Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-2.6
[deliverable/linux.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
41 {
42 }
43
44 #if 0
45 #define kenter(FMT, ...) \
46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
59
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71
72 atomic_long_t mmap_pages_allocated;
73
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81
82 const struct vm_operations_struct generic_file_vm_ops = {
83 };
84
85 /*
86 * Return the total memory allocated for this pointer, not
87 * just what the caller asked for.
88 *
89 * Doesn't have to be accurate, i.e. may have races.
90 */
91 unsigned int kobjsize(const void *objp)
92 {
93 struct page *page;
94
95 /*
96 * If the object we have should not have ksize performed on it,
97 * return size of 0
98 */
99 if (!objp || !virt_addr_valid(objp))
100 return 0;
101
102 page = virt_to_head_page(objp);
103
104 /*
105 * If the allocator sets PageSlab, we know the pointer came from
106 * kmalloc().
107 */
108 if (PageSlab(page))
109 return ksize(objp);
110
111 /*
112 * If it's not a compound page, see if we have a matching VMA
113 * region. This test is intentionally done in reverse order,
114 * so if there's no VMA, we still fall through and hand back
115 * PAGE_SIZE for 0-order pages.
116 */
117 if (!PageCompound(page)) {
118 struct vm_area_struct *vma;
119
120 vma = find_vma(current->mm, (unsigned long)objp);
121 if (vma)
122 return vma->vm_end - vma->vm_start;
123 }
124
125 /*
126 * The ksize() function is only guaranteed to work for pointers
127 * returned by kmalloc(). So handle arbitrary pointers here.
128 */
129 return PAGE_SIZE << compound_order(page);
130 }
131
132 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
133 unsigned long start, int nr_pages, unsigned int foll_flags,
134 struct page **pages, struct vm_area_struct **vmas)
135 {
136 struct vm_area_struct *vma;
137 unsigned long vm_flags;
138 int i;
139
140 /* calculate required read or write permissions.
141 * If FOLL_FORCE is set, we only require the "MAY" flags.
142 */
143 vm_flags = (foll_flags & FOLL_WRITE) ?
144 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
145 vm_flags &= (foll_flags & FOLL_FORCE) ?
146 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
147
148 for (i = 0; i < nr_pages; i++) {
149 vma = find_vma(mm, start);
150 if (!vma)
151 goto finish_or_fault;
152
153 /* protect what we can, including chardevs */
154 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
155 !(vm_flags & vma->vm_flags))
156 goto finish_or_fault;
157
158 if (pages) {
159 pages[i] = virt_to_page(start);
160 if (pages[i])
161 page_cache_get(pages[i]);
162 }
163 if (vmas)
164 vmas[i] = vma;
165 start += PAGE_SIZE;
166 }
167
168 return i;
169
170 finish_or_fault:
171 return i ? : -EFAULT;
172 }
173
174 /*
175 * get a list of pages in an address range belonging to the specified process
176 * and indicate the VMA that covers each page
177 * - this is potentially dodgy as we may end incrementing the page count of a
178 * slab page or a secondary page from a compound page
179 * - don't permit access to VMAs that don't support it, such as I/O mappings
180 */
181 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
182 unsigned long start, int nr_pages, int write, int force,
183 struct page **pages, struct vm_area_struct **vmas)
184 {
185 int flags = 0;
186
187 if (write)
188 flags |= FOLL_WRITE;
189 if (force)
190 flags |= FOLL_FORCE;
191
192 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
193 }
194 EXPORT_SYMBOL(get_user_pages);
195
196 /**
197 * follow_pfn - look up PFN at a user virtual address
198 * @vma: memory mapping
199 * @address: user virtual address
200 * @pfn: location to store found PFN
201 *
202 * Only IO mappings and raw PFN mappings are allowed.
203 *
204 * Returns zero and the pfn at @pfn on success, -ve otherwise.
205 */
206 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
207 unsigned long *pfn)
208 {
209 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
210 return -EINVAL;
211
212 *pfn = address >> PAGE_SHIFT;
213 return 0;
214 }
215 EXPORT_SYMBOL(follow_pfn);
216
217 DEFINE_RWLOCK(vmlist_lock);
218 struct vm_struct *vmlist;
219
220 void vfree(const void *addr)
221 {
222 kfree(addr);
223 }
224 EXPORT_SYMBOL(vfree);
225
226 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
227 {
228 /*
229 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
230 * returns only a logical address.
231 */
232 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
233 }
234 EXPORT_SYMBOL(__vmalloc);
235
236 void *vmalloc_user(unsigned long size)
237 {
238 void *ret;
239
240 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
241 PAGE_KERNEL);
242 if (ret) {
243 struct vm_area_struct *vma;
244
245 down_write(&current->mm->mmap_sem);
246 vma = find_vma(current->mm, (unsigned long)ret);
247 if (vma)
248 vma->vm_flags |= VM_USERMAP;
249 up_write(&current->mm->mmap_sem);
250 }
251
252 return ret;
253 }
254 EXPORT_SYMBOL(vmalloc_user);
255
256 struct page *vmalloc_to_page(const void *addr)
257 {
258 return virt_to_page(addr);
259 }
260 EXPORT_SYMBOL(vmalloc_to_page);
261
262 unsigned long vmalloc_to_pfn(const void *addr)
263 {
264 return page_to_pfn(virt_to_page(addr));
265 }
266 EXPORT_SYMBOL(vmalloc_to_pfn);
267
268 long vread(char *buf, char *addr, unsigned long count)
269 {
270 memcpy(buf, addr, count);
271 return count;
272 }
273
274 long vwrite(char *buf, char *addr, unsigned long count)
275 {
276 /* Don't allow overflow */
277 if ((unsigned long) addr + count < count)
278 count = -(unsigned long) addr;
279
280 memcpy(addr, buf, count);
281 return(count);
282 }
283
284 /*
285 * vmalloc - allocate virtually continguos memory
286 *
287 * @size: allocation size
288 *
289 * Allocate enough pages to cover @size from the page level
290 * allocator and map them into continguos kernel virtual space.
291 *
292 * For tight control over page level allocator and protection flags
293 * use __vmalloc() instead.
294 */
295 void *vmalloc(unsigned long size)
296 {
297 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
298 }
299 EXPORT_SYMBOL(vmalloc);
300
301 void *vmalloc_node(unsigned long size, int node)
302 {
303 return vmalloc(size);
304 }
305 EXPORT_SYMBOL(vmalloc_node);
306
307 #ifndef PAGE_KERNEL_EXEC
308 # define PAGE_KERNEL_EXEC PAGE_KERNEL
309 #endif
310
311 /**
312 * vmalloc_exec - allocate virtually contiguous, executable memory
313 * @size: allocation size
314 *
315 * Kernel-internal function to allocate enough pages to cover @size
316 * the page level allocator and map them into contiguous and
317 * executable kernel virtual space.
318 *
319 * For tight control over page level allocator and protection flags
320 * use __vmalloc() instead.
321 */
322
323 void *vmalloc_exec(unsigned long size)
324 {
325 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
326 }
327
328 /**
329 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
330 * @size: allocation size
331 *
332 * Allocate enough 32bit PA addressable pages to cover @size from the
333 * page level allocator and map them into continguos kernel virtual space.
334 */
335 void *vmalloc_32(unsigned long size)
336 {
337 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
338 }
339 EXPORT_SYMBOL(vmalloc_32);
340
341 /**
342 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
343 * @size: allocation size
344 *
345 * The resulting memory area is 32bit addressable and zeroed so it can be
346 * mapped to userspace without leaking data.
347 *
348 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
349 * remap_vmalloc_range() are permissible.
350 */
351 void *vmalloc_32_user(unsigned long size)
352 {
353 /*
354 * We'll have to sort out the ZONE_DMA bits for 64-bit,
355 * but for now this can simply use vmalloc_user() directly.
356 */
357 return vmalloc_user(size);
358 }
359 EXPORT_SYMBOL(vmalloc_32_user);
360
361 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
362 {
363 BUG();
364 return NULL;
365 }
366 EXPORT_SYMBOL(vmap);
367
368 void vunmap(const void *addr)
369 {
370 BUG();
371 }
372 EXPORT_SYMBOL(vunmap);
373
374 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
375 {
376 BUG();
377 return NULL;
378 }
379 EXPORT_SYMBOL(vm_map_ram);
380
381 void vm_unmap_ram(const void *mem, unsigned int count)
382 {
383 BUG();
384 }
385 EXPORT_SYMBOL(vm_unmap_ram);
386
387 void vm_unmap_aliases(void)
388 {
389 }
390 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
391
392 /*
393 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
394 * have one.
395 */
396 void __attribute__((weak)) vmalloc_sync_all(void)
397 {
398 }
399
400 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
401 struct page *page)
402 {
403 return -EINVAL;
404 }
405 EXPORT_SYMBOL(vm_insert_page);
406
407 /*
408 * sys_brk() for the most part doesn't need the global kernel
409 * lock, except when an application is doing something nasty
410 * like trying to un-brk an area that has already been mapped
411 * to a regular file. in this case, the unmapping will need
412 * to invoke file system routines that need the global lock.
413 */
414 SYSCALL_DEFINE1(brk, unsigned long, brk)
415 {
416 struct mm_struct *mm = current->mm;
417
418 if (brk < mm->start_brk || brk > mm->context.end_brk)
419 return mm->brk;
420
421 if (mm->brk == brk)
422 return mm->brk;
423
424 /*
425 * Always allow shrinking brk
426 */
427 if (brk <= mm->brk) {
428 mm->brk = brk;
429 return brk;
430 }
431
432 /*
433 * Ok, looks good - let it rip.
434 */
435 return mm->brk = brk;
436 }
437
438 /*
439 * initialise the VMA and region record slabs
440 */
441 void __init mmap_init(void)
442 {
443 int ret;
444
445 ret = percpu_counter_init(&vm_committed_as, 0);
446 VM_BUG_ON(ret);
447 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
448 }
449
450 /*
451 * validate the region tree
452 * - the caller must hold the region lock
453 */
454 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
455 static noinline void validate_nommu_regions(void)
456 {
457 struct vm_region *region, *last;
458 struct rb_node *p, *lastp;
459
460 lastp = rb_first(&nommu_region_tree);
461 if (!lastp)
462 return;
463
464 last = rb_entry(lastp, struct vm_region, vm_rb);
465 BUG_ON(unlikely(last->vm_end <= last->vm_start));
466 BUG_ON(unlikely(last->vm_top < last->vm_end));
467
468 while ((p = rb_next(lastp))) {
469 region = rb_entry(p, struct vm_region, vm_rb);
470 last = rb_entry(lastp, struct vm_region, vm_rb);
471
472 BUG_ON(unlikely(region->vm_end <= region->vm_start));
473 BUG_ON(unlikely(region->vm_top < region->vm_end));
474 BUG_ON(unlikely(region->vm_start < last->vm_top));
475
476 lastp = p;
477 }
478 }
479 #else
480 static void validate_nommu_regions(void)
481 {
482 }
483 #endif
484
485 /*
486 * add a region into the global tree
487 */
488 static void add_nommu_region(struct vm_region *region)
489 {
490 struct vm_region *pregion;
491 struct rb_node **p, *parent;
492
493 validate_nommu_regions();
494
495 parent = NULL;
496 p = &nommu_region_tree.rb_node;
497 while (*p) {
498 parent = *p;
499 pregion = rb_entry(parent, struct vm_region, vm_rb);
500 if (region->vm_start < pregion->vm_start)
501 p = &(*p)->rb_left;
502 else if (region->vm_start > pregion->vm_start)
503 p = &(*p)->rb_right;
504 else if (pregion == region)
505 return;
506 else
507 BUG();
508 }
509
510 rb_link_node(&region->vm_rb, parent, p);
511 rb_insert_color(&region->vm_rb, &nommu_region_tree);
512
513 validate_nommu_regions();
514 }
515
516 /*
517 * delete a region from the global tree
518 */
519 static void delete_nommu_region(struct vm_region *region)
520 {
521 BUG_ON(!nommu_region_tree.rb_node);
522
523 validate_nommu_regions();
524 rb_erase(&region->vm_rb, &nommu_region_tree);
525 validate_nommu_regions();
526 }
527
528 /*
529 * free a contiguous series of pages
530 */
531 static void free_page_series(unsigned long from, unsigned long to)
532 {
533 for (; from < to; from += PAGE_SIZE) {
534 struct page *page = virt_to_page(from);
535
536 kdebug("- free %lx", from);
537 atomic_long_dec(&mmap_pages_allocated);
538 if (page_count(page) != 1)
539 kdebug("free page %p: refcount not one: %d",
540 page, page_count(page));
541 put_page(page);
542 }
543 }
544
545 /*
546 * release a reference to a region
547 * - the caller must hold the region semaphore for writing, which this releases
548 * - the region may not have been added to the tree yet, in which case vm_top
549 * will equal vm_start
550 */
551 static void __put_nommu_region(struct vm_region *region)
552 __releases(nommu_region_sem)
553 {
554 kenter("%p{%d}", region, atomic_read(&region->vm_usage));
555
556 BUG_ON(!nommu_region_tree.rb_node);
557
558 if (atomic_dec_and_test(&region->vm_usage)) {
559 if (region->vm_top > region->vm_start)
560 delete_nommu_region(region);
561 up_write(&nommu_region_sem);
562
563 if (region->vm_file)
564 fput(region->vm_file);
565
566 /* IO memory and memory shared directly out of the pagecache
567 * from ramfs/tmpfs mustn't be released here */
568 if (region->vm_flags & VM_MAPPED_COPY) {
569 kdebug("free series");
570 free_page_series(region->vm_start, region->vm_top);
571 }
572 kmem_cache_free(vm_region_jar, region);
573 } else {
574 up_write(&nommu_region_sem);
575 }
576 }
577
578 /*
579 * release a reference to a region
580 */
581 static void put_nommu_region(struct vm_region *region)
582 {
583 down_write(&nommu_region_sem);
584 __put_nommu_region(region);
585 }
586
587 /*
588 * update protection on a vma
589 */
590 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
591 {
592 #ifdef CONFIG_MPU
593 struct mm_struct *mm = vma->vm_mm;
594 long start = vma->vm_start & PAGE_MASK;
595 while (start < vma->vm_end) {
596 protect_page(mm, start, flags);
597 start += PAGE_SIZE;
598 }
599 update_protections(mm);
600 #endif
601 }
602
603 /*
604 * add a VMA into a process's mm_struct in the appropriate place in the list
605 * and tree and add to the address space's page tree also if not an anonymous
606 * page
607 * - should be called with mm->mmap_sem held writelocked
608 */
609 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
610 {
611 struct vm_area_struct *pvma, **pp;
612 struct address_space *mapping;
613 struct rb_node **p, *parent;
614
615 kenter(",%p", vma);
616
617 BUG_ON(!vma->vm_region);
618
619 mm->map_count++;
620 vma->vm_mm = mm;
621
622 protect_vma(vma, vma->vm_flags);
623
624 /* add the VMA to the mapping */
625 if (vma->vm_file) {
626 mapping = vma->vm_file->f_mapping;
627
628 flush_dcache_mmap_lock(mapping);
629 vma_prio_tree_insert(vma, &mapping->i_mmap);
630 flush_dcache_mmap_unlock(mapping);
631 }
632
633 /* add the VMA to the tree */
634 parent = NULL;
635 p = &mm->mm_rb.rb_node;
636 while (*p) {
637 parent = *p;
638 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
639
640 /* sort by: start addr, end addr, VMA struct addr in that order
641 * (the latter is necessary as we may get identical VMAs) */
642 if (vma->vm_start < pvma->vm_start)
643 p = &(*p)->rb_left;
644 else if (vma->vm_start > pvma->vm_start)
645 p = &(*p)->rb_right;
646 else if (vma->vm_end < pvma->vm_end)
647 p = &(*p)->rb_left;
648 else if (vma->vm_end > pvma->vm_end)
649 p = &(*p)->rb_right;
650 else if (vma < pvma)
651 p = &(*p)->rb_left;
652 else if (vma > pvma)
653 p = &(*p)->rb_right;
654 else
655 BUG();
656 }
657
658 rb_link_node(&vma->vm_rb, parent, p);
659 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
660
661 /* add VMA to the VMA list also */
662 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
663 if (pvma->vm_start > vma->vm_start)
664 break;
665 if (pvma->vm_start < vma->vm_start)
666 continue;
667 if (pvma->vm_end < vma->vm_end)
668 break;
669 }
670
671 vma->vm_next = *pp;
672 *pp = vma;
673 }
674
675 /*
676 * delete a VMA from its owning mm_struct and address space
677 */
678 static void delete_vma_from_mm(struct vm_area_struct *vma)
679 {
680 struct vm_area_struct **pp;
681 struct address_space *mapping;
682 struct mm_struct *mm = vma->vm_mm;
683
684 kenter("%p", vma);
685
686 protect_vma(vma, 0);
687
688 mm->map_count--;
689 if (mm->mmap_cache == vma)
690 mm->mmap_cache = NULL;
691
692 /* remove the VMA from the mapping */
693 if (vma->vm_file) {
694 mapping = vma->vm_file->f_mapping;
695
696 flush_dcache_mmap_lock(mapping);
697 vma_prio_tree_remove(vma, &mapping->i_mmap);
698 flush_dcache_mmap_unlock(mapping);
699 }
700
701 /* remove from the MM's tree and list */
702 rb_erase(&vma->vm_rb, &mm->mm_rb);
703 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
704 if (*pp == vma) {
705 *pp = vma->vm_next;
706 break;
707 }
708 }
709
710 vma->vm_mm = NULL;
711 }
712
713 /*
714 * destroy a VMA record
715 */
716 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
717 {
718 kenter("%p", vma);
719 if (vma->vm_ops && vma->vm_ops->close)
720 vma->vm_ops->close(vma);
721 if (vma->vm_file) {
722 fput(vma->vm_file);
723 if (vma->vm_flags & VM_EXECUTABLE)
724 removed_exe_file_vma(mm);
725 }
726 put_nommu_region(vma->vm_region);
727 kmem_cache_free(vm_area_cachep, vma);
728 }
729
730 /*
731 * look up the first VMA in which addr resides, NULL if none
732 * - should be called with mm->mmap_sem at least held readlocked
733 */
734 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
735 {
736 struct vm_area_struct *vma;
737 struct rb_node *n = mm->mm_rb.rb_node;
738
739 /* check the cache first */
740 vma = mm->mmap_cache;
741 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
742 return vma;
743
744 /* trawl the tree (there may be multiple mappings in which addr
745 * resides) */
746 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
747 vma = rb_entry(n, struct vm_area_struct, vm_rb);
748 if (vma->vm_start > addr)
749 return NULL;
750 if (vma->vm_end > addr) {
751 mm->mmap_cache = vma;
752 return vma;
753 }
754 }
755
756 return NULL;
757 }
758 EXPORT_SYMBOL(find_vma);
759
760 /*
761 * find a VMA
762 * - we don't extend stack VMAs under NOMMU conditions
763 */
764 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
765 {
766 return find_vma(mm, addr);
767 }
768
769 /*
770 * expand a stack to a given address
771 * - not supported under NOMMU conditions
772 */
773 int expand_stack(struct vm_area_struct *vma, unsigned long address)
774 {
775 return -ENOMEM;
776 }
777
778 /*
779 * look up the first VMA exactly that exactly matches addr
780 * - should be called with mm->mmap_sem at least held readlocked
781 */
782 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
783 unsigned long addr,
784 unsigned long len)
785 {
786 struct vm_area_struct *vma;
787 struct rb_node *n = mm->mm_rb.rb_node;
788 unsigned long end = addr + len;
789
790 /* check the cache first */
791 vma = mm->mmap_cache;
792 if (vma && vma->vm_start == addr && vma->vm_end == end)
793 return vma;
794
795 /* trawl the tree (there may be multiple mappings in which addr
796 * resides) */
797 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
798 vma = rb_entry(n, struct vm_area_struct, vm_rb);
799 if (vma->vm_start < addr)
800 continue;
801 if (vma->vm_start > addr)
802 return NULL;
803 if (vma->vm_end == end) {
804 mm->mmap_cache = vma;
805 return vma;
806 }
807 }
808
809 return NULL;
810 }
811
812 /*
813 * determine whether a mapping should be permitted and, if so, what sort of
814 * mapping we're capable of supporting
815 */
816 static int validate_mmap_request(struct file *file,
817 unsigned long addr,
818 unsigned long len,
819 unsigned long prot,
820 unsigned long flags,
821 unsigned long pgoff,
822 unsigned long *_capabilities)
823 {
824 unsigned long capabilities, rlen;
825 unsigned long reqprot = prot;
826 int ret;
827
828 /* do the simple checks first */
829 if (flags & MAP_FIXED) {
830 printk(KERN_DEBUG
831 "%d: Can't do fixed-address/overlay mmap of RAM\n",
832 current->pid);
833 return -EINVAL;
834 }
835
836 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
837 (flags & MAP_TYPE) != MAP_SHARED)
838 return -EINVAL;
839
840 if (!len)
841 return -EINVAL;
842
843 /* Careful about overflows.. */
844 rlen = PAGE_ALIGN(len);
845 if (!rlen || rlen > TASK_SIZE)
846 return -ENOMEM;
847
848 /* offset overflow? */
849 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
850 return -EOVERFLOW;
851
852 if (file) {
853 /* validate file mapping requests */
854 struct address_space *mapping;
855
856 /* files must support mmap */
857 if (!file->f_op || !file->f_op->mmap)
858 return -ENODEV;
859
860 /* work out if what we've got could possibly be shared
861 * - we support chardevs that provide their own "memory"
862 * - we support files/blockdevs that are memory backed
863 */
864 mapping = file->f_mapping;
865 if (!mapping)
866 mapping = file->f_path.dentry->d_inode->i_mapping;
867
868 capabilities = 0;
869 if (mapping && mapping->backing_dev_info)
870 capabilities = mapping->backing_dev_info->capabilities;
871
872 if (!capabilities) {
873 /* no explicit capabilities set, so assume some
874 * defaults */
875 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
876 case S_IFREG:
877 case S_IFBLK:
878 capabilities = BDI_CAP_MAP_COPY;
879 break;
880
881 case S_IFCHR:
882 capabilities =
883 BDI_CAP_MAP_DIRECT |
884 BDI_CAP_READ_MAP |
885 BDI_CAP_WRITE_MAP;
886 break;
887
888 default:
889 return -EINVAL;
890 }
891 }
892
893 /* eliminate any capabilities that we can't support on this
894 * device */
895 if (!file->f_op->get_unmapped_area)
896 capabilities &= ~BDI_CAP_MAP_DIRECT;
897 if (!file->f_op->read)
898 capabilities &= ~BDI_CAP_MAP_COPY;
899
900 /* The file shall have been opened with read permission. */
901 if (!(file->f_mode & FMODE_READ))
902 return -EACCES;
903
904 if (flags & MAP_SHARED) {
905 /* do checks for writing, appending and locking */
906 if ((prot & PROT_WRITE) &&
907 !(file->f_mode & FMODE_WRITE))
908 return -EACCES;
909
910 if (IS_APPEND(file->f_path.dentry->d_inode) &&
911 (file->f_mode & FMODE_WRITE))
912 return -EACCES;
913
914 if (locks_verify_locked(file->f_path.dentry->d_inode))
915 return -EAGAIN;
916
917 if (!(capabilities & BDI_CAP_MAP_DIRECT))
918 return -ENODEV;
919
920 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
921 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
922 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
923 ) {
924 printk("MAP_SHARED not completely supported on !MMU\n");
925 return -EINVAL;
926 }
927
928 /* we mustn't privatise shared mappings */
929 capabilities &= ~BDI_CAP_MAP_COPY;
930 }
931 else {
932 /* we're going to read the file into private memory we
933 * allocate */
934 if (!(capabilities & BDI_CAP_MAP_COPY))
935 return -ENODEV;
936
937 /* we don't permit a private writable mapping to be
938 * shared with the backing device */
939 if (prot & PROT_WRITE)
940 capabilities &= ~BDI_CAP_MAP_DIRECT;
941 }
942
943 /* handle executable mappings and implied executable
944 * mappings */
945 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
946 if (prot & PROT_EXEC)
947 return -EPERM;
948 }
949 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
950 /* handle implication of PROT_EXEC by PROT_READ */
951 if (current->personality & READ_IMPLIES_EXEC) {
952 if (capabilities & BDI_CAP_EXEC_MAP)
953 prot |= PROT_EXEC;
954 }
955 }
956 else if ((prot & PROT_READ) &&
957 (prot & PROT_EXEC) &&
958 !(capabilities & BDI_CAP_EXEC_MAP)
959 ) {
960 /* backing file is not executable, try to copy */
961 capabilities &= ~BDI_CAP_MAP_DIRECT;
962 }
963 }
964 else {
965 /* anonymous mappings are always memory backed and can be
966 * privately mapped
967 */
968 capabilities = BDI_CAP_MAP_COPY;
969
970 /* handle PROT_EXEC implication by PROT_READ */
971 if ((prot & PROT_READ) &&
972 (current->personality & READ_IMPLIES_EXEC))
973 prot |= PROT_EXEC;
974 }
975
976 /* allow the security API to have its say */
977 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
978 if (ret < 0)
979 return ret;
980
981 /* looks okay */
982 *_capabilities = capabilities;
983 return 0;
984 }
985
986 /*
987 * we've determined that we can make the mapping, now translate what we
988 * now know into VMA flags
989 */
990 static unsigned long determine_vm_flags(struct file *file,
991 unsigned long prot,
992 unsigned long flags,
993 unsigned long capabilities)
994 {
995 unsigned long vm_flags;
996
997 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
998 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
999 /* vm_flags |= mm->def_flags; */
1000
1001 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1002 /* attempt to share read-only copies of mapped file chunks */
1003 if (file && !(prot & PROT_WRITE))
1004 vm_flags |= VM_MAYSHARE;
1005 }
1006 else {
1007 /* overlay a shareable mapping on the backing device or inode
1008 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1009 * romfs/cramfs */
1010 if (flags & MAP_SHARED)
1011 vm_flags |= VM_MAYSHARE | VM_SHARED;
1012 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1013 vm_flags |= VM_MAYSHARE;
1014 }
1015
1016 /* refuse to let anyone share private mappings with this process if
1017 * it's being traced - otherwise breakpoints set in it may interfere
1018 * with another untraced process
1019 */
1020 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1021 vm_flags &= ~VM_MAYSHARE;
1022
1023 return vm_flags;
1024 }
1025
1026 /*
1027 * set up a shared mapping on a file (the driver or filesystem provides and
1028 * pins the storage)
1029 */
1030 static int do_mmap_shared_file(struct vm_area_struct *vma)
1031 {
1032 int ret;
1033
1034 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1035 if (ret == 0) {
1036 vma->vm_region->vm_top = vma->vm_region->vm_end;
1037 return 0;
1038 }
1039 if (ret != -ENOSYS)
1040 return ret;
1041
1042 /* getting an ENOSYS error indicates that direct mmap isn't
1043 * possible (as opposed to tried but failed) so we'll fall
1044 * through to making a private copy of the data and mapping
1045 * that if we can */
1046 return -ENODEV;
1047 }
1048
1049 /*
1050 * set up a private mapping or an anonymous shared mapping
1051 */
1052 static int do_mmap_private(struct vm_area_struct *vma,
1053 struct vm_region *region,
1054 unsigned long len,
1055 unsigned long capabilities)
1056 {
1057 struct page *pages;
1058 unsigned long total, point, n, rlen;
1059 void *base;
1060 int ret, order;
1061
1062 /* invoke the file's mapping function so that it can keep track of
1063 * shared mappings on devices or memory
1064 * - VM_MAYSHARE will be set if it may attempt to share
1065 */
1066 if (capabilities & BDI_CAP_MAP_DIRECT) {
1067 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1068 if (ret == 0) {
1069 /* shouldn't return success if we're not sharing */
1070 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1071 vma->vm_region->vm_top = vma->vm_region->vm_end;
1072 return 0;
1073 }
1074 if (ret != -ENOSYS)
1075 return ret;
1076
1077 /* getting an ENOSYS error indicates that direct mmap isn't
1078 * possible (as opposed to tried but failed) so we'll try to
1079 * make a private copy of the data and map that instead */
1080 }
1081
1082 rlen = PAGE_ALIGN(len);
1083
1084 /* allocate some memory to hold the mapping
1085 * - note that this may not return a page-aligned address if the object
1086 * we're allocating is smaller than a page
1087 */
1088 order = get_order(rlen);
1089 kdebug("alloc order %d for %lx", order, len);
1090
1091 pages = alloc_pages(GFP_KERNEL, order);
1092 if (!pages)
1093 goto enomem;
1094
1095 total = 1 << order;
1096 atomic_long_add(total, &mmap_pages_allocated);
1097
1098 point = rlen >> PAGE_SHIFT;
1099
1100 /* we allocated a power-of-2 sized page set, so we may want to trim off
1101 * the excess */
1102 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1103 while (total > point) {
1104 order = ilog2(total - point);
1105 n = 1 << order;
1106 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1107 atomic_long_sub(n, &mmap_pages_allocated);
1108 total -= n;
1109 set_page_refcounted(pages + total);
1110 __free_pages(pages + total, order);
1111 }
1112 }
1113
1114 for (point = 1; point < total; point++)
1115 set_page_refcounted(&pages[point]);
1116
1117 base = page_address(pages);
1118 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1119 region->vm_start = (unsigned long) base;
1120 region->vm_end = region->vm_start + rlen;
1121 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1122
1123 vma->vm_start = region->vm_start;
1124 vma->vm_end = region->vm_start + len;
1125
1126 if (vma->vm_file) {
1127 /* read the contents of a file into the copy */
1128 mm_segment_t old_fs;
1129 loff_t fpos;
1130
1131 fpos = vma->vm_pgoff;
1132 fpos <<= PAGE_SHIFT;
1133
1134 old_fs = get_fs();
1135 set_fs(KERNEL_DS);
1136 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1137 set_fs(old_fs);
1138
1139 if (ret < 0)
1140 goto error_free;
1141
1142 /* clear the last little bit */
1143 if (ret < rlen)
1144 memset(base + ret, 0, rlen - ret);
1145
1146 }
1147
1148 return 0;
1149
1150 error_free:
1151 free_page_series(region->vm_start, region->vm_end);
1152 region->vm_start = vma->vm_start = 0;
1153 region->vm_end = vma->vm_end = 0;
1154 region->vm_top = 0;
1155 return ret;
1156
1157 enomem:
1158 printk("Allocation of length %lu from process %d (%s) failed\n",
1159 len, current->pid, current->comm);
1160 show_free_areas();
1161 return -ENOMEM;
1162 }
1163
1164 /*
1165 * handle mapping creation for uClinux
1166 */
1167 unsigned long do_mmap_pgoff(struct file *file,
1168 unsigned long addr,
1169 unsigned long len,
1170 unsigned long prot,
1171 unsigned long flags,
1172 unsigned long pgoff)
1173 {
1174 struct vm_area_struct *vma;
1175 struct vm_region *region;
1176 struct rb_node *rb;
1177 unsigned long capabilities, vm_flags, result;
1178 int ret;
1179
1180 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1181
1182 /* decide whether we should attempt the mapping, and if so what sort of
1183 * mapping */
1184 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1185 &capabilities);
1186 if (ret < 0) {
1187 kleave(" = %d [val]", ret);
1188 return ret;
1189 }
1190
1191 /* we ignore the address hint */
1192 addr = 0;
1193
1194 /* we've determined that we can make the mapping, now translate what we
1195 * now know into VMA flags */
1196 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1197
1198 /* we're going to need to record the mapping */
1199 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1200 if (!region)
1201 goto error_getting_region;
1202
1203 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1204 if (!vma)
1205 goto error_getting_vma;
1206
1207 atomic_set(&region->vm_usage, 1);
1208 region->vm_flags = vm_flags;
1209 region->vm_pgoff = pgoff;
1210
1211 INIT_LIST_HEAD(&vma->anon_vma_node);
1212 vma->vm_flags = vm_flags;
1213 vma->vm_pgoff = pgoff;
1214
1215 if (file) {
1216 region->vm_file = file;
1217 get_file(file);
1218 vma->vm_file = file;
1219 get_file(file);
1220 if (vm_flags & VM_EXECUTABLE) {
1221 added_exe_file_vma(current->mm);
1222 vma->vm_mm = current->mm;
1223 }
1224 }
1225
1226 down_write(&nommu_region_sem);
1227
1228 /* if we want to share, we need to check for regions created by other
1229 * mmap() calls that overlap with our proposed mapping
1230 * - we can only share with a superset match on most regular files
1231 * - shared mappings on character devices and memory backed files are
1232 * permitted to overlap inexactly as far as we are concerned for in
1233 * these cases, sharing is handled in the driver or filesystem rather
1234 * than here
1235 */
1236 if (vm_flags & VM_MAYSHARE) {
1237 struct vm_region *pregion;
1238 unsigned long pglen, rpglen, pgend, rpgend, start;
1239
1240 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1241 pgend = pgoff + pglen;
1242
1243 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1244 pregion = rb_entry(rb, struct vm_region, vm_rb);
1245
1246 if (!(pregion->vm_flags & VM_MAYSHARE))
1247 continue;
1248
1249 /* search for overlapping mappings on the same file */
1250 if (pregion->vm_file->f_path.dentry->d_inode !=
1251 file->f_path.dentry->d_inode)
1252 continue;
1253
1254 if (pregion->vm_pgoff >= pgend)
1255 continue;
1256
1257 rpglen = pregion->vm_end - pregion->vm_start;
1258 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1259 rpgend = pregion->vm_pgoff + rpglen;
1260 if (pgoff >= rpgend)
1261 continue;
1262
1263 /* handle inexactly overlapping matches between
1264 * mappings */
1265 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1266 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1267 /* new mapping is not a subset of the region */
1268 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1269 goto sharing_violation;
1270 continue;
1271 }
1272
1273 /* we've found a region we can share */
1274 atomic_inc(&pregion->vm_usage);
1275 vma->vm_region = pregion;
1276 start = pregion->vm_start;
1277 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1278 vma->vm_start = start;
1279 vma->vm_end = start + len;
1280
1281 if (pregion->vm_flags & VM_MAPPED_COPY) {
1282 kdebug("share copy");
1283 vma->vm_flags |= VM_MAPPED_COPY;
1284 } else {
1285 kdebug("share mmap");
1286 ret = do_mmap_shared_file(vma);
1287 if (ret < 0) {
1288 vma->vm_region = NULL;
1289 vma->vm_start = 0;
1290 vma->vm_end = 0;
1291 atomic_dec(&pregion->vm_usage);
1292 pregion = NULL;
1293 goto error_just_free;
1294 }
1295 }
1296 fput(region->vm_file);
1297 kmem_cache_free(vm_region_jar, region);
1298 region = pregion;
1299 result = start;
1300 goto share;
1301 }
1302
1303 /* obtain the address at which to make a shared mapping
1304 * - this is the hook for quasi-memory character devices to
1305 * tell us the location of a shared mapping
1306 */
1307 if (capabilities & BDI_CAP_MAP_DIRECT) {
1308 addr = file->f_op->get_unmapped_area(file, addr, len,
1309 pgoff, flags);
1310 if (IS_ERR((void *) addr)) {
1311 ret = addr;
1312 if (ret != (unsigned long) -ENOSYS)
1313 goto error_just_free;
1314
1315 /* the driver refused to tell us where to site
1316 * the mapping so we'll have to attempt to copy
1317 * it */
1318 ret = (unsigned long) -ENODEV;
1319 if (!(capabilities & BDI_CAP_MAP_COPY))
1320 goto error_just_free;
1321
1322 capabilities &= ~BDI_CAP_MAP_DIRECT;
1323 } else {
1324 vma->vm_start = region->vm_start = addr;
1325 vma->vm_end = region->vm_end = addr + len;
1326 }
1327 }
1328 }
1329
1330 vma->vm_region = region;
1331
1332 /* set up the mapping
1333 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1334 */
1335 if (file && vma->vm_flags & VM_SHARED)
1336 ret = do_mmap_shared_file(vma);
1337 else
1338 ret = do_mmap_private(vma, region, len, capabilities);
1339 if (ret < 0)
1340 goto error_just_free;
1341 add_nommu_region(region);
1342
1343 /* clear anonymous mappings that don't ask for uninitialized data */
1344 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1345 memset((void *)region->vm_start, 0,
1346 region->vm_end - region->vm_start);
1347
1348 /* okay... we have a mapping; now we have to register it */
1349 result = vma->vm_start;
1350
1351 current->mm->total_vm += len >> PAGE_SHIFT;
1352
1353 share:
1354 add_vma_to_mm(current->mm, vma);
1355
1356 up_write(&nommu_region_sem);
1357
1358 if (prot & PROT_EXEC)
1359 flush_icache_range(result, result + len);
1360
1361 kleave(" = %lx", result);
1362 return result;
1363
1364 error_just_free:
1365 up_write(&nommu_region_sem);
1366 error:
1367 if (region->vm_file)
1368 fput(region->vm_file);
1369 kmem_cache_free(vm_region_jar, region);
1370 if (vma->vm_file)
1371 fput(vma->vm_file);
1372 if (vma->vm_flags & VM_EXECUTABLE)
1373 removed_exe_file_vma(vma->vm_mm);
1374 kmem_cache_free(vm_area_cachep, vma);
1375 kleave(" = %d", ret);
1376 return ret;
1377
1378 sharing_violation:
1379 up_write(&nommu_region_sem);
1380 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1381 ret = -EINVAL;
1382 goto error;
1383
1384 error_getting_vma:
1385 kmem_cache_free(vm_region_jar, region);
1386 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1387 " from process %d failed\n",
1388 len, current->pid);
1389 show_free_areas();
1390 return -ENOMEM;
1391
1392 error_getting_region:
1393 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1394 " from process %d failed\n",
1395 len, current->pid);
1396 show_free_areas();
1397 return -ENOMEM;
1398 }
1399 EXPORT_SYMBOL(do_mmap_pgoff);
1400
1401 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1402 unsigned long, prot, unsigned long, flags,
1403 unsigned long, fd, unsigned long, pgoff)
1404 {
1405 struct file *file = NULL;
1406 unsigned long retval = -EBADF;
1407
1408 if (!(flags & MAP_ANONYMOUS)) {
1409 file = fget(fd);
1410 if (!file)
1411 goto out;
1412 }
1413
1414 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416 down_write(&current->mm->mmap_sem);
1417 retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1418 up_write(&current->mm->mmap_sem);
1419
1420 if (file)
1421 fput(file);
1422 out:
1423 return retval;
1424 }
1425
1426 /*
1427 * split a vma into two pieces at address 'addr', a new vma is allocated either
1428 * for the first part or the tail.
1429 */
1430 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1431 unsigned long addr, int new_below)
1432 {
1433 struct vm_area_struct *new;
1434 struct vm_region *region;
1435 unsigned long npages;
1436
1437 kenter("");
1438
1439 /* we're only permitted to split anonymous regions that have a single
1440 * owner */
1441 if (vma->vm_file ||
1442 atomic_read(&vma->vm_region->vm_usage) != 1)
1443 return -ENOMEM;
1444
1445 if (mm->map_count >= sysctl_max_map_count)
1446 return -ENOMEM;
1447
1448 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1449 if (!region)
1450 return -ENOMEM;
1451
1452 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1453 if (!new) {
1454 kmem_cache_free(vm_region_jar, region);
1455 return -ENOMEM;
1456 }
1457
1458 /* most fields are the same, copy all, and then fixup */
1459 *new = *vma;
1460 *region = *vma->vm_region;
1461 new->vm_region = region;
1462
1463 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1464
1465 if (new_below) {
1466 region->vm_top = region->vm_end = new->vm_end = addr;
1467 } else {
1468 region->vm_start = new->vm_start = addr;
1469 region->vm_pgoff = new->vm_pgoff += npages;
1470 }
1471
1472 if (new->vm_ops && new->vm_ops->open)
1473 new->vm_ops->open(new);
1474
1475 delete_vma_from_mm(vma);
1476 down_write(&nommu_region_sem);
1477 delete_nommu_region(vma->vm_region);
1478 if (new_below) {
1479 vma->vm_region->vm_start = vma->vm_start = addr;
1480 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1481 } else {
1482 vma->vm_region->vm_end = vma->vm_end = addr;
1483 vma->vm_region->vm_top = addr;
1484 }
1485 add_nommu_region(vma->vm_region);
1486 add_nommu_region(new->vm_region);
1487 up_write(&nommu_region_sem);
1488 add_vma_to_mm(mm, vma);
1489 add_vma_to_mm(mm, new);
1490 return 0;
1491 }
1492
1493 /*
1494 * shrink a VMA by removing the specified chunk from either the beginning or
1495 * the end
1496 */
1497 static int shrink_vma(struct mm_struct *mm,
1498 struct vm_area_struct *vma,
1499 unsigned long from, unsigned long to)
1500 {
1501 struct vm_region *region;
1502
1503 kenter("");
1504
1505 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1506 * and list */
1507 delete_vma_from_mm(vma);
1508 if (from > vma->vm_start)
1509 vma->vm_end = from;
1510 else
1511 vma->vm_start = to;
1512 add_vma_to_mm(mm, vma);
1513
1514 /* cut the backing region down to size */
1515 region = vma->vm_region;
1516 BUG_ON(atomic_read(&region->vm_usage) != 1);
1517
1518 down_write(&nommu_region_sem);
1519 delete_nommu_region(region);
1520 if (from > region->vm_start) {
1521 to = region->vm_top;
1522 region->vm_top = region->vm_end = from;
1523 } else {
1524 region->vm_start = to;
1525 }
1526 add_nommu_region(region);
1527 up_write(&nommu_region_sem);
1528
1529 free_page_series(from, to);
1530 return 0;
1531 }
1532
1533 /*
1534 * release a mapping
1535 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1536 * VMA, though it need not cover the whole VMA
1537 */
1538 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1539 {
1540 struct vm_area_struct *vma;
1541 struct rb_node *rb;
1542 unsigned long end = start + len;
1543 int ret;
1544
1545 kenter(",%lx,%zx", start, len);
1546
1547 if (len == 0)
1548 return -EINVAL;
1549
1550 /* find the first potentially overlapping VMA */
1551 vma = find_vma(mm, start);
1552 if (!vma) {
1553 static int limit = 0;
1554 if (limit < 5) {
1555 printk(KERN_WARNING
1556 "munmap of memory not mmapped by process %d"
1557 " (%s): 0x%lx-0x%lx\n",
1558 current->pid, current->comm,
1559 start, start + len - 1);
1560 limit++;
1561 }
1562 return -EINVAL;
1563 }
1564
1565 /* we're allowed to split an anonymous VMA but not a file-backed one */
1566 if (vma->vm_file) {
1567 do {
1568 if (start > vma->vm_start) {
1569 kleave(" = -EINVAL [miss]");
1570 return -EINVAL;
1571 }
1572 if (end == vma->vm_end)
1573 goto erase_whole_vma;
1574 rb = rb_next(&vma->vm_rb);
1575 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1576 } while (rb);
1577 kleave(" = -EINVAL [split file]");
1578 return -EINVAL;
1579 } else {
1580 /* the chunk must be a subset of the VMA found */
1581 if (start == vma->vm_start && end == vma->vm_end)
1582 goto erase_whole_vma;
1583 if (start < vma->vm_start || end > vma->vm_end) {
1584 kleave(" = -EINVAL [superset]");
1585 return -EINVAL;
1586 }
1587 if (start & ~PAGE_MASK) {
1588 kleave(" = -EINVAL [unaligned start]");
1589 return -EINVAL;
1590 }
1591 if (end != vma->vm_end && end & ~PAGE_MASK) {
1592 kleave(" = -EINVAL [unaligned split]");
1593 return -EINVAL;
1594 }
1595 if (start != vma->vm_start && end != vma->vm_end) {
1596 ret = split_vma(mm, vma, start, 1);
1597 if (ret < 0) {
1598 kleave(" = %d [split]", ret);
1599 return ret;
1600 }
1601 }
1602 return shrink_vma(mm, vma, start, end);
1603 }
1604
1605 erase_whole_vma:
1606 delete_vma_from_mm(vma);
1607 delete_vma(mm, vma);
1608 kleave(" = 0");
1609 return 0;
1610 }
1611 EXPORT_SYMBOL(do_munmap);
1612
1613 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1614 {
1615 int ret;
1616 struct mm_struct *mm = current->mm;
1617
1618 down_write(&mm->mmap_sem);
1619 ret = do_munmap(mm, addr, len);
1620 up_write(&mm->mmap_sem);
1621 return ret;
1622 }
1623
1624 /*
1625 * release all the mappings made in a process's VM space
1626 */
1627 void exit_mmap(struct mm_struct *mm)
1628 {
1629 struct vm_area_struct *vma;
1630
1631 if (!mm)
1632 return;
1633
1634 kenter("");
1635
1636 mm->total_vm = 0;
1637
1638 while ((vma = mm->mmap)) {
1639 mm->mmap = vma->vm_next;
1640 delete_vma_from_mm(vma);
1641 delete_vma(mm, vma);
1642 }
1643
1644 kleave("");
1645 }
1646
1647 unsigned long do_brk(unsigned long addr, unsigned long len)
1648 {
1649 return -ENOMEM;
1650 }
1651
1652 /*
1653 * expand (or shrink) an existing mapping, potentially moving it at the same
1654 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1655 *
1656 * under NOMMU conditions, we only permit changing a mapping's size, and only
1657 * as long as it stays within the region allocated by do_mmap_private() and the
1658 * block is not shareable
1659 *
1660 * MREMAP_FIXED is not supported under NOMMU conditions
1661 */
1662 unsigned long do_mremap(unsigned long addr,
1663 unsigned long old_len, unsigned long new_len,
1664 unsigned long flags, unsigned long new_addr)
1665 {
1666 struct vm_area_struct *vma;
1667
1668 /* insanity checks first */
1669 if (old_len == 0 || new_len == 0)
1670 return (unsigned long) -EINVAL;
1671
1672 if (addr & ~PAGE_MASK)
1673 return -EINVAL;
1674
1675 if (flags & MREMAP_FIXED && new_addr != addr)
1676 return (unsigned long) -EINVAL;
1677
1678 vma = find_vma_exact(current->mm, addr, old_len);
1679 if (!vma)
1680 return (unsigned long) -EINVAL;
1681
1682 if (vma->vm_end != vma->vm_start + old_len)
1683 return (unsigned long) -EFAULT;
1684
1685 if (vma->vm_flags & VM_MAYSHARE)
1686 return (unsigned long) -EPERM;
1687
1688 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1689 return (unsigned long) -ENOMEM;
1690
1691 /* all checks complete - do it */
1692 vma->vm_end = vma->vm_start + new_len;
1693 return vma->vm_start;
1694 }
1695 EXPORT_SYMBOL(do_mremap);
1696
1697 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1698 unsigned long, new_len, unsigned long, flags,
1699 unsigned long, new_addr)
1700 {
1701 unsigned long ret;
1702
1703 down_write(&current->mm->mmap_sem);
1704 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1705 up_write(&current->mm->mmap_sem);
1706 return ret;
1707 }
1708
1709 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1710 unsigned int foll_flags)
1711 {
1712 return NULL;
1713 }
1714
1715 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1716 unsigned long to, unsigned long size, pgprot_t prot)
1717 {
1718 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1719 return 0;
1720 }
1721 EXPORT_SYMBOL(remap_pfn_range);
1722
1723 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1724 unsigned long pgoff)
1725 {
1726 unsigned int size = vma->vm_end - vma->vm_start;
1727
1728 if (!(vma->vm_flags & VM_USERMAP))
1729 return -EINVAL;
1730
1731 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1732 vma->vm_end = vma->vm_start + size;
1733
1734 return 0;
1735 }
1736 EXPORT_SYMBOL(remap_vmalloc_range);
1737
1738 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1739 {
1740 }
1741
1742 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1743 unsigned long len, unsigned long pgoff, unsigned long flags)
1744 {
1745 return -ENOMEM;
1746 }
1747
1748 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1749 {
1750 }
1751
1752 void unmap_mapping_range(struct address_space *mapping,
1753 loff_t const holebegin, loff_t const holelen,
1754 int even_cows)
1755 {
1756 }
1757 EXPORT_SYMBOL(unmap_mapping_range);
1758
1759 /*
1760 * ask for an unmapped area at which to create a mapping on a file
1761 */
1762 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1763 unsigned long len, unsigned long pgoff,
1764 unsigned long flags)
1765 {
1766 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1767 unsigned long, unsigned long);
1768
1769 get_area = current->mm->get_unmapped_area;
1770 if (file && file->f_op && file->f_op->get_unmapped_area)
1771 get_area = file->f_op->get_unmapped_area;
1772
1773 if (!get_area)
1774 return -ENOSYS;
1775
1776 return get_area(file, addr, len, pgoff, flags);
1777 }
1778 EXPORT_SYMBOL(get_unmapped_area);
1779
1780 /*
1781 * Check that a process has enough memory to allocate a new virtual
1782 * mapping. 0 means there is enough memory for the allocation to
1783 * succeed and -ENOMEM implies there is not.
1784 *
1785 * We currently support three overcommit policies, which are set via the
1786 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1787 *
1788 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1789 * Additional code 2002 Jul 20 by Robert Love.
1790 *
1791 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1792 *
1793 * Note this is a helper function intended to be used by LSMs which
1794 * wish to use this logic.
1795 */
1796 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1797 {
1798 unsigned long free, allowed;
1799
1800 vm_acct_memory(pages);
1801
1802 /*
1803 * Sometimes we want to use more memory than we have
1804 */
1805 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1806 return 0;
1807
1808 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1809 unsigned long n;
1810
1811 free = global_page_state(NR_FILE_PAGES);
1812 free += nr_swap_pages;
1813
1814 /*
1815 * Any slabs which are created with the
1816 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1817 * which are reclaimable, under pressure. The dentry
1818 * cache and most inode caches should fall into this
1819 */
1820 free += global_page_state(NR_SLAB_RECLAIMABLE);
1821
1822 /*
1823 * Leave the last 3% for root
1824 */
1825 if (!cap_sys_admin)
1826 free -= free / 32;
1827
1828 if (free > pages)
1829 return 0;
1830
1831 /*
1832 * nr_free_pages() is very expensive on large systems,
1833 * only call if we're about to fail.
1834 */
1835 n = nr_free_pages();
1836
1837 /*
1838 * Leave reserved pages. The pages are not for anonymous pages.
1839 */
1840 if (n <= totalreserve_pages)
1841 goto error;
1842 else
1843 n -= totalreserve_pages;
1844
1845 /*
1846 * Leave the last 3% for root
1847 */
1848 if (!cap_sys_admin)
1849 n -= n / 32;
1850 free += n;
1851
1852 if (free > pages)
1853 return 0;
1854
1855 goto error;
1856 }
1857
1858 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1859 /*
1860 * Leave the last 3% for root
1861 */
1862 if (!cap_sys_admin)
1863 allowed -= allowed / 32;
1864 allowed += total_swap_pages;
1865
1866 /* Don't let a single process grow too big:
1867 leave 3% of the size of this process for other processes */
1868 if (mm)
1869 allowed -= mm->total_vm / 32;
1870
1871 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1872 return 0;
1873
1874 error:
1875 vm_unacct_memory(pages);
1876
1877 return -ENOMEM;
1878 }
1879
1880 int in_gate_area_no_task(unsigned long addr)
1881 {
1882 return 0;
1883 }
1884
1885 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1886 {
1887 BUG();
1888 return 0;
1889 }
1890 EXPORT_SYMBOL(filemap_fault);
1891
1892 /*
1893 * Access another process' address space.
1894 * - source/target buffer must be kernel space
1895 */
1896 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1897 {
1898 struct vm_area_struct *vma;
1899 struct mm_struct *mm;
1900
1901 if (addr + len < addr)
1902 return 0;
1903
1904 mm = get_task_mm(tsk);
1905 if (!mm)
1906 return 0;
1907
1908 down_read(&mm->mmap_sem);
1909
1910 /* the access must start within one of the target process's mappings */
1911 vma = find_vma(mm, addr);
1912 if (vma) {
1913 /* don't overrun this mapping */
1914 if (addr + len >= vma->vm_end)
1915 len = vma->vm_end - addr;
1916
1917 /* only read or write mappings where it is permitted */
1918 if (write && vma->vm_flags & VM_MAYWRITE)
1919 len -= copy_to_user((void *) addr, buf, len);
1920 else if (!write && vma->vm_flags & VM_MAYREAD)
1921 len -= copy_from_user(buf, (void *) addr, len);
1922 else
1923 len = 0;
1924 } else {
1925 len = 0;
1926 }
1927
1928 up_read(&mm->mmap_sem);
1929 mmput(mm);
1930 return len;
1931 }
This page took 0.071308 seconds and 5 git commands to generate.