mempolicy: fix refcount leak in mpol_set_shared_policy()
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97
98 #include "internal.h"
99
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106
107 /* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109 enum zone_type policy_zone = 0;
110
111 /*
112 * run-time system-wide default policy => local allocation
113 */
114 static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118 };
119
120 static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156 }
157
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160 return pol->flags & MPOL_MODE_FLAGS;
161 }
162
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165 {
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169 }
170
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177 }
178
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188 }
189
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196 }
197
198 /*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240 }
241
242 /*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248 {
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282 }
283
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290 }
291
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294 {
295 }
296
297 /*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305 {
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345 }
346
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350 {
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370 }
371
372 /*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390 {
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412
413 /*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422 {
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425
426 /*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440 }
441
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458 };
459
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468 {
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501 }
502
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507 {
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522 }
523
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528 {
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542 }
543
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548 {
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562 }
563
564 /*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573 int err;
574 struct vm_area_struct *first, *vma, *prev;
575
576
577 first = find_vma(mm, start);
578 if (!first)
579 return ERR_PTR(-EFAULT);
580 prev = NULL;
581 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return ERR_PTR(-EFAULT);
585 if (prev && prev->vm_end < vma->vm_start)
586 return ERR_PTR(-EFAULT);
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err) {
601 first = ERR_PTR(err);
602 break;
603 }
604 }
605 prev = vma;
606 }
607 return first;
608 }
609
610 /*
611 * Apply policy to a single VMA
612 * This must be called with the mmap_sem held for writing.
613 */
614 static int vma_replace_policy(struct vm_area_struct *vma,
615 struct mempolicy *pol)
616 {
617 int err;
618 struct mempolicy *old;
619 struct mempolicy *new;
620
621 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
622 vma->vm_start, vma->vm_end, vma->vm_pgoff,
623 vma->vm_ops, vma->vm_file,
624 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
625
626 new = mpol_dup(pol);
627 if (IS_ERR(new))
628 return PTR_ERR(new);
629
630 if (vma->vm_ops && vma->vm_ops->set_policy) {
631 err = vma->vm_ops->set_policy(vma, new);
632 if (err)
633 goto err_out;
634 }
635
636 old = vma->vm_policy;
637 vma->vm_policy = new; /* protected by mmap_sem */
638 mpol_put(old);
639
640 return 0;
641 err_out:
642 mpol_put(new);
643 return err;
644 }
645
646 /* Step 2: apply policy to a range and do splits. */
647 static int mbind_range(struct mm_struct *mm, unsigned long start,
648 unsigned long end, struct mempolicy *new_pol)
649 {
650 struct vm_area_struct *next;
651 struct vm_area_struct *prev;
652 struct vm_area_struct *vma;
653 int err = 0;
654 pgoff_t pgoff;
655 unsigned long vmstart;
656 unsigned long vmend;
657
658 vma = find_vma(mm, start);
659 if (!vma || vma->vm_start > start)
660 return -EFAULT;
661
662 prev = vma->vm_prev;
663 if (start > vma->vm_start)
664 prev = vma;
665
666 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
667 next = vma->vm_next;
668 vmstart = max(start, vma->vm_start);
669 vmend = min(end, vma->vm_end);
670
671 if (mpol_equal(vma_policy(vma), new_pol))
672 continue;
673
674 pgoff = vma->vm_pgoff +
675 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
676 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
677 vma->anon_vma, vma->vm_file, pgoff,
678 new_pol);
679 if (prev) {
680 vma = prev;
681 next = vma->vm_next;
682 continue;
683 }
684 if (vma->vm_start != vmstart) {
685 err = split_vma(vma->vm_mm, vma, vmstart, 1);
686 if (err)
687 goto out;
688 }
689 if (vma->vm_end != vmend) {
690 err = split_vma(vma->vm_mm, vma, vmend, 0);
691 if (err)
692 goto out;
693 }
694 err = vma_replace_policy(vma, new_pol);
695 if (err)
696 goto out;
697 }
698
699 out:
700 return err;
701 }
702
703 /*
704 * Update task->flags PF_MEMPOLICY bit: set iff non-default
705 * mempolicy. Allows more rapid checking of this (combined perhaps
706 * with other PF_* flag bits) on memory allocation hot code paths.
707 *
708 * If called from outside this file, the task 'p' should -only- be
709 * a newly forked child not yet visible on the task list, because
710 * manipulating the task flags of a visible task is not safe.
711 *
712 * The above limitation is why this routine has the funny name
713 * mpol_fix_fork_child_flag().
714 *
715 * It is also safe to call this with a task pointer of current,
716 * which the static wrapper mpol_set_task_struct_flag() does,
717 * for use within this file.
718 */
719
720 void mpol_fix_fork_child_flag(struct task_struct *p)
721 {
722 if (p->mempolicy)
723 p->flags |= PF_MEMPOLICY;
724 else
725 p->flags &= ~PF_MEMPOLICY;
726 }
727
728 static void mpol_set_task_struct_flag(void)
729 {
730 mpol_fix_fork_child_flag(current);
731 }
732
733 /* Set the process memory policy */
734 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
735 nodemask_t *nodes)
736 {
737 struct mempolicy *new, *old;
738 struct mm_struct *mm = current->mm;
739 NODEMASK_SCRATCH(scratch);
740 int ret;
741
742 if (!scratch)
743 return -ENOMEM;
744
745 new = mpol_new(mode, flags, nodes);
746 if (IS_ERR(new)) {
747 ret = PTR_ERR(new);
748 goto out;
749 }
750 /*
751 * prevent changing our mempolicy while show_numa_maps()
752 * is using it.
753 * Note: do_set_mempolicy() can be called at init time
754 * with no 'mm'.
755 */
756 if (mm)
757 down_write(&mm->mmap_sem);
758 task_lock(current);
759 ret = mpol_set_nodemask(new, nodes, scratch);
760 if (ret) {
761 task_unlock(current);
762 if (mm)
763 up_write(&mm->mmap_sem);
764 mpol_put(new);
765 goto out;
766 }
767 old = current->mempolicy;
768 current->mempolicy = new;
769 mpol_set_task_struct_flag();
770 if (new && new->mode == MPOL_INTERLEAVE &&
771 nodes_weight(new->v.nodes))
772 current->il_next = first_node(new->v.nodes);
773 task_unlock(current);
774 if (mm)
775 up_write(&mm->mmap_sem);
776
777 mpol_put(old);
778 ret = 0;
779 out:
780 NODEMASK_SCRATCH_FREE(scratch);
781 return ret;
782 }
783
784 /*
785 * Return nodemask for policy for get_mempolicy() query
786 *
787 * Called with task's alloc_lock held
788 */
789 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
790 {
791 nodes_clear(*nodes);
792 if (p == &default_policy)
793 return;
794
795 switch (p->mode) {
796 case MPOL_BIND:
797 /* Fall through */
798 case MPOL_INTERLEAVE:
799 *nodes = p->v.nodes;
800 break;
801 case MPOL_PREFERRED:
802 if (!(p->flags & MPOL_F_LOCAL))
803 node_set(p->v.preferred_node, *nodes);
804 /* else return empty node mask for local allocation */
805 break;
806 default:
807 BUG();
808 }
809 }
810
811 static int lookup_node(struct mm_struct *mm, unsigned long addr)
812 {
813 struct page *p;
814 int err;
815
816 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
817 if (err >= 0) {
818 err = page_to_nid(p);
819 put_page(p);
820 }
821 return err;
822 }
823
824 /* Retrieve NUMA policy */
825 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
826 unsigned long addr, unsigned long flags)
827 {
828 int err;
829 struct mm_struct *mm = current->mm;
830 struct vm_area_struct *vma = NULL;
831 struct mempolicy *pol = current->mempolicy;
832
833 if (flags &
834 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
835 return -EINVAL;
836
837 if (flags & MPOL_F_MEMS_ALLOWED) {
838 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
839 return -EINVAL;
840 *policy = 0; /* just so it's initialized */
841 task_lock(current);
842 *nmask = cpuset_current_mems_allowed;
843 task_unlock(current);
844 return 0;
845 }
846
847 if (flags & MPOL_F_ADDR) {
848 /*
849 * Do NOT fall back to task policy if the
850 * vma/shared policy at addr is NULL. We
851 * want to return MPOL_DEFAULT in this case.
852 */
853 down_read(&mm->mmap_sem);
854 vma = find_vma_intersection(mm, addr, addr+1);
855 if (!vma) {
856 up_read(&mm->mmap_sem);
857 return -EFAULT;
858 }
859 if (vma->vm_ops && vma->vm_ops->get_policy)
860 pol = vma->vm_ops->get_policy(vma, addr);
861 else
862 pol = vma->vm_policy;
863 } else if (addr)
864 return -EINVAL;
865
866 if (!pol)
867 pol = &default_policy; /* indicates default behavior */
868
869 if (flags & MPOL_F_NODE) {
870 if (flags & MPOL_F_ADDR) {
871 err = lookup_node(mm, addr);
872 if (err < 0)
873 goto out;
874 *policy = err;
875 } else if (pol == current->mempolicy &&
876 pol->mode == MPOL_INTERLEAVE) {
877 *policy = current->il_next;
878 } else {
879 err = -EINVAL;
880 goto out;
881 }
882 } else {
883 *policy = pol == &default_policy ? MPOL_DEFAULT :
884 pol->mode;
885 /*
886 * Internal mempolicy flags must be masked off before exposing
887 * the policy to userspace.
888 */
889 *policy |= (pol->flags & MPOL_MODE_FLAGS);
890 }
891
892 if (vma) {
893 up_read(&current->mm->mmap_sem);
894 vma = NULL;
895 }
896
897 err = 0;
898 if (nmask) {
899 if (mpol_store_user_nodemask(pol)) {
900 *nmask = pol->w.user_nodemask;
901 } else {
902 task_lock(current);
903 get_policy_nodemask(pol, nmask);
904 task_unlock(current);
905 }
906 }
907
908 out:
909 mpol_cond_put(pol);
910 if (vma)
911 up_read(&current->mm->mmap_sem);
912 return err;
913 }
914
915 #ifdef CONFIG_MIGRATION
916 /*
917 * page migration
918 */
919 static void migrate_page_add(struct page *page, struct list_head *pagelist,
920 unsigned long flags)
921 {
922 /*
923 * Avoid migrating a page that is shared with others.
924 */
925 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
926 if (!isolate_lru_page(page)) {
927 list_add_tail(&page->lru, pagelist);
928 inc_zone_page_state(page, NR_ISOLATED_ANON +
929 page_is_file_cache(page));
930 }
931 }
932 }
933
934 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
935 {
936 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
937 }
938
939 /*
940 * Migrate pages from one node to a target node.
941 * Returns error or the number of pages not migrated.
942 */
943 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
944 int flags)
945 {
946 nodemask_t nmask;
947 LIST_HEAD(pagelist);
948 int err = 0;
949 struct vm_area_struct *vma;
950
951 nodes_clear(nmask);
952 node_set(source, nmask);
953
954 vma = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
955 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
956 if (IS_ERR(vma))
957 return PTR_ERR(vma);
958
959 if (!list_empty(&pagelist)) {
960 err = migrate_pages(&pagelist, new_node_page, dest,
961 false, MIGRATE_SYNC);
962 if (err)
963 putback_lru_pages(&pagelist);
964 }
965
966 return err;
967 }
968
969 /*
970 * Move pages between the two nodesets so as to preserve the physical
971 * layout as much as possible.
972 *
973 * Returns the number of page that could not be moved.
974 */
975 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
976 const nodemask_t *to, int flags)
977 {
978 int busy = 0;
979 int err;
980 nodemask_t tmp;
981
982 err = migrate_prep();
983 if (err)
984 return err;
985
986 down_read(&mm->mmap_sem);
987
988 err = migrate_vmas(mm, from, to, flags);
989 if (err)
990 goto out;
991
992 /*
993 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
994 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
995 * bit in 'tmp', and return that <source, dest> pair for migration.
996 * The pair of nodemasks 'to' and 'from' define the map.
997 *
998 * If no pair of bits is found that way, fallback to picking some
999 * pair of 'source' and 'dest' bits that are not the same. If the
1000 * 'source' and 'dest' bits are the same, this represents a node
1001 * that will be migrating to itself, so no pages need move.
1002 *
1003 * If no bits are left in 'tmp', or if all remaining bits left
1004 * in 'tmp' correspond to the same bit in 'to', return false
1005 * (nothing left to migrate).
1006 *
1007 * This lets us pick a pair of nodes to migrate between, such that
1008 * if possible the dest node is not already occupied by some other
1009 * source node, minimizing the risk of overloading the memory on a
1010 * node that would happen if we migrated incoming memory to a node
1011 * before migrating outgoing memory source that same node.
1012 *
1013 * A single scan of tmp is sufficient. As we go, we remember the
1014 * most recent <s, d> pair that moved (s != d). If we find a pair
1015 * that not only moved, but what's better, moved to an empty slot
1016 * (d is not set in tmp), then we break out then, with that pair.
1017 * Otherwise when we finish scanning from_tmp, we at least have the
1018 * most recent <s, d> pair that moved. If we get all the way through
1019 * the scan of tmp without finding any node that moved, much less
1020 * moved to an empty node, then there is nothing left worth migrating.
1021 */
1022
1023 tmp = *from;
1024 while (!nodes_empty(tmp)) {
1025 int s,d;
1026 int source = -1;
1027 int dest = 0;
1028
1029 for_each_node_mask(s, tmp) {
1030
1031 /*
1032 * do_migrate_pages() tries to maintain the relative
1033 * node relationship of the pages established between
1034 * threads and memory areas.
1035 *
1036 * However if the number of source nodes is not equal to
1037 * the number of destination nodes we can not preserve
1038 * this node relative relationship. In that case, skip
1039 * copying memory from a node that is in the destination
1040 * mask.
1041 *
1042 * Example: [2,3,4] -> [3,4,5] moves everything.
1043 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1044 */
1045
1046 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1047 (node_isset(s, *to)))
1048 continue;
1049
1050 d = node_remap(s, *from, *to);
1051 if (s == d)
1052 continue;
1053
1054 source = s; /* Node moved. Memorize */
1055 dest = d;
1056
1057 /* dest not in remaining from nodes? */
1058 if (!node_isset(dest, tmp))
1059 break;
1060 }
1061 if (source == -1)
1062 break;
1063
1064 node_clear(source, tmp);
1065 err = migrate_to_node(mm, source, dest, flags);
1066 if (err > 0)
1067 busy += err;
1068 if (err < 0)
1069 break;
1070 }
1071 out:
1072 up_read(&mm->mmap_sem);
1073 if (err < 0)
1074 return err;
1075 return busy;
1076
1077 }
1078
1079 /*
1080 * Allocate a new page for page migration based on vma policy.
1081 * Start assuming that page is mapped by vma pointed to by @private.
1082 * Search forward from there, if not. N.B., this assumes that the
1083 * list of pages handed to migrate_pages()--which is how we get here--
1084 * is in virtual address order.
1085 */
1086 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1087 {
1088 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1089 unsigned long uninitialized_var(address);
1090
1091 while (vma) {
1092 address = page_address_in_vma(page, vma);
1093 if (address != -EFAULT)
1094 break;
1095 vma = vma->vm_next;
1096 }
1097
1098 /*
1099 * if !vma, alloc_page_vma() will use task or system default policy
1100 */
1101 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1102 }
1103 #else
1104
1105 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1106 unsigned long flags)
1107 {
1108 }
1109
1110 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1111 const nodemask_t *to, int flags)
1112 {
1113 return -ENOSYS;
1114 }
1115
1116 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1117 {
1118 return NULL;
1119 }
1120 #endif
1121
1122 static long do_mbind(unsigned long start, unsigned long len,
1123 unsigned short mode, unsigned short mode_flags,
1124 nodemask_t *nmask, unsigned long flags)
1125 {
1126 struct vm_area_struct *vma;
1127 struct mm_struct *mm = current->mm;
1128 struct mempolicy *new;
1129 unsigned long end;
1130 int err;
1131 LIST_HEAD(pagelist);
1132
1133 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1134 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1135 return -EINVAL;
1136 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1137 return -EPERM;
1138
1139 if (start & ~PAGE_MASK)
1140 return -EINVAL;
1141
1142 if (mode == MPOL_DEFAULT)
1143 flags &= ~MPOL_MF_STRICT;
1144
1145 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1146 end = start + len;
1147
1148 if (end < start)
1149 return -EINVAL;
1150 if (end == start)
1151 return 0;
1152
1153 new = mpol_new(mode, mode_flags, nmask);
1154 if (IS_ERR(new))
1155 return PTR_ERR(new);
1156
1157 /*
1158 * If we are using the default policy then operation
1159 * on discontinuous address spaces is okay after all
1160 */
1161 if (!new)
1162 flags |= MPOL_MF_DISCONTIG_OK;
1163
1164 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1165 start, start + len, mode, mode_flags,
1166 nmask ? nodes_addr(*nmask)[0] : -1);
1167
1168 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1169
1170 err = migrate_prep();
1171 if (err)
1172 goto mpol_out;
1173 }
1174 {
1175 NODEMASK_SCRATCH(scratch);
1176 if (scratch) {
1177 down_write(&mm->mmap_sem);
1178 task_lock(current);
1179 err = mpol_set_nodemask(new, nmask, scratch);
1180 task_unlock(current);
1181 if (err)
1182 up_write(&mm->mmap_sem);
1183 } else
1184 err = -ENOMEM;
1185 NODEMASK_SCRATCH_FREE(scratch);
1186 }
1187 if (err)
1188 goto mpol_out;
1189
1190 vma = check_range(mm, start, end, nmask,
1191 flags | MPOL_MF_INVERT, &pagelist);
1192
1193 err = PTR_ERR(vma);
1194 if (!IS_ERR(vma)) {
1195 int nr_failed = 0;
1196
1197 err = mbind_range(mm, start, end, new);
1198
1199 if (!list_empty(&pagelist)) {
1200 nr_failed = migrate_pages(&pagelist, new_vma_page,
1201 (unsigned long)vma,
1202 false, MIGRATE_SYNC);
1203 if (nr_failed)
1204 putback_lru_pages(&pagelist);
1205 }
1206
1207 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1208 err = -EIO;
1209 } else
1210 putback_lru_pages(&pagelist);
1211
1212 up_write(&mm->mmap_sem);
1213 mpol_out:
1214 mpol_put(new);
1215 return err;
1216 }
1217
1218 /*
1219 * User space interface with variable sized bitmaps for nodelists.
1220 */
1221
1222 /* Copy a node mask from user space. */
1223 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1224 unsigned long maxnode)
1225 {
1226 unsigned long k;
1227 unsigned long nlongs;
1228 unsigned long endmask;
1229
1230 --maxnode;
1231 nodes_clear(*nodes);
1232 if (maxnode == 0 || !nmask)
1233 return 0;
1234 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1235 return -EINVAL;
1236
1237 nlongs = BITS_TO_LONGS(maxnode);
1238 if ((maxnode % BITS_PER_LONG) == 0)
1239 endmask = ~0UL;
1240 else
1241 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1242
1243 /* When the user specified more nodes than supported just check
1244 if the non supported part is all zero. */
1245 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1246 if (nlongs > PAGE_SIZE/sizeof(long))
1247 return -EINVAL;
1248 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1249 unsigned long t;
1250 if (get_user(t, nmask + k))
1251 return -EFAULT;
1252 if (k == nlongs - 1) {
1253 if (t & endmask)
1254 return -EINVAL;
1255 } else if (t)
1256 return -EINVAL;
1257 }
1258 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1259 endmask = ~0UL;
1260 }
1261
1262 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1263 return -EFAULT;
1264 nodes_addr(*nodes)[nlongs-1] &= endmask;
1265 return 0;
1266 }
1267
1268 /* Copy a kernel node mask to user space */
1269 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1270 nodemask_t *nodes)
1271 {
1272 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1273 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1274
1275 if (copy > nbytes) {
1276 if (copy > PAGE_SIZE)
1277 return -EINVAL;
1278 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1279 return -EFAULT;
1280 copy = nbytes;
1281 }
1282 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1283 }
1284
1285 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1286 unsigned long, mode, unsigned long __user *, nmask,
1287 unsigned long, maxnode, unsigned, flags)
1288 {
1289 nodemask_t nodes;
1290 int err;
1291 unsigned short mode_flags;
1292
1293 mode_flags = mode & MPOL_MODE_FLAGS;
1294 mode &= ~MPOL_MODE_FLAGS;
1295 if (mode >= MPOL_MAX)
1296 return -EINVAL;
1297 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1298 (mode_flags & MPOL_F_RELATIVE_NODES))
1299 return -EINVAL;
1300 err = get_nodes(&nodes, nmask, maxnode);
1301 if (err)
1302 return err;
1303 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1304 }
1305
1306 /* Set the process memory policy */
1307 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1308 unsigned long, maxnode)
1309 {
1310 int err;
1311 nodemask_t nodes;
1312 unsigned short flags;
1313
1314 flags = mode & MPOL_MODE_FLAGS;
1315 mode &= ~MPOL_MODE_FLAGS;
1316 if ((unsigned int)mode >= MPOL_MAX)
1317 return -EINVAL;
1318 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1319 return -EINVAL;
1320 err = get_nodes(&nodes, nmask, maxnode);
1321 if (err)
1322 return err;
1323 return do_set_mempolicy(mode, flags, &nodes);
1324 }
1325
1326 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1327 const unsigned long __user *, old_nodes,
1328 const unsigned long __user *, new_nodes)
1329 {
1330 const struct cred *cred = current_cred(), *tcred;
1331 struct mm_struct *mm = NULL;
1332 struct task_struct *task;
1333 nodemask_t task_nodes;
1334 int err;
1335 nodemask_t *old;
1336 nodemask_t *new;
1337 NODEMASK_SCRATCH(scratch);
1338
1339 if (!scratch)
1340 return -ENOMEM;
1341
1342 old = &scratch->mask1;
1343 new = &scratch->mask2;
1344
1345 err = get_nodes(old, old_nodes, maxnode);
1346 if (err)
1347 goto out;
1348
1349 err = get_nodes(new, new_nodes, maxnode);
1350 if (err)
1351 goto out;
1352
1353 /* Find the mm_struct */
1354 rcu_read_lock();
1355 task = pid ? find_task_by_vpid(pid) : current;
1356 if (!task) {
1357 rcu_read_unlock();
1358 err = -ESRCH;
1359 goto out;
1360 }
1361 get_task_struct(task);
1362
1363 err = -EINVAL;
1364
1365 /*
1366 * Check if this process has the right to modify the specified
1367 * process. The right exists if the process has administrative
1368 * capabilities, superuser privileges or the same
1369 * userid as the target process.
1370 */
1371 tcred = __task_cred(task);
1372 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1373 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1374 !capable(CAP_SYS_NICE)) {
1375 rcu_read_unlock();
1376 err = -EPERM;
1377 goto out_put;
1378 }
1379 rcu_read_unlock();
1380
1381 task_nodes = cpuset_mems_allowed(task);
1382 /* Is the user allowed to access the target nodes? */
1383 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1384 err = -EPERM;
1385 goto out_put;
1386 }
1387
1388 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1389 err = -EINVAL;
1390 goto out_put;
1391 }
1392
1393 err = security_task_movememory(task);
1394 if (err)
1395 goto out_put;
1396
1397 mm = get_task_mm(task);
1398 put_task_struct(task);
1399
1400 if (!mm) {
1401 err = -EINVAL;
1402 goto out;
1403 }
1404
1405 err = do_migrate_pages(mm, old, new,
1406 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1407
1408 mmput(mm);
1409 out:
1410 NODEMASK_SCRATCH_FREE(scratch);
1411
1412 return err;
1413
1414 out_put:
1415 put_task_struct(task);
1416 goto out;
1417
1418 }
1419
1420
1421 /* Retrieve NUMA policy */
1422 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1423 unsigned long __user *, nmask, unsigned long, maxnode,
1424 unsigned long, addr, unsigned long, flags)
1425 {
1426 int err;
1427 int uninitialized_var(pval);
1428 nodemask_t nodes;
1429
1430 if (nmask != NULL && maxnode < MAX_NUMNODES)
1431 return -EINVAL;
1432
1433 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1434
1435 if (err)
1436 return err;
1437
1438 if (policy && put_user(pval, policy))
1439 return -EFAULT;
1440
1441 if (nmask)
1442 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1443
1444 return err;
1445 }
1446
1447 #ifdef CONFIG_COMPAT
1448
1449 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1450 compat_ulong_t __user *nmask,
1451 compat_ulong_t maxnode,
1452 compat_ulong_t addr, compat_ulong_t flags)
1453 {
1454 long err;
1455 unsigned long __user *nm = NULL;
1456 unsigned long nr_bits, alloc_size;
1457 DECLARE_BITMAP(bm, MAX_NUMNODES);
1458
1459 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1460 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1461
1462 if (nmask)
1463 nm = compat_alloc_user_space(alloc_size);
1464
1465 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1466
1467 if (!err && nmask) {
1468 unsigned long copy_size;
1469 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1470 err = copy_from_user(bm, nm, copy_size);
1471 /* ensure entire bitmap is zeroed */
1472 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1473 err |= compat_put_bitmap(nmask, bm, nr_bits);
1474 }
1475
1476 return err;
1477 }
1478
1479 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1480 compat_ulong_t maxnode)
1481 {
1482 long err = 0;
1483 unsigned long __user *nm = NULL;
1484 unsigned long nr_bits, alloc_size;
1485 DECLARE_BITMAP(bm, MAX_NUMNODES);
1486
1487 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1488 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1489
1490 if (nmask) {
1491 err = compat_get_bitmap(bm, nmask, nr_bits);
1492 nm = compat_alloc_user_space(alloc_size);
1493 err |= copy_to_user(nm, bm, alloc_size);
1494 }
1495
1496 if (err)
1497 return -EFAULT;
1498
1499 return sys_set_mempolicy(mode, nm, nr_bits+1);
1500 }
1501
1502 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1503 compat_ulong_t mode, compat_ulong_t __user *nmask,
1504 compat_ulong_t maxnode, compat_ulong_t flags)
1505 {
1506 long err = 0;
1507 unsigned long __user *nm = NULL;
1508 unsigned long nr_bits, alloc_size;
1509 nodemask_t bm;
1510
1511 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1512 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1513
1514 if (nmask) {
1515 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1516 nm = compat_alloc_user_space(alloc_size);
1517 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1518 }
1519
1520 if (err)
1521 return -EFAULT;
1522
1523 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1524 }
1525
1526 #endif
1527
1528 /*
1529 * get_vma_policy(@task, @vma, @addr)
1530 * @task - task for fallback if vma policy == default
1531 * @vma - virtual memory area whose policy is sought
1532 * @addr - address in @vma for shared policy lookup
1533 *
1534 * Returns effective policy for a VMA at specified address.
1535 * Falls back to @task or system default policy, as necessary.
1536 * Current or other task's task mempolicy and non-shared vma policies
1537 * are protected by the task's mmap_sem, which must be held for read by
1538 * the caller.
1539 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1540 * count--added by the get_policy() vm_op, as appropriate--to protect against
1541 * freeing by another task. It is the caller's responsibility to free the
1542 * extra reference for shared policies.
1543 */
1544 struct mempolicy *get_vma_policy(struct task_struct *task,
1545 struct vm_area_struct *vma, unsigned long addr)
1546 {
1547 struct mempolicy *pol = task->mempolicy;
1548
1549 if (vma) {
1550 if (vma->vm_ops && vma->vm_ops->get_policy) {
1551 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1552 addr);
1553 if (vpol)
1554 pol = vpol;
1555 } else if (vma->vm_policy)
1556 pol = vma->vm_policy;
1557 }
1558 if (!pol)
1559 pol = &default_policy;
1560 return pol;
1561 }
1562
1563 /*
1564 * Return a nodemask representing a mempolicy for filtering nodes for
1565 * page allocation
1566 */
1567 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1568 {
1569 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1570 if (unlikely(policy->mode == MPOL_BIND) &&
1571 gfp_zone(gfp) >= policy_zone &&
1572 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1573 return &policy->v.nodes;
1574
1575 return NULL;
1576 }
1577
1578 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1579 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1580 int nd)
1581 {
1582 switch (policy->mode) {
1583 case MPOL_PREFERRED:
1584 if (!(policy->flags & MPOL_F_LOCAL))
1585 nd = policy->v.preferred_node;
1586 break;
1587 case MPOL_BIND:
1588 /*
1589 * Normally, MPOL_BIND allocations are node-local within the
1590 * allowed nodemask. However, if __GFP_THISNODE is set and the
1591 * current node isn't part of the mask, we use the zonelist for
1592 * the first node in the mask instead.
1593 */
1594 if (unlikely(gfp & __GFP_THISNODE) &&
1595 unlikely(!node_isset(nd, policy->v.nodes)))
1596 nd = first_node(policy->v.nodes);
1597 break;
1598 default:
1599 BUG();
1600 }
1601 return node_zonelist(nd, gfp);
1602 }
1603
1604 /* Do dynamic interleaving for a process */
1605 static unsigned interleave_nodes(struct mempolicy *policy)
1606 {
1607 unsigned nid, next;
1608 struct task_struct *me = current;
1609
1610 nid = me->il_next;
1611 next = next_node(nid, policy->v.nodes);
1612 if (next >= MAX_NUMNODES)
1613 next = first_node(policy->v.nodes);
1614 if (next < MAX_NUMNODES)
1615 me->il_next = next;
1616 return nid;
1617 }
1618
1619 /*
1620 * Depending on the memory policy provide a node from which to allocate the
1621 * next slab entry.
1622 * @policy must be protected by freeing by the caller. If @policy is
1623 * the current task's mempolicy, this protection is implicit, as only the
1624 * task can change it's policy. The system default policy requires no
1625 * such protection.
1626 */
1627 unsigned slab_node(void)
1628 {
1629 struct mempolicy *policy;
1630
1631 if (in_interrupt())
1632 return numa_node_id();
1633
1634 policy = current->mempolicy;
1635 if (!policy || policy->flags & MPOL_F_LOCAL)
1636 return numa_node_id();
1637
1638 switch (policy->mode) {
1639 case MPOL_PREFERRED:
1640 /*
1641 * handled MPOL_F_LOCAL above
1642 */
1643 return policy->v.preferred_node;
1644
1645 case MPOL_INTERLEAVE:
1646 return interleave_nodes(policy);
1647
1648 case MPOL_BIND: {
1649 /*
1650 * Follow bind policy behavior and start allocation at the
1651 * first node.
1652 */
1653 struct zonelist *zonelist;
1654 struct zone *zone;
1655 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1656 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1657 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1658 &policy->v.nodes,
1659 &zone);
1660 return zone ? zone->node : numa_node_id();
1661 }
1662
1663 default:
1664 BUG();
1665 }
1666 }
1667
1668 /* Do static interleaving for a VMA with known offset. */
1669 static unsigned offset_il_node(struct mempolicy *pol,
1670 struct vm_area_struct *vma, unsigned long off)
1671 {
1672 unsigned nnodes = nodes_weight(pol->v.nodes);
1673 unsigned target;
1674 int c;
1675 int nid = -1;
1676
1677 if (!nnodes)
1678 return numa_node_id();
1679 target = (unsigned int)off % nnodes;
1680 c = 0;
1681 do {
1682 nid = next_node(nid, pol->v.nodes);
1683 c++;
1684 } while (c <= target);
1685 return nid;
1686 }
1687
1688 /* Determine a node number for interleave */
1689 static inline unsigned interleave_nid(struct mempolicy *pol,
1690 struct vm_area_struct *vma, unsigned long addr, int shift)
1691 {
1692 if (vma) {
1693 unsigned long off;
1694
1695 /*
1696 * for small pages, there is no difference between
1697 * shift and PAGE_SHIFT, so the bit-shift is safe.
1698 * for huge pages, since vm_pgoff is in units of small
1699 * pages, we need to shift off the always 0 bits to get
1700 * a useful offset.
1701 */
1702 BUG_ON(shift < PAGE_SHIFT);
1703 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1704 off += (addr - vma->vm_start) >> shift;
1705 return offset_il_node(pol, vma, off);
1706 } else
1707 return interleave_nodes(pol);
1708 }
1709
1710 /*
1711 * Return the bit number of a random bit set in the nodemask.
1712 * (returns -1 if nodemask is empty)
1713 */
1714 int node_random(const nodemask_t *maskp)
1715 {
1716 int w, bit = -1;
1717
1718 w = nodes_weight(*maskp);
1719 if (w)
1720 bit = bitmap_ord_to_pos(maskp->bits,
1721 get_random_int() % w, MAX_NUMNODES);
1722 return bit;
1723 }
1724
1725 #ifdef CONFIG_HUGETLBFS
1726 /*
1727 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1728 * @vma = virtual memory area whose policy is sought
1729 * @addr = address in @vma for shared policy lookup and interleave policy
1730 * @gfp_flags = for requested zone
1731 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1732 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1733 *
1734 * Returns a zonelist suitable for a huge page allocation and a pointer
1735 * to the struct mempolicy for conditional unref after allocation.
1736 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1737 * @nodemask for filtering the zonelist.
1738 *
1739 * Must be protected by get_mems_allowed()
1740 */
1741 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1742 gfp_t gfp_flags, struct mempolicy **mpol,
1743 nodemask_t **nodemask)
1744 {
1745 struct zonelist *zl;
1746
1747 *mpol = get_vma_policy(current, vma, addr);
1748 *nodemask = NULL; /* assume !MPOL_BIND */
1749
1750 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1751 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1752 huge_page_shift(hstate_vma(vma))), gfp_flags);
1753 } else {
1754 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1755 if ((*mpol)->mode == MPOL_BIND)
1756 *nodemask = &(*mpol)->v.nodes;
1757 }
1758 return zl;
1759 }
1760
1761 /*
1762 * init_nodemask_of_mempolicy
1763 *
1764 * If the current task's mempolicy is "default" [NULL], return 'false'
1765 * to indicate default policy. Otherwise, extract the policy nodemask
1766 * for 'bind' or 'interleave' policy into the argument nodemask, or
1767 * initialize the argument nodemask to contain the single node for
1768 * 'preferred' or 'local' policy and return 'true' to indicate presence
1769 * of non-default mempolicy.
1770 *
1771 * We don't bother with reference counting the mempolicy [mpol_get/put]
1772 * because the current task is examining it's own mempolicy and a task's
1773 * mempolicy is only ever changed by the task itself.
1774 *
1775 * N.B., it is the caller's responsibility to free a returned nodemask.
1776 */
1777 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1778 {
1779 struct mempolicy *mempolicy;
1780 int nid;
1781
1782 if (!(mask && current->mempolicy))
1783 return false;
1784
1785 task_lock(current);
1786 mempolicy = current->mempolicy;
1787 switch (mempolicy->mode) {
1788 case MPOL_PREFERRED:
1789 if (mempolicy->flags & MPOL_F_LOCAL)
1790 nid = numa_node_id();
1791 else
1792 nid = mempolicy->v.preferred_node;
1793 init_nodemask_of_node(mask, nid);
1794 break;
1795
1796 case MPOL_BIND:
1797 /* Fall through */
1798 case MPOL_INTERLEAVE:
1799 *mask = mempolicy->v.nodes;
1800 break;
1801
1802 default:
1803 BUG();
1804 }
1805 task_unlock(current);
1806
1807 return true;
1808 }
1809 #endif
1810
1811 /*
1812 * mempolicy_nodemask_intersects
1813 *
1814 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1815 * policy. Otherwise, check for intersection between mask and the policy
1816 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1817 * policy, always return true since it may allocate elsewhere on fallback.
1818 *
1819 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1820 */
1821 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1822 const nodemask_t *mask)
1823 {
1824 struct mempolicy *mempolicy;
1825 bool ret = true;
1826
1827 if (!mask)
1828 return ret;
1829 task_lock(tsk);
1830 mempolicy = tsk->mempolicy;
1831 if (!mempolicy)
1832 goto out;
1833
1834 switch (mempolicy->mode) {
1835 case MPOL_PREFERRED:
1836 /*
1837 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1838 * allocate from, they may fallback to other nodes when oom.
1839 * Thus, it's possible for tsk to have allocated memory from
1840 * nodes in mask.
1841 */
1842 break;
1843 case MPOL_BIND:
1844 case MPOL_INTERLEAVE:
1845 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1846 break;
1847 default:
1848 BUG();
1849 }
1850 out:
1851 task_unlock(tsk);
1852 return ret;
1853 }
1854
1855 /* Allocate a page in interleaved policy.
1856 Own path because it needs to do special accounting. */
1857 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1858 unsigned nid)
1859 {
1860 struct zonelist *zl;
1861 struct page *page;
1862
1863 zl = node_zonelist(nid, gfp);
1864 page = __alloc_pages(gfp, order, zl);
1865 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1866 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1867 return page;
1868 }
1869
1870 /**
1871 * alloc_pages_vma - Allocate a page for a VMA.
1872 *
1873 * @gfp:
1874 * %GFP_USER user allocation.
1875 * %GFP_KERNEL kernel allocations,
1876 * %GFP_HIGHMEM highmem/user allocations,
1877 * %GFP_FS allocation should not call back into a file system.
1878 * %GFP_ATOMIC don't sleep.
1879 *
1880 * @order:Order of the GFP allocation.
1881 * @vma: Pointer to VMA or NULL if not available.
1882 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1883 *
1884 * This function allocates a page from the kernel page pool and applies
1885 * a NUMA policy associated with the VMA or the current process.
1886 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1887 * mm_struct of the VMA to prevent it from going away. Should be used for
1888 * all allocations for pages that will be mapped into
1889 * user space. Returns NULL when no page can be allocated.
1890 *
1891 * Should be called with the mm_sem of the vma hold.
1892 */
1893 struct page *
1894 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1895 unsigned long addr, int node)
1896 {
1897 struct mempolicy *pol;
1898 struct zonelist *zl;
1899 struct page *page;
1900 unsigned int cpuset_mems_cookie;
1901
1902 retry_cpuset:
1903 pol = get_vma_policy(current, vma, addr);
1904 cpuset_mems_cookie = get_mems_allowed();
1905
1906 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1907 unsigned nid;
1908
1909 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1910 mpol_cond_put(pol);
1911 page = alloc_page_interleave(gfp, order, nid);
1912 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1913 goto retry_cpuset;
1914
1915 return page;
1916 }
1917 zl = policy_zonelist(gfp, pol, node);
1918 if (unlikely(mpol_needs_cond_ref(pol))) {
1919 /*
1920 * slow path: ref counted shared policy
1921 */
1922 struct page *page = __alloc_pages_nodemask(gfp, order,
1923 zl, policy_nodemask(gfp, pol));
1924 __mpol_put(pol);
1925 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1926 goto retry_cpuset;
1927 return page;
1928 }
1929 /*
1930 * fast path: default or task policy
1931 */
1932 page = __alloc_pages_nodemask(gfp, order, zl,
1933 policy_nodemask(gfp, pol));
1934 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1935 goto retry_cpuset;
1936 return page;
1937 }
1938
1939 /**
1940 * alloc_pages_current - Allocate pages.
1941 *
1942 * @gfp:
1943 * %GFP_USER user allocation,
1944 * %GFP_KERNEL kernel allocation,
1945 * %GFP_HIGHMEM highmem allocation,
1946 * %GFP_FS don't call back into a file system.
1947 * %GFP_ATOMIC don't sleep.
1948 * @order: Power of two of allocation size in pages. 0 is a single page.
1949 *
1950 * Allocate a page from the kernel page pool. When not in
1951 * interrupt context and apply the current process NUMA policy.
1952 * Returns NULL when no page can be allocated.
1953 *
1954 * Don't call cpuset_update_task_memory_state() unless
1955 * 1) it's ok to take cpuset_sem (can WAIT), and
1956 * 2) allocating for current task (not interrupt).
1957 */
1958 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1959 {
1960 struct mempolicy *pol = current->mempolicy;
1961 struct page *page;
1962 unsigned int cpuset_mems_cookie;
1963
1964 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1965 pol = &default_policy;
1966
1967 retry_cpuset:
1968 cpuset_mems_cookie = get_mems_allowed();
1969
1970 /*
1971 * No reference counting needed for current->mempolicy
1972 * nor system default_policy
1973 */
1974 if (pol->mode == MPOL_INTERLEAVE)
1975 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1976 else
1977 page = __alloc_pages_nodemask(gfp, order,
1978 policy_zonelist(gfp, pol, numa_node_id()),
1979 policy_nodemask(gfp, pol));
1980
1981 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1982 goto retry_cpuset;
1983
1984 return page;
1985 }
1986 EXPORT_SYMBOL(alloc_pages_current);
1987
1988 /*
1989 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1990 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1991 * with the mems_allowed returned by cpuset_mems_allowed(). This
1992 * keeps mempolicies cpuset relative after its cpuset moves. See
1993 * further kernel/cpuset.c update_nodemask().
1994 *
1995 * current's mempolicy may be rebinded by the other task(the task that changes
1996 * cpuset's mems), so we needn't do rebind work for current task.
1997 */
1998
1999 /* Slow path of a mempolicy duplicate */
2000 struct mempolicy *__mpol_dup(struct mempolicy *old)
2001 {
2002 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2003
2004 if (!new)
2005 return ERR_PTR(-ENOMEM);
2006
2007 /* task's mempolicy is protected by alloc_lock */
2008 if (old == current->mempolicy) {
2009 task_lock(current);
2010 *new = *old;
2011 task_unlock(current);
2012 } else
2013 *new = *old;
2014
2015 rcu_read_lock();
2016 if (current_cpuset_is_being_rebound()) {
2017 nodemask_t mems = cpuset_mems_allowed(current);
2018 if (new->flags & MPOL_F_REBINDING)
2019 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2020 else
2021 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2022 }
2023 rcu_read_unlock();
2024 atomic_set(&new->refcnt, 1);
2025 return new;
2026 }
2027
2028 /*
2029 * If *frompol needs [has] an extra ref, copy *frompol to *tompol ,
2030 * eliminate the * MPOL_F_* flags that require conditional ref and
2031 * [NOTE!!!] drop the extra ref. Not safe to reference *frompol directly
2032 * after return. Use the returned value.
2033 *
2034 * Allows use of a mempolicy for, e.g., multiple allocations with a single
2035 * policy lookup, even if the policy needs/has extra ref on lookup.
2036 * shmem_readahead needs this.
2037 */
2038 struct mempolicy *__mpol_cond_copy(struct mempolicy *tompol,
2039 struct mempolicy *frompol)
2040 {
2041 if (!mpol_needs_cond_ref(frompol))
2042 return frompol;
2043
2044 *tompol = *frompol;
2045 tompol->flags &= ~MPOL_F_SHARED; /* copy doesn't need unref */
2046 __mpol_put(frompol);
2047 return tompol;
2048 }
2049
2050 /* Slow path of a mempolicy comparison */
2051 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2052 {
2053 if (!a || !b)
2054 return false;
2055 if (a->mode != b->mode)
2056 return false;
2057 if (a->flags != b->flags)
2058 return false;
2059 if (mpol_store_user_nodemask(a))
2060 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2061 return false;
2062
2063 switch (a->mode) {
2064 case MPOL_BIND:
2065 /* Fall through */
2066 case MPOL_INTERLEAVE:
2067 return !!nodes_equal(a->v.nodes, b->v.nodes);
2068 case MPOL_PREFERRED:
2069 return a->v.preferred_node == b->v.preferred_node;
2070 default:
2071 BUG();
2072 return false;
2073 }
2074 }
2075
2076 /*
2077 * Shared memory backing store policy support.
2078 *
2079 * Remember policies even when nobody has shared memory mapped.
2080 * The policies are kept in Red-Black tree linked from the inode.
2081 * They are protected by the sp->lock spinlock, which should be held
2082 * for any accesses to the tree.
2083 */
2084
2085 /* lookup first element intersecting start-end */
2086 /* Caller holds sp->mutex */
2087 static struct sp_node *
2088 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2089 {
2090 struct rb_node *n = sp->root.rb_node;
2091
2092 while (n) {
2093 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2094
2095 if (start >= p->end)
2096 n = n->rb_right;
2097 else if (end <= p->start)
2098 n = n->rb_left;
2099 else
2100 break;
2101 }
2102 if (!n)
2103 return NULL;
2104 for (;;) {
2105 struct sp_node *w = NULL;
2106 struct rb_node *prev = rb_prev(n);
2107 if (!prev)
2108 break;
2109 w = rb_entry(prev, struct sp_node, nd);
2110 if (w->end <= start)
2111 break;
2112 n = prev;
2113 }
2114 return rb_entry(n, struct sp_node, nd);
2115 }
2116
2117 /* Insert a new shared policy into the list. */
2118 /* Caller holds sp->lock */
2119 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2120 {
2121 struct rb_node **p = &sp->root.rb_node;
2122 struct rb_node *parent = NULL;
2123 struct sp_node *nd;
2124
2125 while (*p) {
2126 parent = *p;
2127 nd = rb_entry(parent, struct sp_node, nd);
2128 if (new->start < nd->start)
2129 p = &(*p)->rb_left;
2130 else if (new->end > nd->end)
2131 p = &(*p)->rb_right;
2132 else
2133 BUG();
2134 }
2135 rb_link_node(&new->nd, parent, p);
2136 rb_insert_color(&new->nd, &sp->root);
2137 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2138 new->policy ? new->policy->mode : 0);
2139 }
2140
2141 /* Find shared policy intersecting idx */
2142 struct mempolicy *
2143 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2144 {
2145 struct mempolicy *pol = NULL;
2146 struct sp_node *sn;
2147
2148 if (!sp->root.rb_node)
2149 return NULL;
2150 mutex_lock(&sp->mutex);
2151 sn = sp_lookup(sp, idx, idx+1);
2152 if (sn) {
2153 mpol_get(sn->policy);
2154 pol = sn->policy;
2155 }
2156 mutex_unlock(&sp->mutex);
2157 return pol;
2158 }
2159
2160 static void sp_free(struct sp_node *n)
2161 {
2162 mpol_put(n->policy);
2163 kmem_cache_free(sn_cache, n);
2164 }
2165
2166 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2167 {
2168 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2169 rb_erase(&n->nd, &sp->root);
2170 sp_free(n);
2171 }
2172
2173 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2174 struct mempolicy *pol)
2175 {
2176 struct sp_node *n;
2177 struct mempolicy *newpol;
2178
2179 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2180 if (!n)
2181 return NULL;
2182
2183 newpol = mpol_dup(pol);
2184 if (IS_ERR(newpol)) {
2185 kmem_cache_free(sn_cache, n);
2186 return NULL;
2187 }
2188 newpol->flags |= MPOL_F_SHARED;
2189
2190 n->start = start;
2191 n->end = end;
2192 n->policy = newpol;
2193
2194 return n;
2195 }
2196
2197 /* Replace a policy range. */
2198 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2199 unsigned long end, struct sp_node *new)
2200 {
2201 struct sp_node *n;
2202 int ret = 0;
2203
2204 mutex_lock(&sp->mutex);
2205 n = sp_lookup(sp, start, end);
2206 /* Take care of old policies in the same range. */
2207 while (n && n->start < end) {
2208 struct rb_node *next = rb_next(&n->nd);
2209 if (n->start >= start) {
2210 if (n->end <= end)
2211 sp_delete(sp, n);
2212 else
2213 n->start = end;
2214 } else {
2215 /* Old policy spanning whole new range. */
2216 if (n->end > end) {
2217 struct sp_node *new2;
2218 new2 = sp_alloc(end, n->end, n->policy);
2219 if (!new2) {
2220 ret = -ENOMEM;
2221 goto out;
2222 }
2223 n->end = start;
2224 sp_insert(sp, new2);
2225 break;
2226 } else
2227 n->end = start;
2228 }
2229 if (!next)
2230 break;
2231 n = rb_entry(next, struct sp_node, nd);
2232 }
2233 if (new)
2234 sp_insert(sp, new);
2235 out:
2236 mutex_unlock(&sp->mutex);
2237 return ret;
2238 }
2239
2240 /**
2241 * mpol_shared_policy_init - initialize shared policy for inode
2242 * @sp: pointer to inode shared policy
2243 * @mpol: struct mempolicy to install
2244 *
2245 * Install non-NULL @mpol in inode's shared policy rb-tree.
2246 * On entry, the current task has a reference on a non-NULL @mpol.
2247 * This must be released on exit.
2248 * This is called at get_inode() calls and we can use GFP_KERNEL.
2249 */
2250 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2251 {
2252 int ret;
2253
2254 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2255 mutex_init(&sp->mutex);
2256
2257 if (mpol) {
2258 struct vm_area_struct pvma;
2259 struct mempolicy *new;
2260 NODEMASK_SCRATCH(scratch);
2261
2262 if (!scratch)
2263 goto put_mpol;
2264 /* contextualize the tmpfs mount point mempolicy */
2265 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2266 if (IS_ERR(new))
2267 goto free_scratch; /* no valid nodemask intersection */
2268
2269 task_lock(current);
2270 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2271 task_unlock(current);
2272 if (ret)
2273 goto put_new;
2274
2275 /* Create pseudo-vma that contains just the policy */
2276 memset(&pvma, 0, sizeof(struct vm_area_struct));
2277 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2278 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2279
2280 put_new:
2281 mpol_put(new); /* drop initial ref */
2282 free_scratch:
2283 NODEMASK_SCRATCH_FREE(scratch);
2284 put_mpol:
2285 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2286 }
2287 }
2288
2289 int mpol_set_shared_policy(struct shared_policy *info,
2290 struct vm_area_struct *vma, struct mempolicy *npol)
2291 {
2292 int err;
2293 struct sp_node *new = NULL;
2294 unsigned long sz = vma_pages(vma);
2295
2296 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2297 vma->vm_pgoff,
2298 sz, npol ? npol->mode : -1,
2299 npol ? npol->flags : -1,
2300 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2301
2302 if (npol) {
2303 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2304 if (!new)
2305 return -ENOMEM;
2306 }
2307 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2308 if (err && new)
2309 sp_free(new);
2310 return err;
2311 }
2312
2313 /* Free a backing policy store on inode delete. */
2314 void mpol_free_shared_policy(struct shared_policy *p)
2315 {
2316 struct sp_node *n;
2317 struct rb_node *next;
2318
2319 if (!p->root.rb_node)
2320 return;
2321 mutex_lock(&p->mutex);
2322 next = rb_first(&p->root);
2323 while (next) {
2324 n = rb_entry(next, struct sp_node, nd);
2325 next = rb_next(&n->nd);
2326 sp_delete(p, n);
2327 }
2328 mutex_unlock(&p->mutex);
2329 }
2330
2331 /* assumes fs == KERNEL_DS */
2332 void __init numa_policy_init(void)
2333 {
2334 nodemask_t interleave_nodes;
2335 unsigned long largest = 0;
2336 int nid, prefer = 0;
2337
2338 policy_cache = kmem_cache_create("numa_policy",
2339 sizeof(struct mempolicy),
2340 0, SLAB_PANIC, NULL);
2341
2342 sn_cache = kmem_cache_create("shared_policy_node",
2343 sizeof(struct sp_node),
2344 0, SLAB_PANIC, NULL);
2345
2346 /*
2347 * Set interleaving policy for system init. Interleaving is only
2348 * enabled across suitably sized nodes (default is >= 16MB), or
2349 * fall back to the largest node if they're all smaller.
2350 */
2351 nodes_clear(interleave_nodes);
2352 for_each_node_state(nid, N_HIGH_MEMORY) {
2353 unsigned long total_pages = node_present_pages(nid);
2354
2355 /* Preserve the largest node */
2356 if (largest < total_pages) {
2357 largest = total_pages;
2358 prefer = nid;
2359 }
2360
2361 /* Interleave this node? */
2362 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2363 node_set(nid, interleave_nodes);
2364 }
2365
2366 /* All too small, use the largest */
2367 if (unlikely(nodes_empty(interleave_nodes)))
2368 node_set(prefer, interleave_nodes);
2369
2370 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2371 printk("numa_policy_init: interleaving failed\n");
2372 }
2373
2374 /* Reset policy of current process to default */
2375 void numa_default_policy(void)
2376 {
2377 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2378 }
2379
2380 /*
2381 * Parse and format mempolicy from/to strings
2382 */
2383
2384 /*
2385 * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2386 * Used only for mpol_parse_str() and mpol_to_str()
2387 */
2388 #define MPOL_LOCAL MPOL_MAX
2389 static const char * const policy_modes[] =
2390 {
2391 [MPOL_DEFAULT] = "default",
2392 [MPOL_PREFERRED] = "prefer",
2393 [MPOL_BIND] = "bind",
2394 [MPOL_INTERLEAVE] = "interleave",
2395 [MPOL_LOCAL] = "local"
2396 };
2397
2398
2399 #ifdef CONFIG_TMPFS
2400 /**
2401 * mpol_parse_str - parse string to mempolicy
2402 * @str: string containing mempolicy to parse
2403 * @mpol: pointer to struct mempolicy pointer, returned on success.
2404 * @no_context: flag whether to "contextualize" the mempolicy
2405 *
2406 * Format of input:
2407 * <mode>[=<flags>][:<nodelist>]
2408 *
2409 * if @no_context is true, save the input nodemask in w.user_nodemask in
2410 * the returned mempolicy. This will be used to "clone" the mempolicy in
2411 * a specific context [cpuset] at a later time. Used to parse tmpfs mpol
2412 * mount option. Note that if 'static' or 'relative' mode flags were
2413 * specified, the input nodemask will already have been saved. Saving
2414 * it again is redundant, but safe.
2415 *
2416 * On success, returns 0, else 1
2417 */
2418 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2419 {
2420 struct mempolicy *new = NULL;
2421 unsigned short mode;
2422 unsigned short uninitialized_var(mode_flags);
2423 nodemask_t nodes;
2424 char *nodelist = strchr(str, ':');
2425 char *flags = strchr(str, '=');
2426 int err = 1;
2427
2428 if (nodelist) {
2429 /* NUL-terminate mode or flags string */
2430 *nodelist++ = '\0';
2431 if (nodelist_parse(nodelist, nodes))
2432 goto out;
2433 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2434 goto out;
2435 } else
2436 nodes_clear(nodes);
2437
2438 if (flags)
2439 *flags++ = '\0'; /* terminate mode string */
2440
2441 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2442 if (!strcmp(str, policy_modes[mode])) {
2443 break;
2444 }
2445 }
2446 if (mode > MPOL_LOCAL)
2447 goto out;
2448
2449 switch (mode) {
2450 case MPOL_PREFERRED:
2451 /*
2452 * Insist on a nodelist of one node only
2453 */
2454 if (nodelist) {
2455 char *rest = nodelist;
2456 while (isdigit(*rest))
2457 rest++;
2458 if (*rest)
2459 goto out;
2460 }
2461 break;
2462 case MPOL_INTERLEAVE:
2463 /*
2464 * Default to online nodes with memory if no nodelist
2465 */
2466 if (!nodelist)
2467 nodes = node_states[N_HIGH_MEMORY];
2468 break;
2469 case MPOL_LOCAL:
2470 /*
2471 * Don't allow a nodelist; mpol_new() checks flags
2472 */
2473 if (nodelist)
2474 goto out;
2475 mode = MPOL_PREFERRED;
2476 break;
2477 case MPOL_DEFAULT:
2478 /*
2479 * Insist on a empty nodelist
2480 */
2481 if (!nodelist)
2482 err = 0;
2483 goto out;
2484 case MPOL_BIND:
2485 /*
2486 * Insist on a nodelist
2487 */
2488 if (!nodelist)
2489 goto out;
2490 }
2491
2492 mode_flags = 0;
2493 if (flags) {
2494 /*
2495 * Currently, we only support two mutually exclusive
2496 * mode flags.
2497 */
2498 if (!strcmp(flags, "static"))
2499 mode_flags |= MPOL_F_STATIC_NODES;
2500 else if (!strcmp(flags, "relative"))
2501 mode_flags |= MPOL_F_RELATIVE_NODES;
2502 else
2503 goto out;
2504 }
2505
2506 new = mpol_new(mode, mode_flags, &nodes);
2507 if (IS_ERR(new))
2508 goto out;
2509
2510 if (no_context) {
2511 /* save for contextualization */
2512 new->w.user_nodemask = nodes;
2513 } else {
2514 int ret;
2515 NODEMASK_SCRATCH(scratch);
2516 if (scratch) {
2517 task_lock(current);
2518 ret = mpol_set_nodemask(new, &nodes, scratch);
2519 task_unlock(current);
2520 } else
2521 ret = -ENOMEM;
2522 NODEMASK_SCRATCH_FREE(scratch);
2523 if (ret) {
2524 mpol_put(new);
2525 goto out;
2526 }
2527 }
2528 err = 0;
2529
2530 out:
2531 /* Restore string for error message */
2532 if (nodelist)
2533 *--nodelist = ':';
2534 if (flags)
2535 *--flags = '=';
2536 if (!err)
2537 *mpol = new;
2538 return err;
2539 }
2540 #endif /* CONFIG_TMPFS */
2541
2542 /**
2543 * mpol_to_str - format a mempolicy structure for printing
2544 * @buffer: to contain formatted mempolicy string
2545 * @maxlen: length of @buffer
2546 * @pol: pointer to mempolicy to be formatted
2547 * @no_context: "context free" mempolicy - use nodemask in w.user_nodemask
2548 *
2549 * Convert a mempolicy into a string.
2550 * Returns the number of characters in buffer (if positive)
2551 * or an error (negative)
2552 */
2553 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2554 {
2555 char *p = buffer;
2556 int l;
2557 nodemask_t nodes;
2558 unsigned short mode;
2559 unsigned short flags = pol ? pol->flags : 0;
2560
2561 /*
2562 * Sanity check: room for longest mode, flag and some nodes
2563 */
2564 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2565
2566 if (!pol || pol == &default_policy)
2567 mode = MPOL_DEFAULT;
2568 else
2569 mode = pol->mode;
2570
2571 switch (mode) {
2572 case MPOL_DEFAULT:
2573 nodes_clear(nodes);
2574 break;
2575
2576 case MPOL_PREFERRED:
2577 nodes_clear(nodes);
2578 if (flags & MPOL_F_LOCAL)
2579 mode = MPOL_LOCAL; /* pseudo-policy */
2580 else
2581 node_set(pol->v.preferred_node, nodes);
2582 break;
2583
2584 case MPOL_BIND:
2585 /* Fall through */
2586 case MPOL_INTERLEAVE:
2587 if (no_context)
2588 nodes = pol->w.user_nodemask;
2589 else
2590 nodes = pol->v.nodes;
2591 break;
2592
2593 default:
2594 return -EINVAL;
2595 }
2596
2597 l = strlen(policy_modes[mode]);
2598 if (buffer + maxlen < p + l + 1)
2599 return -ENOSPC;
2600
2601 strcpy(p, policy_modes[mode]);
2602 p += l;
2603
2604 if (flags & MPOL_MODE_FLAGS) {
2605 if (buffer + maxlen < p + 2)
2606 return -ENOSPC;
2607 *p++ = '=';
2608
2609 /*
2610 * Currently, the only defined flags are mutually exclusive
2611 */
2612 if (flags & MPOL_F_STATIC_NODES)
2613 p += snprintf(p, buffer + maxlen - p, "static");
2614 else if (flags & MPOL_F_RELATIVE_NODES)
2615 p += snprintf(p, buffer + maxlen - p, "relative");
2616 }
2617
2618 if (!nodes_empty(nodes)) {
2619 if (buffer + maxlen < p + 2)
2620 return -ENOSPC;
2621 *p++ = ':';
2622 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2623 }
2624 return p - buffer;
2625 }
This page took 0.081259 seconds and 6 git commands to generate.