Merge branch 'x86-bsp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / mm / mmap.c
1 /*
2 * mm/mmap.c
3 *
4 * Written by obz.
5 *
6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
7 */
8
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 #include <linux/rbtree_augmented.h>
35
36 #include <asm/uaccess.h>
37 #include <asm/cacheflush.h>
38 #include <asm/tlb.h>
39 #include <asm/mmu_context.h>
40
41 #include "internal.h"
42
43 #ifndef arch_mmap_check
44 #define arch_mmap_check(addr, len, flags) (0)
45 #endif
46
47 #ifndef arch_rebalance_pgtables
48 #define arch_rebalance_pgtables(addr, len) (addr)
49 #endif
50
51 static void unmap_region(struct mm_struct *mm,
52 struct vm_area_struct *vma, struct vm_area_struct *prev,
53 unsigned long start, unsigned long end);
54
55 /* description of effects of mapping type and prot in current implementation.
56 * this is due to the limited x86 page protection hardware. The expected
57 * behavior is in parens:
58 *
59 * map_type prot
60 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
61 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
62 * w: (no) no w: (no) no w: (yes) yes w: (no) no
63 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
64 *
65 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
66 * w: (no) no w: (no) no w: (copy) copy w: (no) no
67 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
68 *
69 */
70 pgprot_t protection_map[16] = {
71 __P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
72 __S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
73 };
74
75 pgprot_t vm_get_page_prot(unsigned long vm_flags)
76 {
77 return __pgprot(pgprot_val(protection_map[vm_flags &
78 (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
79 pgprot_val(arch_vm_get_page_prot(vm_flags)));
80 }
81 EXPORT_SYMBOL(vm_get_page_prot);
82
83 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
84 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
85 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
86 /*
87 * Make sure vm_committed_as in one cacheline and not cacheline shared with
88 * other variables. It can be updated by several CPUs frequently.
89 */
90 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
91
92 /*
93 * The global memory commitment made in the system can be a metric
94 * that can be used to drive ballooning decisions when Linux is hosted
95 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
96 * balancing memory across competing virtual machines that are hosted.
97 * Several metrics drive this policy engine including the guest reported
98 * memory commitment.
99 */
100 unsigned long vm_memory_committed(void)
101 {
102 return percpu_counter_read_positive(&vm_committed_as);
103 }
104 EXPORT_SYMBOL_GPL(vm_memory_committed);
105
106 /*
107 * Check that a process has enough memory to allocate a new virtual
108 * mapping. 0 means there is enough memory for the allocation to
109 * succeed and -ENOMEM implies there is not.
110 *
111 * We currently support three overcommit policies, which are set via the
112 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
113 *
114 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
115 * Additional code 2002 Jul 20 by Robert Love.
116 *
117 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
118 *
119 * Note this is a helper function intended to be used by LSMs which
120 * wish to use this logic.
121 */
122 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
123 {
124 unsigned long free, allowed;
125
126 vm_acct_memory(pages);
127
128 /*
129 * Sometimes we want to use more memory than we have
130 */
131 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
132 return 0;
133
134 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
135 free = global_page_state(NR_FREE_PAGES);
136 free += global_page_state(NR_FILE_PAGES);
137
138 /*
139 * shmem pages shouldn't be counted as free in this
140 * case, they can't be purged, only swapped out, and
141 * that won't affect the overall amount of available
142 * memory in the system.
143 */
144 free -= global_page_state(NR_SHMEM);
145
146 free += nr_swap_pages;
147
148 /*
149 * Any slabs which are created with the
150 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
151 * which are reclaimable, under pressure. The dentry
152 * cache and most inode caches should fall into this
153 */
154 free += global_page_state(NR_SLAB_RECLAIMABLE);
155
156 /*
157 * Leave reserved pages. The pages are not for anonymous pages.
158 */
159 if (free <= totalreserve_pages)
160 goto error;
161 else
162 free -= totalreserve_pages;
163
164 /*
165 * Leave the last 3% for root
166 */
167 if (!cap_sys_admin)
168 free -= free / 32;
169
170 if (free > pages)
171 return 0;
172
173 goto error;
174 }
175
176 allowed = (totalram_pages - hugetlb_total_pages())
177 * sysctl_overcommit_ratio / 100;
178 /*
179 * Leave the last 3% for root
180 */
181 if (!cap_sys_admin)
182 allowed -= allowed / 32;
183 allowed += total_swap_pages;
184
185 /* Don't let a single process grow too big:
186 leave 3% of the size of this process for other processes */
187 if (mm)
188 allowed -= mm->total_vm / 32;
189
190 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
191 return 0;
192 error:
193 vm_unacct_memory(pages);
194
195 return -ENOMEM;
196 }
197
198 /*
199 * Requires inode->i_mapping->i_mmap_mutex
200 */
201 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
202 struct file *file, struct address_space *mapping)
203 {
204 if (vma->vm_flags & VM_DENYWRITE)
205 atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
206 if (vma->vm_flags & VM_SHARED)
207 mapping->i_mmap_writable--;
208
209 flush_dcache_mmap_lock(mapping);
210 if (unlikely(vma->vm_flags & VM_NONLINEAR))
211 list_del_init(&vma->shared.nonlinear);
212 else
213 vma_interval_tree_remove(vma, &mapping->i_mmap);
214 flush_dcache_mmap_unlock(mapping);
215 }
216
217 /*
218 * Unlink a file-based vm structure from its interval tree, to hide
219 * vma from rmap and vmtruncate before freeing its page tables.
220 */
221 void unlink_file_vma(struct vm_area_struct *vma)
222 {
223 struct file *file = vma->vm_file;
224
225 if (file) {
226 struct address_space *mapping = file->f_mapping;
227 mutex_lock(&mapping->i_mmap_mutex);
228 __remove_shared_vm_struct(vma, file, mapping);
229 mutex_unlock(&mapping->i_mmap_mutex);
230 }
231 }
232
233 /*
234 * Close a vm structure and free it, returning the next.
235 */
236 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
237 {
238 struct vm_area_struct *next = vma->vm_next;
239
240 might_sleep();
241 if (vma->vm_ops && vma->vm_ops->close)
242 vma->vm_ops->close(vma);
243 if (vma->vm_file)
244 fput(vma->vm_file);
245 mpol_put(vma_policy(vma));
246 kmem_cache_free(vm_area_cachep, vma);
247 return next;
248 }
249
250 static unsigned long do_brk(unsigned long addr, unsigned long len);
251
252 SYSCALL_DEFINE1(brk, unsigned long, brk)
253 {
254 unsigned long rlim, retval;
255 unsigned long newbrk, oldbrk;
256 struct mm_struct *mm = current->mm;
257 unsigned long min_brk;
258
259 down_write(&mm->mmap_sem);
260
261 #ifdef CONFIG_COMPAT_BRK
262 /*
263 * CONFIG_COMPAT_BRK can still be overridden by setting
264 * randomize_va_space to 2, which will still cause mm->start_brk
265 * to be arbitrarily shifted
266 */
267 if (current->brk_randomized)
268 min_brk = mm->start_brk;
269 else
270 min_brk = mm->end_data;
271 #else
272 min_brk = mm->start_brk;
273 #endif
274 if (brk < min_brk)
275 goto out;
276
277 /*
278 * Check against rlimit here. If this check is done later after the test
279 * of oldbrk with newbrk then it can escape the test and let the data
280 * segment grow beyond its set limit the in case where the limit is
281 * not page aligned -Ram Gupta
282 */
283 rlim = rlimit(RLIMIT_DATA);
284 if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
285 (mm->end_data - mm->start_data) > rlim)
286 goto out;
287
288 newbrk = PAGE_ALIGN(brk);
289 oldbrk = PAGE_ALIGN(mm->brk);
290 if (oldbrk == newbrk)
291 goto set_brk;
292
293 /* Always allow shrinking brk. */
294 if (brk <= mm->brk) {
295 if (!do_munmap(mm, newbrk, oldbrk-newbrk))
296 goto set_brk;
297 goto out;
298 }
299
300 /* Check against existing mmap mappings. */
301 if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
302 goto out;
303
304 /* Ok, looks good - let it rip. */
305 if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
306 goto out;
307 set_brk:
308 mm->brk = brk;
309 out:
310 retval = mm->brk;
311 up_write(&mm->mmap_sem);
312 return retval;
313 }
314
315 static long vma_compute_subtree_gap(struct vm_area_struct *vma)
316 {
317 unsigned long max, subtree_gap;
318 max = vma->vm_start;
319 if (vma->vm_prev)
320 max -= vma->vm_prev->vm_end;
321 if (vma->vm_rb.rb_left) {
322 subtree_gap = rb_entry(vma->vm_rb.rb_left,
323 struct vm_area_struct, vm_rb)->rb_subtree_gap;
324 if (subtree_gap > max)
325 max = subtree_gap;
326 }
327 if (vma->vm_rb.rb_right) {
328 subtree_gap = rb_entry(vma->vm_rb.rb_right,
329 struct vm_area_struct, vm_rb)->rb_subtree_gap;
330 if (subtree_gap > max)
331 max = subtree_gap;
332 }
333 return max;
334 }
335
336 #ifdef CONFIG_DEBUG_VM_RB
337 static int browse_rb(struct rb_root *root)
338 {
339 int i = 0, j, bug = 0;
340 struct rb_node *nd, *pn = NULL;
341 unsigned long prev = 0, pend = 0;
342
343 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
344 struct vm_area_struct *vma;
345 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
346 if (vma->vm_start < prev) {
347 printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
348 bug = 1;
349 }
350 if (vma->vm_start < pend) {
351 printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
352 bug = 1;
353 }
354 if (vma->vm_start > vma->vm_end) {
355 printk("vm_end %lx < vm_start %lx\n",
356 vma->vm_end, vma->vm_start);
357 bug = 1;
358 }
359 if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
360 printk("free gap %lx, correct %lx\n",
361 vma->rb_subtree_gap,
362 vma_compute_subtree_gap(vma));
363 bug = 1;
364 }
365 i++;
366 pn = nd;
367 prev = vma->vm_start;
368 pend = vma->vm_end;
369 }
370 j = 0;
371 for (nd = pn; nd; nd = rb_prev(nd))
372 j++;
373 if (i != j) {
374 printk("backwards %d, forwards %d\n", j, i);
375 bug = 1;
376 }
377 return bug ? -1 : i;
378 }
379
380 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
381 {
382 struct rb_node *nd;
383
384 for (nd = rb_first(root); nd; nd = rb_next(nd)) {
385 struct vm_area_struct *vma;
386 vma = rb_entry(nd, struct vm_area_struct, vm_rb);
387 BUG_ON(vma != ignore &&
388 vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
389 }
390 }
391
392 void validate_mm(struct mm_struct *mm)
393 {
394 int bug = 0;
395 int i = 0;
396 unsigned long highest_address = 0;
397 struct vm_area_struct *vma = mm->mmap;
398 while (vma) {
399 struct anon_vma_chain *avc;
400 vma_lock_anon_vma(vma);
401 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
402 anon_vma_interval_tree_verify(avc);
403 vma_unlock_anon_vma(vma);
404 highest_address = vma->vm_end;
405 vma = vma->vm_next;
406 i++;
407 }
408 if (i != mm->map_count) {
409 printk("map_count %d vm_next %d\n", mm->map_count, i);
410 bug = 1;
411 }
412 if (highest_address != mm->highest_vm_end) {
413 printk("mm->highest_vm_end %lx, found %lx\n",
414 mm->highest_vm_end, highest_address);
415 bug = 1;
416 }
417 i = browse_rb(&mm->mm_rb);
418 if (i != mm->map_count) {
419 printk("map_count %d rb %d\n", mm->map_count, i);
420 bug = 1;
421 }
422 BUG_ON(bug);
423 }
424 #else
425 #define validate_mm_rb(root, ignore) do { } while (0)
426 #define validate_mm(mm) do { } while (0)
427 #endif
428
429 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
430 unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
431
432 /*
433 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
434 * vma->vm_prev->vm_end values changed, without modifying the vma's position
435 * in the rbtree.
436 */
437 static void vma_gap_update(struct vm_area_struct *vma)
438 {
439 /*
440 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
441 * function that does exacltly what we want.
442 */
443 vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
444 }
445
446 static inline void vma_rb_insert(struct vm_area_struct *vma,
447 struct rb_root *root)
448 {
449 /* All rb_subtree_gap values must be consistent prior to insertion */
450 validate_mm_rb(root, NULL);
451
452 rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
453 }
454
455 static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
456 {
457 /*
458 * All rb_subtree_gap values must be consistent prior to erase,
459 * with the possible exception of the vma being erased.
460 */
461 validate_mm_rb(root, vma);
462
463 /*
464 * Note rb_erase_augmented is a fairly large inline function,
465 * so make sure we instantiate it only once with our desired
466 * augmented rbtree callbacks.
467 */
468 rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
469 }
470
471 /*
472 * vma has some anon_vma assigned, and is already inserted on that
473 * anon_vma's interval trees.
474 *
475 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
476 * vma must be removed from the anon_vma's interval trees using
477 * anon_vma_interval_tree_pre_update_vma().
478 *
479 * After the update, the vma will be reinserted using
480 * anon_vma_interval_tree_post_update_vma().
481 *
482 * The entire update must be protected by exclusive mmap_sem and by
483 * the root anon_vma's mutex.
484 */
485 static inline void
486 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
487 {
488 struct anon_vma_chain *avc;
489
490 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
491 anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
492 }
493
494 static inline void
495 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
496 {
497 struct anon_vma_chain *avc;
498
499 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
500 anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
501 }
502
503 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
504 unsigned long end, struct vm_area_struct **pprev,
505 struct rb_node ***rb_link, struct rb_node **rb_parent)
506 {
507 struct rb_node **__rb_link, *__rb_parent, *rb_prev;
508
509 __rb_link = &mm->mm_rb.rb_node;
510 rb_prev = __rb_parent = NULL;
511
512 while (*__rb_link) {
513 struct vm_area_struct *vma_tmp;
514
515 __rb_parent = *__rb_link;
516 vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
517
518 if (vma_tmp->vm_end > addr) {
519 /* Fail if an existing vma overlaps the area */
520 if (vma_tmp->vm_start < end)
521 return -ENOMEM;
522 __rb_link = &__rb_parent->rb_left;
523 } else {
524 rb_prev = __rb_parent;
525 __rb_link = &__rb_parent->rb_right;
526 }
527 }
528
529 *pprev = NULL;
530 if (rb_prev)
531 *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
532 *rb_link = __rb_link;
533 *rb_parent = __rb_parent;
534 return 0;
535 }
536
537 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
538 struct rb_node **rb_link, struct rb_node *rb_parent)
539 {
540 /* Update tracking information for the gap following the new vma. */
541 if (vma->vm_next)
542 vma_gap_update(vma->vm_next);
543 else
544 mm->highest_vm_end = vma->vm_end;
545
546 /*
547 * vma->vm_prev wasn't known when we followed the rbtree to find the
548 * correct insertion point for that vma. As a result, we could not
549 * update the vma vm_rb parents rb_subtree_gap values on the way down.
550 * So, we first insert the vma with a zero rb_subtree_gap value
551 * (to be consistent with what we did on the way down), and then
552 * immediately update the gap to the correct value. Finally we
553 * rebalance the rbtree after all augmented values have been set.
554 */
555 rb_link_node(&vma->vm_rb, rb_parent, rb_link);
556 vma->rb_subtree_gap = 0;
557 vma_gap_update(vma);
558 vma_rb_insert(vma, &mm->mm_rb);
559 }
560
561 static void __vma_link_file(struct vm_area_struct *vma)
562 {
563 struct file *file;
564
565 file = vma->vm_file;
566 if (file) {
567 struct address_space *mapping = file->f_mapping;
568
569 if (vma->vm_flags & VM_DENYWRITE)
570 atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
571 if (vma->vm_flags & VM_SHARED)
572 mapping->i_mmap_writable++;
573
574 flush_dcache_mmap_lock(mapping);
575 if (unlikely(vma->vm_flags & VM_NONLINEAR))
576 vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
577 else
578 vma_interval_tree_insert(vma, &mapping->i_mmap);
579 flush_dcache_mmap_unlock(mapping);
580 }
581 }
582
583 static void
584 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
585 struct vm_area_struct *prev, struct rb_node **rb_link,
586 struct rb_node *rb_parent)
587 {
588 __vma_link_list(mm, vma, prev, rb_parent);
589 __vma_link_rb(mm, vma, rb_link, rb_parent);
590 }
591
592 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
593 struct vm_area_struct *prev, struct rb_node **rb_link,
594 struct rb_node *rb_parent)
595 {
596 struct address_space *mapping = NULL;
597
598 if (vma->vm_file)
599 mapping = vma->vm_file->f_mapping;
600
601 if (mapping)
602 mutex_lock(&mapping->i_mmap_mutex);
603
604 __vma_link(mm, vma, prev, rb_link, rb_parent);
605 __vma_link_file(vma);
606
607 if (mapping)
608 mutex_unlock(&mapping->i_mmap_mutex);
609
610 mm->map_count++;
611 validate_mm(mm);
612 }
613
614 /*
615 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
616 * mm's list and rbtree. It has already been inserted into the interval tree.
617 */
618 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
619 {
620 struct vm_area_struct *prev;
621 struct rb_node **rb_link, *rb_parent;
622
623 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
624 &prev, &rb_link, &rb_parent))
625 BUG();
626 __vma_link(mm, vma, prev, rb_link, rb_parent);
627 mm->map_count++;
628 }
629
630 static inline void
631 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
632 struct vm_area_struct *prev)
633 {
634 struct vm_area_struct *next;
635
636 vma_rb_erase(vma, &mm->mm_rb);
637 prev->vm_next = next = vma->vm_next;
638 if (next)
639 next->vm_prev = prev;
640 if (mm->mmap_cache == vma)
641 mm->mmap_cache = prev;
642 }
643
644 /*
645 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
646 * is already present in an i_mmap tree without adjusting the tree.
647 * The following helper function should be used when such adjustments
648 * are necessary. The "insert" vma (if any) is to be inserted
649 * before we drop the necessary locks.
650 */
651 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
652 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
653 {
654 struct mm_struct *mm = vma->vm_mm;
655 struct vm_area_struct *next = vma->vm_next;
656 struct vm_area_struct *importer = NULL;
657 struct address_space *mapping = NULL;
658 struct rb_root *root = NULL;
659 struct anon_vma *anon_vma = NULL;
660 struct file *file = vma->vm_file;
661 bool start_changed = false, end_changed = false;
662 long adjust_next = 0;
663 int remove_next = 0;
664
665 if (next && !insert) {
666 struct vm_area_struct *exporter = NULL;
667
668 if (end >= next->vm_end) {
669 /*
670 * vma expands, overlapping all the next, and
671 * perhaps the one after too (mprotect case 6).
672 */
673 again: remove_next = 1 + (end > next->vm_end);
674 end = next->vm_end;
675 exporter = next;
676 importer = vma;
677 } else if (end > next->vm_start) {
678 /*
679 * vma expands, overlapping part of the next:
680 * mprotect case 5 shifting the boundary up.
681 */
682 adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
683 exporter = next;
684 importer = vma;
685 } else if (end < vma->vm_end) {
686 /*
687 * vma shrinks, and !insert tells it's not
688 * split_vma inserting another: so it must be
689 * mprotect case 4 shifting the boundary down.
690 */
691 adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
692 exporter = vma;
693 importer = next;
694 }
695
696 /*
697 * Easily overlooked: when mprotect shifts the boundary,
698 * make sure the expanding vma has anon_vma set if the
699 * shrinking vma had, to cover any anon pages imported.
700 */
701 if (exporter && exporter->anon_vma && !importer->anon_vma) {
702 if (anon_vma_clone(importer, exporter))
703 return -ENOMEM;
704 importer->anon_vma = exporter->anon_vma;
705 }
706 }
707
708 if (file) {
709 mapping = file->f_mapping;
710 if (!(vma->vm_flags & VM_NONLINEAR)) {
711 root = &mapping->i_mmap;
712 uprobe_munmap(vma, vma->vm_start, vma->vm_end);
713
714 if (adjust_next)
715 uprobe_munmap(next, next->vm_start,
716 next->vm_end);
717 }
718
719 mutex_lock(&mapping->i_mmap_mutex);
720 if (insert) {
721 /*
722 * Put into interval tree now, so instantiated pages
723 * are visible to arm/parisc __flush_dcache_page
724 * throughout; but we cannot insert into address
725 * space until vma start or end is updated.
726 */
727 __vma_link_file(insert);
728 }
729 }
730
731 vma_adjust_trans_huge(vma, start, end, adjust_next);
732
733 anon_vma = vma->anon_vma;
734 if (!anon_vma && adjust_next)
735 anon_vma = next->anon_vma;
736 if (anon_vma) {
737 VM_BUG_ON(adjust_next && next->anon_vma &&
738 anon_vma != next->anon_vma);
739 anon_vma_lock(anon_vma);
740 anon_vma_interval_tree_pre_update_vma(vma);
741 if (adjust_next)
742 anon_vma_interval_tree_pre_update_vma(next);
743 }
744
745 if (root) {
746 flush_dcache_mmap_lock(mapping);
747 vma_interval_tree_remove(vma, root);
748 if (adjust_next)
749 vma_interval_tree_remove(next, root);
750 }
751
752 if (start != vma->vm_start) {
753 vma->vm_start = start;
754 start_changed = true;
755 }
756 if (end != vma->vm_end) {
757 vma->vm_end = end;
758 end_changed = true;
759 }
760 vma->vm_pgoff = pgoff;
761 if (adjust_next) {
762 next->vm_start += adjust_next << PAGE_SHIFT;
763 next->vm_pgoff += adjust_next;
764 }
765
766 if (root) {
767 if (adjust_next)
768 vma_interval_tree_insert(next, root);
769 vma_interval_tree_insert(vma, root);
770 flush_dcache_mmap_unlock(mapping);
771 }
772
773 if (remove_next) {
774 /*
775 * vma_merge has merged next into vma, and needs
776 * us to remove next before dropping the locks.
777 */
778 __vma_unlink(mm, next, vma);
779 if (file)
780 __remove_shared_vm_struct(next, file, mapping);
781 } else if (insert) {
782 /*
783 * split_vma has split insert from vma, and needs
784 * us to insert it before dropping the locks
785 * (it may either follow vma or precede it).
786 */
787 __insert_vm_struct(mm, insert);
788 } else {
789 if (start_changed)
790 vma_gap_update(vma);
791 if (end_changed) {
792 if (!next)
793 mm->highest_vm_end = end;
794 else if (!adjust_next)
795 vma_gap_update(next);
796 }
797 }
798
799 if (anon_vma) {
800 anon_vma_interval_tree_post_update_vma(vma);
801 if (adjust_next)
802 anon_vma_interval_tree_post_update_vma(next);
803 anon_vma_unlock(anon_vma);
804 }
805 if (mapping)
806 mutex_unlock(&mapping->i_mmap_mutex);
807
808 if (root) {
809 uprobe_mmap(vma);
810
811 if (adjust_next)
812 uprobe_mmap(next);
813 }
814
815 if (remove_next) {
816 if (file) {
817 uprobe_munmap(next, next->vm_start, next->vm_end);
818 fput(file);
819 }
820 if (next->anon_vma)
821 anon_vma_merge(vma, next);
822 mm->map_count--;
823 mpol_put(vma_policy(next));
824 kmem_cache_free(vm_area_cachep, next);
825 /*
826 * In mprotect's case 6 (see comments on vma_merge),
827 * we must remove another next too. It would clutter
828 * up the code too much to do both in one go.
829 */
830 next = vma->vm_next;
831 if (remove_next == 2)
832 goto again;
833 else if (next)
834 vma_gap_update(next);
835 else
836 mm->highest_vm_end = end;
837 }
838 if (insert && file)
839 uprobe_mmap(insert);
840
841 validate_mm(mm);
842
843 return 0;
844 }
845
846 /*
847 * If the vma has a ->close operation then the driver probably needs to release
848 * per-vma resources, so we don't attempt to merge those.
849 */
850 static inline int is_mergeable_vma(struct vm_area_struct *vma,
851 struct file *file, unsigned long vm_flags)
852 {
853 if (vma->vm_flags ^ vm_flags)
854 return 0;
855 if (vma->vm_file != file)
856 return 0;
857 if (vma->vm_ops && vma->vm_ops->close)
858 return 0;
859 return 1;
860 }
861
862 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
863 struct anon_vma *anon_vma2,
864 struct vm_area_struct *vma)
865 {
866 /*
867 * The list_is_singular() test is to avoid merging VMA cloned from
868 * parents. This can improve scalability caused by anon_vma lock.
869 */
870 if ((!anon_vma1 || !anon_vma2) && (!vma ||
871 list_is_singular(&vma->anon_vma_chain)))
872 return 1;
873 return anon_vma1 == anon_vma2;
874 }
875
876 /*
877 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
878 * in front of (at a lower virtual address and file offset than) the vma.
879 *
880 * We cannot merge two vmas if they have differently assigned (non-NULL)
881 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
882 *
883 * We don't check here for the merged mmap wrapping around the end of pagecache
884 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
885 * wrap, nor mmaps which cover the final page at index -1UL.
886 */
887 static int
888 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
889 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
890 {
891 if (is_mergeable_vma(vma, file, vm_flags) &&
892 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
893 if (vma->vm_pgoff == vm_pgoff)
894 return 1;
895 }
896 return 0;
897 }
898
899 /*
900 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
901 * beyond (at a higher virtual address and file offset than) the vma.
902 *
903 * We cannot merge two vmas if they have differently assigned (non-NULL)
904 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
905 */
906 static int
907 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
908 struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
909 {
910 if (is_mergeable_vma(vma, file, vm_flags) &&
911 is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
912 pgoff_t vm_pglen;
913 vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
914 if (vma->vm_pgoff + vm_pglen == vm_pgoff)
915 return 1;
916 }
917 return 0;
918 }
919
920 /*
921 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
922 * whether that can be merged with its predecessor or its successor.
923 * Or both (it neatly fills a hole).
924 *
925 * In most cases - when called for mmap, brk or mremap - [addr,end) is
926 * certain not to be mapped by the time vma_merge is called; but when
927 * called for mprotect, it is certain to be already mapped (either at
928 * an offset within prev, or at the start of next), and the flags of
929 * this area are about to be changed to vm_flags - and the no-change
930 * case has already been eliminated.
931 *
932 * The following mprotect cases have to be considered, where AAAA is
933 * the area passed down from mprotect_fixup, never extending beyond one
934 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
935 *
936 * AAAA AAAA AAAA AAAA
937 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
938 * cannot merge might become might become might become
939 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
940 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
941 * mremap move: PPPPNNNNNNNN 8
942 * AAAA
943 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
944 * might become case 1 below case 2 below case 3 below
945 *
946 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
947 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
948 */
949 struct vm_area_struct *vma_merge(struct mm_struct *mm,
950 struct vm_area_struct *prev, unsigned long addr,
951 unsigned long end, unsigned long vm_flags,
952 struct anon_vma *anon_vma, struct file *file,
953 pgoff_t pgoff, struct mempolicy *policy)
954 {
955 pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
956 struct vm_area_struct *area, *next;
957 int err;
958
959 /*
960 * We later require that vma->vm_flags == vm_flags,
961 * so this tests vma->vm_flags & VM_SPECIAL, too.
962 */
963 if (vm_flags & VM_SPECIAL)
964 return NULL;
965
966 if (prev)
967 next = prev->vm_next;
968 else
969 next = mm->mmap;
970 area = next;
971 if (next && next->vm_end == end) /* cases 6, 7, 8 */
972 next = next->vm_next;
973
974 /*
975 * Can it merge with the predecessor?
976 */
977 if (prev && prev->vm_end == addr &&
978 mpol_equal(vma_policy(prev), policy) &&
979 can_vma_merge_after(prev, vm_flags,
980 anon_vma, file, pgoff)) {
981 /*
982 * OK, it can. Can we now merge in the successor as well?
983 */
984 if (next && end == next->vm_start &&
985 mpol_equal(policy, vma_policy(next)) &&
986 can_vma_merge_before(next, vm_flags,
987 anon_vma, file, pgoff+pglen) &&
988 is_mergeable_anon_vma(prev->anon_vma,
989 next->anon_vma, NULL)) {
990 /* cases 1, 6 */
991 err = vma_adjust(prev, prev->vm_start,
992 next->vm_end, prev->vm_pgoff, NULL);
993 } else /* cases 2, 5, 7 */
994 err = vma_adjust(prev, prev->vm_start,
995 end, prev->vm_pgoff, NULL);
996 if (err)
997 return NULL;
998 khugepaged_enter_vma_merge(prev);
999 return prev;
1000 }
1001
1002 /*
1003 * Can this new request be merged in front of next?
1004 */
1005 if (next && end == next->vm_start &&
1006 mpol_equal(policy, vma_policy(next)) &&
1007 can_vma_merge_before(next, vm_flags,
1008 anon_vma, file, pgoff+pglen)) {
1009 if (prev && addr < prev->vm_end) /* case 4 */
1010 err = vma_adjust(prev, prev->vm_start,
1011 addr, prev->vm_pgoff, NULL);
1012 else /* cases 3, 8 */
1013 err = vma_adjust(area, addr, next->vm_end,
1014 next->vm_pgoff - pglen, NULL);
1015 if (err)
1016 return NULL;
1017 khugepaged_enter_vma_merge(area);
1018 return area;
1019 }
1020
1021 return NULL;
1022 }
1023
1024 /*
1025 * Rough compatbility check to quickly see if it's even worth looking
1026 * at sharing an anon_vma.
1027 *
1028 * They need to have the same vm_file, and the flags can only differ
1029 * in things that mprotect may change.
1030 *
1031 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1032 * we can merge the two vma's. For example, we refuse to merge a vma if
1033 * there is a vm_ops->close() function, because that indicates that the
1034 * driver is doing some kind of reference counting. But that doesn't
1035 * really matter for the anon_vma sharing case.
1036 */
1037 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1038 {
1039 return a->vm_end == b->vm_start &&
1040 mpol_equal(vma_policy(a), vma_policy(b)) &&
1041 a->vm_file == b->vm_file &&
1042 !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
1043 b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1044 }
1045
1046 /*
1047 * Do some basic sanity checking to see if we can re-use the anon_vma
1048 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1049 * the same as 'old', the other will be the new one that is trying
1050 * to share the anon_vma.
1051 *
1052 * NOTE! This runs with mm_sem held for reading, so it is possible that
1053 * the anon_vma of 'old' is concurrently in the process of being set up
1054 * by another page fault trying to merge _that_. But that's ok: if it
1055 * is being set up, that automatically means that it will be a singleton
1056 * acceptable for merging, so we can do all of this optimistically. But
1057 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1058 *
1059 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1060 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1061 * is to return an anon_vma that is "complex" due to having gone through
1062 * a fork).
1063 *
1064 * We also make sure that the two vma's are compatible (adjacent,
1065 * and with the same memory policies). That's all stable, even with just
1066 * a read lock on the mm_sem.
1067 */
1068 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1069 {
1070 if (anon_vma_compatible(a, b)) {
1071 struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1072
1073 if (anon_vma && list_is_singular(&old->anon_vma_chain))
1074 return anon_vma;
1075 }
1076 return NULL;
1077 }
1078
1079 /*
1080 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1081 * neighbouring vmas for a suitable anon_vma, before it goes off
1082 * to allocate a new anon_vma. It checks because a repetitive
1083 * sequence of mprotects and faults may otherwise lead to distinct
1084 * anon_vmas being allocated, preventing vma merge in subsequent
1085 * mprotect.
1086 */
1087 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1088 {
1089 struct anon_vma *anon_vma;
1090 struct vm_area_struct *near;
1091
1092 near = vma->vm_next;
1093 if (!near)
1094 goto try_prev;
1095
1096 anon_vma = reusable_anon_vma(near, vma, near);
1097 if (anon_vma)
1098 return anon_vma;
1099 try_prev:
1100 near = vma->vm_prev;
1101 if (!near)
1102 goto none;
1103
1104 anon_vma = reusable_anon_vma(near, near, vma);
1105 if (anon_vma)
1106 return anon_vma;
1107 none:
1108 /*
1109 * There's no absolute need to look only at touching neighbours:
1110 * we could search further afield for "compatible" anon_vmas.
1111 * But it would probably just be a waste of time searching,
1112 * or lead to too many vmas hanging off the same anon_vma.
1113 * We're trying to allow mprotect remerging later on,
1114 * not trying to minimize memory used for anon_vmas.
1115 */
1116 return NULL;
1117 }
1118
1119 #ifdef CONFIG_PROC_FS
1120 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1121 struct file *file, long pages)
1122 {
1123 const unsigned long stack_flags
1124 = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1125
1126 mm->total_vm += pages;
1127
1128 if (file) {
1129 mm->shared_vm += pages;
1130 if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1131 mm->exec_vm += pages;
1132 } else if (flags & stack_flags)
1133 mm->stack_vm += pages;
1134 }
1135 #endif /* CONFIG_PROC_FS */
1136
1137 /*
1138 * If a hint addr is less than mmap_min_addr change hint to be as
1139 * low as possible but still greater than mmap_min_addr
1140 */
1141 static inline unsigned long round_hint_to_min(unsigned long hint)
1142 {
1143 hint &= PAGE_MASK;
1144 if (((void *)hint != NULL) &&
1145 (hint < mmap_min_addr))
1146 return PAGE_ALIGN(mmap_min_addr);
1147 return hint;
1148 }
1149
1150 /*
1151 * The caller must hold down_write(&current->mm->mmap_sem).
1152 */
1153
1154 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1155 unsigned long len, unsigned long prot,
1156 unsigned long flags, unsigned long pgoff)
1157 {
1158 struct mm_struct * mm = current->mm;
1159 struct inode *inode;
1160 vm_flags_t vm_flags;
1161
1162 /*
1163 * Does the application expect PROT_READ to imply PROT_EXEC?
1164 *
1165 * (the exception is when the underlying filesystem is noexec
1166 * mounted, in which case we dont add PROT_EXEC.)
1167 */
1168 if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1169 if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1170 prot |= PROT_EXEC;
1171
1172 if (!len)
1173 return -EINVAL;
1174
1175 if (!(flags & MAP_FIXED))
1176 addr = round_hint_to_min(addr);
1177
1178 /* Careful about overflows.. */
1179 len = PAGE_ALIGN(len);
1180 if (!len)
1181 return -ENOMEM;
1182
1183 /* offset overflow? */
1184 if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1185 return -EOVERFLOW;
1186
1187 /* Too many mappings? */
1188 if (mm->map_count > sysctl_max_map_count)
1189 return -ENOMEM;
1190
1191 /* Obtain the address to map to. we verify (or select) it and ensure
1192 * that it represents a valid section of the address space.
1193 */
1194 addr = get_unmapped_area(file, addr, len, pgoff, flags);
1195 if (addr & ~PAGE_MASK)
1196 return addr;
1197
1198 /* Do simple checking here so the lower-level routines won't have
1199 * to. we assume access permissions have been handled by the open
1200 * of the memory object, so we don't do any here.
1201 */
1202 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1203 mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1204
1205 if (flags & MAP_LOCKED)
1206 if (!can_do_mlock())
1207 return -EPERM;
1208
1209 /* mlock MCL_FUTURE? */
1210 if (vm_flags & VM_LOCKED) {
1211 unsigned long locked, lock_limit;
1212 locked = len >> PAGE_SHIFT;
1213 locked += mm->locked_vm;
1214 lock_limit = rlimit(RLIMIT_MEMLOCK);
1215 lock_limit >>= PAGE_SHIFT;
1216 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217 return -EAGAIN;
1218 }
1219
1220 inode = file ? file->f_path.dentry->d_inode : NULL;
1221
1222 if (file) {
1223 switch (flags & MAP_TYPE) {
1224 case MAP_SHARED:
1225 if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1226 return -EACCES;
1227
1228 /*
1229 * Make sure we don't allow writing to an append-only
1230 * file..
1231 */
1232 if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1233 return -EACCES;
1234
1235 /*
1236 * Make sure there are no mandatory locks on the file.
1237 */
1238 if (locks_verify_locked(inode))
1239 return -EAGAIN;
1240
1241 vm_flags |= VM_SHARED | VM_MAYSHARE;
1242 if (!(file->f_mode & FMODE_WRITE))
1243 vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1244
1245 /* fall through */
1246 case MAP_PRIVATE:
1247 if (!(file->f_mode & FMODE_READ))
1248 return -EACCES;
1249 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1250 if (vm_flags & VM_EXEC)
1251 return -EPERM;
1252 vm_flags &= ~VM_MAYEXEC;
1253 }
1254
1255 if (!file->f_op || !file->f_op->mmap)
1256 return -ENODEV;
1257 break;
1258
1259 default:
1260 return -EINVAL;
1261 }
1262 } else {
1263 switch (flags & MAP_TYPE) {
1264 case MAP_SHARED:
1265 /*
1266 * Ignore pgoff.
1267 */
1268 pgoff = 0;
1269 vm_flags |= VM_SHARED | VM_MAYSHARE;
1270 break;
1271 case MAP_PRIVATE:
1272 /*
1273 * Set pgoff according to addr for anon_vma.
1274 */
1275 pgoff = addr >> PAGE_SHIFT;
1276 break;
1277 default:
1278 return -EINVAL;
1279 }
1280 }
1281
1282 return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1283 }
1284
1285 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1286 unsigned long, prot, unsigned long, flags,
1287 unsigned long, fd, unsigned long, pgoff)
1288 {
1289 struct file *file = NULL;
1290 unsigned long retval = -EBADF;
1291
1292 if (!(flags & MAP_ANONYMOUS)) {
1293 audit_mmap_fd(fd, flags);
1294 if (unlikely(flags & MAP_HUGETLB))
1295 return -EINVAL;
1296 file = fget(fd);
1297 if (!file)
1298 goto out;
1299 } else if (flags & MAP_HUGETLB) {
1300 struct user_struct *user = NULL;
1301 /*
1302 * VM_NORESERVE is used because the reservations will be
1303 * taken when vm_ops->mmap() is called
1304 * A dummy user value is used because we are not locking
1305 * memory so no accounting is necessary
1306 */
1307 file = hugetlb_file_setup(HUGETLB_ANON_FILE, addr, len,
1308 VM_NORESERVE,
1309 &user, HUGETLB_ANONHUGE_INODE,
1310 (flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1311 if (IS_ERR(file))
1312 return PTR_ERR(file);
1313 }
1314
1315 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1316
1317 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1318 if (file)
1319 fput(file);
1320 out:
1321 return retval;
1322 }
1323
1324 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1325 struct mmap_arg_struct {
1326 unsigned long addr;
1327 unsigned long len;
1328 unsigned long prot;
1329 unsigned long flags;
1330 unsigned long fd;
1331 unsigned long offset;
1332 };
1333
1334 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1335 {
1336 struct mmap_arg_struct a;
1337
1338 if (copy_from_user(&a, arg, sizeof(a)))
1339 return -EFAULT;
1340 if (a.offset & ~PAGE_MASK)
1341 return -EINVAL;
1342
1343 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1344 a.offset >> PAGE_SHIFT);
1345 }
1346 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1347
1348 /*
1349 * Some shared mappigns will want the pages marked read-only
1350 * to track write events. If so, we'll downgrade vm_page_prot
1351 * to the private version (using protection_map[] without the
1352 * VM_SHARED bit).
1353 */
1354 int vma_wants_writenotify(struct vm_area_struct *vma)
1355 {
1356 vm_flags_t vm_flags = vma->vm_flags;
1357
1358 /* If it was private or non-writable, the write bit is already clear */
1359 if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1360 return 0;
1361
1362 /* The backer wishes to know when pages are first written to? */
1363 if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1364 return 1;
1365
1366 /* The open routine did something to the protections already? */
1367 if (pgprot_val(vma->vm_page_prot) !=
1368 pgprot_val(vm_get_page_prot(vm_flags)))
1369 return 0;
1370
1371 /* Specialty mapping? */
1372 if (vm_flags & VM_PFNMAP)
1373 return 0;
1374
1375 /* Can the mapping track the dirty pages? */
1376 return vma->vm_file && vma->vm_file->f_mapping &&
1377 mapping_cap_account_dirty(vma->vm_file->f_mapping);
1378 }
1379
1380 /*
1381 * We account for memory if it's a private writeable mapping,
1382 * not hugepages and VM_NORESERVE wasn't set.
1383 */
1384 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1385 {
1386 /*
1387 * hugetlb has its own accounting separate from the core VM
1388 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1389 */
1390 if (file && is_file_hugepages(file))
1391 return 0;
1392
1393 return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1394 }
1395
1396 unsigned long mmap_region(struct file *file, unsigned long addr,
1397 unsigned long len, unsigned long flags,
1398 vm_flags_t vm_flags, unsigned long pgoff)
1399 {
1400 struct mm_struct *mm = current->mm;
1401 struct vm_area_struct *vma, *prev;
1402 int correct_wcount = 0;
1403 int error;
1404 struct rb_node **rb_link, *rb_parent;
1405 unsigned long charged = 0;
1406 struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1407
1408 /* Clear old maps */
1409 error = -ENOMEM;
1410 munmap_back:
1411 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1412 if (do_munmap(mm, addr, len))
1413 return -ENOMEM;
1414 goto munmap_back;
1415 }
1416
1417 /* Check against address space limit. */
1418 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1419 return -ENOMEM;
1420
1421 /*
1422 * Set 'VM_NORESERVE' if we should not account for the
1423 * memory use of this mapping.
1424 */
1425 if ((flags & MAP_NORESERVE)) {
1426 /* We honor MAP_NORESERVE if allowed to overcommit */
1427 if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1428 vm_flags |= VM_NORESERVE;
1429
1430 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1431 if (file && is_file_hugepages(file))
1432 vm_flags |= VM_NORESERVE;
1433 }
1434
1435 /*
1436 * Private writable mapping: check memory availability
1437 */
1438 if (accountable_mapping(file, vm_flags)) {
1439 charged = len >> PAGE_SHIFT;
1440 if (security_vm_enough_memory_mm(mm, charged))
1441 return -ENOMEM;
1442 vm_flags |= VM_ACCOUNT;
1443 }
1444
1445 /*
1446 * Can we just expand an old mapping?
1447 */
1448 vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1449 if (vma)
1450 goto out;
1451
1452 /*
1453 * Determine the object being mapped and call the appropriate
1454 * specific mapper. the address has already been validated, but
1455 * not unmapped, but the maps are removed from the list.
1456 */
1457 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1458 if (!vma) {
1459 error = -ENOMEM;
1460 goto unacct_error;
1461 }
1462
1463 vma->vm_mm = mm;
1464 vma->vm_start = addr;
1465 vma->vm_end = addr + len;
1466 vma->vm_flags = vm_flags;
1467 vma->vm_page_prot = vm_get_page_prot(vm_flags);
1468 vma->vm_pgoff = pgoff;
1469 INIT_LIST_HEAD(&vma->anon_vma_chain);
1470
1471 error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1472
1473 if (file) {
1474 if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1475 goto free_vma;
1476 if (vm_flags & VM_DENYWRITE) {
1477 error = deny_write_access(file);
1478 if (error)
1479 goto free_vma;
1480 correct_wcount = 1;
1481 }
1482 vma->vm_file = get_file(file);
1483 error = file->f_op->mmap(file, vma);
1484 if (error)
1485 goto unmap_and_free_vma;
1486
1487 /* Can addr have changed??
1488 *
1489 * Answer: Yes, several device drivers can do it in their
1490 * f_op->mmap method. -DaveM
1491 */
1492 addr = vma->vm_start;
1493 pgoff = vma->vm_pgoff;
1494 vm_flags = vma->vm_flags;
1495 } else if (vm_flags & VM_SHARED) {
1496 if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1497 goto free_vma;
1498 error = shmem_zero_setup(vma);
1499 if (error)
1500 goto free_vma;
1501 }
1502
1503 if (vma_wants_writenotify(vma)) {
1504 pgprot_t pprot = vma->vm_page_prot;
1505
1506 /* Can vma->vm_page_prot have changed??
1507 *
1508 * Answer: Yes, drivers may have changed it in their
1509 * f_op->mmap method.
1510 *
1511 * Ensures that vmas marked as uncached stay that way.
1512 */
1513 vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1514 if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1515 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1516 }
1517
1518 vma_link(mm, vma, prev, rb_link, rb_parent);
1519 file = vma->vm_file;
1520
1521 /* Once vma denies write, undo our temporary denial count */
1522 if (correct_wcount)
1523 atomic_inc(&inode->i_writecount);
1524 out:
1525 perf_event_mmap(vma);
1526
1527 vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1528 if (vm_flags & VM_LOCKED) {
1529 if (!mlock_vma_pages_range(vma, addr, addr + len))
1530 mm->locked_vm += (len >> PAGE_SHIFT);
1531 } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1532 make_pages_present(addr, addr + len);
1533
1534 if (file)
1535 uprobe_mmap(vma);
1536
1537 return addr;
1538
1539 unmap_and_free_vma:
1540 if (correct_wcount)
1541 atomic_inc(&inode->i_writecount);
1542 vma->vm_file = NULL;
1543 fput(file);
1544
1545 /* Undo any partial mapping done by a device driver. */
1546 unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1547 charged = 0;
1548 free_vma:
1549 kmem_cache_free(vm_area_cachep, vma);
1550 unacct_error:
1551 if (charged)
1552 vm_unacct_memory(charged);
1553 return error;
1554 }
1555
1556 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1557 {
1558 /*
1559 * We implement the search by looking for an rbtree node that
1560 * immediately follows a suitable gap. That is,
1561 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1562 * - gap_end = vma->vm_start >= info->low_limit + length;
1563 * - gap_end - gap_start >= length
1564 */
1565
1566 struct mm_struct *mm = current->mm;
1567 struct vm_area_struct *vma;
1568 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1569
1570 /* Adjust search length to account for worst case alignment overhead */
1571 length = info->length + info->align_mask;
1572 if (length < info->length)
1573 return -ENOMEM;
1574
1575 /* Adjust search limits by the desired length */
1576 if (info->high_limit < length)
1577 return -ENOMEM;
1578 high_limit = info->high_limit - length;
1579
1580 if (info->low_limit > high_limit)
1581 return -ENOMEM;
1582 low_limit = info->low_limit + length;
1583
1584 /* Check if rbtree root looks promising */
1585 if (RB_EMPTY_ROOT(&mm->mm_rb))
1586 goto check_highest;
1587 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1588 if (vma->rb_subtree_gap < length)
1589 goto check_highest;
1590
1591 while (true) {
1592 /* Visit left subtree if it looks promising */
1593 gap_end = vma->vm_start;
1594 if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1595 struct vm_area_struct *left =
1596 rb_entry(vma->vm_rb.rb_left,
1597 struct vm_area_struct, vm_rb);
1598 if (left->rb_subtree_gap >= length) {
1599 vma = left;
1600 continue;
1601 }
1602 }
1603
1604 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1605 check_current:
1606 /* Check if current node has a suitable gap */
1607 if (gap_start > high_limit)
1608 return -ENOMEM;
1609 if (gap_end >= low_limit && gap_end - gap_start >= length)
1610 goto found;
1611
1612 /* Visit right subtree if it looks promising */
1613 if (vma->vm_rb.rb_right) {
1614 struct vm_area_struct *right =
1615 rb_entry(vma->vm_rb.rb_right,
1616 struct vm_area_struct, vm_rb);
1617 if (right->rb_subtree_gap >= length) {
1618 vma = right;
1619 continue;
1620 }
1621 }
1622
1623 /* Go back up the rbtree to find next candidate node */
1624 while (true) {
1625 struct rb_node *prev = &vma->vm_rb;
1626 if (!rb_parent(prev))
1627 goto check_highest;
1628 vma = rb_entry(rb_parent(prev),
1629 struct vm_area_struct, vm_rb);
1630 if (prev == vma->vm_rb.rb_left) {
1631 gap_start = vma->vm_prev->vm_end;
1632 gap_end = vma->vm_start;
1633 goto check_current;
1634 }
1635 }
1636 }
1637
1638 check_highest:
1639 /* Check highest gap, which does not precede any rbtree node */
1640 gap_start = mm->highest_vm_end;
1641 gap_end = ULONG_MAX; /* Only for VM_BUG_ON below */
1642 if (gap_start > high_limit)
1643 return -ENOMEM;
1644
1645 found:
1646 /* We found a suitable gap. Clip it with the original low_limit. */
1647 if (gap_start < info->low_limit)
1648 gap_start = info->low_limit;
1649
1650 /* Adjust gap address to the desired alignment */
1651 gap_start += (info->align_offset - gap_start) & info->align_mask;
1652
1653 VM_BUG_ON(gap_start + info->length > info->high_limit);
1654 VM_BUG_ON(gap_start + info->length > gap_end);
1655 return gap_start;
1656 }
1657
1658 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
1659 {
1660 struct mm_struct *mm = current->mm;
1661 struct vm_area_struct *vma;
1662 unsigned long length, low_limit, high_limit, gap_start, gap_end;
1663
1664 /* Adjust search length to account for worst case alignment overhead */
1665 length = info->length + info->align_mask;
1666 if (length < info->length)
1667 return -ENOMEM;
1668
1669 /*
1670 * Adjust search limits by the desired length.
1671 * See implementation comment at top of unmapped_area().
1672 */
1673 gap_end = info->high_limit;
1674 if (gap_end < length)
1675 return -ENOMEM;
1676 high_limit = gap_end - length;
1677
1678 if (info->low_limit > high_limit)
1679 return -ENOMEM;
1680 low_limit = info->low_limit + length;
1681
1682 /* Check highest gap, which does not precede any rbtree node */
1683 gap_start = mm->highest_vm_end;
1684 if (gap_start <= high_limit)
1685 goto found_highest;
1686
1687 /* Check if rbtree root looks promising */
1688 if (RB_EMPTY_ROOT(&mm->mm_rb))
1689 return -ENOMEM;
1690 vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1691 if (vma->rb_subtree_gap < length)
1692 return -ENOMEM;
1693
1694 while (true) {
1695 /* Visit right subtree if it looks promising */
1696 gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1697 if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1698 struct vm_area_struct *right =
1699 rb_entry(vma->vm_rb.rb_right,
1700 struct vm_area_struct, vm_rb);
1701 if (right->rb_subtree_gap >= length) {
1702 vma = right;
1703 continue;
1704 }
1705 }
1706
1707 check_current:
1708 /* Check if current node has a suitable gap */
1709 gap_end = vma->vm_start;
1710 if (gap_end < low_limit)
1711 return -ENOMEM;
1712 if (gap_start <= high_limit && gap_end - gap_start >= length)
1713 goto found;
1714
1715 /* Visit left subtree if it looks promising */
1716 if (vma->vm_rb.rb_left) {
1717 struct vm_area_struct *left =
1718 rb_entry(vma->vm_rb.rb_left,
1719 struct vm_area_struct, vm_rb);
1720 if (left->rb_subtree_gap >= length) {
1721 vma = left;
1722 continue;
1723 }
1724 }
1725
1726 /* Go back up the rbtree to find next candidate node */
1727 while (true) {
1728 struct rb_node *prev = &vma->vm_rb;
1729 if (!rb_parent(prev))
1730 return -ENOMEM;
1731 vma = rb_entry(rb_parent(prev),
1732 struct vm_area_struct, vm_rb);
1733 if (prev == vma->vm_rb.rb_right) {
1734 gap_start = vma->vm_prev ?
1735 vma->vm_prev->vm_end : 0;
1736 goto check_current;
1737 }
1738 }
1739 }
1740
1741 found:
1742 /* We found a suitable gap. Clip it with the original high_limit. */
1743 if (gap_end > info->high_limit)
1744 gap_end = info->high_limit;
1745
1746 found_highest:
1747 /* Compute highest gap address at the desired alignment */
1748 gap_end -= info->length;
1749 gap_end -= (gap_end - info->align_offset) & info->align_mask;
1750
1751 VM_BUG_ON(gap_end < info->low_limit);
1752 VM_BUG_ON(gap_end < gap_start);
1753 return gap_end;
1754 }
1755
1756 /* Get an address range which is currently unmapped.
1757 * For shmat() with addr=0.
1758 *
1759 * Ugly calling convention alert:
1760 * Return value with the low bits set means error value,
1761 * ie
1762 * if (ret & ~PAGE_MASK)
1763 * error = ret;
1764 *
1765 * This function "knows" that -ENOMEM has the bits set.
1766 */
1767 #ifndef HAVE_ARCH_UNMAPPED_AREA
1768 unsigned long
1769 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1770 unsigned long len, unsigned long pgoff, unsigned long flags)
1771 {
1772 struct mm_struct *mm = current->mm;
1773 struct vm_area_struct *vma;
1774 struct vm_unmapped_area_info info;
1775
1776 if (len > TASK_SIZE)
1777 return -ENOMEM;
1778
1779 if (flags & MAP_FIXED)
1780 return addr;
1781
1782 if (addr) {
1783 addr = PAGE_ALIGN(addr);
1784 vma = find_vma(mm, addr);
1785 if (TASK_SIZE - len >= addr &&
1786 (!vma || addr + len <= vma->vm_start))
1787 return addr;
1788 }
1789
1790 info.flags = 0;
1791 info.length = len;
1792 info.low_limit = TASK_UNMAPPED_BASE;
1793 info.high_limit = TASK_SIZE;
1794 info.align_mask = 0;
1795 return vm_unmapped_area(&info);
1796 }
1797 #endif
1798
1799 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1800 {
1801 /*
1802 * Is this a new hole at the lowest possible address?
1803 */
1804 if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1805 mm->free_area_cache = addr;
1806 }
1807
1808 /*
1809 * This mmap-allocator allocates new areas top-down from below the
1810 * stack's low limit (the base):
1811 */
1812 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1813 unsigned long
1814 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1815 const unsigned long len, const unsigned long pgoff,
1816 const unsigned long flags)
1817 {
1818 struct vm_area_struct *vma;
1819 struct mm_struct *mm = current->mm;
1820 unsigned long addr = addr0;
1821 struct vm_unmapped_area_info info;
1822
1823 /* requested length too big for entire address space */
1824 if (len > TASK_SIZE)
1825 return -ENOMEM;
1826
1827 if (flags & MAP_FIXED)
1828 return addr;
1829
1830 /* requesting a specific address */
1831 if (addr) {
1832 addr = PAGE_ALIGN(addr);
1833 vma = find_vma(mm, addr);
1834 if (TASK_SIZE - len >= addr &&
1835 (!vma || addr + len <= vma->vm_start))
1836 return addr;
1837 }
1838
1839 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1840 info.length = len;
1841 info.low_limit = PAGE_SIZE;
1842 info.high_limit = mm->mmap_base;
1843 info.align_mask = 0;
1844 addr = vm_unmapped_area(&info);
1845
1846 /*
1847 * A failed mmap() very likely causes application failure,
1848 * so fall back to the bottom-up function here. This scenario
1849 * can happen with large stack limits and large mmap()
1850 * allocations.
1851 */
1852 if (addr & ~PAGE_MASK) {
1853 VM_BUG_ON(addr != -ENOMEM);
1854 info.flags = 0;
1855 info.low_limit = TASK_UNMAPPED_BASE;
1856 info.high_limit = TASK_SIZE;
1857 addr = vm_unmapped_area(&info);
1858 }
1859
1860 return addr;
1861 }
1862 #endif
1863
1864 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1865 {
1866 /*
1867 * Is this a new hole at the highest possible address?
1868 */
1869 if (addr > mm->free_area_cache)
1870 mm->free_area_cache = addr;
1871
1872 /* dont allow allocations above current base */
1873 if (mm->free_area_cache > mm->mmap_base)
1874 mm->free_area_cache = mm->mmap_base;
1875 }
1876
1877 unsigned long
1878 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1879 unsigned long pgoff, unsigned long flags)
1880 {
1881 unsigned long (*get_area)(struct file *, unsigned long,
1882 unsigned long, unsigned long, unsigned long);
1883
1884 unsigned long error = arch_mmap_check(addr, len, flags);
1885 if (error)
1886 return error;
1887
1888 /* Careful about overflows.. */
1889 if (len > TASK_SIZE)
1890 return -ENOMEM;
1891
1892 get_area = current->mm->get_unmapped_area;
1893 if (file && file->f_op && file->f_op->get_unmapped_area)
1894 get_area = file->f_op->get_unmapped_area;
1895 addr = get_area(file, addr, len, pgoff, flags);
1896 if (IS_ERR_VALUE(addr))
1897 return addr;
1898
1899 if (addr > TASK_SIZE - len)
1900 return -ENOMEM;
1901 if (addr & ~PAGE_MASK)
1902 return -EINVAL;
1903
1904 addr = arch_rebalance_pgtables(addr, len);
1905 error = security_mmap_addr(addr);
1906 return error ? error : addr;
1907 }
1908
1909 EXPORT_SYMBOL(get_unmapped_area);
1910
1911 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1912 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1913 {
1914 struct vm_area_struct *vma = NULL;
1915
1916 if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1917 return NULL;
1918
1919 /* Check the cache first. */
1920 /* (Cache hit rate is typically around 35%.) */
1921 vma = mm->mmap_cache;
1922 if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1923 struct rb_node *rb_node;
1924
1925 rb_node = mm->mm_rb.rb_node;
1926 vma = NULL;
1927
1928 while (rb_node) {
1929 struct vm_area_struct *vma_tmp;
1930
1931 vma_tmp = rb_entry(rb_node,
1932 struct vm_area_struct, vm_rb);
1933
1934 if (vma_tmp->vm_end > addr) {
1935 vma = vma_tmp;
1936 if (vma_tmp->vm_start <= addr)
1937 break;
1938 rb_node = rb_node->rb_left;
1939 } else
1940 rb_node = rb_node->rb_right;
1941 }
1942 if (vma)
1943 mm->mmap_cache = vma;
1944 }
1945 return vma;
1946 }
1947
1948 EXPORT_SYMBOL(find_vma);
1949
1950 /*
1951 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1952 */
1953 struct vm_area_struct *
1954 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1955 struct vm_area_struct **pprev)
1956 {
1957 struct vm_area_struct *vma;
1958
1959 vma = find_vma(mm, addr);
1960 if (vma) {
1961 *pprev = vma->vm_prev;
1962 } else {
1963 struct rb_node *rb_node = mm->mm_rb.rb_node;
1964 *pprev = NULL;
1965 while (rb_node) {
1966 *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1967 rb_node = rb_node->rb_right;
1968 }
1969 }
1970 return vma;
1971 }
1972
1973 /*
1974 * Verify that the stack growth is acceptable and
1975 * update accounting. This is shared with both the
1976 * grow-up and grow-down cases.
1977 */
1978 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1979 {
1980 struct mm_struct *mm = vma->vm_mm;
1981 struct rlimit *rlim = current->signal->rlim;
1982 unsigned long new_start;
1983
1984 /* address space limit tests */
1985 if (!may_expand_vm(mm, grow))
1986 return -ENOMEM;
1987
1988 /* Stack limit test */
1989 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1990 return -ENOMEM;
1991
1992 /* mlock limit tests */
1993 if (vma->vm_flags & VM_LOCKED) {
1994 unsigned long locked;
1995 unsigned long limit;
1996 locked = mm->locked_vm + grow;
1997 limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1998 limit >>= PAGE_SHIFT;
1999 if (locked > limit && !capable(CAP_IPC_LOCK))
2000 return -ENOMEM;
2001 }
2002
2003 /* Check to ensure the stack will not grow into a hugetlb-only region */
2004 new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2005 vma->vm_end - size;
2006 if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2007 return -EFAULT;
2008
2009 /*
2010 * Overcommit.. This must be the final test, as it will
2011 * update security statistics.
2012 */
2013 if (security_vm_enough_memory_mm(mm, grow))
2014 return -ENOMEM;
2015
2016 /* Ok, everything looks good - let it rip */
2017 if (vma->vm_flags & VM_LOCKED)
2018 mm->locked_vm += grow;
2019 vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2020 return 0;
2021 }
2022
2023 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2024 /*
2025 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2026 * vma is the last one with address > vma->vm_end. Have to extend vma.
2027 */
2028 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2029 {
2030 int error;
2031
2032 if (!(vma->vm_flags & VM_GROWSUP))
2033 return -EFAULT;
2034
2035 /*
2036 * We must make sure the anon_vma is allocated
2037 * so that the anon_vma locking is not a noop.
2038 */
2039 if (unlikely(anon_vma_prepare(vma)))
2040 return -ENOMEM;
2041 vma_lock_anon_vma(vma);
2042
2043 /*
2044 * vma->vm_start/vm_end cannot change under us because the caller
2045 * is required to hold the mmap_sem in read mode. We need the
2046 * anon_vma lock to serialize against concurrent expand_stacks.
2047 * Also guard against wrapping around to address 0.
2048 */
2049 if (address < PAGE_ALIGN(address+4))
2050 address = PAGE_ALIGN(address+4);
2051 else {
2052 vma_unlock_anon_vma(vma);
2053 return -ENOMEM;
2054 }
2055 error = 0;
2056
2057 /* Somebody else might have raced and expanded it already */
2058 if (address > vma->vm_end) {
2059 unsigned long size, grow;
2060
2061 size = address - vma->vm_start;
2062 grow = (address - vma->vm_end) >> PAGE_SHIFT;
2063
2064 error = -ENOMEM;
2065 if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2066 error = acct_stack_growth(vma, size, grow);
2067 if (!error) {
2068 anon_vma_interval_tree_pre_update_vma(vma);
2069 vma->vm_end = address;
2070 anon_vma_interval_tree_post_update_vma(vma);
2071 if (vma->vm_next)
2072 vma_gap_update(vma->vm_next);
2073 else
2074 vma->vm_mm->highest_vm_end = address;
2075 perf_event_mmap(vma);
2076 }
2077 }
2078 }
2079 vma_unlock_anon_vma(vma);
2080 khugepaged_enter_vma_merge(vma);
2081 validate_mm(vma->vm_mm);
2082 return error;
2083 }
2084 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2085
2086 /*
2087 * vma is the first one with address < vma->vm_start. Have to extend vma.
2088 */
2089 int expand_downwards(struct vm_area_struct *vma,
2090 unsigned long address)
2091 {
2092 int error;
2093
2094 /*
2095 * We must make sure the anon_vma is allocated
2096 * so that the anon_vma locking is not a noop.
2097 */
2098 if (unlikely(anon_vma_prepare(vma)))
2099 return -ENOMEM;
2100
2101 address &= PAGE_MASK;
2102 error = security_mmap_addr(address);
2103 if (error)
2104 return error;
2105
2106 vma_lock_anon_vma(vma);
2107
2108 /*
2109 * vma->vm_start/vm_end cannot change under us because the caller
2110 * is required to hold the mmap_sem in read mode. We need the
2111 * anon_vma lock to serialize against concurrent expand_stacks.
2112 */
2113
2114 /* Somebody else might have raced and expanded it already */
2115 if (address < vma->vm_start) {
2116 unsigned long size, grow;
2117
2118 size = vma->vm_end - address;
2119 grow = (vma->vm_start - address) >> PAGE_SHIFT;
2120
2121 error = -ENOMEM;
2122 if (grow <= vma->vm_pgoff) {
2123 error = acct_stack_growth(vma, size, grow);
2124 if (!error) {
2125 anon_vma_interval_tree_pre_update_vma(vma);
2126 vma->vm_start = address;
2127 vma->vm_pgoff -= grow;
2128 anon_vma_interval_tree_post_update_vma(vma);
2129 vma_gap_update(vma);
2130 perf_event_mmap(vma);
2131 }
2132 }
2133 }
2134 vma_unlock_anon_vma(vma);
2135 khugepaged_enter_vma_merge(vma);
2136 validate_mm(vma->vm_mm);
2137 return error;
2138 }
2139
2140 #ifdef CONFIG_STACK_GROWSUP
2141 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2142 {
2143 return expand_upwards(vma, address);
2144 }
2145
2146 struct vm_area_struct *
2147 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2148 {
2149 struct vm_area_struct *vma, *prev;
2150
2151 addr &= PAGE_MASK;
2152 vma = find_vma_prev(mm, addr, &prev);
2153 if (vma && (vma->vm_start <= addr))
2154 return vma;
2155 if (!prev || expand_stack(prev, addr))
2156 return NULL;
2157 if (prev->vm_flags & VM_LOCKED) {
2158 mlock_vma_pages_range(prev, addr, prev->vm_end);
2159 }
2160 return prev;
2161 }
2162 #else
2163 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2164 {
2165 return expand_downwards(vma, address);
2166 }
2167
2168 struct vm_area_struct *
2169 find_extend_vma(struct mm_struct * mm, unsigned long addr)
2170 {
2171 struct vm_area_struct * vma;
2172 unsigned long start;
2173
2174 addr &= PAGE_MASK;
2175 vma = find_vma(mm,addr);
2176 if (!vma)
2177 return NULL;
2178 if (vma->vm_start <= addr)
2179 return vma;
2180 if (!(vma->vm_flags & VM_GROWSDOWN))
2181 return NULL;
2182 start = vma->vm_start;
2183 if (expand_stack(vma, addr))
2184 return NULL;
2185 if (vma->vm_flags & VM_LOCKED) {
2186 mlock_vma_pages_range(vma, addr, start);
2187 }
2188 return vma;
2189 }
2190 #endif
2191
2192 /*
2193 * Ok - we have the memory areas we should free on the vma list,
2194 * so release them, and do the vma updates.
2195 *
2196 * Called with the mm semaphore held.
2197 */
2198 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2199 {
2200 unsigned long nr_accounted = 0;
2201
2202 /* Update high watermark before we lower total_vm */
2203 update_hiwater_vm(mm);
2204 do {
2205 long nrpages = vma_pages(vma);
2206
2207 if (vma->vm_flags & VM_ACCOUNT)
2208 nr_accounted += nrpages;
2209 vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2210 vma = remove_vma(vma);
2211 } while (vma);
2212 vm_unacct_memory(nr_accounted);
2213 validate_mm(mm);
2214 }
2215
2216 /*
2217 * Get rid of page table information in the indicated region.
2218 *
2219 * Called with the mm semaphore held.
2220 */
2221 static void unmap_region(struct mm_struct *mm,
2222 struct vm_area_struct *vma, struct vm_area_struct *prev,
2223 unsigned long start, unsigned long end)
2224 {
2225 struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2226 struct mmu_gather tlb;
2227
2228 lru_add_drain();
2229 tlb_gather_mmu(&tlb, mm, 0);
2230 update_hiwater_rss(mm);
2231 unmap_vmas(&tlb, vma, start, end);
2232 free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2233 next ? next->vm_start : 0);
2234 tlb_finish_mmu(&tlb, start, end);
2235 }
2236
2237 /*
2238 * Create a list of vma's touched by the unmap, removing them from the mm's
2239 * vma list as we go..
2240 */
2241 static void
2242 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2243 struct vm_area_struct *prev, unsigned long end)
2244 {
2245 struct vm_area_struct **insertion_point;
2246 struct vm_area_struct *tail_vma = NULL;
2247 unsigned long addr;
2248
2249 insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2250 vma->vm_prev = NULL;
2251 do {
2252 vma_rb_erase(vma, &mm->mm_rb);
2253 mm->map_count--;
2254 tail_vma = vma;
2255 vma = vma->vm_next;
2256 } while (vma && vma->vm_start < end);
2257 *insertion_point = vma;
2258 if (vma) {
2259 vma->vm_prev = prev;
2260 vma_gap_update(vma);
2261 } else
2262 mm->highest_vm_end = prev ? prev->vm_end : 0;
2263 tail_vma->vm_next = NULL;
2264 if (mm->unmap_area == arch_unmap_area)
2265 addr = prev ? prev->vm_end : mm->mmap_base;
2266 else
2267 addr = vma ? vma->vm_start : mm->mmap_base;
2268 mm->unmap_area(mm, addr);
2269 mm->mmap_cache = NULL; /* Kill the cache. */
2270 }
2271
2272 /*
2273 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2274 * munmap path where it doesn't make sense to fail.
2275 */
2276 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2277 unsigned long addr, int new_below)
2278 {
2279 struct mempolicy *pol;
2280 struct vm_area_struct *new;
2281 int err = -ENOMEM;
2282
2283 if (is_vm_hugetlb_page(vma) && (addr &
2284 ~(huge_page_mask(hstate_vma(vma)))))
2285 return -EINVAL;
2286
2287 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2288 if (!new)
2289 goto out_err;
2290
2291 /* most fields are the same, copy all, and then fixup */
2292 *new = *vma;
2293
2294 INIT_LIST_HEAD(&new->anon_vma_chain);
2295
2296 if (new_below)
2297 new->vm_end = addr;
2298 else {
2299 new->vm_start = addr;
2300 new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2301 }
2302
2303 pol = mpol_dup(vma_policy(vma));
2304 if (IS_ERR(pol)) {
2305 err = PTR_ERR(pol);
2306 goto out_free_vma;
2307 }
2308 vma_set_policy(new, pol);
2309
2310 if (anon_vma_clone(new, vma))
2311 goto out_free_mpol;
2312
2313 if (new->vm_file)
2314 get_file(new->vm_file);
2315
2316 if (new->vm_ops && new->vm_ops->open)
2317 new->vm_ops->open(new);
2318
2319 if (new_below)
2320 err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2321 ((addr - new->vm_start) >> PAGE_SHIFT), new);
2322 else
2323 err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2324
2325 /* Success. */
2326 if (!err)
2327 return 0;
2328
2329 /* Clean everything up if vma_adjust failed. */
2330 if (new->vm_ops && new->vm_ops->close)
2331 new->vm_ops->close(new);
2332 if (new->vm_file)
2333 fput(new->vm_file);
2334 unlink_anon_vmas(new);
2335 out_free_mpol:
2336 mpol_put(pol);
2337 out_free_vma:
2338 kmem_cache_free(vm_area_cachep, new);
2339 out_err:
2340 return err;
2341 }
2342
2343 /*
2344 * Split a vma into two pieces at address 'addr', a new vma is allocated
2345 * either for the first part or the tail.
2346 */
2347 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2348 unsigned long addr, int new_below)
2349 {
2350 if (mm->map_count >= sysctl_max_map_count)
2351 return -ENOMEM;
2352
2353 return __split_vma(mm, vma, addr, new_below);
2354 }
2355
2356 /* Munmap is split into 2 main parts -- this part which finds
2357 * what needs doing, and the areas themselves, which do the
2358 * work. This now handles partial unmappings.
2359 * Jeremy Fitzhardinge <jeremy@goop.org>
2360 */
2361 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2362 {
2363 unsigned long end;
2364 struct vm_area_struct *vma, *prev, *last;
2365
2366 if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2367 return -EINVAL;
2368
2369 if ((len = PAGE_ALIGN(len)) == 0)
2370 return -EINVAL;
2371
2372 /* Find the first overlapping VMA */
2373 vma = find_vma(mm, start);
2374 if (!vma)
2375 return 0;
2376 prev = vma->vm_prev;
2377 /* we have start < vma->vm_end */
2378
2379 /* if it doesn't overlap, we have nothing.. */
2380 end = start + len;
2381 if (vma->vm_start >= end)
2382 return 0;
2383
2384 /*
2385 * If we need to split any vma, do it now to save pain later.
2386 *
2387 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2388 * unmapped vm_area_struct will remain in use: so lower split_vma
2389 * places tmp vma above, and higher split_vma places tmp vma below.
2390 */
2391 if (start > vma->vm_start) {
2392 int error;
2393
2394 /*
2395 * Make sure that map_count on return from munmap() will
2396 * not exceed its limit; but let map_count go just above
2397 * its limit temporarily, to help free resources as expected.
2398 */
2399 if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2400 return -ENOMEM;
2401
2402 error = __split_vma(mm, vma, start, 0);
2403 if (error)
2404 return error;
2405 prev = vma;
2406 }
2407
2408 /* Does it split the last one? */
2409 last = find_vma(mm, end);
2410 if (last && end > last->vm_start) {
2411 int error = __split_vma(mm, last, end, 1);
2412 if (error)
2413 return error;
2414 }
2415 vma = prev? prev->vm_next: mm->mmap;
2416
2417 /*
2418 * unlock any mlock()ed ranges before detaching vmas
2419 */
2420 if (mm->locked_vm) {
2421 struct vm_area_struct *tmp = vma;
2422 while (tmp && tmp->vm_start < end) {
2423 if (tmp->vm_flags & VM_LOCKED) {
2424 mm->locked_vm -= vma_pages(tmp);
2425 munlock_vma_pages_all(tmp);
2426 }
2427 tmp = tmp->vm_next;
2428 }
2429 }
2430
2431 /*
2432 * Remove the vma's, and unmap the actual pages
2433 */
2434 detach_vmas_to_be_unmapped(mm, vma, prev, end);
2435 unmap_region(mm, vma, prev, start, end);
2436
2437 /* Fix up all other VM information */
2438 remove_vma_list(mm, vma);
2439
2440 return 0;
2441 }
2442
2443 int vm_munmap(unsigned long start, size_t len)
2444 {
2445 int ret;
2446 struct mm_struct *mm = current->mm;
2447
2448 down_write(&mm->mmap_sem);
2449 ret = do_munmap(mm, start, len);
2450 up_write(&mm->mmap_sem);
2451 return ret;
2452 }
2453 EXPORT_SYMBOL(vm_munmap);
2454
2455 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2456 {
2457 profile_munmap(addr);
2458 return vm_munmap(addr, len);
2459 }
2460
2461 static inline void verify_mm_writelocked(struct mm_struct *mm)
2462 {
2463 #ifdef CONFIG_DEBUG_VM
2464 if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2465 WARN_ON(1);
2466 up_read(&mm->mmap_sem);
2467 }
2468 #endif
2469 }
2470
2471 /*
2472 * this is really a simplified "do_mmap". it only handles
2473 * anonymous maps. eventually we may be able to do some
2474 * brk-specific accounting here.
2475 */
2476 static unsigned long do_brk(unsigned long addr, unsigned long len)
2477 {
2478 struct mm_struct * mm = current->mm;
2479 struct vm_area_struct * vma, * prev;
2480 unsigned long flags;
2481 struct rb_node ** rb_link, * rb_parent;
2482 pgoff_t pgoff = addr >> PAGE_SHIFT;
2483 int error;
2484
2485 len = PAGE_ALIGN(len);
2486 if (!len)
2487 return addr;
2488
2489 flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2490
2491 error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2492 if (error & ~PAGE_MASK)
2493 return error;
2494
2495 /*
2496 * mlock MCL_FUTURE?
2497 */
2498 if (mm->def_flags & VM_LOCKED) {
2499 unsigned long locked, lock_limit;
2500 locked = len >> PAGE_SHIFT;
2501 locked += mm->locked_vm;
2502 lock_limit = rlimit(RLIMIT_MEMLOCK);
2503 lock_limit >>= PAGE_SHIFT;
2504 if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2505 return -EAGAIN;
2506 }
2507
2508 /*
2509 * mm->mmap_sem is required to protect against another thread
2510 * changing the mappings in case we sleep.
2511 */
2512 verify_mm_writelocked(mm);
2513
2514 /*
2515 * Clear old maps. this also does some error checking for us
2516 */
2517 munmap_back:
2518 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2519 if (do_munmap(mm, addr, len))
2520 return -ENOMEM;
2521 goto munmap_back;
2522 }
2523
2524 /* Check against address space limits *after* clearing old maps... */
2525 if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2526 return -ENOMEM;
2527
2528 if (mm->map_count > sysctl_max_map_count)
2529 return -ENOMEM;
2530
2531 if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2532 return -ENOMEM;
2533
2534 /* Can we just expand an old private anonymous mapping? */
2535 vma = vma_merge(mm, prev, addr, addr + len, flags,
2536 NULL, NULL, pgoff, NULL);
2537 if (vma)
2538 goto out;
2539
2540 /*
2541 * create a vma struct for an anonymous mapping
2542 */
2543 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2544 if (!vma) {
2545 vm_unacct_memory(len >> PAGE_SHIFT);
2546 return -ENOMEM;
2547 }
2548
2549 INIT_LIST_HEAD(&vma->anon_vma_chain);
2550 vma->vm_mm = mm;
2551 vma->vm_start = addr;
2552 vma->vm_end = addr + len;
2553 vma->vm_pgoff = pgoff;
2554 vma->vm_flags = flags;
2555 vma->vm_page_prot = vm_get_page_prot(flags);
2556 vma_link(mm, vma, prev, rb_link, rb_parent);
2557 out:
2558 perf_event_mmap(vma);
2559 mm->total_vm += len >> PAGE_SHIFT;
2560 if (flags & VM_LOCKED) {
2561 if (!mlock_vma_pages_range(vma, addr, addr + len))
2562 mm->locked_vm += (len >> PAGE_SHIFT);
2563 }
2564 return addr;
2565 }
2566
2567 unsigned long vm_brk(unsigned long addr, unsigned long len)
2568 {
2569 struct mm_struct *mm = current->mm;
2570 unsigned long ret;
2571
2572 down_write(&mm->mmap_sem);
2573 ret = do_brk(addr, len);
2574 up_write(&mm->mmap_sem);
2575 return ret;
2576 }
2577 EXPORT_SYMBOL(vm_brk);
2578
2579 /* Release all mmaps. */
2580 void exit_mmap(struct mm_struct *mm)
2581 {
2582 struct mmu_gather tlb;
2583 struct vm_area_struct *vma;
2584 unsigned long nr_accounted = 0;
2585
2586 /* mm's last user has gone, and its about to be pulled down */
2587 mmu_notifier_release(mm);
2588
2589 if (mm->locked_vm) {
2590 vma = mm->mmap;
2591 while (vma) {
2592 if (vma->vm_flags & VM_LOCKED)
2593 munlock_vma_pages_all(vma);
2594 vma = vma->vm_next;
2595 }
2596 }
2597
2598 arch_exit_mmap(mm);
2599
2600 vma = mm->mmap;
2601 if (!vma) /* Can happen if dup_mmap() received an OOM */
2602 return;
2603
2604 lru_add_drain();
2605 flush_cache_mm(mm);
2606 tlb_gather_mmu(&tlb, mm, 1);
2607 /* update_hiwater_rss(mm) here? but nobody should be looking */
2608 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2609 unmap_vmas(&tlb, vma, 0, -1);
2610
2611 free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2612 tlb_finish_mmu(&tlb, 0, -1);
2613
2614 /*
2615 * Walk the list again, actually closing and freeing it,
2616 * with preemption enabled, without holding any MM locks.
2617 */
2618 while (vma) {
2619 if (vma->vm_flags & VM_ACCOUNT)
2620 nr_accounted += vma_pages(vma);
2621 vma = remove_vma(vma);
2622 }
2623 vm_unacct_memory(nr_accounted);
2624
2625 WARN_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2626 }
2627
2628 /* Insert vm structure into process list sorted by address
2629 * and into the inode's i_mmap tree. If vm_file is non-NULL
2630 * then i_mmap_mutex is taken here.
2631 */
2632 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2633 {
2634 struct vm_area_struct *prev;
2635 struct rb_node **rb_link, *rb_parent;
2636
2637 /*
2638 * The vm_pgoff of a purely anonymous vma should be irrelevant
2639 * until its first write fault, when page's anon_vma and index
2640 * are set. But now set the vm_pgoff it will almost certainly
2641 * end up with (unless mremap moves it elsewhere before that
2642 * first wfault), so /proc/pid/maps tells a consistent story.
2643 *
2644 * By setting it to reflect the virtual start address of the
2645 * vma, merges and splits can happen in a seamless way, just
2646 * using the existing file pgoff checks and manipulations.
2647 * Similarly in do_mmap_pgoff and in do_brk.
2648 */
2649 if (!vma->vm_file) {
2650 BUG_ON(vma->anon_vma);
2651 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2652 }
2653 if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2654 &prev, &rb_link, &rb_parent))
2655 return -ENOMEM;
2656 if ((vma->vm_flags & VM_ACCOUNT) &&
2657 security_vm_enough_memory_mm(mm, vma_pages(vma)))
2658 return -ENOMEM;
2659
2660 vma_link(mm, vma, prev, rb_link, rb_parent);
2661 return 0;
2662 }
2663
2664 /*
2665 * Copy the vma structure to a new location in the same mm,
2666 * prior to moving page table entries, to effect an mremap move.
2667 */
2668 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2669 unsigned long addr, unsigned long len, pgoff_t pgoff,
2670 bool *need_rmap_locks)
2671 {
2672 struct vm_area_struct *vma = *vmap;
2673 unsigned long vma_start = vma->vm_start;
2674 struct mm_struct *mm = vma->vm_mm;
2675 struct vm_area_struct *new_vma, *prev;
2676 struct rb_node **rb_link, *rb_parent;
2677 struct mempolicy *pol;
2678 bool faulted_in_anon_vma = true;
2679
2680 /*
2681 * If anonymous vma has not yet been faulted, update new pgoff
2682 * to match new location, to increase its chance of merging.
2683 */
2684 if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2685 pgoff = addr >> PAGE_SHIFT;
2686 faulted_in_anon_vma = false;
2687 }
2688
2689 if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2690 return NULL; /* should never get here */
2691 new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2692 vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2693 if (new_vma) {
2694 /*
2695 * Source vma may have been merged into new_vma
2696 */
2697 if (unlikely(vma_start >= new_vma->vm_start &&
2698 vma_start < new_vma->vm_end)) {
2699 /*
2700 * The only way we can get a vma_merge with
2701 * self during an mremap is if the vma hasn't
2702 * been faulted in yet and we were allowed to
2703 * reset the dst vma->vm_pgoff to the
2704 * destination address of the mremap to allow
2705 * the merge to happen. mremap must change the
2706 * vm_pgoff linearity between src and dst vmas
2707 * (in turn preventing a vma_merge) to be
2708 * safe. It is only safe to keep the vm_pgoff
2709 * linear if there are no pages mapped yet.
2710 */
2711 VM_BUG_ON(faulted_in_anon_vma);
2712 *vmap = vma = new_vma;
2713 }
2714 *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2715 } else {
2716 new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2717 if (new_vma) {
2718 *new_vma = *vma;
2719 new_vma->vm_start = addr;
2720 new_vma->vm_end = addr + len;
2721 new_vma->vm_pgoff = pgoff;
2722 pol = mpol_dup(vma_policy(vma));
2723 if (IS_ERR(pol))
2724 goto out_free_vma;
2725 vma_set_policy(new_vma, pol);
2726 INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2727 if (anon_vma_clone(new_vma, vma))
2728 goto out_free_mempol;
2729 if (new_vma->vm_file)
2730 get_file(new_vma->vm_file);
2731 if (new_vma->vm_ops && new_vma->vm_ops->open)
2732 new_vma->vm_ops->open(new_vma);
2733 vma_link(mm, new_vma, prev, rb_link, rb_parent);
2734 *need_rmap_locks = false;
2735 }
2736 }
2737 return new_vma;
2738
2739 out_free_mempol:
2740 mpol_put(pol);
2741 out_free_vma:
2742 kmem_cache_free(vm_area_cachep, new_vma);
2743 return NULL;
2744 }
2745
2746 /*
2747 * Return true if the calling process may expand its vm space by the passed
2748 * number of pages
2749 */
2750 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2751 {
2752 unsigned long cur = mm->total_vm; /* pages */
2753 unsigned long lim;
2754
2755 lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2756
2757 if (cur + npages > lim)
2758 return 0;
2759 return 1;
2760 }
2761
2762
2763 static int special_mapping_fault(struct vm_area_struct *vma,
2764 struct vm_fault *vmf)
2765 {
2766 pgoff_t pgoff;
2767 struct page **pages;
2768
2769 /*
2770 * special mappings have no vm_file, and in that case, the mm
2771 * uses vm_pgoff internally. So we have to subtract it from here.
2772 * We are allowed to do this because we are the mm; do not copy
2773 * this code into drivers!
2774 */
2775 pgoff = vmf->pgoff - vma->vm_pgoff;
2776
2777 for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2778 pgoff--;
2779
2780 if (*pages) {
2781 struct page *page = *pages;
2782 get_page(page);
2783 vmf->page = page;
2784 return 0;
2785 }
2786
2787 return VM_FAULT_SIGBUS;
2788 }
2789
2790 /*
2791 * Having a close hook prevents vma merging regardless of flags.
2792 */
2793 static void special_mapping_close(struct vm_area_struct *vma)
2794 {
2795 }
2796
2797 static const struct vm_operations_struct special_mapping_vmops = {
2798 .close = special_mapping_close,
2799 .fault = special_mapping_fault,
2800 };
2801
2802 /*
2803 * Called with mm->mmap_sem held for writing.
2804 * Insert a new vma covering the given region, with the given flags.
2805 * Its pages are supplied by the given array of struct page *.
2806 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2807 * The region past the last page supplied will always produce SIGBUS.
2808 * The array pointer and the pages it points to are assumed to stay alive
2809 * for as long as this mapping might exist.
2810 */
2811 int install_special_mapping(struct mm_struct *mm,
2812 unsigned long addr, unsigned long len,
2813 unsigned long vm_flags, struct page **pages)
2814 {
2815 int ret;
2816 struct vm_area_struct *vma;
2817
2818 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2819 if (unlikely(vma == NULL))
2820 return -ENOMEM;
2821
2822 INIT_LIST_HEAD(&vma->anon_vma_chain);
2823 vma->vm_mm = mm;
2824 vma->vm_start = addr;
2825 vma->vm_end = addr + len;
2826
2827 vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2828 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2829
2830 vma->vm_ops = &special_mapping_vmops;
2831 vma->vm_private_data = pages;
2832
2833 ret = insert_vm_struct(mm, vma);
2834 if (ret)
2835 goto out;
2836
2837 mm->total_vm += len >> PAGE_SHIFT;
2838
2839 perf_event_mmap(vma);
2840
2841 return 0;
2842
2843 out:
2844 kmem_cache_free(vm_area_cachep, vma);
2845 return ret;
2846 }
2847
2848 static DEFINE_MUTEX(mm_all_locks_mutex);
2849
2850 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2851 {
2852 if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2853 /*
2854 * The LSB of head.next can't change from under us
2855 * because we hold the mm_all_locks_mutex.
2856 */
2857 mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2858 /*
2859 * We can safely modify head.next after taking the
2860 * anon_vma->root->mutex. If some other vma in this mm shares
2861 * the same anon_vma we won't take it again.
2862 *
2863 * No need of atomic instructions here, head.next
2864 * can't change from under us thanks to the
2865 * anon_vma->root->mutex.
2866 */
2867 if (__test_and_set_bit(0, (unsigned long *)
2868 &anon_vma->root->rb_root.rb_node))
2869 BUG();
2870 }
2871 }
2872
2873 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2874 {
2875 if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2876 /*
2877 * AS_MM_ALL_LOCKS can't change from under us because
2878 * we hold the mm_all_locks_mutex.
2879 *
2880 * Operations on ->flags have to be atomic because
2881 * even if AS_MM_ALL_LOCKS is stable thanks to the
2882 * mm_all_locks_mutex, there may be other cpus
2883 * changing other bitflags in parallel to us.
2884 */
2885 if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2886 BUG();
2887 mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2888 }
2889 }
2890
2891 /*
2892 * This operation locks against the VM for all pte/vma/mm related
2893 * operations that could ever happen on a certain mm. This includes
2894 * vmtruncate, try_to_unmap, and all page faults.
2895 *
2896 * The caller must take the mmap_sem in write mode before calling
2897 * mm_take_all_locks(). The caller isn't allowed to release the
2898 * mmap_sem until mm_drop_all_locks() returns.
2899 *
2900 * mmap_sem in write mode is required in order to block all operations
2901 * that could modify pagetables and free pages without need of
2902 * altering the vma layout (for example populate_range() with
2903 * nonlinear vmas). It's also needed in write mode to avoid new
2904 * anon_vmas to be associated with existing vmas.
2905 *
2906 * A single task can't take more than one mm_take_all_locks() in a row
2907 * or it would deadlock.
2908 *
2909 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2910 * mapping->flags avoid to take the same lock twice, if more than one
2911 * vma in this mm is backed by the same anon_vma or address_space.
2912 *
2913 * We can take all the locks in random order because the VM code
2914 * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2915 * takes more than one of them in a row. Secondly we're protected
2916 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2917 *
2918 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2919 * that may have to take thousand of locks.
2920 *
2921 * mm_take_all_locks() can fail if it's interrupted by signals.
2922 */
2923 int mm_take_all_locks(struct mm_struct *mm)
2924 {
2925 struct vm_area_struct *vma;
2926 struct anon_vma_chain *avc;
2927
2928 BUG_ON(down_read_trylock(&mm->mmap_sem));
2929
2930 mutex_lock(&mm_all_locks_mutex);
2931
2932 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2933 if (signal_pending(current))
2934 goto out_unlock;
2935 if (vma->vm_file && vma->vm_file->f_mapping)
2936 vm_lock_mapping(mm, vma->vm_file->f_mapping);
2937 }
2938
2939 for (vma = mm->mmap; vma; vma = vma->vm_next) {
2940 if (signal_pending(current))
2941 goto out_unlock;
2942 if (vma->anon_vma)
2943 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2944 vm_lock_anon_vma(mm, avc->anon_vma);
2945 }
2946
2947 return 0;
2948
2949 out_unlock:
2950 mm_drop_all_locks(mm);
2951 return -EINTR;
2952 }
2953
2954 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2955 {
2956 if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2957 /*
2958 * The LSB of head.next can't change to 0 from under
2959 * us because we hold the mm_all_locks_mutex.
2960 *
2961 * We must however clear the bitflag before unlocking
2962 * the vma so the users using the anon_vma->rb_root will
2963 * never see our bitflag.
2964 *
2965 * No need of atomic instructions here, head.next
2966 * can't change from under us until we release the
2967 * anon_vma->root->mutex.
2968 */
2969 if (!__test_and_clear_bit(0, (unsigned long *)
2970 &anon_vma->root->rb_root.rb_node))
2971 BUG();
2972 anon_vma_unlock(anon_vma);
2973 }
2974 }
2975
2976 static void vm_unlock_mapping(struct address_space *mapping)
2977 {
2978 if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2979 /*
2980 * AS_MM_ALL_LOCKS can't change to 0 from under us
2981 * because we hold the mm_all_locks_mutex.
2982 */
2983 mutex_unlock(&mapping->i_mmap_mutex);
2984 if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2985 &mapping->flags))
2986 BUG();
2987 }
2988 }
2989
2990 /*
2991 * The mmap_sem cannot be released by the caller until
2992 * mm_drop_all_locks() returns.
2993 */
2994 void mm_drop_all_locks(struct mm_struct *mm)
2995 {
2996 struct vm_area_struct *vma;
2997 struct anon_vma_chain *avc;
2998
2999 BUG_ON(down_read_trylock(&mm->mmap_sem));
3000 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3001
3002 for (vma = mm->mmap; vma; vma = vma->vm_next) {
3003 if (vma->anon_vma)
3004 list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3005 vm_unlock_anon_vma(avc->anon_vma);
3006 if (vma->vm_file && vma->vm_file->f_mapping)
3007 vm_unlock_mapping(vma->vm_file->f_mapping);
3008 }
3009
3010 mutex_unlock(&mm_all_locks_mutex);
3011 }
3012
3013 /*
3014 * initialise the VMA slab
3015 */
3016 void __init mmap_init(void)
3017 {
3018 int ret;
3019
3020 ret = percpu_counter_init(&vm_committed_as, 0);
3021 VM_BUG_ON(ret);
3022 }
This page took 0.092694 seconds and 5 git commands to generate.