mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39
40 #include "internal.h"
41
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49
50 static void unmap_region(struct mm_struct *mm,
51 struct vm_area_struct *vma, struct vm_area_struct *prev,
52 unsigned long start, unsigned long end);
53
54 /* description of effects of mapping type and prot in current implementation.
55 * this is due to the limited x86 page protection hardware. The expected
56 * behavior is in parens:
57 *
58 * map_type prot
59 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
60 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
61 * w: (no) no w: (no) no w: (yes) yes w: (no) no
62 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
63 *
64 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65 * w: (no) no w: (no) no w: (copy) copy w: (no) no
66 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67 *
68 */
69 pgprot_t protection_map[16] = {
70 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
71 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
72 };
73
74 pgprot_t vm_get_page_prot(unsigned long vm_flags)
75 {
76 return __pgprot(pgprot_val(protection_map[vm_flags &
77 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
78 pgprot_val(arch_vm_get_page_prot(vm_flags)));
79 }
80 EXPORT_SYMBOL(vm_get_page_prot);
81
82 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
83 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
84 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
85 /*
86 * Make sure vm_committed_as in one cacheline and not cacheline shared with
87 * other variables. It can be updated by several CPUs frequently.
88 */
89 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
90
91 /*
92 * Check that a process has enough memory to allocate a new virtual
93 * mapping. 0 means there is enough memory for the allocation to
94 * succeed and -ENOMEM implies there is not.
95 *
96 * We currently support three overcommit policies, which are set via the
97 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98 *
99 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100 * Additional code 2002 Jul 20 by Robert Love.
101 *
102 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103 *
104 * Note this is a helper function intended to be used by LSMs which
105 * wish to use this logic.
106 */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109 unsigned long free, allowed;
110
111 vm_acct_memory(pages);
112
113 /*
114 * Sometimes we want to use more memory than we have
115 */
116 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
117 return 0;
118
119 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
120 free = global_page_state(NR_FREE_PAGES);
121 free += global_page_state(NR_FILE_PAGES);
122
123 /*
124 * shmem pages shouldn't be counted as free in this
125 * case, they can't be purged, only swapped out, and
126 * that won't affect the overall amount of available
127 * memory in the system.
128 */
129 free -= global_page_state(NR_SHMEM);
130
131 free += nr_swap_pages;
132
133 /*
134 * Any slabs which are created with the
135 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
136 * which are reclaimable, under pressure. The dentry
137 * cache and most inode caches should fall into this
138 */
139 free += global_page_state(NR_SLAB_RECLAIMABLE);
140
141 /*
142 * Leave reserved pages. The pages are not for anonymous pages.
143 */
144 if (free <= totalreserve_pages)
145 goto error;
146 else
147 free -= totalreserve_pages;
148
149 /*
150 * Leave the last 3% for root
151 */
152 if (!cap_sys_admin)
153 free -= free / 32;
154
155 if (free > pages)
156 return 0;
157
158 goto error;
159 }
160
161 allowed = (totalram_pages - hugetlb_total_pages())
162 * sysctl_overcommit_ratio / 100;
163 /*
164 * Leave the last 3% for root
165 */
166 if (!cap_sys_admin)
167 allowed -= allowed / 32;
168 allowed += total_swap_pages;
169
170 /* Don't let a single process grow too big:
171 leave 3% of the size of this process for other processes */
172 if (mm)
173 allowed -= mm->total_vm / 32;
174
175 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
176 return 0;
177 error:
178 vm_unacct_memory(pages);
179
180 return -ENOMEM;
181 }
182
183 /*
184 * Requires inode->i_mapping->i_mmap_mutex
185 */
186 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
187 struct file *file, struct address_space *mapping)
188 {
189 if (vma->vm_flags & VM_DENYWRITE)
190 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
191 if (vma->vm_flags & VM_SHARED)
192 mapping->i_mmap_writable--;
193
194 flush_dcache_mmap_lock(mapping);
195 if (unlikely(vma->vm_flags & VM_NONLINEAR))
196 list_del_init(&vma->shared.nonlinear);
197 else
198 vma_interval_tree_remove(vma, &mapping->i_mmap);
199 flush_dcache_mmap_unlock(mapping);
200 }
201
202 /*
203 * Unlink a file-based vm structure from its interval tree, to hide
204 * vma from rmap and vmtruncate before freeing its page tables.
205 */
206 void unlink_file_vma(struct vm_area_struct *vma)
207 {
208 struct file *file = vma->vm_file;
209
210 if (file) {
211 struct address_space *mapping = file->f_mapping;
212 mutex_lock(&mapping->i_mmap_mutex);
213 __remove_shared_vm_struct(vma, file, mapping);
214 mutex_unlock(&mapping->i_mmap_mutex);
215 }
216 }
217
218 /*
219 * Close a vm structure and free it, returning the next.
220 */
221 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
222 {
223 struct vm_area_struct *next = vma->vm_next;
224
225 might_sleep();
226 if (vma->vm_ops && vma->vm_ops->close)
227 vma->vm_ops->close(vma);
228 if (vma->vm_file)
229 fput(vma->vm_file);
230 mpol_put(vma_policy(vma));
231 kmem_cache_free(vm_area_cachep, vma);
232 return next;
233 }
234
235 static unsigned long do_brk(unsigned long addr, unsigned long len);
236
237 SYSCALL_DEFINE1(brk, unsigned long, brk)
238 {
239 unsigned long rlim, retval;
240 unsigned long newbrk, oldbrk;
241 struct mm_struct *mm = current->mm;
242 unsigned long min_brk;
243
244 down_write(&mm->mmap_sem);
245
246 #ifdef CONFIG_COMPAT_BRK
247 /*
248 * CONFIG_COMPAT_BRK can still be overridden by setting
249 * randomize_va_space to 2, which will still cause mm->start_brk
250 * to be arbitrarily shifted
251 */
252 if (current->brk_randomized)
253 min_brk = mm->start_brk;
254 else
255 min_brk = mm->end_data;
256 #else
257 min_brk = mm->start_brk;
258 #endif
259 if (brk < min_brk)
260 goto out;
261
262 /*
263 * Check against rlimit here. If this check is done later after the test
264 * of oldbrk with newbrk then it can escape the test and let the data
265 * segment grow beyond its set limit the in case where the limit is
266 * not page aligned -Ram Gupta
267 */
268 rlim = rlimit(RLIMIT_DATA);
269 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270 (mm->end_data - mm->start_data) > rlim)
271 goto out;
272
273 newbrk = PAGE_ALIGN(brk);
274 oldbrk = PAGE_ALIGN(mm->brk);
275 if (oldbrk == newbrk)
276 goto set_brk;
277
278 /* Always allow shrinking brk. */
279 if (brk <= mm->brk) {
280 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281 goto set_brk;
282 goto out;
283 }
284
285 /* Check against existing mmap mappings. */
286 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287 goto out;
288
289 /* Ok, looks good - let it rip. */
290 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291 goto out;
292 set_brk:
293 mm->brk = brk;
294 out:
295 retval = mm->brk;
296 up_write(&mm->mmap_sem);
297 return retval;
298 }
299
300 #ifdef CONFIG_DEBUG_VM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303 int i = 0, j;
304 struct rb_node *nd, *pn = NULL;
305 unsigned long prev = 0, pend = 0;
306
307 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308 struct vm_area_struct *vma;
309 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310 if (vma->vm_start < prev)
311 printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312 if (vma->vm_start < pend)
313 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314 if (vma->vm_start > vma->vm_end)
315 printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316 i++;
317 pn = nd;
318 prev = vma->vm_start;
319 pend = vma->vm_end;
320 }
321 j = 0;
322 for (nd = pn; nd; nd = rb_prev(nd)) {
323 j++;
324 }
325 if (i != j)
326 printk("backwards %d, forwards %d\n", j, i), i = 0;
327 return i;
328 }
329
330 void validate_mm(struct mm_struct *mm)
331 {
332 int bug = 0;
333 int i = 0;
334 struct vm_area_struct *vma = mm->mmap;
335 while (vma) {
336 struct anon_vma_chain *avc;
337 vma_lock_anon_vma(vma);
338 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
339 anon_vma_interval_tree_verify(avc);
340 vma_unlock_anon_vma(vma);
341 vma = vma->vm_next;
342 i++;
343 }
344 if (i != mm->map_count)
345 printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
346 i = browse_rb(&mm->mm_rb);
347 if (i != mm->map_count)
348 printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
349 BUG_ON(bug);
350 }
351 #else
352 #define validate_mm(mm) do { } while (0)
353 #endif
354
355 /*
356 * vma has some anon_vma assigned, and is already inserted on that
357 * anon_vma's interval trees.
358 *
359 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
360 * vma must be removed from the anon_vma's interval trees using
361 * anon_vma_interval_tree_pre_update_vma().
362 *
363 * After the update, the vma will be reinserted using
364 * anon_vma_interval_tree_post_update_vma().
365 *
366 * The entire update must be protected by exclusive mmap_sem and by
367 * the root anon_vma's mutex.
368 */
369 static inline void
370 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
371 {
372 struct anon_vma_chain *avc;
373
374 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
375 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
376 }
377
378 static inline void
379 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
380 {
381 struct anon_vma_chain *avc;
382
383 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
384 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
385 }
386
387 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
388 unsigned long end, struct vm_area_struct **pprev,
389 struct rb_node ***rb_link, struct rb_node **rb_parent)
390 {
391 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
392
393 __rb_link = &mm->mm_rb.rb_node;
394 rb_prev = __rb_parent = NULL;
395
396 while (*__rb_link) {
397 struct vm_area_struct *vma_tmp;
398
399 __rb_parent = *__rb_link;
400 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
401
402 if (vma_tmp->vm_end > addr) {
403 /* Fail if an existing vma overlaps the area */
404 if (vma_tmp->vm_start < end)
405 return -ENOMEM;
406 __rb_link = &__rb_parent->rb_left;
407 } else {
408 rb_prev = __rb_parent;
409 __rb_link = &__rb_parent->rb_right;
410 }
411 }
412
413 *pprev = NULL;
414 if (rb_prev)
415 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
416 *rb_link = __rb_link;
417 *rb_parent = __rb_parent;
418 return 0;
419 }
420
421 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
422 struct rb_node **rb_link, struct rb_node *rb_parent)
423 {
424 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
425 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
426 }
427
428 static void __vma_link_file(struct vm_area_struct *vma)
429 {
430 struct file *file;
431
432 file = vma->vm_file;
433 if (file) {
434 struct address_space *mapping = file->f_mapping;
435
436 if (vma->vm_flags & VM_DENYWRITE)
437 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
438 if (vma->vm_flags & VM_SHARED)
439 mapping->i_mmap_writable++;
440
441 flush_dcache_mmap_lock(mapping);
442 if (unlikely(vma->vm_flags & VM_NONLINEAR))
443 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
444 else
445 vma_interval_tree_insert(vma, &mapping->i_mmap);
446 flush_dcache_mmap_unlock(mapping);
447 }
448 }
449
450 static void
451 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
452 struct vm_area_struct *prev, struct rb_node **rb_link,
453 struct rb_node *rb_parent)
454 {
455 __vma_link_list(mm, vma, prev, rb_parent);
456 __vma_link_rb(mm, vma, rb_link, rb_parent);
457 }
458
459 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
460 struct vm_area_struct *prev, struct rb_node **rb_link,
461 struct rb_node *rb_parent)
462 {
463 struct address_space *mapping = NULL;
464
465 if (vma->vm_file)
466 mapping = vma->vm_file->f_mapping;
467
468 if (mapping)
469 mutex_lock(&mapping->i_mmap_mutex);
470
471 __vma_link(mm, vma, prev, rb_link, rb_parent);
472 __vma_link_file(vma);
473
474 if (mapping)
475 mutex_unlock(&mapping->i_mmap_mutex);
476
477 mm->map_count++;
478 validate_mm(mm);
479 }
480
481 /*
482 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
483 * mm's list and rbtree. It has already been inserted into the interval tree.
484 */
485 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
486 {
487 struct vm_area_struct *prev;
488 struct rb_node **rb_link, *rb_parent;
489
490 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
491 &prev, &rb_link, &rb_parent))
492 BUG();
493 __vma_link(mm, vma, prev, rb_link, rb_parent);
494 mm->map_count++;
495 }
496
497 static inline void
498 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
499 struct vm_area_struct *prev)
500 {
501 struct vm_area_struct *next = vma->vm_next;
502
503 prev->vm_next = next;
504 if (next)
505 next->vm_prev = prev;
506 rb_erase(&vma->vm_rb, &mm->mm_rb);
507 if (mm->mmap_cache == vma)
508 mm->mmap_cache = prev;
509 }
510
511 /*
512 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
513 * is already present in an i_mmap tree without adjusting the tree.
514 * The following helper function should be used when such adjustments
515 * are necessary. The "insert" vma (if any) is to be inserted
516 * before we drop the necessary locks.
517 */
518 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
519 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
520 {
521 struct mm_struct *mm = vma->vm_mm;
522 struct vm_area_struct *next = vma->vm_next;
523 struct vm_area_struct *importer = NULL;
524 struct address_space *mapping = NULL;
525 struct rb_root *root = NULL;
526 struct anon_vma *anon_vma = NULL;
527 struct file *file = vma->vm_file;
528 long adjust_next = 0;
529 int remove_next = 0;
530
531 if (next && !insert) {
532 struct vm_area_struct *exporter = NULL;
533
534 if (end >= next->vm_end) {
535 /*
536 * vma expands, overlapping all the next, and
537 * perhaps the one after too (mprotect case 6).
538 */
539 again: remove_next = 1 + (end > next->vm_end);
540 end = next->vm_end;
541 exporter = next;
542 importer = vma;
543 } else if (end > next->vm_start) {
544 /*
545 * vma expands, overlapping part of the next:
546 * mprotect case 5 shifting the boundary up.
547 */
548 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
549 exporter = next;
550 importer = vma;
551 } else if (end < vma->vm_end) {
552 /*
553 * vma shrinks, and !insert tells it's not
554 * split_vma inserting another: so it must be
555 * mprotect case 4 shifting the boundary down.
556 */
557 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
558 exporter = vma;
559 importer = next;
560 }
561
562 /*
563 * Easily overlooked: when mprotect shifts the boundary,
564 * make sure the expanding vma has anon_vma set if the
565 * shrinking vma had, to cover any anon pages imported.
566 */
567 if (exporter && exporter->anon_vma && !importer->anon_vma) {
568 if (anon_vma_clone(importer, exporter))
569 return -ENOMEM;
570 importer->anon_vma = exporter->anon_vma;
571 }
572 }
573
574 if (file) {
575 mapping = file->f_mapping;
576 if (!(vma->vm_flags & VM_NONLINEAR)) {
577 root = &mapping->i_mmap;
578 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
579
580 if (adjust_next)
581 uprobe_munmap(next, next->vm_start,
582 next->vm_end);
583 }
584
585 mutex_lock(&mapping->i_mmap_mutex);
586 if (insert) {
587 /*
588 * Put into interval tree now, so instantiated pages
589 * are visible to arm/parisc __flush_dcache_page
590 * throughout; but we cannot insert into address
591 * space until vma start or end is updated.
592 */
593 __vma_link_file(insert);
594 }
595 }
596
597 vma_adjust_trans_huge(vma, start, end, adjust_next);
598
599 anon_vma = vma->anon_vma;
600 if (!anon_vma && adjust_next)
601 anon_vma = next->anon_vma;
602 if (anon_vma) {
603 VM_BUG_ON(adjust_next && next->anon_vma &&
604 anon_vma != next->anon_vma);
605 anon_vma_lock_write(anon_vma);
606 anon_vma_interval_tree_pre_update_vma(vma);
607 if (adjust_next)
608 anon_vma_interval_tree_pre_update_vma(next);
609 }
610
611 if (root) {
612 flush_dcache_mmap_lock(mapping);
613 vma_interval_tree_remove(vma, root);
614 if (adjust_next)
615 vma_interval_tree_remove(next, root);
616 }
617
618 vma->vm_start = start;
619 vma->vm_end = end;
620 vma->vm_pgoff = pgoff;
621 if (adjust_next) {
622 next->vm_start += adjust_next << PAGE_SHIFT;
623 next->vm_pgoff += adjust_next;
624 }
625
626 if (root) {
627 if (adjust_next)
628 vma_interval_tree_insert(next, root);
629 vma_interval_tree_insert(vma, root);
630 flush_dcache_mmap_unlock(mapping);
631 }
632
633 if (remove_next) {
634 /*
635 * vma_merge has merged next into vma, and needs
636 * us to remove next before dropping the locks.
637 */
638 __vma_unlink(mm, next, vma);
639 if (file)
640 __remove_shared_vm_struct(next, file, mapping);
641 } else if (insert) {
642 /*
643 * split_vma has split insert from vma, and needs
644 * us to insert it before dropping the locks
645 * (it may either follow vma or precede it).
646 */
647 __insert_vm_struct(mm, insert);
648 }
649
650 if (anon_vma) {
651 anon_vma_interval_tree_post_update_vma(vma);
652 if (adjust_next)
653 anon_vma_interval_tree_post_update_vma(next);
654 anon_vma_unlock(anon_vma);
655 }
656 if (mapping)
657 mutex_unlock(&mapping->i_mmap_mutex);
658
659 if (root) {
660 uprobe_mmap(vma);
661
662 if (adjust_next)
663 uprobe_mmap(next);
664 }
665
666 if (remove_next) {
667 if (file) {
668 uprobe_munmap(next, next->vm_start, next->vm_end);
669 fput(file);
670 }
671 if (next->anon_vma)
672 anon_vma_merge(vma, next);
673 mm->map_count--;
674 mpol_put(vma_policy(next));
675 kmem_cache_free(vm_area_cachep, next);
676 /*
677 * In mprotect's case 6 (see comments on vma_merge),
678 * we must remove another next too. It would clutter
679 * up the code too much to do both in one go.
680 */
681 if (remove_next == 2) {
682 next = vma->vm_next;
683 goto again;
684 }
685 }
686 if (insert && file)
687 uprobe_mmap(insert);
688
689 validate_mm(mm);
690
691 return 0;
692 }
693
694 /*
695 * If the vma has a ->close operation then the driver probably needs to release
696 * per-vma resources, so we don't attempt to merge those.
697 */
698 static inline int is_mergeable_vma(struct vm_area_struct *vma,
699 struct file *file, unsigned long vm_flags)
700 {
701 if (vma->vm_flags ^ vm_flags)
702 return 0;
703 if (vma->vm_file != file)
704 return 0;
705 if (vma->vm_ops && vma->vm_ops->close)
706 return 0;
707 return 1;
708 }
709
710 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
711 struct anon_vma *anon_vma2,
712 struct vm_area_struct *vma)
713 {
714 /*
715 * The list_is_singular() test is to avoid merging VMA cloned from
716 * parents. This can improve scalability caused by anon_vma lock.
717 */
718 if ((!anon_vma1 || !anon_vma2) && (!vma ||
719 list_is_singular(&vma->anon_vma_chain)))
720 return 1;
721 return anon_vma1 == anon_vma2;
722 }
723
724 /*
725 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
726 * in front of (at a lower virtual address and file offset than) the vma.
727 *
728 * We cannot merge two vmas if they have differently assigned (non-NULL)
729 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
730 *
731 * We don't check here for the merged mmap wrapping around the end of pagecache
732 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
733 * wrap, nor mmaps which cover the final page at index -1UL.
734 */
735 static int
736 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
737 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
738 {
739 if (is_mergeable_vma(vma, file, vm_flags) &&
740 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
741 if (vma->vm_pgoff == vm_pgoff)
742 return 1;
743 }
744 return 0;
745 }
746
747 /*
748 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
749 * beyond (at a higher virtual address and file offset than) the vma.
750 *
751 * We cannot merge two vmas if they have differently assigned (non-NULL)
752 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
753 */
754 static int
755 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
756 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
757 {
758 if (is_mergeable_vma(vma, file, vm_flags) &&
759 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
760 pgoff_t vm_pglen;
761 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
762 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
763 return 1;
764 }
765 return 0;
766 }
767
768 /*
769 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
770 * whether that can be merged with its predecessor or its successor.
771 * Or both (it neatly fills a hole).
772 *
773 * In most cases - when called for mmap, brk or mremap - [addr,end) is
774 * certain not to be mapped by the time vma_merge is called; but when
775 * called for mprotect, it is certain to be already mapped (either at
776 * an offset within prev, or at the start of next), and the flags of
777 * this area are about to be changed to vm_flags - and the no-change
778 * case has already been eliminated.
779 *
780 * The following mprotect cases have to be considered, where AAAA is
781 * the area passed down from mprotect_fixup, never extending beyond one
782 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
783 *
784 * AAAA AAAA AAAA AAAA
785 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
786 * cannot merge might become might become might become
787 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
788 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
789 * mremap move: PPPPNNNNNNNN 8
790 * AAAA
791 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
792 * might become case 1 below case 2 below case 3 below
793 *
794 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
795 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
796 */
797 struct vm_area_struct *vma_merge(struct mm_struct *mm,
798 struct vm_area_struct *prev, unsigned long addr,
799 unsigned long end, unsigned long vm_flags,
800 struct anon_vma *anon_vma, struct file *file,
801 pgoff_t pgoff, struct mempolicy *policy)
802 {
803 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
804 struct vm_area_struct *area, *next;
805 int err;
806
807 /*
808 * We later require that vma->vm_flags == vm_flags,
809 * so this tests vma->vm_flags & VM_SPECIAL, too.
810 */
811 if (vm_flags & VM_SPECIAL)
812 return NULL;
813
814 if (prev)
815 next = prev->vm_next;
816 else
817 next = mm->mmap;
818 area = next;
819 if (next && next->vm_end == end) /* cases 6, 7, 8 */
820 next = next->vm_next;
821
822 /*
823 * Can it merge with the predecessor?
824 */
825 if (prev && prev->vm_end == addr &&
826 mpol_equal(vma_policy(prev), policy) &&
827 can_vma_merge_after(prev, vm_flags,
828 anon_vma, file, pgoff)) {
829 /*
830 * OK, it can. Can we now merge in the successor as well?
831 */
832 if (next && end == next->vm_start &&
833 mpol_equal(policy, vma_policy(next)) &&
834 can_vma_merge_before(next, vm_flags,
835 anon_vma, file, pgoff+pglen) &&
836 is_mergeable_anon_vma(prev->anon_vma,
837 next->anon_vma, NULL)) {
838 /* cases 1, 6 */
839 err = vma_adjust(prev, prev->vm_start,
840 next->vm_end, prev->vm_pgoff, NULL);
841 } else /* cases 2, 5, 7 */
842 err = vma_adjust(prev, prev->vm_start,
843 end, prev->vm_pgoff, NULL);
844 if (err)
845 return NULL;
846 khugepaged_enter_vma_merge(prev);
847 return prev;
848 }
849
850 /*
851 * Can this new request be merged in front of next?
852 */
853 if (next && end == next->vm_start &&
854 mpol_equal(policy, vma_policy(next)) &&
855 can_vma_merge_before(next, vm_flags,
856 anon_vma, file, pgoff+pglen)) {
857 if (prev && addr < prev->vm_end) /* case 4 */
858 err = vma_adjust(prev, prev->vm_start,
859 addr, prev->vm_pgoff, NULL);
860 else /* cases 3, 8 */
861 err = vma_adjust(area, addr, next->vm_end,
862 next->vm_pgoff - pglen, NULL);
863 if (err)
864 return NULL;
865 khugepaged_enter_vma_merge(area);
866 return area;
867 }
868
869 return NULL;
870 }
871
872 /*
873 * Rough compatbility check to quickly see if it's even worth looking
874 * at sharing an anon_vma.
875 *
876 * They need to have the same vm_file, and the flags can only differ
877 * in things that mprotect may change.
878 *
879 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
880 * we can merge the two vma's. For example, we refuse to merge a vma if
881 * there is a vm_ops->close() function, because that indicates that the
882 * driver is doing some kind of reference counting. But that doesn't
883 * really matter for the anon_vma sharing case.
884 */
885 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
886 {
887 return a->vm_end == b->vm_start &&
888 mpol_equal(vma_policy(a), vma_policy(b)) &&
889 a->vm_file == b->vm_file &&
890 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
891 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
892 }
893
894 /*
895 * Do some basic sanity checking to see if we can re-use the anon_vma
896 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
897 * the same as 'old', the other will be the new one that is trying
898 * to share the anon_vma.
899 *
900 * NOTE! This runs with mm_sem held for reading, so it is possible that
901 * the anon_vma of 'old' is concurrently in the process of being set up
902 * by another page fault trying to merge _that_. But that's ok: if it
903 * is being set up, that automatically means that it will be a singleton
904 * acceptable for merging, so we can do all of this optimistically. But
905 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
906 *
907 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
908 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
909 * is to return an anon_vma that is "complex" due to having gone through
910 * a fork).
911 *
912 * We also make sure that the two vma's are compatible (adjacent,
913 * and with the same memory policies). That's all stable, even with just
914 * a read lock on the mm_sem.
915 */
916 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
917 {
918 if (anon_vma_compatible(a, b)) {
919 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
920
921 if (anon_vma && list_is_singular(&old->anon_vma_chain))
922 return anon_vma;
923 }
924 return NULL;
925 }
926
927 /*
928 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
929 * neighbouring vmas for a suitable anon_vma, before it goes off
930 * to allocate a new anon_vma. It checks because a repetitive
931 * sequence of mprotects and faults may otherwise lead to distinct
932 * anon_vmas being allocated, preventing vma merge in subsequent
933 * mprotect.
934 */
935 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
936 {
937 struct anon_vma *anon_vma;
938 struct vm_area_struct *near;
939
940 near = vma->vm_next;
941 if (!near)
942 goto try_prev;
943
944 anon_vma = reusable_anon_vma(near, vma, near);
945 if (anon_vma)
946 return anon_vma;
947 try_prev:
948 near = vma->vm_prev;
949 if (!near)
950 goto none;
951
952 anon_vma = reusable_anon_vma(near, near, vma);
953 if (anon_vma)
954 return anon_vma;
955 none:
956 /*
957 * There's no absolute need to look only at touching neighbours:
958 * we could search further afield for "compatible" anon_vmas.
959 * But it would probably just be a waste of time searching,
960 * or lead to too many vmas hanging off the same anon_vma.
961 * We're trying to allow mprotect remerging later on,
962 * not trying to minimize memory used for anon_vmas.
963 */
964 return NULL;
965 }
966
967 #ifdef CONFIG_PROC_FS
968 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
969 struct file *file, long pages)
970 {
971 const unsigned long stack_flags
972 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
973
974 mm->total_vm += pages;
975
976 if (file) {
977 mm->shared_vm += pages;
978 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
979 mm->exec_vm += pages;
980 } else if (flags & stack_flags)
981 mm->stack_vm += pages;
982 }
983 #endif /* CONFIG_PROC_FS */
984
985 /*
986 * If a hint addr is less than mmap_min_addr change hint to be as
987 * low as possible but still greater than mmap_min_addr
988 */
989 static inline unsigned long round_hint_to_min(unsigned long hint)
990 {
991 hint &= PAGE_MASK;
992 if (((void *)hint != NULL) &&
993 (hint < mmap_min_addr))
994 return PAGE_ALIGN(mmap_min_addr);
995 return hint;
996 }
997
998 /*
999 * The caller must hold down_write(&current->mm->mmap_sem).
1000 */
1001
1002 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1003 unsigned long len, unsigned long prot,
1004 unsigned long flags, unsigned long pgoff)
1005 {
1006 struct mm_struct * mm = current->mm;
1007 struct inode *inode;
1008 vm_flags_t vm_flags;
1009
1010 /*
1011 * Does the application expect PROT_READ to imply PROT_EXEC?
1012 *
1013 * (the exception is when the underlying filesystem is noexec
1014 * mounted, in which case we dont add PROT_EXEC.)
1015 */
1016 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1017 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1018 prot |= PROT_EXEC;
1019
1020 if (!len)
1021 return -EINVAL;
1022
1023 if (!(flags & MAP_FIXED))
1024 addr = round_hint_to_min(addr);
1025
1026 /* Careful about overflows.. */
1027 len = PAGE_ALIGN(len);
1028 if (!len)
1029 return -ENOMEM;
1030
1031 /* offset overflow? */
1032 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1033 return -EOVERFLOW;
1034
1035 /* Too many mappings? */
1036 if (mm->map_count > sysctl_max_map_count)
1037 return -ENOMEM;
1038
1039 /* Obtain the address to map to. we verify (or select) it and ensure
1040 * that it represents a valid section of the address space.
1041 */
1042 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1043 if (addr & ~PAGE_MASK)
1044 return addr;
1045
1046 /* Do simple checking here so the lower-level routines won't have
1047 * to. we assume access permissions have been handled by the open
1048 * of the memory object, so we don't do any here.
1049 */
1050 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1051 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1052
1053 if (flags & MAP_LOCKED)
1054 if (!can_do_mlock())
1055 return -EPERM;
1056
1057 /* mlock MCL_FUTURE? */
1058 if (vm_flags & VM_LOCKED) {
1059 unsigned long locked, lock_limit;
1060 locked = len >> PAGE_SHIFT;
1061 locked += mm->locked_vm;
1062 lock_limit = rlimit(RLIMIT_MEMLOCK);
1063 lock_limit >>= PAGE_SHIFT;
1064 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1065 return -EAGAIN;
1066 }
1067
1068 inode = file ? file->f_path.dentry->d_inode : NULL;
1069
1070 if (file) {
1071 switch (flags & MAP_TYPE) {
1072 case MAP_SHARED:
1073 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1074 return -EACCES;
1075
1076 /*
1077 * Make sure we don't allow writing to an append-only
1078 * file..
1079 */
1080 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1081 return -EACCES;
1082
1083 /*
1084 * Make sure there are no mandatory locks on the file.
1085 */
1086 if (locks_verify_locked(inode))
1087 return -EAGAIN;
1088
1089 vm_flags |= VM_SHARED | VM_MAYSHARE;
1090 if (!(file->f_mode & FMODE_WRITE))
1091 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1092
1093 /* fall through */
1094 case MAP_PRIVATE:
1095 if (!(file->f_mode & FMODE_READ))
1096 return -EACCES;
1097 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1098 if (vm_flags & VM_EXEC)
1099 return -EPERM;
1100 vm_flags &= ~VM_MAYEXEC;
1101 }
1102
1103 if (!file->f_op || !file->f_op->mmap)
1104 return -ENODEV;
1105 break;
1106
1107 default:
1108 return -EINVAL;
1109 }
1110 } else {
1111 switch (flags & MAP_TYPE) {
1112 case MAP_SHARED:
1113 /*
1114 * Ignore pgoff.
1115 */
1116 pgoff = 0;
1117 vm_flags |= VM_SHARED | VM_MAYSHARE;
1118 break;
1119 case MAP_PRIVATE:
1120 /*
1121 * Set pgoff according to addr for anon_vma.
1122 */
1123 pgoff = addr >> PAGE_SHIFT;
1124 break;
1125 default:
1126 return -EINVAL;
1127 }
1128 }
1129
1130 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1131 }
1132
1133 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1134 unsigned long, prot, unsigned long, flags,
1135 unsigned long, fd, unsigned long, pgoff)
1136 {
1137 struct file *file = NULL;
1138 unsigned long retval = -EBADF;
1139
1140 if (!(flags & MAP_ANONYMOUS)) {
1141 audit_mmap_fd(fd, flags);
1142 if (unlikely(flags & MAP_HUGETLB))
1143 return -EINVAL;
1144 file = fget(fd);
1145 if (!file)
1146 goto out;
1147 } else if (flags & MAP_HUGETLB) {
1148 struct user_struct *user = NULL;
1149 /*
1150 * VM_NORESERVE is used because the reservations will be
1151 * taken when vm_ops->mmap() is called
1152 * A dummy user value is used because we are not locking
1153 * memory so no accounting is necessary
1154 */
1155 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1156 VM_NORESERVE, &user,
1157 HUGETLB_ANONHUGE_INODE);
1158 if (IS_ERR(file))
1159 return PTR_ERR(file);
1160 }
1161
1162 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1163
1164 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1165 if (file)
1166 fput(file);
1167 out:
1168 return retval;
1169 }
1170
1171 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1172 struct mmap_arg_struct {
1173 unsigned long addr;
1174 unsigned long len;
1175 unsigned long prot;
1176 unsigned long flags;
1177 unsigned long fd;
1178 unsigned long offset;
1179 };
1180
1181 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1182 {
1183 struct mmap_arg_struct a;
1184
1185 if (copy_from_user(&a, arg, sizeof(a)))
1186 return -EFAULT;
1187 if (a.offset & ~PAGE_MASK)
1188 return -EINVAL;
1189
1190 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1191 a.offset >> PAGE_SHIFT);
1192 }
1193 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1194
1195 /*
1196 * Some shared mappigns will want the pages marked read-only
1197 * to track write events. If so, we'll downgrade vm_page_prot
1198 * to the private version (using protection_map[] without the
1199 * VM_SHARED bit).
1200 */
1201 int vma_wants_writenotify(struct vm_area_struct *vma)
1202 {
1203 vm_flags_t vm_flags = vma->vm_flags;
1204
1205 /* If it was private or non-writable, the write bit is already clear */
1206 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1207 return 0;
1208
1209 /* The backer wishes to know when pages are first written to? */
1210 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1211 return 1;
1212
1213 /* The open routine did something to the protections already? */
1214 if (pgprot_val(vma->vm_page_prot) !=
1215 pgprot_val(vm_get_page_prot(vm_flags)))
1216 return 0;
1217
1218 /* Specialty mapping? */
1219 if (vm_flags & VM_PFNMAP)
1220 return 0;
1221
1222 /* Can the mapping track the dirty pages? */
1223 return vma->vm_file && vma->vm_file->f_mapping &&
1224 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1225 }
1226
1227 /*
1228 * We account for memory if it's a private writeable mapping,
1229 * not hugepages and VM_NORESERVE wasn't set.
1230 */
1231 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1232 {
1233 /*
1234 * hugetlb has its own accounting separate from the core VM
1235 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1236 */
1237 if (file && is_file_hugepages(file))
1238 return 0;
1239
1240 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1241 }
1242
1243 unsigned long mmap_region(struct file *file, unsigned long addr,
1244 unsigned long len, unsigned long flags,
1245 vm_flags_t vm_flags, unsigned long pgoff)
1246 {
1247 struct mm_struct *mm = current->mm;
1248 struct vm_area_struct *vma, *prev;
1249 int correct_wcount = 0;
1250 int error;
1251 struct rb_node **rb_link, *rb_parent;
1252 unsigned long charged = 0;
1253 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1254
1255 /* Clear old maps */
1256 error = -ENOMEM;
1257 munmap_back:
1258 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1259 if (do_munmap(mm, addr, len))
1260 return -ENOMEM;
1261 goto munmap_back;
1262 }
1263
1264 /* Check against address space limit. */
1265 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1266 return -ENOMEM;
1267
1268 /*
1269 * Set 'VM_NORESERVE' if we should not account for the
1270 * memory use of this mapping.
1271 */
1272 if ((flags & MAP_NORESERVE)) {
1273 /* We honor MAP_NORESERVE if allowed to overcommit */
1274 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1275 vm_flags |= VM_NORESERVE;
1276
1277 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1278 if (file && is_file_hugepages(file))
1279 vm_flags |= VM_NORESERVE;
1280 }
1281
1282 /*
1283 * Private writable mapping: check memory availability
1284 */
1285 if (accountable_mapping(file, vm_flags)) {
1286 charged = len >> PAGE_SHIFT;
1287 if (security_vm_enough_memory_mm(mm, charged))
1288 return -ENOMEM;
1289 vm_flags |= VM_ACCOUNT;
1290 }
1291
1292 /*
1293 * Can we just expand an old mapping?
1294 */
1295 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1296 if (vma)
1297 goto out;
1298
1299 /*
1300 * Determine the object being mapped and call the appropriate
1301 * specific mapper. the address has already been validated, but
1302 * not unmapped, but the maps are removed from the list.
1303 */
1304 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1305 if (!vma) {
1306 error = -ENOMEM;
1307 goto unacct_error;
1308 }
1309
1310 vma->vm_mm = mm;
1311 vma->vm_start = addr;
1312 vma->vm_end = addr + len;
1313 vma->vm_flags = vm_flags;
1314 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1315 vma->vm_pgoff = pgoff;
1316 INIT_LIST_HEAD(&vma->anon_vma_chain);
1317
1318 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1319
1320 if (file) {
1321 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322 goto free_vma;
1323 if (vm_flags & VM_DENYWRITE) {
1324 error = deny_write_access(file);
1325 if (error)
1326 goto free_vma;
1327 correct_wcount = 1;
1328 }
1329 vma->vm_file = get_file(file);
1330 error = file->f_op->mmap(file, vma);
1331 if (error)
1332 goto unmap_and_free_vma;
1333
1334 /* Can addr have changed??
1335 *
1336 * Answer: Yes, several device drivers can do it in their
1337 * f_op->mmap method. -DaveM
1338 */
1339 addr = vma->vm_start;
1340 pgoff = vma->vm_pgoff;
1341 vm_flags = vma->vm_flags;
1342 } else if (vm_flags & VM_SHARED) {
1343 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1344 goto free_vma;
1345 error = shmem_zero_setup(vma);
1346 if (error)
1347 goto free_vma;
1348 }
1349
1350 if (vma_wants_writenotify(vma)) {
1351 pgprot_t pprot = vma->vm_page_prot;
1352
1353 /* Can vma->vm_page_prot have changed??
1354 *
1355 * Answer: Yes, drivers may have changed it in their
1356 * f_op->mmap method.
1357 *
1358 * Ensures that vmas marked as uncached stay that way.
1359 */
1360 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1361 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1362 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1363 }
1364
1365 vma_link(mm, vma, prev, rb_link, rb_parent);
1366 file = vma->vm_file;
1367
1368 /* Once vma denies write, undo our temporary denial count */
1369 if (correct_wcount)
1370 atomic_inc(&inode->i_writecount);
1371 out:
1372 perf_event_mmap(vma);
1373
1374 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1375 if (vm_flags & VM_LOCKED) {
1376 if (!mlock_vma_pages_range(vma, addr, addr + len))
1377 mm->locked_vm += (len >> PAGE_SHIFT);
1378 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1379 make_pages_present(addr, addr + len);
1380
1381 if (file)
1382 uprobe_mmap(vma);
1383
1384 return addr;
1385
1386 unmap_and_free_vma:
1387 if (correct_wcount)
1388 atomic_inc(&inode->i_writecount);
1389 vma->vm_file = NULL;
1390 fput(file);
1391
1392 /* Undo any partial mapping done by a device driver. */
1393 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1394 charged = 0;
1395 free_vma:
1396 kmem_cache_free(vm_area_cachep, vma);
1397 unacct_error:
1398 if (charged)
1399 vm_unacct_memory(charged);
1400 return error;
1401 }
1402
1403 /* Get an address range which is currently unmapped.
1404 * For shmat() with addr=0.
1405 *
1406 * Ugly calling convention alert:
1407 * Return value with the low bits set means error value,
1408 * ie
1409 * if (ret & ~PAGE_MASK)
1410 * error = ret;
1411 *
1412 * This function "knows" that -ENOMEM has the bits set.
1413 */
1414 #ifndef HAVE_ARCH_UNMAPPED_AREA
1415 unsigned long
1416 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1417 unsigned long len, unsigned long pgoff, unsigned long flags)
1418 {
1419 struct mm_struct *mm = current->mm;
1420 struct vm_area_struct *vma;
1421 unsigned long start_addr;
1422
1423 if (len > TASK_SIZE)
1424 return -ENOMEM;
1425
1426 if (flags & MAP_FIXED)
1427 return addr;
1428
1429 if (addr) {
1430 addr = PAGE_ALIGN(addr);
1431 vma = find_vma(mm, addr);
1432 if (TASK_SIZE - len >= addr &&
1433 (!vma || addr + len <= vma->vm_start))
1434 return addr;
1435 }
1436 if (len > mm->cached_hole_size) {
1437 start_addr = addr = mm->free_area_cache;
1438 } else {
1439 start_addr = addr = TASK_UNMAPPED_BASE;
1440 mm->cached_hole_size = 0;
1441 }
1442
1443 full_search:
1444 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1445 /* At this point: (!vma || addr < vma->vm_end). */
1446 if (TASK_SIZE - len < addr) {
1447 /*
1448 * Start a new search - just in case we missed
1449 * some holes.
1450 */
1451 if (start_addr != TASK_UNMAPPED_BASE) {
1452 addr = TASK_UNMAPPED_BASE;
1453 start_addr = addr;
1454 mm->cached_hole_size = 0;
1455 goto full_search;
1456 }
1457 return -ENOMEM;
1458 }
1459 if (!vma || addr + len <= vma->vm_start) {
1460 /*
1461 * Remember the place where we stopped the search:
1462 */
1463 mm->free_area_cache = addr + len;
1464 return addr;
1465 }
1466 if (addr + mm->cached_hole_size < vma->vm_start)
1467 mm->cached_hole_size = vma->vm_start - addr;
1468 addr = vma->vm_end;
1469 }
1470 }
1471 #endif
1472
1473 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1474 {
1475 /*
1476 * Is this a new hole at the lowest possible address?
1477 */
1478 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1479 mm->free_area_cache = addr;
1480 }
1481
1482 /*
1483 * This mmap-allocator allocates new areas top-down from below the
1484 * stack's low limit (the base):
1485 */
1486 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1487 unsigned long
1488 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1489 const unsigned long len, const unsigned long pgoff,
1490 const unsigned long flags)
1491 {
1492 struct vm_area_struct *vma;
1493 struct mm_struct *mm = current->mm;
1494 unsigned long addr = addr0, start_addr;
1495
1496 /* requested length too big for entire address space */
1497 if (len > TASK_SIZE)
1498 return -ENOMEM;
1499
1500 if (flags & MAP_FIXED)
1501 return addr;
1502
1503 /* requesting a specific address */
1504 if (addr) {
1505 addr = PAGE_ALIGN(addr);
1506 vma = find_vma(mm, addr);
1507 if (TASK_SIZE - len >= addr &&
1508 (!vma || addr + len <= vma->vm_start))
1509 return addr;
1510 }
1511
1512 /* check if free_area_cache is useful for us */
1513 if (len <= mm->cached_hole_size) {
1514 mm->cached_hole_size = 0;
1515 mm->free_area_cache = mm->mmap_base;
1516 }
1517
1518 try_again:
1519 /* either no address requested or can't fit in requested address hole */
1520 start_addr = addr = mm->free_area_cache;
1521
1522 if (addr < len)
1523 goto fail;
1524
1525 addr -= len;
1526 do {
1527 /*
1528 * Lookup failure means no vma is above this address,
1529 * else if new region fits below vma->vm_start,
1530 * return with success:
1531 */
1532 vma = find_vma(mm, addr);
1533 if (!vma || addr+len <= vma->vm_start)
1534 /* remember the address as a hint for next time */
1535 return (mm->free_area_cache = addr);
1536
1537 /* remember the largest hole we saw so far */
1538 if (addr + mm->cached_hole_size < vma->vm_start)
1539 mm->cached_hole_size = vma->vm_start - addr;
1540
1541 /* try just below the current vma->vm_start */
1542 addr = vma->vm_start-len;
1543 } while (len < vma->vm_start);
1544
1545 fail:
1546 /*
1547 * if hint left us with no space for the requested
1548 * mapping then try again:
1549 *
1550 * Note: this is different with the case of bottomup
1551 * which does the fully line-search, but we use find_vma
1552 * here that causes some holes skipped.
1553 */
1554 if (start_addr != mm->mmap_base) {
1555 mm->free_area_cache = mm->mmap_base;
1556 mm->cached_hole_size = 0;
1557 goto try_again;
1558 }
1559
1560 /*
1561 * A failed mmap() very likely causes application failure,
1562 * so fall back to the bottom-up function here. This scenario
1563 * can happen with large stack limits and large mmap()
1564 * allocations.
1565 */
1566 mm->cached_hole_size = ~0UL;
1567 mm->free_area_cache = TASK_UNMAPPED_BASE;
1568 addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1569 /*
1570 * Restore the topdown base:
1571 */
1572 mm->free_area_cache = mm->mmap_base;
1573 mm->cached_hole_size = ~0UL;
1574
1575 return addr;
1576 }
1577 #endif
1578
1579 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1580 {
1581 /*
1582 * Is this a new hole at the highest possible address?
1583 */
1584 if (addr > mm->free_area_cache)
1585 mm->free_area_cache = addr;
1586
1587 /* dont allow allocations above current base */
1588 if (mm->free_area_cache > mm->mmap_base)
1589 mm->free_area_cache = mm->mmap_base;
1590 }
1591
1592 unsigned long
1593 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1594 unsigned long pgoff, unsigned long flags)
1595 {
1596 unsigned long (*get_area)(struct file *, unsigned long,
1597 unsigned long, unsigned long, unsigned long);
1598
1599 unsigned long error = arch_mmap_check(addr, len, flags);
1600 if (error)
1601 return error;
1602
1603 /* Careful about overflows.. */
1604 if (len > TASK_SIZE)
1605 return -ENOMEM;
1606
1607 get_area = current->mm->get_unmapped_area;
1608 if (file && file->f_op && file->f_op->get_unmapped_area)
1609 get_area = file->f_op->get_unmapped_area;
1610 addr = get_area(file, addr, len, pgoff, flags);
1611 if (IS_ERR_VALUE(addr))
1612 return addr;
1613
1614 if (addr > TASK_SIZE - len)
1615 return -ENOMEM;
1616 if (addr & ~PAGE_MASK)
1617 return -EINVAL;
1618
1619 addr = arch_rebalance_pgtables(addr, len);
1620 error = security_mmap_addr(addr);
1621 return error ? error : addr;
1622 }
1623
1624 EXPORT_SYMBOL(get_unmapped_area);
1625
1626 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1627 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1628 {
1629 struct vm_area_struct *vma = NULL;
1630
1631 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1632 return NULL;
1633
1634 /* Check the cache first. */
1635 /* (Cache hit rate is typically around 35%.) */
1636 vma = mm->mmap_cache;
1637 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1638 struct rb_node *rb_node;
1639
1640 rb_node = mm->mm_rb.rb_node;
1641 vma = NULL;
1642
1643 while (rb_node) {
1644 struct vm_area_struct *vma_tmp;
1645
1646 vma_tmp = rb_entry(rb_node,
1647 struct vm_area_struct, vm_rb);
1648
1649 if (vma_tmp->vm_end > addr) {
1650 vma = vma_tmp;
1651 if (vma_tmp->vm_start <= addr)
1652 break;
1653 rb_node = rb_node->rb_left;
1654 } else
1655 rb_node = rb_node->rb_right;
1656 }
1657 if (vma)
1658 mm->mmap_cache = vma;
1659 }
1660 return vma;
1661 }
1662
1663 EXPORT_SYMBOL(find_vma);
1664
1665 /*
1666 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1667 */
1668 struct vm_area_struct *
1669 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1670 struct vm_area_struct **pprev)
1671 {
1672 struct vm_area_struct *vma;
1673
1674 vma = find_vma(mm, addr);
1675 if (vma) {
1676 *pprev = vma->vm_prev;
1677 } else {
1678 struct rb_node *rb_node = mm->mm_rb.rb_node;
1679 *pprev = NULL;
1680 while (rb_node) {
1681 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1682 rb_node = rb_node->rb_right;
1683 }
1684 }
1685 return vma;
1686 }
1687
1688 /*
1689 * Verify that the stack growth is acceptable and
1690 * update accounting. This is shared with both the
1691 * grow-up and grow-down cases.
1692 */
1693 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1694 {
1695 struct mm_struct *mm = vma->vm_mm;
1696 struct rlimit *rlim = current->signal->rlim;
1697 unsigned long new_start;
1698
1699 /* address space limit tests */
1700 if (!may_expand_vm(mm, grow))
1701 return -ENOMEM;
1702
1703 /* Stack limit test */
1704 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1705 return -ENOMEM;
1706
1707 /* mlock limit tests */
1708 if (vma->vm_flags & VM_LOCKED) {
1709 unsigned long locked;
1710 unsigned long limit;
1711 locked = mm->locked_vm + grow;
1712 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1713 limit >>= PAGE_SHIFT;
1714 if (locked > limit && !capable(CAP_IPC_LOCK))
1715 return -ENOMEM;
1716 }
1717
1718 /* Check to ensure the stack will not grow into a hugetlb-only region */
1719 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1720 vma->vm_end - size;
1721 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1722 return -EFAULT;
1723
1724 /*
1725 * Overcommit.. This must be the final test, as it will
1726 * update security statistics.
1727 */
1728 if (security_vm_enough_memory_mm(mm, grow))
1729 return -ENOMEM;
1730
1731 /* Ok, everything looks good - let it rip */
1732 if (vma->vm_flags & VM_LOCKED)
1733 mm->locked_vm += grow;
1734 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1735 return 0;
1736 }
1737
1738 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1739 /*
1740 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1741 * vma is the last one with address > vma->vm_end. Have to extend vma.
1742 */
1743 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1744 {
1745 int error;
1746
1747 if (!(vma->vm_flags & VM_GROWSUP))
1748 return -EFAULT;
1749
1750 /*
1751 * We must make sure the anon_vma is allocated
1752 * so that the anon_vma locking is not a noop.
1753 */
1754 if (unlikely(anon_vma_prepare(vma)))
1755 return -ENOMEM;
1756 vma_lock_anon_vma(vma);
1757
1758 /*
1759 * vma->vm_start/vm_end cannot change under us because the caller
1760 * is required to hold the mmap_sem in read mode. We need the
1761 * anon_vma lock to serialize against concurrent expand_stacks.
1762 * Also guard against wrapping around to address 0.
1763 */
1764 if (address < PAGE_ALIGN(address+4))
1765 address = PAGE_ALIGN(address+4);
1766 else {
1767 vma_unlock_anon_vma(vma);
1768 return -ENOMEM;
1769 }
1770 error = 0;
1771
1772 /* Somebody else might have raced and expanded it already */
1773 if (address > vma->vm_end) {
1774 unsigned long size, grow;
1775
1776 size = address - vma->vm_start;
1777 grow = (address - vma->vm_end) >> PAGE_SHIFT;
1778
1779 error = -ENOMEM;
1780 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1781 error = acct_stack_growth(vma, size, grow);
1782 if (!error) {
1783 anon_vma_interval_tree_pre_update_vma(vma);
1784 vma->vm_end = address;
1785 anon_vma_interval_tree_post_update_vma(vma);
1786 perf_event_mmap(vma);
1787 }
1788 }
1789 }
1790 vma_unlock_anon_vma(vma);
1791 khugepaged_enter_vma_merge(vma);
1792 validate_mm(vma->vm_mm);
1793 return error;
1794 }
1795 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1796
1797 /*
1798 * vma is the first one with address < vma->vm_start. Have to extend vma.
1799 */
1800 int expand_downwards(struct vm_area_struct *vma,
1801 unsigned long address)
1802 {
1803 int error;
1804
1805 /*
1806 * We must make sure the anon_vma is allocated
1807 * so that the anon_vma locking is not a noop.
1808 */
1809 if (unlikely(anon_vma_prepare(vma)))
1810 return -ENOMEM;
1811
1812 address &= PAGE_MASK;
1813 error = security_mmap_addr(address);
1814 if (error)
1815 return error;
1816
1817 vma_lock_anon_vma(vma);
1818
1819 /*
1820 * vma->vm_start/vm_end cannot change under us because the caller
1821 * is required to hold the mmap_sem in read mode. We need the
1822 * anon_vma lock to serialize against concurrent expand_stacks.
1823 */
1824
1825 /* Somebody else might have raced and expanded it already */
1826 if (address < vma->vm_start) {
1827 unsigned long size, grow;
1828
1829 size = vma->vm_end - address;
1830 grow = (vma->vm_start - address) >> PAGE_SHIFT;
1831
1832 error = -ENOMEM;
1833 if (grow <= vma->vm_pgoff) {
1834 error = acct_stack_growth(vma, size, grow);
1835 if (!error) {
1836 anon_vma_interval_tree_pre_update_vma(vma);
1837 vma->vm_start = address;
1838 vma->vm_pgoff -= grow;
1839 anon_vma_interval_tree_post_update_vma(vma);
1840 perf_event_mmap(vma);
1841 }
1842 }
1843 }
1844 vma_unlock_anon_vma(vma);
1845 khugepaged_enter_vma_merge(vma);
1846 validate_mm(vma->vm_mm);
1847 return error;
1848 }
1849
1850 #ifdef CONFIG_STACK_GROWSUP
1851 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1852 {
1853 return expand_upwards(vma, address);
1854 }
1855
1856 struct vm_area_struct *
1857 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1858 {
1859 struct vm_area_struct *vma, *prev;
1860
1861 addr &= PAGE_MASK;
1862 vma = find_vma_prev(mm, addr, &prev);
1863 if (vma && (vma->vm_start <= addr))
1864 return vma;
1865 if (!prev || expand_stack(prev, addr))
1866 return NULL;
1867 if (prev->vm_flags & VM_LOCKED) {
1868 mlock_vma_pages_range(prev, addr, prev->vm_end);
1869 }
1870 return prev;
1871 }
1872 #else
1873 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1874 {
1875 return expand_downwards(vma, address);
1876 }
1877
1878 struct vm_area_struct *
1879 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1880 {
1881 struct vm_area_struct * vma;
1882 unsigned long start;
1883
1884 addr &= PAGE_MASK;
1885 vma = find_vma(mm,addr);
1886 if (!vma)
1887 return NULL;
1888 if (vma->vm_start <= addr)
1889 return vma;
1890 if (!(vma->vm_flags & VM_GROWSDOWN))
1891 return NULL;
1892 start = vma->vm_start;
1893 if (expand_stack(vma, addr))
1894 return NULL;
1895 if (vma->vm_flags & VM_LOCKED) {
1896 mlock_vma_pages_range(vma, addr, start);
1897 }
1898 return vma;
1899 }
1900 #endif
1901
1902 /*
1903 * Ok - we have the memory areas we should free on the vma list,
1904 * so release them, and do the vma updates.
1905 *
1906 * Called with the mm semaphore held.
1907 */
1908 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1909 {
1910 unsigned long nr_accounted = 0;
1911
1912 /* Update high watermark before we lower total_vm */
1913 update_hiwater_vm(mm);
1914 do {
1915 long nrpages = vma_pages(vma);
1916
1917 if (vma->vm_flags & VM_ACCOUNT)
1918 nr_accounted += nrpages;
1919 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1920 vma = remove_vma(vma);
1921 } while (vma);
1922 vm_unacct_memory(nr_accounted);
1923 validate_mm(mm);
1924 }
1925
1926 /*
1927 * Get rid of page table information in the indicated region.
1928 *
1929 * Called with the mm semaphore held.
1930 */
1931 static void unmap_region(struct mm_struct *mm,
1932 struct vm_area_struct *vma, struct vm_area_struct *prev,
1933 unsigned long start, unsigned long end)
1934 {
1935 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1936 struct mmu_gather tlb;
1937
1938 lru_add_drain();
1939 tlb_gather_mmu(&tlb, mm, 0);
1940 update_hiwater_rss(mm);
1941 unmap_vmas(&tlb, vma, start, end);
1942 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1943 next ? next->vm_start : 0);
1944 tlb_finish_mmu(&tlb, start, end);
1945 }
1946
1947 /*
1948 * Create a list of vma's touched by the unmap, removing them from the mm's
1949 * vma list as we go..
1950 */
1951 static void
1952 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1953 struct vm_area_struct *prev, unsigned long end)
1954 {
1955 struct vm_area_struct **insertion_point;
1956 struct vm_area_struct *tail_vma = NULL;
1957 unsigned long addr;
1958
1959 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1960 vma->vm_prev = NULL;
1961 do {
1962 rb_erase(&vma->vm_rb, &mm->mm_rb);
1963 mm->map_count--;
1964 tail_vma = vma;
1965 vma = vma->vm_next;
1966 } while (vma && vma->vm_start < end);
1967 *insertion_point = vma;
1968 if (vma)
1969 vma->vm_prev = prev;
1970 tail_vma->vm_next = NULL;
1971 if (mm->unmap_area == arch_unmap_area)
1972 addr = prev ? prev->vm_end : mm->mmap_base;
1973 else
1974 addr = vma ? vma->vm_start : mm->mmap_base;
1975 mm->unmap_area(mm, addr);
1976 mm->mmap_cache = NULL; /* Kill the cache. */
1977 }
1978
1979 /*
1980 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1981 * munmap path where it doesn't make sense to fail.
1982 */
1983 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1984 unsigned long addr, int new_below)
1985 {
1986 struct mempolicy *pol;
1987 struct vm_area_struct *new;
1988 int err = -ENOMEM;
1989
1990 if (is_vm_hugetlb_page(vma) && (addr &
1991 ~(huge_page_mask(hstate_vma(vma)))))
1992 return -EINVAL;
1993
1994 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1995 if (!new)
1996 goto out_err;
1997
1998 /* most fields are the same, copy all, and then fixup */
1999 *new = *vma;
2000
2001 INIT_LIST_HEAD(&new->anon_vma_chain);
2002
2003 if (new_below)
2004 new->vm_end = addr;
2005 else {
2006 new->vm_start = addr;
2007 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2008 }
2009
2010 pol = mpol_dup(vma_policy(vma));
2011 if (IS_ERR(pol)) {
2012 err = PTR_ERR(pol);
2013 goto out_free_vma;
2014 }
2015 vma_set_policy(new, pol);
2016
2017 if (anon_vma_clone(new, vma))
2018 goto out_free_mpol;
2019
2020 if (new->vm_file)
2021 get_file(new->vm_file);
2022
2023 if (new->vm_ops && new->vm_ops->open)
2024 new->vm_ops->open(new);
2025
2026 if (new_below)
2027 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2028 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2029 else
2030 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2031
2032 /* Success. */
2033 if (!err)
2034 return 0;
2035
2036 /* Clean everything up if vma_adjust failed. */
2037 if (new->vm_ops && new->vm_ops->close)
2038 new->vm_ops->close(new);
2039 if (new->vm_file)
2040 fput(new->vm_file);
2041 unlink_anon_vmas(new);
2042 out_free_mpol:
2043 mpol_put(pol);
2044 out_free_vma:
2045 kmem_cache_free(vm_area_cachep, new);
2046 out_err:
2047 return err;
2048 }
2049
2050 /*
2051 * Split a vma into two pieces at address 'addr', a new vma is allocated
2052 * either for the first part or the tail.
2053 */
2054 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2055 unsigned long addr, int new_below)
2056 {
2057 if (mm->map_count >= sysctl_max_map_count)
2058 return -ENOMEM;
2059
2060 return __split_vma(mm, vma, addr, new_below);
2061 }
2062
2063 /* Munmap is split into 2 main parts -- this part which finds
2064 * what needs doing, and the areas themselves, which do the
2065 * work. This now handles partial unmappings.
2066 * Jeremy Fitzhardinge <jeremy@goop.org>
2067 */
2068 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2069 {
2070 unsigned long end;
2071 struct vm_area_struct *vma, *prev, *last;
2072
2073 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2074 return -EINVAL;
2075
2076 if ((len = PAGE_ALIGN(len)) == 0)
2077 return -EINVAL;
2078
2079 /* Find the first overlapping VMA */
2080 vma = find_vma(mm, start);
2081 if (!vma)
2082 return 0;
2083 prev = vma->vm_prev;
2084 /* we have start < vma->vm_end */
2085
2086 /* if it doesn't overlap, we have nothing.. */
2087 end = start + len;
2088 if (vma->vm_start >= end)
2089 return 0;
2090
2091 /*
2092 * If we need to split any vma, do it now to save pain later.
2093 *
2094 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2095 * unmapped vm_area_struct will remain in use: so lower split_vma
2096 * places tmp vma above, and higher split_vma places tmp vma below.
2097 */
2098 if (start > vma->vm_start) {
2099 int error;
2100
2101 /*
2102 * Make sure that map_count on return from munmap() will
2103 * not exceed its limit; but let map_count go just above
2104 * its limit temporarily, to help free resources as expected.
2105 */
2106 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2107 return -ENOMEM;
2108
2109 error = __split_vma(mm, vma, start, 0);
2110 if (error)
2111 return error;
2112 prev = vma;
2113 }
2114
2115 /* Does it split the last one? */
2116 last = find_vma(mm, end);
2117 if (last && end > last->vm_start) {
2118 int error = __split_vma(mm, last, end, 1);
2119 if (error)
2120 return error;
2121 }
2122 vma = prev? prev->vm_next: mm->mmap;
2123
2124 /*
2125 * unlock any mlock()ed ranges before detaching vmas
2126 */
2127 if (mm->locked_vm) {
2128 struct vm_area_struct *tmp = vma;
2129 while (tmp && tmp->vm_start < end) {
2130 if (tmp->vm_flags & VM_LOCKED) {
2131 mm->locked_vm -= vma_pages(tmp);
2132 munlock_vma_pages_all(tmp);
2133 }
2134 tmp = tmp->vm_next;
2135 }
2136 }
2137
2138 /*
2139 * Remove the vma's, and unmap the actual pages
2140 */
2141 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2142 unmap_region(mm, vma, prev, start, end);
2143
2144 /* Fix up all other VM information */
2145 remove_vma_list(mm, vma);
2146
2147 return 0;
2148 }
2149
2150 int vm_munmap(unsigned long start, size_t len)
2151 {
2152 int ret;
2153 struct mm_struct *mm = current->mm;
2154
2155 down_write(&mm->mmap_sem);
2156 ret = do_munmap(mm, start, len);
2157 up_write(&mm->mmap_sem);
2158 return ret;
2159 }
2160 EXPORT_SYMBOL(vm_munmap);
2161
2162 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2163 {
2164 profile_munmap(addr);
2165 return vm_munmap(addr, len);
2166 }
2167
2168 static inline void verify_mm_writelocked(struct mm_struct *mm)
2169 {
2170 #ifdef CONFIG_DEBUG_VM
2171 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2172 WARN_ON(1);
2173 up_read(&mm->mmap_sem);
2174 }
2175 #endif
2176 }
2177
2178 /*
2179 * this is really a simplified "do_mmap". it only handles
2180 * anonymous maps. eventually we may be able to do some
2181 * brk-specific accounting here.
2182 */
2183 static unsigned long do_brk(unsigned long addr, unsigned long len)
2184 {
2185 struct mm_struct * mm = current->mm;
2186 struct vm_area_struct * vma, * prev;
2187 unsigned long flags;
2188 struct rb_node ** rb_link, * rb_parent;
2189 pgoff_t pgoff = addr >> PAGE_SHIFT;
2190 int error;
2191
2192 len = PAGE_ALIGN(len);
2193 if (!len)
2194 return addr;
2195
2196 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2197
2198 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2199 if (error & ~PAGE_MASK)
2200 return error;
2201
2202 /*
2203 * mlock MCL_FUTURE?
2204 */
2205 if (mm->def_flags & VM_LOCKED) {
2206 unsigned long locked, lock_limit;
2207 locked = len >> PAGE_SHIFT;
2208 locked += mm->locked_vm;
2209 lock_limit = rlimit(RLIMIT_MEMLOCK);
2210 lock_limit >>= PAGE_SHIFT;
2211 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2212 return -EAGAIN;
2213 }
2214
2215 /*
2216 * mm->mmap_sem is required to protect against another thread
2217 * changing the mappings in case we sleep.
2218 */
2219 verify_mm_writelocked(mm);
2220
2221 /*
2222 * Clear old maps. this also does some error checking for us
2223 */
2224 munmap_back:
2225 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2226 if (do_munmap(mm, addr, len))
2227 return -ENOMEM;
2228 goto munmap_back;
2229 }
2230
2231 /* Check against address space limits *after* clearing old maps... */
2232 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2233 return -ENOMEM;
2234
2235 if (mm->map_count > sysctl_max_map_count)
2236 return -ENOMEM;
2237
2238 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2239 return -ENOMEM;
2240
2241 /* Can we just expand an old private anonymous mapping? */
2242 vma = vma_merge(mm, prev, addr, addr + len, flags,
2243 NULL, NULL, pgoff, NULL);
2244 if (vma)
2245 goto out;
2246
2247 /*
2248 * create a vma struct for an anonymous mapping
2249 */
2250 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2251 if (!vma) {
2252 vm_unacct_memory(len >> PAGE_SHIFT);
2253 return -ENOMEM;
2254 }
2255
2256 INIT_LIST_HEAD(&vma->anon_vma_chain);
2257 vma->vm_mm = mm;
2258 vma->vm_start = addr;
2259 vma->vm_end = addr + len;
2260 vma->vm_pgoff = pgoff;
2261 vma->vm_flags = flags;
2262 vma->vm_page_prot = vm_get_page_prot(flags);
2263 vma_link(mm, vma, prev, rb_link, rb_parent);
2264 out:
2265 perf_event_mmap(vma);
2266 mm->total_vm += len >> PAGE_SHIFT;
2267 if (flags & VM_LOCKED) {
2268 if (!mlock_vma_pages_range(vma, addr, addr + len))
2269 mm->locked_vm += (len >> PAGE_SHIFT);
2270 }
2271 return addr;
2272 }
2273
2274 unsigned long vm_brk(unsigned long addr, unsigned long len)
2275 {
2276 struct mm_struct *mm = current->mm;
2277 unsigned long ret;
2278
2279 down_write(&mm->mmap_sem);
2280 ret = do_brk(addr, len);
2281 up_write(&mm->mmap_sem);
2282 return ret;
2283 }
2284 EXPORT_SYMBOL(vm_brk);
2285
2286 /* Release all mmaps. */
2287 void exit_mmap(struct mm_struct *mm)
2288 {
2289 struct mmu_gather tlb;
2290 struct vm_area_struct *vma;
2291 unsigned long nr_accounted = 0;
2292
2293 /* mm's last user has gone, and its about to be pulled down */
2294 mmu_notifier_release(mm);
2295
2296 if (mm->locked_vm) {
2297 vma = mm->mmap;
2298 while (vma) {
2299 if (vma->vm_flags & VM_LOCKED)
2300 munlock_vma_pages_all(vma);
2301 vma = vma->vm_next;
2302 }
2303 }
2304
2305 arch_exit_mmap(mm);
2306
2307 vma = mm->mmap;
2308 if (!vma) /* Can happen if dup_mmap() received an OOM */
2309 return;
2310
2311 lru_add_drain();
2312 flush_cache_mm(mm);
2313 tlb_gather_mmu(&tlb, mm, 1);
2314 /* update_hiwater_rss(mm) here? but nobody should be looking */
2315 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2316 unmap_vmas(&tlb, vma, 0, -1);
2317
2318 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2319 tlb_finish_mmu(&tlb, 0, -1);
2320
2321 /*
2322 * Walk the list again, actually closing and freeing it,
2323 * with preemption enabled, without holding any MM locks.
2324 */
2325 while (vma) {
2326 if (vma->vm_flags & VM_ACCOUNT)
2327 nr_accounted += vma_pages(vma);
2328 vma = remove_vma(vma);
2329 }
2330 vm_unacct_memory(nr_accounted);
2331
2332 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2333 }
2334
2335 /* Insert vm structure into process list sorted by address
2336 * and into the inode's i_mmap tree. If vm_file is non-NULL
2337 * then i_mmap_mutex is taken here.
2338 */
2339 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2340 {
2341 struct vm_area_struct *prev;
2342 struct rb_node **rb_link, *rb_parent;
2343
2344 /*
2345 * The vm_pgoff of a purely anonymous vma should be irrelevant
2346 * until its first write fault, when page's anon_vma and index
2347 * are set. But now set the vm_pgoff it will almost certainly
2348 * end up with (unless mremap moves it elsewhere before that
2349 * first wfault), so /proc/pid/maps tells a consistent story.
2350 *
2351 * By setting it to reflect the virtual start address of the
2352 * vma, merges and splits can happen in a seamless way, just
2353 * using the existing file pgoff checks and manipulations.
2354 * Similarly in do_mmap_pgoff and in do_brk.
2355 */
2356 if (!vma->vm_file) {
2357 BUG_ON(vma->anon_vma);
2358 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2359 }
2360 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2361 &prev, &rb_link, &rb_parent))
2362 return -ENOMEM;
2363 if ((vma->vm_flags & VM_ACCOUNT) &&
2364 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2365 return -ENOMEM;
2366
2367 vma_link(mm, vma, prev, rb_link, rb_parent);
2368 return 0;
2369 }
2370
2371 /*
2372 * Copy the vma structure to a new location in the same mm,
2373 * prior to moving page table entries, to effect an mremap move.
2374 */
2375 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2376 unsigned long addr, unsigned long len, pgoff_t pgoff,
2377 bool *need_rmap_locks)
2378 {
2379 struct vm_area_struct *vma = *vmap;
2380 unsigned long vma_start = vma->vm_start;
2381 struct mm_struct *mm = vma->vm_mm;
2382 struct vm_area_struct *new_vma, *prev;
2383 struct rb_node **rb_link, *rb_parent;
2384 struct mempolicy *pol;
2385 bool faulted_in_anon_vma = true;
2386
2387 /*
2388 * If anonymous vma has not yet been faulted, update new pgoff
2389 * to match new location, to increase its chance of merging.
2390 */
2391 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2392 pgoff = addr >> PAGE_SHIFT;
2393 faulted_in_anon_vma = false;
2394 }
2395
2396 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2397 return NULL; /* should never get here */
2398 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2399 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2400 if (new_vma) {
2401 /*
2402 * Source vma may have been merged into new_vma
2403 */
2404 if (unlikely(vma_start >= new_vma->vm_start &&
2405 vma_start < new_vma->vm_end)) {
2406 /*
2407 * The only way we can get a vma_merge with
2408 * self during an mremap is if the vma hasn't
2409 * been faulted in yet and we were allowed to
2410 * reset the dst vma->vm_pgoff to the
2411 * destination address of the mremap to allow
2412 * the merge to happen. mremap must change the
2413 * vm_pgoff linearity between src and dst vmas
2414 * (in turn preventing a vma_merge) to be
2415 * safe. It is only safe to keep the vm_pgoff
2416 * linear if there are no pages mapped yet.
2417 */
2418 VM_BUG_ON(faulted_in_anon_vma);
2419 *vmap = vma = new_vma;
2420 }
2421 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2422 } else {
2423 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2424 if (new_vma) {
2425 *new_vma = *vma;
2426 new_vma->vm_start = addr;
2427 new_vma->vm_end = addr + len;
2428 new_vma->vm_pgoff = pgoff;
2429 pol = mpol_dup(vma_policy(vma));
2430 if (IS_ERR(pol))
2431 goto out_free_vma;
2432 vma_set_policy(new_vma, pol);
2433 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2434 if (anon_vma_clone(new_vma, vma))
2435 goto out_free_mempol;
2436 if (new_vma->vm_file)
2437 get_file(new_vma->vm_file);
2438 if (new_vma->vm_ops && new_vma->vm_ops->open)
2439 new_vma->vm_ops->open(new_vma);
2440 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2441 *need_rmap_locks = false;
2442 }
2443 }
2444 return new_vma;
2445
2446 out_free_mempol:
2447 mpol_put(pol);
2448 out_free_vma:
2449 kmem_cache_free(vm_area_cachep, new_vma);
2450 return NULL;
2451 }
2452
2453 /*
2454 * Return true if the calling process may expand its vm space by the passed
2455 * number of pages
2456 */
2457 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2458 {
2459 unsigned long cur = mm->total_vm; /* pages */
2460 unsigned long lim;
2461
2462 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2463
2464 if (cur + npages > lim)
2465 return 0;
2466 return 1;
2467 }
2468
2469
2470 static int special_mapping_fault(struct vm_area_struct *vma,
2471 struct vm_fault *vmf)
2472 {
2473 pgoff_t pgoff;
2474 struct page **pages;
2475
2476 /*
2477 * special mappings have no vm_file, and in that case, the mm
2478 * uses vm_pgoff internally. So we have to subtract it from here.
2479 * We are allowed to do this because we are the mm; do not copy
2480 * this code into drivers!
2481 */
2482 pgoff = vmf->pgoff - vma->vm_pgoff;
2483
2484 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2485 pgoff--;
2486
2487 if (*pages) {
2488 struct page *page = *pages;
2489 get_page(page);
2490 vmf->page = page;
2491 return 0;
2492 }
2493
2494 return VM_FAULT_SIGBUS;
2495 }
2496
2497 /*
2498 * Having a close hook prevents vma merging regardless of flags.
2499 */
2500 static void special_mapping_close(struct vm_area_struct *vma)
2501 {
2502 }
2503
2504 static const struct vm_operations_struct special_mapping_vmops = {
2505 .close = special_mapping_close,
2506 .fault = special_mapping_fault,
2507 };
2508
2509 /*
2510 * Called with mm->mmap_sem held for writing.
2511 * Insert a new vma covering the given region, with the given flags.
2512 * Its pages are supplied by the given array of struct page *.
2513 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2514 * The region past the last page supplied will always produce SIGBUS.
2515 * The array pointer and the pages it points to are assumed to stay alive
2516 * for as long as this mapping might exist.
2517 */
2518 int install_special_mapping(struct mm_struct *mm,
2519 unsigned long addr, unsigned long len,
2520 unsigned long vm_flags, struct page **pages)
2521 {
2522 int ret;
2523 struct vm_area_struct *vma;
2524
2525 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2526 if (unlikely(vma == NULL))
2527 return -ENOMEM;
2528
2529 INIT_LIST_HEAD(&vma->anon_vma_chain);
2530 vma->vm_mm = mm;
2531 vma->vm_start = addr;
2532 vma->vm_end = addr + len;
2533
2534 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2535 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2536
2537 vma->vm_ops = &special_mapping_vmops;
2538 vma->vm_private_data = pages;
2539
2540 ret = insert_vm_struct(mm, vma);
2541 if (ret)
2542 goto out;
2543
2544 mm->total_vm += len >> PAGE_SHIFT;
2545
2546 perf_event_mmap(vma);
2547
2548 return 0;
2549
2550 out:
2551 kmem_cache_free(vm_area_cachep, vma);
2552 return ret;
2553 }
2554
2555 static DEFINE_MUTEX(mm_all_locks_mutex);
2556
2557 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2558 {
2559 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2560 /*
2561 * The LSB of head.next can't change from under us
2562 * because we hold the mm_all_locks_mutex.
2563 */
2564 down_write(&anon_vma->root->rwsem);
2565 /*
2566 * We can safely modify head.next after taking the
2567 * anon_vma->root->rwsem. If some other vma in this mm shares
2568 * the same anon_vma we won't take it again.
2569 *
2570 * No need of atomic instructions here, head.next
2571 * can't change from under us thanks to the
2572 * anon_vma->root->rwsem.
2573 */
2574 if (__test_and_set_bit(0, (unsigned long *)
2575 &anon_vma->root->rb_root.rb_node))
2576 BUG();
2577 }
2578 }
2579
2580 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2581 {
2582 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2583 /*
2584 * AS_MM_ALL_LOCKS can't change from under us because
2585 * we hold the mm_all_locks_mutex.
2586 *
2587 * Operations on ->flags have to be atomic because
2588 * even if AS_MM_ALL_LOCKS is stable thanks to the
2589 * mm_all_locks_mutex, there may be other cpus
2590 * changing other bitflags in parallel to us.
2591 */
2592 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2593 BUG();
2594 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2595 }
2596 }
2597
2598 /*
2599 * This operation locks against the VM for all pte/vma/mm related
2600 * operations that could ever happen on a certain mm. This includes
2601 * vmtruncate, try_to_unmap, and all page faults.
2602 *
2603 * The caller must take the mmap_sem in write mode before calling
2604 * mm_take_all_locks(). The caller isn't allowed to release the
2605 * mmap_sem until mm_drop_all_locks() returns.
2606 *
2607 * mmap_sem in write mode is required in order to block all operations
2608 * that could modify pagetables and free pages without need of
2609 * altering the vma layout (for example populate_range() with
2610 * nonlinear vmas). It's also needed in write mode to avoid new
2611 * anon_vmas to be associated with existing vmas.
2612 *
2613 * A single task can't take more than one mm_take_all_locks() in a row
2614 * or it would deadlock.
2615 *
2616 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2617 * mapping->flags avoid to take the same lock twice, if more than one
2618 * vma in this mm is backed by the same anon_vma or address_space.
2619 *
2620 * We can take all the locks in random order because the VM code
2621 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2622 * takes more than one of them in a row. Secondly we're protected
2623 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2624 *
2625 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2626 * that may have to take thousand of locks.
2627 *
2628 * mm_take_all_locks() can fail if it's interrupted by signals.
2629 */
2630 int mm_take_all_locks(struct mm_struct *mm)
2631 {
2632 struct vm_area_struct *vma;
2633 struct anon_vma_chain *avc;
2634
2635 BUG_ON(down_read_trylock(&mm->mmap_sem));
2636
2637 mutex_lock(&mm_all_locks_mutex);
2638
2639 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2640 if (signal_pending(current))
2641 goto out_unlock;
2642 if (vma->vm_file && vma->vm_file->f_mapping)
2643 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2644 }
2645
2646 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2647 if (signal_pending(current))
2648 goto out_unlock;
2649 if (vma->anon_vma)
2650 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2651 vm_lock_anon_vma(mm, avc->anon_vma);
2652 }
2653
2654 return 0;
2655
2656 out_unlock:
2657 mm_drop_all_locks(mm);
2658 return -EINTR;
2659 }
2660
2661 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2662 {
2663 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2664 /*
2665 * The LSB of head.next can't change to 0 from under
2666 * us because we hold the mm_all_locks_mutex.
2667 *
2668 * We must however clear the bitflag before unlocking
2669 * the vma so the users using the anon_vma->rb_root will
2670 * never see our bitflag.
2671 *
2672 * No need of atomic instructions here, head.next
2673 * can't change from under us until we release the
2674 * anon_vma->root->rwsem.
2675 */
2676 if (!__test_and_clear_bit(0, (unsigned long *)
2677 &anon_vma->root->rb_root.rb_node))
2678 BUG();
2679 anon_vma_unlock(anon_vma);
2680 }
2681 }
2682
2683 static void vm_unlock_mapping(struct address_space *mapping)
2684 {
2685 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2686 /*
2687 * AS_MM_ALL_LOCKS can't change to 0 from under us
2688 * because we hold the mm_all_locks_mutex.
2689 */
2690 mutex_unlock(&mapping->i_mmap_mutex);
2691 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2692 &mapping->flags))
2693 BUG();
2694 }
2695 }
2696
2697 /*
2698 * The mmap_sem cannot be released by the caller until
2699 * mm_drop_all_locks() returns.
2700 */
2701 void mm_drop_all_locks(struct mm_struct *mm)
2702 {
2703 struct vm_area_struct *vma;
2704 struct anon_vma_chain *avc;
2705
2706 BUG_ON(down_read_trylock(&mm->mmap_sem));
2707 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2708
2709 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2710 if (vma->anon_vma)
2711 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2712 vm_unlock_anon_vma(avc->anon_vma);
2713 if (vma->vm_file && vma->vm_file->f_mapping)
2714 vm_unlock_mapping(vma->vm_file->f_mapping);
2715 }
2716
2717 mutex_unlock(&mm_all_locks_mutex);
2718 }
2719
2720 /*
2721 * initialise the VMA slab
2722 */
2723 void __init mmap_init(void)
2724 {
2725 int ret;
2726
2727 ret = percpu_counter_init(&vm_committed_as, 0);
2728 VM_BUG_ON(ret);
2729 }
This page took 0.085139 seconds and 5 git commands to generate.