mm: Convert i_mmap_lock to a mutex
[deliverable/linux.git] / mm / memory.c
1 /*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12 /*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23 /*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31 /*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/module.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60
61 #include <asm/io.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
64 #include <asm/tlb.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
67
68 #include "internal.h"
69
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr;
73 struct page *mem_map;
74
75 EXPORT_SYMBOL(max_mapnr);
76 EXPORT_SYMBOL(mem_map);
77 #endif
78
79 unsigned long num_physpages;
80 /*
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
85 * and ZONE_HIGHMEM.
86 */
87 void * high_memory;
88
89 EXPORT_SYMBOL(num_physpages);
90 EXPORT_SYMBOL(high_memory);
91
92 /*
93 * Randomize the address space (stacks, mmaps, brk, etc.).
94 *
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
97 */
98 int randomize_va_space __read_mostly =
99 #ifdef CONFIG_COMPAT_BRK
100 1;
101 #else
102 2;
103 #endif
104
105 static int __init disable_randmaps(char *s)
106 {
107 randomize_va_space = 0;
108 return 1;
109 }
110 __setup("norandmaps", disable_randmaps);
111
112 unsigned long zero_pfn __read_mostly;
113 unsigned long highest_memmap_pfn __read_mostly;
114
115 /*
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
117 */
118 static int __init init_zero_pfn(void)
119 {
120 zero_pfn = page_to_pfn(ZERO_PAGE(0));
121 return 0;
122 }
123 core_initcall(init_zero_pfn);
124
125
126 #if defined(SPLIT_RSS_COUNTING)
127
128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
129 {
130 int i;
131
132 for (i = 0; i < NR_MM_COUNTERS; i++) {
133 if (task->rss_stat.count[i]) {
134 add_mm_counter(mm, i, task->rss_stat.count[i]);
135 task->rss_stat.count[i] = 0;
136 }
137 }
138 task->rss_stat.events = 0;
139 }
140
141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
142 {
143 struct task_struct *task = current;
144
145 if (likely(task->mm == mm))
146 task->rss_stat.count[member] += val;
147 else
148 add_mm_counter(mm, member, val);
149 }
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
152
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct *task)
156 {
157 if (unlikely(task != current))
158 return;
159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
160 __sync_task_rss_stat(task, task->mm);
161 }
162
163 unsigned long get_mm_counter(struct mm_struct *mm, int member)
164 {
165 long val = 0;
166
167 /*
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
170 */
171 val = atomic_long_read(&mm->rss_stat.count[member]);
172 /*
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
175 */
176 if (val < 0)
177 return 0;
178 return (unsigned long)val;
179 }
180
181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
182 {
183 __sync_task_rss_stat(task, mm);
184 }
185 #else
186
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
189
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 }
193
194 #endif
195
196 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
197
198 /*
199 * See the comment near struct mmu_table_batch.
200 */
201
202 static void tlb_remove_table_smp_sync(void *arg)
203 {
204 /* Simply deliver the interrupt */
205 }
206
207 static void tlb_remove_table_one(void *table)
208 {
209 /*
210 * This isn't an RCU grace period and hence the page-tables cannot be
211 * assumed to be actually RCU-freed.
212 *
213 * It is however sufficient for software page-table walkers that rely on
214 * IRQ disabling. See the comment near struct mmu_table_batch.
215 */
216 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
217 __tlb_remove_table(table);
218 }
219
220 static void tlb_remove_table_rcu(struct rcu_head *head)
221 {
222 struct mmu_table_batch *batch;
223 int i;
224
225 batch = container_of(head, struct mmu_table_batch, rcu);
226
227 for (i = 0; i < batch->nr; i++)
228 __tlb_remove_table(batch->tables[i]);
229
230 free_page((unsigned long)batch);
231 }
232
233 void tlb_table_flush(struct mmu_gather *tlb)
234 {
235 struct mmu_table_batch **batch = &tlb->batch;
236
237 if (*batch) {
238 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
239 *batch = NULL;
240 }
241 }
242
243 void tlb_remove_table(struct mmu_gather *tlb, void *table)
244 {
245 struct mmu_table_batch **batch = &tlb->batch;
246
247 tlb->need_flush = 1;
248
249 /*
250 * When there's less then two users of this mm there cannot be a
251 * concurrent page-table walk.
252 */
253 if (atomic_read(&tlb->mm->mm_users) < 2) {
254 __tlb_remove_table(table);
255 return;
256 }
257
258 if (*batch == NULL) {
259 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
260 if (*batch == NULL) {
261 tlb_remove_table_one(table);
262 return;
263 }
264 (*batch)->nr = 0;
265 }
266 (*batch)->tables[(*batch)->nr++] = table;
267 if ((*batch)->nr == MAX_TABLE_BATCH)
268 tlb_table_flush(tlb);
269 }
270
271 #endif
272
273 /*
274 * If a p?d_bad entry is found while walking page tables, report
275 * the error, before resetting entry to p?d_none. Usually (but
276 * very seldom) called out from the p?d_none_or_clear_bad macros.
277 */
278
279 void pgd_clear_bad(pgd_t *pgd)
280 {
281 pgd_ERROR(*pgd);
282 pgd_clear(pgd);
283 }
284
285 void pud_clear_bad(pud_t *pud)
286 {
287 pud_ERROR(*pud);
288 pud_clear(pud);
289 }
290
291 void pmd_clear_bad(pmd_t *pmd)
292 {
293 pmd_ERROR(*pmd);
294 pmd_clear(pmd);
295 }
296
297 /*
298 * Note: this doesn't free the actual pages themselves. That
299 * has been handled earlier when unmapping all the memory regions.
300 */
301 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
302 unsigned long addr)
303 {
304 pgtable_t token = pmd_pgtable(*pmd);
305 pmd_clear(pmd);
306 pte_free_tlb(tlb, token, addr);
307 tlb->mm->nr_ptes--;
308 }
309
310 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
311 unsigned long addr, unsigned long end,
312 unsigned long floor, unsigned long ceiling)
313 {
314 pmd_t *pmd;
315 unsigned long next;
316 unsigned long start;
317
318 start = addr;
319 pmd = pmd_offset(pud, addr);
320 do {
321 next = pmd_addr_end(addr, end);
322 if (pmd_none_or_clear_bad(pmd))
323 continue;
324 free_pte_range(tlb, pmd, addr);
325 } while (pmd++, addr = next, addr != end);
326
327 start &= PUD_MASK;
328 if (start < floor)
329 return;
330 if (ceiling) {
331 ceiling &= PUD_MASK;
332 if (!ceiling)
333 return;
334 }
335 if (end - 1 > ceiling - 1)
336 return;
337
338 pmd = pmd_offset(pud, start);
339 pud_clear(pud);
340 pmd_free_tlb(tlb, pmd, start);
341 }
342
343 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
344 unsigned long addr, unsigned long end,
345 unsigned long floor, unsigned long ceiling)
346 {
347 pud_t *pud;
348 unsigned long next;
349 unsigned long start;
350
351 start = addr;
352 pud = pud_offset(pgd, addr);
353 do {
354 next = pud_addr_end(addr, end);
355 if (pud_none_or_clear_bad(pud))
356 continue;
357 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
358 } while (pud++, addr = next, addr != end);
359
360 start &= PGDIR_MASK;
361 if (start < floor)
362 return;
363 if (ceiling) {
364 ceiling &= PGDIR_MASK;
365 if (!ceiling)
366 return;
367 }
368 if (end - 1 > ceiling - 1)
369 return;
370
371 pud = pud_offset(pgd, start);
372 pgd_clear(pgd);
373 pud_free_tlb(tlb, pud, start);
374 }
375
376 /*
377 * This function frees user-level page tables of a process.
378 *
379 * Must be called with pagetable lock held.
380 */
381 void free_pgd_range(struct mmu_gather *tlb,
382 unsigned long addr, unsigned long end,
383 unsigned long floor, unsigned long ceiling)
384 {
385 pgd_t *pgd;
386 unsigned long next;
387
388 /*
389 * The next few lines have given us lots of grief...
390 *
391 * Why are we testing PMD* at this top level? Because often
392 * there will be no work to do at all, and we'd prefer not to
393 * go all the way down to the bottom just to discover that.
394 *
395 * Why all these "- 1"s? Because 0 represents both the bottom
396 * of the address space and the top of it (using -1 for the
397 * top wouldn't help much: the masks would do the wrong thing).
398 * The rule is that addr 0 and floor 0 refer to the bottom of
399 * the address space, but end 0 and ceiling 0 refer to the top
400 * Comparisons need to use "end - 1" and "ceiling - 1" (though
401 * that end 0 case should be mythical).
402 *
403 * Wherever addr is brought up or ceiling brought down, we must
404 * be careful to reject "the opposite 0" before it confuses the
405 * subsequent tests. But what about where end is brought down
406 * by PMD_SIZE below? no, end can't go down to 0 there.
407 *
408 * Whereas we round start (addr) and ceiling down, by different
409 * masks at different levels, in order to test whether a table
410 * now has no other vmas using it, so can be freed, we don't
411 * bother to round floor or end up - the tests don't need that.
412 */
413
414 addr &= PMD_MASK;
415 if (addr < floor) {
416 addr += PMD_SIZE;
417 if (!addr)
418 return;
419 }
420 if (ceiling) {
421 ceiling &= PMD_MASK;
422 if (!ceiling)
423 return;
424 }
425 if (end - 1 > ceiling - 1)
426 end -= PMD_SIZE;
427 if (addr > end - 1)
428 return;
429
430 pgd = pgd_offset(tlb->mm, addr);
431 do {
432 next = pgd_addr_end(addr, end);
433 if (pgd_none_or_clear_bad(pgd))
434 continue;
435 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
436 } while (pgd++, addr = next, addr != end);
437 }
438
439 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
440 unsigned long floor, unsigned long ceiling)
441 {
442 while (vma) {
443 struct vm_area_struct *next = vma->vm_next;
444 unsigned long addr = vma->vm_start;
445
446 /*
447 * Hide vma from rmap and truncate_pagecache before freeing
448 * pgtables
449 */
450 unlink_anon_vmas(vma);
451 unlink_file_vma(vma);
452
453 if (is_vm_hugetlb_page(vma)) {
454 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
455 floor, next? next->vm_start: ceiling);
456 } else {
457 /*
458 * Optimization: gather nearby vmas into one call down
459 */
460 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
461 && !is_vm_hugetlb_page(next)) {
462 vma = next;
463 next = vma->vm_next;
464 unlink_anon_vmas(vma);
465 unlink_file_vma(vma);
466 }
467 free_pgd_range(tlb, addr, vma->vm_end,
468 floor, next? next->vm_start: ceiling);
469 }
470 vma = next;
471 }
472 }
473
474 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
475 pmd_t *pmd, unsigned long address)
476 {
477 pgtable_t new = pte_alloc_one(mm, address);
478 int wait_split_huge_page;
479 if (!new)
480 return -ENOMEM;
481
482 /*
483 * Ensure all pte setup (eg. pte page lock and page clearing) are
484 * visible before the pte is made visible to other CPUs by being
485 * put into page tables.
486 *
487 * The other side of the story is the pointer chasing in the page
488 * table walking code (when walking the page table without locking;
489 * ie. most of the time). Fortunately, these data accesses consist
490 * of a chain of data-dependent loads, meaning most CPUs (alpha
491 * being the notable exception) will already guarantee loads are
492 * seen in-order. See the alpha page table accessors for the
493 * smp_read_barrier_depends() barriers in page table walking code.
494 */
495 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
496
497 spin_lock(&mm->page_table_lock);
498 wait_split_huge_page = 0;
499 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
500 mm->nr_ptes++;
501 pmd_populate(mm, pmd, new);
502 new = NULL;
503 } else if (unlikely(pmd_trans_splitting(*pmd)))
504 wait_split_huge_page = 1;
505 spin_unlock(&mm->page_table_lock);
506 if (new)
507 pte_free(mm, new);
508 if (wait_split_huge_page)
509 wait_split_huge_page(vma->anon_vma, pmd);
510 return 0;
511 }
512
513 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
514 {
515 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
516 if (!new)
517 return -ENOMEM;
518
519 smp_wmb(); /* See comment in __pte_alloc */
520
521 spin_lock(&init_mm.page_table_lock);
522 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
523 pmd_populate_kernel(&init_mm, pmd, new);
524 new = NULL;
525 } else
526 VM_BUG_ON(pmd_trans_splitting(*pmd));
527 spin_unlock(&init_mm.page_table_lock);
528 if (new)
529 pte_free_kernel(&init_mm, new);
530 return 0;
531 }
532
533 static inline void init_rss_vec(int *rss)
534 {
535 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
536 }
537
538 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
539 {
540 int i;
541
542 if (current->mm == mm)
543 sync_mm_rss(current, mm);
544 for (i = 0; i < NR_MM_COUNTERS; i++)
545 if (rss[i])
546 add_mm_counter(mm, i, rss[i]);
547 }
548
549 /*
550 * This function is called to print an error when a bad pte
551 * is found. For example, we might have a PFN-mapped pte in
552 * a region that doesn't allow it.
553 *
554 * The calling function must still handle the error.
555 */
556 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
557 pte_t pte, struct page *page)
558 {
559 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
560 pud_t *pud = pud_offset(pgd, addr);
561 pmd_t *pmd = pmd_offset(pud, addr);
562 struct address_space *mapping;
563 pgoff_t index;
564 static unsigned long resume;
565 static unsigned long nr_shown;
566 static unsigned long nr_unshown;
567
568 /*
569 * Allow a burst of 60 reports, then keep quiet for that minute;
570 * or allow a steady drip of one report per second.
571 */
572 if (nr_shown == 60) {
573 if (time_before(jiffies, resume)) {
574 nr_unshown++;
575 return;
576 }
577 if (nr_unshown) {
578 printk(KERN_ALERT
579 "BUG: Bad page map: %lu messages suppressed\n",
580 nr_unshown);
581 nr_unshown = 0;
582 }
583 nr_shown = 0;
584 }
585 if (nr_shown++ == 0)
586 resume = jiffies + 60 * HZ;
587
588 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
589 index = linear_page_index(vma, addr);
590
591 printk(KERN_ALERT
592 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
593 current->comm,
594 (long long)pte_val(pte), (long long)pmd_val(*pmd));
595 if (page)
596 dump_page(page);
597 printk(KERN_ALERT
598 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
599 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
600 /*
601 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
602 */
603 if (vma->vm_ops)
604 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
605 (unsigned long)vma->vm_ops->fault);
606 if (vma->vm_file && vma->vm_file->f_op)
607 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
608 (unsigned long)vma->vm_file->f_op->mmap);
609 dump_stack();
610 add_taint(TAINT_BAD_PAGE);
611 }
612
613 static inline int is_cow_mapping(unsigned int flags)
614 {
615 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
616 }
617
618 #ifndef is_zero_pfn
619 static inline int is_zero_pfn(unsigned long pfn)
620 {
621 return pfn == zero_pfn;
622 }
623 #endif
624
625 #ifndef my_zero_pfn
626 static inline unsigned long my_zero_pfn(unsigned long addr)
627 {
628 return zero_pfn;
629 }
630 #endif
631
632 /*
633 * vm_normal_page -- This function gets the "struct page" associated with a pte.
634 *
635 * "Special" mappings do not wish to be associated with a "struct page" (either
636 * it doesn't exist, or it exists but they don't want to touch it). In this
637 * case, NULL is returned here. "Normal" mappings do have a struct page.
638 *
639 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
640 * pte bit, in which case this function is trivial. Secondly, an architecture
641 * may not have a spare pte bit, which requires a more complicated scheme,
642 * described below.
643 *
644 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
645 * special mapping (even if there are underlying and valid "struct pages").
646 * COWed pages of a VM_PFNMAP are always normal.
647 *
648 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
649 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
650 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
651 * mapping will always honor the rule
652 *
653 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
654 *
655 * And for normal mappings this is false.
656 *
657 * This restricts such mappings to be a linear translation from virtual address
658 * to pfn. To get around this restriction, we allow arbitrary mappings so long
659 * as the vma is not a COW mapping; in that case, we know that all ptes are
660 * special (because none can have been COWed).
661 *
662 *
663 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
664 *
665 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
666 * page" backing, however the difference is that _all_ pages with a struct
667 * page (that is, those where pfn_valid is true) are refcounted and considered
668 * normal pages by the VM. The disadvantage is that pages are refcounted
669 * (which can be slower and simply not an option for some PFNMAP users). The
670 * advantage is that we don't have to follow the strict linearity rule of
671 * PFNMAP mappings in order to support COWable mappings.
672 *
673 */
674 #ifdef __HAVE_ARCH_PTE_SPECIAL
675 # define HAVE_PTE_SPECIAL 1
676 #else
677 # define HAVE_PTE_SPECIAL 0
678 #endif
679 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
680 pte_t pte)
681 {
682 unsigned long pfn = pte_pfn(pte);
683
684 if (HAVE_PTE_SPECIAL) {
685 if (likely(!pte_special(pte)))
686 goto check_pfn;
687 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
688 return NULL;
689 if (!is_zero_pfn(pfn))
690 print_bad_pte(vma, addr, pte, NULL);
691 return NULL;
692 }
693
694 /* !HAVE_PTE_SPECIAL case follows: */
695
696 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
697 if (vma->vm_flags & VM_MIXEDMAP) {
698 if (!pfn_valid(pfn))
699 return NULL;
700 goto out;
701 } else {
702 unsigned long off;
703 off = (addr - vma->vm_start) >> PAGE_SHIFT;
704 if (pfn == vma->vm_pgoff + off)
705 return NULL;
706 if (!is_cow_mapping(vma->vm_flags))
707 return NULL;
708 }
709 }
710
711 if (is_zero_pfn(pfn))
712 return NULL;
713 check_pfn:
714 if (unlikely(pfn > highest_memmap_pfn)) {
715 print_bad_pte(vma, addr, pte, NULL);
716 return NULL;
717 }
718
719 /*
720 * NOTE! We still have PageReserved() pages in the page tables.
721 * eg. VDSO mappings can cause them to exist.
722 */
723 out:
724 return pfn_to_page(pfn);
725 }
726
727 /*
728 * copy one vm_area from one task to the other. Assumes the page tables
729 * already present in the new task to be cleared in the whole range
730 * covered by this vma.
731 */
732
733 static inline unsigned long
734 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
735 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
736 unsigned long addr, int *rss)
737 {
738 unsigned long vm_flags = vma->vm_flags;
739 pte_t pte = *src_pte;
740 struct page *page;
741
742 /* pte contains position in swap or file, so copy. */
743 if (unlikely(!pte_present(pte))) {
744 if (!pte_file(pte)) {
745 swp_entry_t entry = pte_to_swp_entry(pte);
746
747 if (swap_duplicate(entry) < 0)
748 return entry.val;
749
750 /* make sure dst_mm is on swapoff's mmlist. */
751 if (unlikely(list_empty(&dst_mm->mmlist))) {
752 spin_lock(&mmlist_lock);
753 if (list_empty(&dst_mm->mmlist))
754 list_add(&dst_mm->mmlist,
755 &src_mm->mmlist);
756 spin_unlock(&mmlist_lock);
757 }
758 if (likely(!non_swap_entry(entry)))
759 rss[MM_SWAPENTS]++;
760 else if (is_write_migration_entry(entry) &&
761 is_cow_mapping(vm_flags)) {
762 /*
763 * COW mappings require pages in both parent
764 * and child to be set to read.
765 */
766 make_migration_entry_read(&entry);
767 pte = swp_entry_to_pte(entry);
768 set_pte_at(src_mm, addr, src_pte, pte);
769 }
770 }
771 goto out_set_pte;
772 }
773
774 /*
775 * If it's a COW mapping, write protect it both
776 * in the parent and the child
777 */
778 if (is_cow_mapping(vm_flags)) {
779 ptep_set_wrprotect(src_mm, addr, src_pte);
780 pte = pte_wrprotect(pte);
781 }
782
783 /*
784 * If it's a shared mapping, mark it clean in
785 * the child
786 */
787 if (vm_flags & VM_SHARED)
788 pte = pte_mkclean(pte);
789 pte = pte_mkold(pte);
790
791 page = vm_normal_page(vma, addr, pte);
792 if (page) {
793 get_page(page);
794 page_dup_rmap(page);
795 if (PageAnon(page))
796 rss[MM_ANONPAGES]++;
797 else
798 rss[MM_FILEPAGES]++;
799 }
800
801 out_set_pte:
802 set_pte_at(dst_mm, addr, dst_pte, pte);
803 return 0;
804 }
805
806 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
807 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
808 unsigned long addr, unsigned long end)
809 {
810 pte_t *orig_src_pte, *orig_dst_pte;
811 pte_t *src_pte, *dst_pte;
812 spinlock_t *src_ptl, *dst_ptl;
813 int progress = 0;
814 int rss[NR_MM_COUNTERS];
815 swp_entry_t entry = (swp_entry_t){0};
816
817 again:
818 init_rss_vec(rss);
819
820 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
821 if (!dst_pte)
822 return -ENOMEM;
823 src_pte = pte_offset_map(src_pmd, addr);
824 src_ptl = pte_lockptr(src_mm, src_pmd);
825 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
826 orig_src_pte = src_pte;
827 orig_dst_pte = dst_pte;
828 arch_enter_lazy_mmu_mode();
829
830 do {
831 /*
832 * We are holding two locks at this point - either of them
833 * could generate latencies in another task on another CPU.
834 */
835 if (progress >= 32) {
836 progress = 0;
837 if (need_resched() ||
838 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
839 break;
840 }
841 if (pte_none(*src_pte)) {
842 progress++;
843 continue;
844 }
845 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
846 vma, addr, rss);
847 if (entry.val)
848 break;
849 progress += 8;
850 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
851
852 arch_leave_lazy_mmu_mode();
853 spin_unlock(src_ptl);
854 pte_unmap(orig_src_pte);
855 add_mm_rss_vec(dst_mm, rss);
856 pte_unmap_unlock(orig_dst_pte, dst_ptl);
857 cond_resched();
858
859 if (entry.val) {
860 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
861 return -ENOMEM;
862 progress = 0;
863 }
864 if (addr != end)
865 goto again;
866 return 0;
867 }
868
869 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
870 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
871 unsigned long addr, unsigned long end)
872 {
873 pmd_t *src_pmd, *dst_pmd;
874 unsigned long next;
875
876 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
877 if (!dst_pmd)
878 return -ENOMEM;
879 src_pmd = pmd_offset(src_pud, addr);
880 do {
881 next = pmd_addr_end(addr, end);
882 if (pmd_trans_huge(*src_pmd)) {
883 int err;
884 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
885 err = copy_huge_pmd(dst_mm, src_mm,
886 dst_pmd, src_pmd, addr, vma);
887 if (err == -ENOMEM)
888 return -ENOMEM;
889 if (!err)
890 continue;
891 /* fall through */
892 }
893 if (pmd_none_or_clear_bad(src_pmd))
894 continue;
895 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
896 vma, addr, next))
897 return -ENOMEM;
898 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
899 return 0;
900 }
901
902 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
904 unsigned long addr, unsigned long end)
905 {
906 pud_t *src_pud, *dst_pud;
907 unsigned long next;
908
909 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
910 if (!dst_pud)
911 return -ENOMEM;
912 src_pud = pud_offset(src_pgd, addr);
913 do {
914 next = pud_addr_end(addr, end);
915 if (pud_none_or_clear_bad(src_pud))
916 continue;
917 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
918 vma, addr, next))
919 return -ENOMEM;
920 } while (dst_pud++, src_pud++, addr = next, addr != end);
921 return 0;
922 }
923
924 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
925 struct vm_area_struct *vma)
926 {
927 pgd_t *src_pgd, *dst_pgd;
928 unsigned long next;
929 unsigned long addr = vma->vm_start;
930 unsigned long end = vma->vm_end;
931 int ret;
932
933 /*
934 * Don't copy ptes where a page fault will fill them correctly.
935 * Fork becomes much lighter when there are big shared or private
936 * readonly mappings. The tradeoff is that copy_page_range is more
937 * efficient than faulting.
938 */
939 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
940 if (!vma->anon_vma)
941 return 0;
942 }
943
944 if (is_vm_hugetlb_page(vma))
945 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
946
947 if (unlikely(is_pfn_mapping(vma))) {
948 /*
949 * We do not free on error cases below as remove_vma
950 * gets called on error from higher level routine
951 */
952 ret = track_pfn_vma_copy(vma);
953 if (ret)
954 return ret;
955 }
956
957 /*
958 * We need to invalidate the secondary MMU mappings only when
959 * there could be a permission downgrade on the ptes of the
960 * parent mm. And a permission downgrade will only happen if
961 * is_cow_mapping() returns true.
962 */
963 if (is_cow_mapping(vma->vm_flags))
964 mmu_notifier_invalidate_range_start(src_mm, addr, end);
965
966 ret = 0;
967 dst_pgd = pgd_offset(dst_mm, addr);
968 src_pgd = pgd_offset(src_mm, addr);
969 do {
970 next = pgd_addr_end(addr, end);
971 if (pgd_none_or_clear_bad(src_pgd))
972 continue;
973 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
974 vma, addr, next))) {
975 ret = -ENOMEM;
976 break;
977 }
978 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
979
980 if (is_cow_mapping(vma->vm_flags))
981 mmu_notifier_invalidate_range_end(src_mm,
982 vma->vm_start, end);
983 return ret;
984 }
985
986 static unsigned long zap_pte_range(struct mmu_gather *tlb,
987 struct vm_area_struct *vma, pmd_t *pmd,
988 unsigned long addr, unsigned long end,
989 struct zap_details *details)
990 {
991 struct mm_struct *mm = tlb->mm;
992 int force_flush = 0;
993 int rss[NR_MM_COUNTERS];
994 spinlock_t *ptl;
995 pte_t *pte;
996
997 again:
998 init_rss_vec(rss);
999 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1000 arch_enter_lazy_mmu_mode();
1001 do {
1002 pte_t ptent = *pte;
1003 if (pte_none(ptent)) {
1004 continue;
1005 }
1006
1007 if (pte_present(ptent)) {
1008 struct page *page;
1009
1010 page = vm_normal_page(vma, addr, ptent);
1011 if (unlikely(details) && page) {
1012 /*
1013 * unmap_shared_mapping_pages() wants to
1014 * invalidate cache without truncating:
1015 * unmap shared but keep private pages.
1016 */
1017 if (details->check_mapping &&
1018 details->check_mapping != page->mapping)
1019 continue;
1020 /*
1021 * Each page->index must be checked when
1022 * invalidating or truncating nonlinear.
1023 */
1024 if (details->nonlinear_vma &&
1025 (page->index < details->first_index ||
1026 page->index > details->last_index))
1027 continue;
1028 }
1029 ptent = ptep_get_and_clear_full(mm, addr, pte,
1030 tlb->fullmm);
1031 tlb_remove_tlb_entry(tlb, pte, addr);
1032 if (unlikely(!page))
1033 continue;
1034 if (unlikely(details) && details->nonlinear_vma
1035 && linear_page_index(details->nonlinear_vma,
1036 addr) != page->index)
1037 set_pte_at(mm, addr, pte,
1038 pgoff_to_pte(page->index));
1039 if (PageAnon(page))
1040 rss[MM_ANONPAGES]--;
1041 else {
1042 if (pte_dirty(ptent))
1043 set_page_dirty(page);
1044 if (pte_young(ptent) &&
1045 likely(!VM_SequentialReadHint(vma)))
1046 mark_page_accessed(page);
1047 rss[MM_FILEPAGES]--;
1048 }
1049 page_remove_rmap(page);
1050 if (unlikely(page_mapcount(page) < 0))
1051 print_bad_pte(vma, addr, ptent, page);
1052 force_flush = !__tlb_remove_page(tlb, page);
1053 if (force_flush)
1054 break;
1055 continue;
1056 }
1057 /*
1058 * If details->check_mapping, we leave swap entries;
1059 * if details->nonlinear_vma, we leave file entries.
1060 */
1061 if (unlikely(details))
1062 continue;
1063 if (pte_file(ptent)) {
1064 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1065 print_bad_pte(vma, addr, ptent, NULL);
1066 } else {
1067 swp_entry_t entry = pte_to_swp_entry(ptent);
1068
1069 if (!non_swap_entry(entry))
1070 rss[MM_SWAPENTS]--;
1071 if (unlikely(!free_swap_and_cache(entry)))
1072 print_bad_pte(vma, addr, ptent, NULL);
1073 }
1074 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1075 } while (pte++, addr += PAGE_SIZE, addr != end);
1076
1077 add_mm_rss_vec(mm, rss);
1078 arch_leave_lazy_mmu_mode();
1079 pte_unmap_unlock(pte - 1, ptl);
1080
1081 /*
1082 * mmu_gather ran out of room to batch pages, we break out of
1083 * the PTE lock to avoid doing the potential expensive TLB invalidate
1084 * and page-free while holding it.
1085 */
1086 if (force_flush) {
1087 force_flush = 0;
1088 tlb_flush_mmu(tlb);
1089 if (addr != end)
1090 goto again;
1091 }
1092
1093 return addr;
1094 }
1095
1096 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1097 struct vm_area_struct *vma, pud_t *pud,
1098 unsigned long addr, unsigned long end,
1099 struct zap_details *details)
1100 {
1101 pmd_t *pmd;
1102 unsigned long next;
1103
1104 pmd = pmd_offset(pud, addr);
1105 do {
1106 next = pmd_addr_end(addr, end);
1107 if (pmd_trans_huge(*pmd)) {
1108 if (next-addr != HPAGE_PMD_SIZE) {
1109 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
1110 split_huge_page_pmd(vma->vm_mm, pmd);
1111 } else if (zap_huge_pmd(tlb, vma, pmd))
1112 continue;
1113 /* fall through */
1114 }
1115 if (pmd_none_or_clear_bad(pmd))
1116 continue;
1117 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1118 cond_resched();
1119 } while (pmd++, addr = next, addr != end);
1120
1121 return addr;
1122 }
1123
1124 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1125 struct vm_area_struct *vma, pgd_t *pgd,
1126 unsigned long addr, unsigned long end,
1127 struct zap_details *details)
1128 {
1129 pud_t *pud;
1130 unsigned long next;
1131
1132 pud = pud_offset(pgd, addr);
1133 do {
1134 next = pud_addr_end(addr, end);
1135 if (pud_none_or_clear_bad(pud))
1136 continue;
1137 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1138 } while (pud++, addr = next, addr != end);
1139
1140 return addr;
1141 }
1142
1143 static unsigned long unmap_page_range(struct mmu_gather *tlb,
1144 struct vm_area_struct *vma,
1145 unsigned long addr, unsigned long end,
1146 struct zap_details *details)
1147 {
1148 pgd_t *pgd;
1149 unsigned long next;
1150
1151 if (details && !details->check_mapping && !details->nonlinear_vma)
1152 details = NULL;
1153
1154 BUG_ON(addr >= end);
1155 mem_cgroup_uncharge_start();
1156 tlb_start_vma(tlb, vma);
1157 pgd = pgd_offset(vma->vm_mm, addr);
1158 do {
1159 next = pgd_addr_end(addr, end);
1160 if (pgd_none_or_clear_bad(pgd))
1161 continue;
1162 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1163 } while (pgd++, addr = next, addr != end);
1164 tlb_end_vma(tlb, vma);
1165 mem_cgroup_uncharge_end();
1166
1167 return addr;
1168 }
1169
1170 #ifdef CONFIG_PREEMPT
1171 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
1172 #else
1173 /* No preempt: go for improved straight-line efficiency */
1174 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
1175 #endif
1176
1177 /**
1178 * unmap_vmas - unmap a range of memory covered by a list of vma's
1179 * @tlbp: address of the caller's struct mmu_gather
1180 * @vma: the starting vma
1181 * @start_addr: virtual address at which to start unmapping
1182 * @end_addr: virtual address at which to end unmapping
1183 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1184 * @details: details of nonlinear truncation or shared cache invalidation
1185 *
1186 * Returns the end address of the unmapping (restart addr if interrupted).
1187 *
1188 * Unmap all pages in the vma list.
1189 *
1190 * We aim to not hold locks for too long (for scheduling latency reasons).
1191 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1192 * return the ending mmu_gather to the caller.
1193 *
1194 * Only addresses between `start' and `end' will be unmapped.
1195 *
1196 * The VMA list must be sorted in ascending virtual address order.
1197 *
1198 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1199 * range after unmap_vmas() returns. So the only responsibility here is to
1200 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1201 * drops the lock and schedules.
1202 */
1203 unsigned long unmap_vmas(struct mmu_gather *tlb,
1204 struct vm_area_struct *vma, unsigned long start_addr,
1205 unsigned long end_addr, unsigned long *nr_accounted,
1206 struct zap_details *details)
1207 {
1208 unsigned long start = start_addr;
1209 struct mm_struct *mm = vma->vm_mm;
1210
1211 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1212 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1213 unsigned long end;
1214
1215 start = max(vma->vm_start, start_addr);
1216 if (start >= vma->vm_end)
1217 continue;
1218 end = min(vma->vm_end, end_addr);
1219 if (end <= vma->vm_start)
1220 continue;
1221
1222 if (vma->vm_flags & VM_ACCOUNT)
1223 *nr_accounted += (end - start) >> PAGE_SHIFT;
1224
1225 if (unlikely(is_pfn_mapping(vma)))
1226 untrack_pfn_vma(vma, 0, 0);
1227
1228 while (start != end) {
1229 if (unlikely(is_vm_hugetlb_page(vma))) {
1230 /*
1231 * It is undesirable to test vma->vm_file as it
1232 * should be non-null for valid hugetlb area.
1233 * However, vm_file will be NULL in the error
1234 * cleanup path of do_mmap_pgoff. When
1235 * hugetlbfs ->mmap method fails,
1236 * do_mmap_pgoff() nullifies vma->vm_file
1237 * before calling this function to clean up.
1238 * Since no pte has actually been setup, it is
1239 * safe to do nothing in this case.
1240 */
1241 if (vma->vm_file)
1242 unmap_hugepage_range(vma, start, end, NULL);
1243
1244 start = end;
1245 } else
1246 start = unmap_page_range(tlb, vma, start, end, details);
1247 }
1248 }
1249
1250 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1251 return start; /* which is now the end (or restart) address */
1252 }
1253
1254 /**
1255 * zap_page_range - remove user pages in a given range
1256 * @vma: vm_area_struct holding the applicable pages
1257 * @address: starting address of pages to zap
1258 * @size: number of bytes to zap
1259 * @details: details of nonlinear truncation or shared cache invalidation
1260 */
1261 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1262 unsigned long size, struct zap_details *details)
1263 {
1264 struct mm_struct *mm = vma->vm_mm;
1265 struct mmu_gather tlb;
1266 unsigned long end = address + size;
1267 unsigned long nr_accounted = 0;
1268
1269 lru_add_drain();
1270 tlb_gather_mmu(&tlb, mm, 0);
1271 update_hiwater_rss(mm);
1272 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1273 tlb_finish_mmu(&tlb, address, end);
1274 return end;
1275 }
1276
1277 /**
1278 * zap_vma_ptes - remove ptes mapping the vma
1279 * @vma: vm_area_struct holding ptes to be zapped
1280 * @address: starting address of pages to zap
1281 * @size: number of bytes to zap
1282 *
1283 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1284 *
1285 * The entire address range must be fully contained within the vma.
1286 *
1287 * Returns 0 if successful.
1288 */
1289 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1290 unsigned long size)
1291 {
1292 if (address < vma->vm_start || address + size > vma->vm_end ||
1293 !(vma->vm_flags & VM_PFNMAP))
1294 return -1;
1295 zap_page_range(vma, address, size, NULL);
1296 return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1299
1300 /**
1301 * follow_page - look up a page descriptor from a user-virtual address
1302 * @vma: vm_area_struct mapping @address
1303 * @address: virtual address to look up
1304 * @flags: flags modifying lookup behaviour
1305 *
1306 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1307 *
1308 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1309 * an error pointer if there is a mapping to something not represented
1310 * by a page descriptor (see also vm_normal_page()).
1311 */
1312 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1313 unsigned int flags)
1314 {
1315 pgd_t *pgd;
1316 pud_t *pud;
1317 pmd_t *pmd;
1318 pte_t *ptep, pte;
1319 spinlock_t *ptl;
1320 struct page *page;
1321 struct mm_struct *mm = vma->vm_mm;
1322
1323 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1324 if (!IS_ERR(page)) {
1325 BUG_ON(flags & FOLL_GET);
1326 goto out;
1327 }
1328
1329 page = NULL;
1330 pgd = pgd_offset(mm, address);
1331 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1332 goto no_page_table;
1333
1334 pud = pud_offset(pgd, address);
1335 if (pud_none(*pud))
1336 goto no_page_table;
1337 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1338 BUG_ON(flags & FOLL_GET);
1339 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1340 goto out;
1341 }
1342 if (unlikely(pud_bad(*pud)))
1343 goto no_page_table;
1344
1345 pmd = pmd_offset(pud, address);
1346 if (pmd_none(*pmd))
1347 goto no_page_table;
1348 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1349 BUG_ON(flags & FOLL_GET);
1350 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1351 goto out;
1352 }
1353 if (pmd_trans_huge(*pmd)) {
1354 if (flags & FOLL_SPLIT) {
1355 split_huge_page_pmd(mm, pmd);
1356 goto split_fallthrough;
1357 }
1358 spin_lock(&mm->page_table_lock);
1359 if (likely(pmd_trans_huge(*pmd))) {
1360 if (unlikely(pmd_trans_splitting(*pmd))) {
1361 spin_unlock(&mm->page_table_lock);
1362 wait_split_huge_page(vma->anon_vma, pmd);
1363 } else {
1364 page = follow_trans_huge_pmd(mm, address,
1365 pmd, flags);
1366 spin_unlock(&mm->page_table_lock);
1367 goto out;
1368 }
1369 } else
1370 spin_unlock(&mm->page_table_lock);
1371 /* fall through */
1372 }
1373 split_fallthrough:
1374 if (unlikely(pmd_bad(*pmd)))
1375 goto no_page_table;
1376
1377 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1378
1379 pte = *ptep;
1380 if (!pte_present(pte))
1381 goto no_page;
1382 if ((flags & FOLL_WRITE) && !pte_write(pte))
1383 goto unlock;
1384
1385 page = vm_normal_page(vma, address, pte);
1386 if (unlikely(!page)) {
1387 if ((flags & FOLL_DUMP) ||
1388 !is_zero_pfn(pte_pfn(pte)))
1389 goto bad_page;
1390 page = pte_page(pte);
1391 }
1392
1393 if (flags & FOLL_GET)
1394 get_page(page);
1395 if (flags & FOLL_TOUCH) {
1396 if ((flags & FOLL_WRITE) &&
1397 !pte_dirty(pte) && !PageDirty(page))
1398 set_page_dirty(page);
1399 /*
1400 * pte_mkyoung() would be more correct here, but atomic care
1401 * is needed to avoid losing the dirty bit: it is easier to use
1402 * mark_page_accessed().
1403 */
1404 mark_page_accessed(page);
1405 }
1406 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1407 /*
1408 * The preliminary mapping check is mainly to avoid the
1409 * pointless overhead of lock_page on the ZERO_PAGE
1410 * which might bounce very badly if there is contention.
1411 *
1412 * If the page is already locked, we don't need to
1413 * handle it now - vmscan will handle it later if and
1414 * when it attempts to reclaim the page.
1415 */
1416 if (page->mapping && trylock_page(page)) {
1417 lru_add_drain(); /* push cached pages to LRU */
1418 /*
1419 * Because we lock page here and migration is
1420 * blocked by the pte's page reference, we need
1421 * only check for file-cache page truncation.
1422 */
1423 if (page->mapping)
1424 mlock_vma_page(page);
1425 unlock_page(page);
1426 }
1427 }
1428 unlock:
1429 pte_unmap_unlock(ptep, ptl);
1430 out:
1431 return page;
1432
1433 bad_page:
1434 pte_unmap_unlock(ptep, ptl);
1435 return ERR_PTR(-EFAULT);
1436
1437 no_page:
1438 pte_unmap_unlock(ptep, ptl);
1439 if (!pte_none(pte))
1440 return page;
1441
1442 no_page_table:
1443 /*
1444 * When core dumping an enormous anonymous area that nobody
1445 * has touched so far, we don't want to allocate unnecessary pages or
1446 * page tables. Return error instead of NULL to skip handle_mm_fault,
1447 * then get_dump_page() will return NULL to leave a hole in the dump.
1448 * But we can only make this optimization where a hole would surely
1449 * be zero-filled if handle_mm_fault() actually did handle it.
1450 */
1451 if ((flags & FOLL_DUMP) &&
1452 (!vma->vm_ops || !vma->vm_ops->fault))
1453 return ERR_PTR(-EFAULT);
1454 return page;
1455 }
1456
1457 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1458 {
1459 return stack_guard_page_start(vma, addr) ||
1460 stack_guard_page_end(vma, addr+PAGE_SIZE);
1461 }
1462
1463 /**
1464 * __get_user_pages() - pin user pages in memory
1465 * @tsk: task_struct of target task
1466 * @mm: mm_struct of target mm
1467 * @start: starting user address
1468 * @nr_pages: number of pages from start to pin
1469 * @gup_flags: flags modifying pin behaviour
1470 * @pages: array that receives pointers to the pages pinned.
1471 * Should be at least nr_pages long. Or NULL, if caller
1472 * only intends to ensure the pages are faulted in.
1473 * @vmas: array of pointers to vmas corresponding to each page.
1474 * Or NULL if the caller does not require them.
1475 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1476 *
1477 * Returns number of pages pinned. This may be fewer than the number
1478 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1479 * were pinned, returns -errno. Each page returned must be released
1480 * with a put_page() call when it is finished with. vmas will only
1481 * remain valid while mmap_sem is held.
1482 *
1483 * Must be called with mmap_sem held for read or write.
1484 *
1485 * __get_user_pages walks a process's page tables and takes a reference to
1486 * each struct page that each user address corresponds to at a given
1487 * instant. That is, it takes the page that would be accessed if a user
1488 * thread accesses the given user virtual address at that instant.
1489 *
1490 * This does not guarantee that the page exists in the user mappings when
1491 * __get_user_pages returns, and there may even be a completely different
1492 * page there in some cases (eg. if mmapped pagecache has been invalidated
1493 * and subsequently re faulted). However it does guarantee that the page
1494 * won't be freed completely. And mostly callers simply care that the page
1495 * contains data that was valid *at some point in time*. Typically, an IO
1496 * or similar operation cannot guarantee anything stronger anyway because
1497 * locks can't be held over the syscall boundary.
1498 *
1499 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1500 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1501 * appropriate) must be called after the page is finished with, and
1502 * before put_page is called.
1503 *
1504 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1505 * or mmap_sem contention, and if waiting is needed to pin all pages,
1506 * *@nonblocking will be set to 0.
1507 *
1508 * In most cases, get_user_pages or get_user_pages_fast should be used
1509 * instead of __get_user_pages. __get_user_pages should be used only if
1510 * you need some special @gup_flags.
1511 */
1512 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1513 unsigned long start, int nr_pages, unsigned int gup_flags,
1514 struct page **pages, struct vm_area_struct **vmas,
1515 int *nonblocking)
1516 {
1517 int i;
1518 unsigned long vm_flags;
1519
1520 if (nr_pages <= 0)
1521 return 0;
1522
1523 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1524
1525 /*
1526 * Require read or write permissions.
1527 * If FOLL_FORCE is set, we only require the "MAY" flags.
1528 */
1529 vm_flags = (gup_flags & FOLL_WRITE) ?
1530 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1531 vm_flags &= (gup_flags & FOLL_FORCE) ?
1532 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1533 i = 0;
1534
1535 do {
1536 struct vm_area_struct *vma;
1537
1538 vma = find_extend_vma(mm, start);
1539 if (!vma && in_gate_area(mm, start)) {
1540 unsigned long pg = start & PAGE_MASK;
1541 pgd_t *pgd;
1542 pud_t *pud;
1543 pmd_t *pmd;
1544 pte_t *pte;
1545
1546 /* user gate pages are read-only */
1547 if (gup_flags & FOLL_WRITE)
1548 return i ? : -EFAULT;
1549 if (pg > TASK_SIZE)
1550 pgd = pgd_offset_k(pg);
1551 else
1552 pgd = pgd_offset_gate(mm, pg);
1553 BUG_ON(pgd_none(*pgd));
1554 pud = pud_offset(pgd, pg);
1555 BUG_ON(pud_none(*pud));
1556 pmd = pmd_offset(pud, pg);
1557 if (pmd_none(*pmd))
1558 return i ? : -EFAULT;
1559 VM_BUG_ON(pmd_trans_huge(*pmd));
1560 pte = pte_offset_map(pmd, pg);
1561 if (pte_none(*pte)) {
1562 pte_unmap(pte);
1563 return i ? : -EFAULT;
1564 }
1565 vma = get_gate_vma(mm);
1566 if (pages) {
1567 struct page *page;
1568
1569 page = vm_normal_page(vma, start, *pte);
1570 if (!page) {
1571 if (!(gup_flags & FOLL_DUMP) &&
1572 is_zero_pfn(pte_pfn(*pte)))
1573 page = pte_page(*pte);
1574 else {
1575 pte_unmap(pte);
1576 return i ? : -EFAULT;
1577 }
1578 }
1579 pages[i] = page;
1580 get_page(page);
1581 }
1582 pte_unmap(pte);
1583 goto next_page;
1584 }
1585
1586 if (!vma ||
1587 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1588 !(vm_flags & vma->vm_flags))
1589 return i ? : -EFAULT;
1590
1591 if (is_vm_hugetlb_page(vma)) {
1592 i = follow_hugetlb_page(mm, vma, pages, vmas,
1593 &start, &nr_pages, i, gup_flags);
1594 continue;
1595 }
1596
1597 do {
1598 struct page *page;
1599 unsigned int foll_flags = gup_flags;
1600
1601 /*
1602 * If we have a pending SIGKILL, don't keep faulting
1603 * pages and potentially allocating memory.
1604 */
1605 if (unlikely(fatal_signal_pending(current)))
1606 return i ? i : -ERESTARTSYS;
1607
1608 cond_resched();
1609 while (!(page = follow_page(vma, start, foll_flags))) {
1610 int ret;
1611 unsigned int fault_flags = 0;
1612
1613 /* For mlock, just skip the stack guard page. */
1614 if (foll_flags & FOLL_MLOCK) {
1615 if (stack_guard_page(vma, start))
1616 goto next_page;
1617 }
1618 if (foll_flags & FOLL_WRITE)
1619 fault_flags |= FAULT_FLAG_WRITE;
1620 if (nonblocking)
1621 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1622 if (foll_flags & FOLL_NOWAIT)
1623 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1624
1625 ret = handle_mm_fault(mm, vma, start,
1626 fault_flags);
1627
1628 if (ret & VM_FAULT_ERROR) {
1629 if (ret & VM_FAULT_OOM)
1630 return i ? i : -ENOMEM;
1631 if (ret & (VM_FAULT_HWPOISON |
1632 VM_FAULT_HWPOISON_LARGE)) {
1633 if (i)
1634 return i;
1635 else if (gup_flags & FOLL_HWPOISON)
1636 return -EHWPOISON;
1637 else
1638 return -EFAULT;
1639 }
1640 if (ret & VM_FAULT_SIGBUS)
1641 return i ? i : -EFAULT;
1642 BUG();
1643 }
1644
1645 if (tsk) {
1646 if (ret & VM_FAULT_MAJOR)
1647 tsk->maj_flt++;
1648 else
1649 tsk->min_flt++;
1650 }
1651
1652 if (ret & VM_FAULT_RETRY) {
1653 if (nonblocking)
1654 *nonblocking = 0;
1655 return i;
1656 }
1657
1658 /*
1659 * The VM_FAULT_WRITE bit tells us that
1660 * do_wp_page has broken COW when necessary,
1661 * even if maybe_mkwrite decided not to set
1662 * pte_write. We can thus safely do subsequent
1663 * page lookups as if they were reads. But only
1664 * do so when looping for pte_write is futile:
1665 * in some cases userspace may also be wanting
1666 * to write to the gotten user page, which a
1667 * read fault here might prevent (a readonly
1668 * page might get reCOWed by userspace write).
1669 */
1670 if ((ret & VM_FAULT_WRITE) &&
1671 !(vma->vm_flags & VM_WRITE))
1672 foll_flags &= ~FOLL_WRITE;
1673
1674 cond_resched();
1675 }
1676 if (IS_ERR(page))
1677 return i ? i : PTR_ERR(page);
1678 if (pages) {
1679 pages[i] = page;
1680
1681 flush_anon_page(vma, page, start);
1682 flush_dcache_page(page);
1683 }
1684 next_page:
1685 if (vmas)
1686 vmas[i] = vma;
1687 i++;
1688 start += PAGE_SIZE;
1689 nr_pages--;
1690 } while (nr_pages && start < vma->vm_end);
1691 } while (nr_pages);
1692 return i;
1693 }
1694 EXPORT_SYMBOL(__get_user_pages);
1695
1696 /**
1697 * get_user_pages() - pin user pages in memory
1698 * @tsk: the task_struct to use for page fault accounting, or
1699 * NULL if faults are not to be recorded.
1700 * @mm: mm_struct of target mm
1701 * @start: starting user address
1702 * @nr_pages: number of pages from start to pin
1703 * @write: whether pages will be written to by the caller
1704 * @force: whether to force write access even if user mapping is
1705 * readonly. This will result in the page being COWed even
1706 * in MAP_SHARED mappings. You do not want this.
1707 * @pages: array that receives pointers to the pages pinned.
1708 * Should be at least nr_pages long. Or NULL, if caller
1709 * only intends to ensure the pages are faulted in.
1710 * @vmas: array of pointers to vmas corresponding to each page.
1711 * Or NULL if the caller does not require them.
1712 *
1713 * Returns number of pages pinned. This may be fewer than the number
1714 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1715 * were pinned, returns -errno. Each page returned must be released
1716 * with a put_page() call when it is finished with. vmas will only
1717 * remain valid while mmap_sem is held.
1718 *
1719 * Must be called with mmap_sem held for read or write.
1720 *
1721 * get_user_pages walks a process's page tables and takes a reference to
1722 * each struct page that each user address corresponds to at a given
1723 * instant. That is, it takes the page that would be accessed if a user
1724 * thread accesses the given user virtual address at that instant.
1725 *
1726 * This does not guarantee that the page exists in the user mappings when
1727 * get_user_pages returns, and there may even be a completely different
1728 * page there in some cases (eg. if mmapped pagecache has been invalidated
1729 * and subsequently re faulted). However it does guarantee that the page
1730 * won't be freed completely. And mostly callers simply care that the page
1731 * contains data that was valid *at some point in time*. Typically, an IO
1732 * or similar operation cannot guarantee anything stronger anyway because
1733 * locks can't be held over the syscall boundary.
1734 *
1735 * If write=0, the page must not be written to. If the page is written to,
1736 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1737 * after the page is finished with, and before put_page is called.
1738 *
1739 * get_user_pages is typically used for fewer-copy IO operations, to get a
1740 * handle on the memory by some means other than accesses via the user virtual
1741 * addresses. The pages may be submitted for DMA to devices or accessed via
1742 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1743 * use the correct cache flushing APIs.
1744 *
1745 * See also get_user_pages_fast, for performance critical applications.
1746 */
1747 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1748 unsigned long start, int nr_pages, int write, int force,
1749 struct page **pages, struct vm_area_struct **vmas)
1750 {
1751 int flags = FOLL_TOUCH;
1752
1753 if (pages)
1754 flags |= FOLL_GET;
1755 if (write)
1756 flags |= FOLL_WRITE;
1757 if (force)
1758 flags |= FOLL_FORCE;
1759
1760 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1761 NULL);
1762 }
1763 EXPORT_SYMBOL(get_user_pages);
1764
1765 /**
1766 * get_dump_page() - pin user page in memory while writing it to core dump
1767 * @addr: user address
1768 *
1769 * Returns struct page pointer of user page pinned for dump,
1770 * to be freed afterwards by page_cache_release() or put_page().
1771 *
1772 * Returns NULL on any kind of failure - a hole must then be inserted into
1773 * the corefile, to preserve alignment with its headers; and also returns
1774 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1775 * allowing a hole to be left in the corefile to save diskspace.
1776 *
1777 * Called without mmap_sem, but after all other threads have been killed.
1778 */
1779 #ifdef CONFIG_ELF_CORE
1780 struct page *get_dump_page(unsigned long addr)
1781 {
1782 struct vm_area_struct *vma;
1783 struct page *page;
1784
1785 if (__get_user_pages(current, current->mm, addr, 1,
1786 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1787 NULL) < 1)
1788 return NULL;
1789 flush_cache_page(vma, addr, page_to_pfn(page));
1790 return page;
1791 }
1792 #endif /* CONFIG_ELF_CORE */
1793
1794 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1795 spinlock_t **ptl)
1796 {
1797 pgd_t * pgd = pgd_offset(mm, addr);
1798 pud_t * pud = pud_alloc(mm, pgd, addr);
1799 if (pud) {
1800 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1801 if (pmd) {
1802 VM_BUG_ON(pmd_trans_huge(*pmd));
1803 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1804 }
1805 }
1806 return NULL;
1807 }
1808
1809 /*
1810 * This is the old fallback for page remapping.
1811 *
1812 * For historical reasons, it only allows reserved pages. Only
1813 * old drivers should use this, and they needed to mark their
1814 * pages reserved for the old functions anyway.
1815 */
1816 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1817 struct page *page, pgprot_t prot)
1818 {
1819 struct mm_struct *mm = vma->vm_mm;
1820 int retval;
1821 pte_t *pte;
1822 spinlock_t *ptl;
1823
1824 retval = -EINVAL;
1825 if (PageAnon(page))
1826 goto out;
1827 retval = -ENOMEM;
1828 flush_dcache_page(page);
1829 pte = get_locked_pte(mm, addr, &ptl);
1830 if (!pte)
1831 goto out;
1832 retval = -EBUSY;
1833 if (!pte_none(*pte))
1834 goto out_unlock;
1835
1836 /* Ok, finally just insert the thing.. */
1837 get_page(page);
1838 inc_mm_counter_fast(mm, MM_FILEPAGES);
1839 page_add_file_rmap(page);
1840 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1841
1842 retval = 0;
1843 pte_unmap_unlock(pte, ptl);
1844 return retval;
1845 out_unlock:
1846 pte_unmap_unlock(pte, ptl);
1847 out:
1848 return retval;
1849 }
1850
1851 /**
1852 * vm_insert_page - insert single page into user vma
1853 * @vma: user vma to map to
1854 * @addr: target user address of this page
1855 * @page: source kernel page
1856 *
1857 * This allows drivers to insert individual pages they've allocated
1858 * into a user vma.
1859 *
1860 * The page has to be a nice clean _individual_ kernel allocation.
1861 * If you allocate a compound page, you need to have marked it as
1862 * such (__GFP_COMP), or manually just split the page up yourself
1863 * (see split_page()).
1864 *
1865 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1866 * took an arbitrary page protection parameter. This doesn't allow
1867 * that. Your vma protection will have to be set up correctly, which
1868 * means that if you want a shared writable mapping, you'd better
1869 * ask for a shared writable mapping!
1870 *
1871 * The page does not need to be reserved.
1872 */
1873 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1874 struct page *page)
1875 {
1876 if (addr < vma->vm_start || addr >= vma->vm_end)
1877 return -EFAULT;
1878 if (!page_count(page))
1879 return -EINVAL;
1880 vma->vm_flags |= VM_INSERTPAGE;
1881 return insert_page(vma, addr, page, vma->vm_page_prot);
1882 }
1883 EXPORT_SYMBOL(vm_insert_page);
1884
1885 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1886 unsigned long pfn, pgprot_t prot)
1887 {
1888 struct mm_struct *mm = vma->vm_mm;
1889 int retval;
1890 pte_t *pte, entry;
1891 spinlock_t *ptl;
1892
1893 retval = -ENOMEM;
1894 pte = get_locked_pte(mm, addr, &ptl);
1895 if (!pte)
1896 goto out;
1897 retval = -EBUSY;
1898 if (!pte_none(*pte))
1899 goto out_unlock;
1900
1901 /* Ok, finally just insert the thing.. */
1902 entry = pte_mkspecial(pfn_pte(pfn, prot));
1903 set_pte_at(mm, addr, pte, entry);
1904 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1905
1906 retval = 0;
1907 out_unlock:
1908 pte_unmap_unlock(pte, ptl);
1909 out:
1910 return retval;
1911 }
1912
1913 /**
1914 * vm_insert_pfn - insert single pfn into user vma
1915 * @vma: user vma to map to
1916 * @addr: target user address of this page
1917 * @pfn: source kernel pfn
1918 *
1919 * Similar to vm_inert_page, this allows drivers to insert individual pages
1920 * they've allocated into a user vma. Same comments apply.
1921 *
1922 * This function should only be called from a vm_ops->fault handler, and
1923 * in that case the handler should return NULL.
1924 *
1925 * vma cannot be a COW mapping.
1926 *
1927 * As this is called only for pages that do not currently exist, we
1928 * do not need to flush old virtual caches or the TLB.
1929 */
1930 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1931 unsigned long pfn)
1932 {
1933 int ret;
1934 pgprot_t pgprot = vma->vm_page_prot;
1935 /*
1936 * Technically, architectures with pte_special can avoid all these
1937 * restrictions (same for remap_pfn_range). However we would like
1938 * consistency in testing and feature parity among all, so we should
1939 * try to keep these invariants in place for everybody.
1940 */
1941 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1942 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1943 (VM_PFNMAP|VM_MIXEDMAP));
1944 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1945 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1946
1947 if (addr < vma->vm_start || addr >= vma->vm_end)
1948 return -EFAULT;
1949 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1950 return -EINVAL;
1951
1952 ret = insert_pfn(vma, addr, pfn, pgprot);
1953
1954 if (ret)
1955 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1956
1957 return ret;
1958 }
1959 EXPORT_SYMBOL(vm_insert_pfn);
1960
1961 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1962 unsigned long pfn)
1963 {
1964 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1965
1966 if (addr < vma->vm_start || addr >= vma->vm_end)
1967 return -EFAULT;
1968
1969 /*
1970 * If we don't have pte special, then we have to use the pfn_valid()
1971 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1972 * refcount the page if pfn_valid is true (hence insert_page rather
1973 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1974 * without pte special, it would there be refcounted as a normal page.
1975 */
1976 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1977 struct page *page;
1978
1979 page = pfn_to_page(pfn);
1980 return insert_page(vma, addr, page, vma->vm_page_prot);
1981 }
1982 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1983 }
1984 EXPORT_SYMBOL(vm_insert_mixed);
1985
1986 /*
1987 * maps a range of physical memory into the requested pages. the old
1988 * mappings are removed. any references to nonexistent pages results
1989 * in null mappings (currently treated as "copy-on-access")
1990 */
1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1992 unsigned long addr, unsigned long end,
1993 unsigned long pfn, pgprot_t prot)
1994 {
1995 pte_t *pte;
1996 spinlock_t *ptl;
1997
1998 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1999 if (!pte)
2000 return -ENOMEM;
2001 arch_enter_lazy_mmu_mode();
2002 do {
2003 BUG_ON(!pte_none(*pte));
2004 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2005 pfn++;
2006 } while (pte++, addr += PAGE_SIZE, addr != end);
2007 arch_leave_lazy_mmu_mode();
2008 pte_unmap_unlock(pte - 1, ptl);
2009 return 0;
2010 }
2011
2012 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2013 unsigned long addr, unsigned long end,
2014 unsigned long pfn, pgprot_t prot)
2015 {
2016 pmd_t *pmd;
2017 unsigned long next;
2018
2019 pfn -= addr >> PAGE_SHIFT;
2020 pmd = pmd_alloc(mm, pud, addr);
2021 if (!pmd)
2022 return -ENOMEM;
2023 VM_BUG_ON(pmd_trans_huge(*pmd));
2024 do {
2025 next = pmd_addr_end(addr, end);
2026 if (remap_pte_range(mm, pmd, addr, next,
2027 pfn + (addr >> PAGE_SHIFT), prot))
2028 return -ENOMEM;
2029 } while (pmd++, addr = next, addr != end);
2030 return 0;
2031 }
2032
2033 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2034 unsigned long addr, unsigned long end,
2035 unsigned long pfn, pgprot_t prot)
2036 {
2037 pud_t *pud;
2038 unsigned long next;
2039
2040 pfn -= addr >> PAGE_SHIFT;
2041 pud = pud_alloc(mm, pgd, addr);
2042 if (!pud)
2043 return -ENOMEM;
2044 do {
2045 next = pud_addr_end(addr, end);
2046 if (remap_pmd_range(mm, pud, addr, next,
2047 pfn + (addr >> PAGE_SHIFT), prot))
2048 return -ENOMEM;
2049 } while (pud++, addr = next, addr != end);
2050 return 0;
2051 }
2052
2053 /**
2054 * remap_pfn_range - remap kernel memory to userspace
2055 * @vma: user vma to map to
2056 * @addr: target user address to start at
2057 * @pfn: physical address of kernel memory
2058 * @size: size of map area
2059 * @prot: page protection flags for this mapping
2060 *
2061 * Note: this is only safe if the mm semaphore is held when called.
2062 */
2063 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2064 unsigned long pfn, unsigned long size, pgprot_t prot)
2065 {
2066 pgd_t *pgd;
2067 unsigned long next;
2068 unsigned long end = addr + PAGE_ALIGN(size);
2069 struct mm_struct *mm = vma->vm_mm;
2070 int err;
2071
2072 /*
2073 * Physically remapped pages are special. Tell the
2074 * rest of the world about it:
2075 * VM_IO tells people not to look at these pages
2076 * (accesses can have side effects).
2077 * VM_RESERVED is specified all over the place, because
2078 * in 2.4 it kept swapout's vma scan off this vma; but
2079 * in 2.6 the LRU scan won't even find its pages, so this
2080 * flag means no more than count its pages in reserved_vm,
2081 * and omit it from core dump, even when VM_IO turned off.
2082 * VM_PFNMAP tells the core MM that the base pages are just
2083 * raw PFN mappings, and do not have a "struct page" associated
2084 * with them.
2085 *
2086 * There's a horrible special case to handle copy-on-write
2087 * behaviour that some programs depend on. We mark the "original"
2088 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2089 */
2090 if (addr == vma->vm_start && end == vma->vm_end) {
2091 vma->vm_pgoff = pfn;
2092 vma->vm_flags |= VM_PFN_AT_MMAP;
2093 } else if (is_cow_mapping(vma->vm_flags))
2094 return -EINVAL;
2095
2096 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
2097
2098 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
2099 if (err) {
2100 /*
2101 * To indicate that track_pfn related cleanup is not
2102 * needed from higher level routine calling unmap_vmas
2103 */
2104 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
2105 vma->vm_flags &= ~VM_PFN_AT_MMAP;
2106 return -EINVAL;
2107 }
2108
2109 BUG_ON(addr >= end);
2110 pfn -= addr >> PAGE_SHIFT;
2111 pgd = pgd_offset(mm, addr);
2112 flush_cache_range(vma, addr, end);
2113 do {
2114 next = pgd_addr_end(addr, end);
2115 err = remap_pud_range(mm, pgd, addr, next,
2116 pfn + (addr >> PAGE_SHIFT), prot);
2117 if (err)
2118 break;
2119 } while (pgd++, addr = next, addr != end);
2120
2121 if (err)
2122 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
2123
2124 return err;
2125 }
2126 EXPORT_SYMBOL(remap_pfn_range);
2127
2128 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2129 unsigned long addr, unsigned long end,
2130 pte_fn_t fn, void *data)
2131 {
2132 pte_t *pte;
2133 int err;
2134 pgtable_t token;
2135 spinlock_t *uninitialized_var(ptl);
2136
2137 pte = (mm == &init_mm) ?
2138 pte_alloc_kernel(pmd, addr) :
2139 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2140 if (!pte)
2141 return -ENOMEM;
2142
2143 BUG_ON(pmd_huge(*pmd));
2144
2145 arch_enter_lazy_mmu_mode();
2146
2147 token = pmd_pgtable(*pmd);
2148
2149 do {
2150 err = fn(pte++, token, addr, data);
2151 if (err)
2152 break;
2153 } while (addr += PAGE_SIZE, addr != end);
2154
2155 arch_leave_lazy_mmu_mode();
2156
2157 if (mm != &init_mm)
2158 pte_unmap_unlock(pte-1, ptl);
2159 return err;
2160 }
2161
2162 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2163 unsigned long addr, unsigned long end,
2164 pte_fn_t fn, void *data)
2165 {
2166 pmd_t *pmd;
2167 unsigned long next;
2168 int err;
2169
2170 BUG_ON(pud_huge(*pud));
2171
2172 pmd = pmd_alloc(mm, pud, addr);
2173 if (!pmd)
2174 return -ENOMEM;
2175 do {
2176 next = pmd_addr_end(addr, end);
2177 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2178 if (err)
2179 break;
2180 } while (pmd++, addr = next, addr != end);
2181 return err;
2182 }
2183
2184 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2185 unsigned long addr, unsigned long end,
2186 pte_fn_t fn, void *data)
2187 {
2188 pud_t *pud;
2189 unsigned long next;
2190 int err;
2191
2192 pud = pud_alloc(mm, pgd, addr);
2193 if (!pud)
2194 return -ENOMEM;
2195 do {
2196 next = pud_addr_end(addr, end);
2197 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2198 if (err)
2199 break;
2200 } while (pud++, addr = next, addr != end);
2201 return err;
2202 }
2203
2204 /*
2205 * Scan a region of virtual memory, filling in page tables as necessary
2206 * and calling a provided function on each leaf page table.
2207 */
2208 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2209 unsigned long size, pte_fn_t fn, void *data)
2210 {
2211 pgd_t *pgd;
2212 unsigned long next;
2213 unsigned long end = addr + size;
2214 int err;
2215
2216 BUG_ON(addr >= end);
2217 pgd = pgd_offset(mm, addr);
2218 do {
2219 next = pgd_addr_end(addr, end);
2220 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2221 if (err)
2222 break;
2223 } while (pgd++, addr = next, addr != end);
2224
2225 return err;
2226 }
2227 EXPORT_SYMBOL_GPL(apply_to_page_range);
2228
2229 /*
2230 * handle_pte_fault chooses page fault handler according to an entry
2231 * which was read non-atomically. Before making any commitment, on
2232 * those architectures or configurations (e.g. i386 with PAE) which
2233 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2234 * must check under lock before unmapping the pte and proceeding
2235 * (but do_wp_page is only called after already making such a check;
2236 * and do_anonymous_page can safely check later on).
2237 */
2238 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2239 pte_t *page_table, pte_t orig_pte)
2240 {
2241 int same = 1;
2242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2243 if (sizeof(pte_t) > sizeof(unsigned long)) {
2244 spinlock_t *ptl = pte_lockptr(mm, pmd);
2245 spin_lock(ptl);
2246 same = pte_same(*page_table, orig_pte);
2247 spin_unlock(ptl);
2248 }
2249 #endif
2250 pte_unmap(page_table);
2251 return same;
2252 }
2253
2254 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2255 {
2256 /*
2257 * If the source page was a PFN mapping, we don't have
2258 * a "struct page" for it. We do a best-effort copy by
2259 * just copying from the original user address. If that
2260 * fails, we just zero-fill it. Live with it.
2261 */
2262 if (unlikely(!src)) {
2263 void *kaddr = kmap_atomic(dst, KM_USER0);
2264 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2265
2266 /*
2267 * This really shouldn't fail, because the page is there
2268 * in the page tables. But it might just be unreadable,
2269 * in which case we just give up and fill the result with
2270 * zeroes.
2271 */
2272 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2273 clear_page(kaddr);
2274 kunmap_atomic(kaddr, KM_USER0);
2275 flush_dcache_page(dst);
2276 } else
2277 copy_user_highpage(dst, src, va, vma);
2278 }
2279
2280 /*
2281 * This routine handles present pages, when users try to write
2282 * to a shared page. It is done by copying the page to a new address
2283 * and decrementing the shared-page counter for the old page.
2284 *
2285 * Note that this routine assumes that the protection checks have been
2286 * done by the caller (the low-level page fault routine in most cases).
2287 * Thus we can safely just mark it writable once we've done any necessary
2288 * COW.
2289 *
2290 * We also mark the page dirty at this point even though the page will
2291 * change only once the write actually happens. This avoids a few races,
2292 * and potentially makes it more efficient.
2293 *
2294 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2295 * but allow concurrent faults), with pte both mapped and locked.
2296 * We return with mmap_sem still held, but pte unmapped and unlocked.
2297 */
2298 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2299 unsigned long address, pte_t *page_table, pmd_t *pmd,
2300 spinlock_t *ptl, pte_t orig_pte)
2301 __releases(ptl)
2302 {
2303 struct page *old_page, *new_page;
2304 pte_t entry;
2305 int ret = 0;
2306 int page_mkwrite = 0;
2307 struct page *dirty_page = NULL;
2308
2309 old_page = vm_normal_page(vma, address, orig_pte);
2310 if (!old_page) {
2311 /*
2312 * VM_MIXEDMAP !pfn_valid() case
2313 *
2314 * We should not cow pages in a shared writeable mapping.
2315 * Just mark the pages writable as we can't do any dirty
2316 * accounting on raw pfn maps.
2317 */
2318 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2319 (VM_WRITE|VM_SHARED))
2320 goto reuse;
2321 goto gotten;
2322 }
2323
2324 /*
2325 * Take out anonymous pages first, anonymous shared vmas are
2326 * not dirty accountable.
2327 */
2328 if (PageAnon(old_page) && !PageKsm(old_page)) {
2329 if (!trylock_page(old_page)) {
2330 page_cache_get(old_page);
2331 pte_unmap_unlock(page_table, ptl);
2332 lock_page(old_page);
2333 page_table = pte_offset_map_lock(mm, pmd, address,
2334 &ptl);
2335 if (!pte_same(*page_table, orig_pte)) {
2336 unlock_page(old_page);
2337 goto unlock;
2338 }
2339 page_cache_release(old_page);
2340 }
2341 if (reuse_swap_page(old_page)) {
2342 /*
2343 * The page is all ours. Move it to our anon_vma so
2344 * the rmap code will not search our parent or siblings.
2345 * Protected against the rmap code by the page lock.
2346 */
2347 page_move_anon_rmap(old_page, vma, address);
2348 unlock_page(old_page);
2349 goto reuse;
2350 }
2351 unlock_page(old_page);
2352 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2353 (VM_WRITE|VM_SHARED))) {
2354 /*
2355 * Only catch write-faults on shared writable pages,
2356 * read-only shared pages can get COWed by
2357 * get_user_pages(.write=1, .force=1).
2358 */
2359 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2360 struct vm_fault vmf;
2361 int tmp;
2362
2363 vmf.virtual_address = (void __user *)(address &
2364 PAGE_MASK);
2365 vmf.pgoff = old_page->index;
2366 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2367 vmf.page = old_page;
2368
2369 /*
2370 * Notify the address space that the page is about to
2371 * become writable so that it can prohibit this or wait
2372 * for the page to get into an appropriate state.
2373 *
2374 * We do this without the lock held, so that it can
2375 * sleep if it needs to.
2376 */
2377 page_cache_get(old_page);
2378 pte_unmap_unlock(page_table, ptl);
2379
2380 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2381 if (unlikely(tmp &
2382 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2383 ret = tmp;
2384 goto unwritable_page;
2385 }
2386 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2387 lock_page(old_page);
2388 if (!old_page->mapping) {
2389 ret = 0; /* retry the fault */
2390 unlock_page(old_page);
2391 goto unwritable_page;
2392 }
2393 } else
2394 VM_BUG_ON(!PageLocked(old_page));
2395
2396 /*
2397 * Since we dropped the lock we need to revalidate
2398 * the PTE as someone else may have changed it. If
2399 * they did, we just return, as we can count on the
2400 * MMU to tell us if they didn't also make it writable.
2401 */
2402 page_table = pte_offset_map_lock(mm, pmd, address,
2403 &ptl);
2404 if (!pte_same(*page_table, orig_pte)) {
2405 unlock_page(old_page);
2406 goto unlock;
2407 }
2408
2409 page_mkwrite = 1;
2410 }
2411 dirty_page = old_page;
2412 get_page(dirty_page);
2413
2414 reuse:
2415 flush_cache_page(vma, address, pte_pfn(orig_pte));
2416 entry = pte_mkyoung(orig_pte);
2417 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2418 if (ptep_set_access_flags(vma, address, page_table, entry,1))
2419 update_mmu_cache(vma, address, page_table);
2420 pte_unmap_unlock(page_table, ptl);
2421 ret |= VM_FAULT_WRITE;
2422
2423 if (!dirty_page)
2424 return ret;
2425
2426 /*
2427 * Yes, Virginia, this is actually required to prevent a race
2428 * with clear_page_dirty_for_io() from clearing the page dirty
2429 * bit after it clear all dirty ptes, but before a racing
2430 * do_wp_page installs a dirty pte.
2431 *
2432 * __do_fault is protected similarly.
2433 */
2434 if (!page_mkwrite) {
2435 wait_on_page_locked(dirty_page);
2436 set_page_dirty_balance(dirty_page, page_mkwrite);
2437 }
2438 put_page(dirty_page);
2439 if (page_mkwrite) {
2440 struct address_space *mapping = dirty_page->mapping;
2441
2442 set_page_dirty(dirty_page);
2443 unlock_page(dirty_page);
2444 page_cache_release(dirty_page);
2445 if (mapping) {
2446 /*
2447 * Some device drivers do not set page.mapping
2448 * but still dirty their pages
2449 */
2450 balance_dirty_pages_ratelimited(mapping);
2451 }
2452 }
2453
2454 /* file_update_time outside page_lock */
2455 if (vma->vm_file)
2456 file_update_time(vma->vm_file);
2457
2458 return ret;
2459 }
2460
2461 /*
2462 * Ok, we need to copy. Oh, well..
2463 */
2464 page_cache_get(old_page);
2465 gotten:
2466 pte_unmap_unlock(page_table, ptl);
2467
2468 if (unlikely(anon_vma_prepare(vma)))
2469 goto oom;
2470
2471 if (is_zero_pfn(pte_pfn(orig_pte))) {
2472 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2473 if (!new_page)
2474 goto oom;
2475 } else {
2476 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2477 if (!new_page)
2478 goto oom;
2479 cow_user_page(new_page, old_page, address, vma);
2480 }
2481 __SetPageUptodate(new_page);
2482
2483 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2484 goto oom_free_new;
2485
2486 /*
2487 * Re-check the pte - we dropped the lock
2488 */
2489 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2490 if (likely(pte_same(*page_table, orig_pte))) {
2491 if (old_page) {
2492 if (!PageAnon(old_page)) {
2493 dec_mm_counter_fast(mm, MM_FILEPAGES);
2494 inc_mm_counter_fast(mm, MM_ANONPAGES);
2495 }
2496 } else
2497 inc_mm_counter_fast(mm, MM_ANONPAGES);
2498 flush_cache_page(vma, address, pte_pfn(orig_pte));
2499 entry = mk_pte(new_page, vma->vm_page_prot);
2500 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2501 /*
2502 * Clear the pte entry and flush it first, before updating the
2503 * pte with the new entry. This will avoid a race condition
2504 * seen in the presence of one thread doing SMC and another
2505 * thread doing COW.
2506 */
2507 ptep_clear_flush(vma, address, page_table);
2508 page_add_new_anon_rmap(new_page, vma, address);
2509 /*
2510 * We call the notify macro here because, when using secondary
2511 * mmu page tables (such as kvm shadow page tables), we want the
2512 * new page to be mapped directly into the secondary page table.
2513 */
2514 set_pte_at_notify(mm, address, page_table, entry);
2515 update_mmu_cache(vma, address, page_table);
2516 if (old_page) {
2517 /*
2518 * Only after switching the pte to the new page may
2519 * we remove the mapcount here. Otherwise another
2520 * process may come and find the rmap count decremented
2521 * before the pte is switched to the new page, and
2522 * "reuse" the old page writing into it while our pte
2523 * here still points into it and can be read by other
2524 * threads.
2525 *
2526 * The critical issue is to order this
2527 * page_remove_rmap with the ptp_clear_flush above.
2528 * Those stores are ordered by (if nothing else,)
2529 * the barrier present in the atomic_add_negative
2530 * in page_remove_rmap.
2531 *
2532 * Then the TLB flush in ptep_clear_flush ensures that
2533 * no process can access the old page before the
2534 * decremented mapcount is visible. And the old page
2535 * cannot be reused until after the decremented
2536 * mapcount is visible. So transitively, TLBs to
2537 * old page will be flushed before it can be reused.
2538 */
2539 page_remove_rmap(old_page);
2540 }
2541
2542 /* Free the old page.. */
2543 new_page = old_page;
2544 ret |= VM_FAULT_WRITE;
2545 } else
2546 mem_cgroup_uncharge_page(new_page);
2547
2548 if (new_page)
2549 page_cache_release(new_page);
2550 unlock:
2551 pte_unmap_unlock(page_table, ptl);
2552 if (old_page) {
2553 /*
2554 * Don't let another task, with possibly unlocked vma,
2555 * keep the mlocked page.
2556 */
2557 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2558 lock_page(old_page); /* LRU manipulation */
2559 munlock_vma_page(old_page);
2560 unlock_page(old_page);
2561 }
2562 page_cache_release(old_page);
2563 }
2564 return ret;
2565 oom_free_new:
2566 page_cache_release(new_page);
2567 oom:
2568 if (old_page) {
2569 if (page_mkwrite) {
2570 unlock_page(old_page);
2571 page_cache_release(old_page);
2572 }
2573 page_cache_release(old_page);
2574 }
2575 return VM_FAULT_OOM;
2576
2577 unwritable_page:
2578 page_cache_release(old_page);
2579 return ret;
2580 }
2581
2582 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2583 unsigned long start_addr, unsigned long end_addr,
2584 struct zap_details *details)
2585 {
2586 zap_page_range(vma, start_addr, end_addr - start_addr, details);
2587 }
2588
2589 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2590 struct zap_details *details)
2591 {
2592 struct vm_area_struct *vma;
2593 struct prio_tree_iter iter;
2594 pgoff_t vba, vea, zba, zea;
2595
2596 vma_prio_tree_foreach(vma, &iter, root,
2597 details->first_index, details->last_index) {
2598
2599 vba = vma->vm_pgoff;
2600 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2601 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2602 zba = details->first_index;
2603 if (zba < vba)
2604 zba = vba;
2605 zea = details->last_index;
2606 if (zea > vea)
2607 zea = vea;
2608
2609 unmap_mapping_range_vma(vma,
2610 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2611 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2612 details);
2613 }
2614 }
2615
2616 static inline void unmap_mapping_range_list(struct list_head *head,
2617 struct zap_details *details)
2618 {
2619 struct vm_area_struct *vma;
2620
2621 /*
2622 * In nonlinear VMAs there is no correspondence between virtual address
2623 * offset and file offset. So we must perform an exhaustive search
2624 * across *all* the pages in each nonlinear VMA, not just the pages
2625 * whose virtual address lies outside the file truncation point.
2626 */
2627 list_for_each_entry(vma, head, shared.vm_set.list) {
2628 details->nonlinear_vma = vma;
2629 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2630 }
2631 }
2632
2633 /**
2634 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2635 * @mapping: the address space containing mmaps to be unmapped.
2636 * @holebegin: byte in first page to unmap, relative to the start of
2637 * the underlying file. This will be rounded down to a PAGE_SIZE
2638 * boundary. Note that this is different from truncate_pagecache(), which
2639 * must keep the partial page. In contrast, we must get rid of
2640 * partial pages.
2641 * @holelen: size of prospective hole in bytes. This will be rounded
2642 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2643 * end of the file.
2644 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2645 * but 0 when invalidating pagecache, don't throw away private data.
2646 */
2647 void unmap_mapping_range(struct address_space *mapping,
2648 loff_t const holebegin, loff_t const holelen, int even_cows)
2649 {
2650 struct zap_details details;
2651 pgoff_t hba = holebegin >> PAGE_SHIFT;
2652 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2653
2654 /* Check for overflow. */
2655 if (sizeof(holelen) > sizeof(hlen)) {
2656 long long holeend =
2657 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2658 if (holeend & ~(long long)ULONG_MAX)
2659 hlen = ULONG_MAX - hba + 1;
2660 }
2661
2662 details.check_mapping = even_cows? NULL: mapping;
2663 details.nonlinear_vma = NULL;
2664 details.first_index = hba;
2665 details.last_index = hba + hlen - 1;
2666 if (details.last_index < details.first_index)
2667 details.last_index = ULONG_MAX;
2668
2669
2670 mutex_lock(&mapping->i_mmap_mutex);
2671 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2672 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2673 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2674 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2675 mutex_unlock(&mapping->i_mmap_mutex);
2676 }
2677 EXPORT_SYMBOL(unmap_mapping_range);
2678
2679 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2680 {
2681 struct address_space *mapping = inode->i_mapping;
2682
2683 /*
2684 * If the underlying filesystem is not going to provide
2685 * a way to truncate a range of blocks (punch a hole) -
2686 * we should return failure right now.
2687 */
2688 if (!inode->i_op->truncate_range)
2689 return -ENOSYS;
2690
2691 mutex_lock(&inode->i_mutex);
2692 down_write(&inode->i_alloc_sem);
2693 unmap_mapping_range(mapping, offset, (end - offset), 1);
2694 truncate_inode_pages_range(mapping, offset, end);
2695 unmap_mapping_range(mapping, offset, (end - offset), 1);
2696 inode->i_op->truncate_range(inode, offset, end);
2697 up_write(&inode->i_alloc_sem);
2698 mutex_unlock(&inode->i_mutex);
2699
2700 return 0;
2701 }
2702
2703 /*
2704 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2705 * but allow concurrent faults), and pte mapped but not yet locked.
2706 * We return with mmap_sem still held, but pte unmapped and unlocked.
2707 */
2708 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2709 unsigned long address, pte_t *page_table, pmd_t *pmd,
2710 unsigned int flags, pte_t orig_pte)
2711 {
2712 spinlock_t *ptl;
2713 struct page *page, *swapcache = NULL;
2714 swp_entry_t entry;
2715 pte_t pte;
2716 int locked;
2717 struct mem_cgroup *ptr;
2718 int exclusive = 0;
2719 int ret = 0;
2720
2721 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2722 goto out;
2723
2724 entry = pte_to_swp_entry(orig_pte);
2725 if (unlikely(non_swap_entry(entry))) {
2726 if (is_migration_entry(entry)) {
2727 migration_entry_wait(mm, pmd, address);
2728 } else if (is_hwpoison_entry(entry)) {
2729 ret = VM_FAULT_HWPOISON;
2730 } else {
2731 print_bad_pte(vma, address, orig_pte, NULL);
2732 ret = VM_FAULT_SIGBUS;
2733 }
2734 goto out;
2735 }
2736 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2737 page = lookup_swap_cache(entry);
2738 if (!page) {
2739 grab_swap_token(mm); /* Contend for token _before_ read-in */
2740 page = swapin_readahead(entry,
2741 GFP_HIGHUSER_MOVABLE, vma, address);
2742 if (!page) {
2743 /*
2744 * Back out if somebody else faulted in this pte
2745 * while we released the pte lock.
2746 */
2747 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2748 if (likely(pte_same(*page_table, orig_pte)))
2749 ret = VM_FAULT_OOM;
2750 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2751 goto unlock;
2752 }
2753
2754 /* Had to read the page from swap area: Major fault */
2755 ret = VM_FAULT_MAJOR;
2756 count_vm_event(PGMAJFAULT);
2757 } else if (PageHWPoison(page)) {
2758 /*
2759 * hwpoisoned dirty swapcache pages are kept for killing
2760 * owner processes (which may be unknown at hwpoison time)
2761 */
2762 ret = VM_FAULT_HWPOISON;
2763 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2764 goto out_release;
2765 }
2766
2767 locked = lock_page_or_retry(page, mm, flags);
2768 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2769 if (!locked) {
2770 ret |= VM_FAULT_RETRY;
2771 goto out_release;
2772 }
2773
2774 /*
2775 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2776 * release the swapcache from under us. The page pin, and pte_same
2777 * test below, are not enough to exclude that. Even if it is still
2778 * swapcache, we need to check that the page's swap has not changed.
2779 */
2780 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2781 goto out_page;
2782
2783 if (ksm_might_need_to_copy(page, vma, address)) {
2784 swapcache = page;
2785 page = ksm_does_need_to_copy(page, vma, address);
2786
2787 if (unlikely(!page)) {
2788 ret = VM_FAULT_OOM;
2789 page = swapcache;
2790 swapcache = NULL;
2791 goto out_page;
2792 }
2793 }
2794
2795 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2796 ret = VM_FAULT_OOM;
2797 goto out_page;
2798 }
2799
2800 /*
2801 * Back out if somebody else already faulted in this pte.
2802 */
2803 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2804 if (unlikely(!pte_same(*page_table, orig_pte)))
2805 goto out_nomap;
2806
2807 if (unlikely(!PageUptodate(page))) {
2808 ret = VM_FAULT_SIGBUS;
2809 goto out_nomap;
2810 }
2811
2812 /*
2813 * The page isn't present yet, go ahead with the fault.
2814 *
2815 * Be careful about the sequence of operations here.
2816 * To get its accounting right, reuse_swap_page() must be called
2817 * while the page is counted on swap but not yet in mapcount i.e.
2818 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2819 * must be called after the swap_free(), or it will never succeed.
2820 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2821 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2822 * in page->private. In this case, a record in swap_cgroup is silently
2823 * discarded at swap_free().
2824 */
2825
2826 inc_mm_counter_fast(mm, MM_ANONPAGES);
2827 dec_mm_counter_fast(mm, MM_SWAPENTS);
2828 pte = mk_pte(page, vma->vm_page_prot);
2829 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2830 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2831 flags &= ~FAULT_FLAG_WRITE;
2832 ret |= VM_FAULT_WRITE;
2833 exclusive = 1;
2834 }
2835 flush_icache_page(vma, page);
2836 set_pte_at(mm, address, page_table, pte);
2837 do_page_add_anon_rmap(page, vma, address, exclusive);
2838 /* It's better to call commit-charge after rmap is established */
2839 mem_cgroup_commit_charge_swapin(page, ptr);
2840
2841 swap_free(entry);
2842 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2843 try_to_free_swap(page);
2844 unlock_page(page);
2845 if (swapcache) {
2846 /*
2847 * Hold the lock to avoid the swap entry to be reused
2848 * until we take the PT lock for the pte_same() check
2849 * (to avoid false positives from pte_same). For
2850 * further safety release the lock after the swap_free
2851 * so that the swap count won't change under a
2852 * parallel locked swapcache.
2853 */
2854 unlock_page(swapcache);
2855 page_cache_release(swapcache);
2856 }
2857
2858 if (flags & FAULT_FLAG_WRITE) {
2859 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2860 if (ret & VM_FAULT_ERROR)
2861 ret &= VM_FAULT_ERROR;
2862 goto out;
2863 }
2864
2865 /* No need to invalidate - it was non-present before */
2866 update_mmu_cache(vma, address, page_table);
2867 unlock:
2868 pte_unmap_unlock(page_table, ptl);
2869 out:
2870 return ret;
2871 out_nomap:
2872 mem_cgroup_cancel_charge_swapin(ptr);
2873 pte_unmap_unlock(page_table, ptl);
2874 out_page:
2875 unlock_page(page);
2876 out_release:
2877 page_cache_release(page);
2878 if (swapcache) {
2879 unlock_page(swapcache);
2880 page_cache_release(swapcache);
2881 }
2882 return ret;
2883 }
2884
2885 /*
2886 * This is like a special single-page "expand_{down|up}wards()",
2887 * except we must first make sure that 'address{-|+}PAGE_SIZE'
2888 * doesn't hit another vma.
2889 */
2890 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2891 {
2892 address &= PAGE_MASK;
2893 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2894 struct vm_area_struct *prev = vma->vm_prev;
2895
2896 /*
2897 * Is there a mapping abutting this one below?
2898 *
2899 * That's only ok if it's the same stack mapping
2900 * that has gotten split..
2901 */
2902 if (prev && prev->vm_end == address)
2903 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2904
2905 expand_downwards(vma, address - PAGE_SIZE);
2906 }
2907 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2908 struct vm_area_struct *next = vma->vm_next;
2909
2910 /* As VM_GROWSDOWN but s/below/above/ */
2911 if (next && next->vm_start == address + PAGE_SIZE)
2912 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2913
2914 expand_upwards(vma, address + PAGE_SIZE);
2915 }
2916 return 0;
2917 }
2918
2919 /*
2920 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2921 * but allow concurrent faults), and pte mapped but not yet locked.
2922 * We return with mmap_sem still held, but pte unmapped and unlocked.
2923 */
2924 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2925 unsigned long address, pte_t *page_table, pmd_t *pmd,
2926 unsigned int flags)
2927 {
2928 struct page *page;
2929 spinlock_t *ptl;
2930 pte_t entry;
2931
2932 pte_unmap(page_table);
2933
2934 /* Check if we need to add a guard page to the stack */
2935 if (check_stack_guard_page(vma, address) < 0)
2936 return VM_FAULT_SIGBUS;
2937
2938 /* Use the zero-page for reads */
2939 if (!(flags & FAULT_FLAG_WRITE)) {
2940 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2941 vma->vm_page_prot));
2942 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2943 if (!pte_none(*page_table))
2944 goto unlock;
2945 goto setpte;
2946 }
2947
2948 /* Allocate our own private page. */
2949 if (unlikely(anon_vma_prepare(vma)))
2950 goto oom;
2951 page = alloc_zeroed_user_highpage_movable(vma, address);
2952 if (!page)
2953 goto oom;
2954 __SetPageUptodate(page);
2955
2956 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2957 goto oom_free_page;
2958
2959 entry = mk_pte(page, vma->vm_page_prot);
2960 if (vma->vm_flags & VM_WRITE)
2961 entry = pte_mkwrite(pte_mkdirty(entry));
2962
2963 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2964 if (!pte_none(*page_table))
2965 goto release;
2966
2967 inc_mm_counter_fast(mm, MM_ANONPAGES);
2968 page_add_new_anon_rmap(page, vma, address);
2969 setpte:
2970 set_pte_at(mm, address, page_table, entry);
2971
2972 /* No need to invalidate - it was non-present before */
2973 update_mmu_cache(vma, address, page_table);
2974 unlock:
2975 pte_unmap_unlock(page_table, ptl);
2976 return 0;
2977 release:
2978 mem_cgroup_uncharge_page(page);
2979 page_cache_release(page);
2980 goto unlock;
2981 oom_free_page:
2982 page_cache_release(page);
2983 oom:
2984 return VM_FAULT_OOM;
2985 }
2986
2987 /*
2988 * __do_fault() tries to create a new page mapping. It aggressively
2989 * tries to share with existing pages, but makes a separate copy if
2990 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2991 * the next page fault.
2992 *
2993 * As this is called only for pages that do not currently exist, we
2994 * do not need to flush old virtual caches or the TLB.
2995 *
2996 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2997 * but allow concurrent faults), and pte neither mapped nor locked.
2998 * We return with mmap_sem still held, but pte unmapped and unlocked.
2999 */
3000 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3001 unsigned long address, pmd_t *pmd,
3002 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3003 {
3004 pte_t *page_table;
3005 spinlock_t *ptl;
3006 struct page *page;
3007 pte_t entry;
3008 int anon = 0;
3009 int charged = 0;
3010 struct page *dirty_page = NULL;
3011 struct vm_fault vmf;
3012 int ret;
3013 int page_mkwrite = 0;
3014
3015 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3016 vmf.pgoff = pgoff;
3017 vmf.flags = flags;
3018 vmf.page = NULL;
3019
3020 ret = vma->vm_ops->fault(vma, &vmf);
3021 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3022 VM_FAULT_RETRY)))
3023 return ret;
3024
3025 if (unlikely(PageHWPoison(vmf.page))) {
3026 if (ret & VM_FAULT_LOCKED)
3027 unlock_page(vmf.page);
3028 return VM_FAULT_HWPOISON;
3029 }
3030
3031 /*
3032 * For consistency in subsequent calls, make the faulted page always
3033 * locked.
3034 */
3035 if (unlikely(!(ret & VM_FAULT_LOCKED)))
3036 lock_page(vmf.page);
3037 else
3038 VM_BUG_ON(!PageLocked(vmf.page));
3039
3040 /*
3041 * Should we do an early C-O-W break?
3042 */
3043 page = vmf.page;
3044 if (flags & FAULT_FLAG_WRITE) {
3045 if (!(vma->vm_flags & VM_SHARED)) {
3046 anon = 1;
3047 if (unlikely(anon_vma_prepare(vma))) {
3048 ret = VM_FAULT_OOM;
3049 goto out;
3050 }
3051 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
3052 vma, address);
3053 if (!page) {
3054 ret = VM_FAULT_OOM;
3055 goto out;
3056 }
3057 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
3058 ret = VM_FAULT_OOM;
3059 page_cache_release(page);
3060 goto out;
3061 }
3062 charged = 1;
3063 copy_user_highpage(page, vmf.page, address, vma);
3064 __SetPageUptodate(page);
3065 } else {
3066 /*
3067 * If the page will be shareable, see if the backing
3068 * address space wants to know that the page is about
3069 * to become writable
3070 */
3071 if (vma->vm_ops->page_mkwrite) {
3072 int tmp;
3073
3074 unlock_page(page);
3075 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3076 tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3077 if (unlikely(tmp &
3078 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3079 ret = tmp;
3080 goto unwritable_page;
3081 }
3082 if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3083 lock_page(page);
3084 if (!page->mapping) {
3085 ret = 0; /* retry the fault */
3086 unlock_page(page);
3087 goto unwritable_page;
3088 }
3089 } else
3090 VM_BUG_ON(!PageLocked(page));
3091 page_mkwrite = 1;
3092 }
3093 }
3094
3095 }
3096
3097 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3098
3099 /*
3100 * This silly early PAGE_DIRTY setting removes a race
3101 * due to the bad i386 page protection. But it's valid
3102 * for other architectures too.
3103 *
3104 * Note that if FAULT_FLAG_WRITE is set, we either now have
3105 * an exclusive copy of the page, or this is a shared mapping,
3106 * so we can make it writable and dirty to avoid having to
3107 * handle that later.
3108 */
3109 /* Only go through if we didn't race with anybody else... */
3110 if (likely(pte_same(*page_table, orig_pte))) {
3111 flush_icache_page(vma, page);
3112 entry = mk_pte(page, vma->vm_page_prot);
3113 if (flags & FAULT_FLAG_WRITE)
3114 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3115 if (anon) {
3116 inc_mm_counter_fast(mm, MM_ANONPAGES);
3117 page_add_new_anon_rmap(page, vma, address);
3118 } else {
3119 inc_mm_counter_fast(mm, MM_FILEPAGES);
3120 page_add_file_rmap(page);
3121 if (flags & FAULT_FLAG_WRITE) {
3122 dirty_page = page;
3123 get_page(dirty_page);
3124 }
3125 }
3126 set_pte_at(mm, address, page_table, entry);
3127
3128 /* no need to invalidate: a not-present page won't be cached */
3129 update_mmu_cache(vma, address, page_table);
3130 } else {
3131 if (charged)
3132 mem_cgroup_uncharge_page(page);
3133 if (anon)
3134 page_cache_release(page);
3135 else
3136 anon = 1; /* no anon but release faulted_page */
3137 }
3138
3139 pte_unmap_unlock(page_table, ptl);
3140
3141 out:
3142 if (dirty_page) {
3143 struct address_space *mapping = page->mapping;
3144
3145 if (set_page_dirty(dirty_page))
3146 page_mkwrite = 1;
3147 unlock_page(dirty_page);
3148 put_page(dirty_page);
3149 if (page_mkwrite && mapping) {
3150 /*
3151 * Some device drivers do not set page.mapping but still
3152 * dirty their pages
3153 */
3154 balance_dirty_pages_ratelimited(mapping);
3155 }
3156
3157 /* file_update_time outside page_lock */
3158 if (vma->vm_file)
3159 file_update_time(vma->vm_file);
3160 } else {
3161 unlock_page(vmf.page);
3162 if (anon)
3163 page_cache_release(vmf.page);
3164 }
3165
3166 return ret;
3167
3168 unwritable_page:
3169 page_cache_release(page);
3170 return ret;
3171 }
3172
3173 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3174 unsigned long address, pte_t *page_table, pmd_t *pmd,
3175 unsigned int flags, pte_t orig_pte)
3176 {
3177 pgoff_t pgoff = (((address & PAGE_MASK)
3178 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3179
3180 pte_unmap(page_table);
3181 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3182 }
3183
3184 /*
3185 * Fault of a previously existing named mapping. Repopulate the pte
3186 * from the encoded file_pte if possible. This enables swappable
3187 * nonlinear vmas.
3188 *
3189 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3190 * but allow concurrent faults), and pte mapped but not yet locked.
3191 * We return with mmap_sem still held, but pte unmapped and unlocked.
3192 */
3193 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3194 unsigned long address, pte_t *page_table, pmd_t *pmd,
3195 unsigned int flags, pte_t orig_pte)
3196 {
3197 pgoff_t pgoff;
3198
3199 flags |= FAULT_FLAG_NONLINEAR;
3200
3201 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3202 return 0;
3203
3204 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3205 /*
3206 * Page table corrupted: show pte and kill process.
3207 */
3208 print_bad_pte(vma, address, orig_pte, NULL);
3209 return VM_FAULT_SIGBUS;
3210 }
3211
3212 pgoff = pte_to_pgoff(orig_pte);
3213 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3214 }
3215
3216 /*
3217 * These routines also need to handle stuff like marking pages dirty
3218 * and/or accessed for architectures that don't do it in hardware (most
3219 * RISC architectures). The early dirtying is also good on the i386.
3220 *
3221 * There is also a hook called "update_mmu_cache()" that architectures
3222 * with external mmu caches can use to update those (ie the Sparc or
3223 * PowerPC hashed page tables that act as extended TLBs).
3224 *
3225 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3226 * but allow concurrent faults), and pte mapped but not yet locked.
3227 * We return with mmap_sem still held, but pte unmapped and unlocked.
3228 */
3229 int handle_pte_fault(struct mm_struct *mm,
3230 struct vm_area_struct *vma, unsigned long address,
3231 pte_t *pte, pmd_t *pmd, unsigned int flags)
3232 {
3233 pte_t entry;
3234 spinlock_t *ptl;
3235
3236 entry = *pte;
3237 if (!pte_present(entry)) {
3238 if (pte_none(entry)) {
3239 if (vma->vm_ops) {
3240 if (likely(vma->vm_ops->fault))
3241 return do_linear_fault(mm, vma, address,
3242 pte, pmd, flags, entry);
3243 }
3244 return do_anonymous_page(mm, vma, address,
3245 pte, pmd, flags);
3246 }
3247 if (pte_file(entry))
3248 return do_nonlinear_fault(mm, vma, address,
3249 pte, pmd, flags, entry);
3250 return do_swap_page(mm, vma, address,
3251 pte, pmd, flags, entry);
3252 }
3253
3254 ptl = pte_lockptr(mm, pmd);
3255 spin_lock(ptl);
3256 if (unlikely(!pte_same(*pte, entry)))
3257 goto unlock;
3258 if (flags & FAULT_FLAG_WRITE) {
3259 if (!pte_write(entry))
3260 return do_wp_page(mm, vma, address,
3261 pte, pmd, ptl, entry);
3262 entry = pte_mkdirty(entry);
3263 }
3264 entry = pte_mkyoung(entry);
3265 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3266 update_mmu_cache(vma, address, pte);
3267 } else {
3268 /*
3269 * This is needed only for protection faults but the arch code
3270 * is not yet telling us if this is a protection fault or not.
3271 * This still avoids useless tlb flushes for .text page faults
3272 * with threads.
3273 */
3274 if (flags & FAULT_FLAG_WRITE)
3275 flush_tlb_fix_spurious_fault(vma, address);
3276 }
3277 unlock:
3278 pte_unmap_unlock(pte, ptl);
3279 return 0;
3280 }
3281
3282 /*
3283 * By the time we get here, we already hold the mm semaphore
3284 */
3285 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3286 unsigned long address, unsigned int flags)
3287 {
3288 pgd_t *pgd;
3289 pud_t *pud;
3290 pmd_t *pmd;
3291 pte_t *pte;
3292
3293 __set_current_state(TASK_RUNNING);
3294
3295 count_vm_event(PGFAULT);
3296
3297 /* do counter updates before entering really critical section. */
3298 check_sync_rss_stat(current);
3299
3300 if (unlikely(is_vm_hugetlb_page(vma)))
3301 return hugetlb_fault(mm, vma, address, flags);
3302
3303 pgd = pgd_offset(mm, address);
3304 pud = pud_alloc(mm, pgd, address);
3305 if (!pud)
3306 return VM_FAULT_OOM;
3307 pmd = pmd_alloc(mm, pud, address);
3308 if (!pmd)
3309 return VM_FAULT_OOM;
3310 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3311 if (!vma->vm_ops)
3312 return do_huge_pmd_anonymous_page(mm, vma, address,
3313 pmd, flags);
3314 } else {
3315 pmd_t orig_pmd = *pmd;
3316 barrier();
3317 if (pmd_trans_huge(orig_pmd)) {
3318 if (flags & FAULT_FLAG_WRITE &&
3319 !pmd_write(orig_pmd) &&
3320 !pmd_trans_splitting(orig_pmd))
3321 return do_huge_pmd_wp_page(mm, vma, address,
3322 pmd, orig_pmd);
3323 return 0;
3324 }
3325 }
3326
3327 /*
3328 * Use __pte_alloc instead of pte_alloc_map, because we can't
3329 * run pte_offset_map on the pmd, if an huge pmd could
3330 * materialize from under us from a different thread.
3331 */
3332 if (unlikely(pmd_none(*pmd)) && __pte_alloc(mm, vma, pmd, address))
3333 return VM_FAULT_OOM;
3334 /* if an huge pmd materialized from under us just retry later */
3335 if (unlikely(pmd_trans_huge(*pmd)))
3336 return 0;
3337 /*
3338 * A regular pmd is established and it can't morph into a huge pmd
3339 * from under us anymore at this point because we hold the mmap_sem
3340 * read mode and khugepaged takes it in write mode. So now it's
3341 * safe to run pte_offset_map().
3342 */
3343 pte = pte_offset_map(pmd, address);
3344
3345 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3346 }
3347
3348 #ifndef __PAGETABLE_PUD_FOLDED
3349 /*
3350 * Allocate page upper directory.
3351 * We've already handled the fast-path in-line.
3352 */
3353 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3354 {
3355 pud_t *new = pud_alloc_one(mm, address);
3356 if (!new)
3357 return -ENOMEM;
3358
3359 smp_wmb(); /* See comment in __pte_alloc */
3360
3361 spin_lock(&mm->page_table_lock);
3362 if (pgd_present(*pgd)) /* Another has populated it */
3363 pud_free(mm, new);
3364 else
3365 pgd_populate(mm, pgd, new);
3366 spin_unlock(&mm->page_table_lock);
3367 return 0;
3368 }
3369 #endif /* __PAGETABLE_PUD_FOLDED */
3370
3371 #ifndef __PAGETABLE_PMD_FOLDED
3372 /*
3373 * Allocate page middle directory.
3374 * We've already handled the fast-path in-line.
3375 */
3376 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3377 {
3378 pmd_t *new = pmd_alloc_one(mm, address);
3379 if (!new)
3380 return -ENOMEM;
3381
3382 smp_wmb(); /* See comment in __pte_alloc */
3383
3384 spin_lock(&mm->page_table_lock);
3385 #ifndef __ARCH_HAS_4LEVEL_HACK
3386 if (pud_present(*pud)) /* Another has populated it */
3387 pmd_free(mm, new);
3388 else
3389 pud_populate(mm, pud, new);
3390 #else
3391 if (pgd_present(*pud)) /* Another has populated it */
3392 pmd_free(mm, new);
3393 else
3394 pgd_populate(mm, pud, new);
3395 #endif /* __ARCH_HAS_4LEVEL_HACK */
3396 spin_unlock(&mm->page_table_lock);
3397 return 0;
3398 }
3399 #endif /* __PAGETABLE_PMD_FOLDED */
3400
3401 int make_pages_present(unsigned long addr, unsigned long end)
3402 {
3403 int ret, len, write;
3404 struct vm_area_struct * vma;
3405
3406 vma = find_vma(current->mm, addr);
3407 if (!vma)
3408 return -ENOMEM;
3409 /*
3410 * We want to touch writable mappings with a write fault in order
3411 * to break COW, except for shared mappings because these don't COW
3412 * and we would not want to dirty them for nothing.
3413 */
3414 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3415 BUG_ON(addr >= end);
3416 BUG_ON(end > vma->vm_end);
3417 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3418 ret = get_user_pages(current, current->mm, addr,
3419 len, write, 0, NULL, NULL);
3420 if (ret < 0)
3421 return ret;
3422 return ret == len ? 0 : -EFAULT;
3423 }
3424
3425 #if !defined(__HAVE_ARCH_GATE_AREA)
3426
3427 #if defined(AT_SYSINFO_EHDR)
3428 static struct vm_area_struct gate_vma;
3429
3430 static int __init gate_vma_init(void)
3431 {
3432 gate_vma.vm_mm = NULL;
3433 gate_vma.vm_start = FIXADDR_USER_START;
3434 gate_vma.vm_end = FIXADDR_USER_END;
3435 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3436 gate_vma.vm_page_prot = __P101;
3437 /*
3438 * Make sure the vDSO gets into every core dump.
3439 * Dumping its contents makes post-mortem fully interpretable later
3440 * without matching up the same kernel and hardware config to see
3441 * what PC values meant.
3442 */
3443 gate_vma.vm_flags |= VM_ALWAYSDUMP;
3444 return 0;
3445 }
3446 __initcall(gate_vma_init);
3447 #endif
3448
3449 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3450 {
3451 #ifdef AT_SYSINFO_EHDR
3452 return &gate_vma;
3453 #else
3454 return NULL;
3455 #endif
3456 }
3457
3458 int in_gate_area_no_mm(unsigned long addr)
3459 {
3460 #ifdef AT_SYSINFO_EHDR
3461 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3462 return 1;
3463 #endif
3464 return 0;
3465 }
3466
3467 #endif /* __HAVE_ARCH_GATE_AREA */
3468
3469 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3470 pte_t **ptepp, spinlock_t **ptlp)
3471 {
3472 pgd_t *pgd;
3473 pud_t *pud;
3474 pmd_t *pmd;
3475 pte_t *ptep;
3476
3477 pgd = pgd_offset(mm, address);
3478 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3479 goto out;
3480
3481 pud = pud_offset(pgd, address);
3482 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3483 goto out;
3484
3485 pmd = pmd_offset(pud, address);
3486 VM_BUG_ON(pmd_trans_huge(*pmd));
3487 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3488 goto out;
3489
3490 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3491 if (pmd_huge(*pmd))
3492 goto out;
3493
3494 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3495 if (!ptep)
3496 goto out;
3497 if (!pte_present(*ptep))
3498 goto unlock;
3499 *ptepp = ptep;
3500 return 0;
3501 unlock:
3502 pte_unmap_unlock(ptep, *ptlp);
3503 out:
3504 return -EINVAL;
3505 }
3506
3507 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3508 pte_t **ptepp, spinlock_t **ptlp)
3509 {
3510 int res;
3511
3512 /* (void) is needed to make gcc happy */
3513 (void) __cond_lock(*ptlp,
3514 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3515 return res;
3516 }
3517
3518 /**
3519 * follow_pfn - look up PFN at a user virtual address
3520 * @vma: memory mapping
3521 * @address: user virtual address
3522 * @pfn: location to store found PFN
3523 *
3524 * Only IO mappings and raw PFN mappings are allowed.
3525 *
3526 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3527 */
3528 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3529 unsigned long *pfn)
3530 {
3531 int ret = -EINVAL;
3532 spinlock_t *ptl;
3533 pte_t *ptep;
3534
3535 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3536 return ret;
3537
3538 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3539 if (ret)
3540 return ret;
3541 *pfn = pte_pfn(*ptep);
3542 pte_unmap_unlock(ptep, ptl);
3543 return 0;
3544 }
3545 EXPORT_SYMBOL(follow_pfn);
3546
3547 #ifdef CONFIG_HAVE_IOREMAP_PROT
3548 int follow_phys(struct vm_area_struct *vma,
3549 unsigned long address, unsigned int flags,
3550 unsigned long *prot, resource_size_t *phys)
3551 {
3552 int ret = -EINVAL;
3553 pte_t *ptep, pte;
3554 spinlock_t *ptl;
3555
3556 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3557 goto out;
3558
3559 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3560 goto out;
3561 pte = *ptep;
3562
3563 if ((flags & FOLL_WRITE) && !pte_write(pte))
3564 goto unlock;
3565
3566 *prot = pgprot_val(pte_pgprot(pte));
3567 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3568
3569 ret = 0;
3570 unlock:
3571 pte_unmap_unlock(ptep, ptl);
3572 out:
3573 return ret;
3574 }
3575
3576 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3577 void *buf, int len, int write)
3578 {
3579 resource_size_t phys_addr;
3580 unsigned long prot = 0;
3581 void __iomem *maddr;
3582 int offset = addr & (PAGE_SIZE-1);
3583
3584 if (follow_phys(vma, addr, write, &prot, &phys_addr))
3585 return -EINVAL;
3586
3587 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3588 if (write)
3589 memcpy_toio(maddr + offset, buf, len);
3590 else
3591 memcpy_fromio(buf, maddr + offset, len);
3592 iounmap(maddr);
3593
3594 return len;
3595 }
3596 #endif
3597
3598 /*
3599 * Access another process' address space as given in mm. If non-NULL, use the
3600 * given task for page fault accounting.
3601 */
3602 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3603 unsigned long addr, void *buf, int len, int write)
3604 {
3605 struct vm_area_struct *vma;
3606 void *old_buf = buf;
3607
3608 down_read(&mm->mmap_sem);
3609 /* ignore errors, just check how much was successfully transferred */
3610 while (len) {
3611 int bytes, ret, offset;
3612 void *maddr;
3613 struct page *page = NULL;
3614
3615 ret = get_user_pages(tsk, mm, addr, 1,
3616 write, 1, &page, &vma);
3617 if (ret <= 0) {
3618 /*
3619 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3620 * we can access using slightly different code.
3621 */
3622 #ifdef CONFIG_HAVE_IOREMAP_PROT
3623 vma = find_vma(mm, addr);
3624 if (!vma || vma->vm_start > addr)
3625 break;
3626 if (vma->vm_ops && vma->vm_ops->access)
3627 ret = vma->vm_ops->access(vma, addr, buf,
3628 len, write);
3629 if (ret <= 0)
3630 #endif
3631 break;
3632 bytes = ret;
3633 } else {
3634 bytes = len;
3635 offset = addr & (PAGE_SIZE-1);
3636 if (bytes > PAGE_SIZE-offset)
3637 bytes = PAGE_SIZE-offset;
3638
3639 maddr = kmap(page);
3640 if (write) {
3641 copy_to_user_page(vma, page, addr,
3642 maddr + offset, buf, bytes);
3643 set_page_dirty_lock(page);
3644 } else {
3645 copy_from_user_page(vma, page, addr,
3646 buf, maddr + offset, bytes);
3647 }
3648 kunmap(page);
3649 page_cache_release(page);
3650 }
3651 len -= bytes;
3652 buf += bytes;
3653 addr += bytes;
3654 }
3655 up_read(&mm->mmap_sem);
3656
3657 return buf - old_buf;
3658 }
3659
3660 /**
3661 * access_remote_vm - access another process' address space
3662 * @mm: the mm_struct of the target address space
3663 * @addr: start address to access
3664 * @buf: source or destination buffer
3665 * @len: number of bytes to transfer
3666 * @write: whether the access is a write
3667 *
3668 * The caller must hold a reference on @mm.
3669 */
3670 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3671 void *buf, int len, int write)
3672 {
3673 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3674 }
3675
3676 /*
3677 * Access another process' address space.
3678 * Source/target buffer must be kernel space,
3679 * Do not walk the page table directly, use get_user_pages
3680 */
3681 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3682 void *buf, int len, int write)
3683 {
3684 struct mm_struct *mm;
3685 int ret;
3686
3687 mm = get_task_mm(tsk);
3688 if (!mm)
3689 return 0;
3690
3691 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3692 mmput(mm);
3693
3694 return ret;
3695 }
3696
3697 /*
3698 * Print the name of a VMA.
3699 */
3700 void print_vma_addr(char *prefix, unsigned long ip)
3701 {
3702 struct mm_struct *mm = current->mm;
3703 struct vm_area_struct *vma;
3704
3705 /*
3706 * Do not print if we are in atomic
3707 * contexts (in exception stacks, etc.):
3708 */
3709 if (preempt_count())
3710 return;
3711
3712 down_read(&mm->mmap_sem);
3713 vma = find_vma(mm, ip);
3714 if (vma && vma->vm_file) {
3715 struct file *f = vma->vm_file;
3716 char *buf = (char *)__get_free_page(GFP_KERNEL);
3717 if (buf) {
3718 char *p, *s;
3719
3720 p = d_path(&f->f_path, buf, PAGE_SIZE);
3721 if (IS_ERR(p))
3722 p = "?";
3723 s = strrchr(p, '/');
3724 if (s)
3725 p = s+1;
3726 printk("%s%s[%lx+%lx]", prefix, p,
3727 vma->vm_start,
3728 vma->vm_end - vma->vm_start);
3729 free_page((unsigned long)buf);
3730 }
3731 }
3732 up_read(&current->mm->mmap_sem);
3733 }
3734
3735 #ifdef CONFIG_PROVE_LOCKING
3736 void might_fault(void)
3737 {
3738 /*
3739 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3740 * holding the mmap_sem, this is safe because kernel memory doesn't
3741 * get paged out, therefore we'll never actually fault, and the
3742 * below annotations will generate false positives.
3743 */
3744 if (segment_eq(get_fs(), KERNEL_DS))
3745 return;
3746
3747 might_sleep();
3748 /*
3749 * it would be nicer only to annotate paths which are not under
3750 * pagefault_disable, however that requires a larger audit and
3751 * providing helpers like get_user_atomic.
3752 */
3753 if (!in_atomic() && current->mm)
3754 might_lock_read(&current->mm->mmap_sem);
3755 }
3756 EXPORT_SYMBOL(might_fault);
3757 #endif
3758
3759 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3760 static void clear_gigantic_page(struct page *page,
3761 unsigned long addr,
3762 unsigned int pages_per_huge_page)
3763 {
3764 int i;
3765 struct page *p = page;
3766
3767 might_sleep();
3768 for (i = 0; i < pages_per_huge_page;
3769 i++, p = mem_map_next(p, page, i)) {
3770 cond_resched();
3771 clear_user_highpage(p, addr + i * PAGE_SIZE);
3772 }
3773 }
3774 void clear_huge_page(struct page *page,
3775 unsigned long addr, unsigned int pages_per_huge_page)
3776 {
3777 int i;
3778
3779 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3780 clear_gigantic_page(page, addr, pages_per_huge_page);
3781 return;
3782 }
3783
3784 might_sleep();
3785 for (i = 0; i < pages_per_huge_page; i++) {
3786 cond_resched();
3787 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3788 }
3789 }
3790
3791 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3792 unsigned long addr,
3793 struct vm_area_struct *vma,
3794 unsigned int pages_per_huge_page)
3795 {
3796 int i;
3797 struct page *dst_base = dst;
3798 struct page *src_base = src;
3799
3800 for (i = 0; i < pages_per_huge_page; ) {
3801 cond_resched();
3802 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3803
3804 i++;
3805 dst = mem_map_next(dst, dst_base, i);
3806 src = mem_map_next(src, src_base, i);
3807 }
3808 }
3809
3810 void copy_user_huge_page(struct page *dst, struct page *src,
3811 unsigned long addr, struct vm_area_struct *vma,
3812 unsigned int pages_per_huge_page)
3813 {
3814 int i;
3815
3816 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3817 copy_user_gigantic_page(dst, src, addr, vma,
3818 pages_per_huge_page);
3819 return;
3820 }
3821
3822 might_sleep();
3823 for (i = 0; i < pages_per_huge_page; i++) {
3824 cond_resched();
3825 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3826 }
3827 }
3828 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
This page took 0.10842 seconds and 6 git commands to generate.