Merge remote-tracking branches 'spi/fix/pxa2xx', 'spi/fix/qup' and 'spi/fix/sh-sci...
[deliverable/linux.git] / mm / mempolicy.c
1 /*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56 /* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66 */
67
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
69
70 #include <linux/mempolicy.h>
71 #include <linux/mm.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
97
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
101
102 #include "internal.h"
103
104 /* Internal flags */
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
107
108 static struct kmem_cache *policy_cache;
109 static struct kmem_cache *sn_cache;
110
111 /* Highest zone. An specific allocation for a zone below that is not
112 policied. */
113 enum zone_type policy_zone = 0;
114
115 /*
116 * run-time system-wide default policy => local allocation
117 */
118 static struct mempolicy default_policy = {
119 .refcnt = ATOMIC_INIT(1), /* never free it */
120 .mode = MPOL_PREFERRED,
121 .flags = MPOL_F_LOCAL,
122 };
123
124 static struct mempolicy preferred_node_policy[MAX_NUMNODES];
125
126 static struct mempolicy *get_task_policy(struct task_struct *p)
127 {
128 struct mempolicy *pol = p->mempolicy;
129
130 if (!pol) {
131 int node = numa_node_id();
132
133 if (node != NUMA_NO_NODE) {
134 pol = &preferred_node_policy[node];
135 /*
136 * preferred_node_policy is not initialised early in
137 * boot
138 */
139 if (!pol->mode)
140 pol = NULL;
141 }
142 }
143
144 return pol;
145 }
146
147 static const struct mempolicy_operations {
148 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
149 /*
150 * If read-side task has no lock to protect task->mempolicy, write-side
151 * task will rebind the task->mempolicy by two step. The first step is
152 * setting all the newly nodes, and the second step is cleaning all the
153 * disallowed nodes. In this way, we can avoid finding no node to alloc
154 * page.
155 * If we have a lock to protect task->mempolicy in read-side, we do
156 * rebind directly.
157 *
158 * step:
159 * MPOL_REBIND_ONCE - do rebind work at once
160 * MPOL_REBIND_STEP1 - set all the newly nodes
161 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
162 */
163 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
164 enum mpol_rebind_step step);
165 } mpol_ops[MPOL_MAX];
166
167 /* Check that the nodemask contains at least one populated zone */
168 static int is_valid_nodemask(const nodemask_t *nodemask)
169 {
170 return nodes_intersects(*nodemask, node_states[N_MEMORY]);
171 }
172
173 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
174 {
175 return pol->flags & MPOL_MODE_FLAGS;
176 }
177
178 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
179 const nodemask_t *rel)
180 {
181 nodemask_t tmp;
182 nodes_fold(tmp, *orig, nodes_weight(*rel));
183 nodes_onto(*ret, tmp, *rel);
184 }
185
186 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
187 {
188 if (nodes_empty(*nodes))
189 return -EINVAL;
190 pol->v.nodes = *nodes;
191 return 0;
192 }
193
194 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
195 {
196 if (!nodes)
197 pol->flags |= MPOL_F_LOCAL; /* local allocation */
198 else if (nodes_empty(*nodes))
199 return -EINVAL; /* no allowed nodes */
200 else
201 pol->v.preferred_node = first_node(*nodes);
202 return 0;
203 }
204
205 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
206 {
207 if (!is_valid_nodemask(nodes))
208 return -EINVAL;
209 pol->v.nodes = *nodes;
210 return 0;
211 }
212
213 /*
214 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
215 * any, for the new policy. mpol_new() has already validated the nodes
216 * parameter with respect to the policy mode and flags. But, we need to
217 * handle an empty nodemask with MPOL_PREFERRED here.
218 *
219 * Must be called holding task's alloc_lock to protect task's mems_allowed
220 * and mempolicy. May also be called holding the mmap_semaphore for write.
221 */
222 static int mpol_set_nodemask(struct mempolicy *pol,
223 const nodemask_t *nodes, struct nodemask_scratch *nsc)
224 {
225 int ret;
226
227 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
228 if (pol == NULL)
229 return 0;
230 /* Check N_MEMORY */
231 nodes_and(nsc->mask1,
232 cpuset_current_mems_allowed, node_states[N_MEMORY]);
233
234 VM_BUG_ON(!nodes);
235 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
236 nodes = NULL; /* explicit local allocation */
237 else {
238 if (pol->flags & MPOL_F_RELATIVE_NODES)
239 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
240 else
241 nodes_and(nsc->mask2, *nodes, nsc->mask1);
242
243 if (mpol_store_user_nodemask(pol))
244 pol->w.user_nodemask = *nodes;
245 else
246 pol->w.cpuset_mems_allowed =
247 cpuset_current_mems_allowed;
248 }
249
250 if (nodes)
251 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
252 else
253 ret = mpol_ops[pol->mode].create(pol, NULL);
254 return ret;
255 }
256
257 /*
258 * This function just creates a new policy, does some check and simple
259 * initialization. You must invoke mpol_set_nodemask() to set nodes.
260 */
261 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
262 nodemask_t *nodes)
263 {
264 struct mempolicy *policy;
265
266 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
267 mode, flags, nodes ? nodes_addr(*nodes)[0] : NUMA_NO_NODE);
268
269 if (mode == MPOL_DEFAULT) {
270 if (nodes && !nodes_empty(*nodes))
271 return ERR_PTR(-EINVAL);
272 return NULL;
273 }
274 VM_BUG_ON(!nodes);
275
276 /*
277 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
278 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
279 * All other modes require a valid pointer to a non-empty nodemask.
280 */
281 if (mode == MPOL_PREFERRED) {
282 if (nodes_empty(*nodes)) {
283 if (((flags & MPOL_F_STATIC_NODES) ||
284 (flags & MPOL_F_RELATIVE_NODES)))
285 return ERR_PTR(-EINVAL);
286 }
287 } else if (mode == MPOL_LOCAL) {
288 if (!nodes_empty(*nodes))
289 return ERR_PTR(-EINVAL);
290 mode = MPOL_PREFERRED;
291 } else if (nodes_empty(*nodes))
292 return ERR_PTR(-EINVAL);
293 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
294 if (!policy)
295 return ERR_PTR(-ENOMEM);
296 atomic_set(&policy->refcnt, 1);
297 policy->mode = mode;
298 policy->flags = flags;
299
300 return policy;
301 }
302
303 /* Slow path of a mpol destructor. */
304 void __mpol_put(struct mempolicy *p)
305 {
306 if (!atomic_dec_and_test(&p->refcnt))
307 return;
308 kmem_cache_free(policy_cache, p);
309 }
310
311 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
312 enum mpol_rebind_step step)
313 {
314 }
315
316 /*
317 * step:
318 * MPOL_REBIND_ONCE - do rebind work at once
319 * MPOL_REBIND_STEP1 - set all the newly nodes
320 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
321 */
322 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
323 enum mpol_rebind_step step)
324 {
325 nodemask_t tmp;
326
327 if (pol->flags & MPOL_F_STATIC_NODES)
328 nodes_and(tmp, pol->w.user_nodemask, *nodes);
329 else if (pol->flags & MPOL_F_RELATIVE_NODES)
330 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
331 else {
332 /*
333 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
334 * result
335 */
336 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
337 nodes_remap(tmp, pol->v.nodes,
338 pol->w.cpuset_mems_allowed, *nodes);
339 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
340 } else if (step == MPOL_REBIND_STEP2) {
341 tmp = pol->w.cpuset_mems_allowed;
342 pol->w.cpuset_mems_allowed = *nodes;
343 } else
344 BUG();
345 }
346
347 if (nodes_empty(tmp))
348 tmp = *nodes;
349
350 if (step == MPOL_REBIND_STEP1)
351 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
352 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
353 pol->v.nodes = tmp;
354 else
355 BUG();
356
357 if (!node_isset(current->il_next, tmp)) {
358 current->il_next = next_node(current->il_next, tmp);
359 if (current->il_next >= MAX_NUMNODES)
360 current->il_next = first_node(tmp);
361 if (current->il_next >= MAX_NUMNODES)
362 current->il_next = numa_node_id();
363 }
364 }
365
366 static void mpol_rebind_preferred(struct mempolicy *pol,
367 const nodemask_t *nodes,
368 enum mpol_rebind_step step)
369 {
370 nodemask_t tmp;
371
372 if (pol->flags & MPOL_F_STATIC_NODES) {
373 int node = first_node(pol->w.user_nodemask);
374
375 if (node_isset(node, *nodes)) {
376 pol->v.preferred_node = node;
377 pol->flags &= ~MPOL_F_LOCAL;
378 } else
379 pol->flags |= MPOL_F_LOCAL;
380 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
381 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
382 pol->v.preferred_node = first_node(tmp);
383 } else if (!(pol->flags & MPOL_F_LOCAL)) {
384 pol->v.preferred_node = node_remap(pol->v.preferred_node,
385 pol->w.cpuset_mems_allowed,
386 *nodes);
387 pol->w.cpuset_mems_allowed = *nodes;
388 }
389 }
390
391 /*
392 * mpol_rebind_policy - Migrate a policy to a different set of nodes
393 *
394 * If read-side task has no lock to protect task->mempolicy, write-side
395 * task will rebind the task->mempolicy by two step. The first step is
396 * setting all the newly nodes, and the second step is cleaning all the
397 * disallowed nodes. In this way, we can avoid finding no node to alloc
398 * page.
399 * If we have a lock to protect task->mempolicy in read-side, we do
400 * rebind directly.
401 *
402 * step:
403 * MPOL_REBIND_ONCE - do rebind work at once
404 * MPOL_REBIND_STEP1 - set all the newly nodes
405 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
406 */
407 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
408 enum mpol_rebind_step step)
409 {
410 if (!pol)
411 return;
412 if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
413 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
414 return;
415
416 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
417 return;
418
419 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
420 BUG();
421
422 if (step == MPOL_REBIND_STEP1)
423 pol->flags |= MPOL_F_REBINDING;
424 else if (step == MPOL_REBIND_STEP2)
425 pol->flags &= ~MPOL_F_REBINDING;
426 else if (step >= MPOL_REBIND_NSTEP)
427 BUG();
428
429 mpol_ops[pol->mode].rebind(pol, newmask, step);
430 }
431
432 /*
433 * Wrapper for mpol_rebind_policy() that just requires task
434 * pointer, and updates task mempolicy.
435 *
436 * Called with task's alloc_lock held.
437 */
438
439 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
440 enum mpol_rebind_step step)
441 {
442 mpol_rebind_policy(tsk->mempolicy, new, step);
443 }
444
445 /*
446 * Rebind each vma in mm to new nodemask.
447 *
448 * Call holding a reference to mm. Takes mm->mmap_sem during call.
449 */
450
451 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
452 {
453 struct vm_area_struct *vma;
454
455 down_write(&mm->mmap_sem);
456 for (vma = mm->mmap; vma; vma = vma->vm_next)
457 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
458 up_write(&mm->mmap_sem);
459 }
460
461 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
462 [MPOL_DEFAULT] = {
463 .rebind = mpol_rebind_default,
464 },
465 [MPOL_INTERLEAVE] = {
466 .create = mpol_new_interleave,
467 .rebind = mpol_rebind_nodemask,
468 },
469 [MPOL_PREFERRED] = {
470 .create = mpol_new_preferred,
471 .rebind = mpol_rebind_preferred,
472 },
473 [MPOL_BIND] = {
474 .create = mpol_new_bind,
475 .rebind = mpol_rebind_nodemask,
476 },
477 };
478
479 static void migrate_page_add(struct page *page, struct list_head *pagelist,
480 unsigned long flags);
481
482 /*
483 * Scan through pages checking if pages follow certain conditions,
484 * and move them to the pagelist if they do.
485 */
486 static int queue_pages_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
487 unsigned long addr, unsigned long end,
488 const nodemask_t *nodes, unsigned long flags,
489 void *private)
490 {
491 pte_t *orig_pte;
492 pte_t *pte;
493 spinlock_t *ptl;
494
495 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
496 do {
497 struct page *page;
498 int nid;
499
500 if (!pte_present(*pte))
501 continue;
502 page = vm_normal_page(vma, addr, *pte);
503 if (!page)
504 continue;
505 /*
506 * vm_normal_page() filters out zero pages, but there might
507 * still be PageReserved pages to skip, perhaps in a VDSO.
508 */
509 if (PageReserved(page))
510 continue;
511 nid = page_to_nid(page);
512 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
513 continue;
514
515 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
516 migrate_page_add(page, private, flags);
517 else
518 break;
519 } while (pte++, addr += PAGE_SIZE, addr != end);
520 pte_unmap_unlock(orig_pte, ptl);
521 return addr != end;
522 }
523
524 static void queue_pages_hugetlb_pmd_range(struct vm_area_struct *vma,
525 pmd_t *pmd, const nodemask_t *nodes, unsigned long flags,
526 void *private)
527 {
528 #ifdef CONFIG_HUGETLB_PAGE
529 int nid;
530 struct page *page;
531 spinlock_t *ptl;
532 pte_t entry;
533
534 ptl = huge_pte_lock(hstate_vma(vma), vma->vm_mm, (pte_t *)pmd);
535 entry = huge_ptep_get((pte_t *)pmd);
536 if (!pte_present(entry))
537 goto unlock;
538 page = pte_page(entry);
539 nid = page_to_nid(page);
540 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
541 goto unlock;
542 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
543 if (flags & (MPOL_MF_MOVE_ALL) ||
544 (flags & MPOL_MF_MOVE && page_mapcount(page) == 1))
545 isolate_huge_page(page, private);
546 unlock:
547 spin_unlock(ptl);
548 #else
549 BUG();
550 #endif
551 }
552
553 static inline int queue_pages_pmd_range(struct vm_area_struct *vma, pud_t *pud,
554 unsigned long addr, unsigned long end,
555 const nodemask_t *nodes, unsigned long flags,
556 void *private)
557 {
558 pmd_t *pmd;
559 unsigned long next;
560
561 pmd = pmd_offset(pud, addr);
562 do {
563 next = pmd_addr_end(addr, end);
564 if (!pmd_present(*pmd))
565 continue;
566 if (pmd_huge(*pmd) && is_vm_hugetlb_page(vma)) {
567 queue_pages_hugetlb_pmd_range(vma, pmd, nodes,
568 flags, private);
569 continue;
570 }
571 split_huge_page_pmd(vma, addr, pmd);
572 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
573 continue;
574 if (queue_pages_pte_range(vma, pmd, addr, next, nodes,
575 flags, private))
576 return -EIO;
577 } while (pmd++, addr = next, addr != end);
578 return 0;
579 }
580
581 static inline int queue_pages_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
582 unsigned long addr, unsigned long end,
583 const nodemask_t *nodes, unsigned long flags,
584 void *private)
585 {
586 pud_t *pud;
587 unsigned long next;
588
589 pud = pud_offset(pgd, addr);
590 do {
591 next = pud_addr_end(addr, end);
592 if (pud_huge(*pud) && is_vm_hugetlb_page(vma))
593 continue;
594 if (pud_none_or_clear_bad(pud))
595 continue;
596 if (queue_pages_pmd_range(vma, pud, addr, next, nodes,
597 flags, private))
598 return -EIO;
599 } while (pud++, addr = next, addr != end);
600 return 0;
601 }
602
603 static inline int queue_pages_pgd_range(struct vm_area_struct *vma,
604 unsigned long addr, unsigned long end,
605 const nodemask_t *nodes, unsigned long flags,
606 void *private)
607 {
608 pgd_t *pgd;
609 unsigned long next;
610
611 pgd = pgd_offset(vma->vm_mm, addr);
612 do {
613 next = pgd_addr_end(addr, end);
614 if (pgd_none_or_clear_bad(pgd))
615 continue;
616 if (queue_pages_pud_range(vma, pgd, addr, next, nodes,
617 flags, private))
618 return -EIO;
619 } while (pgd++, addr = next, addr != end);
620 return 0;
621 }
622
623 #ifdef CONFIG_NUMA_BALANCING
624 /*
625 * This is used to mark a range of virtual addresses to be inaccessible.
626 * These are later cleared by a NUMA hinting fault. Depending on these
627 * faults, pages may be migrated for better NUMA placement.
628 *
629 * This is assuming that NUMA faults are handled using PROT_NONE. If
630 * an architecture makes a different choice, it will need further
631 * changes to the core.
632 */
633 unsigned long change_prot_numa(struct vm_area_struct *vma,
634 unsigned long addr, unsigned long end)
635 {
636 int nr_updated;
637
638 nr_updated = change_protection(vma, addr, end, vma->vm_page_prot, 0, 1);
639 if (nr_updated)
640 count_vm_numa_events(NUMA_PTE_UPDATES, nr_updated);
641
642 return nr_updated;
643 }
644 #else
645 static unsigned long change_prot_numa(struct vm_area_struct *vma,
646 unsigned long addr, unsigned long end)
647 {
648 return 0;
649 }
650 #endif /* CONFIG_NUMA_BALANCING */
651
652 /*
653 * Walk through page tables and collect pages to be migrated.
654 *
655 * If pages found in a given range are on a set of nodes (determined by
656 * @nodes and @flags,) it's isolated and queued to the pagelist which is
657 * passed via @private.)
658 */
659 static struct vm_area_struct *
660 queue_pages_range(struct mm_struct *mm, unsigned long start, unsigned long end,
661 const nodemask_t *nodes, unsigned long flags, void *private)
662 {
663 int err;
664 struct vm_area_struct *first, *vma, *prev;
665
666
667 first = find_vma(mm, start);
668 if (!first)
669 return ERR_PTR(-EFAULT);
670 prev = NULL;
671 for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
672 unsigned long endvma = vma->vm_end;
673
674 if (endvma > end)
675 endvma = end;
676 if (vma->vm_start > start)
677 start = vma->vm_start;
678
679 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
680 if (!vma->vm_next && vma->vm_end < end)
681 return ERR_PTR(-EFAULT);
682 if (prev && prev->vm_end < vma->vm_start)
683 return ERR_PTR(-EFAULT);
684 }
685
686 if (flags & MPOL_MF_LAZY) {
687 change_prot_numa(vma, start, endvma);
688 goto next;
689 }
690
691 if ((flags & MPOL_MF_STRICT) ||
692 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
693 vma_migratable(vma))) {
694
695 err = queue_pages_pgd_range(vma, start, endvma, nodes,
696 flags, private);
697 if (err) {
698 first = ERR_PTR(err);
699 break;
700 }
701 }
702 next:
703 prev = vma;
704 }
705 return first;
706 }
707
708 /*
709 * Apply policy to a single VMA
710 * This must be called with the mmap_sem held for writing.
711 */
712 static int vma_replace_policy(struct vm_area_struct *vma,
713 struct mempolicy *pol)
714 {
715 int err;
716 struct mempolicy *old;
717 struct mempolicy *new;
718
719 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
720 vma->vm_start, vma->vm_end, vma->vm_pgoff,
721 vma->vm_ops, vma->vm_file,
722 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
723
724 new = mpol_dup(pol);
725 if (IS_ERR(new))
726 return PTR_ERR(new);
727
728 if (vma->vm_ops && vma->vm_ops->set_policy) {
729 err = vma->vm_ops->set_policy(vma, new);
730 if (err)
731 goto err_out;
732 }
733
734 old = vma->vm_policy;
735 vma->vm_policy = new; /* protected by mmap_sem */
736 mpol_put(old);
737
738 return 0;
739 err_out:
740 mpol_put(new);
741 return err;
742 }
743
744 /* Step 2: apply policy to a range and do splits. */
745 static int mbind_range(struct mm_struct *mm, unsigned long start,
746 unsigned long end, struct mempolicy *new_pol)
747 {
748 struct vm_area_struct *next;
749 struct vm_area_struct *prev;
750 struct vm_area_struct *vma;
751 int err = 0;
752 pgoff_t pgoff;
753 unsigned long vmstart;
754 unsigned long vmend;
755
756 vma = find_vma(mm, start);
757 if (!vma || vma->vm_start > start)
758 return -EFAULT;
759
760 prev = vma->vm_prev;
761 if (start > vma->vm_start)
762 prev = vma;
763
764 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
765 next = vma->vm_next;
766 vmstart = max(start, vma->vm_start);
767 vmend = min(end, vma->vm_end);
768
769 if (mpol_equal(vma_policy(vma), new_pol))
770 continue;
771
772 pgoff = vma->vm_pgoff +
773 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
774 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
775 vma->anon_vma, vma->vm_file, pgoff,
776 new_pol);
777 if (prev) {
778 vma = prev;
779 next = vma->vm_next;
780 if (mpol_equal(vma_policy(vma), new_pol))
781 continue;
782 /* vma_merge() joined vma && vma->next, case 8 */
783 goto replace;
784 }
785 if (vma->vm_start != vmstart) {
786 err = split_vma(vma->vm_mm, vma, vmstart, 1);
787 if (err)
788 goto out;
789 }
790 if (vma->vm_end != vmend) {
791 err = split_vma(vma->vm_mm, vma, vmend, 0);
792 if (err)
793 goto out;
794 }
795 replace:
796 err = vma_replace_policy(vma, new_pol);
797 if (err)
798 goto out;
799 }
800
801 out:
802 return err;
803 }
804
805 /* Set the process memory policy */
806 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
807 nodemask_t *nodes)
808 {
809 struct mempolicy *new, *old;
810 struct mm_struct *mm = current->mm;
811 NODEMASK_SCRATCH(scratch);
812 int ret;
813
814 if (!scratch)
815 return -ENOMEM;
816
817 new = mpol_new(mode, flags, nodes);
818 if (IS_ERR(new)) {
819 ret = PTR_ERR(new);
820 goto out;
821 }
822 /*
823 * prevent changing our mempolicy while show_numa_maps()
824 * is using it.
825 * Note: do_set_mempolicy() can be called at init time
826 * with no 'mm'.
827 */
828 if (mm)
829 down_write(&mm->mmap_sem);
830 task_lock(current);
831 ret = mpol_set_nodemask(new, nodes, scratch);
832 if (ret) {
833 task_unlock(current);
834 if (mm)
835 up_write(&mm->mmap_sem);
836 mpol_put(new);
837 goto out;
838 }
839 old = current->mempolicy;
840 current->mempolicy = new;
841 if (new && new->mode == MPOL_INTERLEAVE &&
842 nodes_weight(new->v.nodes))
843 current->il_next = first_node(new->v.nodes);
844 task_unlock(current);
845 if (mm)
846 up_write(&mm->mmap_sem);
847
848 mpol_put(old);
849 ret = 0;
850 out:
851 NODEMASK_SCRATCH_FREE(scratch);
852 return ret;
853 }
854
855 /*
856 * Return nodemask for policy for get_mempolicy() query
857 *
858 * Called with task's alloc_lock held
859 */
860 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
861 {
862 nodes_clear(*nodes);
863 if (p == &default_policy)
864 return;
865
866 switch (p->mode) {
867 case MPOL_BIND:
868 /* Fall through */
869 case MPOL_INTERLEAVE:
870 *nodes = p->v.nodes;
871 break;
872 case MPOL_PREFERRED:
873 if (!(p->flags & MPOL_F_LOCAL))
874 node_set(p->v.preferred_node, *nodes);
875 /* else return empty node mask for local allocation */
876 break;
877 default:
878 BUG();
879 }
880 }
881
882 static int lookup_node(struct mm_struct *mm, unsigned long addr)
883 {
884 struct page *p;
885 int err;
886
887 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
888 if (err >= 0) {
889 err = page_to_nid(p);
890 put_page(p);
891 }
892 return err;
893 }
894
895 /* Retrieve NUMA policy */
896 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
897 unsigned long addr, unsigned long flags)
898 {
899 int err;
900 struct mm_struct *mm = current->mm;
901 struct vm_area_struct *vma = NULL;
902 struct mempolicy *pol = current->mempolicy;
903
904 if (flags &
905 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
906 return -EINVAL;
907
908 if (flags & MPOL_F_MEMS_ALLOWED) {
909 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
910 return -EINVAL;
911 *policy = 0; /* just so it's initialized */
912 task_lock(current);
913 *nmask = cpuset_current_mems_allowed;
914 task_unlock(current);
915 return 0;
916 }
917
918 if (flags & MPOL_F_ADDR) {
919 /*
920 * Do NOT fall back to task policy if the
921 * vma/shared policy at addr is NULL. We
922 * want to return MPOL_DEFAULT in this case.
923 */
924 down_read(&mm->mmap_sem);
925 vma = find_vma_intersection(mm, addr, addr+1);
926 if (!vma) {
927 up_read(&mm->mmap_sem);
928 return -EFAULT;
929 }
930 if (vma->vm_ops && vma->vm_ops->get_policy)
931 pol = vma->vm_ops->get_policy(vma, addr);
932 else
933 pol = vma->vm_policy;
934 } else if (addr)
935 return -EINVAL;
936
937 if (!pol)
938 pol = &default_policy; /* indicates default behavior */
939
940 if (flags & MPOL_F_NODE) {
941 if (flags & MPOL_F_ADDR) {
942 err = lookup_node(mm, addr);
943 if (err < 0)
944 goto out;
945 *policy = err;
946 } else if (pol == current->mempolicy &&
947 pol->mode == MPOL_INTERLEAVE) {
948 *policy = current->il_next;
949 } else {
950 err = -EINVAL;
951 goto out;
952 }
953 } else {
954 *policy = pol == &default_policy ? MPOL_DEFAULT :
955 pol->mode;
956 /*
957 * Internal mempolicy flags must be masked off before exposing
958 * the policy to userspace.
959 */
960 *policy |= (pol->flags & MPOL_MODE_FLAGS);
961 }
962
963 if (vma) {
964 up_read(&current->mm->mmap_sem);
965 vma = NULL;
966 }
967
968 err = 0;
969 if (nmask) {
970 if (mpol_store_user_nodemask(pol)) {
971 *nmask = pol->w.user_nodemask;
972 } else {
973 task_lock(current);
974 get_policy_nodemask(pol, nmask);
975 task_unlock(current);
976 }
977 }
978
979 out:
980 mpol_cond_put(pol);
981 if (vma)
982 up_read(&current->mm->mmap_sem);
983 return err;
984 }
985
986 #ifdef CONFIG_MIGRATION
987 /*
988 * page migration
989 */
990 static void migrate_page_add(struct page *page, struct list_head *pagelist,
991 unsigned long flags)
992 {
993 /*
994 * Avoid migrating a page that is shared with others.
995 */
996 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
997 if (!isolate_lru_page(page)) {
998 list_add_tail(&page->lru, pagelist);
999 inc_zone_page_state(page, NR_ISOLATED_ANON +
1000 page_is_file_cache(page));
1001 }
1002 }
1003 }
1004
1005 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
1006 {
1007 if (PageHuge(page))
1008 return alloc_huge_page_node(page_hstate(compound_head(page)),
1009 node);
1010 else
1011 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
1012 }
1013
1014 /*
1015 * Migrate pages from one node to a target node.
1016 * Returns error or the number of pages not migrated.
1017 */
1018 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
1019 int flags)
1020 {
1021 nodemask_t nmask;
1022 LIST_HEAD(pagelist);
1023 int err = 0;
1024
1025 nodes_clear(nmask);
1026 node_set(source, nmask);
1027
1028 /*
1029 * This does not "check" the range but isolates all pages that
1030 * need migration. Between passing in the full user address
1031 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1032 */
1033 VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
1034 queue_pages_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
1035 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
1036
1037 if (!list_empty(&pagelist)) {
1038 err = migrate_pages(&pagelist, new_node_page, NULL, dest,
1039 MIGRATE_SYNC, MR_SYSCALL);
1040 if (err)
1041 putback_movable_pages(&pagelist);
1042 }
1043
1044 return err;
1045 }
1046
1047 /*
1048 * Move pages between the two nodesets so as to preserve the physical
1049 * layout as much as possible.
1050 *
1051 * Returns the number of page that could not be moved.
1052 */
1053 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1054 const nodemask_t *to, int flags)
1055 {
1056 int busy = 0;
1057 int err;
1058 nodemask_t tmp;
1059
1060 err = migrate_prep();
1061 if (err)
1062 return err;
1063
1064 down_read(&mm->mmap_sem);
1065
1066 err = migrate_vmas(mm, from, to, flags);
1067 if (err)
1068 goto out;
1069
1070 /*
1071 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1072 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1073 * bit in 'tmp', and return that <source, dest> pair for migration.
1074 * The pair of nodemasks 'to' and 'from' define the map.
1075 *
1076 * If no pair of bits is found that way, fallback to picking some
1077 * pair of 'source' and 'dest' bits that are not the same. If the
1078 * 'source' and 'dest' bits are the same, this represents a node
1079 * that will be migrating to itself, so no pages need move.
1080 *
1081 * If no bits are left in 'tmp', or if all remaining bits left
1082 * in 'tmp' correspond to the same bit in 'to', return false
1083 * (nothing left to migrate).
1084 *
1085 * This lets us pick a pair of nodes to migrate between, such that
1086 * if possible the dest node is not already occupied by some other
1087 * source node, minimizing the risk of overloading the memory on a
1088 * node that would happen if we migrated incoming memory to a node
1089 * before migrating outgoing memory source that same node.
1090 *
1091 * A single scan of tmp is sufficient. As we go, we remember the
1092 * most recent <s, d> pair that moved (s != d). If we find a pair
1093 * that not only moved, but what's better, moved to an empty slot
1094 * (d is not set in tmp), then we break out then, with that pair.
1095 * Otherwise when we finish scanning from_tmp, we at least have the
1096 * most recent <s, d> pair that moved. If we get all the way through
1097 * the scan of tmp without finding any node that moved, much less
1098 * moved to an empty node, then there is nothing left worth migrating.
1099 */
1100
1101 tmp = *from;
1102 while (!nodes_empty(tmp)) {
1103 int s,d;
1104 int source = NUMA_NO_NODE;
1105 int dest = 0;
1106
1107 for_each_node_mask(s, tmp) {
1108
1109 /*
1110 * do_migrate_pages() tries to maintain the relative
1111 * node relationship of the pages established between
1112 * threads and memory areas.
1113 *
1114 * However if the number of source nodes is not equal to
1115 * the number of destination nodes we can not preserve
1116 * this node relative relationship. In that case, skip
1117 * copying memory from a node that is in the destination
1118 * mask.
1119 *
1120 * Example: [2,3,4] -> [3,4,5] moves everything.
1121 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1122 */
1123
1124 if ((nodes_weight(*from) != nodes_weight(*to)) &&
1125 (node_isset(s, *to)))
1126 continue;
1127
1128 d = node_remap(s, *from, *to);
1129 if (s == d)
1130 continue;
1131
1132 source = s; /* Node moved. Memorize */
1133 dest = d;
1134
1135 /* dest not in remaining from nodes? */
1136 if (!node_isset(dest, tmp))
1137 break;
1138 }
1139 if (source == NUMA_NO_NODE)
1140 break;
1141
1142 node_clear(source, tmp);
1143 err = migrate_to_node(mm, source, dest, flags);
1144 if (err > 0)
1145 busy += err;
1146 if (err < 0)
1147 break;
1148 }
1149 out:
1150 up_read(&mm->mmap_sem);
1151 if (err < 0)
1152 return err;
1153 return busy;
1154
1155 }
1156
1157 /*
1158 * Allocate a new page for page migration based on vma policy.
1159 * Start assuming that page is mapped by vma pointed to by @private.
1160 * Search forward from there, if not. N.B., this assumes that the
1161 * list of pages handed to migrate_pages()--which is how we get here--
1162 * is in virtual address order.
1163 */
1164 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1165 {
1166 struct vm_area_struct *vma = (struct vm_area_struct *)private;
1167 unsigned long uninitialized_var(address);
1168
1169 while (vma) {
1170 address = page_address_in_vma(page, vma);
1171 if (address != -EFAULT)
1172 break;
1173 vma = vma->vm_next;
1174 }
1175
1176 if (PageHuge(page)) {
1177 BUG_ON(!vma);
1178 return alloc_huge_page_noerr(vma, address, 1);
1179 }
1180 /*
1181 * if !vma, alloc_page_vma() will use task or system default policy
1182 */
1183 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1184 }
1185 #else
1186
1187 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1188 unsigned long flags)
1189 {
1190 }
1191
1192 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1193 const nodemask_t *to, int flags)
1194 {
1195 return -ENOSYS;
1196 }
1197
1198 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1199 {
1200 return NULL;
1201 }
1202 #endif
1203
1204 static long do_mbind(unsigned long start, unsigned long len,
1205 unsigned short mode, unsigned short mode_flags,
1206 nodemask_t *nmask, unsigned long flags)
1207 {
1208 struct vm_area_struct *vma;
1209 struct mm_struct *mm = current->mm;
1210 struct mempolicy *new;
1211 unsigned long end;
1212 int err;
1213 LIST_HEAD(pagelist);
1214
1215 if (flags & ~(unsigned long)MPOL_MF_VALID)
1216 return -EINVAL;
1217 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1218 return -EPERM;
1219
1220 if (start & ~PAGE_MASK)
1221 return -EINVAL;
1222
1223 if (mode == MPOL_DEFAULT)
1224 flags &= ~MPOL_MF_STRICT;
1225
1226 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1227 end = start + len;
1228
1229 if (end < start)
1230 return -EINVAL;
1231 if (end == start)
1232 return 0;
1233
1234 new = mpol_new(mode, mode_flags, nmask);
1235 if (IS_ERR(new))
1236 return PTR_ERR(new);
1237
1238 if (flags & MPOL_MF_LAZY)
1239 new->flags |= MPOL_F_MOF;
1240
1241 /*
1242 * If we are using the default policy then operation
1243 * on discontinuous address spaces is okay after all
1244 */
1245 if (!new)
1246 flags |= MPOL_MF_DISCONTIG_OK;
1247
1248 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1249 start, start + len, mode, mode_flags,
1250 nmask ? nodes_addr(*nmask)[0] : NUMA_NO_NODE);
1251
1252 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1253
1254 err = migrate_prep();
1255 if (err)
1256 goto mpol_out;
1257 }
1258 {
1259 NODEMASK_SCRATCH(scratch);
1260 if (scratch) {
1261 down_write(&mm->mmap_sem);
1262 task_lock(current);
1263 err = mpol_set_nodemask(new, nmask, scratch);
1264 task_unlock(current);
1265 if (err)
1266 up_write(&mm->mmap_sem);
1267 } else
1268 err = -ENOMEM;
1269 NODEMASK_SCRATCH_FREE(scratch);
1270 }
1271 if (err)
1272 goto mpol_out;
1273
1274 vma = queue_pages_range(mm, start, end, nmask,
1275 flags | MPOL_MF_INVERT, &pagelist);
1276
1277 err = PTR_ERR(vma); /* maybe ... */
1278 if (!IS_ERR(vma))
1279 err = mbind_range(mm, start, end, new);
1280
1281 if (!err) {
1282 int nr_failed = 0;
1283
1284 if (!list_empty(&pagelist)) {
1285 WARN_ON_ONCE(flags & MPOL_MF_LAZY);
1286 nr_failed = migrate_pages(&pagelist, new_vma_page,
1287 NULL, (unsigned long)vma,
1288 MIGRATE_SYNC, MR_MEMPOLICY_MBIND);
1289 if (nr_failed)
1290 putback_movable_pages(&pagelist);
1291 }
1292
1293 if (nr_failed && (flags & MPOL_MF_STRICT))
1294 err = -EIO;
1295 } else
1296 putback_movable_pages(&pagelist);
1297
1298 up_write(&mm->mmap_sem);
1299 mpol_out:
1300 mpol_put(new);
1301 return err;
1302 }
1303
1304 /*
1305 * User space interface with variable sized bitmaps for nodelists.
1306 */
1307
1308 /* Copy a node mask from user space. */
1309 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1310 unsigned long maxnode)
1311 {
1312 unsigned long k;
1313 unsigned long nlongs;
1314 unsigned long endmask;
1315
1316 --maxnode;
1317 nodes_clear(*nodes);
1318 if (maxnode == 0 || !nmask)
1319 return 0;
1320 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1321 return -EINVAL;
1322
1323 nlongs = BITS_TO_LONGS(maxnode);
1324 if ((maxnode % BITS_PER_LONG) == 0)
1325 endmask = ~0UL;
1326 else
1327 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1328
1329 /* When the user specified more nodes than supported just check
1330 if the non supported part is all zero. */
1331 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1332 if (nlongs > PAGE_SIZE/sizeof(long))
1333 return -EINVAL;
1334 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1335 unsigned long t;
1336 if (get_user(t, nmask + k))
1337 return -EFAULT;
1338 if (k == nlongs - 1) {
1339 if (t & endmask)
1340 return -EINVAL;
1341 } else if (t)
1342 return -EINVAL;
1343 }
1344 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1345 endmask = ~0UL;
1346 }
1347
1348 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1349 return -EFAULT;
1350 nodes_addr(*nodes)[nlongs-1] &= endmask;
1351 return 0;
1352 }
1353
1354 /* Copy a kernel node mask to user space */
1355 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1356 nodemask_t *nodes)
1357 {
1358 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1359 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1360
1361 if (copy > nbytes) {
1362 if (copy > PAGE_SIZE)
1363 return -EINVAL;
1364 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1365 return -EFAULT;
1366 copy = nbytes;
1367 }
1368 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1369 }
1370
1371 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1372 unsigned long, mode, const unsigned long __user *, nmask,
1373 unsigned long, maxnode, unsigned, flags)
1374 {
1375 nodemask_t nodes;
1376 int err;
1377 unsigned short mode_flags;
1378
1379 mode_flags = mode & MPOL_MODE_FLAGS;
1380 mode &= ~MPOL_MODE_FLAGS;
1381 if (mode >= MPOL_MAX)
1382 return -EINVAL;
1383 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1384 (mode_flags & MPOL_F_RELATIVE_NODES))
1385 return -EINVAL;
1386 err = get_nodes(&nodes, nmask, maxnode);
1387 if (err)
1388 return err;
1389 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1390 }
1391
1392 /* Set the process memory policy */
1393 SYSCALL_DEFINE3(set_mempolicy, int, mode, const unsigned long __user *, nmask,
1394 unsigned long, maxnode)
1395 {
1396 int err;
1397 nodemask_t nodes;
1398 unsigned short flags;
1399
1400 flags = mode & MPOL_MODE_FLAGS;
1401 mode &= ~MPOL_MODE_FLAGS;
1402 if ((unsigned int)mode >= MPOL_MAX)
1403 return -EINVAL;
1404 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1405 return -EINVAL;
1406 err = get_nodes(&nodes, nmask, maxnode);
1407 if (err)
1408 return err;
1409 return do_set_mempolicy(mode, flags, &nodes);
1410 }
1411
1412 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1413 const unsigned long __user *, old_nodes,
1414 const unsigned long __user *, new_nodes)
1415 {
1416 const struct cred *cred = current_cred(), *tcred;
1417 struct mm_struct *mm = NULL;
1418 struct task_struct *task;
1419 nodemask_t task_nodes;
1420 int err;
1421 nodemask_t *old;
1422 nodemask_t *new;
1423 NODEMASK_SCRATCH(scratch);
1424
1425 if (!scratch)
1426 return -ENOMEM;
1427
1428 old = &scratch->mask1;
1429 new = &scratch->mask2;
1430
1431 err = get_nodes(old, old_nodes, maxnode);
1432 if (err)
1433 goto out;
1434
1435 err = get_nodes(new, new_nodes, maxnode);
1436 if (err)
1437 goto out;
1438
1439 /* Find the mm_struct */
1440 rcu_read_lock();
1441 task = pid ? find_task_by_vpid(pid) : current;
1442 if (!task) {
1443 rcu_read_unlock();
1444 err = -ESRCH;
1445 goto out;
1446 }
1447 get_task_struct(task);
1448
1449 err = -EINVAL;
1450
1451 /*
1452 * Check if this process has the right to modify the specified
1453 * process. The right exists if the process has administrative
1454 * capabilities, superuser privileges or the same
1455 * userid as the target process.
1456 */
1457 tcred = __task_cred(task);
1458 if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1459 !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1460 !capable(CAP_SYS_NICE)) {
1461 rcu_read_unlock();
1462 err = -EPERM;
1463 goto out_put;
1464 }
1465 rcu_read_unlock();
1466
1467 task_nodes = cpuset_mems_allowed(task);
1468 /* Is the user allowed to access the target nodes? */
1469 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1470 err = -EPERM;
1471 goto out_put;
1472 }
1473
1474 if (!nodes_subset(*new, node_states[N_MEMORY])) {
1475 err = -EINVAL;
1476 goto out_put;
1477 }
1478
1479 err = security_task_movememory(task);
1480 if (err)
1481 goto out_put;
1482
1483 mm = get_task_mm(task);
1484 put_task_struct(task);
1485
1486 if (!mm) {
1487 err = -EINVAL;
1488 goto out;
1489 }
1490
1491 err = do_migrate_pages(mm, old, new,
1492 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1493
1494 mmput(mm);
1495 out:
1496 NODEMASK_SCRATCH_FREE(scratch);
1497
1498 return err;
1499
1500 out_put:
1501 put_task_struct(task);
1502 goto out;
1503
1504 }
1505
1506
1507 /* Retrieve NUMA policy */
1508 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1509 unsigned long __user *, nmask, unsigned long, maxnode,
1510 unsigned long, addr, unsigned long, flags)
1511 {
1512 int err;
1513 int uninitialized_var(pval);
1514 nodemask_t nodes;
1515
1516 if (nmask != NULL && maxnode < MAX_NUMNODES)
1517 return -EINVAL;
1518
1519 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1520
1521 if (err)
1522 return err;
1523
1524 if (policy && put_user(pval, policy))
1525 return -EFAULT;
1526
1527 if (nmask)
1528 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1529
1530 return err;
1531 }
1532
1533 #ifdef CONFIG_COMPAT
1534
1535 COMPAT_SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1536 compat_ulong_t __user *, nmask,
1537 compat_ulong_t, maxnode,
1538 compat_ulong_t, addr, compat_ulong_t, flags)
1539 {
1540 long err;
1541 unsigned long __user *nm = NULL;
1542 unsigned long nr_bits, alloc_size;
1543 DECLARE_BITMAP(bm, MAX_NUMNODES);
1544
1545 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1546 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1547
1548 if (nmask)
1549 nm = compat_alloc_user_space(alloc_size);
1550
1551 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1552
1553 if (!err && nmask) {
1554 unsigned long copy_size;
1555 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1556 err = copy_from_user(bm, nm, copy_size);
1557 /* ensure entire bitmap is zeroed */
1558 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1559 err |= compat_put_bitmap(nmask, bm, nr_bits);
1560 }
1561
1562 return err;
1563 }
1564
1565 COMPAT_SYSCALL_DEFINE3(set_mempolicy, int, mode, compat_ulong_t __user *, nmask,
1566 compat_ulong_t, maxnode)
1567 {
1568 long err = 0;
1569 unsigned long __user *nm = NULL;
1570 unsigned long nr_bits, alloc_size;
1571 DECLARE_BITMAP(bm, MAX_NUMNODES);
1572
1573 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1574 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1575
1576 if (nmask) {
1577 err = compat_get_bitmap(bm, nmask, nr_bits);
1578 nm = compat_alloc_user_space(alloc_size);
1579 err |= copy_to_user(nm, bm, alloc_size);
1580 }
1581
1582 if (err)
1583 return -EFAULT;
1584
1585 return sys_set_mempolicy(mode, nm, nr_bits+1);
1586 }
1587
1588 COMPAT_SYSCALL_DEFINE6(mbind, compat_ulong_t, start, compat_ulong_t, len,
1589 compat_ulong_t, mode, compat_ulong_t __user *, nmask,
1590 compat_ulong_t, maxnode, compat_ulong_t, flags)
1591 {
1592 long err = 0;
1593 unsigned long __user *nm = NULL;
1594 unsigned long nr_bits, alloc_size;
1595 nodemask_t bm;
1596
1597 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1598 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1599
1600 if (nmask) {
1601 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1602 nm = compat_alloc_user_space(alloc_size);
1603 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1604 }
1605
1606 if (err)
1607 return -EFAULT;
1608
1609 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1610 }
1611
1612 #endif
1613
1614 /*
1615 * get_vma_policy(@task, @vma, @addr)
1616 * @task: task for fallback if vma policy == default
1617 * @vma: virtual memory area whose policy is sought
1618 * @addr: address in @vma for shared policy lookup
1619 *
1620 * Returns effective policy for a VMA at specified address.
1621 * Falls back to @task or system default policy, as necessary.
1622 * Current or other task's task mempolicy and non-shared vma policies must be
1623 * protected by task_lock(task) by the caller.
1624 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1625 * count--added by the get_policy() vm_op, as appropriate--to protect against
1626 * freeing by another task. It is the caller's responsibility to free the
1627 * extra reference for shared policies.
1628 */
1629 struct mempolicy *get_vma_policy(struct task_struct *task,
1630 struct vm_area_struct *vma, unsigned long addr)
1631 {
1632 struct mempolicy *pol = get_task_policy(task);
1633
1634 if (vma) {
1635 if (vma->vm_ops && vma->vm_ops->get_policy) {
1636 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1637 addr);
1638 if (vpol)
1639 pol = vpol;
1640 } else if (vma->vm_policy) {
1641 pol = vma->vm_policy;
1642
1643 /*
1644 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1645 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1646 * count on these policies which will be dropped by
1647 * mpol_cond_put() later
1648 */
1649 if (mpol_needs_cond_ref(pol))
1650 mpol_get(pol);
1651 }
1652 }
1653 if (!pol)
1654 pol = &default_policy;
1655 return pol;
1656 }
1657
1658 bool vma_policy_mof(struct task_struct *task, struct vm_area_struct *vma)
1659 {
1660 struct mempolicy *pol = get_task_policy(task);
1661 if (vma) {
1662 if (vma->vm_ops && vma->vm_ops->get_policy) {
1663 bool ret = false;
1664
1665 pol = vma->vm_ops->get_policy(vma, vma->vm_start);
1666 if (pol && (pol->flags & MPOL_F_MOF))
1667 ret = true;
1668 mpol_cond_put(pol);
1669
1670 return ret;
1671 } else if (vma->vm_policy) {
1672 pol = vma->vm_policy;
1673 }
1674 }
1675
1676 if (!pol)
1677 return default_policy.flags & MPOL_F_MOF;
1678
1679 return pol->flags & MPOL_F_MOF;
1680 }
1681
1682 static int apply_policy_zone(struct mempolicy *policy, enum zone_type zone)
1683 {
1684 enum zone_type dynamic_policy_zone = policy_zone;
1685
1686 BUG_ON(dynamic_policy_zone == ZONE_MOVABLE);
1687
1688 /*
1689 * if policy->v.nodes has movable memory only,
1690 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1691 *
1692 * policy->v.nodes is intersect with node_states[N_MEMORY].
1693 * so if the following test faile, it implies
1694 * policy->v.nodes has movable memory only.
1695 */
1696 if (!nodes_intersects(policy->v.nodes, node_states[N_HIGH_MEMORY]))
1697 dynamic_policy_zone = ZONE_MOVABLE;
1698
1699 return zone >= dynamic_policy_zone;
1700 }
1701
1702 /*
1703 * Return a nodemask representing a mempolicy for filtering nodes for
1704 * page allocation
1705 */
1706 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1707 {
1708 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1709 if (unlikely(policy->mode == MPOL_BIND) &&
1710 apply_policy_zone(policy, gfp_zone(gfp)) &&
1711 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1712 return &policy->v.nodes;
1713
1714 return NULL;
1715 }
1716
1717 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1718 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1719 int nd)
1720 {
1721 switch (policy->mode) {
1722 case MPOL_PREFERRED:
1723 if (!(policy->flags & MPOL_F_LOCAL))
1724 nd = policy->v.preferred_node;
1725 break;
1726 case MPOL_BIND:
1727 /*
1728 * Normally, MPOL_BIND allocations are node-local within the
1729 * allowed nodemask. However, if __GFP_THISNODE is set and the
1730 * current node isn't part of the mask, we use the zonelist for
1731 * the first node in the mask instead.
1732 */
1733 if (unlikely(gfp & __GFP_THISNODE) &&
1734 unlikely(!node_isset(nd, policy->v.nodes)))
1735 nd = first_node(policy->v.nodes);
1736 break;
1737 default:
1738 BUG();
1739 }
1740 return node_zonelist(nd, gfp);
1741 }
1742
1743 /* Do dynamic interleaving for a process */
1744 static unsigned interleave_nodes(struct mempolicy *policy)
1745 {
1746 unsigned nid, next;
1747 struct task_struct *me = current;
1748
1749 nid = me->il_next;
1750 next = next_node(nid, policy->v.nodes);
1751 if (next >= MAX_NUMNODES)
1752 next = first_node(policy->v.nodes);
1753 if (next < MAX_NUMNODES)
1754 me->il_next = next;
1755 return nid;
1756 }
1757
1758 /*
1759 * Depending on the memory policy provide a node from which to allocate the
1760 * next slab entry.
1761 */
1762 unsigned int mempolicy_slab_node(void)
1763 {
1764 struct mempolicy *policy;
1765 int node = numa_mem_id();
1766
1767 if (in_interrupt())
1768 return node;
1769
1770 policy = current->mempolicy;
1771 if (!policy || policy->flags & MPOL_F_LOCAL)
1772 return node;
1773
1774 switch (policy->mode) {
1775 case MPOL_PREFERRED:
1776 /*
1777 * handled MPOL_F_LOCAL above
1778 */
1779 return policy->v.preferred_node;
1780
1781 case MPOL_INTERLEAVE:
1782 return interleave_nodes(policy);
1783
1784 case MPOL_BIND: {
1785 /*
1786 * Follow bind policy behavior and start allocation at the
1787 * first node.
1788 */
1789 struct zonelist *zonelist;
1790 struct zone *zone;
1791 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1792 zonelist = &NODE_DATA(node)->node_zonelists[0];
1793 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1794 &policy->v.nodes,
1795 &zone);
1796 return zone ? zone->node : node;
1797 }
1798
1799 default:
1800 BUG();
1801 }
1802 }
1803
1804 /* Do static interleaving for a VMA with known offset. */
1805 static unsigned offset_il_node(struct mempolicy *pol,
1806 struct vm_area_struct *vma, unsigned long off)
1807 {
1808 unsigned nnodes = nodes_weight(pol->v.nodes);
1809 unsigned target;
1810 int c;
1811 int nid = NUMA_NO_NODE;
1812
1813 if (!nnodes)
1814 return numa_node_id();
1815 target = (unsigned int)off % nnodes;
1816 c = 0;
1817 do {
1818 nid = next_node(nid, pol->v.nodes);
1819 c++;
1820 } while (c <= target);
1821 return nid;
1822 }
1823
1824 /* Determine a node number for interleave */
1825 static inline unsigned interleave_nid(struct mempolicy *pol,
1826 struct vm_area_struct *vma, unsigned long addr, int shift)
1827 {
1828 if (vma) {
1829 unsigned long off;
1830
1831 /*
1832 * for small pages, there is no difference between
1833 * shift and PAGE_SHIFT, so the bit-shift is safe.
1834 * for huge pages, since vm_pgoff is in units of small
1835 * pages, we need to shift off the always 0 bits to get
1836 * a useful offset.
1837 */
1838 BUG_ON(shift < PAGE_SHIFT);
1839 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1840 off += (addr - vma->vm_start) >> shift;
1841 return offset_il_node(pol, vma, off);
1842 } else
1843 return interleave_nodes(pol);
1844 }
1845
1846 /*
1847 * Return the bit number of a random bit set in the nodemask.
1848 * (returns NUMA_NO_NODE if nodemask is empty)
1849 */
1850 int node_random(const nodemask_t *maskp)
1851 {
1852 int w, bit = NUMA_NO_NODE;
1853
1854 w = nodes_weight(*maskp);
1855 if (w)
1856 bit = bitmap_ord_to_pos(maskp->bits,
1857 get_random_int() % w, MAX_NUMNODES);
1858 return bit;
1859 }
1860
1861 #ifdef CONFIG_HUGETLBFS
1862 /*
1863 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1864 * @vma: virtual memory area whose policy is sought
1865 * @addr: address in @vma for shared policy lookup and interleave policy
1866 * @gfp_flags: for requested zone
1867 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1868 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1869 *
1870 * Returns a zonelist suitable for a huge page allocation and a pointer
1871 * to the struct mempolicy for conditional unref after allocation.
1872 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1873 * @nodemask for filtering the zonelist.
1874 *
1875 * Must be protected by read_mems_allowed_begin()
1876 */
1877 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1878 gfp_t gfp_flags, struct mempolicy **mpol,
1879 nodemask_t **nodemask)
1880 {
1881 struct zonelist *zl;
1882
1883 *mpol = get_vma_policy(current, vma, addr);
1884 *nodemask = NULL; /* assume !MPOL_BIND */
1885
1886 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1887 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1888 huge_page_shift(hstate_vma(vma))), gfp_flags);
1889 } else {
1890 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1891 if ((*mpol)->mode == MPOL_BIND)
1892 *nodemask = &(*mpol)->v.nodes;
1893 }
1894 return zl;
1895 }
1896
1897 /*
1898 * init_nodemask_of_mempolicy
1899 *
1900 * If the current task's mempolicy is "default" [NULL], return 'false'
1901 * to indicate default policy. Otherwise, extract the policy nodemask
1902 * for 'bind' or 'interleave' policy into the argument nodemask, or
1903 * initialize the argument nodemask to contain the single node for
1904 * 'preferred' or 'local' policy and return 'true' to indicate presence
1905 * of non-default mempolicy.
1906 *
1907 * We don't bother with reference counting the mempolicy [mpol_get/put]
1908 * because the current task is examining it's own mempolicy and a task's
1909 * mempolicy is only ever changed by the task itself.
1910 *
1911 * N.B., it is the caller's responsibility to free a returned nodemask.
1912 */
1913 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1914 {
1915 struct mempolicy *mempolicy;
1916 int nid;
1917
1918 if (!(mask && current->mempolicy))
1919 return false;
1920
1921 task_lock(current);
1922 mempolicy = current->mempolicy;
1923 switch (mempolicy->mode) {
1924 case MPOL_PREFERRED:
1925 if (mempolicy->flags & MPOL_F_LOCAL)
1926 nid = numa_node_id();
1927 else
1928 nid = mempolicy->v.preferred_node;
1929 init_nodemask_of_node(mask, nid);
1930 break;
1931
1932 case MPOL_BIND:
1933 /* Fall through */
1934 case MPOL_INTERLEAVE:
1935 *mask = mempolicy->v.nodes;
1936 break;
1937
1938 default:
1939 BUG();
1940 }
1941 task_unlock(current);
1942
1943 return true;
1944 }
1945 #endif
1946
1947 /*
1948 * mempolicy_nodemask_intersects
1949 *
1950 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1951 * policy. Otherwise, check for intersection between mask and the policy
1952 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1953 * policy, always return true since it may allocate elsewhere on fallback.
1954 *
1955 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1956 */
1957 bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1958 const nodemask_t *mask)
1959 {
1960 struct mempolicy *mempolicy;
1961 bool ret = true;
1962
1963 if (!mask)
1964 return ret;
1965 task_lock(tsk);
1966 mempolicy = tsk->mempolicy;
1967 if (!mempolicy)
1968 goto out;
1969
1970 switch (mempolicy->mode) {
1971 case MPOL_PREFERRED:
1972 /*
1973 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1974 * allocate from, they may fallback to other nodes when oom.
1975 * Thus, it's possible for tsk to have allocated memory from
1976 * nodes in mask.
1977 */
1978 break;
1979 case MPOL_BIND:
1980 case MPOL_INTERLEAVE:
1981 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1982 break;
1983 default:
1984 BUG();
1985 }
1986 out:
1987 task_unlock(tsk);
1988 return ret;
1989 }
1990
1991 /* Allocate a page in interleaved policy.
1992 Own path because it needs to do special accounting. */
1993 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1994 unsigned nid)
1995 {
1996 struct zonelist *zl;
1997 struct page *page;
1998
1999 zl = node_zonelist(nid, gfp);
2000 page = __alloc_pages(gfp, order, zl);
2001 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
2002 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
2003 return page;
2004 }
2005
2006 /**
2007 * alloc_pages_vma - Allocate a page for a VMA.
2008 *
2009 * @gfp:
2010 * %GFP_USER user allocation.
2011 * %GFP_KERNEL kernel allocations,
2012 * %GFP_HIGHMEM highmem/user allocations,
2013 * %GFP_FS allocation should not call back into a file system.
2014 * %GFP_ATOMIC don't sleep.
2015 *
2016 * @order:Order of the GFP allocation.
2017 * @vma: Pointer to VMA or NULL if not available.
2018 * @addr: Virtual Address of the allocation. Must be inside the VMA.
2019 *
2020 * This function allocates a page from the kernel page pool and applies
2021 * a NUMA policy associated with the VMA or the current process.
2022 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
2023 * mm_struct of the VMA to prevent it from going away. Should be used for
2024 * all allocations for pages that will be mapped into
2025 * user space. Returns NULL when no page can be allocated.
2026 *
2027 * Should be called with the mm_sem of the vma hold.
2028 */
2029 struct page *
2030 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
2031 unsigned long addr, int node)
2032 {
2033 struct mempolicy *pol;
2034 struct page *page;
2035 unsigned int cpuset_mems_cookie;
2036
2037 retry_cpuset:
2038 pol = get_vma_policy(current, vma, addr);
2039 cpuset_mems_cookie = read_mems_allowed_begin();
2040
2041 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
2042 unsigned nid;
2043
2044 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
2045 mpol_cond_put(pol);
2046 page = alloc_page_interleave(gfp, order, nid);
2047 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2048 goto retry_cpuset;
2049
2050 return page;
2051 }
2052 page = __alloc_pages_nodemask(gfp, order,
2053 policy_zonelist(gfp, pol, node),
2054 policy_nodemask(gfp, pol));
2055 if (unlikely(mpol_needs_cond_ref(pol)))
2056 __mpol_put(pol);
2057 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2058 goto retry_cpuset;
2059 return page;
2060 }
2061
2062 /**
2063 * alloc_pages_current - Allocate pages.
2064 *
2065 * @gfp:
2066 * %GFP_USER user allocation,
2067 * %GFP_KERNEL kernel allocation,
2068 * %GFP_HIGHMEM highmem allocation,
2069 * %GFP_FS don't call back into a file system.
2070 * %GFP_ATOMIC don't sleep.
2071 * @order: Power of two of allocation size in pages. 0 is a single page.
2072 *
2073 * Allocate a page from the kernel page pool. When not in
2074 * interrupt context and apply the current process NUMA policy.
2075 * Returns NULL when no page can be allocated.
2076 *
2077 * Don't call cpuset_update_task_memory_state() unless
2078 * 1) it's ok to take cpuset_sem (can WAIT), and
2079 * 2) allocating for current task (not interrupt).
2080 */
2081 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
2082 {
2083 struct mempolicy *pol = get_task_policy(current);
2084 struct page *page;
2085 unsigned int cpuset_mems_cookie;
2086
2087 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
2088 pol = &default_policy;
2089
2090 retry_cpuset:
2091 cpuset_mems_cookie = read_mems_allowed_begin();
2092
2093 /*
2094 * No reference counting needed for current->mempolicy
2095 * nor system default_policy
2096 */
2097 if (pol->mode == MPOL_INTERLEAVE)
2098 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
2099 else
2100 page = __alloc_pages_nodemask(gfp, order,
2101 policy_zonelist(gfp, pol, numa_node_id()),
2102 policy_nodemask(gfp, pol));
2103
2104 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2105 goto retry_cpuset;
2106
2107 return page;
2108 }
2109 EXPORT_SYMBOL(alloc_pages_current);
2110
2111 int vma_dup_policy(struct vm_area_struct *src, struct vm_area_struct *dst)
2112 {
2113 struct mempolicy *pol = mpol_dup(vma_policy(src));
2114
2115 if (IS_ERR(pol))
2116 return PTR_ERR(pol);
2117 dst->vm_policy = pol;
2118 return 0;
2119 }
2120
2121 /*
2122 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2123 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2124 * with the mems_allowed returned by cpuset_mems_allowed(). This
2125 * keeps mempolicies cpuset relative after its cpuset moves. See
2126 * further kernel/cpuset.c update_nodemask().
2127 *
2128 * current's mempolicy may be rebinded by the other task(the task that changes
2129 * cpuset's mems), so we needn't do rebind work for current task.
2130 */
2131
2132 /* Slow path of a mempolicy duplicate */
2133 struct mempolicy *__mpol_dup(struct mempolicy *old)
2134 {
2135 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2136
2137 if (!new)
2138 return ERR_PTR(-ENOMEM);
2139
2140 /* task's mempolicy is protected by alloc_lock */
2141 if (old == current->mempolicy) {
2142 task_lock(current);
2143 *new = *old;
2144 task_unlock(current);
2145 } else
2146 *new = *old;
2147
2148 rcu_read_lock();
2149 if (current_cpuset_is_being_rebound()) {
2150 nodemask_t mems = cpuset_mems_allowed(current);
2151 if (new->flags & MPOL_F_REBINDING)
2152 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2153 else
2154 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2155 }
2156 rcu_read_unlock();
2157 atomic_set(&new->refcnt, 1);
2158 return new;
2159 }
2160
2161 /* Slow path of a mempolicy comparison */
2162 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2163 {
2164 if (!a || !b)
2165 return false;
2166 if (a->mode != b->mode)
2167 return false;
2168 if (a->flags != b->flags)
2169 return false;
2170 if (mpol_store_user_nodemask(a))
2171 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2172 return false;
2173
2174 switch (a->mode) {
2175 case MPOL_BIND:
2176 /* Fall through */
2177 case MPOL_INTERLEAVE:
2178 return !!nodes_equal(a->v.nodes, b->v.nodes);
2179 case MPOL_PREFERRED:
2180 return a->v.preferred_node == b->v.preferred_node;
2181 default:
2182 BUG();
2183 return false;
2184 }
2185 }
2186
2187 /*
2188 * Shared memory backing store policy support.
2189 *
2190 * Remember policies even when nobody has shared memory mapped.
2191 * The policies are kept in Red-Black tree linked from the inode.
2192 * They are protected by the sp->lock spinlock, which should be held
2193 * for any accesses to the tree.
2194 */
2195
2196 /* lookup first element intersecting start-end */
2197 /* Caller holds sp->lock */
2198 static struct sp_node *
2199 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2200 {
2201 struct rb_node *n = sp->root.rb_node;
2202
2203 while (n) {
2204 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2205
2206 if (start >= p->end)
2207 n = n->rb_right;
2208 else if (end <= p->start)
2209 n = n->rb_left;
2210 else
2211 break;
2212 }
2213 if (!n)
2214 return NULL;
2215 for (;;) {
2216 struct sp_node *w = NULL;
2217 struct rb_node *prev = rb_prev(n);
2218 if (!prev)
2219 break;
2220 w = rb_entry(prev, struct sp_node, nd);
2221 if (w->end <= start)
2222 break;
2223 n = prev;
2224 }
2225 return rb_entry(n, struct sp_node, nd);
2226 }
2227
2228 /* Insert a new shared policy into the list. */
2229 /* Caller holds sp->lock */
2230 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2231 {
2232 struct rb_node **p = &sp->root.rb_node;
2233 struct rb_node *parent = NULL;
2234 struct sp_node *nd;
2235
2236 while (*p) {
2237 parent = *p;
2238 nd = rb_entry(parent, struct sp_node, nd);
2239 if (new->start < nd->start)
2240 p = &(*p)->rb_left;
2241 else if (new->end > nd->end)
2242 p = &(*p)->rb_right;
2243 else
2244 BUG();
2245 }
2246 rb_link_node(&new->nd, parent, p);
2247 rb_insert_color(&new->nd, &sp->root);
2248 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2249 new->policy ? new->policy->mode : 0);
2250 }
2251
2252 /* Find shared policy intersecting idx */
2253 struct mempolicy *
2254 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2255 {
2256 struct mempolicy *pol = NULL;
2257 struct sp_node *sn;
2258
2259 if (!sp->root.rb_node)
2260 return NULL;
2261 spin_lock(&sp->lock);
2262 sn = sp_lookup(sp, idx, idx+1);
2263 if (sn) {
2264 mpol_get(sn->policy);
2265 pol = sn->policy;
2266 }
2267 spin_unlock(&sp->lock);
2268 return pol;
2269 }
2270
2271 static void sp_free(struct sp_node *n)
2272 {
2273 mpol_put(n->policy);
2274 kmem_cache_free(sn_cache, n);
2275 }
2276
2277 /**
2278 * mpol_misplaced - check whether current page node is valid in policy
2279 *
2280 * @page: page to be checked
2281 * @vma: vm area where page mapped
2282 * @addr: virtual address where page mapped
2283 *
2284 * Lookup current policy node id for vma,addr and "compare to" page's
2285 * node id.
2286 *
2287 * Returns:
2288 * -1 - not misplaced, page is in the right node
2289 * node - node id where the page should be
2290 *
2291 * Policy determination "mimics" alloc_page_vma().
2292 * Called from fault path where we know the vma and faulting address.
2293 */
2294 int mpol_misplaced(struct page *page, struct vm_area_struct *vma, unsigned long addr)
2295 {
2296 struct mempolicy *pol;
2297 struct zone *zone;
2298 int curnid = page_to_nid(page);
2299 unsigned long pgoff;
2300 int thiscpu = raw_smp_processor_id();
2301 int thisnid = cpu_to_node(thiscpu);
2302 int polnid = -1;
2303 int ret = -1;
2304
2305 BUG_ON(!vma);
2306
2307 pol = get_vma_policy(current, vma, addr);
2308 if (!(pol->flags & MPOL_F_MOF))
2309 goto out;
2310
2311 switch (pol->mode) {
2312 case MPOL_INTERLEAVE:
2313 BUG_ON(addr >= vma->vm_end);
2314 BUG_ON(addr < vma->vm_start);
2315
2316 pgoff = vma->vm_pgoff;
2317 pgoff += (addr - vma->vm_start) >> PAGE_SHIFT;
2318 polnid = offset_il_node(pol, vma, pgoff);
2319 break;
2320
2321 case MPOL_PREFERRED:
2322 if (pol->flags & MPOL_F_LOCAL)
2323 polnid = numa_node_id();
2324 else
2325 polnid = pol->v.preferred_node;
2326 break;
2327
2328 case MPOL_BIND:
2329 /*
2330 * allows binding to multiple nodes.
2331 * use current page if in policy nodemask,
2332 * else select nearest allowed node, if any.
2333 * If no allowed nodes, use current [!misplaced].
2334 */
2335 if (node_isset(curnid, pol->v.nodes))
2336 goto out;
2337 (void)first_zones_zonelist(
2338 node_zonelist(numa_node_id(), GFP_HIGHUSER),
2339 gfp_zone(GFP_HIGHUSER),
2340 &pol->v.nodes, &zone);
2341 polnid = zone->node;
2342 break;
2343
2344 default:
2345 BUG();
2346 }
2347
2348 /* Migrate the page towards the node whose CPU is referencing it */
2349 if (pol->flags & MPOL_F_MORON) {
2350 polnid = thisnid;
2351
2352 if (!should_numa_migrate_memory(current, page, curnid, thiscpu))
2353 goto out;
2354 }
2355
2356 if (curnid != polnid)
2357 ret = polnid;
2358 out:
2359 mpol_cond_put(pol);
2360
2361 return ret;
2362 }
2363
2364 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2365 {
2366 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2367 rb_erase(&n->nd, &sp->root);
2368 sp_free(n);
2369 }
2370
2371 static void sp_node_init(struct sp_node *node, unsigned long start,
2372 unsigned long end, struct mempolicy *pol)
2373 {
2374 node->start = start;
2375 node->end = end;
2376 node->policy = pol;
2377 }
2378
2379 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2380 struct mempolicy *pol)
2381 {
2382 struct sp_node *n;
2383 struct mempolicy *newpol;
2384
2385 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2386 if (!n)
2387 return NULL;
2388
2389 newpol = mpol_dup(pol);
2390 if (IS_ERR(newpol)) {
2391 kmem_cache_free(sn_cache, n);
2392 return NULL;
2393 }
2394 newpol->flags |= MPOL_F_SHARED;
2395 sp_node_init(n, start, end, newpol);
2396
2397 return n;
2398 }
2399
2400 /* Replace a policy range. */
2401 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2402 unsigned long end, struct sp_node *new)
2403 {
2404 struct sp_node *n;
2405 struct sp_node *n_new = NULL;
2406 struct mempolicy *mpol_new = NULL;
2407 int ret = 0;
2408
2409 restart:
2410 spin_lock(&sp->lock);
2411 n = sp_lookup(sp, start, end);
2412 /* Take care of old policies in the same range. */
2413 while (n && n->start < end) {
2414 struct rb_node *next = rb_next(&n->nd);
2415 if (n->start >= start) {
2416 if (n->end <= end)
2417 sp_delete(sp, n);
2418 else
2419 n->start = end;
2420 } else {
2421 /* Old policy spanning whole new range. */
2422 if (n->end > end) {
2423 if (!n_new)
2424 goto alloc_new;
2425
2426 *mpol_new = *n->policy;
2427 atomic_set(&mpol_new->refcnt, 1);
2428 sp_node_init(n_new, end, n->end, mpol_new);
2429 n->end = start;
2430 sp_insert(sp, n_new);
2431 n_new = NULL;
2432 mpol_new = NULL;
2433 break;
2434 } else
2435 n->end = start;
2436 }
2437 if (!next)
2438 break;
2439 n = rb_entry(next, struct sp_node, nd);
2440 }
2441 if (new)
2442 sp_insert(sp, new);
2443 spin_unlock(&sp->lock);
2444 ret = 0;
2445
2446 err_out:
2447 if (mpol_new)
2448 mpol_put(mpol_new);
2449 if (n_new)
2450 kmem_cache_free(sn_cache, n_new);
2451
2452 return ret;
2453
2454 alloc_new:
2455 spin_unlock(&sp->lock);
2456 ret = -ENOMEM;
2457 n_new = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2458 if (!n_new)
2459 goto err_out;
2460 mpol_new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2461 if (!mpol_new)
2462 goto err_out;
2463 goto restart;
2464 }
2465
2466 /**
2467 * mpol_shared_policy_init - initialize shared policy for inode
2468 * @sp: pointer to inode shared policy
2469 * @mpol: struct mempolicy to install
2470 *
2471 * Install non-NULL @mpol in inode's shared policy rb-tree.
2472 * On entry, the current task has a reference on a non-NULL @mpol.
2473 * This must be released on exit.
2474 * This is called at get_inode() calls and we can use GFP_KERNEL.
2475 */
2476 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2477 {
2478 int ret;
2479
2480 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2481 spin_lock_init(&sp->lock);
2482
2483 if (mpol) {
2484 struct vm_area_struct pvma;
2485 struct mempolicy *new;
2486 NODEMASK_SCRATCH(scratch);
2487
2488 if (!scratch)
2489 goto put_mpol;
2490 /* contextualize the tmpfs mount point mempolicy */
2491 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2492 if (IS_ERR(new))
2493 goto free_scratch; /* no valid nodemask intersection */
2494
2495 task_lock(current);
2496 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2497 task_unlock(current);
2498 if (ret)
2499 goto put_new;
2500
2501 /* Create pseudo-vma that contains just the policy */
2502 memset(&pvma, 0, sizeof(struct vm_area_struct));
2503 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2504 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2505
2506 put_new:
2507 mpol_put(new); /* drop initial ref */
2508 free_scratch:
2509 NODEMASK_SCRATCH_FREE(scratch);
2510 put_mpol:
2511 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2512 }
2513 }
2514
2515 int mpol_set_shared_policy(struct shared_policy *info,
2516 struct vm_area_struct *vma, struct mempolicy *npol)
2517 {
2518 int err;
2519 struct sp_node *new = NULL;
2520 unsigned long sz = vma_pages(vma);
2521
2522 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2523 vma->vm_pgoff,
2524 sz, npol ? npol->mode : -1,
2525 npol ? npol->flags : -1,
2526 npol ? nodes_addr(npol->v.nodes)[0] : NUMA_NO_NODE);
2527
2528 if (npol) {
2529 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2530 if (!new)
2531 return -ENOMEM;
2532 }
2533 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2534 if (err && new)
2535 sp_free(new);
2536 return err;
2537 }
2538
2539 /* Free a backing policy store on inode delete. */
2540 void mpol_free_shared_policy(struct shared_policy *p)
2541 {
2542 struct sp_node *n;
2543 struct rb_node *next;
2544
2545 if (!p->root.rb_node)
2546 return;
2547 spin_lock(&p->lock);
2548 next = rb_first(&p->root);
2549 while (next) {
2550 n = rb_entry(next, struct sp_node, nd);
2551 next = rb_next(&n->nd);
2552 sp_delete(p, n);
2553 }
2554 spin_unlock(&p->lock);
2555 }
2556
2557 #ifdef CONFIG_NUMA_BALANCING
2558 static int __initdata numabalancing_override;
2559
2560 static void __init check_numabalancing_enable(void)
2561 {
2562 bool numabalancing_default = false;
2563
2564 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED))
2565 numabalancing_default = true;
2566
2567 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2568 if (numabalancing_override)
2569 set_numabalancing_state(numabalancing_override == 1);
2570
2571 if (nr_node_ids > 1 && !numabalancing_override) {
2572 pr_info("%s automatic NUMA balancing. "
2573 "Configure with numa_balancing= or the "
2574 "kernel.numa_balancing sysctl",
2575 numabalancing_default ? "Enabling" : "Disabling");
2576 set_numabalancing_state(numabalancing_default);
2577 }
2578 }
2579
2580 static int __init setup_numabalancing(char *str)
2581 {
2582 int ret = 0;
2583 if (!str)
2584 goto out;
2585
2586 if (!strcmp(str, "enable")) {
2587 numabalancing_override = 1;
2588 ret = 1;
2589 } else if (!strcmp(str, "disable")) {
2590 numabalancing_override = -1;
2591 ret = 1;
2592 }
2593 out:
2594 if (!ret)
2595 pr_warn("Unable to parse numa_balancing=\n");
2596
2597 return ret;
2598 }
2599 __setup("numa_balancing=", setup_numabalancing);
2600 #else
2601 static inline void __init check_numabalancing_enable(void)
2602 {
2603 }
2604 #endif /* CONFIG_NUMA_BALANCING */
2605
2606 /* assumes fs == KERNEL_DS */
2607 void __init numa_policy_init(void)
2608 {
2609 nodemask_t interleave_nodes;
2610 unsigned long largest = 0;
2611 int nid, prefer = 0;
2612
2613 policy_cache = kmem_cache_create("numa_policy",
2614 sizeof(struct mempolicy),
2615 0, SLAB_PANIC, NULL);
2616
2617 sn_cache = kmem_cache_create("shared_policy_node",
2618 sizeof(struct sp_node),
2619 0, SLAB_PANIC, NULL);
2620
2621 for_each_node(nid) {
2622 preferred_node_policy[nid] = (struct mempolicy) {
2623 .refcnt = ATOMIC_INIT(1),
2624 .mode = MPOL_PREFERRED,
2625 .flags = MPOL_F_MOF | MPOL_F_MORON,
2626 .v = { .preferred_node = nid, },
2627 };
2628 }
2629
2630 /*
2631 * Set interleaving policy for system init. Interleaving is only
2632 * enabled across suitably sized nodes (default is >= 16MB), or
2633 * fall back to the largest node if they're all smaller.
2634 */
2635 nodes_clear(interleave_nodes);
2636 for_each_node_state(nid, N_MEMORY) {
2637 unsigned long total_pages = node_present_pages(nid);
2638
2639 /* Preserve the largest node */
2640 if (largest < total_pages) {
2641 largest = total_pages;
2642 prefer = nid;
2643 }
2644
2645 /* Interleave this node? */
2646 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2647 node_set(nid, interleave_nodes);
2648 }
2649
2650 /* All too small, use the largest */
2651 if (unlikely(nodes_empty(interleave_nodes)))
2652 node_set(prefer, interleave_nodes);
2653
2654 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2655 pr_err("%s: interleaving failed\n", __func__);
2656
2657 check_numabalancing_enable();
2658 }
2659
2660 /* Reset policy of current process to default */
2661 void numa_default_policy(void)
2662 {
2663 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2664 }
2665
2666 /*
2667 * Parse and format mempolicy from/to strings
2668 */
2669
2670 /*
2671 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2672 */
2673 static const char * const policy_modes[] =
2674 {
2675 [MPOL_DEFAULT] = "default",
2676 [MPOL_PREFERRED] = "prefer",
2677 [MPOL_BIND] = "bind",
2678 [MPOL_INTERLEAVE] = "interleave",
2679 [MPOL_LOCAL] = "local",
2680 };
2681
2682
2683 #ifdef CONFIG_TMPFS
2684 /**
2685 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2686 * @str: string containing mempolicy to parse
2687 * @mpol: pointer to struct mempolicy pointer, returned on success.
2688 *
2689 * Format of input:
2690 * <mode>[=<flags>][:<nodelist>]
2691 *
2692 * On success, returns 0, else 1
2693 */
2694 int mpol_parse_str(char *str, struct mempolicy **mpol)
2695 {
2696 struct mempolicy *new = NULL;
2697 unsigned short mode;
2698 unsigned short mode_flags;
2699 nodemask_t nodes;
2700 char *nodelist = strchr(str, ':');
2701 char *flags = strchr(str, '=');
2702 int err = 1;
2703
2704 if (nodelist) {
2705 /* NUL-terminate mode or flags string */
2706 *nodelist++ = '\0';
2707 if (nodelist_parse(nodelist, nodes))
2708 goto out;
2709 if (!nodes_subset(nodes, node_states[N_MEMORY]))
2710 goto out;
2711 } else
2712 nodes_clear(nodes);
2713
2714 if (flags)
2715 *flags++ = '\0'; /* terminate mode string */
2716
2717 for (mode = 0; mode < MPOL_MAX; mode++) {
2718 if (!strcmp(str, policy_modes[mode])) {
2719 break;
2720 }
2721 }
2722 if (mode >= MPOL_MAX)
2723 goto out;
2724
2725 switch (mode) {
2726 case MPOL_PREFERRED:
2727 /*
2728 * Insist on a nodelist of one node only
2729 */
2730 if (nodelist) {
2731 char *rest = nodelist;
2732 while (isdigit(*rest))
2733 rest++;
2734 if (*rest)
2735 goto out;
2736 }
2737 break;
2738 case MPOL_INTERLEAVE:
2739 /*
2740 * Default to online nodes with memory if no nodelist
2741 */
2742 if (!nodelist)
2743 nodes = node_states[N_MEMORY];
2744 break;
2745 case MPOL_LOCAL:
2746 /*
2747 * Don't allow a nodelist; mpol_new() checks flags
2748 */
2749 if (nodelist)
2750 goto out;
2751 mode = MPOL_PREFERRED;
2752 break;
2753 case MPOL_DEFAULT:
2754 /*
2755 * Insist on a empty nodelist
2756 */
2757 if (!nodelist)
2758 err = 0;
2759 goto out;
2760 case MPOL_BIND:
2761 /*
2762 * Insist on a nodelist
2763 */
2764 if (!nodelist)
2765 goto out;
2766 }
2767
2768 mode_flags = 0;
2769 if (flags) {
2770 /*
2771 * Currently, we only support two mutually exclusive
2772 * mode flags.
2773 */
2774 if (!strcmp(flags, "static"))
2775 mode_flags |= MPOL_F_STATIC_NODES;
2776 else if (!strcmp(flags, "relative"))
2777 mode_flags |= MPOL_F_RELATIVE_NODES;
2778 else
2779 goto out;
2780 }
2781
2782 new = mpol_new(mode, mode_flags, &nodes);
2783 if (IS_ERR(new))
2784 goto out;
2785
2786 /*
2787 * Save nodes for mpol_to_str() to show the tmpfs mount options
2788 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2789 */
2790 if (mode != MPOL_PREFERRED)
2791 new->v.nodes = nodes;
2792 else if (nodelist)
2793 new->v.preferred_node = first_node(nodes);
2794 else
2795 new->flags |= MPOL_F_LOCAL;
2796
2797 /*
2798 * Save nodes for contextualization: this will be used to "clone"
2799 * the mempolicy in a specific context [cpuset] at a later time.
2800 */
2801 new->w.user_nodemask = nodes;
2802
2803 err = 0;
2804
2805 out:
2806 /* Restore string for error message */
2807 if (nodelist)
2808 *--nodelist = ':';
2809 if (flags)
2810 *--flags = '=';
2811 if (!err)
2812 *mpol = new;
2813 return err;
2814 }
2815 #endif /* CONFIG_TMPFS */
2816
2817 /**
2818 * mpol_to_str - format a mempolicy structure for printing
2819 * @buffer: to contain formatted mempolicy string
2820 * @maxlen: length of @buffer
2821 * @pol: pointer to mempolicy to be formatted
2822 *
2823 * Convert @pol into a string. If @buffer is too short, truncate the string.
2824 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2825 * longest flag, "relative", and to display at least a few node ids.
2826 */
2827 void mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol)
2828 {
2829 char *p = buffer;
2830 nodemask_t nodes = NODE_MASK_NONE;
2831 unsigned short mode = MPOL_DEFAULT;
2832 unsigned short flags = 0;
2833
2834 if (pol && pol != &default_policy && !(pol->flags & MPOL_F_MORON)) {
2835 mode = pol->mode;
2836 flags = pol->flags;
2837 }
2838
2839 switch (mode) {
2840 case MPOL_DEFAULT:
2841 break;
2842 case MPOL_PREFERRED:
2843 if (flags & MPOL_F_LOCAL)
2844 mode = MPOL_LOCAL;
2845 else
2846 node_set(pol->v.preferred_node, nodes);
2847 break;
2848 case MPOL_BIND:
2849 case MPOL_INTERLEAVE:
2850 nodes = pol->v.nodes;
2851 break;
2852 default:
2853 WARN_ON_ONCE(1);
2854 snprintf(p, maxlen, "unknown");
2855 return;
2856 }
2857
2858 p += snprintf(p, maxlen, "%s", policy_modes[mode]);
2859
2860 if (flags & MPOL_MODE_FLAGS) {
2861 p += snprintf(p, buffer + maxlen - p, "=");
2862
2863 /*
2864 * Currently, the only defined flags are mutually exclusive
2865 */
2866 if (flags & MPOL_F_STATIC_NODES)
2867 p += snprintf(p, buffer + maxlen - p, "static");
2868 else if (flags & MPOL_F_RELATIVE_NODES)
2869 p += snprintf(p, buffer + maxlen - p, "relative");
2870 }
2871
2872 if (!nodes_empty(nodes)) {
2873 p += snprintf(p, buffer + maxlen - p, ":");
2874 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2875 }
2876 }
This page took 0.08611 seconds and 6 git commands to generate.