Merge branch 'sfi-release' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb...
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59
60 #include <asm/io.h>
61 #include <asm/pgalloc.h>
62 #include <asm/uaccess.h>
63 #include <asm/tlb.h>
64 #include <asm/tlbflush.h>
65 #include <asm/pgtable.h>
66
67 #include "internal.h"
68
69 #ifndef CONFIG_NEED_MULTIPLE_NODES
70 /* use the per-pgdat data instead for discontigmem - mbligh */
71 unsigned long max_mapnr;
72 struct page *mem_map;
73
74 EXPORT_SYMBOL(max_mapnr);
75 EXPORT_SYMBOL(mem_map);
76 #endif
77
78 unsigned long num_physpages;
79 /*
80 * A number of key systems in x86 including ioremap() rely on the assumption
81 * that high_memory defines the upper bound on direct map memory, then end
82 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
83 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
84 * and ZONE_HIGHMEM.
85 */
86 void * high_memory;
87
88 EXPORT_SYMBOL(num_physpages);
89 EXPORT_SYMBOL(high_memory);
90
91 /*
92 * Randomize the address space (stacks, mmaps, brk, etc.).
93 *
94 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
95 * as ancient (libc5 based) binaries can segfault. )
96 */
97 int randomize_va_space __read_mostly =
98 #ifdef CONFIG_COMPAT_BRK
99 1;
100 #else
101 2;
102 #endif
103
104 static int __init disable_randmaps(char *s)
105 {
106 randomize_va_space = 0;
107 return 1;
108 }
109 __setup("norandmaps", disable_randmaps);
110
111 unsigned long zero_pfn __read_mostly;
112 unsigned long highest_memmap_pfn __read_mostly;
113
114 /*
115 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
116 */
117 static int __init init_zero_pfn(void)
118 {
119 zero_pfn = page_to_pfn(ZERO_PAGE(0));
120 return 0;
121 }
122 core_initcall(init_zero_pfn);
123
124 /*
125 * If a p?d_bad entry is found while walking page tables, report
126 * the error, before resetting entry to p?d_none. Usually (but
127 * very seldom) called out from the p?d_none_or_clear_bad macros.
128 */
129
130 void pgd_clear_bad(pgd_t *pgd)
131 {
132 pgd_ERROR(*pgd);
133 pgd_clear(pgd);
134 }
135
136 void pud_clear_bad(pud_t *pud)
137 {
138 pud_ERROR(*pud);
139 pud_clear(pud);
140 }
141
142 void pmd_clear_bad(pmd_t *pmd)
143 {
144 pmd_ERROR(*pmd);
145 pmd_clear(pmd);
146 }
147
148 /*
149 * Note: this doesn't free the actual pages themselves. That
150 * has been handled earlier when unmapping all the memory regions.
151 */
152 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
153 unsigned long addr)
154 {
155 pgtable_t token = pmd_pgtable(*pmd);
156 pmd_clear(pmd);
157 pte_free_tlb(tlb, token, addr);
158 tlb->mm->nr_ptes--;
159 }
160
161 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
162 unsigned long addr, unsigned long end,
163 unsigned long floor, unsigned long ceiling)
164 {
165 pmd_t *pmd;
166 unsigned long next;
167 unsigned long start;
168
169 start = addr;
170 pmd = pmd_offset(pud, addr);
171 do {
172 next = pmd_addr_end(addr, end);
173 if (pmd_none_or_clear_bad(pmd))
174 continue;
175 free_pte_range(tlb, pmd, addr);
176 } while (pmd++, addr = next, addr != end);
177
178 start &= PUD_MASK;
179 if (start < floor)
180 return;
181 if (ceiling) {
182 ceiling &= PUD_MASK;
183 if (!ceiling)
184 return;
185 }
186 if (end - 1 > ceiling - 1)
187 return;
188
189 pmd = pmd_offset(pud, start);
190 pud_clear(pud);
191 pmd_free_tlb(tlb, pmd, start);
192 }
193
194 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
195 unsigned long addr, unsigned long end,
196 unsigned long floor, unsigned long ceiling)
197 {
198 pud_t *pud;
199 unsigned long next;
200 unsigned long start;
201
202 start = addr;
203 pud = pud_offset(pgd, addr);
204 do {
205 next = pud_addr_end(addr, end);
206 if (pud_none_or_clear_bad(pud))
207 continue;
208 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
209 } while (pud++, addr = next, addr != end);
210
211 start &= PGDIR_MASK;
212 if (start < floor)
213 return;
214 if (ceiling) {
215 ceiling &= PGDIR_MASK;
216 if (!ceiling)
217 return;
218 }
219 if (end - 1 > ceiling - 1)
220 return;
221
222 pud = pud_offset(pgd, start);
223 pgd_clear(pgd);
224 pud_free_tlb(tlb, pud, start);
225 }
226
227 /*
228 * This function frees user-level page tables of a process.
229 *
230 * Must be called with pagetable lock held.
231 */
232 void free_pgd_range(struct mmu_gather *tlb,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235 {
236 pgd_t *pgd;
237 unsigned long next;
238 unsigned long start;
239
240 /*
241 * The next few lines have given us lots of grief...
242 *
243 * Why are we testing PMD* at this top level? Because often
244 * there will be no work to do at all, and we'd prefer not to
245 * go all the way down to the bottom just to discover that.
246 *
247 * Why all these "- 1"s? Because 0 represents both the bottom
248 * of the address space and the top of it (using -1 for the
249 * top wouldn't help much: the masks would do the wrong thing).
250 * The rule is that addr 0 and floor 0 refer to the bottom of
251 * the address space, but end 0 and ceiling 0 refer to the top
252 * Comparisons need to use "end - 1" and "ceiling - 1" (though
253 * that end 0 case should be mythical).
254 *
255 * Wherever addr is brought up or ceiling brought down, we must
256 * be careful to reject "the opposite 0" before it confuses the
257 * subsequent tests. But what about where end is brought down
258 * by PMD_SIZE below? no, end can't go down to 0 there.
259 *
260 * Whereas we round start (addr) and ceiling down, by different
261 * masks at different levels, in order to test whether a table
262 * now has no other vmas using it, so can be freed, we don't
263 * bother to round floor or end up - the tests don't need that.
264 */
265
266 addr &= PMD_MASK;
267 if (addr < floor) {
268 addr += PMD_SIZE;
269 if (!addr)
270 return;
271 }
272 if (ceiling) {
273 ceiling &= PMD_MASK;
274 if (!ceiling)
275 return;
276 }
277 if (end - 1 > ceiling - 1)
278 end -= PMD_SIZE;
279 if (addr > end - 1)
280 return;
281
282 start = addr;
283 pgd = pgd_offset(tlb->mm, addr);
284 do {
285 next = pgd_addr_end(addr, end);
286 if (pgd_none_or_clear_bad(pgd))
287 continue;
288 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
289 } while (pgd++, addr = next, addr != end);
290 }
291
292 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
293 unsigned long floor, unsigned long ceiling)
294 {
295 while (vma) {
296 struct vm_area_struct *next = vma->vm_next;
297 unsigned long addr = vma->vm_start;
298
299 /*
300 * Hide vma from rmap and vmtruncate before freeing pgtables
301 */
302 anon_vma_unlink(vma);
303 unlink_file_vma(vma);
304
305 if (is_vm_hugetlb_page(vma)) {
306 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
307 floor, next? next->vm_start: ceiling);
308 } else {
309 /*
310 * Optimization: gather nearby vmas into one call down
311 */
312 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
313 && !is_vm_hugetlb_page(next)) {
314 vma = next;
315 next = vma->vm_next;
316 anon_vma_unlink(vma);
317 unlink_file_vma(vma);
318 }
319 free_pgd_range(tlb, addr, vma->vm_end,
320 floor, next? next->vm_start: ceiling);
321 }
322 vma = next;
323 }
324 }
325
326 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
327 {
328 pgtable_t new = pte_alloc_one(mm, address);
329 if (!new)
330 return -ENOMEM;
331
332 /*
333 * Ensure all pte setup (eg. pte page lock and page clearing) are
334 * visible before the pte is made visible to other CPUs by being
335 * put into page tables.
336 *
337 * The other side of the story is the pointer chasing in the page
338 * table walking code (when walking the page table without locking;
339 * ie. most of the time). Fortunately, these data accesses consist
340 * of a chain of data-dependent loads, meaning most CPUs (alpha
341 * being the notable exception) will already guarantee loads are
342 * seen in-order. See the alpha page table accessors for the
343 * smp_read_barrier_depends() barriers in page table walking code.
344 */
345 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
346
347 spin_lock(&mm->page_table_lock);
348 if (!pmd_present(*pmd)) { /* Has another populated it ? */
349 mm->nr_ptes++;
350 pmd_populate(mm, pmd, new);
351 new = NULL;
352 }
353 spin_unlock(&mm->page_table_lock);
354 if (new)
355 pte_free(mm, new);
356 return 0;
357 }
358
359 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
360 {
361 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
362 if (!new)
363 return -ENOMEM;
364
365 smp_wmb(); /* See comment in __pte_alloc */
366
367 spin_lock(&init_mm.page_table_lock);
368 if (!pmd_present(*pmd)) { /* Has another populated it ? */
369 pmd_populate_kernel(&init_mm, pmd, new);
370 new = NULL;
371 }
372 spin_unlock(&init_mm.page_table_lock);
373 if (new)
374 pte_free_kernel(&init_mm, new);
375 return 0;
376 }
377
378 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
379 {
380 if (file_rss)
381 add_mm_counter(mm, file_rss, file_rss);
382 if (anon_rss)
383 add_mm_counter(mm, anon_rss, anon_rss);
384 }
385
386 /*
387 * This function is called to print an error when a bad pte
388 * is found. For example, we might have a PFN-mapped pte in
389 * a region that doesn't allow it.
390 *
391 * The calling function must still handle the error.
392 */
393 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
394 pte_t pte, struct page *page)
395 {
396 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
397 pud_t *pud = pud_offset(pgd, addr);
398 pmd_t *pmd = pmd_offset(pud, addr);
399 struct address_space *mapping;
400 pgoff_t index;
401 static unsigned long resume;
402 static unsigned long nr_shown;
403 static unsigned long nr_unshown;
404
405 /*
406 * Allow a burst of 60 reports, then keep quiet for that minute;
407 * or allow a steady drip of one report per second.
408 */
409 if (nr_shown == 60) {
410 if (time_before(jiffies, resume)) {
411 nr_unshown++;
412 return;
413 }
414 if (nr_unshown) {
415 printk(KERN_ALERT
416 "BUG: Bad page map: %lu messages suppressed\n",
417 nr_unshown);
418 nr_unshown = 0;
419 }
420 nr_shown = 0;
421 }
422 if (nr_shown++ == 0)
423 resume = jiffies + 60 * HZ;
424
425 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
426 index = linear_page_index(vma, addr);
427
428 printk(KERN_ALERT
429 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
430 current->comm,
431 (long long)pte_val(pte), (long long)pmd_val(*pmd));
432 if (page) {
433 printk(KERN_ALERT
434 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
435 page, (void *)page->flags, page_count(page),
436 page_mapcount(page), page->mapping, page->index);
437 }
438 printk(KERN_ALERT
439 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
440 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
441 /*
442 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
443 */
444 if (vma->vm_ops)
445 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
446 (unsigned long)vma->vm_ops->fault);
447 if (vma->vm_file && vma->vm_file->f_op)
448 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
449 (unsigned long)vma->vm_file->f_op->mmap);
450 dump_stack();
451 add_taint(TAINT_BAD_PAGE);
452 }
453
454 static inline int is_cow_mapping(unsigned int flags)
455 {
456 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
457 }
458
459 #ifndef is_zero_pfn
460 static inline int is_zero_pfn(unsigned long pfn)
461 {
462 return pfn == zero_pfn;
463 }
464 #endif
465
466 #ifndef my_zero_pfn
467 static inline unsigned long my_zero_pfn(unsigned long addr)
468 {
469 return zero_pfn;
470 }
471 #endif
472
473 /*
474 * vm_normal_page -- This function gets the "struct page" associated with a pte.
475 *
476 * "Special" mappings do not wish to be associated with a "struct page" (either
477 * it doesn't exist, or it exists but they don't want to touch it). In this
478 * case, NULL is returned here. "Normal" mappings do have a struct page.
479 *
480 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
481 * pte bit, in which case this function is trivial. Secondly, an architecture
482 * may not have a spare pte bit, which requires a more complicated scheme,
483 * described below.
484 *
485 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
486 * special mapping (even if there are underlying and valid "struct pages").
487 * COWed pages of a VM_PFNMAP are always normal.
488 *
489 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
490 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
491 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
492 * mapping will always honor the rule
493 *
494 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
495 *
496 * And for normal mappings this is false.
497 *
498 * This restricts such mappings to be a linear translation from virtual address
499 * to pfn. To get around this restriction, we allow arbitrary mappings so long
500 * as the vma is not a COW mapping; in that case, we know that all ptes are
501 * special (because none can have been COWed).
502 *
503 *
504 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
505 *
506 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
507 * page" backing, however the difference is that _all_ pages with a struct
508 * page (that is, those where pfn_valid is true) are refcounted and considered
509 * normal pages by the VM. The disadvantage is that pages are refcounted
510 * (which can be slower and simply not an option for some PFNMAP users). The
511 * advantage is that we don't have to follow the strict linearity rule of
512 * PFNMAP mappings in order to support COWable mappings.
513 *
514 */
515 #ifdef __HAVE_ARCH_PTE_SPECIAL
516 # define HAVE_PTE_SPECIAL 1
517 #else
518 # define HAVE_PTE_SPECIAL 0
519 #endif
520 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
521 pte_t pte)
522 {
523 unsigned long pfn = pte_pfn(pte);
524
525 if (HAVE_PTE_SPECIAL) {
526 if (likely(!pte_special(pte)))
527 goto check_pfn;
528 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
529 return NULL;
530 if (!is_zero_pfn(pfn))
531 print_bad_pte(vma, addr, pte, NULL);
532 return NULL;
533 }
534
535 /* !HAVE_PTE_SPECIAL case follows: */
536
537 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
538 if (vma->vm_flags & VM_MIXEDMAP) {
539 if (!pfn_valid(pfn))
540 return NULL;
541 goto out;
542 } else {
543 unsigned long off;
544 off = (addr - vma->vm_start) >> PAGE_SHIFT;
545 if (pfn == vma->vm_pgoff + off)
546 return NULL;
547 if (!is_cow_mapping(vma->vm_flags))
548 return NULL;
549 }
550 }
551
552 if (is_zero_pfn(pfn))
553 return NULL;
554 check_pfn:
555 if (unlikely(pfn > highest_memmap_pfn)) {
556 print_bad_pte(vma, addr, pte, NULL);
557 return NULL;
558 }
559
560 /*
561 * NOTE! We still have PageReserved() pages in the page tables.
562 * eg. VDSO mappings can cause them to exist.
563 */
564 out:
565 return pfn_to_page(pfn);
566 }
567
568 /*
569 * copy one vm_area from one task to the other. Assumes the page tables
570 * already present in the new task to be cleared in the whole range
571 * covered by this vma.
572 */
573
574 static inline void
575 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
576 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
577 unsigned long addr, int *rss)
578 {
579 unsigned long vm_flags = vma->vm_flags;
580 pte_t pte = *src_pte;
581 struct page *page;
582
583 /* pte contains position in swap or file, so copy. */
584 if (unlikely(!pte_present(pte))) {
585 if (!pte_file(pte)) {
586 swp_entry_t entry = pte_to_swp_entry(pte);
587
588 swap_duplicate(entry);
589 /* make sure dst_mm is on swapoff's mmlist. */
590 if (unlikely(list_empty(&dst_mm->mmlist))) {
591 spin_lock(&mmlist_lock);
592 if (list_empty(&dst_mm->mmlist))
593 list_add(&dst_mm->mmlist,
594 &src_mm->mmlist);
595 spin_unlock(&mmlist_lock);
596 }
597 if (is_write_migration_entry(entry) &&
598 is_cow_mapping(vm_flags)) {
599 /*
600 * COW mappings require pages in both parent
601 * and child to be set to read.
602 */
603 make_migration_entry_read(&entry);
604 pte = swp_entry_to_pte(entry);
605 set_pte_at(src_mm, addr, src_pte, pte);
606 }
607 }
608 goto out_set_pte;
609 }
610
611 /*
612 * If it's a COW mapping, write protect it both
613 * in the parent and the child
614 */
615 if (is_cow_mapping(vm_flags)) {
616 ptep_set_wrprotect(src_mm, addr, src_pte);
617 pte = pte_wrprotect(pte);
618 }
619
620 /*
621 * If it's a shared mapping, mark it clean in
622 * the child
623 */
624 if (vm_flags & VM_SHARED)
625 pte = pte_mkclean(pte);
626 pte = pte_mkold(pte);
627
628 page = vm_normal_page(vma, addr, pte);
629 if (page) {
630 get_page(page);
631 page_dup_rmap(page);
632 rss[PageAnon(page)]++;
633 }
634
635 out_set_pte:
636 set_pte_at(dst_mm, addr, dst_pte, pte);
637 }
638
639 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
640 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
641 unsigned long addr, unsigned long end)
642 {
643 pte_t *src_pte, *dst_pte;
644 spinlock_t *src_ptl, *dst_ptl;
645 int progress = 0;
646 int rss[2];
647
648 again:
649 rss[1] = rss[0] = 0;
650 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
651 if (!dst_pte)
652 return -ENOMEM;
653 src_pte = pte_offset_map_nested(src_pmd, addr);
654 src_ptl = pte_lockptr(src_mm, src_pmd);
655 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
656 arch_enter_lazy_mmu_mode();
657
658 do {
659 /*
660 * We are holding two locks at this point - either of them
661 * could generate latencies in another task on another CPU.
662 */
663 if (progress >= 32) {
664 progress = 0;
665 if (need_resched() ||
666 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
667 break;
668 }
669 if (pte_none(*src_pte)) {
670 progress++;
671 continue;
672 }
673 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
674 progress += 8;
675 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
676
677 arch_leave_lazy_mmu_mode();
678 spin_unlock(src_ptl);
679 pte_unmap_nested(src_pte - 1);
680 add_mm_rss(dst_mm, rss[0], rss[1]);
681 pte_unmap_unlock(dst_pte - 1, dst_ptl);
682 cond_resched();
683 if (addr != end)
684 goto again;
685 return 0;
686 }
687
688 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
689 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
690 unsigned long addr, unsigned long end)
691 {
692 pmd_t *src_pmd, *dst_pmd;
693 unsigned long next;
694
695 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
696 if (!dst_pmd)
697 return -ENOMEM;
698 src_pmd = pmd_offset(src_pud, addr);
699 do {
700 next = pmd_addr_end(addr, end);
701 if (pmd_none_or_clear_bad(src_pmd))
702 continue;
703 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
704 vma, addr, next))
705 return -ENOMEM;
706 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
707 return 0;
708 }
709
710 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
712 unsigned long addr, unsigned long end)
713 {
714 pud_t *src_pud, *dst_pud;
715 unsigned long next;
716
717 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
718 if (!dst_pud)
719 return -ENOMEM;
720 src_pud = pud_offset(src_pgd, addr);
721 do {
722 next = pud_addr_end(addr, end);
723 if (pud_none_or_clear_bad(src_pud))
724 continue;
725 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
726 vma, addr, next))
727 return -ENOMEM;
728 } while (dst_pud++, src_pud++, addr = next, addr != end);
729 return 0;
730 }
731
732 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
733 struct vm_area_struct *vma)
734 {
735 pgd_t *src_pgd, *dst_pgd;
736 unsigned long next;
737 unsigned long addr = vma->vm_start;
738 unsigned long end = vma->vm_end;
739 int ret;
740
741 /*
742 * Don't copy ptes where a page fault will fill them correctly.
743 * Fork becomes much lighter when there are big shared or private
744 * readonly mappings. The tradeoff is that copy_page_range is more
745 * efficient than faulting.
746 */
747 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
748 if (!vma->anon_vma)
749 return 0;
750 }
751
752 if (is_vm_hugetlb_page(vma))
753 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
754
755 if (unlikely(is_pfn_mapping(vma))) {
756 /*
757 * We do not free on error cases below as remove_vma
758 * gets called on error from higher level routine
759 */
760 ret = track_pfn_vma_copy(vma);
761 if (ret)
762 return ret;
763 }
764
765 /*
766 * We need to invalidate the secondary MMU mappings only when
767 * there could be a permission downgrade on the ptes of the
768 * parent mm. And a permission downgrade will only happen if
769 * is_cow_mapping() returns true.
770 */
771 if (is_cow_mapping(vma->vm_flags))
772 mmu_notifier_invalidate_range_start(src_mm, addr, end);
773
774 ret = 0;
775 dst_pgd = pgd_offset(dst_mm, addr);
776 src_pgd = pgd_offset(src_mm, addr);
777 do {
778 next = pgd_addr_end(addr, end);
779 if (pgd_none_or_clear_bad(src_pgd))
780 continue;
781 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
782 vma, addr, next))) {
783 ret = -ENOMEM;
784 break;
785 }
786 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
787
788 if (is_cow_mapping(vma->vm_flags))
789 mmu_notifier_invalidate_range_end(src_mm,
790 vma->vm_start, end);
791 return ret;
792 }
793
794 static unsigned long zap_pte_range(struct mmu_gather *tlb,
795 struct vm_area_struct *vma, pmd_t *pmd,
796 unsigned long addr, unsigned long end,
797 long *zap_work, struct zap_details *details)
798 {
799 struct mm_struct *mm = tlb->mm;
800 pte_t *pte;
801 spinlock_t *ptl;
802 int file_rss = 0;
803 int anon_rss = 0;
804
805 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
806 arch_enter_lazy_mmu_mode();
807 do {
808 pte_t ptent = *pte;
809 if (pte_none(ptent)) {
810 (*zap_work)--;
811 continue;
812 }
813
814 (*zap_work) -= PAGE_SIZE;
815
816 if (pte_present(ptent)) {
817 struct page *page;
818
819 page = vm_normal_page(vma, addr, ptent);
820 if (unlikely(details) && page) {
821 /*
822 * unmap_shared_mapping_pages() wants to
823 * invalidate cache without truncating:
824 * unmap shared but keep private pages.
825 */
826 if (details->check_mapping &&
827 details->check_mapping != page->mapping)
828 continue;
829 /*
830 * Each page->index must be checked when
831 * invalidating or truncating nonlinear.
832 */
833 if (details->nonlinear_vma &&
834 (page->index < details->first_index ||
835 page->index > details->last_index))
836 continue;
837 }
838 ptent = ptep_get_and_clear_full(mm, addr, pte,
839 tlb->fullmm);
840 tlb_remove_tlb_entry(tlb, pte, addr);
841 if (unlikely(!page))
842 continue;
843 if (unlikely(details) && details->nonlinear_vma
844 && linear_page_index(details->nonlinear_vma,
845 addr) != page->index)
846 set_pte_at(mm, addr, pte,
847 pgoff_to_pte(page->index));
848 if (PageAnon(page))
849 anon_rss--;
850 else {
851 if (pte_dirty(ptent))
852 set_page_dirty(page);
853 if (pte_young(ptent) &&
854 likely(!VM_SequentialReadHint(vma)))
855 mark_page_accessed(page);
856 file_rss--;
857 }
858 page_remove_rmap(page);
859 if (unlikely(page_mapcount(page) < 0))
860 print_bad_pte(vma, addr, ptent, page);
861 tlb_remove_page(tlb, page);
862 continue;
863 }
864 /*
865 * If details->check_mapping, we leave swap entries;
866 * if details->nonlinear_vma, we leave file entries.
867 */
868 if (unlikely(details))
869 continue;
870 if (pte_file(ptent)) {
871 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
872 print_bad_pte(vma, addr, ptent, NULL);
873 } else if
874 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
875 print_bad_pte(vma, addr, ptent, NULL);
876 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
877 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
878
879 add_mm_rss(mm, file_rss, anon_rss);
880 arch_leave_lazy_mmu_mode();
881 pte_unmap_unlock(pte - 1, ptl);
882
883 return addr;
884 }
885
886 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
887 struct vm_area_struct *vma, pud_t *pud,
888 unsigned long addr, unsigned long end,
889 long *zap_work, struct zap_details *details)
890 {
891 pmd_t *pmd;
892 unsigned long next;
893
894 pmd = pmd_offset(pud, addr);
895 do {
896 next = pmd_addr_end(addr, end);
897 if (pmd_none_or_clear_bad(pmd)) {
898 (*zap_work)--;
899 continue;
900 }
901 next = zap_pte_range(tlb, vma, pmd, addr, next,
902 zap_work, details);
903 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
904
905 return addr;
906 }
907
908 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
909 struct vm_area_struct *vma, pgd_t *pgd,
910 unsigned long addr, unsigned long end,
911 long *zap_work, struct zap_details *details)
912 {
913 pud_t *pud;
914 unsigned long next;
915
916 pud = pud_offset(pgd, addr);
917 do {
918 next = pud_addr_end(addr, end);
919 if (pud_none_or_clear_bad(pud)) {
920 (*zap_work)--;
921 continue;
922 }
923 next = zap_pmd_range(tlb, vma, pud, addr, next,
924 zap_work, details);
925 } while (pud++, addr = next, (addr != end && *zap_work > 0));
926
927 return addr;
928 }
929
930 static unsigned long unmap_page_range(struct mmu_gather *tlb,
931 struct vm_area_struct *vma,
932 unsigned long addr, unsigned long end,
933 long *zap_work, struct zap_details *details)
934 {
935 pgd_t *pgd;
936 unsigned long next;
937
938 if (details && !details->check_mapping && !details->nonlinear_vma)
939 details = NULL;
940
941 BUG_ON(addr >= end);
942 tlb_start_vma(tlb, vma);
943 pgd = pgd_offset(vma->vm_mm, addr);
944 do {
945 next = pgd_addr_end(addr, end);
946 if (pgd_none_or_clear_bad(pgd)) {
947 (*zap_work)--;
948 continue;
949 }
950 next = zap_pud_range(tlb, vma, pgd, addr, next,
951 zap_work, details);
952 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
953 tlb_end_vma(tlb, vma);
954
955 return addr;
956 }
957
958 #ifdef CONFIG_PREEMPT
959 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
960 #else
961 /* No preempt: go for improved straight-line efficiency */
962 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
963 #endif
964
965 /**
966 * unmap_vmas - unmap a range of memory covered by a list of vma's
967 * @tlbp: address of the caller's struct mmu_gather
968 * @vma: the starting vma
969 * @start_addr: virtual address at which to start unmapping
970 * @end_addr: virtual address at which to end unmapping
971 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
972 * @details: details of nonlinear truncation or shared cache invalidation
973 *
974 * Returns the end address of the unmapping (restart addr if interrupted).
975 *
976 * Unmap all pages in the vma list.
977 *
978 * We aim to not hold locks for too long (for scheduling latency reasons).
979 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
980 * return the ending mmu_gather to the caller.
981 *
982 * Only addresses between `start' and `end' will be unmapped.
983 *
984 * The VMA list must be sorted in ascending virtual address order.
985 *
986 * unmap_vmas() assumes that the caller will flush the whole unmapped address
987 * range after unmap_vmas() returns. So the only responsibility here is to
988 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
989 * drops the lock and schedules.
990 */
991 unsigned long unmap_vmas(struct mmu_gather **tlbp,
992 struct vm_area_struct *vma, unsigned long start_addr,
993 unsigned long end_addr, unsigned long *nr_accounted,
994 struct zap_details *details)
995 {
996 long zap_work = ZAP_BLOCK_SIZE;
997 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
998 int tlb_start_valid = 0;
999 unsigned long start = start_addr;
1000 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
1001 int fullmm = (*tlbp)->fullmm;
1002 struct mm_struct *mm = vma->vm_mm;
1003
1004 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1005 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1006 unsigned long end;
1007
1008 start = max(vma->vm_start, start_addr);
1009 if (start >= vma->vm_end)
1010 continue;
1011 end = min(vma->vm_end, end_addr);
1012 if (end <= vma->vm_start)
1013 continue;
1014
1015 if (vma->vm_flags & VM_ACCOUNT)
1016 *nr_accounted += (end - start) >> PAGE_SHIFT;
1017
1018 if (unlikely(is_pfn_mapping(vma)))
1019 untrack_pfn_vma(vma, 0, 0);
1020
1021 while (start != end) {
1022 if (!tlb_start_valid) {
1023 tlb_start = start;
1024 tlb_start_valid = 1;
1025 }
1026
1027 if (unlikely(is_vm_hugetlb_page(vma))) {
1028 /*
1029 * It is undesirable to test vma->vm_file as it
1030 * should be non-null for valid hugetlb area.
1031 * However, vm_file will be NULL in the error
1032 * cleanup path of do_mmap_pgoff. When
1033 * hugetlbfs ->mmap method fails,
1034 * do_mmap_pgoff() nullifies vma->vm_file
1035 * before calling this function to clean up.
1036 * Since no pte has actually been setup, it is
1037 * safe to do nothing in this case.
1038 */
1039 if (vma->vm_file) {
1040 unmap_hugepage_range(vma, start, end, NULL);
1041 zap_work -= (end - start) /
1042 pages_per_huge_page(hstate_vma(vma));
1043 }
1044
1045 start = end;
1046 } else
1047 start = unmap_page_range(*tlbp, vma,
1048 start, end, &zap_work, details);
1049
1050 if (zap_work > 0) {
1051 BUG_ON(start != end);
1052 break;
1053 }
1054
1055 tlb_finish_mmu(*tlbp, tlb_start, start);
1056
1057 if (need_resched() ||
1058 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1059 if (i_mmap_lock) {
1060 *tlbp = NULL;
1061 goto out;
1062 }
1063 cond_resched();
1064 }
1065
1066 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1067 tlb_start_valid = 0;
1068 zap_work = ZAP_BLOCK_SIZE;
1069 }
1070 }
1071 out:
1072 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1073 return start; /* which is now the end (or restart) address */
1074 }
1075
1076 /**
1077 * zap_page_range - remove user pages in a given range
1078 * @vma: vm_area_struct holding the applicable pages
1079 * @address: starting address of pages to zap
1080 * @size: number of bytes to zap
1081 * @details: details of nonlinear truncation or shared cache invalidation
1082 */
1083 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1084 unsigned long size, struct zap_details *details)
1085 {
1086 struct mm_struct *mm = vma->vm_mm;
1087 struct mmu_gather *tlb;
1088 unsigned long end = address + size;
1089 unsigned long nr_accounted = 0;
1090
1091 lru_add_drain();
1092 tlb = tlb_gather_mmu(mm, 0);
1093 update_hiwater_rss(mm);
1094 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1095 if (tlb)
1096 tlb_finish_mmu(tlb, address, end);
1097 return end;
1098 }
1099
1100 /**
1101 * zap_vma_ptes - remove ptes mapping the vma
1102 * @vma: vm_area_struct holding ptes to be zapped
1103 * @address: starting address of pages to zap
1104 * @size: number of bytes to zap
1105 *
1106 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1107 *
1108 * The entire address range must be fully contained within the vma.
1109 *
1110 * Returns 0 if successful.
1111 */
1112 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1113 unsigned long size)
1114 {
1115 if (address < vma->vm_start || address + size > vma->vm_end ||
1116 !(vma->vm_flags & VM_PFNMAP))
1117 return -1;
1118 zap_page_range(vma, address, size, NULL);
1119 return 0;
1120 }
1121 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1122
1123 /*
1124 * Do a quick page-table lookup for a single page.
1125 */
1126 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1127 unsigned int flags)
1128 {
1129 pgd_t *pgd;
1130 pud_t *pud;
1131 pmd_t *pmd;
1132 pte_t *ptep, pte;
1133 spinlock_t *ptl;
1134 struct page *page;
1135 struct mm_struct *mm = vma->vm_mm;
1136
1137 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1138 if (!IS_ERR(page)) {
1139 BUG_ON(flags & FOLL_GET);
1140 goto out;
1141 }
1142
1143 page = NULL;
1144 pgd = pgd_offset(mm, address);
1145 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1146 goto no_page_table;
1147
1148 pud = pud_offset(pgd, address);
1149 if (pud_none(*pud))
1150 goto no_page_table;
1151 if (pud_huge(*pud)) {
1152 BUG_ON(flags & FOLL_GET);
1153 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1154 goto out;
1155 }
1156 if (unlikely(pud_bad(*pud)))
1157 goto no_page_table;
1158
1159 pmd = pmd_offset(pud, address);
1160 if (pmd_none(*pmd))
1161 goto no_page_table;
1162 if (pmd_huge(*pmd)) {
1163 BUG_ON(flags & FOLL_GET);
1164 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1165 goto out;
1166 }
1167 if (unlikely(pmd_bad(*pmd)))
1168 goto no_page_table;
1169
1170 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1171
1172 pte = *ptep;
1173 if (!pte_present(pte))
1174 goto no_page;
1175 if ((flags & FOLL_WRITE) && !pte_write(pte))
1176 goto unlock;
1177
1178 page = vm_normal_page(vma, address, pte);
1179 if (unlikely(!page)) {
1180 if ((flags & FOLL_DUMP) ||
1181 !is_zero_pfn(pte_pfn(pte)))
1182 goto bad_page;
1183 page = pte_page(pte);
1184 }
1185
1186 if (flags & FOLL_GET)
1187 get_page(page);
1188 if (flags & FOLL_TOUCH) {
1189 if ((flags & FOLL_WRITE) &&
1190 !pte_dirty(pte) && !PageDirty(page))
1191 set_page_dirty(page);
1192 /*
1193 * pte_mkyoung() would be more correct here, but atomic care
1194 * is needed to avoid losing the dirty bit: it is easier to use
1195 * mark_page_accessed().
1196 */
1197 mark_page_accessed(page);
1198 }
1199 unlock:
1200 pte_unmap_unlock(ptep, ptl);
1201 out:
1202 return page;
1203
1204 bad_page:
1205 pte_unmap_unlock(ptep, ptl);
1206 return ERR_PTR(-EFAULT);
1207
1208 no_page:
1209 pte_unmap_unlock(ptep, ptl);
1210 if (!pte_none(pte))
1211 return page;
1212
1213 no_page_table:
1214 /*
1215 * When core dumping an enormous anonymous area that nobody
1216 * has touched so far, we don't want to allocate unnecessary pages or
1217 * page tables. Return error instead of NULL to skip handle_mm_fault,
1218 * then get_dump_page() will return NULL to leave a hole in the dump.
1219 * But we can only make this optimization where a hole would surely
1220 * be zero-filled if handle_mm_fault() actually did handle it.
1221 */
1222 if ((flags & FOLL_DUMP) &&
1223 (!vma->vm_ops || !vma->vm_ops->fault))
1224 return ERR_PTR(-EFAULT);
1225 return page;
1226 }
1227
1228 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1229 unsigned long start, int nr_pages, unsigned int gup_flags,
1230 struct page **pages, struct vm_area_struct **vmas)
1231 {
1232 int i;
1233 unsigned long vm_flags;
1234
1235 if (nr_pages <= 0)
1236 return 0;
1237
1238 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1239
1240 /*
1241 * Require read or write permissions.
1242 * If FOLL_FORCE is set, we only require the "MAY" flags.
1243 */
1244 vm_flags = (gup_flags & FOLL_WRITE) ?
1245 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1246 vm_flags &= (gup_flags & FOLL_FORCE) ?
1247 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1248 i = 0;
1249
1250 do {
1251 struct vm_area_struct *vma;
1252
1253 vma = find_extend_vma(mm, start);
1254 if (!vma && in_gate_area(tsk, start)) {
1255 unsigned long pg = start & PAGE_MASK;
1256 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1257 pgd_t *pgd;
1258 pud_t *pud;
1259 pmd_t *pmd;
1260 pte_t *pte;
1261
1262 /* user gate pages are read-only */
1263 if (gup_flags & FOLL_WRITE)
1264 return i ? : -EFAULT;
1265 if (pg > TASK_SIZE)
1266 pgd = pgd_offset_k(pg);
1267 else
1268 pgd = pgd_offset_gate(mm, pg);
1269 BUG_ON(pgd_none(*pgd));
1270 pud = pud_offset(pgd, pg);
1271 BUG_ON(pud_none(*pud));
1272 pmd = pmd_offset(pud, pg);
1273 if (pmd_none(*pmd))
1274 return i ? : -EFAULT;
1275 pte = pte_offset_map(pmd, pg);
1276 if (pte_none(*pte)) {
1277 pte_unmap(pte);
1278 return i ? : -EFAULT;
1279 }
1280 if (pages) {
1281 struct page *page = vm_normal_page(gate_vma, start, *pte);
1282 pages[i] = page;
1283 if (page)
1284 get_page(page);
1285 }
1286 pte_unmap(pte);
1287 if (vmas)
1288 vmas[i] = gate_vma;
1289 i++;
1290 start += PAGE_SIZE;
1291 nr_pages--;
1292 continue;
1293 }
1294
1295 if (!vma ||
1296 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1297 !(vm_flags & vma->vm_flags))
1298 return i ? : -EFAULT;
1299
1300 if (is_vm_hugetlb_page(vma)) {
1301 i = follow_hugetlb_page(mm, vma, pages, vmas,
1302 &start, &nr_pages, i, gup_flags);
1303 continue;
1304 }
1305
1306 do {
1307 struct page *page;
1308 unsigned int foll_flags = gup_flags;
1309
1310 /*
1311 * If we have a pending SIGKILL, don't keep faulting
1312 * pages and potentially allocating memory.
1313 */
1314 if (unlikely(fatal_signal_pending(current)))
1315 return i ? i : -ERESTARTSYS;
1316
1317 cond_resched();
1318 while (!(page = follow_page(vma, start, foll_flags))) {
1319 int ret;
1320
1321 ret = handle_mm_fault(mm, vma, start,
1322 (foll_flags & FOLL_WRITE) ?
1323 FAULT_FLAG_WRITE : 0);
1324
1325 if (ret & VM_FAULT_ERROR) {
1326 if (ret & VM_FAULT_OOM)
1327 return i ? i : -ENOMEM;
1328 else if (ret & VM_FAULT_SIGBUS)
1329 return i ? i : -EFAULT;
1330 BUG();
1331 }
1332 if (ret & VM_FAULT_MAJOR)
1333 tsk->maj_flt++;
1334 else
1335 tsk->min_flt++;
1336
1337 /*
1338 * The VM_FAULT_WRITE bit tells us that
1339 * do_wp_page has broken COW when necessary,
1340 * even if maybe_mkwrite decided not to set
1341 * pte_write. We can thus safely do subsequent
1342 * page lookups as if they were reads. But only
1343 * do so when looping for pte_write is futile:
1344 * in some cases userspace may also be wanting
1345 * to write to the gotten user page, which a
1346 * read fault here might prevent (a readonly
1347 * page might get reCOWed by userspace write).
1348 */
1349 if ((ret & VM_FAULT_WRITE) &&
1350 !(vma->vm_flags & VM_WRITE))
1351 foll_flags &= ~FOLL_WRITE;
1352
1353 cond_resched();
1354 }
1355 if (IS_ERR(page))
1356 return i ? i : PTR_ERR(page);
1357 if (pages) {
1358 pages[i] = page;
1359
1360 flush_anon_page(vma, page, start);
1361 flush_dcache_page(page);
1362 }
1363 if (vmas)
1364 vmas[i] = vma;
1365 i++;
1366 start += PAGE_SIZE;
1367 nr_pages--;
1368 } while (nr_pages && start < vma->vm_end);
1369 } while (nr_pages);
1370 return i;
1371 }
1372
1373 /**
1374 * get_user_pages() - pin user pages in memory
1375 * @tsk: task_struct of target task
1376 * @mm: mm_struct of target mm
1377 * @start: starting user address
1378 * @nr_pages: number of pages from start to pin
1379 * @write: whether pages will be written to by the caller
1380 * @force: whether to force write access even if user mapping is
1381 * readonly. This will result in the page being COWed even
1382 * in MAP_SHARED mappings. You do not want this.
1383 * @pages: array that receives pointers to the pages pinned.
1384 * Should be at least nr_pages long. Or NULL, if caller
1385 * only intends to ensure the pages are faulted in.
1386 * @vmas: array of pointers to vmas corresponding to each page.
1387 * Or NULL if the caller does not require them.
1388 *
1389 * Returns number of pages pinned. This may be fewer than the number
1390 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1391 * were pinned, returns -errno. Each page returned must be released
1392 * with a put_page() call when it is finished with. vmas will only
1393 * remain valid while mmap_sem is held.
1394 *
1395 * Must be called with mmap_sem held for read or write.
1396 *
1397 * get_user_pages walks a process's page tables and takes a reference to
1398 * each struct page that each user address corresponds to at a given
1399 * instant. That is, it takes the page that would be accessed if a user
1400 * thread accesses the given user virtual address at that instant.
1401 *
1402 * This does not guarantee that the page exists in the user mappings when
1403 * get_user_pages returns, and there may even be a completely different
1404 * page there in some cases (eg. if mmapped pagecache has been invalidated
1405 * and subsequently re faulted). However it does guarantee that the page
1406 * won't be freed completely. And mostly callers simply care that the page
1407 * contains data that was valid *at some point in time*. Typically, an IO
1408 * or similar operation cannot guarantee anything stronger anyway because
1409 * locks can't be held over the syscall boundary.
1410 *
1411 * If write=0, the page must not be written to. If the page is written to,
1412 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1413 * after the page is finished with, and before put_page is called.
1414 *
1415 * get_user_pages is typically used for fewer-copy IO operations, to get a
1416 * handle on the memory by some means other than accesses via the user virtual
1417 * addresses. The pages may be submitted for DMA to devices or accessed via
1418 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1419 * use the correct cache flushing APIs.
1420 *
1421 * See also get_user_pages_fast, for performance critical applications.
1422 */
1423 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1424 unsigned long start, int nr_pages, int write, int force,
1425 struct page **pages, struct vm_area_struct **vmas)
1426 {
1427 int flags = FOLL_TOUCH;
1428
1429 if (pages)
1430 flags |= FOLL_GET;
1431 if (write)
1432 flags |= FOLL_WRITE;
1433 if (force)
1434 flags |= FOLL_FORCE;
1435
1436 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1437 }
1438 EXPORT_SYMBOL(get_user_pages);
1439
1440 /**
1441 * get_dump_page() - pin user page in memory while writing it to core dump
1442 * @addr: user address
1443 *
1444 * Returns struct page pointer of user page pinned for dump,
1445 * to be freed afterwards by page_cache_release() or put_page().
1446 *
1447 * Returns NULL on any kind of failure - a hole must then be inserted into
1448 * the corefile, to preserve alignment with its headers; and also returns
1449 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1450 * allowing a hole to be left in the corefile to save diskspace.
1451 *
1452 * Called without mmap_sem, but after all other threads have been killed.
1453 */
1454 #ifdef CONFIG_ELF_CORE
1455 struct page *get_dump_page(unsigned long addr)
1456 {
1457 struct vm_area_struct *vma;
1458 struct page *page;
1459
1460 if (__get_user_pages(current, current->mm, addr, 1,
1461 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1)
1462 return NULL;
1463 flush_cache_page(vma, addr, page_to_pfn(page));
1464 return page;
1465 }
1466 #endif /* CONFIG_ELF_CORE */
1467
1468 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1469 spinlock_t **ptl)
1470 {
1471 pgd_t * pgd = pgd_offset(mm, addr);
1472 pud_t * pud = pud_alloc(mm, pgd, addr);
1473 if (pud) {
1474 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1475 if (pmd)
1476 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1477 }
1478 return NULL;
1479 }
1480
1481 /*
1482 * This is the old fallback for page remapping.
1483 *
1484 * For historical reasons, it only allows reserved pages. Only
1485 * old drivers should use this, and they needed to mark their
1486 * pages reserved for the old functions anyway.
1487 */
1488 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1489 struct page *page, pgprot_t prot)
1490 {
1491 struct mm_struct *mm = vma->vm_mm;
1492 int retval;
1493 pte_t *pte;
1494 spinlock_t *ptl;
1495
1496 retval = -EINVAL;
1497 if (PageAnon(page))
1498 goto out;
1499 retval = -ENOMEM;
1500 flush_dcache_page(page);
1501 pte = get_locked_pte(mm, addr, &ptl);
1502 if (!pte)
1503 goto out;
1504 retval = -EBUSY;
1505 if (!pte_none(*pte))
1506 goto out_unlock;
1507
1508 /* Ok, finally just insert the thing.. */
1509 get_page(page);
1510 inc_mm_counter(mm, file_rss);
1511 page_add_file_rmap(page);
1512 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1513
1514 retval = 0;
1515 pte_unmap_unlock(pte, ptl);
1516 return retval;
1517 out_unlock:
1518 pte_unmap_unlock(pte, ptl);
1519 out:
1520 return retval;
1521 }
1522
1523 /**
1524 * vm_insert_page - insert single page into user vma
1525 * @vma: user vma to map to
1526 * @addr: target user address of this page
1527 * @page: source kernel page
1528 *
1529 * This allows drivers to insert individual pages they've allocated
1530 * into a user vma.
1531 *
1532 * The page has to be a nice clean _individual_ kernel allocation.
1533 * If you allocate a compound page, you need to have marked it as
1534 * such (__GFP_COMP), or manually just split the page up yourself
1535 * (see split_page()).
1536 *
1537 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1538 * took an arbitrary page protection parameter. This doesn't allow
1539 * that. Your vma protection will have to be set up correctly, which
1540 * means that if you want a shared writable mapping, you'd better
1541 * ask for a shared writable mapping!
1542 *
1543 * The page does not need to be reserved.
1544 */
1545 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1546 struct page *page)
1547 {
1548 if (addr < vma->vm_start || addr >= vma->vm_end)
1549 return -EFAULT;
1550 if (!page_count(page))
1551 return -EINVAL;
1552 vma->vm_flags |= VM_INSERTPAGE;
1553 return insert_page(vma, addr, page, vma->vm_page_prot);
1554 }
1555 EXPORT_SYMBOL(vm_insert_page);
1556
1557 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1558 unsigned long pfn, pgprot_t prot)
1559 {
1560 struct mm_struct *mm = vma->vm_mm;
1561 int retval;
1562 pte_t *pte, entry;
1563 spinlock_t *ptl;
1564
1565 retval = -ENOMEM;
1566 pte = get_locked_pte(mm, addr, &ptl);
1567 if (!pte)
1568 goto out;
1569 retval = -EBUSY;
1570 if (!pte_none(*pte))
1571 goto out_unlock;
1572
1573 /* Ok, finally just insert the thing.. */
1574 entry = pte_mkspecial(pfn_pte(pfn, prot));
1575 set_pte_at(mm, addr, pte, entry);
1576 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1577
1578 retval = 0;
1579 out_unlock:
1580 pte_unmap_unlock(pte, ptl);
1581 out:
1582 return retval;
1583 }
1584
1585 /**
1586 * vm_insert_pfn - insert single pfn into user vma
1587 * @vma: user vma to map to
1588 * @addr: target user address of this page
1589 * @pfn: source kernel pfn
1590 *
1591 * Similar to vm_inert_page, this allows drivers to insert individual pages
1592 * they've allocated into a user vma. Same comments apply.
1593 *
1594 * This function should only be called from a vm_ops->fault handler, and
1595 * in that case the handler should return NULL.
1596 *
1597 * vma cannot be a COW mapping.
1598 *
1599 * As this is called only for pages that do not currently exist, we
1600 * do not need to flush old virtual caches or the TLB.
1601 */
1602 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1603 unsigned long pfn)
1604 {
1605 int ret;
1606 pgprot_t pgprot = vma->vm_page_prot;
1607 /*
1608 * Technically, architectures with pte_special can avoid all these
1609 * restrictions (same for remap_pfn_range). However we would like
1610 * consistency in testing and feature parity among all, so we should
1611 * try to keep these invariants in place for everybody.
1612 */
1613 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1614 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1615 (VM_PFNMAP|VM_MIXEDMAP));
1616 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1617 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1618
1619 if (addr < vma->vm_start || addr >= vma->vm_end)
1620 return -EFAULT;
1621 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1622 return -EINVAL;
1623
1624 ret = insert_pfn(vma, addr, pfn, pgprot);
1625
1626 if (ret)
1627 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1628
1629 return ret;
1630 }
1631 EXPORT_SYMBOL(vm_insert_pfn);
1632
1633 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1634 unsigned long pfn)
1635 {
1636 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1637
1638 if (addr < vma->vm_start || addr >= vma->vm_end)
1639 return -EFAULT;
1640
1641 /*
1642 * If we don't have pte special, then we have to use the pfn_valid()
1643 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1644 * refcount the page if pfn_valid is true (hence insert_page rather
1645 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1646 * without pte special, it would there be refcounted as a normal page.
1647 */
1648 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1649 struct page *page;
1650
1651 page = pfn_to_page(pfn);
1652 return insert_page(vma, addr, page, vma->vm_page_prot);
1653 }
1654 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1655 }
1656 EXPORT_SYMBOL(vm_insert_mixed);
1657
1658 /*
1659 * maps a range of physical memory into the requested pages. the old
1660 * mappings are removed. any references to nonexistent pages results
1661 * in null mappings (currently treated as "copy-on-access")
1662 */
1663 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1664 unsigned long addr, unsigned long end,
1665 unsigned long pfn, pgprot_t prot)
1666 {
1667 pte_t *pte;
1668 spinlock_t *ptl;
1669
1670 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1671 if (!pte)
1672 return -ENOMEM;
1673 arch_enter_lazy_mmu_mode();
1674 do {
1675 BUG_ON(!pte_none(*pte));
1676 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1677 pfn++;
1678 } while (pte++, addr += PAGE_SIZE, addr != end);
1679 arch_leave_lazy_mmu_mode();
1680 pte_unmap_unlock(pte - 1, ptl);
1681 return 0;
1682 }
1683
1684 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1685 unsigned long addr, unsigned long end,
1686 unsigned long pfn, pgprot_t prot)
1687 {
1688 pmd_t *pmd;
1689 unsigned long next;
1690
1691 pfn -= addr >> PAGE_SHIFT;
1692 pmd = pmd_alloc(mm, pud, addr);
1693 if (!pmd)
1694 return -ENOMEM;
1695 do {
1696 next = pmd_addr_end(addr, end);
1697 if (remap_pte_range(mm, pmd, addr, next,
1698 pfn + (addr >> PAGE_SHIFT), prot))
1699 return -ENOMEM;
1700 } while (pmd++, addr = next, addr != end);
1701 return 0;
1702 }
1703
1704 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1705 unsigned long addr, unsigned long end,
1706 unsigned long pfn, pgprot_t prot)
1707 {
1708 pud_t *pud;
1709 unsigned long next;
1710
1711 pfn -= addr >> PAGE_SHIFT;
1712 pud = pud_alloc(mm, pgd, addr);
1713 if (!pud)
1714 return -ENOMEM;
1715 do {
1716 next = pud_addr_end(addr, end);
1717 if (remap_pmd_range(mm, pud, addr, next,
1718 pfn + (addr >> PAGE_SHIFT), prot))
1719 return -ENOMEM;
1720 } while (pud++, addr = next, addr != end);
1721 return 0;
1722 }
1723
1724 /**
1725 * remap_pfn_range - remap kernel memory to userspace
1726 * @vma: user vma to map to
1727 * @addr: target user address to start at
1728 * @pfn: physical address of kernel memory
1729 * @size: size of map area
1730 * @prot: page protection flags for this mapping
1731 *
1732 * Note: this is only safe if the mm semaphore is held when called.
1733 */
1734 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1735 unsigned long pfn, unsigned long size, pgprot_t prot)
1736 {
1737 pgd_t *pgd;
1738 unsigned long next;
1739 unsigned long end = addr + PAGE_ALIGN(size);
1740 struct mm_struct *mm = vma->vm_mm;
1741 int err;
1742
1743 /*
1744 * Physically remapped pages are special. Tell the
1745 * rest of the world about it:
1746 * VM_IO tells people not to look at these pages
1747 * (accesses can have side effects).
1748 * VM_RESERVED is specified all over the place, because
1749 * in 2.4 it kept swapout's vma scan off this vma; but
1750 * in 2.6 the LRU scan won't even find its pages, so this
1751 * flag means no more than count its pages in reserved_vm,
1752 * and omit it from core dump, even when VM_IO turned off.
1753 * VM_PFNMAP tells the core MM that the base pages are just
1754 * raw PFN mappings, and do not have a "struct page" associated
1755 * with them.
1756 *
1757 * There's a horrible special case to handle copy-on-write
1758 * behaviour that some programs depend on. We mark the "original"
1759 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1760 */
1761 if (addr == vma->vm_start && end == vma->vm_end) {
1762 vma->vm_pgoff = pfn;
1763 vma->vm_flags |= VM_PFN_AT_MMAP;
1764 } else if (is_cow_mapping(vma->vm_flags))
1765 return -EINVAL;
1766
1767 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1768
1769 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1770 if (err) {
1771 /*
1772 * To indicate that track_pfn related cleanup is not
1773 * needed from higher level routine calling unmap_vmas
1774 */
1775 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1776 vma->vm_flags &= ~VM_PFN_AT_MMAP;
1777 return -EINVAL;
1778 }
1779
1780 BUG_ON(addr >= end);
1781 pfn -= addr >> PAGE_SHIFT;
1782 pgd = pgd_offset(mm, addr);
1783 flush_cache_range(vma, addr, end);
1784 do {
1785 next = pgd_addr_end(addr, end);
1786 err = remap_pud_range(mm, pgd, addr, next,
1787 pfn + (addr >> PAGE_SHIFT), prot);
1788 if (err)
1789 break;
1790 } while (pgd++, addr = next, addr != end);
1791
1792 if (err)
1793 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1794
1795 return err;
1796 }
1797 EXPORT_SYMBOL(remap_pfn_range);
1798
1799 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1800 unsigned long addr, unsigned long end,
1801 pte_fn_t fn, void *data)
1802 {
1803 pte_t *pte;
1804 int err;
1805 pgtable_t token;
1806 spinlock_t *uninitialized_var(ptl);
1807
1808 pte = (mm == &init_mm) ?
1809 pte_alloc_kernel(pmd, addr) :
1810 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1811 if (!pte)
1812 return -ENOMEM;
1813
1814 BUG_ON(pmd_huge(*pmd));
1815
1816 arch_enter_lazy_mmu_mode();
1817
1818 token = pmd_pgtable(*pmd);
1819
1820 do {
1821 err = fn(pte, token, addr, data);
1822 if (err)
1823 break;
1824 } while (pte++, addr += PAGE_SIZE, addr != end);
1825
1826 arch_leave_lazy_mmu_mode();
1827
1828 if (mm != &init_mm)
1829 pte_unmap_unlock(pte-1, ptl);
1830 return err;
1831 }
1832
1833 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1834 unsigned long addr, unsigned long end,
1835 pte_fn_t fn, void *data)
1836 {
1837 pmd_t *pmd;
1838 unsigned long next;
1839 int err;
1840
1841 BUG_ON(pud_huge(*pud));
1842
1843 pmd = pmd_alloc(mm, pud, addr);
1844 if (!pmd)
1845 return -ENOMEM;
1846 do {
1847 next = pmd_addr_end(addr, end);
1848 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1849 if (err)
1850 break;
1851 } while (pmd++, addr = next, addr != end);
1852 return err;
1853 }
1854
1855 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1856 unsigned long addr, unsigned long end,
1857 pte_fn_t fn, void *data)
1858 {
1859 pud_t *pud;
1860 unsigned long next;
1861 int err;
1862
1863 pud = pud_alloc(mm, pgd, addr);
1864 if (!pud)
1865 return -ENOMEM;
1866 do {
1867 next = pud_addr_end(addr, end);
1868 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1869 if (err)
1870 break;
1871 } while (pud++, addr = next, addr != end);
1872 return err;
1873 }
1874
1875 /*
1876 * Scan a region of virtual memory, filling in page tables as necessary
1877 * and calling a provided function on each leaf page table.
1878 */
1879 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1880 unsigned long size, pte_fn_t fn, void *data)
1881 {
1882 pgd_t *pgd;
1883 unsigned long next;
1884 unsigned long start = addr, end = addr + size;
1885 int err;
1886
1887 BUG_ON(addr >= end);
1888 mmu_notifier_invalidate_range_start(mm, start, end);
1889 pgd = pgd_offset(mm, addr);
1890 do {
1891 next = pgd_addr_end(addr, end);
1892 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1893 if (err)
1894 break;
1895 } while (pgd++, addr = next, addr != end);
1896 mmu_notifier_invalidate_range_end(mm, start, end);
1897 return err;
1898 }
1899 EXPORT_SYMBOL_GPL(apply_to_page_range);
1900
1901 /*
1902 * handle_pte_fault chooses page fault handler according to an entry
1903 * which was read non-atomically. Before making any commitment, on
1904 * those architectures or configurations (e.g. i386 with PAE) which
1905 * might give a mix of unmatched parts, do_swap_page and do_file_page
1906 * must check under lock before unmapping the pte and proceeding
1907 * (but do_wp_page is only called after already making such a check;
1908 * and do_anonymous_page and do_no_page can safely check later on).
1909 */
1910 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1911 pte_t *page_table, pte_t orig_pte)
1912 {
1913 int same = 1;
1914 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1915 if (sizeof(pte_t) > sizeof(unsigned long)) {
1916 spinlock_t *ptl = pte_lockptr(mm, pmd);
1917 spin_lock(ptl);
1918 same = pte_same(*page_table, orig_pte);
1919 spin_unlock(ptl);
1920 }
1921 #endif
1922 pte_unmap(page_table);
1923 return same;
1924 }
1925
1926 /*
1927 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1928 * servicing faults for write access. In the normal case, do always want
1929 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1930 * that do not have writing enabled, when used by access_process_vm.
1931 */
1932 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1933 {
1934 if (likely(vma->vm_flags & VM_WRITE))
1935 pte = pte_mkwrite(pte);
1936 return pte;
1937 }
1938
1939 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1940 {
1941 /*
1942 * If the source page was a PFN mapping, we don't have
1943 * a "struct page" for it. We do a best-effort copy by
1944 * just copying from the original user address. If that
1945 * fails, we just zero-fill it. Live with it.
1946 */
1947 if (unlikely(!src)) {
1948 void *kaddr = kmap_atomic(dst, KM_USER0);
1949 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1950
1951 /*
1952 * This really shouldn't fail, because the page is there
1953 * in the page tables. But it might just be unreadable,
1954 * in which case we just give up and fill the result with
1955 * zeroes.
1956 */
1957 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1958 memset(kaddr, 0, PAGE_SIZE);
1959 kunmap_atomic(kaddr, KM_USER0);
1960 flush_dcache_page(dst);
1961 } else
1962 copy_user_highpage(dst, src, va, vma);
1963 }
1964
1965 /*
1966 * This routine handles present pages, when users try to write
1967 * to a shared page. It is done by copying the page to a new address
1968 * and decrementing the shared-page counter for the old page.
1969 *
1970 * Note that this routine assumes that the protection checks have been
1971 * done by the caller (the low-level page fault routine in most cases).
1972 * Thus we can safely just mark it writable once we've done any necessary
1973 * COW.
1974 *
1975 * We also mark the page dirty at this point even though the page will
1976 * change only once the write actually happens. This avoids a few races,
1977 * and potentially makes it more efficient.
1978 *
1979 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1980 * but allow concurrent faults), with pte both mapped and locked.
1981 * We return with mmap_sem still held, but pte unmapped and unlocked.
1982 */
1983 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1984 unsigned long address, pte_t *page_table, pmd_t *pmd,
1985 spinlock_t *ptl, pte_t orig_pte)
1986 {
1987 struct page *old_page, *new_page;
1988 pte_t entry;
1989 int reuse = 0, ret = 0;
1990 int page_mkwrite = 0;
1991 struct page *dirty_page = NULL;
1992
1993 old_page = vm_normal_page(vma, address, orig_pte);
1994 if (!old_page) {
1995 /*
1996 * VM_MIXEDMAP !pfn_valid() case
1997 *
1998 * We should not cow pages in a shared writeable mapping.
1999 * Just mark the pages writable as we can't do any dirty
2000 * accounting on raw pfn maps.
2001 */
2002 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2003 (VM_WRITE|VM_SHARED))
2004 goto reuse;
2005 goto gotten;
2006 }
2007
2008 /*
2009 * Take out anonymous pages first, anonymous shared vmas are
2010 * not dirty accountable.
2011 */
2012 if (PageAnon(old_page) && !PageKsm(old_page)) {
2013 if (!trylock_page(old_page)) {
2014 page_cache_get(old_page);
2015 pte_unmap_unlock(page_table, ptl);
2016 lock_page(old_page);
2017 page_table = pte_offset_map_lock(mm, pmd, address,
2018 &ptl);
2019 if (!pte_same(*page_table, orig_pte)) {
2020 unlock_page(old_page);
2021 page_cache_release(old_page);
2022 goto unlock;
2023 }
2024 page_cache_release(old_page);
2025 }
2026 reuse = reuse_swap_page(old_page);
2027 unlock_page(old_page);
2028 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2029 (VM_WRITE|VM_SHARED))) {
2030 /*
2031 * Only catch write-faults on shared writable pages,
2032 * read-only shared pages can get COWed by
2033 * get_user_pages(.write=1, .force=1).
2034 */
2035 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2036 struct vm_fault vmf;
2037 int tmp;
2038
2039 vmf.virtual_address = (void __user *)(address &
2040 PAGE_MASK);
2041 vmf.pgoff = old_page->index;
2042 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2043 vmf.page = old_page;
2044
2045 /*
2046 * Notify the address space that the page is about to
2047 * become writable so that it can prohibit this or wait
2048 * for the page to get into an appropriate state.
2049 *
2050 * We do this without the lock held, so that it can
2051 * sleep if it needs to.
2052 */
2053 page_cache_get(old_page);
2054 pte_unmap_unlock(page_table, ptl);
2055
2056 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2057 if (unlikely(tmp &
2058 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2059 ret = tmp;
2060 goto unwritable_page;
2061 }
2062 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2063 lock_page(old_page);
2064 if (!old_page->mapping) {
2065 ret = 0; /* retry the fault */
2066 unlock_page(old_page);
2067 goto unwritable_page;
2068 }
2069 } else
2070 VM_BUG_ON(!PageLocked(old_page));
2071
2072 /*
2073 * Since we dropped the lock we need to revalidate
2074 * the PTE as someone else may have changed it. If
2075 * they did, we just return, as we can count on the
2076 * MMU to tell us if they didn't also make it writable.
2077 */
2078 page_table = pte_offset_map_lock(mm, pmd, address,
2079 &ptl);
2080 if (!pte_same(*page_table, orig_pte)) {
2081 unlock_page(old_page);
2082 page_cache_release(old_page);
2083 goto unlock;
2084 }
2085
2086 page_mkwrite = 1;
2087 }
2088 dirty_page = old_page;
2089 get_page(dirty_page);
2090 reuse = 1;
2091 }
2092
2093 if (reuse) {
2094 reuse:
2095 flush_cache_page(vma, address, pte_pfn(orig_pte));
2096 entry = pte_mkyoung(orig_pte);
2097 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2098 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2099 update_mmu_cache(vma, address, entry);
2100 ret |= VM_FAULT_WRITE;
2101 goto unlock;
2102 }
2103
2104 /*
2105 * Ok, we need to copy. Oh, well..
2106 */
2107 page_cache_get(old_page);
2108 gotten:
2109 pte_unmap_unlock(page_table, ptl);
2110
2111 if (unlikely(anon_vma_prepare(vma)))
2112 goto oom;
2113
2114 if (is_zero_pfn(pte_pfn(orig_pte))) {
2115 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2116 if (!new_page)
2117 goto oom;
2118 } else {
2119 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2120 if (!new_page)
2121 goto oom;
2122 cow_user_page(new_page, old_page, address, vma);
2123 }
2124 __SetPageUptodate(new_page);
2125
2126 /*
2127 * Don't let another task, with possibly unlocked vma,
2128 * keep the mlocked page.
2129 */
2130 if ((vma->vm_flags & VM_LOCKED) && old_page) {
2131 lock_page(old_page); /* for LRU manipulation */
2132 clear_page_mlock(old_page);
2133 unlock_page(old_page);
2134 }
2135
2136 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2137 goto oom_free_new;
2138
2139 /*
2140 * Re-check the pte - we dropped the lock
2141 */
2142 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2143 if (likely(pte_same(*page_table, orig_pte))) {
2144 if (old_page) {
2145 if (!PageAnon(old_page)) {
2146 dec_mm_counter(mm, file_rss);
2147 inc_mm_counter(mm, anon_rss);
2148 }
2149 } else
2150 inc_mm_counter(mm, anon_rss);
2151 flush_cache_page(vma, address, pte_pfn(orig_pte));
2152 entry = mk_pte(new_page, vma->vm_page_prot);
2153 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2154 /*
2155 * Clear the pte entry and flush it first, before updating the
2156 * pte with the new entry. This will avoid a race condition
2157 * seen in the presence of one thread doing SMC and another
2158 * thread doing COW.
2159 */
2160 ptep_clear_flush(vma, address, page_table);
2161 page_add_new_anon_rmap(new_page, vma, address);
2162 /*
2163 * We call the notify macro here because, when using secondary
2164 * mmu page tables (such as kvm shadow page tables), we want the
2165 * new page to be mapped directly into the secondary page table.
2166 */
2167 set_pte_at_notify(mm, address, page_table, entry);
2168 update_mmu_cache(vma, address, entry);
2169 if (old_page) {
2170 /*
2171 * Only after switching the pte to the new page may
2172 * we remove the mapcount here. Otherwise another
2173 * process may come and find the rmap count decremented
2174 * before the pte is switched to the new page, and
2175 * "reuse" the old page writing into it while our pte
2176 * here still points into it and can be read by other
2177 * threads.
2178 *
2179 * The critical issue is to order this
2180 * page_remove_rmap with the ptp_clear_flush above.
2181 * Those stores are ordered by (if nothing else,)
2182 * the barrier present in the atomic_add_negative
2183 * in page_remove_rmap.
2184 *
2185 * Then the TLB flush in ptep_clear_flush ensures that
2186 * no process can access the old page before the
2187 * decremented mapcount is visible. And the old page
2188 * cannot be reused until after the decremented
2189 * mapcount is visible. So transitively, TLBs to
2190 * old page will be flushed before it can be reused.
2191 */
2192 page_remove_rmap(old_page);
2193 }
2194
2195 /* Free the old page.. */
2196 new_page = old_page;
2197 ret |= VM_FAULT_WRITE;
2198 } else
2199 mem_cgroup_uncharge_page(new_page);
2200
2201 if (new_page)
2202 page_cache_release(new_page);
2203 if (old_page)
2204 page_cache_release(old_page);
2205 unlock:
2206 pte_unmap_unlock(page_table, ptl);
2207 if (dirty_page) {
2208 /*
2209 * Yes, Virginia, this is actually required to prevent a race
2210 * with clear_page_dirty_for_io() from clearing the page dirty
2211 * bit after it clear all dirty ptes, but before a racing
2212 * do_wp_page installs a dirty pte.
2213 *
2214 * do_no_page is protected similarly.
2215 */
2216 if (!page_mkwrite) {
2217 wait_on_page_locked(dirty_page);
2218 set_page_dirty_balance(dirty_page, page_mkwrite);
2219 }
2220 put_page(dirty_page);
2221 if (page_mkwrite) {
2222 struct address_space *mapping = dirty_page->mapping;
2223
2224 set_page_dirty(dirty_page);
2225 unlock_page(dirty_page);
2226 page_cache_release(dirty_page);
2227 if (mapping) {
2228 /*
2229 * Some device drivers do not set page.mapping
2230 * but still dirty their pages
2231 */
2232 balance_dirty_pages_ratelimited(mapping);
2233 }
2234 }
2235
2236 /* file_update_time outside page_lock */
2237 if (vma->vm_file)
2238 file_update_time(vma->vm_file);
2239 }
2240 return ret;
2241 oom_free_new:
2242 page_cache_release(new_page);
2243 oom:
2244 if (old_page) {
2245 if (page_mkwrite) {
2246 unlock_page(old_page);
2247 page_cache_release(old_page);
2248 }
2249 page_cache_release(old_page);
2250 }
2251 return VM_FAULT_OOM;
2252
2253 unwritable_page:
2254 page_cache_release(old_page);
2255 return ret;
2256 }
2257
2258 /*
2259 * Helper functions for unmap_mapping_range().
2260 *
2261 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2262 *
2263 * We have to restart searching the prio_tree whenever we drop the lock,
2264 * since the iterator is only valid while the lock is held, and anyway
2265 * a later vma might be split and reinserted earlier while lock dropped.
2266 *
2267 * The list of nonlinear vmas could be handled more efficiently, using
2268 * a placeholder, but handle it in the same way until a need is shown.
2269 * It is important to search the prio_tree before nonlinear list: a vma
2270 * may become nonlinear and be shifted from prio_tree to nonlinear list
2271 * while the lock is dropped; but never shifted from list to prio_tree.
2272 *
2273 * In order to make forward progress despite restarting the search,
2274 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2275 * quickly skip it next time around. Since the prio_tree search only
2276 * shows us those vmas affected by unmapping the range in question, we
2277 * can't efficiently keep all vmas in step with mapping->truncate_count:
2278 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2279 * mapping->truncate_count and vma->vm_truncate_count are protected by
2280 * i_mmap_lock.
2281 *
2282 * In order to make forward progress despite repeatedly restarting some
2283 * large vma, note the restart_addr from unmap_vmas when it breaks out:
2284 * and restart from that address when we reach that vma again. It might
2285 * have been split or merged, shrunk or extended, but never shifted: so
2286 * restart_addr remains valid so long as it remains in the vma's range.
2287 * unmap_mapping_range forces truncate_count to leap over page-aligned
2288 * values so we can save vma's restart_addr in its truncate_count field.
2289 */
2290 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2291
2292 static void reset_vma_truncate_counts(struct address_space *mapping)
2293 {
2294 struct vm_area_struct *vma;
2295 struct prio_tree_iter iter;
2296
2297 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2298 vma->vm_truncate_count = 0;
2299 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2300 vma->vm_truncate_count = 0;
2301 }
2302
2303 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2304 unsigned long start_addr, unsigned long end_addr,
2305 struct zap_details *details)
2306 {
2307 unsigned long restart_addr;
2308 int need_break;
2309
2310 /*
2311 * files that support invalidating or truncating portions of the
2312 * file from under mmaped areas must have their ->fault function
2313 * return a locked page (and set VM_FAULT_LOCKED in the return).
2314 * This provides synchronisation against concurrent unmapping here.
2315 */
2316
2317 again:
2318 restart_addr = vma->vm_truncate_count;
2319 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2320 start_addr = restart_addr;
2321 if (start_addr >= end_addr) {
2322 /* Top of vma has been split off since last time */
2323 vma->vm_truncate_count = details->truncate_count;
2324 return 0;
2325 }
2326 }
2327
2328 restart_addr = zap_page_range(vma, start_addr,
2329 end_addr - start_addr, details);
2330 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2331
2332 if (restart_addr >= end_addr) {
2333 /* We have now completed this vma: mark it so */
2334 vma->vm_truncate_count = details->truncate_count;
2335 if (!need_break)
2336 return 0;
2337 } else {
2338 /* Note restart_addr in vma's truncate_count field */
2339 vma->vm_truncate_count = restart_addr;
2340 if (!need_break)
2341 goto again;
2342 }
2343
2344 spin_unlock(details->i_mmap_lock);
2345 cond_resched();
2346 spin_lock(details->i_mmap_lock);
2347 return -EINTR;
2348 }
2349
2350 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2351 struct zap_details *details)
2352 {
2353 struct vm_area_struct *vma;
2354 struct prio_tree_iter iter;
2355 pgoff_t vba, vea, zba, zea;
2356
2357 restart:
2358 vma_prio_tree_foreach(vma, &iter, root,
2359 details->first_index, details->last_index) {
2360 /* Skip quickly over those we have already dealt with */
2361 if (vma->vm_truncate_count == details->truncate_count)
2362 continue;
2363
2364 vba = vma->vm_pgoff;
2365 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2366 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2367 zba = details->first_index;
2368 if (zba < vba)
2369 zba = vba;
2370 zea = details->last_index;
2371 if (zea > vea)
2372 zea = vea;
2373
2374 if (unmap_mapping_range_vma(vma,
2375 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2376 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2377 details) < 0)
2378 goto restart;
2379 }
2380 }
2381
2382 static inline void unmap_mapping_range_list(struct list_head *head,
2383 struct zap_details *details)
2384 {
2385 struct vm_area_struct *vma;
2386
2387 /*
2388 * In nonlinear VMAs there is no correspondence between virtual address
2389 * offset and file offset. So we must perform an exhaustive search
2390 * across *all* the pages in each nonlinear VMA, not just the pages
2391 * whose virtual address lies outside the file truncation point.
2392 */
2393 restart:
2394 list_for_each_entry(vma, head, shared.vm_set.list) {
2395 /* Skip quickly over those we have already dealt with */
2396 if (vma->vm_truncate_count == details->truncate_count)
2397 continue;
2398 details->nonlinear_vma = vma;
2399 if (unmap_mapping_range_vma(vma, vma->vm_start,
2400 vma->vm_end, details) < 0)
2401 goto restart;
2402 }
2403 }
2404
2405 /**
2406 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2407 * @mapping: the address space containing mmaps to be unmapped.
2408 * @holebegin: byte in first page to unmap, relative to the start of
2409 * the underlying file. This will be rounded down to a PAGE_SIZE
2410 * boundary. Note that this is different from vmtruncate(), which
2411 * must keep the partial page. In contrast, we must get rid of
2412 * partial pages.
2413 * @holelen: size of prospective hole in bytes. This will be rounded
2414 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2415 * end of the file.
2416 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2417 * but 0 when invalidating pagecache, don't throw away private data.
2418 */
2419 void unmap_mapping_range(struct address_space *mapping,
2420 loff_t const holebegin, loff_t const holelen, int even_cows)
2421 {
2422 struct zap_details details;
2423 pgoff_t hba = holebegin >> PAGE_SHIFT;
2424 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2425
2426 /* Check for overflow. */
2427 if (sizeof(holelen) > sizeof(hlen)) {
2428 long long holeend =
2429 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2430 if (holeend & ~(long long)ULONG_MAX)
2431 hlen = ULONG_MAX - hba + 1;
2432 }
2433
2434 details.check_mapping = even_cows? NULL: mapping;
2435 details.nonlinear_vma = NULL;
2436 details.first_index = hba;
2437 details.last_index = hba + hlen - 1;
2438 if (details.last_index < details.first_index)
2439 details.last_index = ULONG_MAX;
2440 details.i_mmap_lock = &mapping->i_mmap_lock;
2441
2442 spin_lock(&mapping->i_mmap_lock);
2443
2444 /* Protect against endless unmapping loops */
2445 mapping->truncate_count++;
2446 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2447 if (mapping->truncate_count == 0)
2448 reset_vma_truncate_counts(mapping);
2449 mapping->truncate_count++;
2450 }
2451 details.truncate_count = mapping->truncate_count;
2452
2453 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2454 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2455 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2456 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2457 spin_unlock(&mapping->i_mmap_lock);
2458 }
2459 EXPORT_SYMBOL(unmap_mapping_range);
2460
2461 /**
2462 * vmtruncate - unmap mappings "freed" by truncate() syscall
2463 * @inode: inode of the file used
2464 * @offset: file offset to start truncating
2465 *
2466 * NOTE! We have to be ready to update the memory sharing
2467 * between the file and the memory map for a potential last
2468 * incomplete page. Ugly, but necessary.
2469 */
2470 int vmtruncate(struct inode * inode, loff_t offset)
2471 {
2472 if (inode->i_size < offset) {
2473 unsigned long limit;
2474
2475 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2476 if (limit != RLIM_INFINITY && offset > limit)
2477 goto out_sig;
2478 if (offset > inode->i_sb->s_maxbytes)
2479 goto out_big;
2480 i_size_write(inode, offset);
2481 } else {
2482 struct address_space *mapping = inode->i_mapping;
2483
2484 /*
2485 * truncation of in-use swapfiles is disallowed - it would
2486 * cause subsequent swapout to scribble on the now-freed
2487 * blocks.
2488 */
2489 if (IS_SWAPFILE(inode))
2490 return -ETXTBSY;
2491 i_size_write(inode, offset);
2492
2493 /*
2494 * unmap_mapping_range is called twice, first simply for
2495 * efficiency so that truncate_inode_pages does fewer
2496 * single-page unmaps. However after this first call, and
2497 * before truncate_inode_pages finishes, it is possible for
2498 * private pages to be COWed, which remain after
2499 * truncate_inode_pages finishes, hence the second
2500 * unmap_mapping_range call must be made for correctness.
2501 */
2502 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2503 truncate_inode_pages(mapping, offset);
2504 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2505 }
2506
2507 if (inode->i_op->truncate)
2508 inode->i_op->truncate(inode);
2509 return 0;
2510
2511 out_sig:
2512 send_sig(SIGXFSZ, current, 0);
2513 out_big:
2514 return -EFBIG;
2515 }
2516 EXPORT_SYMBOL(vmtruncate);
2517
2518 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2519 {
2520 struct address_space *mapping = inode->i_mapping;
2521
2522 /*
2523 * If the underlying filesystem is not going to provide
2524 * a way to truncate a range of blocks (punch a hole) -
2525 * we should return failure right now.
2526 */
2527 if (!inode->i_op->truncate_range)
2528 return -ENOSYS;
2529
2530 mutex_lock(&inode->i_mutex);
2531 down_write(&inode->i_alloc_sem);
2532 unmap_mapping_range(mapping, offset, (end - offset), 1);
2533 truncate_inode_pages_range(mapping, offset, end);
2534 unmap_mapping_range(mapping, offset, (end - offset), 1);
2535 inode->i_op->truncate_range(inode, offset, end);
2536 up_write(&inode->i_alloc_sem);
2537 mutex_unlock(&inode->i_mutex);
2538
2539 return 0;
2540 }
2541
2542 /*
2543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544 * but allow concurrent faults), and pte mapped but not yet locked.
2545 * We return with mmap_sem still held, but pte unmapped and unlocked.
2546 */
2547 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2548 unsigned long address, pte_t *page_table, pmd_t *pmd,
2549 unsigned int flags, pte_t orig_pte)
2550 {
2551 spinlock_t *ptl;
2552 struct page *page;
2553 swp_entry_t entry;
2554 pte_t pte;
2555 struct mem_cgroup *ptr = NULL;
2556 int ret = 0;
2557
2558 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2559 goto out;
2560
2561 entry = pte_to_swp_entry(orig_pte);
2562 if (is_migration_entry(entry)) {
2563 migration_entry_wait(mm, pmd, address);
2564 goto out;
2565 }
2566 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2567 page = lookup_swap_cache(entry);
2568 if (!page) {
2569 grab_swap_token(mm); /* Contend for token _before_ read-in */
2570 page = swapin_readahead(entry,
2571 GFP_HIGHUSER_MOVABLE, vma, address);
2572 if (!page) {
2573 /*
2574 * Back out if somebody else faulted in this pte
2575 * while we released the pte lock.
2576 */
2577 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2578 if (likely(pte_same(*page_table, orig_pte)))
2579 ret = VM_FAULT_OOM;
2580 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2581 goto unlock;
2582 }
2583
2584 /* Had to read the page from swap area: Major fault */
2585 ret = VM_FAULT_MAJOR;
2586 count_vm_event(PGMAJFAULT);
2587 }
2588
2589 lock_page(page);
2590 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2591
2592 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2593 ret = VM_FAULT_OOM;
2594 goto out_page;
2595 }
2596
2597 /*
2598 * Back out if somebody else already faulted in this pte.
2599 */
2600 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2601 if (unlikely(!pte_same(*page_table, orig_pte)))
2602 goto out_nomap;
2603
2604 if (unlikely(!PageUptodate(page))) {
2605 ret = VM_FAULT_SIGBUS;
2606 goto out_nomap;
2607 }
2608
2609 /*
2610 * The page isn't present yet, go ahead with the fault.
2611 *
2612 * Be careful about the sequence of operations here.
2613 * To get its accounting right, reuse_swap_page() must be called
2614 * while the page is counted on swap but not yet in mapcount i.e.
2615 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2616 * must be called after the swap_free(), or it will never succeed.
2617 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2618 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2619 * in page->private. In this case, a record in swap_cgroup is silently
2620 * discarded at swap_free().
2621 */
2622
2623 inc_mm_counter(mm, anon_rss);
2624 pte = mk_pte(page, vma->vm_page_prot);
2625 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2626 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2627 flags &= ~FAULT_FLAG_WRITE;
2628 }
2629 flush_icache_page(vma, page);
2630 set_pte_at(mm, address, page_table, pte);
2631 page_add_anon_rmap(page, vma, address);
2632 /* It's better to call commit-charge after rmap is established */
2633 mem_cgroup_commit_charge_swapin(page, ptr);
2634
2635 swap_free(entry);
2636 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2637 try_to_free_swap(page);
2638 unlock_page(page);
2639
2640 if (flags & FAULT_FLAG_WRITE) {
2641 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2642 if (ret & VM_FAULT_ERROR)
2643 ret &= VM_FAULT_ERROR;
2644 goto out;
2645 }
2646
2647 /* No need to invalidate - it was non-present before */
2648 update_mmu_cache(vma, address, pte);
2649 unlock:
2650 pte_unmap_unlock(page_table, ptl);
2651 out:
2652 return ret;
2653 out_nomap:
2654 mem_cgroup_cancel_charge_swapin(ptr);
2655 pte_unmap_unlock(page_table, ptl);
2656 out_page:
2657 unlock_page(page);
2658 page_cache_release(page);
2659 return ret;
2660 }
2661
2662 /*
2663 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2664 * but allow concurrent faults), and pte mapped but not yet locked.
2665 * We return with mmap_sem still held, but pte unmapped and unlocked.
2666 */
2667 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2668 unsigned long address, pte_t *page_table, pmd_t *pmd,
2669 unsigned int flags)
2670 {
2671 struct page *page;
2672 spinlock_t *ptl;
2673 pte_t entry;
2674
2675 if (!(flags & FAULT_FLAG_WRITE)) {
2676 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2677 vma->vm_page_prot));
2678 ptl = pte_lockptr(mm, pmd);
2679 spin_lock(ptl);
2680 if (!pte_none(*page_table))
2681 goto unlock;
2682 goto setpte;
2683 }
2684
2685 /* Allocate our own private page. */
2686 pte_unmap(page_table);
2687
2688 if (unlikely(anon_vma_prepare(vma)))
2689 goto oom;
2690 page = alloc_zeroed_user_highpage_movable(vma, address);
2691 if (!page)
2692 goto oom;
2693 __SetPageUptodate(page);
2694
2695 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2696 goto oom_free_page;
2697
2698 entry = mk_pte(page, vma->vm_page_prot);
2699 if (vma->vm_flags & VM_WRITE)
2700 entry = pte_mkwrite(pte_mkdirty(entry));
2701
2702 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2703 if (!pte_none(*page_table))
2704 goto release;
2705
2706 inc_mm_counter(mm, anon_rss);
2707 page_add_new_anon_rmap(page, vma, address);
2708 setpte:
2709 set_pte_at(mm, address, page_table, entry);
2710
2711 /* No need to invalidate - it was non-present before */
2712 update_mmu_cache(vma, address, entry);
2713 unlock:
2714 pte_unmap_unlock(page_table, ptl);
2715 return 0;
2716 release:
2717 mem_cgroup_uncharge_page(page);
2718 page_cache_release(page);
2719 goto unlock;
2720 oom_free_page:
2721 page_cache_release(page);
2722 oom:
2723 return VM_FAULT_OOM;
2724 }
2725
2726 /*
2727 * __do_fault() tries to create a new page mapping. It aggressively
2728 * tries to share with existing pages, but makes a separate copy if
2729 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2730 * the next page fault.
2731 *
2732 * As this is called only for pages that do not currently exist, we
2733 * do not need to flush old virtual caches or the TLB.
2734 *
2735 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2736 * but allow concurrent faults), and pte neither mapped nor locked.
2737 * We return with mmap_sem still held, but pte unmapped and unlocked.
2738 */
2739 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2740 unsigned long address, pmd_t *pmd,
2741 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2742 {
2743 pte_t *page_table;
2744 spinlock_t *ptl;
2745 struct page *page;
2746 pte_t entry;
2747 int anon = 0;
2748 int charged = 0;
2749 struct page *dirty_page = NULL;
2750 struct vm_fault vmf;
2751 int ret;
2752 int page_mkwrite = 0;
2753
2754 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2755 vmf.pgoff = pgoff;
2756 vmf.flags = flags;
2757 vmf.page = NULL;
2758
2759 ret = vma->vm_ops->fault(vma, &vmf);
2760 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2761 return ret;
2762
2763 /*
2764 * For consistency in subsequent calls, make the faulted page always
2765 * locked.
2766 */
2767 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2768 lock_page(vmf.page);
2769 else
2770 VM_BUG_ON(!PageLocked(vmf.page));
2771
2772 /*
2773 * Should we do an early C-O-W break?
2774 */
2775 page = vmf.page;
2776 if (flags & FAULT_FLAG_WRITE) {
2777 if (!(vma->vm_flags & VM_SHARED)) {
2778 anon = 1;
2779 if (unlikely(anon_vma_prepare(vma))) {
2780 ret = VM_FAULT_OOM;
2781 goto out;
2782 }
2783 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2784 vma, address);
2785 if (!page) {
2786 ret = VM_FAULT_OOM;
2787 goto out;
2788 }
2789 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2790 ret = VM_FAULT_OOM;
2791 page_cache_release(page);
2792 goto out;
2793 }
2794 charged = 1;
2795 /*
2796 * Don't let another task, with possibly unlocked vma,
2797 * keep the mlocked page.
2798 */
2799 if (vma->vm_flags & VM_LOCKED)
2800 clear_page_mlock(vmf.page);
2801 copy_user_highpage(page, vmf.page, address, vma);
2802 __SetPageUptodate(page);
2803 } else {
2804 /*
2805 * If the page will be shareable, see if the backing
2806 * address space wants to know that the page is about
2807 * to become writable
2808 */
2809 if (vma->vm_ops->page_mkwrite) {
2810 int tmp;
2811
2812 unlock_page(page);
2813 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2814 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2815 if (unlikely(tmp &
2816 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2817 ret = tmp;
2818 goto unwritable_page;
2819 }
2820 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2821 lock_page(page);
2822 if (!page->mapping) {
2823 ret = 0; /* retry the fault */
2824 unlock_page(page);
2825 goto unwritable_page;
2826 }
2827 } else
2828 VM_BUG_ON(!PageLocked(page));
2829 page_mkwrite = 1;
2830 }
2831 }
2832
2833 }
2834
2835 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2836
2837 /*
2838 * This silly early PAGE_DIRTY setting removes a race
2839 * due to the bad i386 page protection. But it's valid
2840 * for other architectures too.
2841 *
2842 * Note that if FAULT_FLAG_WRITE is set, we either now have
2843 * an exclusive copy of the page, or this is a shared mapping,
2844 * so we can make it writable and dirty to avoid having to
2845 * handle that later.
2846 */
2847 /* Only go through if we didn't race with anybody else... */
2848 if (likely(pte_same(*page_table, orig_pte))) {
2849 flush_icache_page(vma, page);
2850 entry = mk_pte(page, vma->vm_page_prot);
2851 if (flags & FAULT_FLAG_WRITE)
2852 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2853 if (anon) {
2854 inc_mm_counter(mm, anon_rss);
2855 page_add_new_anon_rmap(page, vma, address);
2856 } else {
2857 inc_mm_counter(mm, file_rss);
2858 page_add_file_rmap(page);
2859 if (flags & FAULT_FLAG_WRITE) {
2860 dirty_page = page;
2861 get_page(dirty_page);
2862 }
2863 }
2864 set_pte_at(mm, address, page_table, entry);
2865
2866 /* no need to invalidate: a not-present page won't be cached */
2867 update_mmu_cache(vma, address, entry);
2868 } else {
2869 if (charged)
2870 mem_cgroup_uncharge_page(page);
2871 if (anon)
2872 page_cache_release(page);
2873 else
2874 anon = 1; /* no anon but release faulted_page */
2875 }
2876
2877 pte_unmap_unlock(page_table, ptl);
2878
2879 out:
2880 if (dirty_page) {
2881 struct address_space *mapping = page->mapping;
2882
2883 if (set_page_dirty(dirty_page))
2884 page_mkwrite = 1;
2885 unlock_page(dirty_page);
2886 put_page(dirty_page);
2887 if (page_mkwrite && mapping) {
2888 /*
2889 * Some device drivers do not set page.mapping but still
2890 * dirty their pages
2891 */
2892 balance_dirty_pages_ratelimited(mapping);
2893 }
2894
2895 /* file_update_time outside page_lock */
2896 if (vma->vm_file)
2897 file_update_time(vma->vm_file);
2898 } else {
2899 unlock_page(vmf.page);
2900 if (anon)
2901 page_cache_release(vmf.page);
2902 }
2903
2904 return ret;
2905
2906 unwritable_page:
2907 page_cache_release(page);
2908 return ret;
2909 }
2910
2911 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2912 unsigned long address, pte_t *page_table, pmd_t *pmd,
2913 unsigned int flags, pte_t orig_pte)
2914 {
2915 pgoff_t pgoff = (((address & PAGE_MASK)
2916 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2917
2918 pte_unmap(page_table);
2919 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2920 }
2921
2922 /*
2923 * Fault of a previously existing named mapping. Repopulate the pte
2924 * from the encoded file_pte if possible. This enables swappable
2925 * nonlinear vmas.
2926 *
2927 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2928 * but allow concurrent faults), and pte mapped but not yet locked.
2929 * We return with mmap_sem still held, but pte unmapped and unlocked.
2930 */
2931 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2932 unsigned long address, pte_t *page_table, pmd_t *pmd,
2933 unsigned int flags, pte_t orig_pte)
2934 {
2935 pgoff_t pgoff;
2936
2937 flags |= FAULT_FLAG_NONLINEAR;
2938
2939 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2940 return 0;
2941
2942 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2943 /*
2944 * Page table corrupted: show pte and kill process.
2945 */
2946 print_bad_pte(vma, address, orig_pte, NULL);
2947 return VM_FAULT_OOM;
2948 }
2949
2950 pgoff = pte_to_pgoff(orig_pte);
2951 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2952 }
2953
2954 /*
2955 * These routines also need to handle stuff like marking pages dirty
2956 * and/or accessed for architectures that don't do it in hardware (most
2957 * RISC architectures). The early dirtying is also good on the i386.
2958 *
2959 * There is also a hook called "update_mmu_cache()" that architectures
2960 * with external mmu caches can use to update those (ie the Sparc or
2961 * PowerPC hashed page tables that act as extended TLBs).
2962 *
2963 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2964 * but allow concurrent faults), and pte mapped but not yet locked.
2965 * We return with mmap_sem still held, but pte unmapped and unlocked.
2966 */
2967 static inline int handle_pte_fault(struct mm_struct *mm,
2968 struct vm_area_struct *vma, unsigned long address,
2969 pte_t *pte, pmd_t *pmd, unsigned int flags)
2970 {
2971 pte_t entry;
2972 spinlock_t *ptl;
2973
2974 entry = *pte;
2975 if (!pte_present(entry)) {
2976 if (pte_none(entry)) {
2977 if (vma->vm_ops) {
2978 if (likely(vma->vm_ops->fault))
2979 return do_linear_fault(mm, vma, address,
2980 pte, pmd, flags, entry);
2981 }
2982 return do_anonymous_page(mm, vma, address,
2983 pte, pmd, flags);
2984 }
2985 if (pte_file(entry))
2986 return do_nonlinear_fault(mm, vma, address,
2987 pte, pmd, flags, entry);
2988 return do_swap_page(mm, vma, address,
2989 pte, pmd, flags, entry);
2990 }
2991
2992 ptl = pte_lockptr(mm, pmd);
2993 spin_lock(ptl);
2994 if (unlikely(!pte_same(*pte, entry)))
2995 goto unlock;
2996 if (flags & FAULT_FLAG_WRITE) {
2997 if (!pte_write(entry))
2998 return do_wp_page(mm, vma, address,
2999 pte, pmd, ptl, entry);
3000 entry = pte_mkdirty(entry);
3001 }
3002 entry = pte_mkyoung(entry);
3003 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3004 update_mmu_cache(vma, address, entry);
3005 } else {
3006 /*
3007 * This is needed only for protection faults but the arch code
3008 * is not yet telling us if this is a protection fault or not.
3009 * This still avoids useless tlb flushes for .text page faults
3010 * with threads.
3011 */
3012 if (flags & FAULT_FLAG_WRITE)
3013 flush_tlb_page(vma, address);
3014 }
3015 unlock:
3016 pte_unmap_unlock(pte, ptl);
3017 return 0;
3018 }
3019
3020 /*
3021 * By the time we get here, we already hold the mm semaphore
3022 */
3023 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3024 unsigned long address, unsigned int flags)
3025 {
3026 pgd_t *pgd;
3027 pud_t *pud;
3028 pmd_t *pmd;
3029 pte_t *pte;
3030
3031 __set_current_state(TASK_RUNNING);
3032
3033 count_vm_event(PGFAULT);
3034
3035 if (unlikely(is_vm_hugetlb_page(vma)))
3036 return hugetlb_fault(mm, vma, address, flags);
3037
3038 pgd = pgd_offset(mm, address);
3039 pud = pud_alloc(mm, pgd, address);
3040 if (!pud)
3041 return VM_FAULT_OOM;
3042 pmd = pmd_alloc(mm, pud, address);
3043 if (!pmd)
3044 return VM_FAULT_OOM;
3045 pte = pte_alloc_map(mm, pmd, address);
3046 if (!pte)
3047 return VM_FAULT_OOM;
3048
3049 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3050 }
3051
3052 #ifndef __PAGETABLE_PUD_FOLDED
3053 /*
3054 * Allocate page upper directory.
3055 * We've already handled the fast-path in-line.
3056 */
3057 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3058 {
3059 pud_t *new = pud_alloc_one(mm, address);
3060 if (!new)
3061 return -ENOMEM;
3062
3063 smp_wmb(); /* See comment in __pte_alloc */
3064
3065 spin_lock(&mm->page_table_lock);
3066 if (pgd_present(*pgd)) /* Another has populated it */
3067 pud_free(mm, new);
3068 else
3069 pgd_populate(mm, pgd, new);
3070 spin_unlock(&mm->page_table_lock);
3071 return 0;
3072 }
3073 #endif /* __PAGETABLE_PUD_FOLDED */
3074
3075 #ifndef __PAGETABLE_PMD_FOLDED
3076 /*
3077 * Allocate page middle directory.
3078 * We've already handled the fast-path in-line.
3079 */
3080 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3081 {
3082 pmd_t *new = pmd_alloc_one(mm, address);
3083 if (!new)
3084 return -ENOMEM;
3085
3086 smp_wmb(); /* See comment in __pte_alloc */
3087
3088 spin_lock(&mm->page_table_lock);
3089 #ifndef __ARCH_HAS_4LEVEL_HACK
3090 if (pud_present(*pud)) /* Another has populated it */
3091 pmd_free(mm, new);
3092 else
3093 pud_populate(mm, pud, new);
3094 #else
3095 if (pgd_present(*pud)) /* Another has populated it */
3096 pmd_free(mm, new);
3097 else
3098 pgd_populate(mm, pud, new);
3099 #endif /* __ARCH_HAS_4LEVEL_HACK */
3100 spin_unlock(&mm->page_table_lock);
3101 return 0;
3102 }
3103 #endif /* __PAGETABLE_PMD_FOLDED */
3104
3105 int make_pages_present(unsigned long addr, unsigned long end)
3106 {
3107 int ret, len, write;
3108 struct vm_area_struct * vma;
3109
3110 vma = find_vma(current->mm, addr);
3111 if (!vma)
3112 return -ENOMEM;
3113 write = (vma->vm_flags & VM_WRITE) != 0;
3114 BUG_ON(addr >= end);
3115 BUG_ON(end > vma->vm_end);
3116 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3117 ret = get_user_pages(current, current->mm, addr,
3118 len, write, 0, NULL, NULL);
3119 if (ret < 0)
3120 return ret;
3121 return ret == len ? 0 : -EFAULT;
3122 }
3123
3124 #if !defined(__HAVE_ARCH_GATE_AREA)
3125
3126 #if defined(AT_SYSINFO_EHDR)
3127 static struct vm_area_struct gate_vma;
3128
3129 static int __init gate_vma_init(void)
3130 {
3131 gate_vma.vm_mm = NULL;
3132 gate_vma.vm_start = FIXADDR_USER_START;
3133 gate_vma.vm_end = FIXADDR_USER_END;
3134 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3135 gate_vma.vm_page_prot = __P101;
3136 /*
3137 * Make sure the vDSO gets into every core dump.
3138 * Dumping its contents makes post-mortem fully interpretable later
3139 * without matching up the same kernel and hardware config to see
3140 * what PC values meant.
3141 */
3142 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3143 return 0;
3144 }
3145 __initcall(gate_vma_init);
3146 #endif
3147
3148 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3149 {
3150 #ifdef AT_SYSINFO_EHDR
3151 return &gate_vma;
3152 #else
3153 return NULL;
3154 #endif
3155 }
3156
3157 int in_gate_area_no_task(unsigned long addr)
3158 {
3159 #ifdef AT_SYSINFO_EHDR
3160 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3161 return 1;
3162 #endif
3163 return 0;
3164 }
3165
3166 #endif /* __HAVE_ARCH_GATE_AREA */
3167
3168 static int follow_pte(struct mm_struct *mm, unsigned long address,
3169 pte_t **ptepp, spinlock_t **ptlp)
3170 {
3171 pgd_t *pgd;
3172 pud_t *pud;
3173 pmd_t *pmd;
3174 pte_t *ptep;
3175
3176 pgd = pgd_offset(mm, address);
3177 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3178 goto out;
3179
3180 pud = pud_offset(pgd, address);
3181 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3182 goto out;
3183
3184 pmd = pmd_offset(pud, address);
3185 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3186 goto out;
3187
3188 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3189 if (pmd_huge(*pmd))
3190 goto out;
3191
3192 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3193 if (!ptep)
3194 goto out;
3195 if (!pte_present(*ptep))
3196 goto unlock;
3197 *ptepp = ptep;
3198 return 0;
3199 unlock:
3200 pte_unmap_unlock(ptep, *ptlp);
3201 out:
3202 return -EINVAL;
3203 }
3204
3205 /**
3206 * follow_pfn - look up PFN at a user virtual address
3207 * @vma: memory mapping
3208 * @address: user virtual address
3209 * @pfn: location to store found PFN
3210 *
3211 * Only IO mappings and raw PFN mappings are allowed.
3212 *
3213 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3214 */
3215 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3216 unsigned long *pfn)
3217 {
3218 int ret = -EINVAL;
3219 spinlock_t *ptl;
3220 pte_t *ptep;
3221
3222 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3223 return ret;
3224
3225 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3226 if (ret)
3227 return ret;
3228 *pfn = pte_pfn(*ptep);
3229 pte_unmap_unlock(ptep, ptl);
3230 return 0;
3231 }
3232 EXPORT_SYMBOL(follow_pfn);
3233
3234 #ifdef CONFIG_HAVE_IOREMAP_PROT
3235 int follow_phys(struct vm_area_struct *vma,
3236 unsigned long address, unsigned int flags,
3237 unsigned long *prot, resource_size_t *phys)
3238 {
3239 int ret = -EINVAL;
3240 pte_t *ptep, pte;
3241 spinlock_t *ptl;
3242
3243 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3244 goto out;
3245
3246 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3247 goto out;
3248 pte = *ptep;
3249
3250 if ((flags & FOLL_WRITE) && !pte_write(pte))
3251 goto unlock;
3252
3253 *prot = pgprot_val(pte_pgprot(pte));
3254 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3255
3256 ret = 0;
3257 unlock:
3258 pte_unmap_unlock(ptep, ptl);
3259 out:
3260 return ret;
3261 }
3262
3263 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3264 void *buf, int len, int write)
3265 {
3266 resource_size_t phys_addr;
3267 unsigned long prot = 0;
3268 void __iomem *maddr;
3269 int offset = addr & (PAGE_SIZE-1);
3270
3271 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3272 return -EINVAL;
3273
3274 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3275 if (write)
3276 memcpy_toio(maddr + offset, buf, len);
3277 else
3278 memcpy_fromio(buf, maddr + offset, len);
3279 iounmap(maddr);
3280
3281 return len;
3282 }
3283 #endif
3284
3285 /*
3286 * Access another process' address space.
3287 * Source/target buffer must be kernel space,
3288 * Do not walk the page table directly, use get_user_pages
3289 */
3290 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3291 {
3292 struct mm_struct *mm;
3293 struct vm_area_struct *vma;
3294 void *old_buf = buf;
3295
3296 mm = get_task_mm(tsk);
3297 if (!mm)
3298 return 0;
3299
3300 down_read(&mm->mmap_sem);
3301 /* ignore errors, just check how much was successfully transferred */
3302 while (len) {
3303 int bytes, ret, offset;
3304 void *maddr;
3305 struct page *page = NULL;
3306
3307 ret = get_user_pages(tsk, mm, addr, 1,
3308 write, 1, &page, &vma);
3309 if (ret <= 0) {
3310 /*
3311 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3312 * we can access using slightly different code.
3313 */
3314 #ifdef CONFIG_HAVE_IOREMAP_PROT
3315 vma = find_vma(mm, addr);
3316 if (!vma)
3317 break;
3318 if (vma->vm_ops && vma->vm_ops->access)
3319 ret = vma->vm_ops->access(vma, addr, buf,
3320 len, write);
3321 if (ret <= 0)
3322 #endif
3323 break;
3324 bytes = ret;
3325 } else {
3326 bytes = len;
3327 offset = addr & (PAGE_SIZE-1);
3328 if (bytes > PAGE_SIZE-offset)
3329 bytes = PAGE_SIZE-offset;
3330
3331 maddr = kmap(page);
3332 if (write) {
3333 copy_to_user_page(vma, page, addr,
3334 maddr + offset, buf, bytes);
3335 set_page_dirty_lock(page);
3336 } else {
3337 copy_from_user_page(vma, page, addr,
3338 buf, maddr + offset, bytes);
3339 }
3340 kunmap(page);
3341 page_cache_release(page);
3342 }
3343 len -= bytes;
3344 buf += bytes;
3345 addr += bytes;
3346 }
3347 up_read(&mm->mmap_sem);
3348 mmput(mm);
3349
3350 return buf - old_buf;
3351 }
3352
3353 /*
3354 * Print the name of a VMA.
3355 */
3356 void print_vma_addr(char *prefix, unsigned long ip)
3357 {
3358 struct mm_struct *mm = current->mm;
3359 struct vm_area_struct *vma;
3360
3361 /*
3362 * Do not print if we are in atomic
3363 * contexts (in exception stacks, etc.):
3364 */
3365 if (preempt_count())
3366 return;
3367
3368 down_read(&mm->mmap_sem);
3369 vma = find_vma(mm, ip);
3370 if (vma && vma->vm_file) {
3371 struct file *f = vma->vm_file;
3372 char *buf = (char *)__get_free_page(GFP_KERNEL);
3373 if (buf) {
3374 char *p, *s;
3375
3376 p = d_path(&f->f_path, buf, PAGE_SIZE);
3377 if (IS_ERR(p))
3378 p = "?";
3379 s = strrchr(p, '/');
3380 if (s)
3381 p = s+1;
3382 printk("%s%s[%lx+%lx]", prefix, p,
3383 vma->vm_start,
3384 vma->vm_end - vma->vm_start);
3385 free_page((unsigned long)buf);
3386 }
3387 }
3388 up_read(&current->mm->mmap_sem);
3389 }
3390
3391 #ifdef CONFIG_PROVE_LOCKING
3392 void might_fault(void)
3393 {
3394 /*
3395 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3396 * holding the mmap_sem, this is safe because kernel memory doesn't
3397 * get paged out, therefore we'll never actually fault, and the
3398 * below annotations will generate false positives.
3399 */
3400 if (segment_eq(get_fs(), KERNEL_DS))
3401 return;
3402
3403 might_sleep();
3404 /*
3405 * it would be nicer only to annotate paths which are not under
3406 * pagefault_disable, however that requires a larger audit and
3407 * providing helpers like get_user_atomic.
3408 */
3409 if (!in_atomic() && current->mm)
3410 might_lock_read(&current->mm->mmap_sem);
3411 }
3412 EXPORT_SYMBOL(might_fault);
3413 #endif
This page took 0.102591 seconds and 5 git commands to generate.