mempolicy: kill do_set_mempolicy()->down_write(&mm->mmap_sem)
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129 int node;
130
131 if (pol)
132 return pol;
133
134 node = numa_node_id();
135 if (node != NUMA_NO_NODE) {
136 pol = &preferred_node_policy[node];
137 /* preferred_node_policy is not initialised early in boot */
138 if (pol->mode)
139 return pol;
140 }
141
142 return &default_policy;
143 }
144
145 static const struct mempolicy_operations {
146 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
147 /*
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
152 * page.
153 * If we have a lock to protect task->mempolicy in read-side, we do
154 * rebind directly.
155 *
156 * step:
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
160 */
161 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
162 enum mpol_rebind_step step);
163 } mpol_ops[MPOL_MAX];
164
165 /* Check that the nodemask contains at least one populated zone */
166 static int is_valid_nodemask(const nodemask_t *nodemask)
167 {
168 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
169 }
170
171 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
172 {
173 return pol->flags & MPOL_MODE_FLAGS;
174 }
175
176 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
177 const nodemask_t *rel)
178 {
179 nodemask_t tmp;
180 nodes_fold(tmp, *orig, nodes_weight(*rel));
181 nodes_onto(*ret, tmp, *rel);
182 }
183
184 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
185 {
186 if (nodes_empty(*nodes))
187 return -EINVAL;
188 pol->v.nodes = *nodes;
189 return 0;
190 }
191
192 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
193 {
194 if (!nodes)
195 pol->flags |= MPOL_F_LOCAL; /* local allocation */
196 else if (nodes_empty(*nodes))
197 return -EINVAL; /* no allowed nodes */
198 else
199 pol->v.preferred_node = first_node(*nodes);
200 return 0;
201 }
202
203 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
204 {
205 if (!is_valid_nodemask(nodes))
206 return -EINVAL;
207 pol->v.nodes = *nodes;
208 return 0;
209 }
210
211 /*
212 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
213 * any, for the new policy. mpol_new() has already validated the nodes
214 * parameter with respect to the policy mode and flags. But, we need to
215 * handle an empty nodemask with MPOL_PREFERRED here.
216 *
217 * Must be called holding task's alloc_lock to protect task's mems_allowed
218 * and mempolicy. May also be called holding the mmap_semaphore for write.
219 */
220 static int mpol_set_nodemask(struct mempolicy *pol,
221 const nodemask_t *nodes, struct nodemask_scratch *nsc)
222 {
223 int ret;
224
225 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
226 if (pol == NULL)
227 return 0;
228 /* Check N_MEMORY */
229 nodes_and(nsc->mask1,
230 cpuset_current_mems_allowed, node_states[N_MEMORY]);
231
232 VM_BUG_ON(!nodes);
233 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
234 nodes = NULL; /* explicit local allocation */
235 else {
236 if (pol->flags & MPOL_F_RELATIVE_NODES)
237 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
238 else
239 nodes_and(nsc->mask2, *nodes, nsc->mask1);
240
241 if (mpol_store_user_nodemask(pol))
242 pol->w.user_nodemask = *nodes;
243 else
244 pol->w.cpuset_mems_allowed =
245 cpuset_current_mems_allowed;
246 }
247
248 if (nodes)
249 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
250 else
251 ret = mpol_ops[pol->mode].create(pol, NULL);
252 return ret;
253 }
254
255 /*
256 * This function just creates a new policy, does some check and simple
257 * initialization. You must invoke mpol_set_nodemask() to set nodes.
258 */
259 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
260 nodemask_t *nodes)
261 {
262 struct mempolicy *policy;
263
264 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
265 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
266
267 if (mode == MPOL_DEFAULT) {
268 if (nodes && !nodes_empty(*nodes))
269 return ERR_PTR(-EINVAL);
270 return NULL;
271 }
272 VM_BUG_ON(!nodes);
273
274 /*
275 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
276 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
277 * All other modes require a valid pointer to a non-empty nodemask.
278 */
279 if (mode == MPOL_PREFERRED) {
280 if (nodes_empty(*nodes)) {
281 if (((flags & MPOL_F_STATIC_NODES) ||
282 (flags & MPOL_F_RELATIVE_NODES)))
283 return ERR_PTR(-EINVAL);
284 }
285 } else if (mode == MPOL_LOCAL) {
286 if (!nodes_empty(*nodes))
287 return ERR_PTR(-EINVAL);
288 mode = MPOL_PREFERRED;
289 } else if (nodes_empty(*nodes))
290 return ERR_PTR(-EINVAL);
291 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
292 if (!policy)
293 return ERR_PTR(-ENOMEM);
294 atomic_set(&policy->refcnt, 1);
295 policy->mode = mode;
296 policy->flags = flags;
297
298 return policy;
299 }
300
301 /* Slow path of a mpol destructor. */
302 void __mpol_put(struct mempolicy *p)
303 {
304 if (!atomic_dec_and_test(&p->refcnt))
305 return;
306 kmem_cache_free(policy_cache, p);
307 }
308
309 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
310 enum mpol_rebind_step step)
311 {
312 }
313
314 /*
315 * step:
316 * MPOL_REBIND_ONCE - do rebind work at once
317 * MPOL_REBIND_STEP1 - set all the newly nodes
318 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
319 */
320 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
321 enum mpol_rebind_step step)
322 {
323 nodemask_t tmp;
324
325 if (pol->flags & MPOL_F_STATIC_NODES)
326 nodes_and(tmp, pol->w.user_nodemask, *nodes);
327 else if (pol->flags & MPOL_F_RELATIVE_NODES)
328 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
329 else {
330 /*
331 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
332 * result
333 */
334 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
335 nodes_remap(tmp, pol->v.nodes,
336 pol->w.cpuset_mems_allowed, *nodes);
337 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
338 } else if (step == MPOL_REBIND_STEP2) {
339 tmp = pol->w.cpuset_mems_allowed;
340 pol->w.cpuset_mems_allowed = *nodes;
341 } else
342 BUG();
343 }
344
345 if (nodes_empty(tmp))
346 tmp = *nodes;
347
348 if (step == MPOL_REBIND_STEP1)
349 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
350 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
351 pol->v.nodes = tmp;
352 else
353 BUG();
354
355 if (!node_isset(current->il_next, tmp)) {
356 current->il_next = next_node(current->il_next, tmp);
357 if (current->il_next >= MAX_NUMNODES)
358 current->il_next = first_node(tmp);
359 if (current->il_next >= MAX_NUMNODES)
360 current->il_next = numa_node_id();
361 }
362 }
363
364 static void mpol_rebind_preferred(struct mempolicy *pol,
365 const nodemask_t *nodes,
366 enum mpol_rebind_step step)
367 {
368 nodemask_t tmp;
369
370 if (pol->flags & MPOL_F_STATIC_NODES) {
371 int node = first_node(pol->w.user_nodemask);
372
373 if (node_isset(node, *nodes)) {
374 pol->v.preferred_node = node;
375 pol->flags &= ~MPOL_F_LOCAL;
376 } else
377 pol->flags |= MPOL_F_LOCAL;
378 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
379 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
380 pol->v.preferred_node = first_node(tmp);
381 } else if (!(pol->flags & MPOL_F_LOCAL)) {
382 pol->v.preferred_node = node_remap(pol->v.preferred_node,
383 pol->w.cpuset_mems_allowed,
384 *nodes);
385 pol->w.cpuset_mems_allowed = *nodes;
386 }
387 }
388
389 /*
390 * mpol_rebind_policy - Migrate a policy to a different set of nodes
391 *
392 * If read-side task has no lock to protect task->mempolicy, write-side
393 * task will rebind the task->mempolicy by two step. The first step is
394 * setting all the newly nodes, and the second step is cleaning all the
395 * disallowed nodes. In this way, we can avoid finding no node to alloc
396 * page.
397 * If we have a lock to protect task->mempolicy in read-side, we do
398 * rebind directly.
399 *
400 * step:
401 * MPOL_REBIND_ONCE - do rebind work at once
402 * MPOL_REBIND_STEP1 - set all the newly nodes
403 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
404 */
405 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
406 enum mpol_rebind_step step)
407 {
408 if (!pol)
409 return;
410 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
411 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
412 return;
413
414 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
415 return;
416
417 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
418 BUG();
419
420 if (step == MPOL_REBIND_STEP1)
421 pol->flags |= MPOL_F_REBINDING;
422 else if (step == MPOL_REBIND_STEP2)
423 pol->flags &= ~MPOL_F_REBINDING;
424 else if (step >= MPOL_REBIND_NSTEP)
425 BUG();
426
427 mpol_ops[pol->mode].rebind(pol, newmask, step);
428 }
429
430 /*
431 * Wrapper for mpol_rebind_policy() that just requires task
432 * pointer, and updates task mempolicy.
433 *
434 * Called with task's alloc_lock held.
435 */
436
437 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
438 enum mpol_rebind_step step)
439 {
440 mpol_rebind_policy(tsk->mempolicy, new, step);
441 }
442
443 /*
444 * Rebind each vma in mm to new nodemask.
445 *
446 * Call holding a reference to mm. Takes mm->mmap_sem during call.
447 */
448
449 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
450 {
451 struct vm_area_struct *vma;
452
453 down_write(&mm->mmap_sem);
454 for (vma = mm->mmap; vma; vma = vma->vm_next)
455 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
456 up_write(&mm->mmap_sem);
457 }
458
459 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
460 [MPOL_DEFAULT] = {
461 .rebind = mpol_rebind_default,
462 },
463 [MPOL_INTERLEAVE] = {
464 .create = mpol_new_interleave,
465 .rebind = mpol_rebind_nodemask,
466 },
467 [MPOL_PREFERRED] = {
468 .create = mpol_new_preferred,
469 .rebind = mpol_rebind_preferred,
470 },
471 [MPOL_BIND] = {
472 .create = mpol_new_bind,
473 .rebind = mpol_rebind_nodemask,
474 },
475 };
476
477 static void migrate_page_add(struct page *page, struct list_head *pagelist,
478 unsigned long flags);
479
480 /*
481 * Scan through pages checking if pages follow certain conditions,
482 * and move them to the pagelist if they do.
483 */
484 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
485 unsigned long addr, unsigned long end,
486 const nodemask_t *nodes, unsigned long flags,
487 void *private)
488 {
489 pte_t *orig_pte;
490 pte_t *pte;
491 spinlock_t *ptl;
492
493 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
494 do {
495 struct page *page;
496 int nid;
497
498 if (!pte_present(*pte))
499 continue;
500 page = vm_normal_page(vma, addr, *pte);
501 if (!page)
502 continue;
503 /*
504 * vm_normal_page() filters out zero pages, but there might
505 * still be PageReserved pages to skip, perhaps in a VDSO.
506 */
507 if (PageReserved(page))
508 continue;
509 nid = page_to_nid(page);
510 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
511 continue;
512
513 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
514 migrate_page_add(page, private, flags);
515 else
516 break;
517 } while (pte++, addr += PAGE_SIZE, addr != end);
518 pte_unmap_unlock(orig_pte, ptl);
519 return addr != end;
520 }
521
522 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
523 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
524 void *private)
525 {
526 #ifdef CONFIG_HUGETLB_PAGE
527 int nid;
528 struct page *page;
529 spinlock_t *ptl;
530 pte_t entry;
531
532 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
533 entry = huge_ptep_get((pte_t *)pmd);
534 if (!pte_present(entry))
535 goto unlock;
536 page = pte_page(entry);
537 nid = page_to_nid(page);
538 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
539 goto unlock;
540 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
541 if (flags & (MPOL_MF_MOVE_ALL) ||
542 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
543 isolate_huge_page(page, private);
544 unlock:
545 spin_unlock(ptl);
546 #else
547 BUG();
548 #endif
549 }
550
551 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
552 unsigned long addr, unsigned long end,
553 const nodemask_t *nodes, unsigned long flags,
554 void *private)
555 {
556 pmd_t *pmd;
557 unsigned long next;
558
559 pmd = pmd_offset(pud, addr);
560 do {
561 next = pmd_addr_end(addr, end);
562 if (!pmd_present(*pmd))
563 continue;
564 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
565 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
566 flags, private);
567 continue;
568 }
569 split_huge_page_pmd(vma, addr, pmd);
570 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
571 continue;
572 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
573 flags, private))
574 return -EIO;
575 } while (pmd++, addr = next, addr != end);
576 return 0;
577 }
578
579 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
580 unsigned long addr, unsigned long end,
581 const nodemask_t *nodes, unsigned long flags,
582 void *private)
583 {
584 pud_t *pud;
585 unsigned long next;
586
587 pud = pud_offset(pgd, addr);
588 do {
589 next = pud_addr_end(addr, end);
590 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
591 continue;
592 if (pud_none_or_clear_bad(pud))
593 continue;
594 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
595 flags, private))
596 return -EIO;
597 } while (pud++, addr = next, addr != end);
598 return 0;
599 }
600
601 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
602 unsigned long addr, unsigned long end,
603 const nodemask_t *nodes, unsigned long flags,
604 void *private)
605 {
606 pgd_t *pgd;
607 unsigned long next;
608
609 pgd = pgd_offset(vma->vm_mm, addr);
610 do {
611 next = pgd_addr_end(addr, end);
612 if (pgd_none_or_clear_bad(pgd))
613 continue;
614 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
615 flags, private))
616 return -EIO;
617 } while (pgd++, addr = next, addr != end);
618 return 0;
619 }
620
621 #ifdef CONFIG_NUMA_BALANCING
622 /*
623 * This is used to mark a range of virtual addresses to be inaccessible.
624 * These are later cleared by a NUMA hinting fault. Depending on these
625 * faults, pages may be migrated for better NUMA placement.
626 *
627 * This is assuming that NUMA faults are handled using PROT_NONE. If
628 * an architecture makes a different choice, it will need further
629 * changes to the core.
630 */
631 unsigned long change_prot_numa(struct vm_area_struct *vma,
632 unsigned long addr, unsigned long end)
633 {
634 int nr_updated;
635
636 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
637 if (nr_updated)
638 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
639
640 return nr_updated;
641 }
642 #else
643 static unsigned long change_prot_numa(struct vm_area_struct *vma,
644 unsigned long addr, unsigned long end)
645 {
646 return 0;
647 }
648 #endif /* CONFIG_NUMA_BALANCING */
649
650 /*
651 * Walk through page tables and collect pages to be migrated.
652 *
653 * If pages found in a given range are on a set of nodes (determined by
654 * @nodes and @flags,) it's isolated and queued to the pagelist which is
655 * passed via @private.)
656 */
657 static int
658 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
659 const nodemask_t *nodes, unsigned long flags, void *private)
660 {
661 int err = 0;
662 struct vm_area_struct *vma, *prev;
663
664 vma = find_vma(mm, start);
665 if (!vma)
666 return -EFAULT;
667 prev = NULL;
668 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
669 unsigned long endvma = vma->vm_end;
670
671 if (endvma > end)
672 endvma = end;
673 if (vma->vm_start > start)
674 start = vma->vm_start;
675
676 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
677 if (!vma->vm_next && vma->vm_end < end)
678 return -EFAULT;
679 if (prev && prev->vm_end < vma->vm_start)
680 return -EFAULT;
681 }
682
683 if (flags & MPOL_MF_LAZY) {
684 change_prot_numa(vma, start, endvma);
685 goto next;
686 }
687
688 if ((flags & MPOL_MF_STRICT) ||
689 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
690 vma_migratable(vma))) {
691
692 err = queue_pages_pgd_range(vma, start, endvma, nodes,
693 flags, private);
694 if (err)
695 break;
696 }
697 next:
698 prev = vma;
699 }
700 return err;
701 }
702
703 /*
704 * Apply policy to a single VMA
705 * This must be called with the mmap_sem held for writing.
706 */
707 static int vma_replace_policy(struct vm_area_struct *vma,
708 struct mempolicy *pol)
709 {
710 int err;
711 struct mempolicy *old;
712 struct mempolicy *new;
713
714 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
715 vma->vm_start, vma->vm_end, vma->vm_pgoff,
716 vma->vm_ops, vma->vm_file,
717 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
718
719 new = mpol_dup(pol);
720 if (IS_ERR(new))
721 return PTR_ERR(new);
722
723 if (vma->vm_ops && vma->vm_ops->set_policy) {
724 err = vma->vm_ops->set_policy(vma, new);
725 if (err)
726 goto err_out;
727 }
728
729 old = vma->vm_policy;
730 vma->vm_policy = new; /* protected by mmap_sem */
731 mpol_put(old);
732
733 return 0;
734 err_out:
735 mpol_put(new);
736 return err;
737 }
738
739 /* Step 2: apply policy to a range and do splits. */
740 static int mbind_range(struct mm_struct *mm, unsigned long start,
741 unsigned long end, struct mempolicy *new_pol)
742 {
743 struct vm_area_struct *next;
744 struct vm_area_struct *prev;
745 struct vm_area_struct *vma;
746 int err = 0;
747 pgoff_t pgoff;
748 unsigned long vmstart;
749 unsigned long vmend;
750
751 vma = find_vma(mm, start);
752 if (!vma || vma->vm_start > start)
753 return -EFAULT;
754
755 prev = vma->vm_prev;
756 if (start > vma->vm_start)
757 prev = vma;
758
759 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
760 next = vma->vm_next;
761 vmstart = max(start, vma->vm_start);
762 vmend = min(end, vma->vm_end);
763
764 if (mpol_equal(vma_policy(vma), new_pol))
765 continue;
766
767 pgoff = vma->vm_pgoff +
768 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
769 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
770 vma->anon_vma, vma->vm_file, pgoff,
771 new_pol);
772 if (prev) {
773 vma = prev;
774 next = vma->vm_next;
775 if (mpol_equal(vma_policy(vma), new_pol))
776 continue;
777 /* vma_merge() joined vma && vma->next, case 8 */
778 goto replace;
779 }
780 if (vma->vm_start != vmstart) {
781 err = split_vma(vma->vm_mm, vma, vmstart, 1);
782 if (err)
783 goto out;
784 }
785 if (vma->vm_end != vmend) {
786 err = split_vma(vma->vm_mm, vma, vmend, 0);
787 if (err)
788 goto out;
789 }
790 replace:
791 err = vma_replace_policy(vma, new_pol);
792 if (err)
793 goto out;
794 }
795
796 out:
797 return err;
798 }
799
800 /* Set the process memory policy */
801 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
802 nodemask_t *nodes)
803 {
804 struct mempolicy *new, *old;
805 NODEMASK_SCRATCH(scratch);
806 int ret;
807
808 if (!scratch)
809 return -ENOMEM;
810
811 new = mpol_new(mode, flags, nodes);
812 if (IS_ERR(new)) {
813 ret = PTR_ERR(new);
814 goto out;
815 }
816
817 task_lock(current);
818 ret = mpol_set_nodemask(new, nodes, scratch);
819 if (ret) {
820 task_unlock(current);
821 mpol_put(new);
822 goto out;
823 }
824 old = current->mempolicy;
825 current->mempolicy = new;
826 if (new && new->mode == MPOL_INTERLEAVE &&
827 nodes_weight(new->v.nodes))
828 current->il_next = first_node(new->v.nodes);
829 task_unlock(current);
830 mpol_put(old);
831 ret = 0;
832 out:
833 NODEMASK_SCRATCH_FREE(scratch);
834 return ret;
835 }
836
837 /*
838 * Return nodemask for policy for get_mempolicy() query
839 *
840 * Called with task's alloc_lock held
841 */
842 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
843 {
844 nodes_clear(*nodes);
845 if (p == &default_policy)
846 return;
847
848 switch (p->mode) {
849 case MPOL_BIND:
850 /* Fall through */
851 case MPOL_INTERLEAVE:
852 *nodes = p->v.nodes;
853 break;
854 case MPOL_PREFERRED:
855 if (!(p->flags & MPOL_F_LOCAL))
856 node_set(p->v.preferred_node, *nodes);
857 /* else return empty node mask for local allocation */
858 break;
859 default:
860 BUG();
861 }
862 }
863
864 static int lookup_node(struct mm_struct *mm, unsigned long addr)
865 {
866 struct page *p;
867 int err;
868
869 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
870 if (err >= 0) {
871 err = page_to_nid(p);
872 put_page(p);
873 }
874 return err;
875 }
876
877 /* Retrieve NUMA policy */
878 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
879 unsigned long addr, unsigned long flags)
880 {
881 int err;
882 struct mm_struct *mm = current->mm;
883 struct vm_area_struct *vma = NULL;
884 struct mempolicy *pol = current->mempolicy;
885
886 if (flags &
887 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
888 return -EINVAL;
889
890 if (flags & MPOL_F_MEMS_ALLOWED) {
891 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
892 return -EINVAL;
893 *policy = 0; /* just so it's initialized */
894 task_lock(current);
895 *nmask = cpuset_current_mems_allowed;
896 task_unlock(current);
897 return 0;
898 }
899
900 if (flags & MPOL_F_ADDR) {
901 /*
902 * Do NOT fall back to task policy if the
903 * vma/shared policy at addr is NULL. We
904 * want to return MPOL_DEFAULT in this case.
905 */
906 down_read(&mm->mmap_sem);
907 vma = find_vma_intersection(mm, addr, addr+1);
908 if (!vma) {
909 up_read(&mm->mmap_sem);
910 return -EFAULT;
911 }
912 if (vma->vm_ops && vma->vm_ops->get_policy)
913 pol = vma->vm_ops->get_policy(vma, addr);
914 else
915 pol = vma->vm_policy;
916 } else if (addr)
917 return -EINVAL;
918
919 if (!pol)
920 pol = &default_policy; /* indicates default behavior */
921
922 if (flags & MPOL_F_NODE) {
923 if (flags & MPOL_F_ADDR) {
924 err = lookup_node(mm, addr);
925 if (err < 0)
926 goto out;
927 *policy = err;
928 } else if (pol == current->mempolicy &&
929 pol->mode == MPOL_INTERLEAVE) {
930 *policy = current->il_next;
931 } else {
932 err = -EINVAL;
933 goto out;
934 }
935 } else {
936 *policy = pol == &default_policy ? MPOL_DEFAULT :
937 pol->mode;
938 /*
939 * Internal mempolicy flags must be masked off before exposing
940 * the policy to userspace.
941 */
942 *policy |= (pol->flags & MPOL_MODE_FLAGS);
943 }
944
945 if (vma) {
946 up_read(&current->mm->mmap_sem);
947 vma = NULL;
948 }
949
950 err = 0;
951 if (nmask) {
952 if (mpol_store_user_nodemask(pol)) {
953 *nmask = pol->w.user_nodemask;
954 } else {
955 task_lock(current);
956 get_policy_nodemask(pol, nmask);
957 task_unlock(current);
958 }
959 }
960
961 out:
962 mpol_cond_put(pol);
963 if (vma)
964 up_read(&current->mm->mmap_sem);
965 return err;
966 }
967
968 #ifdef CONFIG_MIGRATION
969 /*
970 * page migration
971 */
972 static void migrate_page_add(struct page *page, struct list_head *pagelist,
973 unsigned long flags)
974 {
975 /*
976 * Avoid migrating a page that is shared with others.
977 */
978 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
979 if (!isolate_lru_page(page)) {
980 list_add_tail(&page->lru, pagelist);
981 inc_zone_page_state(page, NR_ISOLATED_ANON +
982 page_is_file_cache(page));
983 }
984 }
985 }
986
987 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
988 {
989 if (PageHuge(page))
990 return alloc_huge_page_node(page_hstate(compound_head(page)),
991 node);
992 else
993 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
994 }
995
996 /*
997 * Migrate pages from one node to a target node.
998 * Returns error or the number of pages not migrated.
999 */
1000 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1001 int flags)
1002 {
1003 nodemask_t nmask;
1004 LIST_HEAD(pagelist);
1005 int err = 0;
1006
1007 nodes_clear(nmask);
1008 node_set(source, nmask);
1009
1010 /*
1011 * This does not "check" the range but isolates all pages that
1012 * need migration. Between passing in the full user address
1013 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1014 */
1015 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1016 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1017 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1018
1019 if (!list_empty(&pagelist)) {
1020 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1021 MIGRATE_SYNC, MR_SYSCALL);
1022 if (err)
1023 putback_movable_pages(&pagelist);
1024 }
1025
1026 return err;
1027 }
1028
1029 /*
1030 * Move pages between the two nodesets so as to preserve the physical
1031 * layout as much as possible.
1032 *
1033 * Returns the number of page that could not be moved.
1034 */
1035 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1036 const nodemask_t *to, int flags)
1037 {
1038 int busy = 0;
1039 int err;
1040 nodemask_t tmp;
1041
1042 err = migrate_prep();
1043 if (err)
1044 return err;
1045
1046 down_read(&mm->mmap_sem);
1047
1048 err = migrate_vmas(mm, from, to, flags);
1049 if (err)
1050 goto out;
1051
1052 /*
1053 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1054 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1055 * bit in 'tmp', and return that <source, dest> pair for migration.
1056 * The pair of nodemasks 'to' and 'from' define the map.
1057 *
1058 * If no pair of bits is found that way, fallback to picking some
1059 * pair of 'source' and 'dest' bits that are not the same. If the
1060 * 'source' and 'dest' bits are the same, this represents a node
1061 * that will be migrating to itself, so no pages need move.
1062 *
1063 * If no bits are left in 'tmp', or if all remaining bits left
1064 * in 'tmp' correspond to the same bit in 'to', return false
1065 * (nothing left to migrate).
1066 *
1067 * This lets us pick a pair of nodes to migrate between, such that
1068 * if possible the dest node is not already occupied by some other
1069 * source node, minimizing the risk of overloading the memory on a
1070 * node that would happen if we migrated incoming memory to a node
1071 * before migrating outgoing memory source that same node.
1072 *
1073 * A single scan of tmp is sufficient. As we go, we remember the
1074 * most recent <s, d> pair that moved (s != d). If we find a pair
1075 * that not only moved, but what's better, moved to an empty slot
1076 * (d is not set in tmp), then we break out then, with that pair.
1077 * Otherwise when we finish scanning from_tmp, we at least have the
1078 * most recent <s, d> pair that moved. If we get all the way through
1079 * the scan of tmp without finding any node that moved, much less
1080 * moved to an empty node, then there is nothing left worth migrating.
1081 */
1082
1083 tmp = *from;
1084 while (!nodes_empty(tmp)) {
1085 int s,d;
1086 int source = NUMA_NO_NODE;
1087 int dest = 0;
1088
1089 for_each_node_mask(s, tmp) {
1090
1091 /*
1092 * do_migrate_pages() tries to maintain the relative
1093 * node relationship of the pages established between
1094 * threads and memory areas.
1095 *
1096 * However if the number of source nodes is not equal to
1097 * the number of destination nodes we can not preserve
1098 * this node relative relationship. In that case, skip
1099 * copying memory from a node that is in the destination
1100 * mask.
1101 *
1102 * Example: [2,3,4] -> [3,4,5] moves everything.
1103 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1104 */
1105
1106 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1107 (node_isset(s, *to)))
1108 continue;
1109
1110 d = node_remap(s, *from, *to);
1111 if (s == d)
1112 continue;
1113
1114 source = s; /* Node moved. Memorize */
1115 dest = d;
1116
1117 /* dest not in remaining from nodes? */
1118 if (!node_isset(dest, tmp))
1119 break;
1120 }
1121 if (source == NUMA_NO_NODE)
1122 break;
1123
1124 node_clear(source, tmp);
1125 err = migrate_to_node(mm, source, dest, flags);
1126 if (err > 0)
1127 busy += err;
1128 if (err < 0)
1129 break;
1130 }
1131 out:
1132 up_read(&mm->mmap_sem);
1133 if (err < 0)
1134 return err;
1135 return busy;
1136
1137 }
1138
1139 /*
1140 * Allocate a new page for page migration based on vma policy.
1141 * Start by assuming the page is mapped by the same vma as contains @start.
1142 * Search forward from there, if not. N.B., this assumes that the
1143 * list of pages handed to migrate_pages()--which is how we get here--
1144 * is in virtual address order.
1145 */
1146 static struct page *new_page(struct page *page, unsigned long start, int **x)
1147 {
1148 struct vm_area_struct *vma;
1149 unsigned long uninitialized_var(address);
1150
1151 vma = find_vma(current->mm, start);
1152 while (vma) {
1153 address = page_address_in_vma(page, vma);
1154 if (address != -EFAULT)
1155 break;
1156 vma = vma->vm_next;
1157 }
1158
1159 if (PageHuge(page)) {
1160 BUG_ON(!vma);
1161 return alloc_huge_page_noerr(vma, address, 1);
1162 }
1163 /*
1164 * if !vma, alloc_page_vma() will use task or system default policy
1165 */
1166 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1167 }
1168 #else
1169
1170 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1171 unsigned long flags)
1172 {
1173 }
1174
1175 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1176 const nodemask_t *to, int flags)
1177 {
1178 return -ENOSYS;
1179 }
1180
1181 static struct page *new_page(struct page *page, unsigned long start, int **x)
1182 {
1183 return NULL;
1184 }
1185 #endif
1186
1187 static long do_mbind(unsigned long start, unsigned long len,
1188 unsigned short mode, unsigned short mode_flags,
1189 nodemask_t *nmask, unsigned long flags)
1190 {
1191 struct mm_struct *mm = current->mm;
1192 struct mempolicy *new;
1193 unsigned long end;
1194 int err;
1195 LIST_HEAD(pagelist);
1196
1197 if (flags & ~(unsigned long)MPOL_MF_VALID)
1198 return -EINVAL;
1199 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1200 return -EPERM;
1201
1202 if (start & ~PAGE_MASK)
1203 return -EINVAL;
1204
1205 if (mode == MPOL_DEFAULT)
1206 flags &= ~MPOL_MF_STRICT;
1207
1208 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1209 end = start + len;
1210
1211 if (end < start)
1212 return -EINVAL;
1213 if (end == start)
1214 return 0;
1215
1216 new = mpol_new(mode, mode_flags, nmask);
1217 if (IS_ERR(new))
1218 return PTR_ERR(new);
1219
1220 if (flags & MPOL_MF_LAZY)
1221 new->flags |= MPOL_F_MOF;
1222
1223 /*
1224 * If we are using the default policy then operation
1225 * on discontinuous address spaces is okay after all
1226 */
1227 if (!new)
1228 flags |= MPOL_MF_DISCONTIG_OK;
1229
1230 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1231 start, start + len, mode, mode_flags,
1232 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1233
1234 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1235
1236 err = migrate_prep();
1237 if (err)
1238 goto mpol_out;
1239 }
1240 {
1241 NODEMASK_SCRATCH(scratch);
1242 if (scratch) {
1243 down_write(&mm->mmap_sem);
1244 task_lock(current);
1245 err = mpol_set_nodemask(new, nmask, scratch);
1246 task_unlock(current);
1247 if (err)
1248 up_write(&mm->mmap_sem);
1249 } else
1250 err = -ENOMEM;
1251 NODEMASK_SCRATCH_FREE(scratch);
1252 }
1253 if (err)
1254 goto mpol_out;
1255
1256 err = queue_pages_range(mm, start, end, nmask,
1257 flags | MPOL_MF_INVERT, &pagelist);
1258 if (!err)
1259 err = mbind_range(mm, start, end, new);
1260
1261 if (!err) {
1262 int nr_failed = 0;
1263
1264 if (!list_empty(&pagelist)) {
1265 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1266 nr_failed = migrate_pages(&pagelist, new_page, NULL,
1267 start, MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1268 if (nr_failed)
1269 putback_movable_pages(&pagelist);
1270 }
1271
1272 if (nr_failed && (flags & MPOL_MF_STRICT))
1273 err = -EIO;
1274 } else
1275 putback_movable_pages(&pagelist);
1276
1277 up_write(&mm->mmap_sem);
1278 mpol_out:
1279 mpol_put(new);
1280 return err;
1281 }
1282
1283 /*
1284 * User space interface with variable sized bitmaps for nodelists.
1285 */
1286
1287 /* Copy a node mask from user space. */
1288 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1289 unsigned long maxnode)
1290 {
1291 unsigned long k;
1292 unsigned long nlongs;
1293 unsigned long endmask;
1294
1295 --maxnode;
1296 nodes_clear(*nodes);
1297 if (maxnode == 0 || !nmask)
1298 return 0;
1299 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1300 return -EINVAL;
1301
1302 nlongs = BITS_TO_LONGS(maxnode);
1303 if ((maxnode % BITS_PER_LONG) == 0)
1304 endmask = ~0UL;
1305 else
1306 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1307
1308 /* When the user specified more nodes than supported just check
1309 if the non supported part is all zero. */
1310 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1311 if (nlongs > PAGE_SIZE/sizeof(long))
1312 return -EINVAL;
1313 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1314 unsigned long t;
1315 if (get_user(t, nmask + k))
1316 return -EFAULT;
1317 if (k == nlongs - 1) {
1318 if (t & endmask)
1319 return -EINVAL;
1320 } else if (t)
1321 return -EINVAL;
1322 }
1323 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1324 endmask = ~0UL;
1325 }
1326
1327 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1328 return -EFAULT;
1329 nodes_addr(*nodes)[nlongs-1] &= endmask;
1330 return 0;
1331 }
1332
1333 /* Copy a kernel node mask to user space */
1334 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1335 nodemask_t *nodes)
1336 {
1337 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1338 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1339
1340 if (copy > nbytes) {
1341 if (copy > PAGE_SIZE)
1342 return -EINVAL;
1343 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1344 return -EFAULT;
1345 copy = nbytes;
1346 }
1347 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1348 }
1349
1350 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1351 unsigned long, mode, const unsigned long __user *, nmask,
1352 unsigned long, maxnode, unsigned, flags)
1353 {
1354 nodemask_t nodes;
1355 int err;
1356 unsigned short mode_flags;
1357
1358 mode_flags = mode & MPOL_MODE_FLAGS;
1359 mode &= ~MPOL_MODE_FLAGS;
1360 if (mode >= MPOL_MAX)
1361 return -EINVAL;
1362 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1363 (mode_flags & MPOL_F_RELATIVE_NODES))
1364 return -EINVAL;
1365 err = get_nodes(&nodes, nmask, maxnode);
1366 if (err)
1367 return err;
1368 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1369 }
1370
1371 /* Set the process memory policy */
1372 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1373 unsigned long, maxnode)
1374 {
1375 int err;
1376 nodemask_t nodes;
1377 unsigned short flags;
1378
1379 flags = mode & MPOL_MODE_FLAGS;
1380 mode &= ~MPOL_MODE_FLAGS;
1381 if ((unsigned int)mode >= MPOL_MAX)
1382 return -EINVAL;
1383 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1384 return -EINVAL;
1385 err = get_nodes(&nodes, nmask, maxnode);
1386 if (err)
1387 return err;
1388 return do_set_mempolicy(mode, flags, &nodes);
1389 }
1390
1391 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1392 const unsigned long __user *, old_nodes,
1393 const unsigned long __user *, new_nodes)
1394 {
1395 const struct cred *cred = current_cred(), *tcred;
1396 struct mm_struct *mm = NULL;
1397 struct task_struct *task;
1398 nodemask_t task_nodes;
1399 int err;
1400 nodemask_t *old;
1401 nodemask_t *new;
1402 NODEMASK_SCRATCH(scratch);
1403
1404 if (!scratch)
1405 return -ENOMEM;
1406
1407 old = &scratch->mask1;
1408 new = &scratch->mask2;
1409
1410 err = get_nodes(old, old_nodes, maxnode);
1411 if (err)
1412 goto out;
1413
1414 err = get_nodes(new, new_nodes, maxnode);
1415 if (err)
1416 goto out;
1417
1418 /* Find the mm_struct */
1419 rcu_read_lock();
1420 task = pid ? find_task_by_vpid(pid) : current;
1421 if (!task) {
1422 rcu_read_unlock();
1423 err = -ESRCH;
1424 goto out;
1425 }
1426 get_task_struct(task);
1427
1428 err = -EINVAL;
1429
1430 /*
1431 * Check if this process has the right to modify the specified
1432 * process. The right exists if the process has administrative
1433 * capabilities, superuser privileges or the same
1434 * userid as the target process.
1435 */
1436 tcred = __task_cred(task);
1437 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1438 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1439 !capable(CAP_SYS_NICE)) {
1440 rcu_read_unlock();
1441 err = -EPERM;
1442 goto out_put;
1443 }
1444 rcu_read_unlock();
1445
1446 task_nodes = cpuset_mems_allowed(task);
1447 /* Is the user allowed to access the target nodes? */
1448 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1449 err = -EPERM;
1450 goto out_put;
1451 }
1452
1453 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1454 err = -EINVAL;
1455 goto out_put;
1456 }
1457
1458 err = security_task_movememory(task);
1459 if (err)
1460 goto out_put;
1461
1462 mm = get_task_mm(task);
1463 put_task_struct(task);
1464
1465 if (!mm) {
1466 err = -EINVAL;
1467 goto out;
1468 }
1469
1470 err = do_migrate_pages(mm, old, new,
1471 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1472
1473 mmput(mm);
1474 out:
1475 NODEMASK_SCRATCH_FREE(scratch);
1476
1477 return err;
1478
1479 out_put:
1480 put_task_struct(task);
1481 goto out;
1482
1483 }
1484
1485
1486 /* Retrieve NUMA policy */
1487 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1488 unsigned long __user *, nmask, unsigned long, maxnode,
1489 unsigned long, addr, unsigned long, flags)
1490 {
1491 int err;
1492 int uninitialized_var(pval);
1493 nodemask_t nodes;
1494
1495 if (nmask != NULL && maxnode < MAX_NUMNODES)
1496 return -EINVAL;
1497
1498 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1499
1500 if (err)
1501 return err;
1502
1503 if (policy && put_user(pval, policy))
1504 return -EFAULT;
1505
1506 if (nmask)
1507 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1508
1509 return err;
1510 }
1511
1512 #ifdef CONFIG_COMPAT
1513
1514 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1515 compat_ulong_t __user *, nmask,
1516 compat_ulong_t, maxnode,
1517 compat_ulong_t, addr, compat_ulong_t, flags)
1518 {
1519 long err;
1520 unsigned long __user *nm = NULL;
1521 unsigned long nr_bits, alloc_size;
1522 DECLARE_BITMAP(bm, MAX_NUMNODES);
1523
1524 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1525 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1526
1527 if (nmask)
1528 nm = compat_alloc_user_space(alloc_size);
1529
1530 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1531
1532 if (!err && nmask) {
1533 unsigned long copy_size;
1534 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1535 err = copy_from_user(bm, nm, copy_size);
1536 /* ensure entire bitmap is zeroed */
1537 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1538 err |= compat_put_bitmap(nmask, bm, nr_bits);
1539 }
1540
1541 return err;
1542 }
1543
1544 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1545 compat_ulong_t, maxnode)
1546 {
1547 long err = 0;
1548 unsigned long __user *nm = NULL;
1549 unsigned long nr_bits, alloc_size;
1550 DECLARE_BITMAP(bm, MAX_NUMNODES);
1551
1552 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1553 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1554
1555 if (nmask) {
1556 err = compat_get_bitmap(bm, nmask, nr_bits);
1557 nm = compat_alloc_user_space(alloc_size);
1558 err |= copy_to_user(nm, bm, alloc_size);
1559 }
1560
1561 if (err)
1562 return -EFAULT;
1563
1564 return sys_set_mempolicy(mode, nm, nr_bits+1);
1565 }
1566
1567 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1568 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1569 compat_ulong_t, maxnode, compat_ulong_t, flags)
1570 {
1571 long err = 0;
1572 unsigned long __user *nm = NULL;
1573 unsigned long nr_bits, alloc_size;
1574 nodemask_t bm;
1575
1576 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1577 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1578
1579 if (nmask) {
1580 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1581 nm = compat_alloc_user_space(alloc_size);
1582 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1583 }
1584
1585 if (err)
1586 return -EFAULT;
1587
1588 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1589 }
1590
1591 #endif
1592
1593 struct mempolicy *__get_vma_policy(struct vm_area_struct *vma,
1594 unsigned long addr)
1595 {
1596 struct mempolicy *pol = NULL;
1597
1598 if (vma) {
1599 if (vma->vm_ops && vma->vm_ops->get_policy) {
1600 pol = vma->vm_ops->get_policy(vma, addr);
1601 } else if (vma->vm_policy) {
1602 pol = vma->vm_policy;
1603
1604 /*
1605 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1606 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1607 * count on these policies which will be dropped by
1608 * mpol_cond_put() later
1609 */
1610 if (mpol_needs_cond_ref(pol))
1611 mpol_get(pol);
1612 }
1613 }
1614
1615 return pol;
1616 }
1617
1618 /*
1619 * get_vma_policy(@task, @vma, @addr)
1620 * @task: task for fallback if vma policy == default
1621 * @vma: virtual memory area whose policy is sought
1622 * @addr: address in @vma for shared policy lookup
1623 *
1624 * Returns effective policy for a VMA at specified address.
1625 * Falls back to @task or system default policy, as necessary.
1626 * Current or other task's task mempolicy and non-shared vma policies must be
1627 * protected by task_lock(task) by the caller.
1628 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1629 * count--added by the get_policy() vm_op, as appropriate--to protect against
1630 * freeing by another task. It is the caller's responsibility to free the
1631 * extra reference for shared policies.
1632 */
1633 struct mempolicy *get_vma_policy(struct task_struct *task,
1634 struct vm_area_struct *vma, unsigned long addr)
1635 {
1636 struct mempolicy *pol = __get_vma_policy(vma, addr);
1637
1638 if (!pol)
1639 pol = get_task_policy(task);
1640
1641 return pol;
1642 }
1643
1644 bool vma_policy_mof(struct vm_area_struct *vma)
1645 {
1646 struct mempolicy *pol;
1647
1648 if (vma->vm_ops && vma->vm_ops->get_policy) {
1649 bool ret = false;
1650
1651 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1652 if (pol && (pol->flags & MPOL_F_MOF))
1653 ret = true;
1654 mpol_cond_put(pol);
1655
1656 return ret;
1657 }
1658
1659 pol = vma->vm_policy;
1660 if (!pol)
1661 pol = get_task_policy(current);
1662
1663 return pol->flags & MPOL_F_MOF;
1664 }
1665
1666 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1667 {
1668 enum zone_type dynamic_policy_zone = policy_zone;
1669
1670 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1671
1672 /*
1673 * if policy->v.nodes has movable memory only,
1674 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1675 *
1676 * policy->v.nodes is intersect with node_states[N_MEMORY].
1677 * so if the following test faile, it implies
1678 * policy->v.nodes has movable memory only.
1679 */
1680 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1681 dynamic_policy_zone = ZONE_MOVABLE;
1682
1683 return zone >= dynamic_policy_zone;
1684 }
1685
1686 /*
1687 * Return a nodemask representing a mempolicy for filtering nodes for
1688 * page allocation
1689 */
1690 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1691 {
1692 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1693 if (unlikely(policy->mode == MPOL_BIND) &&
1694 apply_policy_zone(policy, gfp_zone(gfp)) &&
1695 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1696 return &policy->v.nodes;
1697
1698 return NULL;
1699 }
1700
1701 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1702 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1703 int nd)
1704 {
1705 switch (policy->mode) {
1706 case MPOL_PREFERRED:
1707 if (!(policy->flags & MPOL_F_LOCAL))
1708 nd = policy->v.preferred_node;
1709 break;
1710 case MPOL_BIND:
1711 /*
1712 * Normally, MPOL_BIND allocations are node-local within the
1713 * allowed nodemask. However, if __GFP_THISNODE is set and the
1714 * current node isn't part of the mask, we use the zonelist for
1715 * the first node in the mask instead.
1716 */
1717 if (unlikely(gfp & __GFP_THISNODE) &&
1718 unlikely(!node_isset(nd, policy->v.nodes)))
1719 nd = first_node(policy->v.nodes);
1720 break;
1721 default:
1722 BUG();
1723 }
1724 return node_zonelist(nd, gfp);
1725 }
1726
1727 /* Do dynamic interleaving for a process */
1728 static unsigned interleave_nodes(struct mempolicy *policy)
1729 {
1730 unsigned nid, next;
1731 struct task_struct *me = current;
1732
1733 nid = me->il_next;
1734 next = next_node(nid, policy->v.nodes);
1735 if (next >= MAX_NUMNODES)
1736 next = first_node(policy->v.nodes);
1737 if (next < MAX_NUMNODES)
1738 me->il_next = next;
1739 return nid;
1740 }
1741
1742 /*
1743 * Depending on the memory policy provide a node from which to allocate the
1744 * next slab entry.
1745 */
1746 unsigned int mempolicy_slab_node(void)
1747 {
1748 struct mempolicy *policy;
1749 int node = numa_mem_id();
1750
1751 if (in_interrupt())
1752 return node;
1753
1754 policy = current->mempolicy;
1755 if (!policy || policy->flags & MPOL_F_LOCAL)
1756 return node;
1757
1758 switch (policy->mode) {
1759 case MPOL_PREFERRED:
1760 /*
1761 * handled MPOL_F_LOCAL above
1762 */
1763 return policy->v.preferred_node;
1764
1765 case MPOL_INTERLEAVE:
1766 return interleave_nodes(policy);
1767
1768 case MPOL_BIND: {
1769 /*
1770 * Follow bind policy behavior and start allocation at the
1771 * first node.
1772 */
1773 struct zonelist *zonelist;
1774 struct zone *zone;
1775 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1776 zonelist = &NODE_DATA(node)->node_zonelists[0];
1777 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1778 &policy->v.nodes,
1779 &zone);
1780 return zone ? zone->node : node;
1781 }
1782
1783 default:
1784 BUG();
1785 }
1786 }
1787
1788 /* Do static interleaving for a VMA with known offset. */
1789 static unsigned offset_il_node(struct mempolicy *pol,
1790 struct vm_area_struct *vma, unsigned long off)
1791 {
1792 unsigned nnodes = nodes_weight(pol->v.nodes);
1793 unsigned target;
1794 int c;
1795 int nid = NUMA_NO_NODE;
1796
1797 if (!nnodes)
1798 return numa_node_id();
1799 target = (unsigned int)off % nnodes;
1800 c = 0;
1801 do {
1802 nid = next_node(nid, pol->v.nodes);
1803 c++;
1804 } while (c <= target);
1805 return nid;
1806 }
1807
1808 /* Determine a node number for interleave */
1809 static inline unsigned interleave_nid(struct mempolicy *pol,
1810 struct vm_area_struct *vma, unsigned long addr, int shift)
1811 {
1812 if (vma) {
1813 unsigned long off;
1814
1815 /*
1816 * for small pages, there is no difference between
1817 * shift and PAGE_SHIFT, so the bit-shift is safe.
1818 * for huge pages, since vm_pgoff is in units of small
1819 * pages, we need to shift off the always 0 bits to get
1820 * a useful offset.
1821 */
1822 BUG_ON(shift < PAGE_SHIFT);
1823 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1824 off += (addr - vma->vm_start) >> shift;
1825 return offset_il_node(pol, vma, off);
1826 } else
1827 return interleave_nodes(pol);
1828 }
1829
1830 /*
1831 * Return the bit number of a random bit set in the nodemask.
1832 * (returns NUMA_NO_NODE if nodemask is empty)
1833 */
1834 int node_random(const nodemask_t *maskp)
1835 {
1836 int w, bit = NUMA_NO_NODE;
1837
1838 w = nodes_weight(*maskp);
1839 if (w)
1840 bit = bitmap_ord_to_pos(maskp->bits,
1841 get_random_int() % w, MAX_NUMNODES);
1842 return bit;
1843 }
1844
1845 #ifdef CONFIG_HUGETLBFS
1846 /*
1847 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1848 * @vma: virtual memory area whose policy is sought
1849 * @addr: address in @vma for shared policy lookup and interleave policy
1850 * @gfp_flags: for requested zone
1851 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1852 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1853 *
1854 * Returns a zonelist suitable for a huge page allocation and a pointer
1855 * to the struct mempolicy for conditional unref after allocation.
1856 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1857 * @nodemask for filtering the zonelist.
1858 *
1859 * Must be protected by read_mems_allowed_begin()
1860 */
1861 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1862 gfp_t gfp_flags, struct mempolicy **mpol,
1863 nodemask_t **nodemask)
1864 {
1865 struct zonelist *zl;
1866
1867 *mpol = get_vma_policy(current, vma, addr);
1868 *nodemask = NULL; /* assume !MPOL_BIND */
1869
1870 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1871 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1872 huge_page_shift(hstate_vma(vma))), gfp_flags);
1873 } else {
1874 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1875 if ((*mpol)->mode == MPOL_BIND)
1876 *nodemask = &(*mpol)->v.nodes;
1877 }
1878 return zl;
1879 }
1880
1881 /*
1882 * init_nodemask_of_mempolicy
1883 *
1884 * If the current task's mempolicy is "default" [NULL], return 'false'
1885 * to indicate default policy. Otherwise, extract the policy nodemask
1886 * for 'bind' or 'interleave' policy into the argument nodemask, or
1887 * initialize the argument nodemask to contain the single node for
1888 * 'preferred' or 'local' policy and return 'true' to indicate presence
1889 * of non-default mempolicy.
1890 *
1891 * We don't bother with reference counting the mempolicy [mpol_get/put]
1892 * because the current task is examining it's own mempolicy and a task's
1893 * mempolicy is only ever changed by the task itself.
1894 *
1895 * N.B., it is the caller's responsibility to free a returned nodemask.
1896 */
1897 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1898 {
1899 struct mempolicy *mempolicy;
1900 int nid;
1901
1902 if (!(mask && current->mempolicy))
1903 return false;
1904
1905 task_lock(current);
1906 mempolicy = current->mempolicy;
1907 switch (mempolicy->mode) {
1908 case MPOL_PREFERRED:
1909 if (mempolicy->flags & MPOL_F_LOCAL)
1910 nid = numa_node_id();
1911 else
1912 nid = mempolicy->v.preferred_node;
1913 init_nodemask_of_node(mask, nid);
1914 break;
1915
1916 case MPOL_BIND:
1917 /* Fall through */
1918 case MPOL_INTERLEAVE:
1919 *mask = mempolicy->v.nodes;
1920 break;
1921
1922 default:
1923 BUG();
1924 }
1925 task_unlock(current);
1926
1927 return true;
1928 }
1929 #endif
1930
1931 /*
1932 * mempolicy_nodemask_intersects
1933 *
1934 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1935 * policy. Otherwise, check for intersection between mask and the policy
1936 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1937 * policy, always return true since it may allocate elsewhere on fallback.
1938 *
1939 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1940 */
1941 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1942 const nodemask_t *mask)
1943 {
1944 struct mempolicy *mempolicy;
1945 bool ret = true;
1946
1947 if (!mask)
1948 return ret;
1949 task_lock(tsk);
1950 mempolicy = tsk->mempolicy;
1951 if (!mempolicy)
1952 goto out;
1953
1954 switch (mempolicy->mode) {
1955 case MPOL_PREFERRED:
1956 /*
1957 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1958 * allocate from, they may fallback to other nodes when oom.
1959 * Thus, it's possible for tsk to have allocated memory from
1960 * nodes in mask.
1961 */
1962 break;
1963 case MPOL_BIND:
1964 case MPOL_INTERLEAVE:
1965 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1966 break;
1967 default:
1968 BUG();
1969 }
1970 out:
1971 task_unlock(tsk);
1972 return ret;
1973 }
1974
1975 /* Allocate a page in interleaved policy.
1976 Own path because it needs to do special accounting. */
1977 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1978 unsigned nid)
1979 {
1980 struct zonelist *zl;
1981 struct page *page;
1982
1983 zl = node_zonelist(nid, gfp);
1984 page = __alloc_pages(gfp, order, zl);
1985 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1986 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1987 return page;
1988 }
1989
1990 /**
1991 * alloc_pages_vma - Allocate a page for a VMA.
1992 *
1993 * @gfp:
1994 * %GFP_USER user allocation.
1995 * %GFP_KERNEL kernel allocations,
1996 * %GFP_HIGHMEM highmem/user allocations,
1997 * %GFP_FS allocation should not call back into a file system.
1998 * %GFP_ATOMIC don't sleep.
1999 *
2000 * @order:Order of the GFP allocation.
2001 * @vma: Pointer to VMA or NULL if not available.
2002 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2003 *
2004 * This function allocates a page from the kernel page pool and applies
2005 * a NUMA policy associated with the VMA or the current process.
2006 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2007 * mm_struct of the VMA to prevent it from going away. Should be used for
2008 * all allocations for pages that will be mapped into
2009 * user space. Returns NULL when no page can be allocated.
2010 *
2011 * Should be called with the mm_sem of the vma hold.
2012 */
2013 struct page *
2014 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2015 unsigned long addr, int node)
2016 {
2017 struct mempolicy *pol;
2018 struct page *page;
2019 unsigned int cpuset_mems_cookie;
2020
2021 retry_cpuset:
2022 pol = get_vma_policy(current, vma, addr);
2023 cpuset_mems_cookie = read_mems_allowed_begin();
2024
2025 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2026 unsigned nid;
2027
2028 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2029 mpol_cond_put(pol);
2030 page = alloc_page_interleave(gfp, order, nid);
2031 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2032 goto retry_cpuset;
2033
2034 return page;
2035 }
2036 page = __alloc_pages_nodemask(gfp, order,
2037 policy_zonelist(gfp, pol, node),
2038 policy_nodemask(gfp, pol));
2039 mpol_cond_put(pol);
2040 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2041 goto retry_cpuset;
2042 return page;
2043 }
2044
2045 /**
2046 * alloc_pages_current - Allocate pages.
2047 *
2048 * @gfp:
2049 * %GFP_USER user allocation,
2050 * %GFP_KERNEL kernel allocation,
2051 * %GFP_HIGHMEM highmem allocation,
2052 * %GFP_FS don't call back into a file system.
2053 * %GFP_ATOMIC don't sleep.
2054 * @order: Power of two of allocation size in pages. 0 is a single page.
2055 *
2056 * Allocate a page from the kernel page pool. When not in
2057 * interrupt context and apply the current process NUMA policy.
2058 * Returns NULL when no page can be allocated.
2059 *
2060 * Don't call cpuset_update_task_memory_state() unless
2061 * 1) it's ok to take cpuset_sem (can WAIT), and
2062 * 2) allocating for current task (not interrupt).
2063 */
2064 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2065 {
2066 struct mempolicy *pol = &default_policy;
2067 struct page *page;
2068 unsigned int cpuset_mems_cookie;
2069
2070 if (!in_interrupt() && !(gfp & __GFP_THISNODE))
2071 pol = get_task_policy(current);
2072
2073 retry_cpuset:
2074 cpuset_mems_cookie = read_mems_allowed_begin();
2075
2076 /*
2077 * No reference counting needed for current->mempolicy
2078 * nor system default_policy
2079 */
2080 if (pol->mode == MPOL_INTERLEAVE)
2081 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2082 else
2083 page = __alloc_pages_nodemask(gfp, order,
2084 policy_zonelist(gfp, pol, numa_node_id()),
2085 policy_nodemask(gfp, pol));
2086
2087 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2088 goto retry_cpuset;
2089
2090 return page;
2091 }
2092 EXPORT_SYMBOL(alloc_pages_current);
2093
2094 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2095 {
2096 struct mempolicy *pol = mpol_dup(vma_policy(src));
2097
2098 if (IS_ERR(pol))
2099 return PTR_ERR(pol);
2100 dst->vm_policy = pol;
2101 return 0;
2102 }
2103
2104 /*
2105 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2106 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2107 * with the mems_allowed returned by cpuset_mems_allowed(). This
2108 * keeps mempolicies cpuset relative after its cpuset moves. See
2109 * further kernel/cpuset.c update_nodemask().
2110 *
2111 * current's mempolicy may be rebinded by the other task(the task that changes
2112 * cpuset's mems), so we needn't do rebind work for current task.
2113 */
2114
2115 /* Slow path of a mempolicy duplicate */
2116 struct mempolicy *__mpol_dup(struct mempolicy *old)
2117 {
2118 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2119
2120 if (!new)
2121 return ERR_PTR(-ENOMEM);
2122
2123 /* task's mempolicy is protected by alloc_lock */
2124 if (old == current->mempolicy) {
2125 task_lock(current);
2126 *new = *old;
2127 task_unlock(current);
2128 } else
2129 *new = *old;
2130
2131 if (current_cpuset_is_being_rebound()) {
2132 nodemask_t mems = cpuset_mems_allowed(current);
2133 if (new->flags & MPOL_F_REBINDING)
2134 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2135 else
2136 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2137 }
2138 atomic_set(&new->refcnt, 1);
2139 return new;
2140 }
2141
2142 /* Slow path of a mempolicy comparison */
2143 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2144 {
2145 if (!a || !b)
2146 return false;
2147 if (a->mode != b->mode)
2148 return false;
2149 if (a->flags != b->flags)
2150 return false;
2151 if (mpol_store_user_nodemask(a))
2152 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2153 return false;
2154
2155 switch (a->mode) {
2156 case MPOL_BIND:
2157 /* Fall through */
2158 case MPOL_INTERLEAVE:
2159 return !!nodes_equal(a->v.nodes, b->v.nodes);
2160 case MPOL_PREFERRED:
2161 return a->v.preferred_node == b->v.preferred_node;
2162 default:
2163 BUG();
2164 return false;
2165 }
2166 }
2167
2168 /*
2169 * Shared memory backing store policy support.
2170 *
2171 * Remember policies even when nobody has shared memory mapped.
2172 * The policies are kept in Red-Black tree linked from the inode.
2173 * They are protected by the sp->lock spinlock, which should be held
2174 * for any accesses to the tree.
2175 */
2176
2177 /* lookup first element intersecting start-end */
2178 /* Caller holds sp->lock */
2179 static struct sp_node *
2180 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2181 {
2182 struct rb_node *n = sp->root.rb_node;
2183
2184 while (n) {
2185 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2186
2187 if (start >= p->end)
2188 n = n->rb_right;
2189 else if (end <= p->start)
2190 n = n->rb_left;
2191 else
2192 break;
2193 }
2194 if (!n)
2195 return NULL;
2196 for (;;) {
2197 struct sp_node *w = NULL;
2198 struct rb_node *prev = rb_prev(n);
2199 if (!prev)
2200 break;
2201 w = rb_entry(prev, struct sp_node, nd);
2202 if (w->end <= start)
2203 break;
2204 n = prev;
2205 }
2206 return rb_entry(n, struct sp_node, nd);
2207 }
2208
2209 /* Insert a new shared policy into the list. */
2210 /* Caller holds sp->lock */
2211 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2212 {
2213 struct rb_node **p = &sp->root.rb_node;
2214 struct rb_node *parent = NULL;
2215 struct sp_node *nd;
2216
2217 while (*p) {
2218 parent = *p;
2219 nd = rb_entry(parent, struct sp_node, nd);
2220 if (new->start < nd->start)
2221 p = &(*p)->rb_left;
2222 else if (new->end > nd->end)
2223 p = &(*p)->rb_right;
2224 else
2225 BUG();
2226 }
2227 rb_link_node(&new->nd, parent, p);
2228 rb_insert_color(&new->nd, &sp->root);
2229 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2230 new->policy ? new->policy->mode : 0);
2231 }
2232
2233 /* Find shared policy intersecting idx */
2234 struct mempolicy *
2235 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2236 {
2237 struct mempolicy *pol = NULL;
2238 struct sp_node *sn;
2239
2240 if (!sp->root.rb_node)
2241 return NULL;
2242 spin_lock(&sp->lock);
2243 sn = sp_lookup(sp, idx, idx+1);
2244 if (sn) {
2245 mpol_get(sn->policy);
2246 pol = sn->policy;
2247 }
2248 spin_unlock(&sp->lock);
2249 return pol;
2250 }
2251
2252 static void sp_free(struct sp_node *n)
2253 {
2254 mpol_put(n->policy);
2255 kmem_cache_free(sn_cache, n);
2256 }
2257
2258 /**
2259 * mpol_misplaced - check whether current page node is valid in policy
2260 *
2261 * @page: page to be checked
2262 * @vma: vm area where page mapped
2263 * @addr: virtual address where page mapped
2264 *
2265 * Lookup current policy node id for vma,addr and "compare to" page's
2266 * node id.
2267 *
2268 * Returns:
2269 * -1 - not misplaced, page is in the right node
2270 * node - node id where the page should be
2271 *
2272 * Policy determination "mimics" alloc_page_vma().
2273 * Called from fault path where we know the vma and faulting address.
2274 */
2275 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2276 {
2277 struct mempolicy *pol;
2278 struct zone *zone;
2279 int curnid = page_to_nid(page);
2280 unsigned long pgoff;
2281 int thiscpu = raw_smp_processor_id();
2282 int thisnid = cpu_to_node(thiscpu);
2283 int polnid = -1;
2284 int ret = -1;
2285
2286 BUG_ON(!vma);
2287
2288 pol = get_vma_policy(current, vma, addr);
2289 if (!(pol->flags & MPOL_F_MOF))
2290 goto out;
2291
2292 switch (pol->mode) {
2293 case MPOL_INTERLEAVE:
2294 BUG_ON(addr >= vma->vm_end);
2295 BUG_ON(addr < vma->vm_start);
2296
2297 pgoff = vma->vm_pgoff;
2298 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2299 polnid = offset_il_node(pol, vma, pgoff);
2300 break;
2301
2302 case MPOL_PREFERRED:
2303 if (pol->flags & MPOL_F_LOCAL)
2304 polnid = numa_node_id();
2305 else
2306 polnid = pol->v.preferred_node;
2307 break;
2308
2309 case MPOL_BIND:
2310 /*
2311 * allows binding to multiple nodes.
2312 * use current page if in policy nodemask,
2313 * else select nearest allowed node, if any.
2314 * If no allowed nodes, use current [!misplaced].
2315 */
2316 if (node_isset(curnid, pol->v.nodes))
2317 goto out;
2318 (void)first_zones_zonelist(
2319 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2320 gfp_zone(GFP_HIGHUSER),
2321 &pol->v.nodes, &zone);
2322 polnid = zone->node;
2323 break;
2324
2325 default:
2326 BUG();
2327 }
2328
2329 /* Migrate the page towards the node whose CPU is referencing it */
2330 if (pol->flags & MPOL_F_MORON) {
2331 polnid = thisnid;
2332
2333 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2334 goto out;
2335 }
2336
2337 if (curnid != polnid)
2338 ret = polnid;
2339 out:
2340 mpol_cond_put(pol);
2341
2342 return ret;
2343 }
2344
2345 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2346 {
2347 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2348 rb_erase(&n->nd, &sp->root);
2349 sp_free(n);
2350 }
2351
2352 static void sp_node_init(struct sp_node *node, unsigned long start,
2353 unsigned long end, struct mempolicy *pol)
2354 {
2355 node->start = start;
2356 node->end = end;
2357 node->policy = pol;
2358 }
2359
2360 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2361 struct mempolicy *pol)
2362 {
2363 struct sp_node *n;
2364 struct mempolicy *newpol;
2365
2366 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2367 if (!n)
2368 return NULL;
2369
2370 newpol = mpol_dup(pol);
2371 if (IS_ERR(newpol)) {
2372 kmem_cache_free(sn_cache, n);
2373 return NULL;
2374 }
2375 newpol->flags |= MPOL_F_SHARED;
2376 sp_node_init(n, start, end, newpol);
2377
2378 return n;
2379 }
2380
2381 /* Replace a policy range. */
2382 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2383 unsigned long end, struct sp_node *new)
2384 {
2385 struct sp_node *n;
2386 struct sp_node *n_new = NULL;
2387 struct mempolicy *mpol_new = NULL;
2388 int ret = 0;
2389
2390 restart:
2391 spin_lock(&sp->lock);
2392 n = sp_lookup(sp, start, end);
2393 /* Take care of old policies in the same range. */
2394 while (n && n->start < end) {
2395 struct rb_node *next = rb_next(&n->nd);
2396 if (n->start >= start) {
2397 if (n->end <= end)
2398 sp_delete(sp, n);
2399 else
2400 n->start = end;
2401 } else {
2402 /* Old policy spanning whole new range. */
2403 if (n->end > end) {
2404 if (!n_new)
2405 goto alloc_new;
2406
2407 *mpol_new = *n->policy;
2408 atomic_set(&mpol_new->refcnt, 1);
2409 sp_node_init(n_new, end, n->end, mpol_new);
2410 n->end = start;
2411 sp_insert(sp, n_new);
2412 n_new = NULL;
2413 mpol_new = NULL;
2414 break;
2415 } else
2416 n->end = start;
2417 }
2418 if (!next)
2419 break;
2420 n = rb_entry(next, struct sp_node, nd);
2421 }
2422 if (new)
2423 sp_insert(sp, new);
2424 spin_unlock(&sp->lock);
2425 ret = 0;
2426
2427 err_out:
2428 if (mpol_new)
2429 mpol_put(mpol_new);
2430 if (n_new)
2431 kmem_cache_free(sn_cache, n_new);
2432
2433 return ret;
2434
2435 alloc_new:
2436 spin_unlock(&sp->lock);
2437 ret = -ENOMEM;
2438 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2439 if (!n_new)
2440 goto err_out;
2441 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2442 if (!mpol_new)
2443 goto err_out;
2444 goto restart;
2445 }
2446
2447 /**
2448 * mpol_shared_policy_init - initialize shared policy for inode
2449 * @sp: pointer to inode shared policy
2450 * @mpol: struct mempolicy to install
2451 *
2452 * Install non-NULL @mpol in inode's shared policy rb-tree.
2453 * On entry, the current task has a reference on a non-NULL @mpol.
2454 * This must be released on exit.
2455 * This is called at get_inode() calls and we can use GFP_KERNEL.
2456 */
2457 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2458 {
2459 int ret;
2460
2461 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2462 spin_lock_init(&sp->lock);
2463
2464 if (mpol) {
2465 struct vm_area_struct pvma;
2466 struct mempolicy *new;
2467 NODEMASK_SCRATCH(scratch);
2468
2469 if (!scratch)
2470 goto put_mpol;
2471 /* contextualize the tmpfs mount point mempolicy */
2472 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2473 if (IS_ERR(new))
2474 goto free_scratch; /* no valid nodemask intersection */
2475
2476 task_lock(current);
2477 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2478 task_unlock(current);
2479 if (ret)
2480 goto put_new;
2481
2482 /* Create pseudo-vma that contains just the policy */
2483 memset(&pvma, 0, sizeof(struct vm_area_struct));
2484 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2485 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2486
2487 put_new:
2488 mpol_put(new); /* drop initial ref */
2489 free_scratch:
2490 NODEMASK_SCRATCH_FREE(scratch);
2491 put_mpol:
2492 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2493 }
2494 }
2495
2496 int mpol_set_shared_policy(struct shared_policy *info,
2497 struct vm_area_struct *vma, struct mempolicy *npol)
2498 {
2499 int err;
2500 struct sp_node *new = NULL;
2501 unsigned long sz = vma_pages(vma);
2502
2503 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2504 vma->vm_pgoff,
2505 sz, npol ? npol->mode : -1,
2506 npol ? npol->flags : -1,
2507 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2508
2509 if (npol) {
2510 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2511 if (!new)
2512 return -ENOMEM;
2513 }
2514 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2515 if (err && new)
2516 sp_free(new);
2517 return err;
2518 }
2519
2520 /* Free a backing policy store on inode delete. */
2521 void mpol_free_shared_policy(struct shared_policy *p)
2522 {
2523 struct sp_node *n;
2524 struct rb_node *next;
2525
2526 if (!p->root.rb_node)
2527 return;
2528 spin_lock(&p->lock);
2529 next = rb_first(&p->root);
2530 while (next) {
2531 n = rb_entry(next, struct sp_node, nd);
2532 next = rb_next(&n->nd);
2533 sp_delete(p, n);
2534 }
2535 spin_unlock(&p->lock);
2536 }
2537
2538 #ifdef CONFIG_NUMA_BALANCING
2539 static int __initdata numabalancing_override;
2540
2541 static void __init check_numabalancing_enable(void)
2542 {
2543 bool numabalancing_default = false;
2544
2545 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2546 numabalancing_default = true;
2547
2548 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2549 if (numabalancing_override)
2550 set_numabalancing_state(numabalancing_override == 1);
2551
2552 if (nr_node_ids > 1 && !numabalancing_override) {
2553 pr_info("%s automatic NUMA balancing. "
2554 "Configure with numa_balancing= or the "
2555 "kernel.numa_balancing sysctl",
2556 numabalancing_default ? "Enabling" : "Disabling");
2557 set_numabalancing_state(numabalancing_default);
2558 }
2559 }
2560
2561 static int __init setup_numabalancing(char *str)
2562 {
2563 int ret = 0;
2564 if (!str)
2565 goto out;
2566
2567 if (!strcmp(str, "enable")) {
2568 numabalancing_override = 1;
2569 ret = 1;
2570 } else if (!strcmp(str, "disable")) {
2571 numabalancing_override = -1;
2572 ret = 1;
2573 }
2574 out:
2575 if (!ret)
2576 pr_warn("Unable to parse numa_balancing=\n");
2577
2578 return ret;
2579 }
2580 __setup("numa_balancing=", setup_numabalancing);
2581 #else
2582 static inline void __init check_numabalancing_enable(void)
2583 {
2584 }
2585 #endif /* CONFIG_NUMA_BALANCING */
2586
2587 /* assumes fs == KERNEL_DS */
2588 void __init numa_policy_init(void)
2589 {
2590 nodemask_t interleave_nodes;
2591 unsigned long largest = 0;
2592 int nid, prefer = 0;
2593
2594 policy_cache = kmem_cache_create("numa_policy",
2595 sizeof(struct mempolicy),
2596 0, SLAB_PANIC, NULL);
2597
2598 sn_cache = kmem_cache_create("shared_policy_node",
2599 sizeof(struct sp_node),
2600 0, SLAB_PANIC, NULL);
2601
2602 for_each_node(nid) {
2603 preferred_node_policy[nid] = (struct mempolicy) {
2604 .refcnt = ATOMIC_INIT(1),
2605 .mode = MPOL_PREFERRED,
2606 .flags = MPOL_F_MOF | MPOL_F_MORON,
2607 .v = { .preferred_node = nid, },
2608 };
2609 }
2610
2611 /*
2612 * Set interleaving policy for system init. Interleaving is only
2613 * enabled across suitably sized nodes (default is >= 16MB), or
2614 * fall back to the largest node if they're all smaller.
2615 */
2616 nodes_clear(interleave_nodes);
2617 for_each_node_state(nid, N_MEMORY) {
2618 unsigned long total_pages = node_present_pages(nid);
2619
2620 /* Preserve the largest node */
2621 if (largest < total_pages) {
2622 largest = total_pages;
2623 prefer = nid;
2624 }
2625
2626 /* Interleave this node? */
2627 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2628 node_set(nid, interleave_nodes);
2629 }
2630
2631 /* All too small, use the largest */
2632 if (unlikely(nodes_empty(interleave_nodes)))
2633 node_set(prefer, interleave_nodes);
2634
2635 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2636 pr_err("%s: interleaving failed\n", __func__);
2637
2638 check_numabalancing_enable();
2639 }
2640
2641 /* Reset policy of current process to default */
2642 void numa_default_policy(void)
2643 {
2644 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2645 }
2646
2647 /*
2648 * Parse and format mempolicy from/to strings
2649 */
2650
2651 /*
2652 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2653 */
2654 static const char * const policy_modes[] =
2655 {
2656 [MPOL_DEFAULT] = "default",
2657 [MPOL_PREFERRED] = "prefer",
2658 [MPOL_BIND] = "bind",
2659 [MPOL_INTERLEAVE] = "interleave",
2660 [MPOL_LOCAL] = "local",
2661 };
2662
2663
2664 #ifdef CONFIG_TMPFS
2665 /**
2666 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2667 * @str: string containing mempolicy to parse
2668 * @mpol: pointer to struct mempolicy pointer, returned on success.
2669 *
2670 * Format of input:
2671 * <mode>[=<flags>][:<nodelist>]
2672 *
2673 * On success, returns 0, else 1
2674 */
2675 int mpol_parse_str(char *str, struct mempolicy **mpol)
2676 {
2677 struct mempolicy *new = NULL;
2678 unsigned short mode;
2679 unsigned short mode_flags;
2680 nodemask_t nodes;
2681 char *nodelist = strchr(str, ':');
2682 char *flags = strchr(str, '=');
2683 int err = 1;
2684
2685 if (nodelist) {
2686 /* NUL-terminate mode or flags string */
2687 *nodelist++ = '\0';
2688 if (nodelist_parse(nodelist, nodes))
2689 goto out;
2690 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2691 goto out;
2692 } else
2693 nodes_clear(nodes);
2694
2695 if (flags)
2696 *flags++ = '\0'; /* terminate mode string */
2697
2698 for (mode = 0; mode < MPOL_MAX; mode++) {
2699 if (!strcmp(str, policy_modes[mode])) {
2700 break;
2701 }
2702 }
2703 if (mode >= MPOL_MAX)
2704 goto out;
2705
2706 switch (mode) {
2707 case MPOL_PREFERRED:
2708 /*
2709 * Insist on a nodelist of one node only
2710 */
2711 if (nodelist) {
2712 char *rest = nodelist;
2713 while (isdigit(*rest))
2714 rest++;
2715 if (*rest)
2716 goto out;
2717 }
2718 break;
2719 case MPOL_INTERLEAVE:
2720 /*
2721 * Default to online nodes with memory if no nodelist
2722 */
2723 if (!nodelist)
2724 nodes = node_states[N_MEMORY];
2725 break;
2726 case MPOL_LOCAL:
2727 /*
2728 * Don't allow a nodelist; mpol_new() checks flags
2729 */
2730 if (nodelist)
2731 goto out;
2732 mode = MPOL_PREFERRED;
2733 break;
2734 case MPOL_DEFAULT:
2735 /*
2736 * Insist on a empty nodelist
2737 */
2738 if (!nodelist)
2739 err = 0;
2740 goto out;
2741 case MPOL_BIND:
2742 /*
2743 * Insist on a nodelist
2744 */
2745 if (!nodelist)
2746 goto out;
2747 }
2748
2749 mode_flags = 0;
2750 if (flags) {
2751 /*
2752 * Currently, we only support two mutually exclusive
2753 * mode flags.
2754 */
2755 if (!strcmp(flags, "static"))
2756 mode_flags |= MPOL_F_STATIC_NODES;
2757 else if (!strcmp(flags, "relative"))
2758 mode_flags |= MPOL_F_RELATIVE_NODES;
2759 else
2760 goto out;
2761 }
2762
2763 new = mpol_new(mode, mode_flags, &nodes);
2764 if (IS_ERR(new))
2765 goto out;
2766
2767 /*
2768 * Save nodes for mpol_to_str() to show the tmpfs mount options
2769 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2770 */
2771 if (mode != MPOL_PREFERRED)
2772 new->v.nodes = nodes;
2773 else if (nodelist)
2774 new->v.preferred_node = first_node(nodes);
2775 else
2776 new->flags |= MPOL_F_LOCAL;
2777
2778 /*
2779 * Save nodes for contextualization: this will be used to "clone"
2780 * the mempolicy in a specific context [cpuset] at a later time.
2781 */
2782 new->w.user_nodemask = nodes;
2783
2784 err = 0;
2785
2786 out:
2787 /* Restore string for error message */
2788 if (nodelist)
2789 *--nodelist = ':';
2790 if (flags)
2791 *--flags = '=';
2792 if (!err)
2793 *mpol = new;
2794 return err;
2795 }
2796 #endif /* CONFIG_TMPFS */
2797
2798 /**
2799 * mpol_to_str - format a mempolicy structure for printing
2800 * @buffer: to contain formatted mempolicy string
2801 * @maxlen: length of @buffer
2802 * @pol: pointer to mempolicy to be formatted
2803 *
2804 * Convert @pol into a string. If @buffer is too short, truncate the string.
2805 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2806 * longest flag, "relative", and to display at least a few node ids.
2807 */
2808 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2809 {
2810 char *p = buffer;
2811 nodemask_t nodes = NODE_MASK_NONE;
2812 unsigned short mode = MPOL_DEFAULT;
2813 unsigned short flags = 0;
2814
2815 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2816 mode = pol->mode;
2817 flags = pol->flags;
2818 }
2819
2820 switch (mode) {
2821 case MPOL_DEFAULT:
2822 break;
2823 case MPOL_PREFERRED:
2824 if (flags & MPOL_F_LOCAL)
2825 mode = MPOL_LOCAL;
2826 else
2827 node_set(pol->v.preferred_node, nodes);
2828 break;
2829 case MPOL_BIND:
2830 case MPOL_INTERLEAVE:
2831 nodes = pol->v.nodes;
2832 break;
2833 default:
2834 WARN_ON_ONCE(1);
2835 snprintf(p, maxlen, "unknown");
2836 return;
2837 }
2838
2839 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2840
2841 if (flags & MPOL_MODE_FLAGS) {
2842 p += snprintf(p, buffer + maxlen - p, "=");
2843
2844 /*
2845 * Currently, the only defined flags are mutually exclusive
2846 */
2847 if (flags & MPOL_F_STATIC_NODES)
2848 p += snprintf(p, buffer + maxlen - p, "static");
2849 else if (flags & MPOL_F_RELATIVE_NODES)
2850 p += snprintf(p, buffer + maxlen - p, "relative");
2851 }
2852
2853 if (!nodes_empty(nodes)) {
2854 p += snprintf(p, buffer + maxlen - p, ":");
2855 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2856 }
2857 }
This page took 0.161208 seconds and 6 git commands to generate.