current->mm->mmap_sem);
3725 }
3726 EXPORT_SYMBOL(might_fault);
3727 #endif
3728
3729 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3730 static void clear_gigantic_page(struct page *page,
3731 unsigned long addr,
3732 unsigned int pages_per_huge_page)
3733 {
3734 int i;
3735 struct page *p = page;
3736
3737 might_sleep();
3738 for (i = 0; i < pages_per_huge_page;
3739 i++, p = mem_map_next(p, page, i)) {
3740 cond_resched();
3741 clear_user_highpage(p, addr + i * PAGE_SIZE);
3742 }
3743 }
3744 void clear_huge_page(struct page *page,
3745 unsigned long addr, unsigned int pages_per_huge_page)
3746 {
3747 int i;
3748
3749 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3750 clear_gigantic_page(page, addr, pages_per_huge_page);
3751 return;
3752 }
3753
3754 might_sleep();
3755 for (i = 0; i < pages_per_huge_page; i++) {
3756 cond_resched();
3757 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3758 }
3759 }
3760
3761 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3762 unsigned long addr,
3763 struct vm_area_struct *vma,
3764 unsigned int pages_per_huge_page)
3765 {
3766 int i;
3767 struct page *dst_base = dst;
3768 struct page *src_base = src;
3769
3770 for (i = 0; i < pages_per_huge_page; ) {
3771 cond_resched();
3772 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3773
3774 i++;
3775 dst = mem_map_next(dst, dst_base, i);
3776 src = mem_map_next(src, src_base, i);
3777 }
3778 }
3779
3780 void copy_user_huge_page(struct page *dst, struct page *src,
3781 unsigned long addr, struct vm_area_struct *vma,
3782 unsigned int pages_per_huge_page)
3783 {
3784 int i;
3785
3786 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3787 copy_user_gigantic_page(dst, src, addr, vma,
3788 pages_per_huge_page);
3789 return;
3790 }
3791
3792 might_sleep();
3793 for (i = 0; i < pages_per_huge_page; i++) {
3794 cond_resched();
3795 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3796 }
3797 }
3798 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3799
3800 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3801
3802 static struct kmem_cache *page_ptl_cachep;
3803
3804 void __init ptlock_cache_init(void)
3805 {
3806 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3807 SLAB_PANIC, NULL);
3808 }
3809
3810 bool ptlock_alloc(struct page *page)
3811 {
3812 spinlock_t *ptl;
3813
3814 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3815 if (!ptl)
3816 return false;
3817 page->ptl = ptl;
3818 return true;
3819 }
3820
3821 void ptlock_free(struct page *page)
3822 {
3823 kmem_cache_free(page_ptl_cachep, page->ptl);
3824 }
3825 #endif
This page took 0.109159 seconds and 5 git commands to generate.