27022ca890f8edecfe2c5761cf6e22bb8eafe57c
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 #include <linux/mmu_notifier.h>
94
95 #include <asm/tlbflush.h>
96 #include <asm/uaccess.h>
97 #include <linux/random.h>
98
99 #include "internal.h"
100
101 /* Internal flags */
102 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
103 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
104
105 static struct kmem_cache *policy_cache;
106 static struct kmem_cache *sn_cache;
107
108 /* Highest zone. An specific allocation for a zone below that is not
109 policied. */
110 enum zone_type policy_zone = 0;
111
112 /*
113 * run-time system-wide default policy => local allocation
114 */
115 static struct mempolicy default_policy = {
116 .refcnt = ATOMIC_INIT(1), /* never free it */
117 .mode = MPOL_PREFERRED,
118 .flags = MPOL_F_LOCAL,
119 };
120
121 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
122
123 static struct mempolicy *get_task_policy(struct task_struct *p)
124 {
125 struct mempolicy *pol = p->mempolicy;
126
127 if (!pol) {
128 int node = numa_node_id();
129
130 if (node != NUMA_NO_NODE) {
131 pol = &preferred_node_policy[node];
132 /*
133 * preferred_node_policy is not initialised early in
134 * boot
135 */
136 if (!pol->mode)
137 pol = NULL;
138 }
139 }
140
141 return pol;
142 }
143
144 static const struct mempolicy_operations {
145 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
146 /*
147 * If read-side task has no lock to protect task->mempolicy, write-side
148 * task will rebind the task->mempolicy by two step. The first step is
149 * setting all the newly nodes, and the second step is cleaning all the
150 * disallowed nodes. In this way, we can avoid finding no node to alloc
151 * page.
152 * If we have a lock to protect task->mempolicy in read-side, we do
153 * rebind directly.
154 *
155 * step:
156 * MPOL_REBIND_ONCE - do rebind work at once
157 * MPOL_REBIND_STEP1 - set all the newly nodes
158 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
159 */
160 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
161 enum mpol_rebind_step step);
162 } mpol_ops[MPOL_MAX];
163
164 /* Check that the nodemask contains at least one populated zone */
165 static int is_valid_nodemask(const nodemask_t *nodemask)
166 {
167 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
168 }
169
170 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
171 {
172 return pol->flags & MPOL_MODE_FLAGS;
173 }
174
175 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
176 const nodemask_t *rel)
177 {
178 nodemask_t tmp;
179 nodes_fold(tmp, *orig, nodes_weight(*rel));
180 nodes_onto(*ret, tmp, *rel);
181 }
182
183 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
184 {
185 if (nodes_empty(*nodes))
186 return -EINVAL;
187 pol->v.nodes = *nodes;
188 return 0;
189 }
190
191 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
192 {
193 if (!nodes)
194 pol->flags |= MPOL_F_LOCAL; /* local allocation */
195 else if (nodes_empty(*nodes))
196 return -EINVAL; /* no allowed nodes */
197 else
198 pol->v.preferred_node = first_node(*nodes);
199 return 0;
200 }
201
202 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
203 {
204 if (!is_valid_nodemask(nodes))
205 return -EINVAL;
206 pol->v.nodes = *nodes;
207 return 0;
208 }
209
210 /*
211 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
212 * any, for the new policy. mpol_new() has already validated the nodes
213 * parameter with respect to the policy mode and flags. But, we need to
214 * handle an empty nodemask with MPOL_PREFERRED here.
215 *
216 * Must be called holding task's alloc_lock to protect task's mems_allowed
217 * and mempolicy. May also be called holding the mmap_semaphore for write.
218 */
219 static int mpol_set_nodemask(struct mempolicy *pol,
220 const nodemask_t *nodes, struct nodemask_scratch *nsc)
221 {
222 int ret;
223
224 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
225 if (pol == NULL)
226 return 0;
227 /* Check N_MEMORY */
228 nodes_and(nsc->mask1,
229 cpuset_current_mems_allowed, node_states[N_MEMORY]);
230
231 VM_BUG_ON(!nodes);
232 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
233 nodes = NULL; /* explicit local allocation */
234 else {
235 if (pol->flags & MPOL_F_RELATIVE_NODES)
236 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
237 else
238 nodes_and(nsc->mask2, *nodes, nsc->mask1);
239
240 if (mpol_store_user_nodemask(pol))
241 pol->w.user_nodemask = *nodes;
242 else
243 pol->w.cpuset_mems_allowed =
244 cpuset_current_mems_allowed;
245 }
246
247 if (nodes)
248 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
249 else
250 ret = mpol_ops[pol->mode].create(pol, NULL);
251 return ret;
252 }
253
254 /*
255 * This function just creates a new policy, does some check and simple
256 * initialization. You must invoke mpol_set_nodemask() to set nodes.
257 */
258 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
259 nodemask_t *nodes)
260 {
261 struct mempolicy *policy;
262
263 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
264 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
265
266 if (mode == MPOL_DEFAULT) {
267 if (nodes && !nodes_empty(*nodes))
268 return ERR_PTR(-EINVAL);
269 return NULL;
270 }
271 VM_BUG_ON(!nodes);
272
273 /*
274 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
275 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
276 * All other modes require a valid pointer to a non-empty nodemask.
277 */
278 if (mode == MPOL_PREFERRED) {
279 if (nodes_empty(*nodes)) {
280 if (((flags & MPOL_F_STATIC_NODES) ||
281 (flags & MPOL_F_RELATIVE_NODES)))
282 return ERR_PTR(-EINVAL);
283 }
284 } else if (mode == MPOL_LOCAL) {
285 if (!nodes_empty(*nodes))
286 return ERR_PTR(-EINVAL);
287 mode = MPOL_PREFERRED;
288 } else if (nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
291 if (!policy)
292 return ERR_PTR(-ENOMEM);
293 atomic_set(&policy->refcnt, 1);
294 policy->mode = mode;
295 policy->flags = flags;
296
297 return policy;
298 }
299
300 /* Slow path of a mpol destructor. */
301 void __mpol_put(struct mempolicy *p)
302 {
303 if (!atomic_dec_and_test(&p->refcnt))
304 return;
305 kmem_cache_free(policy_cache, p);
306 }
307
308 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
309 enum mpol_rebind_step step)
310 {
311 }
312
313 /*
314 * step:
315 * MPOL_REBIND_ONCE - do rebind work at once
316 * MPOL_REBIND_STEP1 - set all the newly nodes
317 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
318 */
319 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
320 enum mpol_rebind_step step)
321 {
322 nodemask_t tmp;
323
324 if (pol->flags & MPOL_F_STATIC_NODES)
325 nodes_and(tmp, pol->w.user_nodemask, *nodes);
326 else if (pol->flags & MPOL_F_RELATIVE_NODES)
327 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
328 else {
329 /*
330 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
331 * result
332 */
333 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
334 nodes_remap(tmp, pol->v.nodes,
335 pol->w.cpuset_mems_allowed, *nodes);
336 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
337 } else if (step == MPOL_REBIND_STEP2) {
338 tmp = pol->w.cpuset_mems_allowed;
339 pol->w.cpuset_mems_allowed = *nodes;
340 } else
341 BUG();
342 }
343
344 if (nodes_empty(tmp))
345 tmp = *nodes;
346
347 if (step == MPOL_REBIND_STEP1)
348 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
349 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
350 pol->v.nodes = tmp;
351 else
352 BUG();
353
354 if (!node_isset(current->il_next, tmp)) {
355 current->il_next = next_node(current->il_next, tmp);
356 if (current->il_next >= MAX_NUMNODES)
357 current->il_next = first_node(tmp);
358 if (current->il_next >= MAX_NUMNODES)
359 current->il_next = numa_node_id();
360 }
361 }
362
363 static void mpol_rebind_preferred(struct mempolicy *pol,
364 const nodemask_t *nodes,
365 enum mpol_rebind_step step)
366 {
367 nodemask_t tmp;
368
369 if (pol->flags & MPOL_F_STATIC_NODES) {
370 int node = first_node(pol->w.user_nodemask);
371
372 if (node_isset(node, *nodes)) {
373 pol->v.preferred_node = node;
374 pol->flags &= ~MPOL_F_LOCAL;
375 } else
376 pol->flags |= MPOL_F_LOCAL;
377 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
378 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
379 pol->v.preferred_node = first_node(tmp);
380 } else if (!(pol->flags & MPOL_F_LOCAL)) {
381 pol->v.preferred_node = node_remap(pol->v.preferred_node,
382 pol->w.cpuset_mems_allowed,
383 *nodes);
384 pol->w.cpuset_mems_allowed = *nodes;
385 }
386 }
387
388 /*
389 * mpol_rebind_policy - Migrate a policy to a different set of nodes
390 *
391 * If read-side task has no lock to protect task->mempolicy, write-side
392 * task will rebind the task->mempolicy by two step. The first step is
393 * setting all the newly nodes, and the second step is cleaning all the
394 * disallowed nodes. In this way, we can avoid finding no node to alloc
395 * page.
396 * If we have a lock to protect task->mempolicy in read-side, we do
397 * rebind directly.
398 *
399 * step:
400 * MPOL_REBIND_ONCE - do rebind work at once
401 * MPOL_REBIND_STEP1 - set all the newly nodes
402 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
403 */
404 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
405 enum mpol_rebind_step step)
406 {
407 if (!pol)
408 return;
409 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
410 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
411 return;
412
413 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
414 return;
415
416 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
417 BUG();
418
419 if (step == MPOL_REBIND_STEP1)
420 pol->flags |= MPOL_F_REBINDING;
421 else if (step == MPOL_REBIND_STEP2)
422 pol->flags &= ~MPOL_F_REBINDING;
423 else if (step >= MPOL_REBIND_NSTEP)
424 BUG();
425
426 mpol_ops[pol->mode].rebind(pol, newmask, step);
427 }
428
429 /*
430 * Wrapper for mpol_rebind_policy() that just requires task
431 * pointer, and updates task mempolicy.
432 *
433 * Called with task's alloc_lock held.
434 */
435
436 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
437 enum mpol_rebind_step step)
438 {
439 mpol_rebind_policy(tsk->mempolicy, new, step);
440 }
441
442 /*
443 * Rebind each vma in mm to new nodemask.
444 *
445 * Call holding a reference to mm. Takes mm->mmap_sem during call.
446 */
447
448 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
449 {
450 struct vm_area_struct *vma;
451
452 down_write(&mm->mmap_sem);
453 for (vma = mm->mmap; vma; vma = vma->vm_next)
454 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
455 up_write(&mm->mmap_sem);
456 }
457
458 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
459 [MPOL_DEFAULT] = {
460 .rebind = mpol_rebind_default,
461 },
462 [MPOL_INTERLEAVE] = {
463 .create = mpol_new_interleave,
464 .rebind = mpol_rebind_nodemask,
465 },
466 [MPOL_PREFERRED] = {
467 .create = mpol_new_preferred,
468 .rebind = mpol_rebind_preferred,
469 },
470 [MPOL_BIND] = {
471 .create = mpol_new_bind,
472 .rebind = mpol_rebind_nodemask,
473 },
474 };
475
476 static void migrate_page_add(struct page *page, struct list_head *pagelist,
477 unsigned long flags);
478
479 /* Scan through pages checking if pages follow certain conditions. */
480 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
481 unsigned long addr, unsigned long end,
482 const nodemask_t *nodes, unsigned long flags,
483 void *private)
484 {
485 pte_t *orig_pte;
486 pte_t *pte;
487 spinlock_t *ptl;
488
489 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
490 do {
491 struct page *page;
492 int nid;
493
494 if (!pte_present(*pte))
495 continue;
496 page = vm_normal_page(vma, addr, *pte);
497 if (!page)
498 continue;
499 /*
500 * vm_normal_page() filters out zero pages, but there might
501 * still be PageReserved pages to skip, perhaps in a VDSO.
502 */
503 if (PageReserved(page))
504 continue;
505 nid = page_to_nid(page);
506 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
507 continue;
508
509 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
510 migrate_page_add(page, private, flags);
511 else
512 break;
513 } while (pte++, addr += PAGE_SIZE, addr != end);
514 pte_unmap_unlock(orig_pte, ptl);
515 return addr != end;
516 }
517
518 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
519 unsigned long addr, unsigned long end,
520 const nodemask_t *nodes, unsigned long flags,
521 void *private)
522 {
523 pmd_t *pmd;
524 unsigned long next;
525
526 pmd = pmd_offset(pud, addr);
527 do {
528 next = pmd_addr_end(addr, end);
529 split_huge_page_pmd(vma, addr, pmd);
530 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
531 continue;
532 if (check_pte_range(vma, pmd, addr, next, nodes,
533 flags, private))
534 return -EIO;
535 } while (pmd++, addr = next, addr != end);
536 return 0;
537 }
538
539 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
540 unsigned long addr, unsigned long end,
541 const nodemask_t *nodes, unsigned long flags,
542 void *private)
543 {
544 pud_t *pud;
545 unsigned long next;
546
547 pud = pud_offset(pgd, addr);
548 do {
549 next = pud_addr_end(addr, end);
550 if (pud_none_or_clear_bad(pud))
551 continue;
552 if (check_pmd_range(vma, pud, addr, next, nodes,
553 flags, private))
554 return -EIO;
555 } while (pud++, addr = next, addr != end);
556 return 0;
557 }
558
559 static inline int check_pgd_range(struct vm_area_struct *vma,
560 unsigned long addr, unsigned long end,
561 const nodemask_t *nodes, unsigned long flags,
562 void *private)
563 {
564 pgd_t *pgd;
565 unsigned long next;
566
567 pgd = pgd_offset(vma->vm_mm, addr);
568 do {
569 next = pgd_addr_end(addr, end);
570 if (pgd_none_or_clear_bad(pgd))
571 continue;
572 if (check_pud_range(vma, pgd, addr, next, nodes,
573 flags, private))
574 return -EIO;
575 } while (pgd++, addr = next, addr != end);
576 return 0;
577 }
578
579 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
580 /*
581 * This is used to mark a range of virtual addresses to be inaccessible.
582 * These are later cleared by a NUMA hinting fault. Depending on these
583 * faults, pages may be migrated for better NUMA placement.
584 *
585 * This is assuming that NUMA faults are handled using PROT_NONE. If
586 * an architecture makes a different choice, it will need further
587 * changes to the core.
588 */
589 unsigned long change_prot_numa(struct vm_area_struct *vma,
590 unsigned long addr, unsigned long end)
591 {
592 int nr_updated;
593 BUILD_BUG_ON(_PAGE_NUMA != _PAGE_PROTNONE);
594
595 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
596 if (nr_updated)
597 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
598
599 return nr_updated;
600 }
601 #else
602 static unsigned long change_prot_numa(struct vm_area_struct *vma,
603 unsigned long addr, unsigned long end)
604 {
605 return 0;
606 }
607 #endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
608
609 /*
610 * Check if all pages in a range are on a set of nodes.
611 * If pagelist != NULL then isolate pages from the LRU and
612 * put them on the pagelist.
613 */
614 static struct vm_area_struct *
615 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
616 const nodemask_t *nodes, unsigned long flags, void *private)
617 {
618 int err;
619 struct vm_area_struct *first, *vma, *prev;
620
621
622 first = find_vma(mm, start);
623 if (!first)
624 return ERR_PTR(-EFAULT);
625 prev = NULL;
626 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
627 unsigned long endvma = vma->vm_end;
628
629 if (endvma > end)
630 endvma = end;
631 if (vma->vm_start > start)
632 start = vma->vm_start;
633
634 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
635 if (!vma->vm_next && vma->vm_end < end)
636 return ERR_PTR(-EFAULT);
637 if (prev && prev->vm_end < vma->vm_start)
638 return ERR_PTR(-EFAULT);
639 }
640
641 if (is_vm_hugetlb_page(vma))
642 goto next;
643
644 if (flags & MPOL_MF_LAZY) {
645 change_prot_numa(vma, start, endvma);
646 goto next;
647 }
648
649 if ((flags & MPOL_MF_STRICT) ||
650 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
651 vma_migratable(vma))) {
652
653 err = check_pgd_range(vma, start, endvma, nodes,
654 flags, private);
655 if (err) {
656 first = ERR_PTR(err);
657 break;
658 }
659 }
660 next:
661 prev = vma;
662 }
663 return first;
664 }
665
666 /*
667 * Apply policy to a single VMA
668 * This must be called with the mmap_sem held for writing.
669 */
670 static int vma_replace_policy(struct vm_area_struct *vma,
671 struct mempolicy *pol)
672 {
673 int err;
674 struct mempolicy *old;
675 struct mempolicy *new;
676
677 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
678 vma->vm_start, vma->vm_end, vma->vm_pgoff,
679 vma->vm_ops, vma->vm_file,
680 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
681
682 new = mpol_dup(pol);
683 if (IS_ERR(new))
684 return PTR_ERR(new);
685
686 if (vma->vm_ops && vma->vm_ops->set_policy) {
687 err = vma->vm_ops->set_policy(vma, new);
688 if (err)
689 goto err_out;
690 }
691
692 old = vma->vm_policy;
693 vma->vm_policy = new; /* protected by mmap_sem */
694 mpol_put(old);
695
696 return 0;
697 err_out:
698 mpol_put(new);
699 return err;
700 }
701
702 /* Step 2: apply policy to a range and do splits. */
703 static int mbind_range(struct mm_struct *mm, unsigned long start,
704 unsigned long end, struct mempolicy *new_pol)
705 {
706 struct vm_area_struct *next;
707 struct vm_area_struct *prev;
708 struct vm_area_struct *vma;
709 int err = 0;
710 pgoff_t pgoff;
711 unsigned long vmstart;
712 unsigned long vmend;
713
714 vma = find_vma(mm, start);
715 if (!vma || vma->vm_start > start)
716 return -EFAULT;
717
718 prev = vma->vm_prev;
719 if (start > vma->vm_start)
720 prev = vma;
721
722 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
723 next = vma->vm_next;
724 vmstart = max(start, vma->vm_start);
725 vmend = min(end, vma->vm_end);
726
727 if (mpol_equal(vma_policy(vma), new_pol))
728 continue;
729
730 pgoff = vma->vm_pgoff +
731 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
732 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
733 vma->anon_vma, vma->vm_file, pgoff,
734 new_pol);
735 if (prev) {
736 vma = prev;
737 next = vma->vm_next;
738 if (mpol_equal(vma_policy(vma), new_pol))
739 continue;
740 /* vma_merge() joined vma && vma->next, case 8 */
741 goto replace;
742 }
743 if (vma->vm_start != vmstart) {
744 err = split_vma(vma->vm_mm, vma, vmstart, 1);
745 if (err)
746 goto out;
747 }
748 if (vma->vm_end != vmend) {
749 err = split_vma(vma->vm_mm, vma, vmend, 0);
750 if (err)
751 goto out;
752 }
753 replace:
754 err = vma_replace_policy(vma, new_pol);
755 if (err)
756 goto out;
757 }
758
759 out:
760 return err;
761 }
762
763 /*
764 * Update task->flags PF_MEMPOLICY bit: set iff non-default
765 * mempolicy. Allows more rapid checking of this (combined perhaps
766 * with other PF_* flag bits) on memory allocation hot code paths.
767 *
768 * If called from outside this file, the task 'p' should -only- be
769 * a newly forked child not yet visible on the task list, because
770 * manipulating the task flags of a visible task is not safe.
771 *
772 * The above limitation is why this routine has the funny name
773 * mpol_fix_fork_child_flag().
774 *
775 * It is also safe to call this with a task pointer of current,
776 * which the static wrapper mpol_set_task_struct_flag() does,
777 * for use within this file.
778 */
779
780 void mpol_fix_fork_child_flag(struct task_struct *p)
781 {
782 if (p->mempolicy)
783 p->flags |= PF_MEMPOLICY;
784 else
785 p->flags &= ~PF_MEMPOLICY;
786 }
787
788 static void mpol_set_task_struct_flag(void)
789 {
790 mpol_fix_fork_child_flag(current);
791 }
792
793 /* Set the process memory policy */
794 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
795 nodemask_t *nodes)
796 {
797 struct mempolicy *new, *old;
798 struct mm_struct *mm = current->mm;
799 NODEMASK_SCRATCH(scratch);
800 int ret;
801
802 if (!scratch)
803 return -ENOMEM;
804
805 new = mpol_new(mode, flags, nodes);
806 if (IS_ERR(new)) {
807 ret = PTR_ERR(new);
808 goto out;
809 }
810 /*
811 * prevent changing our mempolicy while show_numa_maps()
812 * is using it.
813 * Note: do_set_mempolicy() can be called at init time
814 * with no 'mm'.
815 */
816 if (mm)
817 down_write(&mm->mmap_sem);
818 task_lock(current);
819 ret = mpol_set_nodemask(new, nodes, scratch);
820 if (ret) {
821 task_unlock(current);
822 if (mm)
823 up_write(&mm->mmap_sem);
824 mpol_put(new);
825 goto out;
826 }
827 old = current->mempolicy;
828 current->mempolicy = new;
829 mpol_set_task_struct_flag();
830 if (new && new->mode == MPOL_INTERLEAVE &&
831 nodes_weight(new->v.nodes))
832 current->il_next = first_node(new->v.nodes);
833 task_unlock(current);
834 if (mm)
835 up_write(&mm->mmap_sem);
836
837 mpol_put(old);
838 ret = 0;
839 out:
840 NODEMASK_SCRATCH_FREE(scratch);
841 return ret;
842 }
843
844 /*
845 * Return nodemask for policy for get_mempolicy() query
846 *
847 * Called with task's alloc_lock held
848 */
849 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
850 {
851 nodes_clear(*nodes);
852 if (p == &default_policy)
853 return;
854
855 switch (p->mode) {
856 case MPOL_BIND:
857 /* Fall through */
858 case MPOL_INTERLEAVE:
859 *nodes = p->v.nodes;
860 break;
861 case MPOL_PREFERRED:
862 if (!(p->flags & MPOL_F_LOCAL))
863 node_set(p->v.preferred_node, *nodes);
864 /* else return empty node mask for local allocation */
865 break;
866 default:
867 BUG();
868 }
869 }
870
871 static int lookup_node(struct mm_struct *mm, unsigned long addr)
872 {
873 struct page *p;
874 int err;
875
876 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
877 if (err >= 0) {
878 err = page_to_nid(p);
879 put_page(p);
880 }
881 return err;
882 }
883
884 /* Retrieve NUMA policy */
885 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
886 unsigned long addr, unsigned long flags)
887 {
888 int err;
889 struct mm_struct *mm = current->mm;
890 struct vm_area_struct *vma = NULL;
891 struct mempolicy *pol = current->mempolicy;
892
893 if (flags &
894 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
895 return -EINVAL;
896
897 if (flags & MPOL_F_MEMS_ALLOWED) {
898 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
899 return -EINVAL;
900 *policy = 0; /* just so it's initialized */
901 task_lock(current);
902 *nmask = cpuset_current_mems_allowed;
903 task_unlock(current);
904 return 0;
905 }
906
907 if (flags & MPOL_F_ADDR) {
908 /*
909 * Do NOT fall back to task policy if the
910 * vma/shared policy at addr is NULL. We
911 * want to return MPOL_DEFAULT in this case.
912 */
913 down_read(&mm->mmap_sem);
914 vma = find_vma_intersection(mm, addr, addr+1);
915 if (!vma) {
916 up_read(&mm->mmap_sem);
917 return -EFAULT;
918 }
919 if (vma->vm_ops && vma->vm_ops->get_policy)
920 pol = vma->vm_ops->get_policy(vma, addr);
921 else
922 pol = vma->vm_policy;
923 } else if (addr)
924 return -EINVAL;
925
926 if (!pol)
927 pol = &default_policy; /* indicates default behavior */
928
929 if (flags & MPOL_F_NODE) {
930 if (flags & MPOL_F_ADDR) {
931 err = lookup_node(mm, addr);
932 if (err < 0)
933 goto out;
934 *policy = err;
935 } else if (pol == current->mempolicy &&
936 pol->mode == MPOL_INTERLEAVE) {
937 *policy = current->il_next;
938 } else {
939 err = -EINVAL;
940 goto out;
941 }
942 } else {
943 *policy = pol == &default_policy ? MPOL_DEFAULT :
944 pol->mode;
945 /*
946 * Internal mempolicy flags must be masked off before exposing
947 * the policy to userspace.
948 */
949 *policy |= (pol->flags & MPOL_MODE_FLAGS);
950 }
951
952 if (vma) {
953 up_read(&current->mm->mmap_sem);
954 vma = NULL;
955 }
956
957 err = 0;
958 if (nmask) {
959 if (mpol_store_user_nodemask(pol)) {
960 *nmask = pol->w.user_nodemask;
961 } else {
962 task_lock(current);
963 get_policy_nodemask(pol, nmask);
964 task_unlock(current);
965 }
966 }
967
968 out:
969 mpol_cond_put(pol);
970 if (vma)
971 up_read(&current->mm->mmap_sem);
972 return err;
973 }
974
975 #ifdef CONFIG_MIGRATION
976 /*
977 * page migration
978 */
979 static void migrate_page_add(struct page *page, struct list_head *pagelist,
980 unsigned long flags)
981 {
982 /*
983 * Avoid migrating a page that is shared with others.
984 */
985 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
986 if (!isolate_lru_page(page)) {
987 list_add_tail(&page->lru, pagelist);
988 inc_zone_page_state(page, NR_ISOLATED_ANON +
989 page_is_file_cache(page));
990 }
991 }
992 }
993
994 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
995 {
996 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
997 }
998
999 /*
1000 * Migrate pages from one node to a target node.
1001 * Returns error or the number of pages not migrated.
1002 */
1003 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1004 int flags)
1005 {
1006 nodemask_t nmask;
1007 LIST_HEAD(pagelist);
1008 int err = 0;
1009
1010 nodes_clear(nmask);
1011 node_set(source, nmask);
1012
1013 /*
1014 * This does not "check" the range but isolates all pages that
1015 * need migration. Between passing in the full user address
1016 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1017 */
1018 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1019 check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1020 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1021
1022 if (!list_empty(&pagelist)) {
1023 err = migrate_pages(&pagelist, new_node_page, dest,
1024 MIGRATE_SYNC, MR_SYSCALL);
1025 if (err)
1026 putback_lru_pages(&pagelist);
1027 }
1028
1029 return err;
1030 }
1031
1032 /*
1033 * Move pages between the two nodesets so as to preserve the physical
1034 * layout as much as possible.
1035 *
1036 * Returns the number of page that could not be moved.
1037 */
1038 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1039 const nodemask_t *to, int flags)
1040 {
1041 int busy = 0;
1042 int err;
1043 nodemask_t tmp;
1044
1045 err = migrate_prep();
1046 if (err)
1047 return err;
1048
1049 down_read(&mm->mmap_sem);
1050
1051 err = migrate_vmas(mm, from, to, flags);
1052 if (err)
1053 goto out;
1054
1055 /*
1056 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1057 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1058 * bit in 'tmp', and return that <source, dest> pair for migration.
1059 * The pair of nodemasks 'to' and 'from' define the map.
1060 *
1061 * If no pair of bits is found that way, fallback to picking some
1062 * pair of 'source' and 'dest' bits that are not the same. If the
1063 * 'source' and 'dest' bits are the same, this represents a node
1064 * that will be migrating to itself, so no pages need move.
1065 *
1066 * If no bits are left in 'tmp', or if all remaining bits left
1067 * in 'tmp' correspond to the same bit in 'to', return false
1068 * (nothing left to migrate).
1069 *
1070 * This lets us pick a pair of nodes to migrate between, such that
1071 * if possible the dest node is not already occupied by some other
1072 * source node, minimizing the risk of overloading the memory on a
1073 * node that would happen if we migrated incoming memory to a node
1074 * before migrating outgoing memory source that same node.
1075 *
1076 * A single scan of tmp is sufficient. As we go, we remember the
1077 * most recent <s, d> pair that moved (s != d). If we find a pair
1078 * that not only moved, but what's better, moved to an empty slot
1079 * (d is not set in tmp), then we break out then, with that pair.
1080 * Otherwise when we finish scanning from_tmp, we at least have the
1081 * most recent <s, d> pair that moved. If we get all the way through
1082 * the scan of tmp without finding any node that moved, much less
1083 * moved to an empty node, then there is nothing left worth migrating.
1084 */
1085
1086 tmp = *from;
1087 while (!nodes_empty(tmp)) {
1088 int s,d;
1089 int source = -1;
1090 int dest = 0;
1091
1092 for_each_node_mask(s, tmp) {
1093
1094 /*
1095 * do_migrate_pages() tries to maintain the relative
1096 * node relationship of the pages established between
1097 * threads and memory areas.
1098 *
1099 * However if the number of source nodes is not equal to
1100 * the number of destination nodes we can not preserve
1101 * this node relative relationship. In that case, skip
1102 * copying memory from a node that is in the destination
1103 * mask.
1104 *
1105 * Example: [2,3,4] -> [3,4,5] moves everything.
1106 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1107 */
1108
1109 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1110 (node_isset(s, *to)))
1111 continue;
1112
1113 d = node_remap(s, *from, *to);
1114 if (s == d)
1115 continue;
1116
1117 source = s; /* Node moved. Memorize */
1118 dest = d;
1119
1120 /* dest not in remaining from nodes? */
1121 if (!node_isset(dest, tmp))
1122 break;
1123 }
1124 if (source == -1)
1125 break;
1126
1127 node_clear(source, tmp);
1128 err = migrate_to_node(mm, source, dest, flags);
1129 if (err > 0)
1130 busy += err;
1131 if (err < 0)
1132 break;
1133 }
1134 out:
1135 up_read(&mm->mmap_sem);
1136 if (err < 0)
1137 return err;
1138 return busy;
1139
1140 }
1141
1142 /*
1143 * Allocate a new page for page migration based on vma policy.
1144 * Start assuming that page is mapped by vma pointed to by @private.
1145 * Search forward from there, if not. N.B., this assumes that the
1146 * list of pages handed to migrate_pages()--which is how we get here--
1147 * is in virtual address order.
1148 */
1149 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1150 {
1151 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1152 unsigned long uninitialized_var(address);
1153
1154 while (vma) {
1155 address = page_address_in_vma(page, vma);
1156 if (address != -EFAULT)
1157 break;
1158 vma = vma->vm_next;
1159 }
1160
1161 /*
1162 * if !vma, alloc_page_vma() will use task or system default policy
1163 */
1164 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1165 }
1166 #else
1167
1168 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1169 unsigned long flags)
1170 {
1171 }
1172
1173 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1174 const nodemask_t *to, int flags)
1175 {
1176 return -ENOSYS;
1177 }
1178
1179 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1180 {
1181 return NULL;
1182 }
1183 #endif
1184
1185 static long do_mbind(unsigned long start, unsigned long len,
1186 unsigned short mode, unsigned short mode_flags,
1187 nodemask_t *nmask, unsigned long flags)
1188 {
1189 struct vm_area_struct *vma;
1190 struct mm_struct *mm = current->mm;
1191 struct mempolicy *new;
1192 unsigned long end;
1193 int err;
1194 LIST_HEAD(pagelist);
1195
1196 if (flags & ~(unsigned long)MPOL_MF_VALID)
1197 return -EINVAL;
1198 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1199 return -EPERM;
1200
1201 if (start & ~PAGE_MASK)
1202 return -EINVAL;
1203
1204 if (mode == MPOL_DEFAULT)
1205 flags &= ~MPOL_MF_STRICT;
1206
1207 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1208 end = start + len;
1209
1210 if (end < start)
1211 return -EINVAL;
1212 if (end == start)
1213 return 0;
1214
1215 new = mpol_new(mode, mode_flags, nmask);
1216 if (IS_ERR(new))
1217 return PTR_ERR(new);
1218
1219 if (flags & MPOL_MF_LAZY)
1220 new->flags |= MPOL_F_MOF;
1221
1222 /*
1223 * If we are using the default policy then operation
1224 * on discontinuous address spaces is okay after all
1225 */
1226 if (!new)
1227 flags |= MPOL_MF_DISCONTIG_OK;
1228
1229 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1230 start, start + len, mode, mode_flags,
1231 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1232
1233 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1234
1235 err = migrate_prep();
1236 if (err)
1237 goto mpol_out;
1238 }
1239 {
1240 NODEMASK_SCRATCH(scratch);
1241 if (scratch) {
1242 down_write(&mm->mmap_sem);
1243 task_lock(current);
1244 err = mpol_set_nodemask(new, nmask, scratch);
1245 task_unlock(current);
1246 if (err)
1247 up_write(&mm->mmap_sem);
1248 } else
1249 err = -ENOMEM;
1250 NODEMASK_SCRATCH_FREE(scratch);
1251 }
1252 if (err)
1253 goto mpol_out;
1254
1255 vma = check_range(mm, start, end, nmask,
1256 flags | MPOL_MF_INVERT, &pagelist);
1257
1258 err = PTR_ERR(vma); /* maybe ... */
1259 if (!IS_ERR(vma))
1260 err = mbind_range(mm, start, end, new);
1261
1262 if (!err) {
1263 int nr_failed = 0;
1264
1265 if (!list_empty(&pagelist)) {
1266 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1267 nr_failed = migrate_pages(&pagelist, new_vma_page,
1268 (unsigned long)vma,
1269 MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1270 if (nr_failed)
1271 putback_lru_pages(&pagelist);
1272 }
1273
1274 if (nr_failed && (flags & MPOL_MF_STRICT))
1275 err = -EIO;
1276 } else
1277 putback_lru_pages(&pagelist);
1278
1279 up_write(&mm->mmap_sem);
1280 mpol_out:
1281 mpol_put(new);
1282 return err;
1283 }
1284
1285 /*
1286 * User space interface with variable sized bitmaps for nodelists.
1287 */
1288
1289 /* Copy a node mask from user space. */
1290 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1291 unsigned long maxnode)
1292 {
1293 unsigned long k;
1294 unsigned long nlongs;
1295 unsigned long endmask;
1296
1297 --maxnode;
1298 nodes_clear(*nodes);
1299 if (maxnode == 0 || !nmask)
1300 return 0;
1301 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1302 return -EINVAL;
1303
1304 nlongs = BITS_TO_LONGS(maxnode);
1305 if ((maxnode % BITS_PER_LONG) == 0)
1306 endmask = ~0UL;
1307 else
1308 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1309
1310 /* When the user specified more nodes than supported just check
1311 if the non supported part is all zero. */
1312 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1313 if (nlongs > PAGE_SIZE/sizeof(long))
1314 return -EINVAL;
1315 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1316 unsigned long t;
1317 if (get_user(t, nmask + k))
1318 return -EFAULT;
1319 if (k == nlongs - 1) {
1320 if (t & endmask)
1321 return -EINVAL;
1322 } else if (t)
1323 return -EINVAL;
1324 }
1325 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1326 endmask = ~0UL;
1327 }
1328
1329 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1330 return -EFAULT;
1331 nodes_addr(*nodes)[nlongs-1] &= endmask;
1332 return 0;
1333 }
1334
1335 /* Copy a kernel node mask to user space */
1336 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1337 nodemask_t *nodes)
1338 {
1339 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1340 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1341
1342 if (copy > nbytes) {
1343 if (copy > PAGE_SIZE)
1344 return -EINVAL;
1345 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1346 return -EFAULT;
1347 copy = nbytes;
1348 }
1349 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1350 }
1351
1352 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1353 unsigned long, mode, unsigned long __user *, nmask,
1354 unsigned long, maxnode, unsigned, flags)
1355 {
1356 nodemask_t nodes;
1357 int err;
1358 unsigned short mode_flags;
1359
1360 mode_flags = mode & MPOL_MODE_FLAGS;
1361 mode &= ~MPOL_MODE_FLAGS;
1362 if (mode >= MPOL_MAX)
1363 return -EINVAL;
1364 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1365 (mode_flags & MPOL_F_RELATIVE_NODES))
1366 return -EINVAL;
1367 err = get_nodes(&nodes, nmask, maxnode);
1368 if (err)
1369 return err;
1370 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1371 }
1372
1373 /* Set the process memory policy */
1374 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1375 unsigned long, maxnode)
1376 {
1377 int err;
1378 nodemask_t nodes;
1379 unsigned short flags;
1380
1381 flags = mode & MPOL_MODE_FLAGS;
1382 mode &= ~MPOL_MODE_FLAGS;
1383 if ((unsigned int)mode >= MPOL_MAX)
1384 return -EINVAL;
1385 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1386 return -EINVAL;
1387 err = get_nodes(&nodes, nmask, maxnode);
1388 if (err)
1389 return err;
1390 return do_set_mempolicy(mode, flags, &nodes);
1391 }
1392
1393 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1394 const unsigned long __user *, old_nodes,
1395 const unsigned long __user *, new_nodes)
1396 {
1397 const struct cred *cred = current_cred(), *tcred;
1398 struct mm_struct *mm = NULL;
1399 struct task_struct *task;
1400 nodemask_t task_nodes;
1401 int err;
1402 nodemask_t *old;
1403 nodemask_t *new;
1404 NODEMASK_SCRATCH(scratch);
1405
1406 if (!scratch)
1407 return -ENOMEM;
1408
1409 old = &scratch->mask1;
1410 new = &scratch->mask2;
1411
1412 err = get_nodes(old, old_nodes, maxnode);
1413 if (err)
1414 goto out;
1415
1416 err = get_nodes(new, new_nodes, maxnode);
1417 if (err)
1418 goto out;
1419
1420 /* Find the mm_struct */
1421 rcu_read_lock();
1422 task = pid ? find_task_by_vpid(pid) : current;
1423 if (!task) {
1424 rcu_read_unlock();
1425 err = -ESRCH;
1426 goto out;
1427 }
1428 get_task_struct(task);
1429
1430 err = -EINVAL;
1431
1432 /*
1433 * Check if this process has the right to modify the specified
1434 * process. The right exists if the process has administrative
1435 * capabilities, superuser privileges or the same
1436 * userid as the target process.
1437 */
1438 tcred = __task_cred(task);
1439 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1440 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1441 !capable(CAP_SYS_NICE)) {
1442 rcu_read_unlock();
1443 err = -EPERM;
1444 goto out_put;
1445 }
1446 rcu_read_unlock();
1447
1448 task_nodes = cpuset_mems_allowed(task);
1449 /* Is the user allowed to access the target nodes? */
1450 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1451 err = -EPERM;
1452 goto out_put;
1453 }
1454
1455 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1456 err = -EINVAL;
1457 goto out_put;
1458 }
1459
1460 err = security_task_movememory(task);
1461 if (err)
1462 goto out_put;
1463
1464 mm = get_task_mm(task);
1465 put_task_struct(task);
1466
1467 if (!mm) {
1468 err = -EINVAL;
1469 goto out;
1470 }
1471
1472 err = do_migrate_pages(mm, old, new,
1473 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1474
1475 mmput(mm);
1476 out:
1477 NODEMASK_SCRATCH_FREE(scratch);
1478
1479 return err;
1480
1481 out_put:
1482 put_task_struct(task);
1483 goto out;
1484
1485 }
1486
1487
1488 /* Retrieve NUMA policy */
1489 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1490 unsigned long __user *, nmask, unsigned long, maxnode,
1491 unsigned long, addr, unsigned long, flags)
1492 {
1493 int err;
1494 int uninitialized_var(pval);
1495 nodemask_t nodes;
1496
1497 if (nmask != NULL && maxnode < MAX_NUMNODES)
1498 return -EINVAL;
1499
1500 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1501
1502 if (err)
1503 return err;
1504
1505 if (policy && put_user(pval, policy))
1506 return -EFAULT;
1507
1508 if (nmask)
1509 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1510
1511 return err;
1512 }
1513
1514 #ifdef CONFIG_COMPAT
1515
1516 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1517 compat_ulong_t __user *nmask,
1518 compat_ulong_t maxnode,
1519 compat_ulong_t addr, compat_ulong_t flags)
1520 {
1521 long err;
1522 unsigned long __user *nm = NULL;
1523 unsigned long nr_bits, alloc_size;
1524 DECLARE_BITMAP(bm, MAX_NUMNODES);
1525
1526 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1527 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1528
1529 if (nmask)
1530 nm = compat_alloc_user_space(alloc_size);
1531
1532 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1533
1534 if (!err && nmask) {
1535 unsigned long copy_size;
1536 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1537 err = copy_from_user(bm, nm, copy_size);
1538 /* ensure entire bitmap is zeroed */
1539 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1540 err |= compat_put_bitmap(nmask, bm, nr_bits);
1541 }
1542
1543 return err;
1544 }
1545
1546 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1547 compat_ulong_t maxnode)
1548 {
1549 long err = 0;
1550 unsigned long __user *nm = NULL;
1551 unsigned long nr_bits, alloc_size;
1552 DECLARE_BITMAP(bm, MAX_NUMNODES);
1553
1554 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1555 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1556
1557 if (nmask) {
1558 err = compat_get_bitmap(bm, nmask, nr_bits);
1559 nm = compat_alloc_user_space(alloc_size);
1560 err |= copy_to_user(nm, bm, alloc_size);
1561 }
1562
1563 if (err)
1564 return -EFAULT;
1565
1566 return sys_set_mempolicy(mode, nm, nr_bits+1);
1567 }
1568
1569 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1570 compat_ulong_t mode, compat_ulong_t __user *nmask,
1571 compat_ulong_t maxnode, compat_ulong_t flags)
1572 {
1573 long err = 0;
1574 unsigned long __user *nm = NULL;
1575 unsigned long nr_bits, alloc_size;
1576 nodemask_t bm;
1577
1578 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1579 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1580
1581 if (nmask) {
1582 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1583 nm = compat_alloc_user_space(alloc_size);
1584 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1585 }
1586
1587 if (err)
1588 return -EFAULT;
1589
1590 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1591 }
1592
1593 #endif
1594
1595 /*
1596 * get_vma_policy(@task, @vma, @addr)
1597 * @task - task for fallback if vma policy == default
1598 * @vma - virtual memory area whose policy is sought
1599 * @addr - address in @vma for shared policy lookup
1600 *
1601 * Returns effective policy for a VMA at specified address.
1602 * Falls back to @task or system default policy, as necessary.
1603 * Current or other task's task mempolicy and non-shared vma policies must be
1604 * protected by task_lock(task) by the caller.
1605 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1606 * count--added by the get_policy() vm_op, as appropriate--to protect against
1607 * freeing by another task. It is the caller's responsibility to free the
1608 * extra reference for shared policies.
1609 */
1610 struct mempolicy *get_vma_policy(struct task_struct *task,
1611 struct vm_area_struct *vma, unsigned long addr)
1612 {
1613 struct mempolicy *pol = get_task_policy(task);
1614
1615 if (vma) {
1616 if (vma->vm_ops && vma->vm_ops->get_policy) {
1617 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1618 addr);
1619 if (vpol)
1620 pol = vpol;
1621 } else if (vma->vm_policy) {
1622 pol = vma->vm_policy;
1623
1624 /*
1625 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1626 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1627 * count on these policies which will be dropped by
1628 * mpol_cond_put() later
1629 */
1630 if (mpol_needs_cond_ref(pol))
1631 mpol_get(pol);
1632 }
1633 }
1634 if (!pol)
1635 pol = &default_policy;
1636 return pol;
1637 }
1638
1639 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1640 {
1641 enum zone_type dynamic_policy_zone = policy_zone;
1642
1643 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1644
1645 /*
1646 * if policy->v.nodes has movable memory only,
1647 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1648 *
1649 * policy->v.nodes is intersect with node_states[N_MEMORY].
1650 * so if the following test faile, it implies
1651 * policy->v.nodes has movable memory only.
1652 */
1653 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1654 dynamic_policy_zone = ZONE_MOVABLE;
1655
1656 return zone >= dynamic_policy_zone;
1657 }
1658
1659 /*
1660 * Return a nodemask representing a mempolicy for filtering nodes for
1661 * page allocation
1662 */
1663 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1664 {
1665 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1666 if (unlikely(policy->mode == MPOL_BIND) &&
1667 apply_policy_zone(policy, gfp_zone(gfp)) &&
1668 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1669 return &policy->v.nodes;
1670
1671 return NULL;
1672 }
1673
1674 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1675 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1676 int nd)
1677 {
1678 switch (policy->mode) {
1679 case MPOL_PREFERRED:
1680 if (!(policy->flags & MPOL_F_LOCAL))
1681 nd = policy->v.preferred_node;
1682 break;
1683 case MPOL_BIND:
1684 /*
1685 * Normally, MPOL_BIND allocations are node-local within the
1686 * allowed nodemask. However, if __GFP_THISNODE is set and the
1687 * current node isn't part of the mask, we use the zonelist for
1688 * the first node in the mask instead.
1689 */
1690 if (unlikely(gfp & __GFP_THISNODE) &&
1691 unlikely(!node_isset(nd, policy->v.nodes)))
1692 nd = first_node(policy->v.nodes);
1693 break;
1694 default:
1695 BUG();
1696 }
1697 return node_zonelist(nd, gfp);
1698 }
1699
1700 /* Do dynamic interleaving for a process */
1701 static unsigned interleave_nodes(struct mempolicy *policy)
1702 {
1703 unsigned nid, next;
1704 struct task_struct *me = current;
1705
1706 nid = me->il_next;
1707 next = next_node(nid, policy->v.nodes);
1708 if (next >= MAX_NUMNODES)
1709 next = first_node(policy->v.nodes);
1710 if (next < MAX_NUMNODES)
1711 me->il_next = next;
1712 return nid;
1713 }
1714
1715 /*
1716 * Depending on the memory policy provide a node from which to allocate the
1717 * next slab entry.
1718 * @policy must be protected by freeing by the caller. If @policy is
1719 * the current task's mempolicy, this protection is implicit, as only the
1720 * task can change it's policy. The system default policy requires no
1721 * such protection.
1722 */
1723 unsigned slab_node(void)
1724 {
1725 struct mempolicy *policy;
1726
1727 if (in_interrupt())
1728 return numa_node_id();
1729
1730 policy = current->mempolicy;
1731 if (!policy || policy->flags & MPOL_F_LOCAL)
1732 return numa_node_id();
1733
1734 switch (policy->mode) {
1735 case MPOL_PREFERRED:
1736 /*
1737 * handled MPOL_F_LOCAL above
1738 */
1739 return policy->v.preferred_node;
1740
1741 case MPOL_INTERLEAVE:
1742 return interleave_nodes(policy);
1743
1744 case MPOL_BIND: {
1745 /*
1746 * Follow bind policy behavior and start allocation at the
1747 * first node.
1748 */
1749 struct zonelist *zonelist;
1750 struct zone *zone;
1751 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1752 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1753 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1754 &policy->v.nodes,
1755 &zone);
1756 return zone ? zone->node : numa_node_id();
1757 }
1758
1759 default:
1760 BUG();
1761 }
1762 }
1763
1764 /* Do static interleaving for a VMA with known offset. */
1765 static unsigned offset_il_node(struct mempolicy *pol,
1766 struct vm_area_struct *vma, unsigned long off)
1767 {
1768 unsigned nnodes = nodes_weight(pol->v.nodes);
1769 unsigned target;
1770 int c;
1771 int nid = -1;
1772
1773 if (!nnodes)
1774 return numa_node_id();
1775 target = (unsigned int)off % nnodes;
1776 c = 0;
1777 do {
1778 nid = next_node(nid, pol->v.nodes);
1779 c++;
1780 } while (c <= target);
1781 return nid;
1782 }
1783
1784 /* Determine a node number for interleave */
1785 static inline unsigned interleave_nid(struct mempolicy *pol,
1786 struct vm_area_struct *vma, unsigned long addr, int shift)
1787 {
1788 if (vma) {
1789 unsigned long off;
1790
1791 /*
1792 * for small pages, there is no difference between
1793 * shift and PAGE_SHIFT, so the bit-shift is safe.
1794 * for huge pages, since vm_pgoff is in units of small
1795 * pages, we need to shift off the always 0 bits to get
1796 * a useful offset.
1797 */
1798 BUG_ON(shift < PAGE_SHIFT);
1799 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1800 off += (addr - vma->vm_start) >> shift;
1801 return offset_il_node(pol, vma, off);
1802 } else
1803 return interleave_nodes(pol);
1804 }
1805
1806 /*
1807 * Return the bit number of a random bit set in the nodemask.
1808 * (returns -1 if nodemask is empty)
1809 */
1810 int node_random(const nodemask_t *maskp)
1811 {
1812 int w, bit = -1;
1813
1814 w = nodes_weight(*maskp);
1815 if (w)
1816 bit = bitmap_ord_to_pos(maskp->bits,
1817 get_random_int() % w, MAX_NUMNODES);
1818 return bit;
1819 }
1820
1821 #ifdef CONFIG_HUGETLBFS
1822 /*
1823 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1824 * @vma = virtual memory area whose policy is sought
1825 * @addr = address in @vma for shared policy lookup and interleave policy
1826 * @gfp_flags = for requested zone
1827 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1828 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1829 *
1830 * Returns a zonelist suitable for a huge page allocation and a pointer
1831 * to the struct mempolicy for conditional unref after allocation.
1832 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1833 * @nodemask for filtering the zonelist.
1834 *
1835 * Must be protected by get_mems_allowed()
1836 */
1837 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1838 gfp_t gfp_flags, struct mempolicy **mpol,
1839 nodemask_t **nodemask)
1840 {
1841 struct zonelist *zl;
1842
1843 *mpol = get_vma_policy(current, vma, addr);
1844 *nodemask = NULL; /* assume !MPOL_BIND */
1845
1846 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1847 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1848 huge_page_shift(hstate_vma(vma))), gfp_flags);
1849 } else {
1850 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1851 if ((*mpol)->mode == MPOL_BIND)
1852 *nodemask = &(*mpol)->v.nodes;
1853 }
1854 return zl;
1855 }
1856
1857 /*
1858 * init_nodemask_of_mempolicy
1859 *
1860 * If the current task's mempolicy is "default" [NULL], return 'false'
1861 * to indicate default policy. Otherwise, extract the policy nodemask
1862 * for 'bind' or 'interleave' policy into the argument nodemask, or
1863 * initialize the argument nodemask to contain the single node for
1864 * 'preferred' or 'local' policy and return 'true' to indicate presence
1865 * of non-default mempolicy.
1866 *
1867 * We don't bother with reference counting the mempolicy [mpol_get/put]
1868 * because the current task is examining it's own mempolicy and a task's
1869 * mempolicy is only ever changed by the task itself.
1870 *
1871 * N.B., it is the caller's responsibility to free a returned nodemask.
1872 */
1873 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1874 {
1875 struct mempolicy *mempolicy;
1876 int nid;
1877
1878 if (!(mask && current->mempolicy))
1879 return false;
1880
1881 task_lock(current);
1882 mempolicy = current->mempolicy;
1883 switch (mempolicy->mode) {
1884 case MPOL_PREFERRED:
1885 if (mempolicy->flags & MPOL_F_LOCAL)
1886 nid = numa_node_id();
1887 else
1888 nid = mempolicy->v.preferred_node;
1889 init_nodemask_of_node(mask, nid);
1890 break;
1891
1892 case MPOL_BIND:
1893 /* Fall through */
1894 case MPOL_INTERLEAVE:
1895 *mask = mempolicy->v.nodes;
1896 break;
1897
1898 default:
1899 BUG();
1900 }
1901 task_unlock(current);
1902
1903 return true;
1904 }
1905 #endif
1906
1907 /*
1908 * mempolicy_nodemask_intersects
1909 *
1910 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1911 * policy. Otherwise, check for intersection between mask and the policy
1912 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1913 * policy, always return true since it may allocate elsewhere on fallback.
1914 *
1915 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1916 */
1917 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1918 const nodemask_t *mask)
1919 {
1920 struct mempolicy *mempolicy;
1921 bool ret = true;
1922
1923 if (!mask)
1924 return ret;
1925 task_lock(tsk);
1926 mempolicy = tsk->mempolicy;
1927 if (!mempolicy)
1928 goto out;
1929
1930 switch (mempolicy->mode) {
1931 case MPOL_PREFERRED:
1932 /*
1933 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1934 * allocate from, they may fallback to other nodes when oom.
1935 * Thus, it's possible for tsk to have allocated memory from
1936 * nodes in mask.
1937 */
1938 break;
1939 case MPOL_BIND:
1940 case MPOL_INTERLEAVE:
1941 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1942 break;
1943 default:
1944 BUG();
1945 }
1946 out:
1947 task_unlock(tsk);
1948 return ret;
1949 }
1950
1951 /* Allocate a page in interleaved policy.
1952 Own path because it needs to do special accounting. */
1953 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1954 unsigned nid)
1955 {
1956 struct zonelist *zl;
1957 struct page *page;
1958
1959 zl = node_zonelist(nid, gfp);
1960 page = __alloc_pages(gfp, order, zl);
1961 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1962 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1963 return page;
1964 }
1965
1966 /**
1967 * alloc_pages_vma - Allocate a page for a VMA.
1968 *
1969 * @gfp:
1970 * %GFP_USER user allocation.
1971 * %GFP_KERNEL kernel allocations,
1972 * %GFP_HIGHMEM highmem/user allocations,
1973 * %GFP_FS allocation should not call back into a file system.
1974 * %GFP_ATOMIC don't sleep.
1975 *
1976 * @order:Order of the GFP allocation.
1977 * @vma: Pointer to VMA or NULL if not available.
1978 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1979 *
1980 * This function allocates a page from the kernel page pool and applies
1981 * a NUMA policy associated with the VMA or the current process.
1982 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1983 * mm_struct of the VMA to prevent it from going away. Should be used for
1984 * all allocations for pages that will be mapped into
1985 * user space. Returns NULL when no page can be allocated.
1986 *
1987 * Should be called with the mm_sem of the vma hold.
1988 */
1989 struct page *
1990 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1991 unsigned long addr, int node)
1992 {
1993 struct mempolicy *pol;
1994 struct page *page;
1995 unsigned int cpuset_mems_cookie;
1996
1997 retry_cpuset:
1998 pol = get_vma_policy(current, vma, addr);
1999 cpuset_mems_cookie = get_mems_allowed();
2000
2001 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2002 unsigned nid;
2003
2004 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2005 mpol_cond_put(pol);
2006 page = alloc_page_interleave(gfp, order, nid);
2007 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2008 goto retry_cpuset;
2009
2010 return page;
2011 }
2012 page = __alloc_pages_nodemask(gfp, order,
2013 policy_zonelist(gfp, pol, node),
2014 policy_nodemask(gfp, pol));
2015 if (unlikely(mpol_needs_cond_ref(pol)))
2016 __mpol_put(pol);
2017 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2018 goto retry_cpuset;
2019 return page;
2020 }
2021
2022 /**
2023 * alloc_pages_current - Allocate pages.
2024 *
2025 * @gfp:
2026 * %GFP_USER user allocation,
2027 * %GFP_KERNEL kernel allocation,
2028 * %GFP_HIGHMEM highmem allocation,
2029 * %GFP_FS don't call back into a file system.
2030 * %GFP_ATOMIC don't sleep.
2031 * @order: Power of two of allocation size in pages. 0 is a single page.
2032 *
2033 * Allocate a page from the kernel page pool. When not in
2034 * interrupt context and apply the current process NUMA policy.
2035 * Returns NULL when no page can be allocated.
2036 *
2037 * Don't call cpuset_update_task_memory_state() unless
2038 * 1) it's ok to take cpuset_sem (can WAIT), and
2039 * 2) allocating for current task (not interrupt).
2040 */
2041 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2042 {
2043 struct mempolicy *pol = get_task_policy(current);
2044 struct page *page;
2045 unsigned int cpuset_mems_cookie;
2046
2047 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2048 pol = &default_policy;
2049
2050 retry_cpuset:
2051 cpuset_mems_cookie = get_mems_allowed();
2052
2053 /*
2054 * No reference counting needed for current->mempolicy
2055 * nor system default_policy
2056 */
2057 if (pol->mode == MPOL_INTERLEAVE)
2058 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2059 else
2060 page = __alloc_pages_nodemask(gfp, order,
2061 policy_zonelist(gfp, pol, numa_node_id()),
2062 policy_nodemask(gfp, pol));
2063
2064 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2065 goto retry_cpuset;
2066
2067 return page;
2068 }
2069 EXPORT_SYMBOL(alloc_pages_current);
2070
2071 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2072 {
2073 struct mempolicy *pol = mpol_dup(vma_policy(src));
2074
2075 if (IS_ERR(pol))
2076 return PTR_ERR(pol);
2077 dst->vm_policy = pol;
2078 return 0;
2079 }
2080
2081 /*
2082 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2083 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2084 * with the mems_allowed returned by cpuset_mems_allowed(). This
2085 * keeps mempolicies cpuset relative after its cpuset moves. See
2086 * further kernel/cpuset.c update_nodemask().
2087 *
2088 * current's mempolicy may be rebinded by the other task(the task that changes
2089 * cpuset's mems), so we needn't do rebind work for current task.
2090 */
2091
2092 /* Slow path of a mempolicy duplicate */
2093 struct mempolicy *__mpol_dup(struct mempolicy *old)
2094 {
2095 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2096
2097 if (!new)
2098 return ERR_PTR(-ENOMEM);
2099
2100 /* task's mempolicy is protected by alloc_lock */
2101 if (old == current->mempolicy) {
2102 task_lock(current);
2103 *new = *old;
2104 task_unlock(current);
2105 } else
2106 *new = *old;
2107
2108 rcu_read_lock();
2109 if (current_cpuset_is_being_rebound()) {
2110 nodemask_t mems = cpuset_mems_allowed(current);
2111 if (new->flags & MPOL_F_REBINDING)
2112 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2113 else
2114 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2115 }
2116 rcu_read_unlock();
2117 atomic_set(&new->refcnt, 1);
2118 return new;
2119 }
2120
2121 /* Slow path of a mempolicy comparison */
2122 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2123 {
2124 if (!a || !b)
2125 return false;
2126 if (a->mode != b->mode)
2127 return false;
2128 if (a->flags != b->flags)
2129 return false;
2130 if (mpol_store_user_nodemask(a))
2131 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2132 return false;
2133
2134 switch (a->mode) {
2135 case MPOL_BIND:
2136 /* Fall through */
2137 case MPOL_INTERLEAVE:
2138 return !!nodes_equal(a->v.nodes, b->v.nodes);
2139 case MPOL_PREFERRED:
2140 return a->v.preferred_node == b->v.preferred_node;
2141 default:
2142 BUG();
2143 return false;
2144 }
2145 }
2146
2147 /*
2148 * Shared memory backing store policy support.
2149 *
2150 * Remember policies even when nobody has shared memory mapped.
2151 * The policies are kept in Red-Black tree linked from the inode.
2152 * They are protected by the sp->lock spinlock, which should be held
2153 * for any accesses to the tree.
2154 */
2155
2156 /* lookup first element intersecting start-end */
2157 /* Caller holds sp->lock */
2158 static struct sp_node *
2159 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2160 {
2161 struct rb_node *n = sp->root.rb_node;
2162
2163 while (n) {
2164 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2165
2166 if (start >= p->end)
2167 n = n->rb_right;
2168 else if (end <= p->start)
2169 n = n->rb_left;
2170 else
2171 break;
2172 }
2173 if (!n)
2174 return NULL;
2175 for (;;) {
2176 struct sp_node *w = NULL;
2177 struct rb_node *prev = rb_prev(n);
2178 if (!prev)
2179 break;
2180 w = rb_entry(prev, struct sp_node, nd);
2181 if (w->end <= start)
2182 break;
2183 n = prev;
2184 }
2185 return rb_entry(n, struct sp_node, nd);
2186 }
2187
2188 /* Insert a new shared policy into the list. */
2189 /* Caller holds sp->lock */
2190 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2191 {
2192 struct rb_node **p = &sp->root.rb_node;
2193 struct rb_node *parent = NULL;
2194 struct sp_node *nd;
2195
2196 while (*p) {
2197 parent = *p;
2198 nd = rb_entry(parent, struct sp_node, nd);
2199 if (new->start < nd->start)
2200 p = &(*p)->rb_left;
2201 else if (new->end > nd->end)
2202 p = &(*p)->rb_right;
2203 else
2204 BUG();
2205 }
2206 rb_link_node(&new->nd, parent, p);
2207 rb_insert_color(&new->nd, &sp->root);
2208 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2209 new->policy ? new->policy->mode : 0);
2210 }
2211
2212 /* Find shared policy intersecting idx */
2213 struct mempolicy *
2214 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2215 {
2216 struct mempolicy *pol = NULL;
2217 struct sp_node *sn;
2218
2219 if (!sp->root.rb_node)
2220 return NULL;
2221 spin_lock(&sp->lock);
2222 sn = sp_lookup(sp, idx, idx+1);
2223 if (sn) {
2224 mpol_get(sn->policy);
2225 pol = sn->policy;
2226 }
2227 spin_unlock(&sp->lock);
2228 return pol;
2229 }
2230
2231 static void sp_free(struct sp_node *n)
2232 {
2233 mpol_put(n->policy);
2234 kmem_cache_free(sn_cache, n);
2235 }
2236
2237 /**
2238 * mpol_misplaced - check whether current page node is valid in policy
2239 *
2240 * @page - page to be checked
2241 * @vma - vm area where page mapped
2242 * @addr - virtual address where page mapped
2243 *
2244 * Lookup current policy node id for vma,addr and "compare to" page's
2245 * node id.
2246 *
2247 * Returns:
2248 * -1 - not misplaced, page is in the right node
2249 * node - node id where the page should be
2250 *
2251 * Policy determination "mimics" alloc_page_vma().
2252 * Called from fault path where we know the vma and faulting address.
2253 */
2254 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2255 {
2256 struct mempolicy *pol;
2257 struct zone *zone;
2258 int curnid = page_to_nid(page);
2259 unsigned long pgoff;
2260 int polnid = -1;
2261 int ret = -1;
2262
2263 BUG_ON(!vma);
2264
2265 pol = get_vma_policy(current, vma, addr);
2266 if (!(pol->flags & MPOL_F_MOF))
2267 goto out;
2268
2269 switch (pol->mode) {
2270 case MPOL_INTERLEAVE:
2271 BUG_ON(addr >= vma->vm_end);
2272 BUG_ON(addr < vma->vm_start);
2273
2274 pgoff = vma->vm_pgoff;
2275 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2276 polnid = offset_il_node(pol, vma, pgoff);
2277 break;
2278
2279 case MPOL_PREFERRED:
2280 if (pol->flags & MPOL_F_LOCAL)
2281 polnid = numa_node_id();
2282 else
2283 polnid = pol->v.preferred_node;
2284 break;
2285
2286 case MPOL_BIND:
2287 /*
2288 * allows binding to multiple nodes.
2289 * use current page if in policy nodemask,
2290 * else select nearest allowed node, if any.
2291 * If no allowed nodes, use current [!misplaced].
2292 */
2293 if (node_isset(curnid, pol->v.nodes))
2294 goto out;
2295 (void)first_zones_zonelist(
2296 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2297 gfp_zone(GFP_HIGHUSER),
2298 &pol->v.nodes, &zone);
2299 polnid = zone->node;
2300 break;
2301
2302 default:
2303 BUG();
2304 }
2305
2306 /* Migrate the page towards the node whose CPU is referencing it */
2307 if (pol->flags & MPOL_F_MORON) {
2308 int last_nid;
2309
2310 polnid = numa_node_id();
2311
2312 /*
2313 * Multi-stage node selection is used in conjunction
2314 * with a periodic migration fault to build a temporal
2315 * task<->page relation. By using a two-stage filter we
2316 * remove short/unlikely relations.
2317 *
2318 * Using P(p) ~ n_p / n_t as per frequentist
2319 * probability, we can equate a task's usage of a
2320 * particular page (n_p) per total usage of this
2321 * page (n_t) (in a given time-span) to a probability.
2322 *
2323 * Our periodic faults will sample this probability and
2324 * getting the same result twice in a row, given these
2325 * samples are fully independent, is then given by
2326 * P(n)^2, provided our sample period is sufficiently
2327 * short compared to the usage pattern.
2328 *
2329 * This quadric squishes small probabilities, making
2330 * it less likely we act on an unlikely task<->page
2331 * relation.
2332 */
2333 last_nid = page_nid_xchg_last(page, polnid);
2334 if (last_nid != polnid)
2335 goto out;
2336 }
2337
2338 if (curnid != polnid)
2339 ret = polnid;
2340 out:
2341 mpol_cond_put(pol);
2342
2343 return ret;
2344 }
2345
2346 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2347 {
2348 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2349 rb_erase(&n->nd, &sp->root);
2350 sp_free(n);
2351 }
2352
2353 static void sp_node_init(struct sp_node *node, unsigned long start,
2354 unsigned long end, struct mempolicy *pol)
2355 {
2356 node->start = start;
2357 node->end = end;
2358 node->policy = pol;
2359 }
2360
2361 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2362 struct mempolicy *pol)
2363 {
2364 struct sp_node *n;
2365 struct mempolicy *newpol;
2366
2367 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2368 if (!n)
2369 return NULL;
2370
2371 newpol = mpol_dup(pol);
2372 if (IS_ERR(newpol)) {
2373 kmem_cache_free(sn_cache, n);
2374 return NULL;
2375 }
2376 newpol->flags |= MPOL_F_SHARED;
2377 sp_node_init(n, start, end, newpol);
2378
2379 return n;
2380 }
2381
2382 /* Replace a policy range. */
2383 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2384 unsigned long end, struct sp_node *new)
2385 {
2386 struct sp_node *n;
2387 struct sp_node *n_new = NULL;
2388 struct mempolicy *mpol_new = NULL;
2389 int ret = 0;
2390
2391 restart:
2392 spin_lock(&sp->lock);
2393 n = sp_lookup(sp, start, end);
2394 /* Take care of old policies in the same range. */
2395 while (n && n->start < end) {
2396 struct rb_node *next = rb_next(&n->nd);
2397 if (n->start >= start) {
2398 if (n->end <= end)
2399 sp_delete(sp, n);
2400 else
2401 n->start = end;
2402 } else {
2403 /* Old policy spanning whole new range. */
2404 if (n->end > end) {
2405 if (!n_new)
2406 goto alloc_new;
2407
2408 *mpol_new = *n->policy;
2409 atomic_set(&mpol_new->refcnt, 1);
2410 sp_node_init(n_new, end, n->end, mpol_new);
2411 n->end = start;
2412 sp_insert(sp, n_new);
2413 n_new = NULL;
2414 mpol_new = NULL;
2415 break;
2416 } else
2417 n->end = start;
2418 }
2419 if (!next)
2420 break;
2421 n = rb_entry(next, struct sp_node, nd);
2422 }
2423 if (new)
2424 sp_insert(sp, new);
2425 spin_unlock(&sp->lock);
2426 ret = 0;
2427
2428 err_out:
2429 if (mpol_new)
2430 mpol_put(mpol_new);
2431 if (n_new)
2432 kmem_cache_free(sn_cache, n_new);
2433
2434 return ret;
2435
2436 alloc_new:
2437 spin_unlock(&sp->lock);
2438 ret = -ENOMEM;
2439 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2440 if (!n_new)
2441 goto err_out;
2442 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2443 if (!mpol_new)
2444 goto err_out;
2445 goto restart;
2446 }
2447
2448 /**
2449 * mpol_shared_policy_init - initialize shared policy for inode
2450 * @sp: pointer to inode shared policy
2451 * @mpol: struct mempolicy to install
2452 *
2453 * Install non-NULL @mpol in inode's shared policy rb-tree.
2454 * On entry, the current task has a reference on a non-NULL @mpol.
2455 * This must be released on exit.
2456 * This is called at get_inode() calls and we can use GFP_KERNEL.
2457 */
2458 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2459 {
2460 int ret;
2461
2462 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2463 spin_lock_init(&sp->lock);
2464
2465 if (mpol) {
2466 struct vm_area_struct pvma;
2467 struct mempolicy *new;
2468 NODEMASK_SCRATCH(scratch);
2469
2470 if (!scratch)
2471 goto put_mpol;
2472 /* contextualize the tmpfs mount point mempolicy */
2473 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2474 if (IS_ERR(new))
2475 goto free_scratch; /* no valid nodemask intersection */
2476
2477 task_lock(current);
2478 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2479 task_unlock(current);
2480 if (ret)
2481 goto put_new;
2482
2483 /* Create pseudo-vma that contains just the policy */
2484 memset(&pvma, 0, sizeof(struct vm_area_struct));
2485 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2486 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2487
2488 put_new:
2489 mpol_put(new); /* drop initial ref */
2490 free_scratch:
2491 NODEMASK_SCRATCH_FREE(scratch);
2492 put_mpol:
2493 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2494 }
2495 }
2496
2497 int mpol_set_shared_policy(struct shared_policy *info,
2498 struct vm_area_struct *vma, struct mempolicy *npol)
2499 {
2500 int err;
2501 struct sp_node *new = NULL;
2502 unsigned long sz = vma_pages(vma);
2503
2504 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2505 vma->vm_pgoff,
2506 sz, npol ? npol->mode : -1,
2507 npol ? npol->flags : -1,
2508 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2509
2510 if (npol) {
2511 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2512 if (!new)
2513 return -ENOMEM;
2514 }
2515 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2516 if (err && new)
2517 sp_free(new);
2518 return err;
2519 }
2520
2521 /* Free a backing policy store on inode delete. */
2522 void mpol_free_shared_policy(struct shared_policy *p)
2523 {
2524 struct sp_node *n;
2525 struct rb_node *next;
2526
2527 if (!p->root.rb_node)
2528 return;
2529 spin_lock(&p->lock);
2530 next = rb_first(&p->root);
2531 while (next) {
2532 n = rb_entry(next, struct sp_node, nd);
2533 next = rb_next(&n->nd);
2534 sp_delete(p, n);
2535 }
2536 spin_unlock(&p->lock);
2537 }
2538
2539 #ifdef CONFIG_NUMA_BALANCING
2540 static bool __initdata numabalancing_override;
2541
2542 static void __init check_numabalancing_enable(void)
2543 {
2544 bool numabalancing_default = false;
2545
2546 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2547 numabalancing_default = true;
2548
2549 if (nr_node_ids > 1 && !numabalancing_override) {
2550 printk(KERN_INFO "Enabling automatic NUMA balancing. "
2551 "Configure with numa_balancing= or sysctl");
2552 set_numabalancing_state(numabalancing_default);
2553 }
2554 }
2555
2556 static int __init setup_numabalancing(char *str)
2557 {
2558 int ret = 0;
2559 if (!str)
2560 goto out;
2561 numabalancing_override = true;
2562
2563 if (!strcmp(str, "enable")) {
2564 set_numabalancing_state(true);
2565 ret = 1;
2566 } else if (!strcmp(str, "disable")) {
2567 set_numabalancing_state(false);
2568 ret = 1;
2569 }
2570 out:
2571 if (!ret)
2572 printk(KERN_WARNING "Unable to parse numa_balancing=\n");
2573
2574 return ret;
2575 }
2576 __setup("numa_balancing=", setup_numabalancing);
2577 #else
2578 static inline void __init check_numabalancing_enable(void)
2579 {
2580 }
2581 #endif /* CONFIG_NUMA_BALANCING */
2582
2583 /* assumes fs == KERNEL_DS */
2584 void __init numa_policy_init(void)
2585 {
2586 nodemask_t interleave_nodes;
2587 unsigned long largest = 0;
2588 int nid, prefer = 0;
2589
2590 policy_cache = kmem_cache_create("numa_policy",
2591 sizeof(struct mempolicy),
2592 0, SLAB_PANIC, NULL);
2593
2594 sn_cache = kmem_cache_create("shared_policy_node",
2595 sizeof(struct sp_node),
2596 0, SLAB_PANIC, NULL);
2597
2598 for_each_node(nid) {
2599 preferred_node_policy[nid] = (struct mempolicy) {
2600 .refcnt = ATOMIC_INIT(1),
2601 .mode = MPOL_PREFERRED,
2602 .flags = MPOL_F_MOF | MPOL_F_MORON,
2603 .v = { .preferred_node = nid, },
2604 };
2605 }
2606
2607 /*
2608 * Set interleaving policy for system init. Interleaving is only
2609 * enabled across suitably sized nodes (default is >= 16MB), or
2610 * fall back to the largest node if they're all smaller.
2611 */
2612 nodes_clear(interleave_nodes);
2613 for_each_node_state(nid, N_MEMORY) {
2614 unsigned long total_pages = node_present_pages(nid);
2615
2616 /* Preserve the largest node */
2617 if (largest < total_pages) {
2618 largest = total_pages;
2619 prefer = nid;
2620 }
2621
2622 /* Interleave this node? */
2623 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2624 node_set(nid, interleave_nodes);
2625 }
2626
2627 /* All too small, use the largest */
2628 if (unlikely(nodes_empty(interleave_nodes)))
2629 node_set(prefer, interleave_nodes);
2630
2631 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2632 printk("numa_policy_init: interleaving failed\n");
2633
2634 check_numabalancing_enable();
2635 }
2636
2637 /* Reset policy of current process to default */
2638 void numa_default_policy(void)
2639 {
2640 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2641 }
2642
2643 /*
2644 * Parse and format mempolicy from/to strings
2645 */
2646
2647 /*
2648 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2649 */
2650 static const char * const policy_modes[] =
2651 {
2652 [MPOL_DEFAULT] = "default",
2653 [MPOL_PREFERRED] = "prefer",
2654 [MPOL_BIND] = "bind",
2655 [MPOL_INTERLEAVE] = "interleave",
2656 [MPOL_LOCAL] = "local",
2657 };
2658
2659
2660 #ifdef CONFIG_TMPFS
2661 /**
2662 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2663 * @str: string containing mempolicy to parse
2664 * @mpol: pointer to struct mempolicy pointer, returned on success.
2665 *
2666 * Format of input:
2667 * <mode>[=<flags>][:<nodelist>]
2668 *
2669 * On success, returns 0, else 1
2670 */
2671 int mpol_parse_str(char *str, struct mempolicy **mpol)
2672 {
2673 struct mempolicy *new = NULL;
2674 unsigned short mode;
2675 unsigned short mode_flags;
2676 nodemask_t nodes;
2677 char *nodelist = strchr(str, ':');
2678 char *flags = strchr(str, '=');
2679 int err = 1;
2680
2681 if (nodelist) {
2682 /* NUL-terminate mode or flags string */
2683 *nodelist++ = '\0';
2684 if (nodelist_parse(nodelist, nodes))
2685 goto out;
2686 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2687 goto out;
2688 } else
2689 nodes_clear(nodes);
2690
2691 if (flags)
2692 *flags++ = '\0'; /* terminate mode string */
2693
2694 for (mode = 0; mode < MPOL_MAX; mode++) {
2695 if (!strcmp(str, policy_modes[mode])) {
2696 break;
2697 }
2698 }
2699 if (mode >= MPOL_MAX)
2700 goto out;
2701
2702 switch (mode) {
2703 case MPOL_PREFERRED:
2704 /*
2705 * Insist on a nodelist of one node only
2706 */
2707 if (nodelist) {
2708 char *rest = nodelist;
2709 while (isdigit(*rest))
2710 rest++;
2711 if (*rest)
2712 goto out;
2713 }
2714 break;
2715 case MPOL_INTERLEAVE:
2716 /*
2717 * Default to online nodes with memory if no nodelist
2718 */
2719 if (!nodelist)
2720 nodes = node_states[N_MEMORY];
2721 break;
2722 case MPOL_LOCAL:
2723 /*
2724 * Don't allow a nodelist; mpol_new() checks flags
2725 */
2726 if (nodelist)
2727 goto out;
2728 mode = MPOL_PREFERRED;
2729 break;
2730 case MPOL_DEFAULT:
2731 /*
2732 * Insist on a empty nodelist
2733 */
2734 if (!nodelist)
2735 err = 0;
2736 goto out;
2737 case MPOL_BIND:
2738 /*
2739 * Insist on a nodelist
2740 */
2741 if (!nodelist)
2742 goto out;
2743 }
2744
2745 mode_flags = 0;
2746 if (flags) {
2747 /*
2748 * Currently, we only support two mutually exclusive
2749 * mode flags.
2750 */
2751 if (!strcmp(flags, "static"))
2752 mode_flags |= MPOL_F_STATIC_NODES;
2753 else if (!strcmp(flags, "relative"))
2754 mode_flags |= MPOL_F_RELATIVE_NODES;
2755 else
2756 goto out;
2757 }
2758
2759 new = mpol_new(mode, mode_flags, &nodes);
2760 if (IS_ERR(new))
2761 goto out;
2762
2763 /*
2764 * Save nodes for mpol_to_str() to show the tmpfs mount options
2765 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2766 */
2767 if (mode != MPOL_PREFERRED)
2768 new->v.nodes = nodes;
2769 else if (nodelist)
2770 new->v.preferred_node = first_node(nodes);
2771 else
2772 new->flags |= MPOL_F_LOCAL;
2773
2774 /*
2775 * Save nodes for contextualization: this will be used to "clone"
2776 * the mempolicy in a specific context [cpuset] at a later time.
2777 */
2778 new->w.user_nodemask = nodes;
2779
2780 err = 0;
2781
2782 out:
2783 /* Restore string for error message */
2784 if (nodelist)
2785 *--nodelist = ':';
2786 if (flags)
2787 *--flags = '=';
2788 if (!err)
2789 *mpol = new;
2790 return err;
2791 }
2792 #endif /* CONFIG_TMPFS */
2793
2794 /**
2795 * mpol_to_str - format a mempolicy structure for printing
2796 * @buffer: to contain formatted mempolicy string
2797 * @maxlen: length of @buffer
2798 * @pol: pointer to mempolicy to be formatted
2799 *
2800 * Convert a mempolicy into a string.
2801 * Returns the number of characters in buffer (if positive)
2802 * or an error (negative)
2803 */
2804 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2805 {
2806 char *p = buffer;
2807 int l;
2808 nodemask_t nodes;
2809 unsigned short mode;
2810 unsigned short flags = pol ? pol->flags : 0;
2811
2812 /*
2813 * Sanity check: room for longest mode, flag and some nodes
2814 */
2815 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2816
2817 if (!pol || pol == &default_policy)
2818 mode = MPOL_DEFAULT;
2819 else
2820 mode = pol->mode;
2821
2822 switch (mode) {
2823 case MPOL_DEFAULT:
2824 nodes_clear(nodes);
2825 break;
2826
2827 case MPOL_PREFERRED:
2828 nodes_clear(nodes);
2829 if (flags & MPOL_F_LOCAL)
2830 mode = MPOL_LOCAL;
2831 else
2832 node_set(pol->v.preferred_node, nodes);
2833 break;
2834
2835 case MPOL_BIND:
2836 /* Fall through */
2837 case MPOL_INTERLEAVE:
2838 nodes = pol->v.nodes;
2839 break;
2840
2841 default:
2842 return -EINVAL;
2843 }
2844
2845 l = strlen(policy_modes[mode]);
2846 if (buffer + maxlen < p + l + 1)
2847 return -ENOSPC;
2848
2849 strcpy(p, policy_modes[mode]);
2850 p += l;
2851
2852 if (flags & MPOL_MODE_FLAGS) {
2853 if (buffer + maxlen < p + 2)
2854 return -ENOSPC;
2855 *p++ = '=';
2856
2857 /*
2858 * Currently, the only defined flags are mutually exclusive
2859 */
2860 if (flags & MPOL_F_STATIC_NODES)
2861 p += snprintf(p, buffer + maxlen - p, "static");
2862 else if (flags & MPOL_F_RELATIVE_NODES)
2863 p += snprintf(p, buffer + maxlen - p, "relative");
2864 }
2865
2866 if (!nodes_empty(nodes)) {
2867 if (buffer + maxlen < p + 2)
2868 return -ENOSPC;
2869 *p++ = ':';
2870 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2871 }
2872 return p - buffer;
2873 }
This page took 0.091 seconds and 4 git commands to generate.