Merge branch 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / mm / mlock.c
1 /*
2 * linux/mm/mlock.c
3 *
4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
6 */
7
8 #include <linux/capability.h>
9 #include <linux/mman.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/pagevec.h>
15 #include <linux/mempolicy.h>
16 #include <linux/syscalls.h>
17 #include <linux/sched.h>
18 #include <linux/export.h>
19 #include <linux/rmap.h>
20 #include <linux/mmzone.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memcontrol.h>
23 #include <linux/mm_inline.h>
24
25 #include "internal.h"
26
27 int can_do_mlock(void)
28 {
29 if (capable(CAP_IPC_LOCK))
30 return 1;
31 if (rlimit(RLIMIT_MEMLOCK) != 0)
32 return 1;
33 return 0;
34 }
35 EXPORT_SYMBOL(can_do_mlock);
36
37 /*
38 * Mlocked pages are marked with PageMlocked() flag for efficient testing
39 * in vmscan and, possibly, the fault path; and to support semi-accurate
40 * statistics.
41 *
42 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
43 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
44 * The unevictable list is an LRU sibling list to the [in]active lists.
45 * PageUnevictable is set to indicate the unevictable state.
46 *
47 * When lazy mlocking via vmscan, it is important to ensure that the
48 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
49 * may have mlocked a page that is being munlocked. So lazy mlock must take
50 * the mmap_sem for read, and verify that the vma really is locked
51 * (see mm/rmap.c).
52 */
53
54 /*
55 * LRU accounting for clear_page_mlock()
56 */
57 void clear_page_mlock(struct page *page)
58 {
59 if (!TestClearPageMlocked(page))
60 return;
61
62 mod_zone_page_state(page_zone(page), NR_MLOCK,
63 -hpage_nr_pages(page));
64 count_vm_event(UNEVICTABLE_PGCLEARED);
65 if (!isolate_lru_page(page)) {
66 putback_lru_page(page);
67 } else {
68 /*
69 * We lost the race. the page already moved to evictable list.
70 */
71 if (PageUnevictable(page))
72 count_vm_event(UNEVICTABLE_PGSTRANDED);
73 }
74 }
75
76 /*
77 * Mark page as mlocked if not already.
78 * If page on LRU, isolate and putback to move to unevictable list.
79 */
80 void mlock_vma_page(struct page *page)
81 {
82 /* Serialize with page migration */
83 BUG_ON(!PageLocked(page));
84
85 if (!TestSetPageMlocked(page)) {
86 mod_zone_page_state(page_zone(page), NR_MLOCK,
87 hpage_nr_pages(page));
88 count_vm_event(UNEVICTABLE_PGMLOCKED);
89 if (!isolate_lru_page(page))
90 putback_lru_page(page);
91 }
92 }
93
94 /*
95 * Isolate a page from LRU with optional get_page() pin.
96 * Assumes lru_lock already held and page already pinned.
97 */
98 static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
99 {
100 if (PageLRU(page)) {
101 struct lruvec *lruvec;
102
103 lruvec = mem_cgroup_page_lruvec(page, page_zone(page));
104 if (getpage)
105 get_page(page);
106 ClearPageLRU(page);
107 del_page_from_lru_list(page, lruvec, page_lru(page));
108 return true;
109 }
110
111 return false;
112 }
113
114 /*
115 * Finish munlock after successful page isolation
116 *
117 * Page must be locked. This is a wrapper for try_to_munlock()
118 * and putback_lru_page() with munlock accounting.
119 */
120 static void __munlock_isolated_page(struct page *page)
121 {
122 int ret = SWAP_AGAIN;
123
124 /*
125 * Optimization: if the page was mapped just once, that's our mapping
126 * and we don't need to check all the other vmas.
127 */
128 if (page_mapcount(page) > 1)
129 ret = try_to_munlock(page);
130
131 /* Did try_to_unlock() succeed or punt? */
132 if (ret != SWAP_MLOCK)
133 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
134
135 putback_lru_page(page);
136 }
137
138 /*
139 * Accounting for page isolation fail during munlock
140 *
141 * Performs accounting when page isolation fails in munlock. There is nothing
142 * else to do because it means some other task has already removed the page
143 * from the LRU. putback_lru_page() will take care of removing the page from
144 * the unevictable list, if necessary. vmscan [page_referenced()] will move
145 * the page back to the unevictable list if some other vma has it mlocked.
146 */
147 static void __munlock_isolation_failed(struct page *page)
148 {
149 if (PageUnevictable(page))
150 __count_vm_event(UNEVICTABLE_PGSTRANDED);
151 else
152 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
153 }
154
155 /**
156 * munlock_vma_page - munlock a vma page
157 * @page - page to be unlocked, either a normal page or THP page head
158 *
159 * returns the size of the page as a page mask (0 for normal page,
160 * HPAGE_PMD_NR - 1 for THP head page)
161 *
162 * called from munlock()/munmap() path with page supposedly on the LRU.
163 * When we munlock a page, because the vma where we found the page is being
164 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
165 * page locked so that we can leave it on the unevictable lru list and not
166 * bother vmscan with it. However, to walk the page's rmap list in
167 * try_to_munlock() we must isolate the page from the LRU. If some other
168 * task has removed the page from the LRU, we won't be able to do that.
169 * So we clear the PageMlocked as we might not get another chance. If we
170 * can't isolate the page, we leave it for putback_lru_page() and vmscan
171 * [page_referenced()/try_to_unmap()] to deal with.
172 */
173 unsigned int munlock_vma_page(struct page *page)
174 {
175 unsigned int nr_pages;
176 struct zone *zone = page_zone(page);
177
178 /* For try_to_munlock() and to serialize with page migration */
179 BUG_ON(!PageLocked(page));
180
181 /*
182 * Serialize with any parallel __split_huge_page_refcount() which
183 * might otherwise copy PageMlocked to part of the tail pages before
184 * we clear it in the head page. It also stabilizes hpage_nr_pages().
185 */
186 spin_lock_irq(&zone->lru_lock);
187
188 nr_pages = hpage_nr_pages(page);
189 if (!TestClearPageMlocked(page))
190 goto unlock_out;
191
192 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
193
194 if (__munlock_isolate_lru_page(page, true)) {
195 spin_unlock_irq(&zone->lru_lock);
196 __munlock_isolated_page(page);
197 goto out;
198 }
199 __munlock_isolation_failed(page);
200
201 unlock_out:
202 spin_unlock_irq(&zone->lru_lock);
203
204 out:
205 return nr_pages - 1;
206 }
207
208 /**
209 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
210 * @vma: target vma
211 * @start: start address
212 * @end: end address
213 *
214 * This takes care of making the pages present too.
215 *
216 * return 0 on success, negative error code on error.
217 *
218 * vma->vm_mm->mmap_sem must be held for at least read.
219 */
220 long __mlock_vma_pages_range(struct vm_area_struct *vma,
221 unsigned long start, unsigned long end, int *nonblocking)
222 {
223 struct mm_struct *mm = vma->vm_mm;
224 unsigned long nr_pages = (end - start) / PAGE_SIZE;
225 int gup_flags;
226
227 VM_BUG_ON(start & ~PAGE_MASK);
228 VM_BUG_ON(end & ~PAGE_MASK);
229 VM_BUG_ON(start < vma->vm_start);
230 VM_BUG_ON(end > vma->vm_end);
231 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
232
233 gup_flags = FOLL_TOUCH | FOLL_MLOCK;
234 /*
235 * We want to touch writable mappings with a write fault in order
236 * to break COW, except for shared mappings because these don't COW
237 * and we would not want to dirty them for nothing.
238 */
239 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
240 gup_flags |= FOLL_WRITE;
241
242 /*
243 * We want mlock to succeed for regions that have any permissions
244 * other than PROT_NONE.
245 */
246 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
247 gup_flags |= FOLL_FORCE;
248
249 /*
250 * We made sure addr is within a VMA, so the following will
251 * not result in a stack expansion that recurses back here.
252 */
253 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
254 NULL, NULL, nonblocking);
255 }
256
257 /*
258 * convert get_user_pages() return value to posix mlock() error
259 */
260 static int __mlock_posix_error_return(long retval)
261 {
262 if (retval == -EFAULT)
263 retval = -ENOMEM;
264 else if (retval == -ENOMEM)
265 retval = -EAGAIN;
266 return retval;
267 }
268
269 /*
270 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
271 *
272 * The fast path is available only for evictable pages with single mapping.
273 * Then we can bypass the per-cpu pvec and get better performance.
274 * when mapcount > 1 we need try_to_munlock() which can fail.
275 * when !page_evictable(), we need the full redo logic of putback_lru_page to
276 * avoid leaving evictable page in unevictable list.
277 *
278 * In case of success, @page is added to @pvec and @pgrescued is incremented
279 * in case that the page was previously unevictable. @page is also unlocked.
280 */
281 static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
282 int *pgrescued)
283 {
284 VM_BUG_ON_PAGE(PageLRU(page), page);
285 VM_BUG_ON_PAGE(!PageLocked(page), page);
286
287 if (page_mapcount(page) <= 1 && page_evictable(page)) {
288 pagevec_add(pvec, page);
289 if (TestClearPageUnevictable(page))
290 (*pgrescued)++;
291 unlock_page(page);
292 return true;
293 }
294
295 return false;
296 }
297
298 /*
299 * Putback multiple evictable pages to the LRU
300 *
301 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
302 * the pages might have meanwhile become unevictable but that is OK.
303 */
304 static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
305 {
306 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
307 /*
308 *__pagevec_lru_add() calls release_pages() so we don't call
309 * put_page() explicitly
310 */
311 __pagevec_lru_add(pvec);
312 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
313 }
314
315 /*
316 * Munlock a batch of pages from the same zone
317 *
318 * The work is split to two main phases. First phase clears the Mlocked flag
319 * and attempts to isolate the pages, all under a single zone lru lock.
320 * The second phase finishes the munlock only for pages where isolation
321 * succeeded.
322 *
323 * Note that the pagevec may be modified during the process.
324 */
325 static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
326 {
327 int i;
328 int nr = pagevec_count(pvec);
329 int delta_munlocked;
330 struct pagevec pvec_putback;
331 int pgrescued = 0;
332
333 pagevec_init(&pvec_putback, 0);
334
335 /* Phase 1: page isolation */
336 spin_lock_irq(&zone->lru_lock);
337 for (i = 0; i < nr; i++) {
338 struct page *page = pvec->pages[i];
339
340 if (TestClearPageMlocked(page)) {
341 /*
342 * We already have pin from follow_page_mask()
343 * so we can spare the get_page() here.
344 */
345 if (__munlock_isolate_lru_page(page, false))
346 continue;
347 else
348 __munlock_isolation_failed(page);
349 }
350
351 /*
352 * We won't be munlocking this page in the next phase
353 * but we still need to release the follow_page_mask()
354 * pin. We cannot do it under lru_lock however. If it's
355 * the last pin, __page_cache_release() would deadlock.
356 */
357 pagevec_add(&pvec_putback, pvec->pages[i]);
358 pvec->pages[i] = NULL;
359 }
360 delta_munlocked = -nr + pagevec_count(&pvec_putback);
361 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
362 spin_unlock_irq(&zone->lru_lock);
363
364 /* Now we can release pins of pages that we are not munlocking */
365 pagevec_release(&pvec_putback);
366
367 /* Phase 2: page munlock */
368 for (i = 0; i < nr; i++) {
369 struct page *page = pvec->pages[i];
370
371 if (page) {
372 lock_page(page);
373 if (!__putback_lru_fast_prepare(page, &pvec_putback,
374 &pgrescued)) {
375 /*
376 * Slow path. We don't want to lose the last
377 * pin before unlock_page()
378 */
379 get_page(page); /* for putback_lru_page() */
380 __munlock_isolated_page(page);
381 unlock_page(page);
382 put_page(page); /* from follow_page_mask() */
383 }
384 }
385 }
386
387 /*
388 * Phase 3: page putback for pages that qualified for the fast path
389 * This will also call put_page() to return pin from follow_page_mask()
390 */
391 if (pagevec_count(&pvec_putback))
392 __putback_lru_fast(&pvec_putback, pgrescued);
393 }
394
395 /*
396 * Fill up pagevec for __munlock_pagevec using pte walk
397 *
398 * The function expects that the struct page corresponding to @start address is
399 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
400 *
401 * The rest of @pvec is filled by subsequent pages within the same pmd and same
402 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
403 * pages also get pinned.
404 *
405 * Returns the address of the next page that should be scanned. This equals
406 * @start + PAGE_SIZE when no page could be added by the pte walk.
407 */
408 static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
409 struct vm_area_struct *vma, int zoneid, unsigned long start,
410 unsigned long end)
411 {
412 pte_t *pte;
413 spinlock_t *ptl;
414
415 /*
416 * Initialize pte walk starting at the already pinned page where we
417 * are sure that there is a pte, as it was pinned under the same
418 * mmap_sem write op.
419 */
420 pte = get_locked_pte(vma->vm_mm, start, &ptl);
421 /* Make sure we do not cross the page table boundary */
422 end = pgd_addr_end(start, end);
423 end = pud_addr_end(start, end);
424 end = pmd_addr_end(start, end);
425
426 /* The page next to the pinned page is the first we will try to get */
427 start += PAGE_SIZE;
428 while (start < end) {
429 struct page *page = NULL;
430 pte++;
431 if (pte_present(*pte))
432 page = vm_normal_page(vma, start, *pte);
433 /*
434 * Break if page could not be obtained or the page's node+zone does not
435 * match
436 */
437 if (!page || page_zone_id(page) != zoneid)
438 break;
439
440 get_page(page);
441 /*
442 * Increase the address that will be returned *before* the
443 * eventual break due to pvec becoming full by adding the page
444 */
445 start += PAGE_SIZE;
446 if (pagevec_add(pvec, page) == 0)
447 break;
448 }
449 pte_unmap_unlock(pte, ptl);
450 return start;
451 }
452
453 /*
454 * munlock_vma_pages_range() - munlock all pages in the vma range.'
455 * @vma - vma containing range to be munlock()ed.
456 * @start - start address in @vma of the range
457 * @end - end of range in @vma.
458 *
459 * For mremap(), munmap() and exit().
460 *
461 * Called with @vma VM_LOCKED.
462 *
463 * Returns with VM_LOCKED cleared. Callers must be prepared to
464 * deal with this.
465 *
466 * We don't save and restore VM_LOCKED here because pages are
467 * still on lru. In unmap path, pages might be scanned by reclaim
468 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
469 * free them. This will result in freeing mlocked pages.
470 */
471 void munlock_vma_pages_range(struct vm_area_struct *vma,
472 unsigned long start, unsigned long end)
473 {
474 vma->vm_flags &= ~VM_LOCKED;
475
476 while (start < end) {
477 struct page *page = NULL;
478 unsigned int page_mask;
479 unsigned long page_increm;
480 struct pagevec pvec;
481 struct zone *zone;
482 int zoneid;
483
484 pagevec_init(&pvec, 0);
485 /*
486 * Although FOLL_DUMP is intended for get_dump_page(),
487 * it just so happens that its special treatment of the
488 * ZERO_PAGE (returning an error instead of doing get_page)
489 * suits munlock very well (and if somehow an abnormal page
490 * has sneaked into the range, we won't oops here: great).
491 */
492 page = follow_page_mask(vma, start, FOLL_GET | FOLL_DUMP,
493 &page_mask);
494
495 if (page && !IS_ERR(page)) {
496 if (PageTransHuge(page)) {
497 lock_page(page);
498 /*
499 * Any THP page found by follow_page_mask() may
500 * have gotten split before reaching
501 * munlock_vma_page(), so we need to recompute
502 * the page_mask here.
503 */
504 page_mask = munlock_vma_page(page);
505 unlock_page(page);
506 put_page(page); /* follow_page_mask() */
507 } else {
508 /*
509 * Non-huge pages are handled in batches via
510 * pagevec. The pin from follow_page_mask()
511 * prevents them from collapsing by THP.
512 */
513 pagevec_add(&pvec, page);
514 zone = page_zone(page);
515 zoneid = page_zone_id(page);
516
517 /*
518 * Try to fill the rest of pagevec using fast
519 * pte walk. This will also update start to
520 * the next page to process. Then munlock the
521 * pagevec.
522 */
523 start = __munlock_pagevec_fill(&pvec, vma,
524 zoneid, start, end);
525 __munlock_pagevec(&pvec, zone);
526 goto next;
527 }
528 }
529 /* It's a bug to munlock in the middle of a THP page */
530 VM_BUG_ON((start >> PAGE_SHIFT) & page_mask);
531 page_increm = 1 + page_mask;
532 start += page_increm * PAGE_SIZE;
533 next:
534 cond_resched();
535 }
536 }
537
538 /*
539 * mlock_fixup - handle mlock[all]/munlock[all] requests.
540 *
541 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
542 * munlock is a no-op. However, for some special vmas, we go ahead and
543 * populate the ptes.
544 *
545 * For vmas that pass the filters, merge/split as appropriate.
546 */
547 static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
548 unsigned long start, unsigned long end, vm_flags_t newflags)
549 {
550 struct mm_struct *mm = vma->vm_mm;
551 pgoff_t pgoff;
552 int nr_pages;
553 int ret = 0;
554 int lock = !!(newflags & VM_LOCKED);
555
556 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
557 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
558 goto out; /* don't set VM_LOCKED, don't count */
559
560 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
561 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
562 vma->vm_file, pgoff, vma_policy(vma));
563 if (*prev) {
564 vma = *prev;
565 goto success;
566 }
567
568 if (start != vma->vm_start) {
569 ret = split_vma(mm, vma, start, 1);
570 if (ret)
571 goto out;
572 }
573
574 if (end != vma->vm_end) {
575 ret = split_vma(mm, vma, end, 0);
576 if (ret)
577 goto out;
578 }
579
580 success:
581 /*
582 * Keep track of amount of locked VM.
583 */
584 nr_pages = (end - start) >> PAGE_SHIFT;
585 if (!lock)
586 nr_pages = -nr_pages;
587 mm->locked_vm += nr_pages;
588
589 /*
590 * vm_flags is protected by the mmap_sem held in write mode.
591 * It's okay if try_to_unmap_one unmaps a page just after we
592 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
593 */
594
595 if (lock)
596 vma->vm_flags = newflags;
597 else
598 munlock_vma_pages_range(vma, start, end);
599
600 out:
601 *prev = vma;
602 return ret;
603 }
604
605 static int do_mlock(unsigned long start, size_t len, int on)
606 {
607 unsigned long nstart, end, tmp;
608 struct vm_area_struct * vma, * prev;
609 int error;
610
611 VM_BUG_ON(start & ~PAGE_MASK);
612 VM_BUG_ON(len != PAGE_ALIGN(len));
613 end = start + len;
614 if (end < start)
615 return -EINVAL;
616 if (end == start)
617 return 0;
618 vma = find_vma(current->mm, start);
619 if (!vma || vma->vm_start > start)
620 return -ENOMEM;
621
622 prev = vma->vm_prev;
623 if (start > vma->vm_start)
624 prev = vma;
625
626 for (nstart = start ; ; ) {
627 vm_flags_t newflags;
628
629 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
630
631 newflags = vma->vm_flags & ~VM_LOCKED;
632 if (on)
633 newflags |= VM_LOCKED;
634
635 tmp = vma->vm_end;
636 if (tmp > end)
637 tmp = end;
638 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
639 if (error)
640 break;
641 nstart = tmp;
642 if (nstart < prev->vm_end)
643 nstart = prev->vm_end;
644 if (nstart >= end)
645 break;
646
647 vma = prev->vm_next;
648 if (!vma || vma->vm_start != nstart) {
649 error = -ENOMEM;
650 break;
651 }
652 }
653 return error;
654 }
655
656 /*
657 * __mm_populate - populate and/or mlock pages within a range of address space.
658 *
659 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
660 * flags. VMAs must be already marked with the desired vm_flags, and
661 * mmap_sem must not be held.
662 */
663 int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
664 {
665 struct mm_struct *mm = current->mm;
666 unsigned long end, nstart, nend;
667 struct vm_area_struct *vma = NULL;
668 int locked = 0;
669 long ret = 0;
670
671 VM_BUG_ON(start & ~PAGE_MASK);
672 VM_BUG_ON(len != PAGE_ALIGN(len));
673 end = start + len;
674
675 for (nstart = start; nstart < end; nstart = nend) {
676 /*
677 * We want to fault in pages for [nstart; end) address range.
678 * Find first corresponding VMA.
679 */
680 if (!locked) {
681 locked = 1;
682 down_read(&mm->mmap_sem);
683 vma = find_vma(mm, nstart);
684 } else if (nstart >= vma->vm_end)
685 vma = vma->vm_next;
686 if (!vma || vma->vm_start >= end)
687 break;
688 /*
689 * Set [nstart; nend) to intersection of desired address
690 * range with the first VMA. Also, skip undesirable VMA types.
691 */
692 nend = min(end, vma->vm_end);
693 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
694 continue;
695 if (nstart < vma->vm_start)
696 nstart = vma->vm_start;
697 /*
698 * Now fault in a range of pages. __mlock_vma_pages_range()
699 * double checks the vma flags, so that it won't mlock pages
700 * if the vma was already munlocked.
701 */
702 ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
703 if (ret < 0) {
704 if (ignore_errors) {
705 ret = 0;
706 continue; /* continue at next VMA */
707 }
708 ret = __mlock_posix_error_return(ret);
709 break;
710 }
711 nend = nstart + ret * PAGE_SIZE;
712 ret = 0;
713 }
714 if (locked)
715 up_read(&mm->mmap_sem);
716 return ret; /* 0 or negative error code */
717 }
718
719 SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
720 {
721 unsigned long locked;
722 unsigned long lock_limit;
723 int error = -ENOMEM;
724
725 if (!can_do_mlock())
726 return -EPERM;
727
728 lru_add_drain_all(); /* flush pagevec */
729
730 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
731 start &= PAGE_MASK;
732
733 lock_limit = rlimit(RLIMIT_MEMLOCK);
734 lock_limit >>= PAGE_SHIFT;
735 locked = len >> PAGE_SHIFT;
736
737 down_write(&current->mm->mmap_sem);
738
739 locked += current->mm->locked_vm;
740
741 /* check against resource limits */
742 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
743 error = do_mlock(start, len, 1);
744
745 up_write(&current->mm->mmap_sem);
746 if (!error)
747 error = __mm_populate(start, len, 0);
748 return error;
749 }
750
751 SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
752 {
753 int ret;
754
755 len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
756 start &= PAGE_MASK;
757
758 down_write(&current->mm->mmap_sem);
759 ret = do_mlock(start, len, 0);
760 up_write(&current->mm->mmap_sem);
761
762 return ret;
763 }
764
765 static int do_mlockall(int flags)
766 {
767 struct vm_area_struct * vma, * prev = NULL;
768
769 if (flags & MCL_FUTURE)
770 current->mm->def_flags |= VM_LOCKED;
771 else
772 current->mm->def_flags &= ~VM_LOCKED;
773 if (flags == MCL_FUTURE)
774 goto out;
775
776 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
777 vm_flags_t newflags;
778
779 newflags = vma->vm_flags & ~VM_LOCKED;
780 if (flags & MCL_CURRENT)
781 newflags |= VM_LOCKED;
782
783 /* Ignore errors */
784 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
785 cond_resched();
786 }
787 out:
788 return 0;
789 }
790
791 SYSCALL_DEFINE1(mlockall, int, flags)
792 {
793 unsigned long lock_limit;
794 int ret = -EINVAL;
795
796 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
797 goto out;
798
799 ret = -EPERM;
800 if (!can_do_mlock())
801 goto out;
802
803 if (flags & MCL_CURRENT)
804 lru_add_drain_all(); /* flush pagevec */
805
806 lock_limit = rlimit(RLIMIT_MEMLOCK);
807 lock_limit >>= PAGE_SHIFT;
808
809 ret = -ENOMEM;
810 down_write(&current->mm->mmap_sem);
811
812 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
813 capable(CAP_IPC_LOCK))
814 ret = do_mlockall(flags);
815 up_write(&current->mm->mmap_sem);
816 if (!ret && (flags & MCL_CURRENT))
817 mm_populate(0, TASK_SIZE);
818 out:
819 return ret;
820 }
821
822 SYSCALL_DEFINE0(munlockall)
823 {
824 int ret;
825
826 down_write(&current->mm->mmap_sem);
827 ret = do_mlockall(0);
828 up_write(&current->mm->mmap_sem);
829 return ret;
830 }
831
832 /*
833 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
834 * shm segments) get accounted against the user_struct instead.
835 */
836 static DEFINE_SPINLOCK(shmlock_user_lock);
837
838 int user_shm_lock(size_t size, struct user_struct *user)
839 {
840 unsigned long lock_limit, locked;
841 int allowed = 0;
842
843 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
844 lock_limit = rlimit(RLIMIT_MEMLOCK);
845 if (lock_limit == RLIM_INFINITY)
846 allowed = 1;
847 lock_limit >>= PAGE_SHIFT;
848 spin_lock(&shmlock_user_lock);
849 if (!allowed &&
850 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
851 goto out;
852 get_uid(user);
853 user->locked_shm += locked;
854 allowed = 1;
855 out:
856 spin_unlock(&shmlock_user_lock);
857 return allowed;
858 }
859
860 void user_shm_unlock(size_t size, struct user_struct *user)
861 {
862 spin_lock(&shmlock_user_lock);
863 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
864 spin_unlock(&shmlock_user_lock);
865 free_uid(user);
866 }
This page took 0.089667 seconds and 5 git commands to generate.