jbd.h: bitfields should be unsigned
[deliverable/linux.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
41 {
42 }
43
44 #if 0
45 #define kenter(FMT, ...) \
46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
59
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 struct percpu_counter vm_committed_as;
65 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
66 int sysctl_overcommit_ratio = 50; /* default is 50% */
67 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
68 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
69 int heap_stack_gap = 0;
70
71 atomic_long_t mmap_pages_allocated;
72
73 EXPORT_SYMBOL(mem_map);
74 EXPORT_SYMBOL(num_physpages);
75
76 /* list of mapped, potentially shareable regions */
77 static struct kmem_cache *vm_region_jar;
78 struct rb_root nommu_region_tree = RB_ROOT;
79 DECLARE_RWSEM(nommu_region_sem);
80
81 struct vm_operations_struct generic_file_vm_ops = {
82 };
83
84 /*
85 * Handle all mappings that got truncated by a "truncate()"
86 * system call.
87 *
88 * NOTE! We have to be ready to update the memory sharing
89 * between the file and the memory map for a potential last
90 * incomplete page. Ugly, but necessary.
91 */
92 int vmtruncate(struct inode *inode, loff_t offset)
93 {
94 struct address_space *mapping = inode->i_mapping;
95 unsigned long limit;
96
97 if (inode->i_size < offset)
98 goto do_expand;
99 i_size_write(inode, offset);
100
101 truncate_inode_pages(mapping, offset);
102 goto out_truncate;
103
104 do_expand:
105 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
106 if (limit != RLIM_INFINITY && offset > limit)
107 goto out_sig;
108 if (offset > inode->i_sb->s_maxbytes)
109 goto out;
110 i_size_write(inode, offset);
111
112 out_truncate:
113 if (inode->i_op->truncate)
114 inode->i_op->truncate(inode);
115 return 0;
116 out_sig:
117 send_sig(SIGXFSZ, current, 0);
118 out:
119 return -EFBIG;
120 }
121
122 EXPORT_SYMBOL(vmtruncate);
123
124 /*
125 * Return the total memory allocated for this pointer, not
126 * just what the caller asked for.
127 *
128 * Doesn't have to be accurate, i.e. may have races.
129 */
130 unsigned int kobjsize(const void *objp)
131 {
132 struct page *page;
133
134 /*
135 * If the object we have should not have ksize performed on it,
136 * return size of 0
137 */
138 if (!objp || !virt_addr_valid(objp))
139 return 0;
140
141 page = virt_to_head_page(objp);
142
143 /*
144 * If the allocator sets PageSlab, we know the pointer came from
145 * kmalloc().
146 */
147 if (PageSlab(page))
148 return ksize(objp);
149
150 /*
151 * If it's not a compound page, see if we have a matching VMA
152 * region. This test is intentionally done in reverse order,
153 * so if there's no VMA, we still fall through and hand back
154 * PAGE_SIZE for 0-order pages.
155 */
156 if (!PageCompound(page)) {
157 struct vm_area_struct *vma;
158
159 vma = find_vma(current->mm, (unsigned long)objp);
160 if (vma)
161 return vma->vm_end - vma->vm_start;
162 }
163
164 /*
165 * The ksize() function is only guaranteed to work for pointers
166 * returned by kmalloc(). So handle arbitrary pointers here.
167 */
168 return PAGE_SIZE << compound_order(page);
169 }
170
171 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
172 unsigned long start, int nr_pages, int foll_flags,
173 struct page **pages, struct vm_area_struct **vmas)
174 {
175 struct vm_area_struct *vma;
176 unsigned long vm_flags;
177 int i;
178
179 /* calculate required read or write permissions.
180 * If FOLL_FORCE is set, we only require the "MAY" flags.
181 */
182 vm_flags = (foll_flags & FOLL_WRITE) ?
183 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
184 vm_flags &= (foll_flags & FOLL_FORCE) ?
185 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
186
187 for (i = 0; i < nr_pages; i++) {
188 vma = find_vma(mm, start);
189 if (!vma)
190 goto finish_or_fault;
191
192 /* protect what we can, including chardevs */
193 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
194 !(vm_flags & vma->vm_flags))
195 goto finish_or_fault;
196
197 if (pages) {
198 pages[i] = virt_to_page(start);
199 if (pages[i])
200 page_cache_get(pages[i]);
201 }
202 if (vmas)
203 vmas[i] = vma;
204 start += PAGE_SIZE;
205 }
206
207 return i;
208
209 finish_or_fault:
210 return i ? : -EFAULT;
211 }
212
213 /*
214 * get a list of pages in an address range belonging to the specified process
215 * and indicate the VMA that covers each page
216 * - this is potentially dodgy as we may end incrementing the page count of a
217 * slab page or a secondary page from a compound page
218 * - don't permit access to VMAs that don't support it, such as I/O mappings
219 */
220 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
221 unsigned long start, int nr_pages, int write, int force,
222 struct page **pages, struct vm_area_struct **vmas)
223 {
224 int flags = 0;
225
226 if (write)
227 flags |= FOLL_WRITE;
228 if (force)
229 flags |= FOLL_FORCE;
230
231 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
232 }
233 EXPORT_SYMBOL(get_user_pages);
234
235 /**
236 * follow_pfn - look up PFN at a user virtual address
237 * @vma: memory mapping
238 * @address: user virtual address
239 * @pfn: location to store found PFN
240 *
241 * Only IO mappings and raw PFN mappings are allowed.
242 *
243 * Returns zero and the pfn at @pfn on success, -ve otherwise.
244 */
245 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
246 unsigned long *pfn)
247 {
248 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
249 return -EINVAL;
250
251 *pfn = address >> PAGE_SHIFT;
252 return 0;
253 }
254 EXPORT_SYMBOL(follow_pfn);
255
256 DEFINE_RWLOCK(vmlist_lock);
257 struct vm_struct *vmlist;
258
259 void vfree(const void *addr)
260 {
261 kfree(addr);
262 }
263 EXPORT_SYMBOL(vfree);
264
265 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
266 {
267 /*
268 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
269 * returns only a logical address.
270 */
271 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
272 }
273 EXPORT_SYMBOL(__vmalloc);
274
275 void *vmalloc_user(unsigned long size)
276 {
277 void *ret;
278
279 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
280 PAGE_KERNEL);
281 if (ret) {
282 struct vm_area_struct *vma;
283
284 down_write(&current->mm->mmap_sem);
285 vma = find_vma(current->mm, (unsigned long)ret);
286 if (vma)
287 vma->vm_flags |= VM_USERMAP;
288 up_write(&current->mm->mmap_sem);
289 }
290
291 return ret;
292 }
293 EXPORT_SYMBOL(vmalloc_user);
294
295 struct page *vmalloc_to_page(const void *addr)
296 {
297 return virt_to_page(addr);
298 }
299 EXPORT_SYMBOL(vmalloc_to_page);
300
301 unsigned long vmalloc_to_pfn(const void *addr)
302 {
303 return page_to_pfn(virt_to_page(addr));
304 }
305 EXPORT_SYMBOL(vmalloc_to_pfn);
306
307 long vread(char *buf, char *addr, unsigned long count)
308 {
309 memcpy(buf, addr, count);
310 return count;
311 }
312
313 long vwrite(char *buf, char *addr, unsigned long count)
314 {
315 /* Don't allow overflow */
316 if ((unsigned long) addr + count < count)
317 count = -(unsigned long) addr;
318
319 memcpy(addr, buf, count);
320 return(count);
321 }
322
323 /*
324 * vmalloc - allocate virtually continguos memory
325 *
326 * @size: allocation size
327 *
328 * Allocate enough pages to cover @size from the page level
329 * allocator and map them into continguos kernel virtual space.
330 *
331 * For tight control over page level allocator and protection flags
332 * use __vmalloc() instead.
333 */
334 void *vmalloc(unsigned long size)
335 {
336 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
337 }
338 EXPORT_SYMBOL(vmalloc);
339
340 void *vmalloc_node(unsigned long size, int node)
341 {
342 return vmalloc(size);
343 }
344 EXPORT_SYMBOL(vmalloc_node);
345
346 #ifndef PAGE_KERNEL_EXEC
347 # define PAGE_KERNEL_EXEC PAGE_KERNEL
348 #endif
349
350 /**
351 * vmalloc_exec - allocate virtually contiguous, executable memory
352 * @size: allocation size
353 *
354 * Kernel-internal function to allocate enough pages to cover @size
355 * the page level allocator and map them into contiguous and
356 * executable kernel virtual space.
357 *
358 * For tight control over page level allocator and protection flags
359 * use __vmalloc() instead.
360 */
361
362 void *vmalloc_exec(unsigned long size)
363 {
364 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
365 }
366
367 /**
368 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
369 * @size: allocation size
370 *
371 * Allocate enough 32bit PA addressable pages to cover @size from the
372 * page level allocator and map them into continguos kernel virtual space.
373 */
374 void *vmalloc_32(unsigned long size)
375 {
376 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
377 }
378 EXPORT_SYMBOL(vmalloc_32);
379
380 /**
381 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
382 * @size: allocation size
383 *
384 * The resulting memory area is 32bit addressable and zeroed so it can be
385 * mapped to userspace without leaking data.
386 *
387 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
388 * remap_vmalloc_range() are permissible.
389 */
390 void *vmalloc_32_user(unsigned long size)
391 {
392 /*
393 * We'll have to sort out the ZONE_DMA bits for 64-bit,
394 * but for now this can simply use vmalloc_user() directly.
395 */
396 return vmalloc_user(size);
397 }
398 EXPORT_SYMBOL(vmalloc_32_user);
399
400 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
401 {
402 BUG();
403 return NULL;
404 }
405 EXPORT_SYMBOL(vmap);
406
407 void vunmap(const void *addr)
408 {
409 BUG();
410 }
411 EXPORT_SYMBOL(vunmap);
412
413 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
414 {
415 BUG();
416 return NULL;
417 }
418 EXPORT_SYMBOL(vm_map_ram);
419
420 void vm_unmap_ram(const void *mem, unsigned int count)
421 {
422 BUG();
423 }
424 EXPORT_SYMBOL(vm_unmap_ram);
425
426 void vm_unmap_aliases(void)
427 {
428 }
429 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
430
431 /*
432 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
433 * have one.
434 */
435 void __attribute__((weak)) vmalloc_sync_all(void)
436 {
437 }
438
439 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
440 struct page *page)
441 {
442 return -EINVAL;
443 }
444 EXPORT_SYMBOL(vm_insert_page);
445
446 /*
447 * sys_brk() for the most part doesn't need the global kernel
448 * lock, except when an application is doing something nasty
449 * like trying to un-brk an area that has already been mapped
450 * to a regular file. in this case, the unmapping will need
451 * to invoke file system routines that need the global lock.
452 */
453 SYSCALL_DEFINE1(brk, unsigned long, brk)
454 {
455 struct mm_struct *mm = current->mm;
456
457 if (brk < mm->start_brk || brk > mm->context.end_brk)
458 return mm->brk;
459
460 if (mm->brk == brk)
461 return mm->brk;
462
463 /*
464 * Always allow shrinking brk
465 */
466 if (brk <= mm->brk) {
467 mm->brk = brk;
468 return brk;
469 }
470
471 /*
472 * Ok, looks good - let it rip.
473 */
474 return mm->brk = brk;
475 }
476
477 /*
478 * initialise the VMA and region record slabs
479 */
480 void __init mmap_init(void)
481 {
482 int ret;
483
484 ret = percpu_counter_init(&vm_committed_as, 0);
485 VM_BUG_ON(ret);
486 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
487 }
488
489 /*
490 * validate the region tree
491 * - the caller must hold the region lock
492 */
493 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
494 static noinline void validate_nommu_regions(void)
495 {
496 struct vm_region *region, *last;
497 struct rb_node *p, *lastp;
498
499 lastp = rb_first(&nommu_region_tree);
500 if (!lastp)
501 return;
502
503 last = rb_entry(lastp, struct vm_region, vm_rb);
504 BUG_ON(unlikely(last->vm_end <= last->vm_start));
505 BUG_ON(unlikely(last->vm_top < last->vm_end));
506
507 while ((p = rb_next(lastp))) {
508 region = rb_entry(p, struct vm_region, vm_rb);
509 last = rb_entry(lastp, struct vm_region, vm_rb);
510
511 BUG_ON(unlikely(region->vm_end <= region->vm_start));
512 BUG_ON(unlikely(region->vm_top < region->vm_end));
513 BUG_ON(unlikely(region->vm_start < last->vm_top));
514
515 lastp = p;
516 }
517 }
518 #else
519 static void validate_nommu_regions(void)
520 {
521 }
522 #endif
523
524 /*
525 * add a region into the global tree
526 */
527 static void add_nommu_region(struct vm_region *region)
528 {
529 struct vm_region *pregion;
530 struct rb_node **p, *parent;
531
532 validate_nommu_regions();
533
534 parent = NULL;
535 p = &nommu_region_tree.rb_node;
536 while (*p) {
537 parent = *p;
538 pregion = rb_entry(parent, struct vm_region, vm_rb);
539 if (region->vm_start < pregion->vm_start)
540 p = &(*p)->rb_left;
541 else if (region->vm_start > pregion->vm_start)
542 p = &(*p)->rb_right;
543 else if (pregion == region)
544 return;
545 else
546 BUG();
547 }
548
549 rb_link_node(&region->vm_rb, parent, p);
550 rb_insert_color(&region->vm_rb, &nommu_region_tree);
551
552 validate_nommu_regions();
553 }
554
555 /*
556 * delete a region from the global tree
557 */
558 static void delete_nommu_region(struct vm_region *region)
559 {
560 BUG_ON(!nommu_region_tree.rb_node);
561
562 validate_nommu_regions();
563 rb_erase(&region->vm_rb, &nommu_region_tree);
564 validate_nommu_regions();
565 }
566
567 /*
568 * free a contiguous series of pages
569 */
570 static void free_page_series(unsigned long from, unsigned long to)
571 {
572 for (; from < to; from += PAGE_SIZE) {
573 struct page *page = virt_to_page(from);
574
575 kdebug("- free %lx", from);
576 atomic_long_dec(&mmap_pages_allocated);
577 if (page_count(page) != 1)
578 kdebug("free page %p: refcount not one: %d",
579 page, page_count(page));
580 put_page(page);
581 }
582 }
583
584 /*
585 * release a reference to a region
586 * - the caller must hold the region semaphore for writing, which this releases
587 * - the region may not have been added to the tree yet, in which case vm_top
588 * will equal vm_start
589 */
590 static void __put_nommu_region(struct vm_region *region)
591 __releases(nommu_region_sem)
592 {
593 kenter("%p{%d}", region, atomic_read(&region->vm_usage));
594
595 BUG_ON(!nommu_region_tree.rb_node);
596
597 if (atomic_dec_and_test(&region->vm_usage)) {
598 if (region->vm_top > region->vm_start)
599 delete_nommu_region(region);
600 up_write(&nommu_region_sem);
601
602 if (region->vm_file)
603 fput(region->vm_file);
604
605 /* IO memory and memory shared directly out of the pagecache
606 * from ramfs/tmpfs mustn't be released here */
607 if (region->vm_flags & VM_MAPPED_COPY) {
608 kdebug("free series");
609 free_page_series(region->vm_start, region->vm_top);
610 }
611 kmem_cache_free(vm_region_jar, region);
612 } else {
613 up_write(&nommu_region_sem);
614 }
615 }
616
617 /*
618 * release a reference to a region
619 */
620 static void put_nommu_region(struct vm_region *region)
621 {
622 down_write(&nommu_region_sem);
623 __put_nommu_region(region);
624 }
625
626 /*
627 * update protection on a vma
628 */
629 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
630 {
631 #ifdef CONFIG_MPU
632 struct mm_struct *mm = vma->vm_mm;
633 long start = vma->vm_start & PAGE_MASK;
634 while (start < vma->vm_end) {
635 protect_page(mm, start, flags);
636 start += PAGE_SIZE;
637 }
638 update_protections(mm);
639 #endif
640 }
641
642 /*
643 * add a VMA into a process's mm_struct in the appropriate place in the list
644 * and tree and add to the address space's page tree also if not an anonymous
645 * page
646 * - should be called with mm->mmap_sem held writelocked
647 */
648 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
649 {
650 struct vm_area_struct *pvma, **pp;
651 struct address_space *mapping;
652 struct rb_node **p, *parent;
653
654 kenter(",%p", vma);
655
656 BUG_ON(!vma->vm_region);
657
658 mm->map_count++;
659 vma->vm_mm = mm;
660
661 protect_vma(vma, vma->vm_flags);
662
663 /* add the VMA to the mapping */
664 if (vma->vm_file) {
665 mapping = vma->vm_file->f_mapping;
666
667 flush_dcache_mmap_lock(mapping);
668 vma_prio_tree_insert(vma, &mapping->i_mmap);
669 flush_dcache_mmap_unlock(mapping);
670 }
671
672 /* add the VMA to the tree */
673 parent = NULL;
674 p = &mm->mm_rb.rb_node;
675 while (*p) {
676 parent = *p;
677 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
678
679 /* sort by: start addr, end addr, VMA struct addr in that order
680 * (the latter is necessary as we may get identical VMAs) */
681 if (vma->vm_start < pvma->vm_start)
682 p = &(*p)->rb_left;
683 else if (vma->vm_start > pvma->vm_start)
684 p = &(*p)->rb_right;
685 else if (vma->vm_end < pvma->vm_end)
686 p = &(*p)->rb_left;
687 else if (vma->vm_end > pvma->vm_end)
688 p = &(*p)->rb_right;
689 else if (vma < pvma)
690 p = &(*p)->rb_left;
691 else if (vma > pvma)
692 p = &(*p)->rb_right;
693 else
694 BUG();
695 }
696
697 rb_link_node(&vma->vm_rb, parent, p);
698 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
699
700 /* add VMA to the VMA list also */
701 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
702 if (pvma->vm_start > vma->vm_start)
703 break;
704 if (pvma->vm_start < vma->vm_start)
705 continue;
706 if (pvma->vm_end < vma->vm_end)
707 break;
708 }
709
710 vma->vm_next = *pp;
711 *pp = vma;
712 }
713
714 /*
715 * delete a VMA from its owning mm_struct and address space
716 */
717 static void delete_vma_from_mm(struct vm_area_struct *vma)
718 {
719 struct vm_area_struct **pp;
720 struct address_space *mapping;
721 struct mm_struct *mm = vma->vm_mm;
722
723 kenter("%p", vma);
724
725 protect_vma(vma, 0);
726
727 mm->map_count--;
728 if (mm->mmap_cache == vma)
729 mm->mmap_cache = NULL;
730
731 /* remove the VMA from the mapping */
732 if (vma->vm_file) {
733 mapping = vma->vm_file->f_mapping;
734
735 flush_dcache_mmap_lock(mapping);
736 vma_prio_tree_remove(vma, &mapping->i_mmap);
737 flush_dcache_mmap_unlock(mapping);
738 }
739
740 /* remove from the MM's tree and list */
741 rb_erase(&vma->vm_rb, &mm->mm_rb);
742 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
743 if (*pp == vma) {
744 *pp = vma->vm_next;
745 break;
746 }
747 }
748
749 vma->vm_mm = NULL;
750 }
751
752 /*
753 * destroy a VMA record
754 */
755 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
756 {
757 kenter("%p", vma);
758 if (vma->vm_ops && vma->vm_ops->close)
759 vma->vm_ops->close(vma);
760 if (vma->vm_file) {
761 fput(vma->vm_file);
762 if (vma->vm_flags & VM_EXECUTABLE)
763 removed_exe_file_vma(mm);
764 }
765 put_nommu_region(vma->vm_region);
766 kmem_cache_free(vm_area_cachep, vma);
767 }
768
769 /*
770 * look up the first VMA in which addr resides, NULL if none
771 * - should be called with mm->mmap_sem at least held readlocked
772 */
773 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
774 {
775 struct vm_area_struct *vma;
776 struct rb_node *n = mm->mm_rb.rb_node;
777
778 /* check the cache first */
779 vma = mm->mmap_cache;
780 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
781 return vma;
782
783 /* trawl the tree (there may be multiple mappings in which addr
784 * resides) */
785 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
786 vma = rb_entry(n, struct vm_area_struct, vm_rb);
787 if (vma->vm_start > addr)
788 return NULL;
789 if (vma->vm_end > addr) {
790 mm->mmap_cache = vma;
791 return vma;
792 }
793 }
794
795 return NULL;
796 }
797 EXPORT_SYMBOL(find_vma);
798
799 /*
800 * find a VMA
801 * - we don't extend stack VMAs under NOMMU conditions
802 */
803 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
804 {
805 return find_vma(mm, addr);
806 }
807
808 /*
809 * expand a stack to a given address
810 * - not supported under NOMMU conditions
811 */
812 int expand_stack(struct vm_area_struct *vma, unsigned long address)
813 {
814 return -ENOMEM;
815 }
816
817 /*
818 * look up the first VMA exactly that exactly matches addr
819 * - should be called with mm->mmap_sem at least held readlocked
820 */
821 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
822 unsigned long addr,
823 unsigned long len)
824 {
825 struct vm_area_struct *vma;
826 struct rb_node *n = mm->mm_rb.rb_node;
827 unsigned long end = addr + len;
828
829 /* check the cache first */
830 vma = mm->mmap_cache;
831 if (vma && vma->vm_start == addr && vma->vm_end == end)
832 return vma;
833
834 /* trawl the tree (there may be multiple mappings in which addr
835 * resides) */
836 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
837 vma = rb_entry(n, struct vm_area_struct, vm_rb);
838 if (vma->vm_start < addr)
839 continue;
840 if (vma->vm_start > addr)
841 return NULL;
842 if (vma->vm_end == end) {
843 mm->mmap_cache = vma;
844 return vma;
845 }
846 }
847
848 return NULL;
849 }
850
851 /*
852 * determine whether a mapping should be permitted and, if so, what sort of
853 * mapping we're capable of supporting
854 */
855 static int validate_mmap_request(struct file *file,
856 unsigned long addr,
857 unsigned long len,
858 unsigned long prot,
859 unsigned long flags,
860 unsigned long pgoff,
861 unsigned long *_capabilities)
862 {
863 unsigned long capabilities, rlen;
864 unsigned long reqprot = prot;
865 int ret;
866
867 /* do the simple checks first */
868 if (flags & MAP_FIXED || addr) {
869 printk(KERN_DEBUG
870 "%d: Can't do fixed-address/overlay mmap of RAM\n",
871 current->pid);
872 return -EINVAL;
873 }
874
875 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
876 (flags & MAP_TYPE) != MAP_SHARED)
877 return -EINVAL;
878
879 if (!len)
880 return -EINVAL;
881
882 /* Careful about overflows.. */
883 rlen = PAGE_ALIGN(len);
884 if (!rlen || rlen > TASK_SIZE)
885 return -ENOMEM;
886
887 /* offset overflow? */
888 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
889 return -EOVERFLOW;
890
891 if (file) {
892 /* validate file mapping requests */
893 struct address_space *mapping;
894
895 /* files must support mmap */
896 if (!file->f_op || !file->f_op->mmap)
897 return -ENODEV;
898
899 /* work out if what we've got could possibly be shared
900 * - we support chardevs that provide their own "memory"
901 * - we support files/blockdevs that are memory backed
902 */
903 mapping = file->f_mapping;
904 if (!mapping)
905 mapping = file->f_path.dentry->d_inode->i_mapping;
906
907 capabilities = 0;
908 if (mapping && mapping->backing_dev_info)
909 capabilities = mapping->backing_dev_info->capabilities;
910
911 if (!capabilities) {
912 /* no explicit capabilities set, so assume some
913 * defaults */
914 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
915 case S_IFREG:
916 case S_IFBLK:
917 capabilities = BDI_CAP_MAP_COPY;
918 break;
919
920 case S_IFCHR:
921 capabilities =
922 BDI_CAP_MAP_DIRECT |
923 BDI_CAP_READ_MAP |
924 BDI_CAP_WRITE_MAP;
925 break;
926
927 default:
928 return -EINVAL;
929 }
930 }
931
932 /* eliminate any capabilities that we can't support on this
933 * device */
934 if (!file->f_op->get_unmapped_area)
935 capabilities &= ~BDI_CAP_MAP_DIRECT;
936 if (!file->f_op->read)
937 capabilities &= ~BDI_CAP_MAP_COPY;
938
939 /* The file shall have been opened with read permission. */
940 if (!(file->f_mode & FMODE_READ))
941 return -EACCES;
942
943 if (flags & MAP_SHARED) {
944 /* do checks for writing, appending and locking */
945 if ((prot & PROT_WRITE) &&
946 !(file->f_mode & FMODE_WRITE))
947 return -EACCES;
948
949 if (IS_APPEND(file->f_path.dentry->d_inode) &&
950 (file->f_mode & FMODE_WRITE))
951 return -EACCES;
952
953 if (locks_verify_locked(file->f_path.dentry->d_inode))
954 return -EAGAIN;
955
956 if (!(capabilities & BDI_CAP_MAP_DIRECT))
957 return -ENODEV;
958
959 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
960 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
961 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
962 ) {
963 printk("MAP_SHARED not completely supported on !MMU\n");
964 return -EINVAL;
965 }
966
967 /* we mustn't privatise shared mappings */
968 capabilities &= ~BDI_CAP_MAP_COPY;
969 }
970 else {
971 /* we're going to read the file into private memory we
972 * allocate */
973 if (!(capabilities & BDI_CAP_MAP_COPY))
974 return -ENODEV;
975
976 /* we don't permit a private writable mapping to be
977 * shared with the backing device */
978 if (prot & PROT_WRITE)
979 capabilities &= ~BDI_CAP_MAP_DIRECT;
980 }
981
982 /* handle executable mappings and implied executable
983 * mappings */
984 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
985 if (prot & PROT_EXEC)
986 return -EPERM;
987 }
988 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
989 /* handle implication of PROT_EXEC by PROT_READ */
990 if (current->personality & READ_IMPLIES_EXEC) {
991 if (capabilities & BDI_CAP_EXEC_MAP)
992 prot |= PROT_EXEC;
993 }
994 }
995 else if ((prot & PROT_READ) &&
996 (prot & PROT_EXEC) &&
997 !(capabilities & BDI_CAP_EXEC_MAP)
998 ) {
999 /* backing file is not executable, try to copy */
1000 capabilities &= ~BDI_CAP_MAP_DIRECT;
1001 }
1002 }
1003 else {
1004 /* anonymous mappings are always memory backed and can be
1005 * privately mapped
1006 */
1007 capabilities = BDI_CAP_MAP_COPY;
1008
1009 /* handle PROT_EXEC implication by PROT_READ */
1010 if ((prot & PROT_READ) &&
1011 (current->personality & READ_IMPLIES_EXEC))
1012 prot |= PROT_EXEC;
1013 }
1014
1015 /* allow the security API to have its say */
1016 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1017 if (ret < 0)
1018 return ret;
1019
1020 /* looks okay */
1021 *_capabilities = capabilities;
1022 return 0;
1023 }
1024
1025 /*
1026 * we've determined that we can make the mapping, now translate what we
1027 * now know into VMA flags
1028 */
1029 static unsigned long determine_vm_flags(struct file *file,
1030 unsigned long prot,
1031 unsigned long flags,
1032 unsigned long capabilities)
1033 {
1034 unsigned long vm_flags;
1035
1036 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1037 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1038 /* vm_flags |= mm->def_flags; */
1039
1040 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1041 /* attempt to share read-only copies of mapped file chunks */
1042 if (file && !(prot & PROT_WRITE))
1043 vm_flags |= VM_MAYSHARE;
1044 }
1045 else {
1046 /* overlay a shareable mapping on the backing device or inode
1047 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1048 * romfs/cramfs */
1049 if (flags & MAP_SHARED)
1050 vm_flags |= VM_MAYSHARE | VM_SHARED;
1051 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1052 vm_flags |= VM_MAYSHARE;
1053 }
1054
1055 /* refuse to let anyone share private mappings with this process if
1056 * it's being traced - otherwise breakpoints set in it may interfere
1057 * with another untraced process
1058 */
1059 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1060 vm_flags &= ~VM_MAYSHARE;
1061
1062 return vm_flags;
1063 }
1064
1065 /*
1066 * set up a shared mapping on a file (the driver or filesystem provides and
1067 * pins the storage)
1068 */
1069 static int do_mmap_shared_file(struct vm_area_struct *vma)
1070 {
1071 int ret;
1072
1073 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1074 if (ret == 0) {
1075 vma->vm_region->vm_top = vma->vm_region->vm_end;
1076 return ret;
1077 }
1078 if (ret != -ENOSYS)
1079 return ret;
1080
1081 /* getting an ENOSYS error indicates that direct mmap isn't
1082 * possible (as opposed to tried but failed) so we'll fall
1083 * through to making a private copy of the data and mapping
1084 * that if we can */
1085 return -ENODEV;
1086 }
1087
1088 /*
1089 * set up a private mapping or an anonymous shared mapping
1090 */
1091 static int do_mmap_private(struct vm_area_struct *vma,
1092 struct vm_region *region,
1093 unsigned long len)
1094 {
1095 struct page *pages;
1096 unsigned long total, point, n, rlen;
1097 void *base;
1098 int ret, order;
1099
1100 /* invoke the file's mapping function so that it can keep track of
1101 * shared mappings on devices or memory
1102 * - VM_MAYSHARE will be set if it may attempt to share
1103 */
1104 if (vma->vm_file) {
1105 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1106 if (ret == 0) {
1107 /* shouldn't return success if we're not sharing */
1108 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1109 vma->vm_region->vm_top = vma->vm_region->vm_end;
1110 return ret;
1111 }
1112 if (ret != -ENOSYS)
1113 return ret;
1114
1115 /* getting an ENOSYS error indicates that direct mmap isn't
1116 * possible (as opposed to tried but failed) so we'll try to
1117 * make a private copy of the data and map that instead */
1118 }
1119
1120 rlen = PAGE_ALIGN(len);
1121
1122 /* allocate some memory to hold the mapping
1123 * - note that this may not return a page-aligned address if the object
1124 * we're allocating is smaller than a page
1125 */
1126 order = get_order(rlen);
1127 kdebug("alloc order %d for %lx", order, len);
1128
1129 pages = alloc_pages(GFP_KERNEL, order);
1130 if (!pages)
1131 goto enomem;
1132
1133 total = 1 << order;
1134 atomic_long_add(total, &mmap_pages_allocated);
1135
1136 point = rlen >> PAGE_SHIFT;
1137
1138 /* we allocated a power-of-2 sized page set, so we may want to trim off
1139 * the excess */
1140 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1141 while (total > point) {
1142 order = ilog2(total - point);
1143 n = 1 << order;
1144 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1145 atomic_long_sub(n, &mmap_pages_allocated);
1146 total -= n;
1147 set_page_refcounted(pages + total);
1148 __free_pages(pages + total, order);
1149 }
1150 }
1151
1152 for (point = 1; point < total; point++)
1153 set_page_refcounted(&pages[point]);
1154
1155 base = page_address(pages);
1156 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1157 region->vm_start = (unsigned long) base;
1158 region->vm_end = region->vm_start + rlen;
1159 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1160
1161 vma->vm_start = region->vm_start;
1162 vma->vm_end = region->vm_start + len;
1163
1164 if (vma->vm_file) {
1165 /* read the contents of a file into the copy */
1166 mm_segment_t old_fs;
1167 loff_t fpos;
1168
1169 fpos = vma->vm_pgoff;
1170 fpos <<= PAGE_SHIFT;
1171
1172 old_fs = get_fs();
1173 set_fs(KERNEL_DS);
1174 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1175 set_fs(old_fs);
1176
1177 if (ret < 0)
1178 goto error_free;
1179
1180 /* clear the last little bit */
1181 if (ret < rlen)
1182 memset(base + ret, 0, rlen - ret);
1183
1184 } else {
1185 /* if it's an anonymous mapping, then just clear it */
1186 memset(base, 0, rlen);
1187 }
1188
1189 return 0;
1190
1191 error_free:
1192 free_page_series(region->vm_start, region->vm_end);
1193 region->vm_start = vma->vm_start = 0;
1194 region->vm_end = vma->vm_end = 0;
1195 region->vm_top = 0;
1196 return ret;
1197
1198 enomem:
1199 printk("Allocation of length %lu from process %d (%s) failed\n",
1200 len, current->pid, current->comm);
1201 show_free_areas();
1202 return -ENOMEM;
1203 }
1204
1205 /*
1206 * handle mapping creation for uClinux
1207 */
1208 unsigned long do_mmap_pgoff(struct file *file,
1209 unsigned long addr,
1210 unsigned long len,
1211 unsigned long prot,
1212 unsigned long flags,
1213 unsigned long pgoff)
1214 {
1215 struct vm_area_struct *vma;
1216 struct vm_region *region;
1217 struct rb_node *rb;
1218 unsigned long capabilities, vm_flags, result;
1219 int ret;
1220
1221 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1222
1223 if (!(flags & MAP_FIXED))
1224 addr = round_hint_to_min(addr);
1225
1226 /* decide whether we should attempt the mapping, and if so what sort of
1227 * mapping */
1228 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1229 &capabilities);
1230 if (ret < 0) {
1231 kleave(" = %d [val]", ret);
1232 return ret;
1233 }
1234
1235 /* we've determined that we can make the mapping, now translate what we
1236 * now know into VMA flags */
1237 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1238
1239 /* we're going to need to record the mapping */
1240 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1241 if (!region)
1242 goto error_getting_region;
1243
1244 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1245 if (!vma)
1246 goto error_getting_vma;
1247
1248 atomic_set(&region->vm_usage, 1);
1249 region->vm_flags = vm_flags;
1250 region->vm_pgoff = pgoff;
1251
1252 INIT_LIST_HEAD(&vma->anon_vma_node);
1253 vma->vm_flags = vm_flags;
1254 vma->vm_pgoff = pgoff;
1255
1256 if (file) {
1257 region->vm_file = file;
1258 get_file(file);
1259 vma->vm_file = file;
1260 get_file(file);
1261 if (vm_flags & VM_EXECUTABLE) {
1262 added_exe_file_vma(current->mm);
1263 vma->vm_mm = current->mm;
1264 }
1265 }
1266
1267 down_write(&nommu_region_sem);
1268
1269 /* if we want to share, we need to check for regions created by other
1270 * mmap() calls that overlap with our proposed mapping
1271 * - we can only share with a superset match on most regular files
1272 * - shared mappings on character devices and memory backed files are
1273 * permitted to overlap inexactly as far as we are concerned for in
1274 * these cases, sharing is handled in the driver or filesystem rather
1275 * than here
1276 */
1277 if (vm_flags & VM_MAYSHARE) {
1278 struct vm_region *pregion;
1279 unsigned long pglen, rpglen, pgend, rpgend, start;
1280
1281 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1282 pgend = pgoff + pglen;
1283
1284 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1285 pregion = rb_entry(rb, struct vm_region, vm_rb);
1286
1287 if (!(pregion->vm_flags & VM_MAYSHARE))
1288 continue;
1289
1290 /* search for overlapping mappings on the same file */
1291 if (pregion->vm_file->f_path.dentry->d_inode !=
1292 file->f_path.dentry->d_inode)
1293 continue;
1294
1295 if (pregion->vm_pgoff >= pgend)
1296 continue;
1297
1298 rpglen = pregion->vm_end - pregion->vm_start;
1299 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1300 rpgend = pregion->vm_pgoff + rpglen;
1301 if (pgoff >= rpgend)
1302 continue;
1303
1304 /* handle inexactly overlapping matches between
1305 * mappings */
1306 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1307 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1308 /* new mapping is not a subset of the region */
1309 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1310 goto sharing_violation;
1311 continue;
1312 }
1313
1314 /* we've found a region we can share */
1315 atomic_inc(&pregion->vm_usage);
1316 vma->vm_region = pregion;
1317 start = pregion->vm_start;
1318 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1319 vma->vm_start = start;
1320 vma->vm_end = start + len;
1321
1322 if (pregion->vm_flags & VM_MAPPED_COPY) {
1323 kdebug("share copy");
1324 vma->vm_flags |= VM_MAPPED_COPY;
1325 } else {
1326 kdebug("share mmap");
1327 ret = do_mmap_shared_file(vma);
1328 if (ret < 0) {
1329 vma->vm_region = NULL;
1330 vma->vm_start = 0;
1331 vma->vm_end = 0;
1332 atomic_dec(&pregion->vm_usage);
1333 pregion = NULL;
1334 goto error_just_free;
1335 }
1336 }
1337 fput(region->vm_file);
1338 kmem_cache_free(vm_region_jar, region);
1339 region = pregion;
1340 result = start;
1341 goto share;
1342 }
1343
1344 /* obtain the address at which to make a shared mapping
1345 * - this is the hook for quasi-memory character devices to
1346 * tell us the location of a shared mapping
1347 */
1348 if (file && file->f_op->get_unmapped_area) {
1349 addr = file->f_op->get_unmapped_area(file, addr, len,
1350 pgoff, flags);
1351 if (IS_ERR((void *) addr)) {
1352 ret = addr;
1353 if (ret != (unsigned long) -ENOSYS)
1354 goto error_just_free;
1355
1356 /* the driver refused to tell us where to site
1357 * the mapping so we'll have to attempt to copy
1358 * it */
1359 ret = (unsigned long) -ENODEV;
1360 if (!(capabilities & BDI_CAP_MAP_COPY))
1361 goto error_just_free;
1362
1363 capabilities &= ~BDI_CAP_MAP_DIRECT;
1364 } else {
1365 vma->vm_start = region->vm_start = addr;
1366 vma->vm_end = region->vm_end = addr + len;
1367 }
1368 }
1369 }
1370
1371 vma->vm_region = region;
1372 add_nommu_region(region);
1373
1374 /* set up the mapping */
1375 if (file && vma->vm_flags & VM_SHARED)
1376 ret = do_mmap_shared_file(vma);
1377 else
1378 ret = do_mmap_private(vma, region, len);
1379 if (ret < 0)
1380 goto error_put_region;
1381
1382 /* okay... we have a mapping; now we have to register it */
1383 result = vma->vm_start;
1384
1385 current->mm->total_vm += len >> PAGE_SHIFT;
1386
1387 share:
1388 add_vma_to_mm(current->mm, vma);
1389
1390 up_write(&nommu_region_sem);
1391
1392 if (prot & PROT_EXEC)
1393 flush_icache_range(result, result + len);
1394
1395 kleave(" = %lx", result);
1396 return result;
1397
1398 error_put_region:
1399 __put_nommu_region(region);
1400 if (vma) {
1401 if (vma->vm_file) {
1402 fput(vma->vm_file);
1403 if (vma->vm_flags & VM_EXECUTABLE)
1404 removed_exe_file_vma(vma->vm_mm);
1405 }
1406 kmem_cache_free(vm_area_cachep, vma);
1407 }
1408 kleave(" = %d [pr]", ret);
1409 return ret;
1410
1411 error_just_free:
1412 up_write(&nommu_region_sem);
1413 error:
1414 fput(region->vm_file);
1415 kmem_cache_free(vm_region_jar, region);
1416 fput(vma->vm_file);
1417 if (vma->vm_flags & VM_EXECUTABLE)
1418 removed_exe_file_vma(vma->vm_mm);
1419 kmem_cache_free(vm_area_cachep, vma);
1420 kleave(" = %d", ret);
1421 return ret;
1422
1423 sharing_violation:
1424 up_write(&nommu_region_sem);
1425 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1426 ret = -EINVAL;
1427 goto error;
1428
1429 error_getting_vma:
1430 kmem_cache_free(vm_region_jar, region);
1431 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1432 " from process %d failed\n",
1433 len, current->pid);
1434 show_free_areas();
1435 return -ENOMEM;
1436
1437 error_getting_region:
1438 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1439 " from process %d failed\n",
1440 len, current->pid);
1441 show_free_areas();
1442 return -ENOMEM;
1443 }
1444 EXPORT_SYMBOL(do_mmap_pgoff);
1445
1446 /*
1447 * split a vma into two pieces at address 'addr', a new vma is allocated either
1448 * for the first part or the tail.
1449 */
1450 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1451 unsigned long addr, int new_below)
1452 {
1453 struct vm_area_struct *new;
1454 struct vm_region *region;
1455 unsigned long npages;
1456
1457 kenter("");
1458
1459 /* we're only permitted to split anonymous regions that have a single
1460 * owner */
1461 if (vma->vm_file ||
1462 atomic_read(&vma->vm_region->vm_usage) != 1)
1463 return -ENOMEM;
1464
1465 if (mm->map_count >= sysctl_max_map_count)
1466 return -ENOMEM;
1467
1468 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1469 if (!region)
1470 return -ENOMEM;
1471
1472 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1473 if (!new) {
1474 kmem_cache_free(vm_region_jar, region);
1475 return -ENOMEM;
1476 }
1477
1478 /* most fields are the same, copy all, and then fixup */
1479 *new = *vma;
1480 *region = *vma->vm_region;
1481 new->vm_region = region;
1482
1483 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1484
1485 if (new_below) {
1486 region->vm_top = region->vm_end = new->vm_end = addr;
1487 } else {
1488 region->vm_start = new->vm_start = addr;
1489 region->vm_pgoff = new->vm_pgoff += npages;
1490 }
1491
1492 if (new->vm_ops && new->vm_ops->open)
1493 new->vm_ops->open(new);
1494
1495 delete_vma_from_mm(vma);
1496 down_write(&nommu_region_sem);
1497 delete_nommu_region(vma->vm_region);
1498 if (new_below) {
1499 vma->vm_region->vm_start = vma->vm_start = addr;
1500 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1501 } else {
1502 vma->vm_region->vm_end = vma->vm_end = addr;
1503 vma->vm_region->vm_top = addr;
1504 }
1505 add_nommu_region(vma->vm_region);
1506 add_nommu_region(new->vm_region);
1507 up_write(&nommu_region_sem);
1508 add_vma_to_mm(mm, vma);
1509 add_vma_to_mm(mm, new);
1510 return 0;
1511 }
1512
1513 /*
1514 * shrink a VMA by removing the specified chunk from either the beginning or
1515 * the end
1516 */
1517 static int shrink_vma(struct mm_struct *mm,
1518 struct vm_area_struct *vma,
1519 unsigned long from, unsigned long to)
1520 {
1521 struct vm_region *region;
1522
1523 kenter("");
1524
1525 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1526 * and list */
1527 delete_vma_from_mm(vma);
1528 if (from > vma->vm_start)
1529 vma->vm_end = from;
1530 else
1531 vma->vm_start = to;
1532 add_vma_to_mm(mm, vma);
1533
1534 /* cut the backing region down to size */
1535 region = vma->vm_region;
1536 BUG_ON(atomic_read(&region->vm_usage) != 1);
1537
1538 down_write(&nommu_region_sem);
1539 delete_nommu_region(region);
1540 if (from > region->vm_start) {
1541 to = region->vm_top;
1542 region->vm_top = region->vm_end = from;
1543 } else {
1544 region->vm_start = to;
1545 }
1546 add_nommu_region(region);
1547 up_write(&nommu_region_sem);
1548
1549 free_page_series(from, to);
1550 return 0;
1551 }
1552
1553 /*
1554 * release a mapping
1555 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1556 * VMA, though it need not cover the whole VMA
1557 */
1558 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1559 {
1560 struct vm_area_struct *vma;
1561 struct rb_node *rb;
1562 unsigned long end = start + len;
1563 int ret;
1564
1565 kenter(",%lx,%zx", start, len);
1566
1567 if (len == 0)
1568 return -EINVAL;
1569
1570 /* find the first potentially overlapping VMA */
1571 vma = find_vma(mm, start);
1572 if (!vma) {
1573 static int limit = 0;
1574 if (limit < 5) {
1575 printk(KERN_WARNING
1576 "munmap of memory not mmapped by process %d"
1577 " (%s): 0x%lx-0x%lx\n",
1578 current->pid, current->comm,
1579 start, start + len - 1);
1580 limit++;
1581 }
1582 return -EINVAL;
1583 }
1584
1585 /* we're allowed to split an anonymous VMA but not a file-backed one */
1586 if (vma->vm_file) {
1587 do {
1588 if (start > vma->vm_start) {
1589 kleave(" = -EINVAL [miss]");
1590 return -EINVAL;
1591 }
1592 if (end == vma->vm_end)
1593 goto erase_whole_vma;
1594 rb = rb_next(&vma->vm_rb);
1595 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1596 } while (rb);
1597 kleave(" = -EINVAL [split file]");
1598 return -EINVAL;
1599 } else {
1600 /* the chunk must be a subset of the VMA found */
1601 if (start == vma->vm_start && end == vma->vm_end)
1602 goto erase_whole_vma;
1603 if (start < vma->vm_start || end > vma->vm_end) {
1604 kleave(" = -EINVAL [superset]");
1605 return -EINVAL;
1606 }
1607 if (start & ~PAGE_MASK) {
1608 kleave(" = -EINVAL [unaligned start]");
1609 return -EINVAL;
1610 }
1611 if (end != vma->vm_end && end & ~PAGE_MASK) {
1612 kleave(" = -EINVAL [unaligned split]");
1613 return -EINVAL;
1614 }
1615 if (start != vma->vm_start && end != vma->vm_end) {
1616 ret = split_vma(mm, vma, start, 1);
1617 if (ret < 0) {
1618 kleave(" = %d [split]", ret);
1619 return ret;
1620 }
1621 }
1622 return shrink_vma(mm, vma, start, end);
1623 }
1624
1625 erase_whole_vma:
1626 delete_vma_from_mm(vma);
1627 delete_vma(mm, vma);
1628 kleave(" = 0");
1629 return 0;
1630 }
1631 EXPORT_SYMBOL(do_munmap);
1632
1633 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1634 {
1635 int ret;
1636 struct mm_struct *mm = current->mm;
1637
1638 down_write(&mm->mmap_sem);
1639 ret = do_munmap(mm, addr, len);
1640 up_write(&mm->mmap_sem);
1641 return ret;
1642 }
1643
1644 /*
1645 * release all the mappings made in a process's VM space
1646 */
1647 void exit_mmap(struct mm_struct *mm)
1648 {
1649 struct vm_area_struct *vma;
1650
1651 if (!mm)
1652 return;
1653
1654 kenter("");
1655
1656 mm->total_vm = 0;
1657
1658 while ((vma = mm->mmap)) {
1659 mm->mmap = vma->vm_next;
1660 delete_vma_from_mm(vma);
1661 delete_vma(mm, vma);
1662 }
1663
1664 kleave("");
1665 }
1666
1667 unsigned long do_brk(unsigned long addr, unsigned long len)
1668 {
1669 return -ENOMEM;
1670 }
1671
1672 /*
1673 * expand (or shrink) an existing mapping, potentially moving it at the same
1674 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1675 *
1676 * under NOMMU conditions, we only permit changing a mapping's size, and only
1677 * as long as it stays within the region allocated by do_mmap_private() and the
1678 * block is not shareable
1679 *
1680 * MREMAP_FIXED is not supported under NOMMU conditions
1681 */
1682 unsigned long do_mremap(unsigned long addr,
1683 unsigned long old_len, unsigned long new_len,
1684 unsigned long flags, unsigned long new_addr)
1685 {
1686 struct vm_area_struct *vma;
1687
1688 /* insanity checks first */
1689 if (old_len == 0 || new_len == 0)
1690 return (unsigned long) -EINVAL;
1691
1692 if (addr & ~PAGE_MASK)
1693 return -EINVAL;
1694
1695 if (flags & MREMAP_FIXED && new_addr != addr)
1696 return (unsigned long) -EINVAL;
1697
1698 vma = find_vma_exact(current->mm, addr, old_len);
1699 if (!vma)
1700 return (unsigned long) -EINVAL;
1701
1702 if (vma->vm_end != vma->vm_start + old_len)
1703 return (unsigned long) -EFAULT;
1704
1705 if (vma->vm_flags & VM_MAYSHARE)
1706 return (unsigned long) -EPERM;
1707
1708 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1709 return (unsigned long) -ENOMEM;
1710
1711 /* all checks complete - do it */
1712 vma->vm_end = vma->vm_start + new_len;
1713 return vma->vm_start;
1714 }
1715 EXPORT_SYMBOL(do_mremap);
1716
1717 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1718 unsigned long, new_len, unsigned long, flags,
1719 unsigned long, new_addr)
1720 {
1721 unsigned long ret;
1722
1723 down_write(&current->mm->mmap_sem);
1724 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1725 up_write(&current->mm->mmap_sem);
1726 return ret;
1727 }
1728
1729 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1730 unsigned int foll_flags)
1731 {
1732 return NULL;
1733 }
1734
1735 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1736 unsigned long to, unsigned long size, pgprot_t prot)
1737 {
1738 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1739 return 0;
1740 }
1741 EXPORT_SYMBOL(remap_pfn_range);
1742
1743 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1744 unsigned long pgoff)
1745 {
1746 unsigned int size = vma->vm_end - vma->vm_start;
1747
1748 if (!(vma->vm_flags & VM_USERMAP))
1749 return -EINVAL;
1750
1751 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1752 vma->vm_end = vma->vm_start + size;
1753
1754 return 0;
1755 }
1756 EXPORT_SYMBOL(remap_vmalloc_range);
1757
1758 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1759 {
1760 }
1761
1762 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1763 unsigned long len, unsigned long pgoff, unsigned long flags)
1764 {
1765 return -ENOMEM;
1766 }
1767
1768 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1769 {
1770 }
1771
1772 void unmap_mapping_range(struct address_space *mapping,
1773 loff_t const holebegin, loff_t const holelen,
1774 int even_cows)
1775 {
1776 }
1777 EXPORT_SYMBOL(unmap_mapping_range);
1778
1779 /*
1780 * ask for an unmapped area at which to create a mapping on a file
1781 */
1782 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1783 unsigned long len, unsigned long pgoff,
1784 unsigned long flags)
1785 {
1786 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1787 unsigned long, unsigned long);
1788
1789 get_area = current->mm->get_unmapped_area;
1790 if (file && file->f_op && file->f_op->get_unmapped_area)
1791 get_area = file->f_op->get_unmapped_area;
1792
1793 if (!get_area)
1794 return -ENOSYS;
1795
1796 return get_area(file, addr, len, pgoff, flags);
1797 }
1798 EXPORT_SYMBOL(get_unmapped_area);
1799
1800 /*
1801 * Check that a process has enough memory to allocate a new virtual
1802 * mapping. 0 means there is enough memory for the allocation to
1803 * succeed and -ENOMEM implies there is not.
1804 *
1805 * We currently support three overcommit policies, which are set via the
1806 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1807 *
1808 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1809 * Additional code 2002 Jul 20 by Robert Love.
1810 *
1811 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1812 *
1813 * Note this is a helper function intended to be used by LSMs which
1814 * wish to use this logic.
1815 */
1816 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1817 {
1818 unsigned long free, allowed;
1819
1820 vm_acct_memory(pages);
1821
1822 /*
1823 * Sometimes we want to use more memory than we have
1824 */
1825 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1826 return 0;
1827
1828 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1829 unsigned long n;
1830
1831 free = global_page_state(NR_FILE_PAGES);
1832 free += nr_swap_pages;
1833
1834 /*
1835 * Any slabs which are created with the
1836 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1837 * which are reclaimable, under pressure. The dentry
1838 * cache and most inode caches should fall into this
1839 */
1840 free += global_page_state(NR_SLAB_RECLAIMABLE);
1841
1842 /*
1843 * Leave the last 3% for root
1844 */
1845 if (!cap_sys_admin)
1846 free -= free / 32;
1847
1848 if (free > pages)
1849 return 0;
1850
1851 /*
1852 * nr_free_pages() is very expensive on large systems,
1853 * only call if we're about to fail.
1854 */
1855 n = nr_free_pages();
1856
1857 /*
1858 * Leave reserved pages. The pages are not for anonymous pages.
1859 */
1860 if (n <= totalreserve_pages)
1861 goto error;
1862 else
1863 n -= totalreserve_pages;
1864
1865 /*
1866 * Leave the last 3% for root
1867 */
1868 if (!cap_sys_admin)
1869 n -= n / 32;
1870 free += n;
1871
1872 if (free > pages)
1873 return 0;
1874
1875 goto error;
1876 }
1877
1878 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1879 /*
1880 * Leave the last 3% for root
1881 */
1882 if (!cap_sys_admin)
1883 allowed -= allowed / 32;
1884 allowed += total_swap_pages;
1885
1886 /* Don't let a single process grow too big:
1887 leave 3% of the size of this process for other processes */
1888 if (mm)
1889 allowed -= mm->total_vm / 32;
1890
1891 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1892 return 0;
1893
1894 error:
1895 vm_unacct_memory(pages);
1896
1897 return -ENOMEM;
1898 }
1899
1900 int in_gate_area_no_task(unsigned long addr)
1901 {
1902 return 0;
1903 }
1904
1905 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1906 {
1907 BUG();
1908 return 0;
1909 }
1910 EXPORT_SYMBOL(filemap_fault);
1911
1912 /*
1913 * Access another process' address space.
1914 * - source/target buffer must be kernel space
1915 */
1916 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1917 {
1918 struct vm_area_struct *vma;
1919 struct mm_struct *mm;
1920
1921 if (addr + len < addr)
1922 return 0;
1923
1924 mm = get_task_mm(tsk);
1925 if (!mm)
1926 return 0;
1927
1928 down_read(&mm->mmap_sem);
1929
1930 /* the access must start within one of the target process's mappings */
1931 vma = find_vma(mm, addr);
1932 if (vma) {
1933 /* don't overrun this mapping */
1934 if (addr + len >= vma->vm_end)
1935 len = vma->vm_end - addr;
1936
1937 /* only read or write mappings where it is permitted */
1938 if (write && vma->vm_flags & VM_MAYWRITE)
1939 len -= copy_to_user((void *) addr, buf, len);
1940 else if (!write && vma->vm_flags & VM_MAYREAD)
1941 len -= copy_from_user(buf, (void *) addr, len);
1942 else
1943 len = 0;
1944 } else {
1945 len = 0;
1946 }
1947
1948 up_read(&mm->mmap_sem);
1949 mmput(mm);
1950 return len;
1951 }
This page took 0.112532 seconds and 5 git commands to generate.