cpumask: arch_send_call_function_ipi_mask: powerpc
[deliverable/linux.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2009 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 static inline __attribute__((format(printf, 1, 2)))
40 void no_printk(const char *fmt, ...)
41 {
42 }
43
44 #if 0
45 #define kenter(FMT, ...) \
46 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
47 #define kleave(FMT, ...) \
48 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
49 #define kdebug(FMT, ...) \
50 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
51 #else
52 #define kenter(FMT, ...) \
53 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
54 #define kleave(FMT, ...) \
55 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
56 #define kdebug(FMT, ...) \
57 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
58 #endif
59
60 void *high_memory;
61 struct page *mem_map;
62 unsigned long max_mapnr;
63 unsigned long num_physpages;
64 unsigned long highest_memmap_pfn;
65 struct percpu_counter vm_committed_as;
66 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
67 int sysctl_overcommit_ratio = 50; /* default is 50% */
68 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
69 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
70 int heap_stack_gap = 0;
71
72 atomic_long_t mmap_pages_allocated;
73
74 EXPORT_SYMBOL(mem_map);
75 EXPORT_SYMBOL(num_physpages);
76
77 /* list of mapped, potentially shareable regions */
78 static struct kmem_cache *vm_region_jar;
79 struct rb_root nommu_region_tree = RB_ROOT;
80 DECLARE_RWSEM(nommu_region_sem);
81
82 struct vm_operations_struct generic_file_vm_ops = {
83 };
84
85 /*
86 * Handle all mappings that got truncated by a "truncate()"
87 * system call.
88 *
89 * NOTE! We have to be ready to update the memory sharing
90 * between the file and the memory map for a potential last
91 * incomplete page. Ugly, but necessary.
92 */
93 int vmtruncate(struct inode *inode, loff_t offset)
94 {
95 struct address_space *mapping = inode->i_mapping;
96 unsigned long limit;
97
98 if (inode->i_size < offset)
99 goto do_expand;
100 i_size_write(inode, offset);
101
102 truncate_inode_pages(mapping, offset);
103 goto out_truncate;
104
105 do_expand:
106 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
107 if (limit != RLIM_INFINITY && offset > limit)
108 goto out_sig;
109 if (offset > inode->i_sb->s_maxbytes)
110 goto out;
111 i_size_write(inode, offset);
112
113 out_truncate:
114 if (inode->i_op->truncate)
115 inode->i_op->truncate(inode);
116 return 0;
117 out_sig:
118 send_sig(SIGXFSZ, current, 0);
119 out:
120 return -EFBIG;
121 }
122
123 EXPORT_SYMBOL(vmtruncate);
124
125 /*
126 * Return the total memory allocated for this pointer, not
127 * just what the caller asked for.
128 *
129 * Doesn't have to be accurate, i.e. may have races.
130 */
131 unsigned int kobjsize(const void *objp)
132 {
133 struct page *page;
134
135 /*
136 * If the object we have should not have ksize performed on it,
137 * return size of 0
138 */
139 if (!objp || !virt_addr_valid(objp))
140 return 0;
141
142 page = virt_to_head_page(objp);
143
144 /*
145 * If the allocator sets PageSlab, we know the pointer came from
146 * kmalloc().
147 */
148 if (PageSlab(page))
149 return ksize(objp);
150
151 /*
152 * If it's not a compound page, see if we have a matching VMA
153 * region. This test is intentionally done in reverse order,
154 * so if there's no VMA, we still fall through and hand back
155 * PAGE_SIZE for 0-order pages.
156 */
157 if (!PageCompound(page)) {
158 struct vm_area_struct *vma;
159
160 vma = find_vma(current->mm, (unsigned long)objp);
161 if (vma)
162 return vma->vm_end - vma->vm_start;
163 }
164
165 /*
166 * The ksize() function is only guaranteed to work for pointers
167 * returned by kmalloc(). So handle arbitrary pointers here.
168 */
169 return PAGE_SIZE << compound_order(page);
170 }
171
172 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
173 unsigned long start, int nr_pages, unsigned int foll_flags,
174 struct page **pages, struct vm_area_struct **vmas)
175 {
176 struct vm_area_struct *vma;
177 unsigned long vm_flags;
178 int i;
179
180 /* calculate required read or write permissions.
181 * If FOLL_FORCE is set, we only require the "MAY" flags.
182 */
183 vm_flags = (foll_flags & FOLL_WRITE) ?
184 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
185 vm_flags &= (foll_flags & FOLL_FORCE) ?
186 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
187
188 for (i = 0; i < nr_pages; i++) {
189 vma = find_vma(mm, start);
190 if (!vma)
191 goto finish_or_fault;
192
193 /* protect what we can, including chardevs */
194 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
195 !(vm_flags & vma->vm_flags))
196 goto finish_or_fault;
197
198 if (pages) {
199 pages[i] = virt_to_page(start);
200 if (pages[i])
201 page_cache_get(pages[i]);
202 }
203 if (vmas)
204 vmas[i] = vma;
205 start += PAGE_SIZE;
206 }
207
208 return i;
209
210 finish_or_fault:
211 return i ? : -EFAULT;
212 }
213
214 /*
215 * get a list of pages in an address range belonging to the specified process
216 * and indicate the VMA that covers each page
217 * - this is potentially dodgy as we may end incrementing the page count of a
218 * slab page or a secondary page from a compound page
219 * - don't permit access to VMAs that don't support it, such as I/O mappings
220 */
221 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
222 unsigned long start, int nr_pages, int write, int force,
223 struct page **pages, struct vm_area_struct **vmas)
224 {
225 int flags = 0;
226
227 if (write)
228 flags |= FOLL_WRITE;
229 if (force)
230 flags |= FOLL_FORCE;
231
232 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
233 }
234 EXPORT_SYMBOL(get_user_pages);
235
236 /**
237 * follow_pfn - look up PFN at a user virtual address
238 * @vma: memory mapping
239 * @address: user virtual address
240 * @pfn: location to store found PFN
241 *
242 * Only IO mappings and raw PFN mappings are allowed.
243 *
244 * Returns zero and the pfn at @pfn on success, -ve otherwise.
245 */
246 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
247 unsigned long *pfn)
248 {
249 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
250 return -EINVAL;
251
252 *pfn = address >> PAGE_SHIFT;
253 return 0;
254 }
255 EXPORT_SYMBOL(follow_pfn);
256
257 DEFINE_RWLOCK(vmlist_lock);
258 struct vm_struct *vmlist;
259
260 void vfree(const void *addr)
261 {
262 kfree(addr);
263 }
264 EXPORT_SYMBOL(vfree);
265
266 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
267 {
268 /*
269 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
270 * returns only a logical address.
271 */
272 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
273 }
274 EXPORT_SYMBOL(__vmalloc);
275
276 void *vmalloc_user(unsigned long size)
277 {
278 void *ret;
279
280 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
281 PAGE_KERNEL);
282 if (ret) {
283 struct vm_area_struct *vma;
284
285 down_write(&current->mm->mmap_sem);
286 vma = find_vma(current->mm, (unsigned long)ret);
287 if (vma)
288 vma->vm_flags |= VM_USERMAP;
289 up_write(&current->mm->mmap_sem);
290 }
291
292 return ret;
293 }
294 EXPORT_SYMBOL(vmalloc_user);
295
296 struct page *vmalloc_to_page(const void *addr)
297 {
298 return virt_to_page(addr);
299 }
300 EXPORT_SYMBOL(vmalloc_to_page);
301
302 unsigned long vmalloc_to_pfn(const void *addr)
303 {
304 return page_to_pfn(virt_to_page(addr));
305 }
306 EXPORT_SYMBOL(vmalloc_to_pfn);
307
308 long vread(char *buf, char *addr, unsigned long count)
309 {
310 memcpy(buf, addr, count);
311 return count;
312 }
313
314 long vwrite(char *buf, char *addr, unsigned long count)
315 {
316 /* Don't allow overflow */
317 if ((unsigned long) addr + count < count)
318 count = -(unsigned long) addr;
319
320 memcpy(addr, buf, count);
321 return(count);
322 }
323
324 /*
325 * vmalloc - allocate virtually continguos memory
326 *
327 * @size: allocation size
328 *
329 * Allocate enough pages to cover @size from the page level
330 * allocator and map them into continguos kernel virtual space.
331 *
332 * For tight control over page level allocator and protection flags
333 * use __vmalloc() instead.
334 */
335 void *vmalloc(unsigned long size)
336 {
337 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
338 }
339 EXPORT_SYMBOL(vmalloc);
340
341 void *vmalloc_node(unsigned long size, int node)
342 {
343 return vmalloc(size);
344 }
345 EXPORT_SYMBOL(vmalloc_node);
346
347 #ifndef PAGE_KERNEL_EXEC
348 # define PAGE_KERNEL_EXEC PAGE_KERNEL
349 #endif
350
351 /**
352 * vmalloc_exec - allocate virtually contiguous, executable memory
353 * @size: allocation size
354 *
355 * Kernel-internal function to allocate enough pages to cover @size
356 * the page level allocator and map them into contiguous and
357 * executable kernel virtual space.
358 *
359 * For tight control over page level allocator and protection flags
360 * use __vmalloc() instead.
361 */
362
363 void *vmalloc_exec(unsigned long size)
364 {
365 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
366 }
367
368 /**
369 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
370 * @size: allocation size
371 *
372 * Allocate enough 32bit PA addressable pages to cover @size from the
373 * page level allocator and map them into continguos kernel virtual space.
374 */
375 void *vmalloc_32(unsigned long size)
376 {
377 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
378 }
379 EXPORT_SYMBOL(vmalloc_32);
380
381 /**
382 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
383 * @size: allocation size
384 *
385 * The resulting memory area is 32bit addressable and zeroed so it can be
386 * mapped to userspace without leaking data.
387 *
388 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
389 * remap_vmalloc_range() are permissible.
390 */
391 void *vmalloc_32_user(unsigned long size)
392 {
393 /*
394 * We'll have to sort out the ZONE_DMA bits for 64-bit,
395 * but for now this can simply use vmalloc_user() directly.
396 */
397 return vmalloc_user(size);
398 }
399 EXPORT_SYMBOL(vmalloc_32_user);
400
401 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
402 {
403 BUG();
404 return NULL;
405 }
406 EXPORT_SYMBOL(vmap);
407
408 void vunmap(const void *addr)
409 {
410 BUG();
411 }
412 EXPORT_SYMBOL(vunmap);
413
414 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
415 {
416 BUG();
417 return NULL;
418 }
419 EXPORT_SYMBOL(vm_map_ram);
420
421 void vm_unmap_ram(const void *mem, unsigned int count)
422 {
423 BUG();
424 }
425 EXPORT_SYMBOL(vm_unmap_ram);
426
427 void vm_unmap_aliases(void)
428 {
429 }
430 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
431
432 /*
433 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
434 * have one.
435 */
436 void __attribute__((weak)) vmalloc_sync_all(void)
437 {
438 }
439
440 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
441 struct page *page)
442 {
443 return -EINVAL;
444 }
445 EXPORT_SYMBOL(vm_insert_page);
446
447 /*
448 * sys_brk() for the most part doesn't need the global kernel
449 * lock, except when an application is doing something nasty
450 * like trying to un-brk an area that has already been mapped
451 * to a regular file. in this case, the unmapping will need
452 * to invoke file system routines that need the global lock.
453 */
454 SYSCALL_DEFINE1(brk, unsigned long, brk)
455 {
456 struct mm_struct *mm = current->mm;
457
458 if (brk < mm->start_brk || brk > mm->context.end_brk)
459 return mm->brk;
460
461 if (mm->brk == brk)
462 return mm->brk;
463
464 /*
465 * Always allow shrinking brk
466 */
467 if (brk <= mm->brk) {
468 mm->brk = brk;
469 return brk;
470 }
471
472 /*
473 * Ok, looks good - let it rip.
474 */
475 return mm->brk = brk;
476 }
477
478 /*
479 * initialise the VMA and region record slabs
480 */
481 void __init mmap_init(void)
482 {
483 int ret;
484
485 ret = percpu_counter_init(&vm_committed_as, 0);
486 VM_BUG_ON(ret);
487 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
488 }
489
490 /*
491 * validate the region tree
492 * - the caller must hold the region lock
493 */
494 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
495 static noinline void validate_nommu_regions(void)
496 {
497 struct vm_region *region, *last;
498 struct rb_node *p, *lastp;
499
500 lastp = rb_first(&nommu_region_tree);
501 if (!lastp)
502 return;
503
504 last = rb_entry(lastp, struct vm_region, vm_rb);
505 BUG_ON(unlikely(last->vm_end <= last->vm_start));
506 BUG_ON(unlikely(last->vm_top < last->vm_end));
507
508 while ((p = rb_next(lastp))) {
509 region = rb_entry(p, struct vm_region, vm_rb);
510 last = rb_entry(lastp, struct vm_region, vm_rb);
511
512 BUG_ON(unlikely(region->vm_end <= region->vm_start));
513 BUG_ON(unlikely(region->vm_top < region->vm_end));
514 BUG_ON(unlikely(region->vm_start < last->vm_top));
515
516 lastp = p;
517 }
518 }
519 #else
520 static void validate_nommu_regions(void)
521 {
522 }
523 #endif
524
525 /*
526 * add a region into the global tree
527 */
528 static void add_nommu_region(struct vm_region *region)
529 {
530 struct vm_region *pregion;
531 struct rb_node **p, *parent;
532
533 validate_nommu_regions();
534
535 parent = NULL;
536 p = &nommu_region_tree.rb_node;
537 while (*p) {
538 parent = *p;
539 pregion = rb_entry(parent, struct vm_region, vm_rb);
540 if (region->vm_start < pregion->vm_start)
541 p = &(*p)->rb_left;
542 else if (region->vm_start > pregion->vm_start)
543 p = &(*p)->rb_right;
544 else if (pregion == region)
545 return;
546 else
547 BUG();
548 }
549
550 rb_link_node(&region->vm_rb, parent, p);
551 rb_insert_color(&region->vm_rb, &nommu_region_tree);
552
553 validate_nommu_regions();
554 }
555
556 /*
557 * delete a region from the global tree
558 */
559 static void delete_nommu_region(struct vm_region *region)
560 {
561 BUG_ON(!nommu_region_tree.rb_node);
562
563 validate_nommu_regions();
564 rb_erase(&region->vm_rb, &nommu_region_tree);
565 validate_nommu_regions();
566 }
567
568 /*
569 * free a contiguous series of pages
570 */
571 static void free_page_series(unsigned long from, unsigned long to)
572 {
573 for (; from < to; from += PAGE_SIZE) {
574 struct page *page = virt_to_page(from);
575
576 kdebug("- free %lx", from);
577 atomic_long_dec(&mmap_pages_allocated);
578 if (page_count(page) != 1)
579 kdebug("free page %p: refcount not one: %d",
580 page, page_count(page));
581 put_page(page);
582 }
583 }
584
585 /*
586 * release a reference to a region
587 * - the caller must hold the region semaphore for writing, which this releases
588 * - the region may not have been added to the tree yet, in which case vm_top
589 * will equal vm_start
590 */
591 static void __put_nommu_region(struct vm_region *region)
592 __releases(nommu_region_sem)
593 {
594 kenter("%p{%d}", region, atomic_read(&region->vm_usage));
595
596 BUG_ON(!nommu_region_tree.rb_node);
597
598 if (atomic_dec_and_test(&region->vm_usage)) {
599 if (region->vm_top > region->vm_start)
600 delete_nommu_region(region);
601 up_write(&nommu_region_sem);
602
603 if (region->vm_file)
604 fput(region->vm_file);
605
606 /* IO memory and memory shared directly out of the pagecache
607 * from ramfs/tmpfs mustn't be released here */
608 if (region->vm_flags & VM_MAPPED_COPY) {
609 kdebug("free series");
610 free_page_series(region->vm_start, region->vm_top);
611 }
612 kmem_cache_free(vm_region_jar, region);
613 } else {
614 up_write(&nommu_region_sem);
615 }
616 }
617
618 /*
619 * release a reference to a region
620 */
621 static void put_nommu_region(struct vm_region *region)
622 {
623 down_write(&nommu_region_sem);
624 __put_nommu_region(region);
625 }
626
627 /*
628 * update protection on a vma
629 */
630 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
631 {
632 #ifdef CONFIG_MPU
633 struct mm_struct *mm = vma->vm_mm;
634 long start = vma->vm_start & PAGE_MASK;
635 while (start < vma->vm_end) {
636 protect_page(mm, start, flags);
637 start += PAGE_SIZE;
638 }
639 update_protections(mm);
640 #endif
641 }
642
643 /*
644 * add a VMA into a process's mm_struct in the appropriate place in the list
645 * and tree and add to the address space's page tree also if not an anonymous
646 * page
647 * - should be called with mm->mmap_sem held writelocked
648 */
649 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
650 {
651 struct vm_area_struct *pvma, **pp;
652 struct address_space *mapping;
653 struct rb_node **p, *parent;
654
655 kenter(",%p", vma);
656
657 BUG_ON(!vma->vm_region);
658
659 mm->map_count++;
660 vma->vm_mm = mm;
661
662 protect_vma(vma, vma->vm_flags);
663
664 /* add the VMA to the mapping */
665 if (vma->vm_file) {
666 mapping = vma->vm_file->f_mapping;
667
668 flush_dcache_mmap_lock(mapping);
669 vma_prio_tree_insert(vma, &mapping->i_mmap);
670 flush_dcache_mmap_unlock(mapping);
671 }
672
673 /* add the VMA to the tree */
674 parent = NULL;
675 p = &mm->mm_rb.rb_node;
676 while (*p) {
677 parent = *p;
678 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
679
680 /* sort by: start addr, end addr, VMA struct addr in that order
681 * (the latter is necessary as we may get identical VMAs) */
682 if (vma->vm_start < pvma->vm_start)
683 p = &(*p)->rb_left;
684 else if (vma->vm_start > pvma->vm_start)
685 p = &(*p)->rb_right;
686 else if (vma->vm_end < pvma->vm_end)
687 p = &(*p)->rb_left;
688 else if (vma->vm_end > pvma->vm_end)
689 p = &(*p)->rb_right;
690 else if (vma < pvma)
691 p = &(*p)->rb_left;
692 else if (vma > pvma)
693 p = &(*p)->rb_right;
694 else
695 BUG();
696 }
697
698 rb_link_node(&vma->vm_rb, parent, p);
699 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
700
701 /* add VMA to the VMA list also */
702 for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
703 if (pvma->vm_start > vma->vm_start)
704 break;
705 if (pvma->vm_start < vma->vm_start)
706 continue;
707 if (pvma->vm_end < vma->vm_end)
708 break;
709 }
710
711 vma->vm_next = *pp;
712 *pp = vma;
713 }
714
715 /*
716 * delete a VMA from its owning mm_struct and address space
717 */
718 static void delete_vma_from_mm(struct vm_area_struct *vma)
719 {
720 struct vm_area_struct **pp;
721 struct address_space *mapping;
722 struct mm_struct *mm = vma->vm_mm;
723
724 kenter("%p", vma);
725
726 protect_vma(vma, 0);
727
728 mm->map_count--;
729 if (mm->mmap_cache == vma)
730 mm->mmap_cache = NULL;
731
732 /* remove the VMA from the mapping */
733 if (vma->vm_file) {
734 mapping = vma->vm_file->f_mapping;
735
736 flush_dcache_mmap_lock(mapping);
737 vma_prio_tree_remove(vma, &mapping->i_mmap);
738 flush_dcache_mmap_unlock(mapping);
739 }
740
741 /* remove from the MM's tree and list */
742 rb_erase(&vma->vm_rb, &mm->mm_rb);
743 for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
744 if (*pp == vma) {
745 *pp = vma->vm_next;
746 break;
747 }
748 }
749
750 vma->vm_mm = NULL;
751 }
752
753 /*
754 * destroy a VMA record
755 */
756 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
757 {
758 kenter("%p", vma);
759 if (vma->vm_ops && vma->vm_ops->close)
760 vma->vm_ops->close(vma);
761 if (vma->vm_file) {
762 fput(vma->vm_file);
763 if (vma->vm_flags & VM_EXECUTABLE)
764 removed_exe_file_vma(mm);
765 }
766 put_nommu_region(vma->vm_region);
767 kmem_cache_free(vm_area_cachep, vma);
768 }
769
770 /*
771 * look up the first VMA in which addr resides, NULL if none
772 * - should be called with mm->mmap_sem at least held readlocked
773 */
774 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
775 {
776 struct vm_area_struct *vma;
777 struct rb_node *n = mm->mm_rb.rb_node;
778
779 /* check the cache first */
780 vma = mm->mmap_cache;
781 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
782 return vma;
783
784 /* trawl the tree (there may be multiple mappings in which addr
785 * resides) */
786 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
787 vma = rb_entry(n, struct vm_area_struct, vm_rb);
788 if (vma->vm_start > addr)
789 return NULL;
790 if (vma->vm_end > addr) {
791 mm->mmap_cache = vma;
792 return vma;
793 }
794 }
795
796 return NULL;
797 }
798 EXPORT_SYMBOL(find_vma);
799
800 /*
801 * find a VMA
802 * - we don't extend stack VMAs under NOMMU conditions
803 */
804 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
805 {
806 return find_vma(mm, addr);
807 }
808
809 /*
810 * expand a stack to a given address
811 * - not supported under NOMMU conditions
812 */
813 int expand_stack(struct vm_area_struct *vma, unsigned long address)
814 {
815 return -ENOMEM;
816 }
817
818 /*
819 * look up the first VMA exactly that exactly matches addr
820 * - should be called with mm->mmap_sem at least held readlocked
821 */
822 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
823 unsigned long addr,
824 unsigned long len)
825 {
826 struct vm_area_struct *vma;
827 struct rb_node *n = mm->mm_rb.rb_node;
828 unsigned long end = addr + len;
829
830 /* check the cache first */
831 vma = mm->mmap_cache;
832 if (vma && vma->vm_start == addr && vma->vm_end == end)
833 return vma;
834
835 /* trawl the tree (there may be multiple mappings in which addr
836 * resides) */
837 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
838 vma = rb_entry(n, struct vm_area_struct, vm_rb);
839 if (vma->vm_start < addr)
840 continue;
841 if (vma->vm_start > addr)
842 return NULL;
843 if (vma->vm_end == end) {
844 mm->mmap_cache = vma;
845 return vma;
846 }
847 }
848
849 return NULL;
850 }
851
852 /*
853 * determine whether a mapping should be permitted and, if so, what sort of
854 * mapping we're capable of supporting
855 */
856 static int validate_mmap_request(struct file *file,
857 unsigned long addr,
858 unsigned long len,
859 unsigned long prot,
860 unsigned long flags,
861 unsigned long pgoff,
862 unsigned long *_capabilities)
863 {
864 unsigned long capabilities, rlen;
865 unsigned long reqprot = prot;
866 int ret;
867
868 /* do the simple checks first */
869 if (flags & MAP_FIXED || addr) {
870 printk(KERN_DEBUG
871 "%d: Can't do fixed-address/overlay mmap of RAM\n",
872 current->pid);
873 return -EINVAL;
874 }
875
876 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
877 (flags & MAP_TYPE) != MAP_SHARED)
878 return -EINVAL;
879
880 if (!len)
881 return -EINVAL;
882
883 /* Careful about overflows.. */
884 rlen = PAGE_ALIGN(len);
885 if (!rlen || rlen > TASK_SIZE)
886 return -ENOMEM;
887
888 /* offset overflow? */
889 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
890 return -EOVERFLOW;
891
892 if (file) {
893 /* validate file mapping requests */
894 struct address_space *mapping;
895
896 /* files must support mmap */
897 if (!file->f_op || !file->f_op->mmap)
898 return -ENODEV;
899
900 /* work out if what we've got could possibly be shared
901 * - we support chardevs that provide their own "memory"
902 * - we support files/blockdevs that are memory backed
903 */
904 mapping = file->f_mapping;
905 if (!mapping)
906 mapping = file->f_path.dentry->d_inode->i_mapping;
907
908 capabilities = 0;
909 if (mapping && mapping->backing_dev_info)
910 capabilities = mapping->backing_dev_info->capabilities;
911
912 if (!capabilities) {
913 /* no explicit capabilities set, so assume some
914 * defaults */
915 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
916 case S_IFREG:
917 case S_IFBLK:
918 capabilities = BDI_CAP_MAP_COPY;
919 break;
920
921 case S_IFCHR:
922 capabilities =
923 BDI_CAP_MAP_DIRECT |
924 BDI_CAP_READ_MAP |
925 BDI_CAP_WRITE_MAP;
926 break;
927
928 default:
929 return -EINVAL;
930 }
931 }
932
933 /* eliminate any capabilities that we can't support on this
934 * device */
935 if (!file->f_op->get_unmapped_area)
936 capabilities &= ~BDI_CAP_MAP_DIRECT;
937 if (!file->f_op->read)
938 capabilities &= ~BDI_CAP_MAP_COPY;
939
940 /* The file shall have been opened with read permission. */
941 if (!(file->f_mode & FMODE_READ))
942 return -EACCES;
943
944 if (flags & MAP_SHARED) {
945 /* do checks for writing, appending and locking */
946 if ((prot & PROT_WRITE) &&
947 !(file->f_mode & FMODE_WRITE))
948 return -EACCES;
949
950 if (IS_APPEND(file->f_path.dentry->d_inode) &&
951 (file->f_mode & FMODE_WRITE))
952 return -EACCES;
953
954 if (locks_verify_locked(file->f_path.dentry->d_inode))
955 return -EAGAIN;
956
957 if (!(capabilities & BDI_CAP_MAP_DIRECT))
958 return -ENODEV;
959
960 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
961 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
962 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
963 ) {
964 printk("MAP_SHARED not completely supported on !MMU\n");
965 return -EINVAL;
966 }
967
968 /* we mustn't privatise shared mappings */
969 capabilities &= ~BDI_CAP_MAP_COPY;
970 }
971 else {
972 /* we're going to read the file into private memory we
973 * allocate */
974 if (!(capabilities & BDI_CAP_MAP_COPY))
975 return -ENODEV;
976
977 /* we don't permit a private writable mapping to be
978 * shared with the backing device */
979 if (prot & PROT_WRITE)
980 capabilities &= ~BDI_CAP_MAP_DIRECT;
981 }
982
983 /* handle executable mappings and implied executable
984 * mappings */
985 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
986 if (prot & PROT_EXEC)
987 return -EPERM;
988 }
989 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
990 /* handle implication of PROT_EXEC by PROT_READ */
991 if (current->personality & READ_IMPLIES_EXEC) {
992 if (capabilities & BDI_CAP_EXEC_MAP)
993 prot |= PROT_EXEC;
994 }
995 }
996 else if ((prot & PROT_READ) &&
997 (prot & PROT_EXEC) &&
998 !(capabilities & BDI_CAP_EXEC_MAP)
999 ) {
1000 /* backing file is not executable, try to copy */
1001 capabilities &= ~BDI_CAP_MAP_DIRECT;
1002 }
1003 }
1004 else {
1005 /* anonymous mappings are always memory backed and can be
1006 * privately mapped
1007 */
1008 capabilities = BDI_CAP_MAP_COPY;
1009
1010 /* handle PROT_EXEC implication by PROT_READ */
1011 if ((prot & PROT_READ) &&
1012 (current->personality & READ_IMPLIES_EXEC))
1013 prot |= PROT_EXEC;
1014 }
1015
1016 /* allow the security API to have its say */
1017 ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1018 if (ret < 0)
1019 return ret;
1020
1021 /* looks okay */
1022 *_capabilities = capabilities;
1023 return 0;
1024 }
1025
1026 /*
1027 * we've determined that we can make the mapping, now translate what we
1028 * now know into VMA flags
1029 */
1030 static unsigned long determine_vm_flags(struct file *file,
1031 unsigned long prot,
1032 unsigned long flags,
1033 unsigned long capabilities)
1034 {
1035 unsigned long vm_flags;
1036
1037 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1038 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1039 /* vm_flags |= mm->def_flags; */
1040
1041 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1042 /* attempt to share read-only copies of mapped file chunks */
1043 if (file && !(prot & PROT_WRITE))
1044 vm_flags |= VM_MAYSHARE;
1045 }
1046 else {
1047 /* overlay a shareable mapping on the backing device or inode
1048 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1049 * romfs/cramfs */
1050 if (flags & MAP_SHARED)
1051 vm_flags |= VM_MAYSHARE | VM_SHARED;
1052 else if ((((vm_flags & capabilities) ^ vm_flags) & BDI_CAP_VMFLAGS) == 0)
1053 vm_flags |= VM_MAYSHARE;
1054 }
1055
1056 /* refuse to let anyone share private mappings with this process if
1057 * it's being traced - otherwise breakpoints set in it may interfere
1058 * with another untraced process
1059 */
1060 if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1061 vm_flags &= ~VM_MAYSHARE;
1062
1063 return vm_flags;
1064 }
1065
1066 /*
1067 * set up a shared mapping on a file (the driver or filesystem provides and
1068 * pins the storage)
1069 */
1070 static int do_mmap_shared_file(struct vm_area_struct *vma)
1071 {
1072 int ret;
1073
1074 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1075 if (ret == 0) {
1076 vma->vm_region->vm_top = vma->vm_region->vm_end;
1077 return ret;
1078 }
1079 if (ret != -ENOSYS)
1080 return ret;
1081
1082 /* getting an ENOSYS error indicates that direct mmap isn't
1083 * possible (as opposed to tried but failed) so we'll fall
1084 * through to making a private copy of the data and mapping
1085 * that if we can */
1086 return -ENODEV;
1087 }
1088
1089 /*
1090 * set up a private mapping or an anonymous shared mapping
1091 */
1092 static int do_mmap_private(struct vm_area_struct *vma,
1093 struct vm_region *region,
1094 unsigned long len)
1095 {
1096 struct page *pages;
1097 unsigned long total, point, n, rlen;
1098 void *base;
1099 int ret, order;
1100
1101 /* invoke the file's mapping function so that it can keep track of
1102 * shared mappings on devices or memory
1103 * - VM_MAYSHARE will be set if it may attempt to share
1104 */
1105 if (vma->vm_file) {
1106 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1107 if (ret == 0) {
1108 /* shouldn't return success if we're not sharing */
1109 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1110 vma->vm_region->vm_top = vma->vm_region->vm_end;
1111 return ret;
1112 }
1113 if (ret != -ENOSYS)
1114 return ret;
1115
1116 /* getting an ENOSYS error indicates that direct mmap isn't
1117 * possible (as opposed to tried but failed) so we'll try to
1118 * make a private copy of the data and map that instead */
1119 }
1120
1121 rlen = PAGE_ALIGN(len);
1122
1123 /* allocate some memory to hold the mapping
1124 * - note that this may not return a page-aligned address if the object
1125 * we're allocating is smaller than a page
1126 */
1127 order = get_order(rlen);
1128 kdebug("alloc order %d for %lx", order, len);
1129
1130 pages = alloc_pages(GFP_KERNEL, order);
1131 if (!pages)
1132 goto enomem;
1133
1134 total = 1 << order;
1135 atomic_long_add(total, &mmap_pages_allocated);
1136
1137 point = rlen >> PAGE_SHIFT;
1138
1139 /* we allocated a power-of-2 sized page set, so we may want to trim off
1140 * the excess */
1141 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1142 while (total > point) {
1143 order = ilog2(total - point);
1144 n = 1 << order;
1145 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1146 atomic_long_sub(n, &mmap_pages_allocated);
1147 total -= n;
1148 set_page_refcounted(pages + total);
1149 __free_pages(pages + total, order);
1150 }
1151 }
1152
1153 for (point = 1; point < total; point++)
1154 set_page_refcounted(&pages[point]);
1155
1156 base = page_address(pages);
1157 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1158 region->vm_start = (unsigned long) base;
1159 region->vm_end = region->vm_start + rlen;
1160 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1161
1162 vma->vm_start = region->vm_start;
1163 vma->vm_end = region->vm_start + len;
1164
1165 if (vma->vm_file) {
1166 /* read the contents of a file into the copy */
1167 mm_segment_t old_fs;
1168 loff_t fpos;
1169
1170 fpos = vma->vm_pgoff;
1171 fpos <<= PAGE_SHIFT;
1172
1173 old_fs = get_fs();
1174 set_fs(KERNEL_DS);
1175 ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1176 set_fs(old_fs);
1177
1178 if (ret < 0)
1179 goto error_free;
1180
1181 /* clear the last little bit */
1182 if (ret < rlen)
1183 memset(base + ret, 0, rlen - ret);
1184
1185 } else {
1186 /* if it's an anonymous mapping, then just clear it */
1187 memset(base, 0, rlen);
1188 }
1189
1190 return 0;
1191
1192 error_free:
1193 free_page_series(region->vm_start, region->vm_end);
1194 region->vm_start = vma->vm_start = 0;
1195 region->vm_end = vma->vm_end = 0;
1196 region->vm_top = 0;
1197 return ret;
1198
1199 enomem:
1200 printk("Allocation of length %lu from process %d (%s) failed\n",
1201 len, current->pid, current->comm);
1202 show_free_areas();
1203 return -ENOMEM;
1204 }
1205
1206 /*
1207 * handle mapping creation for uClinux
1208 */
1209 unsigned long do_mmap_pgoff(struct file *file,
1210 unsigned long addr,
1211 unsigned long len,
1212 unsigned long prot,
1213 unsigned long flags,
1214 unsigned long pgoff)
1215 {
1216 struct vm_area_struct *vma;
1217 struct vm_region *region;
1218 struct rb_node *rb;
1219 unsigned long capabilities, vm_flags, result;
1220 int ret;
1221
1222 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1223
1224 if (!(flags & MAP_FIXED))
1225 addr = round_hint_to_min(addr);
1226
1227 /* decide whether we should attempt the mapping, and if so what sort of
1228 * mapping */
1229 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1230 &capabilities);
1231 if (ret < 0) {
1232 kleave(" = %d [val]", ret);
1233 return ret;
1234 }
1235
1236 /* we've determined that we can make the mapping, now translate what we
1237 * now know into VMA flags */
1238 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1239
1240 /* we're going to need to record the mapping */
1241 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1242 if (!region)
1243 goto error_getting_region;
1244
1245 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1246 if (!vma)
1247 goto error_getting_vma;
1248
1249 atomic_set(&region->vm_usage, 1);
1250 region->vm_flags = vm_flags;
1251 region->vm_pgoff = pgoff;
1252
1253 INIT_LIST_HEAD(&vma->anon_vma_node);
1254 vma->vm_flags = vm_flags;
1255 vma->vm_pgoff = pgoff;
1256
1257 if (file) {
1258 region->vm_file = file;
1259 get_file(file);
1260 vma->vm_file = file;
1261 get_file(file);
1262 if (vm_flags & VM_EXECUTABLE) {
1263 added_exe_file_vma(current->mm);
1264 vma->vm_mm = current->mm;
1265 }
1266 }
1267
1268 down_write(&nommu_region_sem);
1269
1270 /* if we want to share, we need to check for regions created by other
1271 * mmap() calls that overlap with our proposed mapping
1272 * - we can only share with a superset match on most regular files
1273 * - shared mappings on character devices and memory backed files are
1274 * permitted to overlap inexactly as far as we are concerned for in
1275 * these cases, sharing is handled in the driver or filesystem rather
1276 * than here
1277 */
1278 if (vm_flags & VM_MAYSHARE) {
1279 struct vm_region *pregion;
1280 unsigned long pglen, rpglen, pgend, rpgend, start;
1281
1282 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1283 pgend = pgoff + pglen;
1284
1285 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1286 pregion = rb_entry(rb, struct vm_region, vm_rb);
1287
1288 if (!(pregion->vm_flags & VM_MAYSHARE))
1289 continue;
1290
1291 /* search for overlapping mappings on the same file */
1292 if (pregion->vm_file->f_path.dentry->d_inode !=
1293 file->f_path.dentry->d_inode)
1294 continue;
1295
1296 if (pregion->vm_pgoff >= pgend)
1297 continue;
1298
1299 rpglen = pregion->vm_end - pregion->vm_start;
1300 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1301 rpgend = pregion->vm_pgoff + rpglen;
1302 if (pgoff >= rpgend)
1303 continue;
1304
1305 /* handle inexactly overlapping matches between
1306 * mappings */
1307 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1308 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1309 /* new mapping is not a subset of the region */
1310 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1311 goto sharing_violation;
1312 continue;
1313 }
1314
1315 /* we've found a region we can share */
1316 atomic_inc(&pregion->vm_usage);
1317 vma->vm_region = pregion;
1318 start = pregion->vm_start;
1319 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1320 vma->vm_start = start;
1321 vma->vm_end = start + len;
1322
1323 if (pregion->vm_flags & VM_MAPPED_COPY) {
1324 kdebug("share copy");
1325 vma->vm_flags |= VM_MAPPED_COPY;
1326 } else {
1327 kdebug("share mmap");
1328 ret = do_mmap_shared_file(vma);
1329 if (ret < 0) {
1330 vma->vm_region = NULL;
1331 vma->vm_start = 0;
1332 vma->vm_end = 0;
1333 atomic_dec(&pregion->vm_usage);
1334 pregion = NULL;
1335 goto error_just_free;
1336 }
1337 }
1338 fput(region->vm_file);
1339 kmem_cache_free(vm_region_jar, region);
1340 region = pregion;
1341 result = start;
1342 goto share;
1343 }
1344
1345 /* obtain the address at which to make a shared mapping
1346 * - this is the hook for quasi-memory character devices to
1347 * tell us the location of a shared mapping
1348 */
1349 if (file && file->f_op->get_unmapped_area) {
1350 addr = file->f_op->get_unmapped_area(file, addr, len,
1351 pgoff, flags);
1352 if (IS_ERR((void *) addr)) {
1353 ret = addr;
1354 if (ret != (unsigned long) -ENOSYS)
1355 goto error_just_free;
1356
1357 /* the driver refused to tell us where to site
1358 * the mapping so we'll have to attempt to copy
1359 * it */
1360 ret = (unsigned long) -ENODEV;
1361 if (!(capabilities & BDI_CAP_MAP_COPY))
1362 goto error_just_free;
1363
1364 capabilities &= ~BDI_CAP_MAP_DIRECT;
1365 } else {
1366 vma->vm_start = region->vm_start = addr;
1367 vma->vm_end = region->vm_end = addr + len;
1368 }
1369 }
1370 }
1371
1372 vma->vm_region = region;
1373 add_nommu_region(region);
1374
1375 /* set up the mapping */
1376 if (file && vma->vm_flags & VM_SHARED)
1377 ret = do_mmap_shared_file(vma);
1378 else
1379 ret = do_mmap_private(vma, region, len);
1380 if (ret < 0)
1381 goto error_put_region;
1382
1383 /* okay... we have a mapping; now we have to register it */
1384 result = vma->vm_start;
1385
1386 current->mm->total_vm += len >> PAGE_SHIFT;
1387
1388 share:
1389 add_vma_to_mm(current->mm, vma);
1390
1391 up_write(&nommu_region_sem);
1392
1393 if (prot & PROT_EXEC)
1394 flush_icache_range(result, result + len);
1395
1396 kleave(" = %lx", result);
1397 return result;
1398
1399 error_put_region:
1400 __put_nommu_region(region);
1401 if (vma) {
1402 if (vma->vm_file) {
1403 fput(vma->vm_file);
1404 if (vma->vm_flags & VM_EXECUTABLE)
1405 removed_exe_file_vma(vma->vm_mm);
1406 }
1407 kmem_cache_free(vm_area_cachep, vma);
1408 }
1409 kleave(" = %d [pr]", ret);
1410 return ret;
1411
1412 error_just_free:
1413 up_write(&nommu_region_sem);
1414 error:
1415 fput(region->vm_file);
1416 kmem_cache_free(vm_region_jar, region);
1417 fput(vma->vm_file);
1418 if (vma->vm_flags & VM_EXECUTABLE)
1419 removed_exe_file_vma(vma->vm_mm);
1420 kmem_cache_free(vm_area_cachep, vma);
1421 kleave(" = %d", ret);
1422 return ret;
1423
1424 sharing_violation:
1425 up_write(&nommu_region_sem);
1426 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1427 ret = -EINVAL;
1428 goto error;
1429
1430 error_getting_vma:
1431 kmem_cache_free(vm_region_jar, region);
1432 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1433 " from process %d failed\n",
1434 len, current->pid);
1435 show_free_areas();
1436 return -ENOMEM;
1437
1438 error_getting_region:
1439 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1440 " from process %d failed\n",
1441 len, current->pid);
1442 show_free_areas();
1443 return -ENOMEM;
1444 }
1445 EXPORT_SYMBOL(do_mmap_pgoff);
1446
1447 /*
1448 * split a vma into two pieces at address 'addr', a new vma is allocated either
1449 * for the first part or the tail.
1450 */
1451 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1452 unsigned long addr, int new_below)
1453 {
1454 struct vm_area_struct *new;
1455 struct vm_region *region;
1456 unsigned long npages;
1457
1458 kenter("");
1459
1460 /* we're only permitted to split anonymous regions that have a single
1461 * owner */
1462 if (vma->vm_file ||
1463 atomic_read(&vma->vm_region->vm_usage) != 1)
1464 return -ENOMEM;
1465
1466 if (mm->map_count >= sysctl_max_map_count)
1467 return -ENOMEM;
1468
1469 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1470 if (!region)
1471 return -ENOMEM;
1472
1473 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1474 if (!new) {
1475 kmem_cache_free(vm_region_jar, region);
1476 return -ENOMEM;
1477 }
1478
1479 /* most fields are the same, copy all, and then fixup */
1480 *new = *vma;
1481 *region = *vma->vm_region;
1482 new->vm_region = region;
1483
1484 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1485
1486 if (new_below) {
1487 region->vm_top = region->vm_end = new->vm_end = addr;
1488 } else {
1489 region->vm_start = new->vm_start = addr;
1490 region->vm_pgoff = new->vm_pgoff += npages;
1491 }
1492
1493 if (new->vm_ops && new->vm_ops->open)
1494 new->vm_ops->open(new);
1495
1496 delete_vma_from_mm(vma);
1497 down_write(&nommu_region_sem);
1498 delete_nommu_region(vma->vm_region);
1499 if (new_below) {
1500 vma->vm_region->vm_start = vma->vm_start = addr;
1501 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1502 } else {
1503 vma->vm_region->vm_end = vma->vm_end = addr;
1504 vma->vm_region->vm_top = addr;
1505 }
1506 add_nommu_region(vma->vm_region);
1507 add_nommu_region(new->vm_region);
1508 up_write(&nommu_region_sem);
1509 add_vma_to_mm(mm, vma);
1510 add_vma_to_mm(mm, new);
1511 return 0;
1512 }
1513
1514 /*
1515 * shrink a VMA by removing the specified chunk from either the beginning or
1516 * the end
1517 */
1518 static int shrink_vma(struct mm_struct *mm,
1519 struct vm_area_struct *vma,
1520 unsigned long from, unsigned long to)
1521 {
1522 struct vm_region *region;
1523
1524 kenter("");
1525
1526 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1527 * and list */
1528 delete_vma_from_mm(vma);
1529 if (from > vma->vm_start)
1530 vma->vm_end = from;
1531 else
1532 vma->vm_start = to;
1533 add_vma_to_mm(mm, vma);
1534
1535 /* cut the backing region down to size */
1536 region = vma->vm_region;
1537 BUG_ON(atomic_read(&region->vm_usage) != 1);
1538
1539 down_write(&nommu_region_sem);
1540 delete_nommu_region(region);
1541 if (from > region->vm_start) {
1542 to = region->vm_top;
1543 region->vm_top = region->vm_end = from;
1544 } else {
1545 region->vm_start = to;
1546 }
1547 add_nommu_region(region);
1548 up_write(&nommu_region_sem);
1549
1550 free_page_series(from, to);
1551 return 0;
1552 }
1553
1554 /*
1555 * release a mapping
1556 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1557 * VMA, though it need not cover the whole VMA
1558 */
1559 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1560 {
1561 struct vm_area_struct *vma;
1562 struct rb_node *rb;
1563 unsigned long end = start + len;
1564 int ret;
1565
1566 kenter(",%lx,%zx", start, len);
1567
1568 if (len == 0)
1569 return -EINVAL;
1570
1571 /* find the first potentially overlapping VMA */
1572 vma = find_vma(mm, start);
1573 if (!vma) {
1574 static int limit = 0;
1575 if (limit < 5) {
1576 printk(KERN_WARNING
1577 "munmap of memory not mmapped by process %d"
1578 " (%s): 0x%lx-0x%lx\n",
1579 current->pid, current->comm,
1580 start, start + len - 1);
1581 limit++;
1582 }
1583 return -EINVAL;
1584 }
1585
1586 /* we're allowed to split an anonymous VMA but not a file-backed one */
1587 if (vma->vm_file) {
1588 do {
1589 if (start > vma->vm_start) {
1590 kleave(" = -EINVAL [miss]");
1591 return -EINVAL;
1592 }
1593 if (end == vma->vm_end)
1594 goto erase_whole_vma;
1595 rb = rb_next(&vma->vm_rb);
1596 vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1597 } while (rb);
1598 kleave(" = -EINVAL [split file]");
1599 return -EINVAL;
1600 } else {
1601 /* the chunk must be a subset of the VMA found */
1602 if (start == vma->vm_start && end == vma->vm_end)
1603 goto erase_whole_vma;
1604 if (start < vma->vm_start || end > vma->vm_end) {
1605 kleave(" = -EINVAL [superset]");
1606 return -EINVAL;
1607 }
1608 if (start & ~PAGE_MASK) {
1609 kleave(" = -EINVAL [unaligned start]");
1610 return -EINVAL;
1611 }
1612 if (end != vma->vm_end && end & ~PAGE_MASK) {
1613 kleave(" = -EINVAL [unaligned split]");
1614 return -EINVAL;
1615 }
1616 if (start != vma->vm_start && end != vma->vm_end) {
1617 ret = split_vma(mm, vma, start, 1);
1618 if (ret < 0) {
1619 kleave(" = %d [split]", ret);
1620 return ret;
1621 }
1622 }
1623 return shrink_vma(mm, vma, start, end);
1624 }
1625
1626 erase_whole_vma:
1627 delete_vma_from_mm(vma);
1628 delete_vma(mm, vma);
1629 kleave(" = 0");
1630 return 0;
1631 }
1632 EXPORT_SYMBOL(do_munmap);
1633
1634 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1635 {
1636 int ret;
1637 struct mm_struct *mm = current->mm;
1638
1639 down_write(&mm->mmap_sem);
1640 ret = do_munmap(mm, addr, len);
1641 up_write(&mm->mmap_sem);
1642 return ret;
1643 }
1644
1645 /*
1646 * release all the mappings made in a process's VM space
1647 */
1648 void exit_mmap(struct mm_struct *mm)
1649 {
1650 struct vm_area_struct *vma;
1651
1652 if (!mm)
1653 return;
1654
1655 kenter("");
1656
1657 mm->total_vm = 0;
1658
1659 while ((vma = mm->mmap)) {
1660 mm->mmap = vma->vm_next;
1661 delete_vma_from_mm(vma);
1662 delete_vma(mm, vma);
1663 }
1664
1665 kleave("");
1666 }
1667
1668 unsigned long do_brk(unsigned long addr, unsigned long len)
1669 {
1670 return -ENOMEM;
1671 }
1672
1673 /*
1674 * expand (or shrink) an existing mapping, potentially moving it at the same
1675 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1676 *
1677 * under NOMMU conditions, we only permit changing a mapping's size, and only
1678 * as long as it stays within the region allocated by do_mmap_private() and the
1679 * block is not shareable
1680 *
1681 * MREMAP_FIXED is not supported under NOMMU conditions
1682 */
1683 unsigned long do_mremap(unsigned long addr,
1684 unsigned long old_len, unsigned long new_len,
1685 unsigned long flags, unsigned long new_addr)
1686 {
1687 struct vm_area_struct *vma;
1688
1689 /* insanity checks first */
1690 if (old_len == 0 || new_len == 0)
1691 return (unsigned long) -EINVAL;
1692
1693 if (addr & ~PAGE_MASK)
1694 return -EINVAL;
1695
1696 if (flags & MREMAP_FIXED && new_addr != addr)
1697 return (unsigned long) -EINVAL;
1698
1699 vma = find_vma_exact(current->mm, addr, old_len);
1700 if (!vma)
1701 return (unsigned long) -EINVAL;
1702
1703 if (vma->vm_end != vma->vm_start + old_len)
1704 return (unsigned long) -EFAULT;
1705
1706 if (vma->vm_flags & VM_MAYSHARE)
1707 return (unsigned long) -EPERM;
1708
1709 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1710 return (unsigned long) -ENOMEM;
1711
1712 /* all checks complete - do it */
1713 vma->vm_end = vma->vm_start + new_len;
1714 return vma->vm_start;
1715 }
1716 EXPORT_SYMBOL(do_mremap);
1717
1718 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1719 unsigned long, new_len, unsigned long, flags,
1720 unsigned long, new_addr)
1721 {
1722 unsigned long ret;
1723
1724 down_write(&current->mm->mmap_sem);
1725 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1726 up_write(&current->mm->mmap_sem);
1727 return ret;
1728 }
1729
1730 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1731 unsigned int foll_flags)
1732 {
1733 return NULL;
1734 }
1735
1736 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1737 unsigned long to, unsigned long size, pgprot_t prot)
1738 {
1739 vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1740 return 0;
1741 }
1742 EXPORT_SYMBOL(remap_pfn_range);
1743
1744 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1745 unsigned long pgoff)
1746 {
1747 unsigned int size = vma->vm_end - vma->vm_start;
1748
1749 if (!(vma->vm_flags & VM_USERMAP))
1750 return -EINVAL;
1751
1752 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1753 vma->vm_end = vma->vm_start + size;
1754
1755 return 0;
1756 }
1757 EXPORT_SYMBOL(remap_vmalloc_range);
1758
1759 void swap_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
1760 {
1761 }
1762
1763 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1764 unsigned long len, unsigned long pgoff, unsigned long flags)
1765 {
1766 return -ENOMEM;
1767 }
1768
1769 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1770 {
1771 }
1772
1773 void unmap_mapping_range(struct address_space *mapping,
1774 loff_t const holebegin, loff_t const holelen,
1775 int even_cows)
1776 {
1777 }
1778 EXPORT_SYMBOL(unmap_mapping_range);
1779
1780 /*
1781 * ask for an unmapped area at which to create a mapping on a file
1782 */
1783 unsigned long get_unmapped_area(struct file *file, unsigned long addr,
1784 unsigned long len, unsigned long pgoff,
1785 unsigned long flags)
1786 {
1787 unsigned long (*get_area)(struct file *, unsigned long, unsigned long,
1788 unsigned long, unsigned long);
1789
1790 get_area = current->mm->get_unmapped_area;
1791 if (file && file->f_op && file->f_op->get_unmapped_area)
1792 get_area = file->f_op->get_unmapped_area;
1793
1794 if (!get_area)
1795 return -ENOSYS;
1796
1797 return get_area(file, addr, len, pgoff, flags);
1798 }
1799 EXPORT_SYMBOL(get_unmapped_area);
1800
1801 /*
1802 * Check that a process has enough memory to allocate a new virtual
1803 * mapping. 0 means there is enough memory for the allocation to
1804 * succeed and -ENOMEM implies there is not.
1805 *
1806 * We currently support three overcommit policies, which are set via the
1807 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1808 *
1809 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1810 * Additional code 2002 Jul 20 by Robert Love.
1811 *
1812 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1813 *
1814 * Note this is a helper function intended to be used by LSMs which
1815 * wish to use this logic.
1816 */
1817 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1818 {
1819 unsigned long free, allowed;
1820
1821 vm_acct_memory(pages);
1822
1823 /*
1824 * Sometimes we want to use more memory than we have
1825 */
1826 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1827 return 0;
1828
1829 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1830 unsigned long n;
1831
1832 free = global_page_state(NR_FILE_PAGES);
1833 free += nr_swap_pages;
1834
1835 /*
1836 * Any slabs which are created with the
1837 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1838 * which are reclaimable, under pressure. The dentry
1839 * cache and most inode caches should fall into this
1840 */
1841 free += global_page_state(NR_SLAB_RECLAIMABLE);
1842
1843 /*
1844 * Leave the last 3% for root
1845 */
1846 if (!cap_sys_admin)
1847 free -= free / 32;
1848
1849 if (free > pages)
1850 return 0;
1851
1852 /*
1853 * nr_free_pages() is very expensive on large systems,
1854 * only call if we're about to fail.
1855 */
1856 n = nr_free_pages();
1857
1858 /*
1859 * Leave reserved pages. The pages are not for anonymous pages.
1860 */
1861 if (n <= totalreserve_pages)
1862 goto error;
1863 else
1864 n -= totalreserve_pages;
1865
1866 /*
1867 * Leave the last 3% for root
1868 */
1869 if (!cap_sys_admin)
1870 n -= n / 32;
1871 free += n;
1872
1873 if (free > pages)
1874 return 0;
1875
1876 goto error;
1877 }
1878
1879 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1880 /*
1881 * Leave the last 3% for root
1882 */
1883 if (!cap_sys_admin)
1884 allowed -= allowed / 32;
1885 allowed += total_swap_pages;
1886
1887 /* Don't let a single process grow too big:
1888 leave 3% of the size of this process for other processes */
1889 if (mm)
1890 allowed -= mm->total_vm / 32;
1891
1892 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1893 return 0;
1894
1895 error:
1896 vm_unacct_memory(pages);
1897
1898 return -ENOMEM;
1899 }
1900
1901 int in_gate_area_no_task(unsigned long addr)
1902 {
1903 return 0;
1904 }
1905
1906 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1907 {
1908 BUG();
1909 return 0;
1910 }
1911 EXPORT_SYMBOL(filemap_fault);
1912
1913 /*
1914 * Access another process' address space.
1915 * - source/target buffer must be kernel space
1916 */
1917 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
1918 {
1919 struct vm_area_struct *vma;
1920 struct mm_struct *mm;
1921
1922 if (addr + len < addr)
1923 return 0;
1924
1925 mm = get_task_mm(tsk);
1926 if (!mm)
1927 return 0;
1928
1929 down_read(&mm->mmap_sem);
1930
1931 /* the access must start within one of the target process's mappings */
1932 vma = find_vma(mm, addr);
1933 if (vma) {
1934 /* don't overrun this mapping */
1935 if (addr + len >= vma->vm_end)
1936 len = vma->vm_end - addr;
1937
1938 /* only read or write mappings where it is permitted */
1939 if (write && vma->vm_flags & VM_MAYWRITE)
1940 len -= copy_to_user((void *) addr, buf, len);
1941 else if (!write && vma->vm_flags & VM_MAYREAD)
1942 len -= copy_from_user(buf, (void *) addr, len);
1943 else
1944 len = 0;
1945 } else {
1946 len = 0;
1947 }
1948
1949 up_read(&mm->mmap_sem);
1950 mmput(mm);
1951 return len;
1952 }
This page took 0.068362 seconds and 5 git commands to generate.