mm anon rmap: remove anon_vma_moveto_tail
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54 /*
55 * WARNING: the debugging will use recursive algorithms so never enable this
56 * unless you know what you are doing.
57 */
58 #undef DEBUG_MM_RB
59
60 /* description of effects of mapping type and prot in current implementation.
61 * this is due to the limited x86 page protection hardware. The expected
62 * behavior is in parens:
63 *
64 * map_type prot
65 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
66 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (yes) yes w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
69 *
70 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
71 * w: (no) no w: (no) no w: (copy) copy w: (no) no
72 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 *
74 */
75 pgprot_t protection_map[16] = {
76 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79
80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 return __pgprot(pgprot_val(protection_map[vm_flags &
83 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92 * Make sure vm_committed_as in one cacheline and not cacheline shared with
93 * other variables. It can be updated by several CPUs frequently.
94 */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96
97 /*
98 * Check that a process has enough memory to allocate a new virtual
99 * mapping. 0 means there is enough memory for the allocation to
100 * succeed and -ENOMEM implies there is not.
101 *
102 * We currently support three overcommit policies, which are set via the
103 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
104 *
105 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106 * Additional code 2002 Jul 20 by Robert Love.
107 *
108 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109 *
110 * Note this is a helper function intended to be used by LSMs which
111 * wish to use this logic.
112 */
113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115 unsigned long free, allowed;
116
117 vm_acct_memory(pages);
118
119 /*
120 * Sometimes we want to use more memory than we have
121 */
122 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 return 0;
124
125 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 free = global_page_state(NR_FREE_PAGES);
127 free += global_page_state(NR_FILE_PAGES);
128
129 /*
130 * shmem pages shouldn't be counted as free in this
131 * case, they can't be purged, only swapped out, and
132 * that won't affect the overall amount of available
133 * memory in the system.
134 */
135 free -= global_page_state(NR_SHMEM);
136
137 free += nr_swap_pages;
138
139 /*
140 * Any slabs which are created with the
141 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 * which are reclaimable, under pressure. The dentry
143 * cache and most inode caches should fall into this
144 */
145 free += global_page_state(NR_SLAB_RECLAIMABLE);
146
147 /*
148 * Leave reserved pages. The pages are not for anonymous pages.
149 */
150 if (free <= totalreserve_pages)
151 goto error;
152 else
153 free -= totalreserve_pages;
154
155 /*
156 * Leave the last 3% for root
157 */
158 if (!cap_sys_admin)
159 free -= free / 32;
160
161 if (free > pages)
162 return 0;
163
164 goto error;
165 }
166
167 allowed = (totalram_pages - hugetlb_total_pages())
168 * sysctl_overcommit_ratio / 100;
169 /*
170 * Leave the last 3% for root
171 */
172 if (!cap_sys_admin)
173 allowed -= allowed / 32;
174 allowed += total_swap_pages;
175
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
178 if (mm)
179 allowed -= mm->total_vm / 32;
180
181 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 return 0;
183 error:
184 vm_unacct_memory(pages);
185
186 return -ENOMEM;
187 }
188
189 /*
190 * Requires inode->i_mapping->i_mmap_mutex
191 */
192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 struct file *file, struct address_space *mapping)
194 {
195 if (vma->vm_flags & VM_DENYWRITE)
196 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 if (vma->vm_flags & VM_SHARED)
198 mapping->i_mmap_writable--;
199
200 flush_dcache_mmap_lock(mapping);
201 if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 list_del_init(&vma->shared.nonlinear);
203 else
204 vma_interval_tree_remove(vma, &mapping->i_mmap);
205 flush_dcache_mmap_unlock(mapping);
206 }
207
208 /*
209 * Unlink a file-based vm structure from its interval tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
211 */
212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214 struct file *file = vma->vm_file;
215
216 if (file) {
217 struct address_space *mapping = file->f_mapping;
218 mutex_lock(&mapping->i_mmap_mutex);
219 __remove_shared_vm_struct(vma, file, mapping);
220 mutex_unlock(&mapping->i_mmap_mutex);
221 }
222 }
223
224 /*
225 * Close a vm structure and free it, returning the next.
226 */
227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229 struct vm_area_struct *next = vma->vm_next;
230
231 might_sleep();
232 if (vma->vm_ops && vma->vm_ops->close)
233 vma->vm_ops->close(vma);
234 if (vma->vm_file)
235 fput(vma->vm_file);
236 mpol_put(vma_policy(vma));
237 kmem_cache_free(vm_area_cachep, vma);
238 return next;
239 }
240
241 static unsigned long do_brk(unsigned long addr, unsigned long len);
242
243 SYSCALL_DEFINE1(brk, unsigned long, brk)
244 {
245 unsigned long rlim, retval;
246 unsigned long newbrk, oldbrk;
247 struct mm_struct *mm = current->mm;
248 unsigned long min_brk;
249
250 down_write(&mm->mmap_sem);
251
252 #ifdef CONFIG_COMPAT_BRK
253 /*
254 * CONFIG_COMPAT_BRK can still be overridden by setting
255 * randomize_va_space to 2, which will still cause mm->start_brk
256 * to be arbitrarily shifted
257 */
258 if (current->brk_randomized)
259 min_brk = mm->start_brk;
260 else
261 min_brk = mm->end_data;
262 #else
263 min_brk = mm->start_brk;
264 #endif
265 if (brk < min_brk)
266 goto out;
267
268 /*
269 * Check against rlimit here. If this check is done later after the test
270 * of oldbrk with newbrk then it can escape the test and let the data
271 * segment grow beyond its set limit the in case where the limit is
272 * not page aligned -Ram Gupta
273 */
274 rlim = rlimit(RLIMIT_DATA);
275 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
276 (mm->end_data - mm->start_data) > rlim)
277 goto out;
278
279 newbrk = PAGE_ALIGN(brk);
280 oldbrk = PAGE_ALIGN(mm->brk);
281 if (oldbrk == newbrk)
282 goto set_brk;
283
284 /* Always allow shrinking brk. */
285 if (brk <= mm->brk) {
286 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
287 goto set_brk;
288 goto out;
289 }
290
291 /* Check against existing mmap mappings. */
292 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
293 goto out;
294
295 /* Ok, looks good - let it rip. */
296 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
297 goto out;
298 set_brk:
299 mm->brk = brk;
300 out:
301 retval = mm->brk;
302 up_write(&mm->mmap_sem);
303 return retval;
304 }
305
306 #ifdef DEBUG_MM_RB
307 static int browse_rb(struct rb_root *root)
308 {
309 int i = 0, j;
310 struct rb_node *nd, *pn = NULL;
311 unsigned long prev = 0, pend = 0;
312
313 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
314 struct vm_area_struct *vma;
315 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
316 if (vma->vm_start < prev)
317 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
318 if (vma->vm_start < pend)
319 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
320 if (vma->vm_start > vma->vm_end)
321 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
322 i++;
323 pn = nd;
324 prev = vma->vm_start;
325 pend = vma->vm_end;
326 }
327 j = 0;
328 for (nd = pn; nd; nd = rb_prev(nd)) {
329 j++;
330 }
331 if (i != j)
332 printk("backwards %d, forwards %d\n", j, i), i = 0;
333 return i;
334 }
335
336 void validate_mm(struct mm_struct *mm)
337 {
338 int bug = 0;
339 int i = 0;
340 struct vm_area_struct *tmp = mm->mmap;
341 while (tmp) {
342 tmp = tmp->vm_next;
343 i++;
344 }
345 if (i != mm->map_count)
346 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
347 i = browse_rb(&mm->mm_rb);
348 if (i != mm->map_count)
349 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
350 BUG_ON(bug);
351 }
352 #else
353 #define validate_mm(mm) do { } while (0)
354 #endif
355
356 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
357 unsigned long end, struct vm_area_struct **pprev,
358 struct rb_node ***rb_link, struct rb_node **rb_parent)
359 {
360 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
361
362 __rb_link = &mm->mm_rb.rb_node;
363 rb_prev = __rb_parent = NULL;
364
365 while (*__rb_link) {
366 struct vm_area_struct *vma_tmp;
367
368 __rb_parent = *__rb_link;
369 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
370
371 if (vma_tmp->vm_end > addr) {
372 /* Fail if an existing vma overlaps the area */
373 if (vma_tmp->vm_start < end)
374 return -ENOMEM;
375 __rb_link = &__rb_parent->rb_left;
376 } else {
377 rb_prev = __rb_parent;
378 __rb_link = &__rb_parent->rb_right;
379 }
380 }
381
382 *pprev = NULL;
383 if (rb_prev)
384 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
385 *rb_link = __rb_link;
386 *rb_parent = __rb_parent;
387 return 0;
388 }
389
390 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
391 struct rb_node **rb_link, struct rb_node *rb_parent)
392 {
393 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
394 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
395 }
396
397 static void __vma_link_file(struct vm_area_struct *vma)
398 {
399 struct file *file;
400
401 file = vma->vm_file;
402 if (file) {
403 struct address_space *mapping = file->f_mapping;
404
405 if (vma->vm_flags & VM_DENYWRITE)
406 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
407 if (vma->vm_flags & VM_SHARED)
408 mapping->i_mmap_writable++;
409
410 flush_dcache_mmap_lock(mapping);
411 if (unlikely(vma->vm_flags & VM_NONLINEAR))
412 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
413 else
414 vma_interval_tree_insert(vma, &mapping->i_mmap);
415 flush_dcache_mmap_unlock(mapping);
416 }
417 }
418
419 static void
420 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
421 struct vm_area_struct *prev, struct rb_node **rb_link,
422 struct rb_node *rb_parent)
423 {
424 __vma_link_list(mm, vma, prev, rb_parent);
425 __vma_link_rb(mm, vma, rb_link, rb_parent);
426 }
427
428 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
429 struct vm_area_struct *prev, struct rb_node **rb_link,
430 struct rb_node *rb_parent)
431 {
432 struct address_space *mapping = NULL;
433
434 if (vma->vm_file)
435 mapping = vma->vm_file->f_mapping;
436
437 if (mapping)
438 mutex_lock(&mapping->i_mmap_mutex);
439
440 __vma_link(mm, vma, prev, rb_link, rb_parent);
441 __vma_link_file(vma);
442
443 if (mapping)
444 mutex_unlock(&mapping->i_mmap_mutex);
445
446 mm->map_count++;
447 validate_mm(mm);
448 }
449
450 /*
451 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
452 * mm's list and rbtree. It has already been inserted into the interval tree.
453 */
454 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
455 {
456 struct vm_area_struct *prev;
457 struct rb_node **rb_link, *rb_parent;
458
459 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
460 &prev, &rb_link, &rb_parent))
461 BUG();
462 __vma_link(mm, vma, prev, rb_link, rb_parent);
463 mm->map_count++;
464 }
465
466 static inline void
467 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
468 struct vm_area_struct *prev)
469 {
470 struct vm_area_struct *next = vma->vm_next;
471
472 prev->vm_next = next;
473 if (next)
474 next->vm_prev = prev;
475 rb_erase(&vma->vm_rb, &mm->mm_rb);
476 if (mm->mmap_cache == vma)
477 mm->mmap_cache = prev;
478 }
479
480 /*
481 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
482 * is already present in an i_mmap tree without adjusting the tree.
483 * The following helper function should be used when such adjustments
484 * are necessary. The "insert" vma (if any) is to be inserted
485 * before we drop the necessary locks.
486 */
487 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
488 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
489 {
490 struct mm_struct *mm = vma->vm_mm;
491 struct vm_area_struct *next = vma->vm_next;
492 struct vm_area_struct *importer = NULL;
493 struct address_space *mapping = NULL;
494 struct rb_root *root = NULL;
495 struct anon_vma *anon_vma = NULL;
496 struct file *file = vma->vm_file;
497 long adjust_next = 0;
498 int remove_next = 0;
499
500 if (next && !insert) {
501 struct vm_area_struct *exporter = NULL;
502
503 if (end >= next->vm_end) {
504 /*
505 * vma expands, overlapping all the next, and
506 * perhaps the one after too (mprotect case 6).
507 */
508 again: remove_next = 1 + (end > next->vm_end);
509 end = next->vm_end;
510 exporter = next;
511 importer = vma;
512 } else if (end > next->vm_start) {
513 /*
514 * vma expands, overlapping part of the next:
515 * mprotect case 5 shifting the boundary up.
516 */
517 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
518 exporter = next;
519 importer = vma;
520 } else if (end < vma->vm_end) {
521 /*
522 * vma shrinks, and !insert tells it's not
523 * split_vma inserting another: so it must be
524 * mprotect case 4 shifting the boundary down.
525 */
526 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
527 exporter = vma;
528 importer = next;
529 }
530
531 /*
532 * Easily overlooked: when mprotect shifts the boundary,
533 * make sure the expanding vma has anon_vma set if the
534 * shrinking vma had, to cover any anon pages imported.
535 */
536 if (exporter && exporter->anon_vma && !importer->anon_vma) {
537 if (anon_vma_clone(importer, exporter))
538 return -ENOMEM;
539 importer->anon_vma = exporter->anon_vma;
540 }
541 }
542
543 if (file) {
544 mapping = file->f_mapping;
545 if (!(vma->vm_flags & VM_NONLINEAR)) {
546 root = &mapping->i_mmap;
547 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
548
549 if (adjust_next)
550 uprobe_munmap(next, next->vm_start,
551 next->vm_end);
552 }
553
554 mutex_lock(&mapping->i_mmap_mutex);
555 if (insert) {
556 /*
557 * Put into interval tree now, so instantiated pages
558 * are visible to arm/parisc __flush_dcache_page
559 * throughout; but we cannot insert into address
560 * space until vma start or end is updated.
561 */
562 __vma_link_file(insert);
563 }
564 }
565
566 vma_adjust_trans_huge(vma, start, end, adjust_next);
567
568 /*
569 * When changing only vma->vm_end, we don't really need anon_vma
570 * lock. This is a fairly rare case by itself, but the anon_vma
571 * lock may be shared between many sibling processes. Skipping
572 * the lock for brk adjustments makes a difference sometimes.
573 */
574 if (vma->anon_vma && (importer || start != vma->vm_start)) {
575 anon_vma = vma->anon_vma;
576 VM_BUG_ON(adjust_next && next->anon_vma &&
577 anon_vma != next->anon_vma);
578 } else if (adjust_next && next->anon_vma)
579 anon_vma = next->anon_vma;
580 if (anon_vma)
581 anon_vma_lock(anon_vma);
582
583 if (root) {
584 flush_dcache_mmap_lock(mapping);
585 vma_interval_tree_remove(vma, root);
586 if (adjust_next)
587 vma_interval_tree_remove(next, root);
588 }
589
590 vma->vm_start = start;
591 vma->vm_end = end;
592 vma->vm_pgoff = pgoff;
593 if (adjust_next) {
594 next->vm_start += adjust_next << PAGE_SHIFT;
595 next->vm_pgoff += adjust_next;
596 }
597
598 if (root) {
599 if (adjust_next)
600 vma_interval_tree_insert(next, root);
601 vma_interval_tree_insert(vma, root);
602 flush_dcache_mmap_unlock(mapping);
603 }
604
605 if (remove_next) {
606 /*
607 * vma_merge has merged next into vma, and needs
608 * us to remove next before dropping the locks.
609 */
610 __vma_unlink(mm, next, vma);
611 if (file)
612 __remove_shared_vm_struct(next, file, mapping);
613 } else if (insert) {
614 /*
615 * split_vma has split insert from vma, and needs
616 * us to insert it before dropping the locks
617 * (it may either follow vma or precede it).
618 */
619 __insert_vm_struct(mm, insert);
620 }
621
622 if (anon_vma)
623 anon_vma_unlock(anon_vma);
624 if (mapping)
625 mutex_unlock(&mapping->i_mmap_mutex);
626
627 if (root) {
628 uprobe_mmap(vma);
629
630 if (adjust_next)
631 uprobe_mmap(next);
632 }
633
634 if (remove_next) {
635 if (file) {
636 uprobe_munmap(next, next->vm_start, next->vm_end);
637 fput(file);
638 }
639 if (next->anon_vma)
640 anon_vma_merge(vma, next);
641 mm->map_count--;
642 mpol_put(vma_policy(next));
643 kmem_cache_free(vm_area_cachep, next);
644 /*
645 * In mprotect's case 6 (see comments on vma_merge),
646 * we must remove another next too. It would clutter
647 * up the code too much to do both in one go.
648 */
649 if (remove_next == 2) {
650 next = vma->vm_next;
651 goto again;
652 }
653 }
654 if (insert && file)
655 uprobe_mmap(insert);
656
657 validate_mm(mm);
658
659 return 0;
660 }
661
662 /*
663 * If the vma has a ->close operation then the driver probably needs to release
664 * per-vma resources, so we don't attempt to merge those.
665 */
666 static inline int is_mergeable_vma(struct vm_area_struct *vma,
667 struct file *file, unsigned long vm_flags)
668 {
669 if (vma->vm_flags ^ vm_flags)
670 return 0;
671 if (vma->vm_file != file)
672 return 0;
673 if (vma->vm_ops && vma->vm_ops->close)
674 return 0;
675 return 1;
676 }
677
678 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
679 struct anon_vma *anon_vma2,
680 struct vm_area_struct *vma)
681 {
682 /*
683 * The list_is_singular() test is to avoid merging VMA cloned from
684 * parents. This can improve scalability caused by anon_vma lock.
685 */
686 if ((!anon_vma1 || !anon_vma2) && (!vma ||
687 list_is_singular(&vma->anon_vma_chain)))
688 return 1;
689 return anon_vma1 == anon_vma2;
690 }
691
692 /*
693 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
694 * in front of (at a lower virtual address and file offset than) the vma.
695 *
696 * We cannot merge two vmas if they have differently assigned (non-NULL)
697 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
698 *
699 * We don't check here for the merged mmap wrapping around the end of pagecache
700 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
701 * wrap, nor mmaps which cover the final page at index -1UL.
702 */
703 static int
704 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
705 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
706 {
707 if (is_mergeable_vma(vma, file, vm_flags) &&
708 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
709 if (vma->vm_pgoff == vm_pgoff)
710 return 1;
711 }
712 return 0;
713 }
714
715 /*
716 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
717 * beyond (at a higher virtual address and file offset than) the vma.
718 *
719 * We cannot merge two vmas if they have differently assigned (non-NULL)
720 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
721 */
722 static int
723 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
724 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
725 {
726 if (is_mergeable_vma(vma, file, vm_flags) &&
727 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
728 pgoff_t vm_pglen;
729 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
730 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
731 return 1;
732 }
733 return 0;
734 }
735
736 /*
737 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
738 * whether that can be merged with its predecessor or its successor.
739 * Or both (it neatly fills a hole).
740 *
741 * In most cases - when called for mmap, brk or mremap - [addr,end) is
742 * certain not to be mapped by the time vma_merge is called; but when
743 * called for mprotect, it is certain to be already mapped (either at
744 * an offset within prev, or at the start of next), and the flags of
745 * this area are about to be changed to vm_flags - and the no-change
746 * case has already been eliminated.
747 *
748 * The following mprotect cases have to be considered, where AAAA is
749 * the area passed down from mprotect_fixup, never extending beyond one
750 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
751 *
752 * AAAA AAAA AAAA AAAA
753 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
754 * cannot merge might become might become might become
755 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
756 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
757 * mremap move: PPPPNNNNNNNN 8
758 * AAAA
759 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
760 * might become case 1 below case 2 below case 3 below
761 *
762 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
763 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
764 */
765 struct vm_area_struct *vma_merge(struct mm_struct *mm,
766 struct vm_area_struct *prev, unsigned long addr,
767 unsigned long end, unsigned long vm_flags,
768 struct anon_vma *anon_vma, struct file *file,
769 pgoff_t pgoff, struct mempolicy *policy)
770 {
771 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
772 struct vm_area_struct *area, *next;
773 int err;
774
775 /*
776 * We later require that vma->vm_flags == vm_flags,
777 * so this tests vma->vm_flags & VM_SPECIAL, too.
778 */
779 if (vm_flags & VM_SPECIAL)
780 return NULL;
781
782 if (prev)
783 next = prev->vm_next;
784 else
785 next = mm->mmap;
786 area = next;
787 if (next && next->vm_end == end) /* cases 6, 7, 8 */
788 next = next->vm_next;
789
790 /*
791 * Can it merge with the predecessor?
792 */
793 if (prev && prev->vm_end == addr &&
794 mpol_equal(vma_policy(prev), policy) &&
795 can_vma_merge_after(prev, vm_flags,
796 anon_vma, file, pgoff)) {
797 /*
798 * OK, it can. Can we now merge in the successor as well?
799 */
800 if (next && end == next->vm_start &&
801 mpol_equal(policy, vma_policy(next)) &&
802 can_vma_merge_before(next, vm_flags,
803 anon_vma, file, pgoff+pglen) &&
804 is_mergeable_anon_vma(prev->anon_vma,
805 next->anon_vma, NULL)) {
806 /* cases 1, 6 */
807 err = vma_adjust(prev, prev->vm_start,
808 next->vm_end, prev->vm_pgoff, NULL);
809 } else /* cases 2, 5, 7 */
810 err = vma_adjust(prev, prev->vm_start,
811 end, prev->vm_pgoff, NULL);
812 if (err)
813 return NULL;
814 khugepaged_enter_vma_merge(prev);
815 return prev;
816 }
817
818 /*
819 * Can this new request be merged in front of next?
820 */
821 if (next && end == next->vm_start &&
822 mpol_equal(policy, vma_policy(next)) &&
823 can_vma_merge_before(next, vm_flags,
824 anon_vma, file, pgoff+pglen)) {
825 if (prev && addr < prev->vm_end) /* case 4 */
826 err = vma_adjust(prev, prev->vm_start,
827 addr, prev->vm_pgoff, NULL);
828 else /* cases 3, 8 */
829 err = vma_adjust(area, addr, next->vm_end,
830 next->vm_pgoff - pglen, NULL);
831 if (err)
832 return NULL;
833 khugepaged_enter_vma_merge(area);
834 return area;
835 }
836
837 return NULL;
838 }
839
840 /*
841 * Rough compatbility check to quickly see if it's even worth looking
842 * at sharing an anon_vma.
843 *
844 * They need to have the same vm_file, and the flags can only differ
845 * in things that mprotect may change.
846 *
847 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
848 * we can merge the two vma's. For example, we refuse to merge a vma if
849 * there is a vm_ops->close() function, because that indicates that the
850 * driver is doing some kind of reference counting. But that doesn't
851 * really matter for the anon_vma sharing case.
852 */
853 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
854 {
855 return a->vm_end == b->vm_start &&
856 mpol_equal(vma_policy(a), vma_policy(b)) &&
857 a->vm_file == b->vm_file &&
858 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
859 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
860 }
861
862 /*
863 * Do some basic sanity checking to see if we can re-use the anon_vma
864 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
865 * the same as 'old', the other will be the new one that is trying
866 * to share the anon_vma.
867 *
868 * NOTE! This runs with mm_sem held for reading, so it is possible that
869 * the anon_vma of 'old' is concurrently in the process of being set up
870 * by another page fault trying to merge _that_. But that's ok: if it
871 * is being set up, that automatically means that it will be a singleton
872 * acceptable for merging, so we can do all of this optimistically. But
873 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
874 *
875 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
876 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
877 * is to return an anon_vma that is "complex" due to having gone through
878 * a fork).
879 *
880 * We also make sure that the two vma's are compatible (adjacent,
881 * and with the same memory policies). That's all stable, even with just
882 * a read lock on the mm_sem.
883 */
884 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
885 {
886 if (anon_vma_compatible(a, b)) {
887 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
888
889 if (anon_vma && list_is_singular(&old->anon_vma_chain))
890 return anon_vma;
891 }
892 return NULL;
893 }
894
895 /*
896 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
897 * neighbouring vmas for a suitable anon_vma, before it goes off
898 * to allocate a new anon_vma. It checks because a repetitive
899 * sequence of mprotects and faults may otherwise lead to distinct
900 * anon_vmas being allocated, preventing vma merge in subsequent
901 * mprotect.
902 */
903 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
904 {
905 struct anon_vma *anon_vma;
906 struct vm_area_struct *near;
907
908 near = vma->vm_next;
909 if (!near)
910 goto try_prev;
911
912 anon_vma = reusable_anon_vma(near, vma, near);
913 if (anon_vma)
914 return anon_vma;
915 try_prev:
916 near = vma->vm_prev;
917 if (!near)
918 goto none;
919
920 anon_vma = reusable_anon_vma(near, near, vma);
921 if (anon_vma)
922 return anon_vma;
923 none:
924 /*
925 * There's no absolute need to look only at touching neighbours:
926 * we could search further afield for "compatible" anon_vmas.
927 * But it would probably just be a waste of time searching,
928 * or lead to too many vmas hanging off the same anon_vma.
929 * We're trying to allow mprotect remerging later on,
930 * not trying to minimize memory used for anon_vmas.
931 */
932 return NULL;
933 }
934
935 #ifdef CONFIG_PROC_FS
936 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
937 struct file *file, long pages)
938 {
939 const unsigned long stack_flags
940 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
941
942 mm->total_vm += pages;
943
944 if (file) {
945 mm->shared_vm += pages;
946 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
947 mm->exec_vm += pages;
948 } else if (flags & stack_flags)
949 mm->stack_vm += pages;
950 }
951 #endif /* CONFIG_PROC_FS */
952
953 /*
954 * If a hint addr is less than mmap_min_addr change hint to be as
955 * low as possible but still greater than mmap_min_addr
956 */
957 static inline unsigned long round_hint_to_min(unsigned long hint)
958 {
959 hint &= PAGE_MASK;
960 if (((void *)hint != NULL) &&
961 (hint < mmap_min_addr))
962 return PAGE_ALIGN(mmap_min_addr);
963 return hint;
964 }
965
966 /*
967 * The caller must hold down_write(&current->mm->mmap_sem).
968 */
969
970 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
971 unsigned long len, unsigned long prot,
972 unsigned long flags, unsigned long pgoff)
973 {
974 struct mm_struct * mm = current->mm;
975 struct inode *inode;
976 vm_flags_t vm_flags;
977
978 /*
979 * Does the application expect PROT_READ to imply PROT_EXEC?
980 *
981 * (the exception is when the underlying filesystem is noexec
982 * mounted, in which case we dont add PROT_EXEC.)
983 */
984 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
985 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
986 prot |= PROT_EXEC;
987
988 if (!len)
989 return -EINVAL;
990
991 if (!(flags & MAP_FIXED))
992 addr = round_hint_to_min(addr);
993
994 /* Careful about overflows.. */
995 len = PAGE_ALIGN(len);
996 if (!len)
997 return -ENOMEM;
998
999 /* offset overflow? */
1000 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1001 return -EOVERFLOW;
1002
1003 /* Too many mappings? */
1004 if (mm->map_count > sysctl_max_map_count)
1005 return -ENOMEM;
1006
1007 /* Obtain the address to map to. we verify (or select) it and ensure
1008 * that it represents a valid section of the address space.
1009 */
1010 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1011 if (addr & ~PAGE_MASK)
1012 return addr;
1013
1014 /* Do simple checking here so the lower-level routines won't have
1015 * to. we assume access permissions have been handled by the open
1016 * of the memory object, so we don't do any here.
1017 */
1018 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1019 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1020
1021 if (flags & MAP_LOCKED)
1022 if (!can_do_mlock())
1023 return -EPERM;
1024
1025 /* mlock MCL_FUTURE? */
1026 if (vm_flags & VM_LOCKED) {
1027 unsigned long locked, lock_limit;
1028 locked = len >> PAGE_SHIFT;
1029 locked += mm->locked_vm;
1030 lock_limit = rlimit(RLIMIT_MEMLOCK);
1031 lock_limit >>= PAGE_SHIFT;
1032 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1033 return -EAGAIN;
1034 }
1035
1036 inode = file ? file->f_path.dentry->d_inode : NULL;
1037
1038 if (file) {
1039 switch (flags & MAP_TYPE) {
1040 case MAP_SHARED:
1041 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1042 return -EACCES;
1043
1044 /*
1045 * Make sure we don't allow writing to an append-only
1046 * file..
1047 */
1048 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1049 return -EACCES;
1050
1051 /*
1052 * Make sure there are no mandatory locks on the file.
1053 */
1054 if (locks_verify_locked(inode))
1055 return -EAGAIN;
1056
1057 vm_flags |= VM_SHARED | VM_MAYSHARE;
1058 if (!(file->f_mode & FMODE_WRITE))
1059 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1060
1061 /* fall through */
1062 case MAP_PRIVATE:
1063 if (!(file->f_mode & FMODE_READ))
1064 return -EACCES;
1065 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1066 if (vm_flags & VM_EXEC)
1067 return -EPERM;
1068 vm_flags &= ~VM_MAYEXEC;
1069 }
1070
1071 if (!file->f_op || !file->f_op->mmap)
1072 return -ENODEV;
1073 break;
1074
1075 default:
1076 return -EINVAL;
1077 }
1078 } else {
1079 switch (flags & MAP_TYPE) {
1080 case MAP_SHARED:
1081 /*
1082 * Ignore pgoff.
1083 */
1084 pgoff = 0;
1085 vm_flags |= VM_SHARED | VM_MAYSHARE;
1086 break;
1087 case MAP_PRIVATE:
1088 /*
1089 * Set pgoff according to addr for anon_vma.
1090 */
1091 pgoff = addr >> PAGE_SHIFT;
1092 break;
1093 default:
1094 return -EINVAL;
1095 }
1096 }
1097
1098 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1099 }
1100
1101 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1102 unsigned long, prot, unsigned long, flags,
1103 unsigned long, fd, unsigned long, pgoff)
1104 {
1105 struct file *file = NULL;
1106 unsigned long retval = -EBADF;
1107
1108 if (!(flags & MAP_ANONYMOUS)) {
1109 audit_mmap_fd(fd, flags);
1110 if (unlikely(flags & MAP_HUGETLB))
1111 return -EINVAL;
1112 file = fget(fd);
1113 if (!file)
1114 goto out;
1115 } else if (flags & MAP_HUGETLB) {
1116 struct user_struct *user = NULL;
1117 /*
1118 * VM_NORESERVE is used because the reservations will be
1119 * taken when vm_ops->mmap() is called
1120 * A dummy user value is used because we are not locking
1121 * memory so no accounting is necessary
1122 */
1123 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1124 VM_NORESERVE, &user,
1125 HUGETLB_ANONHUGE_INODE);
1126 if (IS_ERR(file))
1127 return PTR_ERR(file);
1128 }
1129
1130 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1131
1132 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1133 if (file)
1134 fput(file);
1135 out:
1136 return retval;
1137 }
1138
1139 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1140 struct mmap_arg_struct {
1141 unsigned long addr;
1142 unsigned long len;
1143 unsigned long prot;
1144 unsigned long flags;
1145 unsigned long fd;
1146 unsigned long offset;
1147 };
1148
1149 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1150 {
1151 struct mmap_arg_struct a;
1152
1153 if (copy_from_user(&a, arg, sizeof(a)))
1154 return -EFAULT;
1155 if (a.offset & ~PAGE_MASK)
1156 return -EINVAL;
1157
1158 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1159 a.offset >> PAGE_SHIFT);
1160 }
1161 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1162
1163 /*
1164 * Some shared mappigns will want the pages marked read-only
1165 * to track write events. If so, we'll downgrade vm_page_prot
1166 * to the private version (using protection_map[] without the
1167 * VM_SHARED bit).
1168 */
1169 int vma_wants_writenotify(struct vm_area_struct *vma)
1170 {
1171 vm_flags_t vm_flags = vma->vm_flags;
1172
1173 /* If it was private or non-writable, the write bit is already clear */
1174 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1175 return 0;
1176
1177 /* The backer wishes to know when pages are first written to? */
1178 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1179 return 1;
1180
1181 /* The open routine did something to the protections already? */
1182 if (pgprot_val(vma->vm_page_prot) !=
1183 pgprot_val(vm_get_page_prot(vm_flags)))
1184 return 0;
1185
1186 /* Specialty mapping? */
1187 if (vm_flags & VM_PFNMAP)
1188 return 0;
1189
1190 /* Can the mapping track the dirty pages? */
1191 return vma->vm_file && vma->vm_file->f_mapping &&
1192 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1193 }
1194
1195 /*
1196 * We account for memory if it's a private writeable mapping,
1197 * not hugepages and VM_NORESERVE wasn't set.
1198 */
1199 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1200 {
1201 /*
1202 * hugetlb has its own accounting separate from the core VM
1203 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1204 */
1205 if (file && is_file_hugepages(file))
1206 return 0;
1207
1208 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1209 }
1210
1211 unsigned long mmap_region(struct file *file, unsigned long addr,
1212 unsigned long len, unsigned long flags,
1213 vm_flags_t vm_flags, unsigned long pgoff)
1214 {
1215 struct mm_struct *mm = current->mm;
1216 struct vm_area_struct *vma, *prev;
1217 int correct_wcount = 0;
1218 int error;
1219 struct rb_node **rb_link, *rb_parent;
1220 unsigned long charged = 0;
1221 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1222
1223 /* Clear old maps */
1224 error = -ENOMEM;
1225 munmap_back:
1226 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1227 if (do_munmap(mm, addr, len))
1228 return -ENOMEM;
1229 goto munmap_back;
1230 }
1231
1232 /* Check against address space limit. */
1233 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1234 return -ENOMEM;
1235
1236 /*
1237 * Set 'VM_NORESERVE' if we should not account for the
1238 * memory use of this mapping.
1239 */
1240 if ((flags & MAP_NORESERVE)) {
1241 /* We honor MAP_NORESERVE if allowed to overcommit */
1242 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1243 vm_flags |= VM_NORESERVE;
1244
1245 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1246 if (file && is_file_hugepages(file))
1247 vm_flags |= VM_NORESERVE;
1248 }
1249
1250 /*
1251 * Private writable mapping: check memory availability
1252 */
1253 if (accountable_mapping(file, vm_flags)) {
1254 charged = len >> PAGE_SHIFT;
1255 if (security_vm_enough_memory_mm(mm, charged))
1256 return -ENOMEM;
1257 vm_flags |= VM_ACCOUNT;
1258 }
1259
1260 /*
1261 * Can we just expand an old mapping?
1262 */
1263 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1264 if (vma)
1265 goto out;
1266
1267 /*
1268 * Determine the object being mapped and call the appropriate
1269 * specific mapper. the address has already been validated, but
1270 * not unmapped, but the maps are removed from the list.
1271 */
1272 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1273 if (!vma) {
1274 error = -ENOMEM;
1275 goto unacct_error;
1276 }
1277
1278 vma->vm_mm = mm;
1279 vma->vm_start = addr;
1280 vma->vm_end = addr + len;
1281 vma->vm_flags = vm_flags;
1282 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1283 vma->vm_pgoff = pgoff;
1284 INIT_LIST_HEAD(&vma->anon_vma_chain);
1285
1286 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1287
1288 if (file) {
1289 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1290 goto free_vma;
1291 if (vm_flags & VM_DENYWRITE) {
1292 error = deny_write_access(file);
1293 if (error)
1294 goto free_vma;
1295 correct_wcount = 1;
1296 }
1297 vma->vm_file = get_file(file);
1298 error = file->f_op->mmap(file, vma);
1299 if (error)
1300 goto unmap_and_free_vma;
1301
1302 /* Can addr have changed??
1303 *
1304 * Answer: Yes, several device drivers can do it in their
1305 * f_op->mmap method. -DaveM
1306 */
1307 addr = vma->vm_start;
1308 pgoff = vma->vm_pgoff;
1309 vm_flags = vma->vm_flags;
1310 } else if (vm_flags & VM_SHARED) {
1311 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1312 goto free_vma;
1313 error = shmem_zero_setup(vma);
1314 if (error)
1315 goto free_vma;
1316 }
1317
1318 if (vma_wants_writenotify(vma)) {
1319 pgprot_t pprot = vma->vm_page_prot;
1320
1321 /* Can vma->vm_page_prot have changed??
1322 *
1323 * Answer: Yes, drivers may have changed it in their
1324 * f_op->mmap method.
1325 *
1326 * Ensures that vmas marked as uncached stay that way.
1327 */
1328 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1329 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1330 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1331 }
1332
1333 vma_link(mm, vma, prev, rb_link, rb_parent);
1334 file = vma->vm_file;
1335
1336 /* Once vma denies write, undo our temporary denial count */
1337 if (correct_wcount)
1338 atomic_inc(&inode->i_writecount);
1339 out:
1340 perf_event_mmap(vma);
1341
1342 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1343 if (vm_flags & VM_LOCKED) {
1344 if (!mlock_vma_pages_range(vma, addr, addr + len))
1345 mm->locked_vm += (len >> PAGE_SHIFT);
1346 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1347 make_pages_present(addr, addr + len);
1348
1349 if (file)
1350 uprobe_mmap(vma);
1351
1352 return addr;
1353
1354 unmap_and_free_vma:
1355 if (correct_wcount)
1356 atomic_inc(&inode->i_writecount);
1357 vma->vm_file = NULL;
1358 fput(file);
1359
1360 /* Undo any partial mapping done by a device driver. */
1361 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1362 charged = 0;
1363 free_vma:
1364 kmem_cache_free(vm_area_cachep, vma);
1365 unacct_error:
1366 if (charged)
1367 vm_unacct_memory(charged);
1368 return error;
1369 }
1370
1371 /* Get an address range which is currently unmapped.
1372 * For shmat() with addr=0.
1373 *
1374 * Ugly calling convention alert:
1375 * Return value with the low bits set means error value,
1376 * ie
1377 * if (ret & ~PAGE_MASK)
1378 * error = ret;
1379 *
1380 * This function "knows" that -ENOMEM has the bits set.
1381 */
1382 #ifndef HAVE_ARCH_UNMAPPED_AREA
1383 unsigned long
1384 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1385 unsigned long len, unsigned long pgoff, unsigned long flags)
1386 {
1387 struct mm_struct *mm = current->mm;
1388 struct vm_area_struct *vma;
1389 unsigned long start_addr;
1390
1391 if (len > TASK_SIZE)
1392 return -ENOMEM;
1393
1394 if (flags & MAP_FIXED)
1395 return addr;
1396
1397 if (addr) {
1398 addr = PAGE_ALIGN(addr);
1399 vma = find_vma(mm, addr);
1400 if (TASK_SIZE - len >= addr &&
1401 (!vma || addr + len <= vma->vm_start))
1402 return addr;
1403 }
1404 if (len > mm->cached_hole_size) {
1405 start_addr = addr = mm->free_area_cache;
1406 } else {
1407 start_addr = addr = TASK_UNMAPPED_BASE;
1408 mm->cached_hole_size = 0;
1409 }
1410
1411 full_search:
1412 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1413 /* At this point: (!vma || addr < vma->vm_end). */
1414 if (TASK_SIZE - len < addr) {
1415 /*
1416 * Start a new search - just in case we missed
1417 * some holes.
1418 */
1419 if (start_addr != TASK_UNMAPPED_BASE) {
1420 addr = TASK_UNMAPPED_BASE;
1421 start_addr = addr;
1422 mm->cached_hole_size = 0;
1423 goto full_search;
1424 }
1425 return -ENOMEM;
1426 }
1427 if (!vma || addr + len <= vma->vm_start) {
1428 /*
1429 * Remember the place where we stopped the search:
1430 */
1431 mm->free_area_cache = addr + len;
1432 return addr;
1433 }
1434 if (addr + mm->cached_hole_size < vma->vm_start)
1435 mm->cached_hole_size = vma->vm_start - addr;
1436 addr = vma->vm_end;
1437 }
1438 }
1439 #endif
1440
1441 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1442 {
1443 /*
1444 * Is this a new hole at the lowest possible address?
1445 */
1446 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1447 mm->free_area_cache = addr;
1448 }
1449
1450 /*
1451 * This mmap-allocator allocates new areas top-down from below the
1452 * stack's low limit (the base):
1453 */
1454 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1455 unsigned long
1456 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1457 const unsigned long len, const unsigned long pgoff,
1458 const unsigned long flags)
1459 {
1460 struct vm_area_struct *vma;
1461 struct mm_struct *mm = current->mm;
1462 unsigned long addr = addr0, start_addr;
1463
1464 /* requested length too big for entire address space */
1465 if (len > TASK_SIZE)
1466 return -ENOMEM;
1467
1468 if (flags & MAP_FIXED)
1469 return addr;
1470
1471 /* requesting a specific address */
1472 if (addr) {
1473 addr = PAGE_ALIGN(addr);
1474 vma = find_vma(mm, addr);
1475 if (TASK_SIZE - len >= addr &&
1476 (!vma || addr + len <= vma->vm_start))
1477 return addr;
1478 }
1479
1480 /* check if free_area_cache is useful for us */
1481 if (len <= mm->cached_hole_size) {
1482 mm->cached_hole_size = 0;
1483 mm->free_area_cache = mm->mmap_base;
1484 }
1485
1486 try_again:
1487 /* either no address requested or can't fit in requested address hole */
1488 start_addr = addr = mm->free_area_cache;
1489
1490 if (addr < len)
1491 goto fail;
1492
1493 addr -= len;
1494 do {
1495 /*
1496 * Lookup failure means no vma is above this address,
1497 * else if new region fits below vma->vm_start,
1498 * return with success:
1499 */
1500 vma = find_vma(mm, addr);
1501 if (!vma || addr+len <= vma->vm_start)
1502 /* remember the address as a hint for next time */
1503 return (mm->free_area_cache = addr);
1504
1505 /* remember the largest hole we saw so far */
1506 if (addr + mm->cached_hole_size < vma->vm_start)
1507 mm->cached_hole_size = vma->vm_start - addr;
1508
1509 /* try just below the current vma->vm_start */
1510 addr = vma->vm_start-len;
1511 } while (len < vma->vm_start);
1512
1513 fail:
1514 /*
1515 * if hint left us with no space for the requested
1516 * mapping then try again:
1517 *
1518 * Note: this is different with the case of bottomup
1519 * which does the fully line-search, but we use find_vma
1520 * here that causes some holes skipped.
1521 */
1522 if (start_addr != mm->mmap_base) {
1523 mm->free_area_cache = mm->mmap_base;
1524 mm->cached_hole_size = 0;
1525 goto try_again;
1526 }
1527
1528 /*
1529 * A failed mmap() very likely causes application failure,
1530 * so fall back to the bottom-up function here. This scenario
1531 * can happen with large stack limits and large mmap()
1532 * allocations.
1533 */
1534 mm->cached_hole_size = ~0UL;
1535 mm->free_area_cache = TASK_UNMAPPED_BASE;
1536 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1537 /*
1538 * Restore the topdown base:
1539 */
1540 mm->free_area_cache = mm->mmap_base;
1541 mm->cached_hole_size = ~0UL;
1542
1543 return addr;
1544 }
1545 #endif
1546
1547 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1548 {
1549 /*
1550 * Is this a new hole at the highest possible address?
1551 */
1552 if (addr > mm->free_area_cache)
1553 mm->free_area_cache = addr;
1554
1555 /* dont allow allocations above current base */
1556 if (mm->free_area_cache > mm->mmap_base)
1557 mm->free_area_cache = mm->mmap_base;
1558 }
1559
1560 unsigned long
1561 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1562 unsigned long pgoff, unsigned long flags)
1563 {
1564 unsigned long (*get_area)(struct file *, unsigned long,
1565 unsigned long, unsigned long, unsigned long);
1566
1567 unsigned long error = arch_mmap_check(addr, len, flags);
1568 if (error)
1569 return error;
1570
1571 /* Careful about overflows.. */
1572 if (len > TASK_SIZE)
1573 return -ENOMEM;
1574
1575 get_area = current->mm->get_unmapped_area;
1576 if (file && file->f_op && file->f_op->get_unmapped_area)
1577 get_area = file->f_op->get_unmapped_area;
1578 addr = get_area(file, addr, len, pgoff, flags);
1579 if (IS_ERR_VALUE(addr))
1580 return addr;
1581
1582 if (addr > TASK_SIZE - len)
1583 return -ENOMEM;
1584 if (addr & ~PAGE_MASK)
1585 return -EINVAL;
1586
1587 addr = arch_rebalance_pgtables(addr, len);
1588 error = security_mmap_addr(addr);
1589 return error ? error : addr;
1590 }
1591
1592 EXPORT_SYMBOL(get_unmapped_area);
1593
1594 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1595 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1596 {
1597 struct vm_area_struct *vma = NULL;
1598
1599 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1600 return NULL;
1601
1602 /* Check the cache first. */
1603 /* (Cache hit rate is typically around 35%.) */
1604 vma = mm->mmap_cache;
1605 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1606 struct rb_node *rb_node;
1607
1608 rb_node = mm->mm_rb.rb_node;
1609 vma = NULL;
1610
1611 while (rb_node) {
1612 struct vm_area_struct *vma_tmp;
1613
1614 vma_tmp = rb_entry(rb_node,
1615 struct vm_area_struct, vm_rb);
1616
1617 if (vma_tmp->vm_end > addr) {
1618 vma = vma_tmp;
1619 if (vma_tmp->vm_start <= addr)
1620 break;
1621 rb_node = rb_node->rb_left;
1622 } else
1623 rb_node = rb_node->rb_right;
1624 }
1625 if (vma)
1626 mm->mmap_cache = vma;
1627 }
1628 return vma;
1629 }
1630
1631 EXPORT_SYMBOL(find_vma);
1632
1633 /*
1634 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1635 */
1636 struct vm_area_struct *
1637 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1638 struct vm_area_struct **pprev)
1639 {
1640 struct vm_area_struct *vma;
1641
1642 vma = find_vma(mm, addr);
1643 if (vma) {
1644 *pprev = vma->vm_prev;
1645 } else {
1646 struct rb_node *rb_node = mm->mm_rb.rb_node;
1647 *pprev = NULL;
1648 while (rb_node) {
1649 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1650 rb_node = rb_node->rb_right;
1651 }
1652 }
1653 return vma;
1654 }
1655
1656 /*
1657 * Verify that the stack growth is acceptable and
1658 * update accounting. This is shared with both the
1659 * grow-up and grow-down cases.
1660 */
1661 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1662 {
1663 struct mm_struct *mm = vma->vm_mm;
1664 struct rlimit *rlim = current->signal->rlim;
1665 unsigned long new_start;
1666
1667 /* address space limit tests */
1668 if (!may_expand_vm(mm, grow))
1669 return -ENOMEM;
1670
1671 /* Stack limit test */
1672 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1673 return -ENOMEM;
1674
1675 /* mlock limit tests */
1676 if (vma->vm_flags & VM_LOCKED) {
1677 unsigned long locked;
1678 unsigned long limit;
1679 locked = mm->locked_vm + grow;
1680 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1681 limit >>= PAGE_SHIFT;
1682 if (locked > limit && !capable(CAP_IPC_LOCK))
1683 return -ENOMEM;
1684 }
1685
1686 /* Check to ensure the stack will not grow into a hugetlb-only region */
1687 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1688 vma->vm_end - size;
1689 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1690 return -EFAULT;
1691
1692 /*
1693 * Overcommit.. This must be the final test, as it will
1694 * update security statistics.
1695 */
1696 if (security_vm_enough_memory_mm(mm, grow))
1697 return -ENOMEM;
1698
1699 /* Ok, everything looks good - let it rip */
1700 if (vma->vm_flags & VM_LOCKED)
1701 mm->locked_vm += grow;
1702 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1703 return 0;
1704 }
1705
1706 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1707 /*
1708 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1709 * vma is the last one with address > vma->vm_end. Have to extend vma.
1710 */
1711 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1712 {
1713 int error;
1714
1715 if (!(vma->vm_flags & VM_GROWSUP))
1716 return -EFAULT;
1717
1718 /*
1719 * We must make sure the anon_vma is allocated
1720 * so that the anon_vma locking is not a noop.
1721 */
1722 if (unlikely(anon_vma_prepare(vma)))
1723 return -ENOMEM;
1724 vma_lock_anon_vma(vma);
1725
1726 /*
1727 * vma->vm_start/vm_end cannot change under us because the caller
1728 * is required to hold the mmap_sem in read mode. We need the
1729 * anon_vma lock to serialize against concurrent expand_stacks.
1730 * Also guard against wrapping around to address 0.
1731 */
1732 if (address < PAGE_ALIGN(address+4))
1733 address = PAGE_ALIGN(address+4);
1734 else {
1735 vma_unlock_anon_vma(vma);
1736 return -ENOMEM;
1737 }
1738 error = 0;
1739
1740 /* Somebody else might have raced and expanded it already */
1741 if (address > vma->vm_end) {
1742 unsigned long size, grow;
1743
1744 size = address - vma->vm_start;
1745 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1746
1747 error = -ENOMEM;
1748 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1749 error = acct_stack_growth(vma, size, grow);
1750 if (!error) {
1751 vma->vm_end = address;
1752 perf_event_mmap(vma);
1753 }
1754 }
1755 }
1756 vma_unlock_anon_vma(vma);
1757 khugepaged_enter_vma_merge(vma);
1758 return error;
1759 }
1760 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1761
1762 /*
1763 * vma is the first one with address < vma->vm_start. Have to extend vma.
1764 */
1765 int expand_downwards(struct vm_area_struct *vma,
1766 unsigned long address)
1767 {
1768 int error;
1769
1770 /*
1771 * We must make sure the anon_vma is allocated
1772 * so that the anon_vma locking is not a noop.
1773 */
1774 if (unlikely(anon_vma_prepare(vma)))
1775 return -ENOMEM;
1776
1777 address &= PAGE_MASK;
1778 error = security_mmap_addr(address);
1779 if (error)
1780 return error;
1781
1782 vma_lock_anon_vma(vma);
1783
1784 /*
1785 * vma->vm_start/vm_end cannot change under us because the caller
1786 * is required to hold the mmap_sem in read mode. We need the
1787 * anon_vma lock to serialize against concurrent expand_stacks.
1788 */
1789
1790 /* Somebody else might have raced and expanded it already */
1791 if (address < vma->vm_start) {
1792 unsigned long size, grow;
1793
1794 size = vma->vm_end - address;
1795 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1796
1797 error = -ENOMEM;
1798 if (grow <= vma->vm_pgoff) {
1799 error = acct_stack_growth(vma, size, grow);
1800 if (!error) {
1801 vma->vm_start = address;
1802 vma->vm_pgoff -= grow;
1803 perf_event_mmap(vma);
1804 }
1805 }
1806 }
1807 vma_unlock_anon_vma(vma);
1808 khugepaged_enter_vma_merge(vma);
1809 return error;
1810 }
1811
1812 #ifdef CONFIG_STACK_GROWSUP
1813 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1814 {
1815 return expand_upwards(vma, address);
1816 }
1817
1818 struct vm_area_struct *
1819 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1820 {
1821 struct vm_area_struct *vma, *prev;
1822
1823 addr &= PAGE_MASK;
1824 vma = find_vma_prev(mm, addr, &prev);
1825 if (vma && (vma->vm_start <= addr))
1826 return vma;
1827 if (!prev || expand_stack(prev, addr))
1828 return NULL;
1829 if (prev->vm_flags & VM_LOCKED) {
1830 mlock_vma_pages_range(prev, addr, prev->vm_end);
1831 }
1832 return prev;
1833 }
1834 #else
1835 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1836 {
1837 return expand_downwards(vma, address);
1838 }
1839
1840 struct vm_area_struct *
1841 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1842 {
1843 struct vm_area_struct * vma;
1844 unsigned long start;
1845
1846 addr &= PAGE_MASK;
1847 vma = find_vma(mm,addr);
1848 if (!vma)
1849 return NULL;
1850 if (vma->vm_start <= addr)
1851 return vma;
1852 if (!(vma->vm_flags & VM_GROWSDOWN))
1853 return NULL;
1854 start = vma->vm_start;
1855 if (expand_stack(vma, addr))
1856 return NULL;
1857 if (vma->vm_flags & VM_LOCKED) {
1858 mlock_vma_pages_range(vma, addr, start);
1859 }
1860 return vma;
1861 }
1862 #endif
1863
1864 /*
1865 * Ok - we have the memory areas we should free on the vma list,
1866 * so release them, and do the vma updates.
1867 *
1868 * Called with the mm semaphore held.
1869 */
1870 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1871 {
1872 unsigned long nr_accounted = 0;
1873
1874 /* Update high watermark before we lower total_vm */
1875 update_hiwater_vm(mm);
1876 do {
1877 long nrpages = vma_pages(vma);
1878
1879 if (vma->vm_flags & VM_ACCOUNT)
1880 nr_accounted += nrpages;
1881 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1882 vma = remove_vma(vma);
1883 } while (vma);
1884 vm_unacct_memory(nr_accounted);
1885 validate_mm(mm);
1886 }
1887
1888 /*
1889 * Get rid of page table information in the indicated region.
1890 *
1891 * Called with the mm semaphore held.
1892 */
1893 static void unmap_region(struct mm_struct *mm,
1894 struct vm_area_struct *vma, struct vm_area_struct *prev,
1895 unsigned long start, unsigned long end)
1896 {
1897 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1898 struct mmu_gather tlb;
1899
1900 lru_add_drain();
1901 tlb_gather_mmu(&tlb, mm, 0);
1902 update_hiwater_rss(mm);
1903 unmap_vmas(&tlb, vma, start, end);
1904 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1905 next ? next->vm_start : 0);
1906 tlb_finish_mmu(&tlb, start, end);
1907 }
1908
1909 /*
1910 * Create a list of vma's touched by the unmap, removing them from the mm's
1911 * vma list as we go..
1912 */
1913 static void
1914 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1915 struct vm_area_struct *prev, unsigned long end)
1916 {
1917 struct vm_area_struct **insertion_point;
1918 struct vm_area_struct *tail_vma = NULL;
1919 unsigned long addr;
1920
1921 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1922 vma->vm_prev = NULL;
1923 do {
1924 rb_erase(&vma->vm_rb, &mm->mm_rb);
1925 mm->map_count--;
1926 tail_vma = vma;
1927 vma = vma->vm_next;
1928 } while (vma && vma->vm_start < end);
1929 *insertion_point = vma;
1930 if (vma)
1931 vma->vm_prev = prev;
1932 tail_vma->vm_next = NULL;
1933 if (mm->unmap_area == arch_unmap_area)
1934 addr = prev ? prev->vm_end : mm->mmap_base;
1935 else
1936 addr = vma ? vma->vm_start : mm->mmap_base;
1937 mm->unmap_area(mm, addr);
1938 mm->mmap_cache = NULL; /* Kill the cache. */
1939 }
1940
1941 /*
1942 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1943 * munmap path where it doesn't make sense to fail.
1944 */
1945 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1946 unsigned long addr, int new_below)
1947 {
1948 struct mempolicy *pol;
1949 struct vm_area_struct *new;
1950 int err = -ENOMEM;
1951
1952 if (is_vm_hugetlb_page(vma) && (addr &
1953 ~(huge_page_mask(hstate_vma(vma)))))
1954 return -EINVAL;
1955
1956 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1957 if (!new)
1958 goto out_err;
1959
1960 /* most fields are the same, copy all, and then fixup */
1961 *new = *vma;
1962
1963 INIT_LIST_HEAD(&new->anon_vma_chain);
1964
1965 if (new_below)
1966 new->vm_end = addr;
1967 else {
1968 new->vm_start = addr;
1969 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
1970 }
1971
1972 pol = mpol_dup(vma_policy(vma));
1973 if (IS_ERR(pol)) {
1974 err = PTR_ERR(pol);
1975 goto out_free_vma;
1976 }
1977 vma_set_policy(new, pol);
1978
1979 if (anon_vma_clone(new, vma))
1980 goto out_free_mpol;
1981
1982 if (new->vm_file)
1983 get_file(new->vm_file);
1984
1985 if (new->vm_ops && new->vm_ops->open)
1986 new->vm_ops->open(new);
1987
1988 if (new_below)
1989 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
1990 ((addr - new->vm_start) >> PAGE_SHIFT), new);
1991 else
1992 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
1993
1994 /* Success. */
1995 if (!err)
1996 return 0;
1997
1998 /* Clean everything up if vma_adjust failed. */
1999 if (new->vm_ops && new->vm_ops->close)
2000 new->vm_ops->close(new);
2001 if (new->vm_file)
2002 fput(new->vm_file);
2003 unlink_anon_vmas(new);
2004 out_free_mpol:
2005 mpol_put(pol);
2006 out_free_vma:
2007 kmem_cache_free(vm_area_cachep, new);
2008 out_err:
2009 return err;
2010 }
2011
2012 /*
2013 * Split a vma into two pieces at address 'addr', a new vma is allocated
2014 * either for the first part or the tail.
2015 */
2016 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2017 unsigned long addr, int new_below)
2018 {
2019 if (mm->map_count >= sysctl_max_map_count)
2020 return -ENOMEM;
2021
2022 return __split_vma(mm, vma, addr, new_below);
2023 }
2024
2025 /* Munmap is split into 2 main parts -- this part which finds
2026 * what needs doing, and the areas themselves, which do the
2027 * work. This now handles partial unmappings.
2028 * Jeremy Fitzhardinge <jeremy@goop.org>
2029 */
2030 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2031 {
2032 unsigned long end;
2033 struct vm_area_struct *vma, *prev, *last;
2034
2035 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2036 return -EINVAL;
2037
2038 if ((len = PAGE_ALIGN(len)) == 0)
2039 return -EINVAL;
2040
2041 /* Find the first overlapping VMA */
2042 vma = find_vma(mm, start);
2043 if (!vma)
2044 return 0;
2045 prev = vma->vm_prev;
2046 /* we have start < vma->vm_end */
2047
2048 /* if it doesn't overlap, we have nothing.. */
2049 end = start + len;
2050 if (vma->vm_start >= end)
2051 return 0;
2052
2053 /*
2054 * If we need to split any vma, do it now to save pain later.
2055 *
2056 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2057 * unmapped vm_area_struct will remain in use: so lower split_vma
2058 * places tmp vma above, and higher split_vma places tmp vma below.
2059 */
2060 if (start > vma->vm_start) {
2061 int error;
2062
2063 /*
2064 * Make sure that map_count on return from munmap() will
2065 * not exceed its limit; but let map_count go just above
2066 * its limit temporarily, to help free resources as expected.
2067 */
2068 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2069 return -ENOMEM;
2070
2071 error = __split_vma(mm, vma, start, 0);
2072 if (error)
2073 return error;
2074 prev = vma;
2075 }
2076
2077 /* Does it split the last one? */
2078 last = find_vma(mm, end);
2079 if (last && end > last->vm_start) {
2080 int error = __split_vma(mm, last, end, 1);
2081 if (error)
2082 return error;
2083 }
2084 vma = prev? prev->vm_next: mm->mmap;
2085
2086 /*
2087 * unlock any mlock()ed ranges before detaching vmas
2088 */
2089 if (mm->locked_vm) {
2090 struct vm_area_struct *tmp = vma;
2091 while (tmp && tmp->vm_start < end) {
2092 if (tmp->vm_flags & VM_LOCKED) {
2093 mm->locked_vm -= vma_pages(tmp);
2094 munlock_vma_pages_all(tmp);
2095 }
2096 tmp = tmp->vm_next;
2097 }
2098 }
2099
2100 /*
2101 * Remove the vma's, and unmap the actual pages
2102 */
2103 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2104 unmap_region(mm, vma, prev, start, end);
2105
2106 /* Fix up all other VM information */
2107 remove_vma_list(mm, vma);
2108
2109 return 0;
2110 }
2111
2112 int vm_munmap(unsigned long start, size_t len)
2113 {
2114 int ret;
2115 struct mm_struct *mm = current->mm;
2116
2117 down_write(&mm->mmap_sem);
2118 ret = do_munmap(mm, start, len);
2119 up_write(&mm->mmap_sem);
2120 return ret;
2121 }
2122 EXPORT_SYMBOL(vm_munmap);
2123
2124 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2125 {
2126 profile_munmap(addr);
2127 return vm_munmap(addr, len);
2128 }
2129
2130 static inline void verify_mm_writelocked(struct mm_struct *mm)
2131 {
2132 #ifdef CONFIG_DEBUG_VM
2133 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2134 WARN_ON(1);
2135 up_read(&mm->mmap_sem);
2136 }
2137 #endif
2138 }
2139
2140 /*
2141 * this is really a simplified "do_mmap". it only handles
2142 * anonymous maps. eventually we may be able to do some
2143 * brk-specific accounting here.
2144 */
2145 static unsigned long do_brk(unsigned long addr, unsigned long len)
2146 {
2147 struct mm_struct * mm = current->mm;
2148 struct vm_area_struct * vma, * prev;
2149 unsigned long flags;
2150 struct rb_node ** rb_link, * rb_parent;
2151 pgoff_t pgoff = addr >> PAGE_SHIFT;
2152 int error;
2153
2154 len = PAGE_ALIGN(len);
2155 if (!len)
2156 return addr;
2157
2158 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2159
2160 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2161 if (error & ~PAGE_MASK)
2162 return error;
2163
2164 /*
2165 * mlock MCL_FUTURE?
2166 */
2167 if (mm->def_flags & VM_LOCKED) {
2168 unsigned long locked, lock_limit;
2169 locked = len >> PAGE_SHIFT;
2170 locked += mm->locked_vm;
2171 lock_limit = rlimit(RLIMIT_MEMLOCK);
2172 lock_limit >>= PAGE_SHIFT;
2173 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2174 return -EAGAIN;
2175 }
2176
2177 /*
2178 * mm->mmap_sem is required to protect against another thread
2179 * changing the mappings in case we sleep.
2180 */
2181 verify_mm_writelocked(mm);
2182
2183 /*
2184 * Clear old maps. this also does some error checking for us
2185 */
2186 munmap_back:
2187 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2188 if (do_munmap(mm, addr, len))
2189 return -ENOMEM;
2190 goto munmap_back;
2191 }
2192
2193 /* Check against address space limits *after* clearing old maps... */
2194 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2195 return -ENOMEM;
2196
2197 if (mm->map_count > sysctl_max_map_count)
2198 return -ENOMEM;
2199
2200 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2201 return -ENOMEM;
2202
2203 /* Can we just expand an old private anonymous mapping? */
2204 vma = vma_merge(mm, prev, addr, addr + len, flags,
2205 NULL, NULL, pgoff, NULL);
2206 if (vma)
2207 goto out;
2208
2209 /*
2210 * create a vma struct for an anonymous mapping
2211 */
2212 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2213 if (!vma) {
2214 vm_unacct_memory(len >> PAGE_SHIFT);
2215 return -ENOMEM;
2216 }
2217
2218 INIT_LIST_HEAD(&vma->anon_vma_chain);
2219 vma->vm_mm = mm;
2220 vma->vm_start = addr;
2221 vma->vm_end = addr + len;
2222 vma->vm_pgoff = pgoff;
2223 vma->vm_flags = flags;
2224 vma->vm_page_prot = vm_get_page_prot(flags);
2225 vma_link(mm, vma, prev, rb_link, rb_parent);
2226 out:
2227 perf_event_mmap(vma);
2228 mm->total_vm += len >> PAGE_SHIFT;
2229 if (flags & VM_LOCKED) {
2230 if (!mlock_vma_pages_range(vma, addr, addr + len))
2231 mm->locked_vm += (len >> PAGE_SHIFT);
2232 }
2233 return addr;
2234 }
2235
2236 unsigned long vm_brk(unsigned long addr, unsigned long len)
2237 {
2238 struct mm_struct *mm = current->mm;
2239 unsigned long ret;
2240
2241 down_write(&mm->mmap_sem);
2242 ret = do_brk(addr, len);
2243 up_write(&mm->mmap_sem);
2244 return ret;
2245 }
2246 EXPORT_SYMBOL(vm_brk);
2247
2248 /* Release all mmaps. */
2249 void exit_mmap(struct mm_struct *mm)
2250 {
2251 struct mmu_gather tlb;
2252 struct vm_area_struct *vma;
2253 unsigned long nr_accounted = 0;
2254
2255 /* mm's last user has gone, and its about to be pulled down */
2256 mmu_notifier_release(mm);
2257
2258 if (mm->locked_vm) {
2259 vma = mm->mmap;
2260 while (vma) {
2261 if (vma->vm_flags & VM_LOCKED)
2262 munlock_vma_pages_all(vma);
2263 vma = vma->vm_next;
2264 }
2265 }
2266
2267 arch_exit_mmap(mm);
2268
2269 vma = mm->mmap;
2270 if (!vma) /* Can happen if dup_mmap() received an OOM */
2271 return;
2272
2273 lru_add_drain();
2274 flush_cache_mm(mm);
2275 tlb_gather_mmu(&tlb, mm, 1);
2276 /* update_hiwater_rss(mm) here? but nobody should be looking */
2277 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2278 unmap_vmas(&tlb, vma, 0, -1);
2279
2280 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2281 tlb_finish_mmu(&tlb, 0, -1);
2282
2283 /*
2284 * Walk the list again, actually closing and freeing it,
2285 * with preemption enabled, without holding any MM locks.
2286 */
2287 while (vma) {
2288 if (vma->vm_flags & VM_ACCOUNT)
2289 nr_accounted += vma_pages(vma);
2290 vma = remove_vma(vma);
2291 }
2292 vm_unacct_memory(nr_accounted);
2293
2294 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2295 }
2296
2297 /* Insert vm structure into process list sorted by address
2298 * and into the inode's i_mmap tree. If vm_file is non-NULL
2299 * then i_mmap_mutex is taken here.
2300 */
2301 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2302 {
2303 struct vm_area_struct *prev;
2304 struct rb_node **rb_link, *rb_parent;
2305
2306 /*
2307 * The vm_pgoff of a purely anonymous vma should be irrelevant
2308 * until its first write fault, when page's anon_vma and index
2309 * are set. But now set the vm_pgoff it will almost certainly
2310 * end up with (unless mremap moves it elsewhere before that
2311 * first wfault), so /proc/pid/maps tells a consistent story.
2312 *
2313 * By setting it to reflect the virtual start address of the
2314 * vma, merges and splits can happen in a seamless way, just
2315 * using the existing file pgoff checks and manipulations.
2316 * Similarly in do_mmap_pgoff and in do_brk.
2317 */
2318 if (!vma->vm_file) {
2319 BUG_ON(vma->anon_vma);
2320 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2321 }
2322 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2323 &prev, &rb_link, &rb_parent))
2324 return -ENOMEM;
2325 if ((vma->vm_flags & VM_ACCOUNT) &&
2326 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2327 return -ENOMEM;
2328
2329 vma_link(mm, vma, prev, rb_link, rb_parent);
2330 return 0;
2331 }
2332
2333 /*
2334 * Copy the vma structure to a new location in the same mm,
2335 * prior to moving page table entries, to effect an mremap move.
2336 */
2337 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2338 unsigned long addr, unsigned long len, pgoff_t pgoff)
2339 {
2340 struct vm_area_struct *vma = *vmap;
2341 unsigned long vma_start = vma->vm_start;
2342 struct mm_struct *mm = vma->vm_mm;
2343 struct vm_area_struct *new_vma, *prev;
2344 struct rb_node **rb_link, *rb_parent;
2345 struct mempolicy *pol;
2346 bool faulted_in_anon_vma = true;
2347
2348 /*
2349 * If anonymous vma has not yet been faulted, update new pgoff
2350 * to match new location, to increase its chance of merging.
2351 */
2352 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2353 pgoff = addr >> PAGE_SHIFT;
2354 faulted_in_anon_vma = false;
2355 }
2356
2357 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2358 return NULL; /* should never get here */
2359 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2360 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2361 if (new_vma) {
2362 /*
2363 * Source vma may have been merged into new_vma
2364 */
2365 if (unlikely(vma_start >= new_vma->vm_start &&
2366 vma_start < new_vma->vm_end)) {
2367 /*
2368 * The only way we can get a vma_merge with
2369 * self during an mremap is if the vma hasn't
2370 * been faulted in yet and we were allowed to
2371 * reset the dst vma->vm_pgoff to the
2372 * destination address of the mremap to allow
2373 * the merge to happen. mremap must change the
2374 * vm_pgoff linearity between src and dst vmas
2375 * (in turn preventing a vma_merge) to be
2376 * safe. It is only safe to keep the vm_pgoff
2377 * linear if there are no pages mapped yet.
2378 */
2379 VM_BUG_ON(faulted_in_anon_vma);
2380 *vmap = new_vma;
2381 }
2382 } else {
2383 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2384 if (new_vma) {
2385 *new_vma = *vma;
2386 pol = mpol_dup(vma_policy(vma));
2387 if (IS_ERR(pol))
2388 goto out_free_vma;
2389 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2390 if (anon_vma_clone(new_vma, vma))
2391 goto out_free_mempol;
2392 vma_set_policy(new_vma, pol);
2393 new_vma->vm_start = addr;
2394 new_vma->vm_end = addr + len;
2395 new_vma->vm_pgoff = pgoff;
2396 if (new_vma->vm_file)
2397 get_file(new_vma->vm_file);
2398 if (new_vma->vm_ops && new_vma->vm_ops->open)
2399 new_vma->vm_ops->open(new_vma);
2400 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2401 }
2402 }
2403 return new_vma;
2404
2405 out_free_mempol:
2406 mpol_put(pol);
2407 out_free_vma:
2408 kmem_cache_free(vm_area_cachep, new_vma);
2409 return NULL;
2410 }
2411
2412 /*
2413 * Return true if the calling process may expand its vm space by the passed
2414 * number of pages
2415 */
2416 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2417 {
2418 unsigned long cur = mm->total_vm; /* pages */
2419 unsigned long lim;
2420
2421 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2422
2423 if (cur + npages > lim)
2424 return 0;
2425 return 1;
2426 }
2427
2428
2429 static int special_mapping_fault(struct vm_area_struct *vma,
2430 struct vm_fault *vmf)
2431 {
2432 pgoff_t pgoff;
2433 struct page **pages;
2434
2435 /*
2436 * special mappings have no vm_file, and in that case, the mm
2437 * uses vm_pgoff internally. So we have to subtract it from here.
2438 * We are allowed to do this because we are the mm; do not copy
2439 * this code into drivers!
2440 */
2441 pgoff = vmf->pgoff - vma->vm_pgoff;
2442
2443 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2444 pgoff--;
2445
2446 if (*pages) {
2447 struct page *page = *pages;
2448 get_page(page);
2449 vmf->page = page;
2450 return 0;
2451 }
2452
2453 return VM_FAULT_SIGBUS;
2454 }
2455
2456 /*
2457 * Having a close hook prevents vma merging regardless of flags.
2458 */
2459 static void special_mapping_close(struct vm_area_struct *vma)
2460 {
2461 }
2462
2463 static const struct vm_operations_struct special_mapping_vmops = {
2464 .close = special_mapping_close,
2465 .fault = special_mapping_fault,
2466 };
2467
2468 /*
2469 * Called with mm->mmap_sem held for writing.
2470 * Insert a new vma covering the given region, with the given flags.
2471 * Its pages are supplied by the given array of struct page *.
2472 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2473 * The region past the last page supplied will always produce SIGBUS.
2474 * The array pointer and the pages it points to are assumed to stay alive
2475 * for as long as this mapping might exist.
2476 */
2477 int install_special_mapping(struct mm_struct *mm,
2478 unsigned long addr, unsigned long len,
2479 unsigned long vm_flags, struct page **pages)
2480 {
2481 int ret;
2482 struct vm_area_struct *vma;
2483
2484 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2485 if (unlikely(vma == NULL))
2486 return -ENOMEM;
2487
2488 INIT_LIST_HEAD(&vma->anon_vma_chain);
2489 vma->vm_mm = mm;
2490 vma->vm_start = addr;
2491 vma->vm_end = addr + len;
2492
2493 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2494 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2495
2496 vma->vm_ops = &special_mapping_vmops;
2497 vma->vm_private_data = pages;
2498
2499 ret = insert_vm_struct(mm, vma);
2500 if (ret)
2501 goto out;
2502
2503 mm->total_vm += len >> PAGE_SHIFT;
2504
2505 perf_event_mmap(vma);
2506
2507 return 0;
2508
2509 out:
2510 kmem_cache_free(vm_area_cachep, vma);
2511 return ret;
2512 }
2513
2514 static DEFINE_MUTEX(mm_all_locks_mutex);
2515
2516 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2517 {
2518 if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2519 /*
2520 * The LSB of head.next can't change from under us
2521 * because we hold the mm_all_locks_mutex.
2522 */
2523 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2524 /*
2525 * We can safely modify head.next after taking the
2526 * anon_vma->root->mutex. If some other vma in this mm shares
2527 * the same anon_vma we won't take it again.
2528 *
2529 * No need of atomic instructions here, head.next
2530 * can't change from under us thanks to the
2531 * anon_vma->root->mutex.
2532 */
2533 if (__test_and_set_bit(0, (unsigned long *)
2534 &anon_vma->root->head.next))
2535 BUG();
2536 }
2537 }
2538
2539 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2540 {
2541 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2542 /*
2543 * AS_MM_ALL_LOCKS can't change from under us because
2544 * we hold the mm_all_locks_mutex.
2545 *
2546 * Operations on ->flags have to be atomic because
2547 * even if AS_MM_ALL_LOCKS is stable thanks to the
2548 * mm_all_locks_mutex, there may be other cpus
2549 * changing other bitflags in parallel to us.
2550 */
2551 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2552 BUG();
2553 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2554 }
2555 }
2556
2557 /*
2558 * This operation locks against the VM for all pte/vma/mm related
2559 * operations that could ever happen on a certain mm. This includes
2560 * vmtruncate, try_to_unmap, and all page faults.
2561 *
2562 * The caller must take the mmap_sem in write mode before calling
2563 * mm_take_all_locks(). The caller isn't allowed to release the
2564 * mmap_sem until mm_drop_all_locks() returns.
2565 *
2566 * mmap_sem in write mode is required in order to block all operations
2567 * that could modify pagetables and free pages without need of
2568 * altering the vma layout (for example populate_range() with
2569 * nonlinear vmas). It's also needed in write mode to avoid new
2570 * anon_vmas to be associated with existing vmas.
2571 *
2572 * A single task can't take more than one mm_take_all_locks() in a row
2573 * or it would deadlock.
2574 *
2575 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2576 * mapping->flags avoid to take the same lock twice, if more than one
2577 * vma in this mm is backed by the same anon_vma or address_space.
2578 *
2579 * We can take all the locks in random order because the VM code
2580 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2581 * takes more than one of them in a row. Secondly we're protected
2582 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2583 *
2584 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2585 * that may have to take thousand of locks.
2586 *
2587 * mm_take_all_locks() can fail if it's interrupted by signals.
2588 */
2589 int mm_take_all_locks(struct mm_struct *mm)
2590 {
2591 struct vm_area_struct *vma;
2592 struct anon_vma_chain *avc;
2593
2594 BUG_ON(down_read_trylock(&mm->mmap_sem));
2595
2596 mutex_lock(&mm_all_locks_mutex);
2597
2598 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2599 if (signal_pending(current))
2600 goto out_unlock;
2601 if (vma->vm_file && vma->vm_file->f_mapping)
2602 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2603 }
2604
2605 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2606 if (signal_pending(current))
2607 goto out_unlock;
2608 if (vma->anon_vma)
2609 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2610 vm_lock_anon_vma(mm, avc->anon_vma);
2611 }
2612
2613 return 0;
2614
2615 out_unlock:
2616 mm_drop_all_locks(mm);
2617 return -EINTR;
2618 }
2619
2620 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2621 {
2622 if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2623 /*
2624 * The LSB of head.next can't change to 0 from under
2625 * us because we hold the mm_all_locks_mutex.
2626 *
2627 * We must however clear the bitflag before unlocking
2628 * the vma so the users using the anon_vma->head will
2629 * never see our bitflag.
2630 *
2631 * No need of atomic instructions here, head.next
2632 * can't change from under us until we release the
2633 * anon_vma->root->mutex.
2634 */
2635 if (!__test_and_clear_bit(0, (unsigned long *)
2636 &anon_vma->root->head.next))
2637 BUG();
2638 anon_vma_unlock(anon_vma);
2639 }
2640 }
2641
2642 static void vm_unlock_mapping(struct address_space *mapping)
2643 {
2644 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2645 /*
2646 * AS_MM_ALL_LOCKS can't change to 0 from under us
2647 * because we hold the mm_all_locks_mutex.
2648 */
2649 mutex_unlock(&mapping->i_mmap_mutex);
2650 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2651 &mapping->flags))
2652 BUG();
2653 }
2654 }
2655
2656 /*
2657 * The mmap_sem cannot be released by the caller until
2658 * mm_drop_all_locks() returns.
2659 */
2660 void mm_drop_all_locks(struct mm_struct *mm)
2661 {
2662 struct vm_area_struct *vma;
2663 struct anon_vma_chain *avc;
2664
2665 BUG_ON(down_read_trylock(&mm->mmap_sem));
2666 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2667
2668 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2669 if (vma->anon_vma)
2670 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2671 vm_unlock_anon_vma(avc->anon_vma);
2672 if (vma->vm_file && vma->vm_file->f_mapping)
2673 vm_unlock_mapping(vma->vm_file->f_mapping);
2674 }
2675
2676 mutex_unlock(&mm_all_locks_mutex);
2677 }
2678
2679 /*
2680 * initialise the VMA slab
2681 */
2682 void __init mmap_init(void)
2683 {
2684 int ret;
2685
2686 ret = percpu_counter_init(&vm_committed_as, 0);
2687 VM_BUG_ON(ret);
2688 }
This page took 0.124505 seconds and 5 git commands to generate.