Merge branch 'next' of git://git.infradead.org/users/vkoul/slave-dma
[deliverable/linux.git] / mm / nommu.c
1 /*
2 * linux/mm/nommu.c
3 *
4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
6 *
7 * See Documentation/nommu-mmap.txt
8 *
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14 */
15
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/mount.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/audit.h>
32
33 #include <asm/uaccess.h>
34 #include <asm/tlb.h>
35 #include <asm/tlbflush.h>
36 #include <asm/mmu_context.h>
37 #include "internal.h"
38
39 #if 0
40 #define kenter(FMT, ...) \
41 printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
42 #define kleave(FMT, ...) \
43 printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
44 #define kdebug(FMT, ...) \
45 printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
46 #else
47 #define kenter(FMT, ...) \
48 no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
49 #define kleave(FMT, ...) \
50 no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
51 #define kdebug(FMT, ...) \
52 no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
53 #endif
54
55 void *high_memory;
56 struct page *mem_map;
57 unsigned long max_mapnr;
58 unsigned long num_physpages;
59 unsigned long highest_memmap_pfn;
60 struct percpu_counter vm_committed_as;
61 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
62 int sysctl_overcommit_ratio = 50; /* default is 50% */
63 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
64 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
65 int heap_stack_gap = 0;
66
67 atomic_long_t mmap_pages_allocated;
68
69 EXPORT_SYMBOL(mem_map);
70 EXPORT_SYMBOL(num_physpages);
71
72 /* list of mapped, potentially shareable regions */
73 static struct kmem_cache *vm_region_jar;
74 struct rb_root nommu_region_tree = RB_ROOT;
75 DECLARE_RWSEM(nommu_region_sem);
76
77 const struct vm_operations_struct generic_file_vm_ops = {
78 };
79
80 /*
81 * Return the total memory allocated for this pointer, not
82 * just what the caller asked for.
83 *
84 * Doesn't have to be accurate, i.e. may have races.
85 */
86 unsigned int kobjsize(const void *objp)
87 {
88 struct page *page;
89
90 /*
91 * If the object we have should not have ksize performed on it,
92 * return size of 0
93 */
94 if (!objp || !virt_addr_valid(objp))
95 return 0;
96
97 page = virt_to_head_page(objp);
98
99 /*
100 * If the allocator sets PageSlab, we know the pointer came from
101 * kmalloc().
102 */
103 if (PageSlab(page))
104 return ksize(objp);
105
106 /*
107 * If it's not a compound page, see if we have a matching VMA
108 * region. This test is intentionally done in reverse order,
109 * so if there's no VMA, we still fall through and hand back
110 * PAGE_SIZE for 0-order pages.
111 */
112 if (!PageCompound(page)) {
113 struct vm_area_struct *vma;
114
115 vma = find_vma(current->mm, (unsigned long)objp);
116 if (vma)
117 return vma->vm_end - vma->vm_start;
118 }
119
120 /*
121 * The ksize() function is only guaranteed to work for pointers
122 * returned by kmalloc(). So handle arbitrary pointers here.
123 */
124 return PAGE_SIZE << compound_order(page);
125 }
126
127 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
128 unsigned long start, int nr_pages, unsigned int foll_flags,
129 struct page **pages, struct vm_area_struct **vmas,
130 int *retry)
131 {
132 struct vm_area_struct *vma;
133 unsigned long vm_flags;
134 int i;
135
136 /* calculate required read or write permissions.
137 * If FOLL_FORCE is set, we only require the "MAY" flags.
138 */
139 vm_flags = (foll_flags & FOLL_WRITE) ?
140 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
141 vm_flags &= (foll_flags & FOLL_FORCE) ?
142 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
143
144 for (i = 0; i < nr_pages; i++) {
145 vma = find_vma(mm, start);
146 if (!vma)
147 goto finish_or_fault;
148
149 /* protect what we can, including chardevs */
150 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
151 !(vm_flags & vma->vm_flags))
152 goto finish_or_fault;
153
154 if (pages) {
155 pages[i] = virt_to_page(start);
156 if (pages[i])
157 page_cache_get(pages[i]);
158 }
159 if (vmas)
160 vmas[i] = vma;
161 start = (start + PAGE_SIZE) & PAGE_MASK;
162 }
163
164 return i;
165
166 finish_or_fault:
167 return i ? : -EFAULT;
168 }
169
170 /*
171 * get a list of pages in an address range belonging to the specified process
172 * and indicate the VMA that covers each page
173 * - this is potentially dodgy as we may end incrementing the page count of a
174 * slab page or a secondary page from a compound page
175 * - don't permit access to VMAs that don't support it, such as I/O mappings
176 */
177 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
178 unsigned long start, int nr_pages, int write, int force,
179 struct page **pages, struct vm_area_struct **vmas)
180 {
181 int flags = 0;
182
183 if (write)
184 flags |= FOLL_WRITE;
185 if (force)
186 flags |= FOLL_FORCE;
187
188 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
189 NULL);
190 }
191 EXPORT_SYMBOL(get_user_pages);
192
193 /**
194 * follow_pfn - look up PFN at a user virtual address
195 * @vma: memory mapping
196 * @address: user virtual address
197 * @pfn: location to store found PFN
198 *
199 * Only IO mappings and raw PFN mappings are allowed.
200 *
201 * Returns zero and the pfn at @pfn on success, -ve otherwise.
202 */
203 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
204 unsigned long *pfn)
205 {
206 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
207 return -EINVAL;
208
209 *pfn = address >> PAGE_SHIFT;
210 return 0;
211 }
212 EXPORT_SYMBOL(follow_pfn);
213
214 DEFINE_RWLOCK(vmlist_lock);
215 struct vm_struct *vmlist;
216
217 void vfree(const void *addr)
218 {
219 kfree(addr);
220 }
221 EXPORT_SYMBOL(vfree);
222
223 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
224 {
225 /*
226 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
227 * returns only a logical address.
228 */
229 return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
230 }
231 EXPORT_SYMBOL(__vmalloc);
232
233 void *vmalloc_user(unsigned long size)
234 {
235 void *ret;
236
237 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
238 PAGE_KERNEL);
239 if (ret) {
240 struct vm_area_struct *vma;
241
242 down_write(&current->mm->mmap_sem);
243 vma = find_vma(current->mm, (unsigned long)ret);
244 if (vma)
245 vma->vm_flags |= VM_USERMAP;
246 up_write(&current->mm->mmap_sem);
247 }
248
249 return ret;
250 }
251 EXPORT_SYMBOL(vmalloc_user);
252
253 struct page *vmalloc_to_page(const void *addr)
254 {
255 return virt_to_page(addr);
256 }
257 EXPORT_SYMBOL(vmalloc_to_page);
258
259 unsigned long vmalloc_to_pfn(const void *addr)
260 {
261 return page_to_pfn(virt_to_page(addr));
262 }
263 EXPORT_SYMBOL(vmalloc_to_pfn);
264
265 long vread(char *buf, char *addr, unsigned long count)
266 {
267 memcpy(buf, addr, count);
268 return count;
269 }
270
271 long vwrite(char *buf, char *addr, unsigned long count)
272 {
273 /* Don't allow overflow */
274 if ((unsigned long) addr + count < count)
275 count = -(unsigned long) addr;
276
277 memcpy(addr, buf, count);
278 return(count);
279 }
280
281 /*
282 * vmalloc - allocate virtually continguos memory
283 *
284 * @size: allocation size
285 *
286 * Allocate enough pages to cover @size from the page level
287 * allocator and map them into continguos kernel virtual space.
288 *
289 * For tight control over page level allocator and protection flags
290 * use __vmalloc() instead.
291 */
292 void *vmalloc(unsigned long size)
293 {
294 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
295 }
296 EXPORT_SYMBOL(vmalloc);
297
298 /*
299 * vzalloc - allocate virtually continguos memory with zero fill
300 *
301 * @size: allocation size
302 *
303 * Allocate enough pages to cover @size from the page level
304 * allocator and map them into continguos kernel virtual space.
305 * The memory allocated is set to zero.
306 *
307 * For tight control over page level allocator and protection flags
308 * use __vmalloc() instead.
309 */
310 void *vzalloc(unsigned long size)
311 {
312 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
313 PAGE_KERNEL);
314 }
315 EXPORT_SYMBOL(vzalloc);
316
317 /**
318 * vmalloc_node - allocate memory on a specific node
319 * @size: allocation size
320 * @node: numa node
321 *
322 * Allocate enough pages to cover @size from the page level
323 * allocator and map them into contiguous kernel virtual space.
324 *
325 * For tight control over page level allocator and protection flags
326 * use __vmalloc() instead.
327 */
328 void *vmalloc_node(unsigned long size, int node)
329 {
330 return vmalloc(size);
331 }
332 EXPORT_SYMBOL(vmalloc_node);
333
334 /**
335 * vzalloc_node - allocate memory on a specific node with zero fill
336 * @size: allocation size
337 * @node: numa node
338 *
339 * Allocate enough pages to cover @size from the page level
340 * allocator and map them into contiguous kernel virtual space.
341 * The memory allocated is set to zero.
342 *
343 * For tight control over page level allocator and protection flags
344 * use __vmalloc() instead.
345 */
346 void *vzalloc_node(unsigned long size, int node)
347 {
348 return vzalloc(size);
349 }
350 EXPORT_SYMBOL(vzalloc_node);
351
352 #ifndef PAGE_KERNEL_EXEC
353 # define PAGE_KERNEL_EXEC PAGE_KERNEL
354 #endif
355
356 /**
357 * vmalloc_exec - allocate virtually contiguous, executable memory
358 * @size: allocation size
359 *
360 * Kernel-internal function to allocate enough pages to cover @size
361 * the page level allocator and map them into contiguous and
362 * executable kernel virtual space.
363 *
364 * For tight control over page level allocator and protection flags
365 * use __vmalloc() instead.
366 */
367
368 void *vmalloc_exec(unsigned long size)
369 {
370 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
371 }
372
373 /**
374 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
375 * @size: allocation size
376 *
377 * Allocate enough 32bit PA addressable pages to cover @size from the
378 * page level allocator and map them into continguos kernel virtual space.
379 */
380 void *vmalloc_32(unsigned long size)
381 {
382 return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
383 }
384 EXPORT_SYMBOL(vmalloc_32);
385
386 /**
387 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
388 * @size: allocation size
389 *
390 * The resulting memory area is 32bit addressable and zeroed so it can be
391 * mapped to userspace without leaking data.
392 *
393 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
394 * remap_vmalloc_range() are permissible.
395 */
396 void *vmalloc_32_user(unsigned long size)
397 {
398 /*
399 * We'll have to sort out the ZONE_DMA bits for 64-bit,
400 * but for now this can simply use vmalloc_user() directly.
401 */
402 return vmalloc_user(size);
403 }
404 EXPORT_SYMBOL(vmalloc_32_user);
405
406 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
407 {
408 BUG();
409 return NULL;
410 }
411 EXPORT_SYMBOL(vmap);
412
413 void vunmap(const void *addr)
414 {
415 BUG();
416 }
417 EXPORT_SYMBOL(vunmap);
418
419 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
420 {
421 BUG();
422 return NULL;
423 }
424 EXPORT_SYMBOL(vm_map_ram);
425
426 void vm_unmap_ram(const void *mem, unsigned int count)
427 {
428 BUG();
429 }
430 EXPORT_SYMBOL(vm_unmap_ram);
431
432 void vm_unmap_aliases(void)
433 {
434 }
435 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
436
437 /*
438 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
439 * have one.
440 */
441 void __attribute__((weak)) vmalloc_sync_all(void)
442 {
443 }
444
445 /**
446 * alloc_vm_area - allocate a range of kernel address space
447 * @size: size of the area
448 *
449 * Returns: NULL on failure, vm_struct on success
450 *
451 * This function reserves a range of kernel address space, and
452 * allocates pagetables to map that range. No actual mappings
453 * are created. If the kernel address space is not shared
454 * between processes, it syncs the pagetable across all
455 * processes.
456 */
457 struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
458 {
459 BUG();
460 return NULL;
461 }
462 EXPORT_SYMBOL_GPL(alloc_vm_area);
463
464 void free_vm_area(struct vm_struct *area)
465 {
466 BUG();
467 }
468 EXPORT_SYMBOL_GPL(free_vm_area);
469
470 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
471 struct page *page)
472 {
473 return -EINVAL;
474 }
475 EXPORT_SYMBOL(vm_insert_page);
476
477 /*
478 * sys_brk() for the most part doesn't need the global kernel
479 * lock, except when an application is doing something nasty
480 * like trying to un-brk an area that has already been mapped
481 * to a regular file. in this case, the unmapping will need
482 * to invoke file system routines that need the global lock.
483 */
484 SYSCALL_DEFINE1(brk, unsigned long, brk)
485 {
486 struct mm_struct *mm = current->mm;
487
488 if (brk < mm->start_brk || brk > mm->context.end_brk)
489 return mm->brk;
490
491 if (mm->brk == brk)
492 return mm->brk;
493
494 /*
495 * Always allow shrinking brk
496 */
497 if (brk <= mm->brk) {
498 mm->brk = brk;
499 return brk;
500 }
501
502 /*
503 * Ok, looks good - let it rip.
504 */
505 flush_icache_range(mm->brk, brk);
506 return mm->brk = brk;
507 }
508
509 /*
510 * initialise the VMA and region record slabs
511 */
512 void __init mmap_init(void)
513 {
514 int ret;
515
516 ret = percpu_counter_init(&vm_committed_as, 0);
517 VM_BUG_ON(ret);
518 vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
519 }
520
521 /*
522 * validate the region tree
523 * - the caller must hold the region lock
524 */
525 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
526 static noinline void validate_nommu_regions(void)
527 {
528 struct vm_region *region, *last;
529 struct rb_node *p, *lastp;
530
531 lastp = rb_first(&nommu_region_tree);
532 if (!lastp)
533 return;
534
535 last = rb_entry(lastp, struct vm_region, vm_rb);
536 BUG_ON(unlikely(last->vm_end <= last->vm_start));
537 BUG_ON(unlikely(last->vm_top < last->vm_end));
538
539 while ((p = rb_next(lastp))) {
540 region = rb_entry(p, struct vm_region, vm_rb);
541 last = rb_entry(lastp, struct vm_region, vm_rb);
542
543 BUG_ON(unlikely(region->vm_end <= region->vm_start));
544 BUG_ON(unlikely(region->vm_top < region->vm_end));
545 BUG_ON(unlikely(region->vm_start < last->vm_top));
546
547 lastp = p;
548 }
549 }
550 #else
551 static void validate_nommu_regions(void)
552 {
553 }
554 #endif
555
556 /*
557 * add a region into the global tree
558 */
559 static void add_nommu_region(struct vm_region *region)
560 {
561 struct vm_region *pregion;
562 struct rb_node **p, *parent;
563
564 validate_nommu_regions();
565
566 parent = NULL;
567 p = &nommu_region_tree.rb_node;
568 while (*p) {
569 parent = *p;
570 pregion = rb_entry(parent, struct vm_region, vm_rb);
571 if (region->vm_start < pregion->vm_start)
572 p = &(*p)->rb_left;
573 else if (region->vm_start > pregion->vm_start)
574 p = &(*p)->rb_right;
575 else if (pregion == region)
576 return;
577 else
578 BUG();
579 }
580
581 rb_link_node(&region->vm_rb, parent, p);
582 rb_insert_color(&region->vm_rb, &nommu_region_tree);
583
584 validate_nommu_regions();
585 }
586
587 /*
588 * delete a region from the global tree
589 */
590 static void delete_nommu_region(struct vm_region *region)
591 {
592 BUG_ON(!nommu_region_tree.rb_node);
593
594 validate_nommu_regions();
595 rb_erase(&region->vm_rb, &nommu_region_tree);
596 validate_nommu_regions();
597 }
598
599 /*
600 * free a contiguous series of pages
601 */
602 static void free_page_series(unsigned long from, unsigned long to)
603 {
604 for (; from < to; from += PAGE_SIZE) {
605 struct page *page = virt_to_page(from);
606
607 kdebug("- free %lx", from);
608 atomic_long_dec(&mmap_pages_allocated);
609 if (page_count(page) != 1)
610 kdebug("free page %p: refcount not one: %d",
611 page, page_count(page));
612 put_page(page);
613 }
614 }
615
616 /*
617 * release a reference to a region
618 * - the caller must hold the region semaphore for writing, which this releases
619 * - the region may not have been added to the tree yet, in which case vm_top
620 * will equal vm_start
621 */
622 static void __put_nommu_region(struct vm_region *region)
623 __releases(nommu_region_sem)
624 {
625 kenter("%p{%d}", region, region->vm_usage);
626
627 BUG_ON(!nommu_region_tree.rb_node);
628
629 if (--region->vm_usage == 0) {
630 if (region->vm_top > region->vm_start)
631 delete_nommu_region(region);
632 up_write(&nommu_region_sem);
633
634 if (region->vm_file)
635 fput(region->vm_file);
636
637 /* IO memory and memory shared directly out of the pagecache
638 * from ramfs/tmpfs mustn't be released here */
639 if (region->vm_flags & VM_MAPPED_COPY) {
640 kdebug("free series");
641 free_page_series(region->vm_start, region->vm_top);
642 }
643 kmem_cache_free(vm_region_jar, region);
644 } else {
645 up_write(&nommu_region_sem);
646 }
647 }
648
649 /*
650 * release a reference to a region
651 */
652 static void put_nommu_region(struct vm_region *region)
653 {
654 down_write(&nommu_region_sem);
655 __put_nommu_region(region);
656 }
657
658 /*
659 * update protection on a vma
660 */
661 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
662 {
663 #ifdef CONFIG_MPU
664 struct mm_struct *mm = vma->vm_mm;
665 long start = vma->vm_start & PAGE_MASK;
666 while (start < vma->vm_end) {
667 protect_page(mm, start, flags);
668 start += PAGE_SIZE;
669 }
670 update_protections(mm);
671 #endif
672 }
673
674 /*
675 * add a VMA into a process's mm_struct in the appropriate place in the list
676 * and tree and add to the address space's page tree also if not an anonymous
677 * page
678 * - should be called with mm->mmap_sem held writelocked
679 */
680 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
681 {
682 struct vm_area_struct *pvma, *prev;
683 struct address_space *mapping;
684 struct rb_node **p, *parent, *rb_prev;
685
686 kenter(",%p", vma);
687
688 BUG_ON(!vma->vm_region);
689
690 mm->map_count++;
691 vma->vm_mm = mm;
692
693 protect_vma(vma, vma->vm_flags);
694
695 /* add the VMA to the mapping */
696 if (vma->vm_file) {
697 mapping = vma->vm_file->f_mapping;
698
699 mutex_lock(&mapping->i_mmap_mutex);
700 flush_dcache_mmap_lock(mapping);
701 vma_interval_tree_insert(vma, &mapping->i_mmap);
702 flush_dcache_mmap_unlock(mapping);
703 mutex_unlock(&mapping->i_mmap_mutex);
704 }
705
706 /* add the VMA to the tree */
707 parent = rb_prev = NULL;
708 p = &mm->mm_rb.rb_node;
709 while (*p) {
710 parent = *p;
711 pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
712
713 /* sort by: start addr, end addr, VMA struct addr in that order
714 * (the latter is necessary as we may get identical VMAs) */
715 if (vma->vm_start < pvma->vm_start)
716 p = &(*p)->rb_left;
717 else if (vma->vm_start > pvma->vm_start) {
718 rb_prev = parent;
719 p = &(*p)->rb_right;
720 } else if (vma->vm_end < pvma->vm_end)
721 p = &(*p)->rb_left;
722 else if (vma->vm_end > pvma->vm_end) {
723 rb_prev = parent;
724 p = &(*p)->rb_right;
725 } else if (vma < pvma)
726 p = &(*p)->rb_left;
727 else if (vma > pvma) {
728 rb_prev = parent;
729 p = &(*p)->rb_right;
730 } else
731 BUG();
732 }
733
734 rb_link_node(&vma->vm_rb, parent, p);
735 rb_insert_color(&vma->vm_rb, &mm->mm_rb);
736
737 /* add VMA to the VMA list also */
738 prev = NULL;
739 if (rb_prev)
740 prev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
741
742 __vma_link_list(mm, vma, prev, parent);
743 }
744
745 /*
746 * delete a VMA from its owning mm_struct and address space
747 */
748 static void delete_vma_from_mm(struct vm_area_struct *vma)
749 {
750 struct address_space *mapping;
751 struct mm_struct *mm = vma->vm_mm;
752
753 kenter("%p", vma);
754
755 protect_vma(vma, 0);
756
757 mm->map_count--;
758 if (mm->mmap_cache == vma)
759 mm->mmap_cache = NULL;
760
761 /* remove the VMA from the mapping */
762 if (vma->vm_file) {
763 mapping = vma->vm_file->f_mapping;
764
765 mutex_lock(&mapping->i_mmap_mutex);
766 flush_dcache_mmap_lock(mapping);
767 vma_interval_tree_remove(vma, &mapping->i_mmap);
768 flush_dcache_mmap_unlock(mapping);
769 mutex_unlock(&mapping->i_mmap_mutex);
770 }
771
772 /* remove from the MM's tree and list */
773 rb_erase(&vma->vm_rb, &mm->mm_rb);
774
775 if (vma->vm_prev)
776 vma->vm_prev->vm_next = vma->vm_next;
777 else
778 mm->mmap = vma->vm_next;
779
780 if (vma->vm_next)
781 vma->vm_next->vm_prev = vma->vm_prev;
782 }
783
784 /*
785 * destroy a VMA record
786 */
787 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
788 {
789 kenter("%p", vma);
790 if (vma->vm_ops && vma->vm_ops->close)
791 vma->vm_ops->close(vma);
792 if (vma->vm_file)
793 fput(vma->vm_file);
794 put_nommu_region(vma->vm_region);
795 kmem_cache_free(vm_area_cachep, vma);
796 }
797
798 /*
799 * look up the first VMA in which addr resides, NULL if none
800 * - should be called with mm->mmap_sem at least held readlocked
801 */
802 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
803 {
804 struct vm_area_struct *vma;
805
806 /* check the cache first */
807 vma = mm->mmap_cache;
808 if (vma && vma->vm_start <= addr && vma->vm_end > addr)
809 return vma;
810
811 /* trawl the list (there may be multiple mappings in which addr
812 * resides) */
813 for (vma = mm->mmap; vma; vma = vma->vm_next) {
814 if (vma->vm_start > addr)
815 return NULL;
816 if (vma->vm_end > addr) {
817 mm->mmap_cache = vma;
818 return vma;
819 }
820 }
821
822 return NULL;
823 }
824 EXPORT_SYMBOL(find_vma);
825
826 /*
827 * find a VMA
828 * - we don't extend stack VMAs under NOMMU conditions
829 */
830 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
831 {
832 return find_vma(mm, addr);
833 }
834
835 /*
836 * expand a stack to a given address
837 * - not supported under NOMMU conditions
838 */
839 int expand_stack(struct vm_area_struct *vma, unsigned long address)
840 {
841 return -ENOMEM;
842 }
843
844 /*
845 * look up the first VMA exactly that exactly matches addr
846 * - should be called with mm->mmap_sem at least held readlocked
847 */
848 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
849 unsigned long addr,
850 unsigned long len)
851 {
852 struct vm_area_struct *vma;
853 unsigned long end = addr + len;
854
855 /* check the cache first */
856 vma = mm->mmap_cache;
857 if (vma && vma->vm_start == addr && vma->vm_end == end)
858 return vma;
859
860 /* trawl the list (there may be multiple mappings in which addr
861 * resides) */
862 for (vma = mm->mmap; vma; vma = vma->vm_next) {
863 if (vma->vm_start < addr)
864 continue;
865 if (vma->vm_start > addr)
866 return NULL;
867 if (vma->vm_end == end) {
868 mm->mmap_cache = vma;
869 return vma;
870 }
871 }
872
873 return NULL;
874 }
875
876 /*
877 * determine whether a mapping should be permitted and, if so, what sort of
878 * mapping we're capable of supporting
879 */
880 static int validate_mmap_request(struct file *file,
881 unsigned long addr,
882 unsigned long len,
883 unsigned long prot,
884 unsigned long flags,
885 unsigned long pgoff,
886 unsigned long *_capabilities)
887 {
888 unsigned long capabilities, rlen;
889 int ret;
890
891 /* do the simple checks first */
892 if (flags & MAP_FIXED) {
893 printk(KERN_DEBUG
894 "%d: Can't do fixed-address/overlay mmap of RAM\n",
895 current->pid);
896 return -EINVAL;
897 }
898
899 if ((flags & MAP_TYPE) != MAP_PRIVATE &&
900 (flags & MAP_TYPE) != MAP_SHARED)
901 return -EINVAL;
902
903 if (!len)
904 return -EINVAL;
905
906 /* Careful about overflows.. */
907 rlen = PAGE_ALIGN(len);
908 if (!rlen || rlen > TASK_SIZE)
909 return -ENOMEM;
910
911 /* offset overflow? */
912 if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
913 return -EOVERFLOW;
914
915 if (file) {
916 /* validate file mapping requests */
917 struct address_space *mapping;
918
919 /* files must support mmap */
920 if (!file->f_op || !file->f_op->mmap)
921 return -ENODEV;
922
923 /* work out if what we've got could possibly be shared
924 * - we support chardevs that provide their own "memory"
925 * - we support files/blockdevs that are memory backed
926 */
927 mapping = file->f_mapping;
928 if (!mapping)
929 mapping = file->f_path.dentry->d_inode->i_mapping;
930
931 capabilities = 0;
932 if (mapping && mapping->backing_dev_info)
933 capabilities = mapping->backing_dev_info->capabilities;
934
935 if (!capabilities) {
936 /* no explicit capabilities set, so assume some
937 * defaults */
938 switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
939 case S_IFREG:
940 case S_IFBLK:
941 capabilities = BDI_CAP_MAP_COPY;
942 break;
943
944 case S_IFCHR:
945 capabilities =
946 BDI_CAP_MAP_DIRECT |
947 BDI_CAP_READ_MAP |
948 BDI_CAP_WRITE_MAP;
949 break;
950
951 default:
952 return -EINVAL;
953 }
954 }
955
956 /* eliminate any capabilities that we can't support on this
957 * device */
958 if (!file->f_op->get_unmapped_area)
959 capabilities &= ~BDI_CAP_MAP_DIRECT;
960 if (!file->f_op->read)
961 capabilities &= ~BDI_CAP_MAP_COPY;
962
963 /* The file shall have been opened with read permission. */
964 if (!(file->f_mode & FMODE_READ))
965 return -EACCES;
966
967 if (flags & MAP_SHARED) {
968 /* do checks for writing, appending and locking */
969 if ((prot & PROT_WRITE) &&
970 !(file->f_mode & FMODE_WRITE))
971 return -EACCES;
972
973 if (IS_APPEND(file->f_path.dentry->d_inode) &&
974 (file->f_mode & FMODE_WRITE))
975 return -EACCES;
976
977 if (locks_verify_locked(file->f_path.dentry->d_inode))
978 return -EAGAIN;
979
980 if (!(capabilities & BDI_CAP_MAP_DIRECT))
981 return -ENODEV;
982
983 /* we mustn't privatise shared mappings */
984 capabilities &= ~BDI_CAP_MAP_COPY;
985 }
986 else {
987 /* we're going to read the file into private memory we
988 * allocate */
989 if (!(capabilities & BDI_CAP_MAP_COPY))
990 return -ENODEV;
991
992 /* we don't permit a private writable mapping to be
993 * shared with the backing device */
994 if (prot & PROT_WRITE)
995 capabilities &= ~BDI_CAP_MAP_DIRECT;
996 }
997
998 if (capabilities & BDI_CAP_MAP_DIRECT) {
999 if (((prot & PROT_READ) && !(capabilities & BDI_CAP_READ_MAP)) ||
1000 ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1001 ((prot & PROT_EXEC) && !(capabilities & BDI_CAP_EXEC_MAP))
1002 ) {
1003 capabilities &= ~BDI_CAP_MAP_DIRECT;
1004 if (flags & MAP_SHARED) {
1005 printk(KERN_WARNING
1006 "MAP_SHARED not completely supported on !MMU\n");
1007 return -EINVAL;
1008 }
1009 }
1010 }
1011
1012 /* handle executable mappings and implied executable
1013 * mappings */
1014 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1015 if (prot & PROT_EXEC)
1016 return -EPERM;
1017 }
1018 else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1019 /* handle implication of PROT_EXEC by PROT_READ */
1020 if (current->personality & READ_IMPLIES_EXEC) {
1021 if (capabilities & BDI_CAP_EXEC_MAP)
1022 prot |= PROT_EXEC;
1023 }
1024 }
1025 else if ((prot & PROT_READ) &&
1026 (prot & PROT_EXEC) &&
1027 !(capabilities & BDI_CAP_EXEC_MAP)
1028 ) {
1029 /* backing file is not executable, try to copy */
1030 capabilities &= ~BDI_CAP_MAP_DIRECT;
1031 }
1032 }
1033 else {
1034 /* anonymous mappings are always memory backed and can be
1035 * privately mapped
1036 */
1037 capabilities = BDI_CAP_MAP_COPY;
1038
1039 /* handle PROT_EXEC implication by PROT_READ */
1040 if ((prot & PROT_READ) &&
1041 (current->personality & READ_IMPLIES_EXEC))
1042 prot |= PROT_EXEC;
1043 }
1044
1045 /* allow the security API to have its say */
1046 ret = security_mmap_addr(addr);
1047 if (ret < 0)
1048 return ret;
1049
1050 /* looks okay */
1051 *_capabilities = capabilities;
1052 return 0;
1053 }
1054
1055 /*
1056 * we've determined that we can make the mapping, now translate what we
1057 * now know into VMA flags
1058 */
1059 static unsigned long determine_vm_flags(struct file *file,
1060 unsigned long prot,
1061 unsigned long flags,
1062 unsigned long capabilities)
1063 {
1064 unsigned long vm_flags;
1065
1066 vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1067 /* vm_flags |= mm->def_flags; */
1068
1069 if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1070 /* attempt to share read-only copies of mapped file chunks */
1071 vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1072 if (file && !(prot & PROT_WRITE))
1073 vm_flags |= VM_MAYSHARE;
1074 } else {
1075 /* overlay a shareable mapping on the backing device or inode
1076 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1077 * romfs/cramfs */
1078 vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1079 if (flags & MAP_SHARED)
1080 vm_flags |= VM_SHARED;
1081 }
1082
1083 /* refuse to let anyone share private mappings with this process if
1084 * it's being traced - otherwise breakpoints set in it may interfere
1085 * with another untraced process
1086 */
1087 if ((flags & MAP_PRIVATE) && current->ptrace)
1088 vm_flags &= ~VM_MAYSHARE;
1089
1090 return vm_flags;
1091 }
1092
1093 /*
1094 * set up a shared mapping on a file (the driver or filesystem provides and
1095 * pins the storage)
1096 */
1097 static int do_mmap_shared_file(struct vm_area_struct *vma)
1098 {
1099 int ret;
1100
1101 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1102 if (ret == 0) {
1103 vma->vm_region->vm_top = vma->vm_region->vm_end;
1104 return 0;
1105 }
1106 if (ret != -ENOSYS)
1107 return ret;
1108
1109 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1110 * opposed to tried but failed) so we can only give a suitable error as
1111 * it's not possible to make a private copy if MAP_SHARED was given */
1112 return -ENODEV;
1113 }
1114
1115 /*
1116 * set up a private mapping or an anonymous shared mapping
1117 */
1118 static int do_mmap_private(struct vm_area_struct *vma,
1119 struct vm_region *region,
1120 unsigned long len,
1121 unsigned long capabilities)
1122 {
1123 struct page *pages;
1124 unsigned long total, point, n;
1125 void *base;
1126 int ret, order;
1127
1128 /* invoke the file's mapping function so that it can keep track of
1129 * shared mappings on devices or memory
1130 * - VM_MAYSHARE will be set if it may attempt to share
1131 */
1132 if (capabilities & BDI_CAP_MAP_DIRECT) {
1133 ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1134 if (ret == 0) {
1135 /* shouldn't return success if we're not sharing */
1136 BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1137 vma->vm_region->vm_top = vma->vm_region->vm_end;
1138 return 0;
1139 }
1140 if (ret != -ENOSYS)
1141 return ret;
1142
1143 /* getting an ENOSYS error indicates that direct mmap isn't
1144 * possible (as opposed to tried but failed) so we'll try to
1145 * make a private copy of the data and map that instead */
1146 }
1147
1148
1149 /* allocate some memory to hold the mapping
1150 * - note that this may not return a page-aligned address if the object
1151 * we're allocating is smaller than a page
1152 */
1153 order = get_order(len);
1154 kdebug("alloc order %d for %lx", order, len);
1155
1156 pages = alloc_pages(GFP_KERNEL, order);
1157 if (!pages)
1158 goto enomem;
1159
1160 total = 1 << order;
1161 atomic_long_add(total, &mmap_pages_allocated);
1162
1163 point = len >> PAGE_SHIFT;
1164
1165 /* we allocated a power-of-2 sized page set, so we may want to trim off
1166 * the excess */
1167 if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1168 while (total > point) {
1169 order = ilog2(total - point);
1170 n = 1 << order;
1171 kdebug("shave %lu/%lu @%lu", n, total - point, total);
1172 atomic_long_sub(n, &mmap_pages_allocated);
1173 total -= n;
1174 set_page_refcounted(pages + total);
1175 __free_pages(pages + total, order);
1176 }
1177 }
1178
1179 for (point = 1; point < total; point++)
1180 set_page_refcounted(&pages[point]);
1181
1182 base = page_address(pages);
1183 region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1184 region->vm_start = (unsigned long) base;
1185 region->vm_end = region->vm_start + len;
1186 region->vm_top = region->vm_start + (total << PAGE_SHIFT);
1187
1188 vma->vm_start = region->vm_start;
1189 vma->vm_end = region->vm_start + len;
1190
1191 if (vma->vm_file) {
1192 /* read the contents of a file into the copy */
1193 mm_segment_t old_fs;
1194 loff_t fpos;
1195
1196 fpos = vma->vm_pgoff;
1197 fpos <<= PAGE_SHIFT;
1198
1199 old_fs = get_fs();
1200 set_fs(KERNEL_DS);
1201 ret = vma->vm_file->f_op->read(vma->vm_file, base, len, &fpos);
1202 set_fs(old_fs);
1203
1204 if (ret < 0)
1205 goto error_free;
1206
1207 /* clear the last little bit */
1208 if (ret < len)
1209 memset(base + ret, 0, len - ret);
1210
1211 }
1212
1213 return 0;
1214
1215 error_free:
1216 free_page_series(region->vm_start, region->vm_top);
1217 region->vm_start = vma->vm_start = 0;
1218 region->vm_end = vma->vm_end = 0;
1219 region->vm_top = 0;
1220 return ret;
1221
1222 enomem:
1223 printk("Allocation of length %lu from process %d (%s) failed\n",
1224 len, current->pid, current->comm);
1225 show_free_areas(0);
1226 return -ENOMEM;
1227 }
1228
1229 /*
1230 * handle mapping creation for uClinux
1231 */
1232 unsigned long do_mmap_pgoff(struct file *file,
1233 unsigned long addr,
1234 unsigned long len,
1235 unsigned long prot,
1236 unsigned long flags,
1237 unsigned long pgoff)
1238 {
1239 struct vm_area_struct *vma;
1240 struct vm_region *region;
1241 struct rb_node *rb;
1242 unsigned long capabilities, vm_flags, result;
1243 int ret;
1244
1245 kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1246
1247 /* decide whether we should attempt the mapping, and if so what sort of
1248 * mapping */
1249 ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1250 &capabilities);
1251 if (ret < 0) {
1252 kleave(" = %d [val]", ret);
1253 return ret;
1254 }
1255
1256 /* we ignore the address hint */
1257 addr = 0;
1258 len = PAGE_ALIGN(len);
1259
1260 /* we've determined that we can make the mapping, now translate what we
1261 * now know into VMA flags */
1262 vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1263
1264 /* we're going to need to record the mapping */
1265 region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1266 if (!region)
1267 goto error_getting_region;
1268
1269 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1270 if (!vma)
1271 goto error_getting_vma;
1272
1273 region->vm_usage = 1;
1274 region->vm_flags = vm_flags;
1275 region->vm_pgoff = pgoff;
1276
1277 INIT_LIST_HEAD(&vma->anon_vma_chain);
1278 vma->vm_flags = vm_flags;
1279 vma->vm_pgoff = pgoff;
1280
1281 if (file) {
1282 region->vm_file = get_file(file);
1283 vma->vm_file = get_file(file);
1284 }
1285
1286 down_write(&nommu_region_sem);
1287
1288 /* if we want to share, we need to check for regions created by other
1289 * mmap() calls that overlap with our proposed mapping
1290 * - we can only share with a superset match on most regular files
1291 * - shared mappings on character devices and memory backed files are
1292 * permitted to overlap inexactly as far as we are concerned for in
1293 * these cases, sharing is handled in the driver or filesystem rather
1294 * than here
1295 */
1296 if (vm_flags & VM_MAYSHARE) {
1297 struct vm_region *pregion;
1298 unsigned long pglen, rpglen, pgend, rpgend, start;
1299
1300 pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1301 pgend = pgoff + pglen;
1302
1303 for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1304 pregion = rb_entry(rb, struct vm_region, vm_rb);
1305
1306 if (!(pregion->vm_flags & VM_MAYSHARE))
1307 continue;
1308
1309 /* search for overlapping mappings on the same file */
1310 if (pregion->vm_file->f_path.dentry->d_inode !=
1311 file->f_path.dentry->d_inode)
1312 continue;
1313
1314 if (pregion->vm_pgoff >= pgend)
1315 continue;
1316
1317 rpglen = pregion->vm_end - pregion->vm_start;
1318 rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319 rpgend = pregion->vm_pgoff + rpglen;
1320 if (pgoff >= rpgend)
1321 continue;
1322
1323 /* handle inexactly overlapping matches between
1324 * mappings */
1325 if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1326 !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1327 /* new mapping is not a subset of the region */
1328 if (!(capabilities & BDI_CAP_MAP_DIRECT))
1329 goto sharing_violation;
1330 continue;
1331 }
1332
1333 /* we've found a region we can share */
1334 pregion->vm_usage++;
1335 vma->vm_region = pregion;
1336 start = pregion->vm_start;
1337 start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1338 vma->vm_start = start;
1339 vma->vm_end = start + len;
1340
1341 if (pregion->vm_flags & VM_MAPPED_COPY) {
1342 kdebug("share copy");
1343 vma->vm_flags |= VM_MAPPED_COPY;
1344 } else {
1345 kdebug("share mmap");
1346 ret = do_mmap_shared_file(vma);
1347 if (ret < 0) {
1348 vma->vm_region = NULL;
1349 vma->vm_start = 0;
1350 vma->vm_end = 0;
1351 pregion->vm_usage--;
1352 pregion = NULL;
1353 goto error_just_free;
1354 }
1355 }
1356 fput(region->vm_file);
1357 kmem_cache_free(vm_region_jar, region);
1358 region = pregion;
1359 result = start;
1360 goto share;
1361 }
1362
1363 /* obtain the address at which to make a shared mapping
1364 * - this is the hook for quasi-memory character devices to
1365 * tell us the location of a shared mapping
1366 */
1367 if (capabilities & BDI_CAP_MAP_DIRECT) {
1368 addr = file->f_op->get_unmapped_area(file, addr, len,
1369 pgoff, flags);
1370 if (IS_ERR_VALUE(addr)) {
1371 ret = addr;
1372 if (ret != -ENOSYS)
1373 goto error_just_free;
1374
1375 /* the driver refused to tell us where to site
1376 * the mapping so we'll have to attempt to copy
1377 * it */
1378 ret = -ENODEV;
1379 if (!(capabilities & BDI_CAP_MAP_COPY))
1380 goto error_just_free;
1381
1382 capabilities &= ~BDI_CAP_MAP_DIRECT;
1383 } else {
1384 vma->vm_start = region->vm_start = addr;
1385 vma->vm_end = region->vm_end = addr + len;
1386 }
1387 }
1388 }
1389
1390 vma->vm_region = region;
1391
1392 /* set up the mapping
1393 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1394 */
1395 if (file && vma->vm_flags & VM_SHARED)
1396 ret = do_mmap_shared_file(vma);
1397 else
1398 ret = do_mmap_private(vma, region, len, capabilities);
1399 if (ret < 0)
1400 goto error_just_free;
1401 add_nommu_region(region);
1402
1403 /* clear anonymous mappings that don't ask for uninitialized data */
1404 if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1405 memset((void *)region->vm_start, 0,
1406 region->vm_end - region->vm_start);
1407
1408 /* okay... we have a mapping; now we have to register it */
1409 result = vma->vm_start;
1410
1411 current->mm->total_vm += len >> PAGE_SHIFT;
1412
1413 share:
1414 add_vma_to_mm(current->mm, vma);
1415
1416 /* we flush the region from the icache only when the first executable
1417 * mapping of it is made */
1418 if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1419 flush_icache_range(region->vm_start, region->vm_end);
1420 region->vm_icache_flushed = true;
1421 }
1422
1423 up_write(&nommu_region_sem);
1424
1425 kleave(" = %lx", result);
1426 return result;
1427
1428 error_just_free:
1429 up_write(&nommu_region_sem);
1430 error:
1431 if (region->vm_file)
1432 fput(region->vm_file);
1433 kmem_cache_free(vm_region_jar, region);
1434 if (vma->vm_file)
1435 fput(vma->vm_file);
1436 kmem_cache_free(vm_area_cachep, vma);
1437 kleave(" = %d", ret);
1438 return ret;
1439
1440 sharing_violation:
1441 up_write(&nommu_region_sem);
1442 printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1443 ret = -EINVAL;
1444 goto error;
1445
1446 error_getting_vma:
1447 kmem_cache_free(vm_region_jar, region);
1448 printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1449 " from process %d failed\n",
1450 len, current->pid);
1451 show_free_areas(0);
1452 return -ENOMEM;
1453
1454 error_getting_region:
1455 printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1456 " from process %d failed\n",
1457 len, current->pid);
1458 show_free_areas(0);
1459 return -ENOMEM;
1460 }
1461
1462 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1463 unsigned long, prot, unsigned long, flags,
1464 unsigned long, fd, unsigned long, pgoff)
1465 {
1466 struct file *file = NULL;
1467 unsigned long retval = -EBADF;
1468
1469 audit_mmap_fd(fd, flags);
1470 if (!(flags & MAP_ANONYMOUS)) {
1471 file = fget(fd);
1472 if (!file)
1473 goto out;
1474 }
1475
1476 flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1477
1478 retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1479
1480 if (file)
1481 fput(file);
1482 out:
1483 return retval;
1484 }
1485
1486 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1487 struct mmap_arg_struct {
1488 unsigned long addr;
1489 unsigned long len;
1490 unsigned long prot;
1491 unsigned long flags;
1492 unsigned long fd;
1493 unsigned long offset;
1494 };
1495
1496 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1497 {
1498 struct mmap_arg_struct a;
1499
1500 if (copy_from_user(&a, arg, sizeof(a)))
1501 return -EFAULT;
1502 if (a.offset & ~PAGE_MASK)
1503 return -EINVAL;
1504
1505 return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1506 a.offset >> PAGE_SHIFT);
1507 }
1508 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1509
1510 /*
1511 * split a vma into two pieces at address 'addr', a new vma is allocated either
1512 * for the first part or the tail.
1513 */
1514 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1515 unsigned long addr, int new_below)
1516 {
1517 struct vm_area_struct *new;
1518 struct vm_region *region;
1519 unsigned long npages;
1520
1521 kenter("");
1522
1523 /* we're only permitted to split anonymous regions (these should have
1524 * only a single usage on the region) */
1525 if (vma->vm_file)
1526 return -ENOMEM;
1527
1528 if (mm->map_count >= sysctl_max_map_count)
1529 return -ENOMEM;
1530
1531 region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1532 if (!region)
1533 return -ENOMEM;
1534
1535 new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1536 if (!new) {
1537 kmem_cache_free(vm_region_jar, region);
1538 return -ENOMEM;
1539 }
1540
1541 /* most fields are the same, copy all, and then fixup */
1542 *new = *vma;
1543 *region = *vma->vm_region;
1544 new->vm_region = region;
1545
1546 npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1547
1548 if (new_below) {
1549 region->vm_top = region->vm_end = new->vm_end = addr;
1550 } else {
1551 region->vm_start = new->vm_start = addr;
1552 region->vm_pgoff = new->vm_pgoff += npages;
1553 }
1554
1555 if (new->vm_ops && new->vm_ops->open)
1556 new->vm_ops->open(new);
1557
1558 delete_vma_from_mm(vma);
1559 down_write(&nommu_region_sem);
1560 delete_nommu_region(vma->vm_region);
1561 if (new_below) {
1562 vma->vm_region->vm_start = vma->vm_start = addr;
1563 vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1564 } else {
1565 vma->vm_region->vm_end = vma->vm_end = addr;
1566 vma->vm_region->vm_top = addr;
1567 }
1568 add_nommu_region(vma->vm_region);
1569 add_nommu_region(new->vm_region);
1570 up_write(&nommu_region_sem);
1571 add_vma_to_mm(mm, vma);
1572 add_vma_to_mm(mm, new);
1573 return 0;
1574 }
1575
1576 /*
1577 * shrink a VMA by removing the specified chunk from either the beginning or
1578 * the end
1579 */
1580 static int shrink_vma(struct mm_struct *mm,
1581 struct vm_area_struct *vma,
1582 unsigned long from, unsigned long to)
1583 {
1584 struct vm_region *region;
1585
1586 kenter("");
1587
1588 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1589 * and list */
1590 delete_vma_from_mm(vma);
1591 if (from > vma->vm_start)
1592 vma->vm_end = from;
1593 else
1594 vma->vm_start = to;
1595 add_vma_to_mm(mm, vma);
1596
1597 /* cut the backing region down to size */
1598 region = vma->vm_region;
1599 BUG_ON(region->vm_usage != 1);
1600
1601 down_write(&nommu_region_sem);
1602 delete_nommu_region(region);
1603 if (from > region->vm_start) {
1604 to = region->vm_top;
1605 region->vm_top = region->vm_end = from;
1606 } else {
1607 region->vm_start = to;
1608 }
1609 add_nommu_region(region);
1610 up_write(&nommu_region_sem);
1611
1612 free_page_series(from, to);
1613 return 0;
1614 }
1615
1616 /*
1617 * release a mapping
1618 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1619 * VMA, though it need not cover the whole VMA
1620 */
1621 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1622 {
1623 struct vm_area_struct *vma;
1624 unsigned long end;
1625 int ret;
1626
1627 kenter(",%lx,%zx", start, len);
1628
1629 len = PAGE_ALIGN(len);
1630 if (len == 0)
1631 return -EINVAL;
1632
1633 end = start + len;
1634
1635 /* find the first potentially overlapping VMA */
1636 vma = find_vma(mm, start);
1637 if (!vma) {
1638 static int limit = 0;
1639 if (limit < 5) {
1640 printk(KERN_WARNING
1641 "munmap of memory not mmapped by process %d"
1642 " (%s): 0x%lx-0x%lx\n",
1643 current->pid, current->comm,
1644 start, start + len - 1);
1645 limit++;
1646 }
1647 return -EINVAL;
1648 }
1649
1650 /* we're allowed to split an anonymous VMA but not a file-backed one */
1651 if (vma->vm_file) {
1652 do {
1653 if (start > vma->vm_start) {
1654 kleave(" = -EINVAL [miss]");
1655 return -EINVAL;
1656 }
1657 if (end == vma->vm_end)
1658 goto erase_whole_vma;
1659 vma = vma->vm_next;
1660 } while (vma);
1661 kleave(" = -EINVAL [split file]");
1662 return -EINVAL;
1663 } else {
1664 /* the chunk must be a subset of the VMA found */
1665 if (start == vma->vm_start && end == vma->vm_end)
1666 goto erase_whole_vma;
1667 if (start < vma->vm_start || end > vma->vm_end) {
1668 kleave(" = -EINVAL [superset]");
1669 return -EINVAL;
1670 }
1671 if (start & ~PAGE_MASK) {
1672 kleave(" = -EINVAL [unaligned start]");
1673 return -EINVAL;
1674 }
1675 if (end != vma->vm_end && end & ~PAGE_MASK) {
1676 kleave(" = -EINVAL [unaligned split]");
1677 return -EINVAL;
1678 }
1679 if (start != vma->vm_start && end != vma->vm_end) {
1680 ret = split_vma(mm, vma, start, 1);
1681 if (ret < 0) {
1682 kleave(" = %d [split]", ret);
1683 return ret;
1684 }
1685 }
1686 return shrink_vma(mm, vma, start, end);
1687 }
1688
1689 erase_whole_vma:
1690 delete_vma_from_mm(vma);
1691 delete_vma(mm, vma);
1692 kleave(" = 0");
1693 return 0;
1694 }
1695 EXPORT_SYMBOL(do_munmap);
1696
1697 int vm_munmap(unsigned long addr, size_t len)
1698 {
1699 struct mm_struct *mm = current->mm;
1700 int ret;
1701
1702 down_write(&mm->mmap_sem);
1703 ret = do_munmap(mm, addr, len);
1704 up_write(&mm->mmap_sem);
1705 return ret;
1706 }
1707 EXPORT_SYMBOL(vm_munmap);
1708
1709 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1710 {
1711 return vm_munmap(addr, len);
1712 }
1713
1714 /*
1715 * release all the mappings made in a process's VM space
1716 */
1717 void exit_mmap(struct mm_struct *mm)
1718 {
1719 struct vm_area_struct *vma;
1720
1721 if (!mm)
1722 return;
1723
1724 kenter("");
1725
1726 mm->total_vm = 0;
1727
1728 while ((vma = mm->mmap)) {
1729 mm->mmap = vma->vm_next;
1730 delete_vma_from_mm(vma);
1731 delete_vma(mm, vma);
1732 cond_resched();
1733 }
1734
1735 kleave("");
1736 }
1737
1738 unsigned long vm_brk(unsigned long addr, unsigned long len)
1739 {
1740 return -ENOMEM;
1741 }
1742
1743 /*
1744 * expand (or shrink) an existing mapping, potentially moving it at the same
1745 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1746 *
1747 * under NOMMU conditions, we only permit changing a mapping's size, and only
1748 * as long as it stays within the region allocated by do_mmap_private() and the
1749 * block is not shareable
1750 *
1751 * MREMAP_FIXED is not supported under NOMMU conditions
1752 */
1753 unsigned long do_mremap(unsigned long addr,
1754 unsigned long old_len, unsigned long new_len,
1755 unsigned long flags, unsigned long new_addr)
1756 {
1757 struct vm_area_struct *vma;
1758
1759 /* insanity checks first */
1760 old_len = PAGE_ALIGN(old_len);
1761 new_len = PAGE_ALIGN(new_len);
1762 if (old_len == 0 || new_len == 0)
1763 return (unsigned long) -EINVAL;
1764
1765 if (addr & ~PAGE_MASK)
1766 return -EINVAL;
1767
1768 if (flags & MREMAP_FIXED && new_addr != addr)
1769 return (unsigned long) -EINVAL;
1770
1771 vma = find_vma_exact(current->mm, addr, old_len);
1772 if (!vma)
1773 return (unsigned long) -EINVAL;
1774
1775 if (vma->vm_end != vma->vm_start + old_len)
1776 return (unsigned long) -EFAULT;
1777
1778 if (vma->vm_flags & VM_MAYSHARE)
1779 return (unsigned long) -EPERM;
1780
1781 if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1782 return (unsigned long) -ENOMEM;
1783
1784 /* all checks complete - do it */
1785 vma->vm_end = vma->vm_start + new_len;
1786 return vma->vm_start;
1787 }
1788 EXPORT_SYMBOL(do_mremap);
1789
1790 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1791 unsigned long, new_len, unsigned long, flags,
1792 unsigned long, new_addr)
1793 {
1794 unsigned long ret;
1795
1796 down_write(&current->mm->mmap_sem);
1797 ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1798 up_write(&current->mm->mmap_sem);
1799 return ret;
1800 }
1801
1802 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1803 unsigned int foll_flags)
1804 {
1805 return NULL;
1806 }
1807
1808 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1809 unsigned long pfn, unsigned long size, pgprot_t prot)
1810 {
1811 if (addr != (pfn << PAGE_SHIFT))
1812 return -EINVAL;
1813
1814 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1815 return 0;
1816 }
1817 EXPORT_SYMBOL(remap_pfn_range);
1818
1819 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1820 unsigned long pgoff)
1821 {
1822 unsigned int size = vma->vm_end - vma->vm_start;
1823
1824 if (!(vma->vm_flags & VM_USERMAP))
1825 return -EINVAL;
1826
1827 vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1828 vma->vm_end = vma->vm_start + size;
1829
1830 return 0;
1831 }
1832 EXPORT_SYMBOL(remap_vmalloc_range);
1833
1834 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1835 unsigned long len, unsigned long pgoff, unsigned long flags)
1836 {
1837 return -ENOMEM;
1838 }
1839
1840 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1841 {
1842 }
1843
1844 void unmap_mapping_range(struct address_space *mapping,
1845 loff_t const holebegin, loff_t const holelen,
1846 int even_cows)
1847 {
1848 }
1849 EXPORT_SYMBOL(unmap_mapping_range);
1850
1851 /*
1852 * Check that a process has enough memory to allocate a new virtual
1853 * mapping. 0 means there is enough memory for the allocation to
1854 * succeed and -ENOMEM implies there is not.
1855 *
1856 * We currently support three overcommit policies, which are set via the
1857 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1858 *
1859 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1860 * Additional code 2002 Jul 20 by Robert Love.
1861 *
1862 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1863 *
1864 * Note this is a helper function intended to be used by LSMs which
1865 * wish to use this logic.
1866 */
1867 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1868 {
1869 unsigned long free, allowed;
1870
1871 vm_acct_memory(pages);
1872
1873 /*
1874 * Sometimes we want to use more memory than we have
1875 */
1876 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1877 return 0;
1878
1879 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1880 free = global_page_state(NR_FREE_PAGES);
1881 free += global_page_state(NR_FILE_PAGES);
1882
1883 /*
1884 * shmem pages shouldn't be counted as free in this
1885 * case, they can't be purged, only swapped out, and
1886 * that won't affect the overall amount of available
1887 * memory in the system.
1888 */
1889 free -= global_page_state(NR_SHMEM);
1890
1891 free += nr_swap_pages;
1892
1893 /*
1894 * Any slabs which are created with the
1895 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1896 * which are reclaimable, under pressure. The dentry
1897 * cache and most inode caches should fall into this
1898 */
1899 free += global_page_state(NR_SLAB_RECLAIMABLE);
1900
1901 /*
1902 * Leave reserved pages. The pages are not for anonymous pages.
1903 */
1904 if (free <= totalreserve_pages)
1905 goto error;
1906 else
1907 free -= totalreserve_pages;
1908
1909 /*
1910 * Leave the last 3% for root
1911 */
1912 if (!cap_sys_admin)
1913 free -= free / 32;
1914
1915 if (free > pages)
1916 return 0;
1917
1918 goto error;
1919 }
1920
1921 allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1922 /*
1923 * Leave the last 3% for root
1924 */
1925 if (!cap_sys_admin)
1926 allowed -= allowed / 32;
1927 allowed += total_swap_pages;
1928
1929 /* Don't let a single process grow too big:
1930 leave 3% of the size of this process for other processes */
1931 if (mm)
1932 allowed -= mm->total_vm / 32;
1933
1934 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1935 return 0;
1936
1937 error:
1938 vm_unacct_memory(pages);
1939
1940 return -ENOMEM;
1941 }
1942
1943 int in_gate_area_no_mm(unsigned long addr)
1944 {
1945 return 0;
1946 }
1947
1948 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1949 {
1950 BUG();
1951 return 0;
1952 }
1953 EXPORT_SYMBOL(filemap_fault);
1954
1955 int generic_file_remap_pages(struct vm_area_struct *vma, unsigned long addr,
1956 unsigned long size, pgoff_t pgoff)
1957 {
1958 BUG();
1959 return 0;
1960 }
1961 EXPORT_SYMBOL(generic_file_remap_pages);
1962
1963 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1964 unsigned long addr, void *buf, int len, int write)
1965 {
1966 struct vm_area_struct *vma;
1967
1968 down_read(&mm->mmap_sem);
1969
1970 /* the access must start within one of the target process's mappings */
1971 vma = find_vma(mm, addr);
1972 if (vma) {
1973 /* don't overrun this mapping */
1974 if (addr + len >= vma->vm_end)
1975 len = vma->vm_end - addr;
1976
1977 /* only read or write mappings where it is permitted */
1978 if (write && vma->vm_flags & VM_MAYWRITE)
1979 copy_to_user_page(vma, NULL, addr,
1980 (void *) addr, buf, len);
1981 else if (!write && vma->vm_flags & VM_MAYREAD)
1982 copy_from_user_page(vma, NULL, addr,
1983 buf, (void *) addr, len);
1984 else
1985 len = 0;
1986 } else {
1987 len = 0;
1988 }
1989
1990 up_read(&mm->mmap_sem);
1991
1992 return len;
1993 }
1994
1995 /**
1996 * @access_remote_vm - access another process' address space
1997 * @mm: the mm_struct of the target address space
1998 * @addr: start address to access
1999 * @buf: source or destination buffer
2000 * @len: number of bytes to transfer
2001 * @write: whether the access is a write
2002 *
2003 * The caller must hold a reference on @mm.
2004 */
2005 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2006 void *buf, int len, int write)
2007 {
2008 return __access_remote_vm(NULL, mm, addr, buf, len, write);
2009 }
2010
2011 /*
2012 * Access another process' address space.
2013 * - source/target buffer must be kernel space
2014 */
2015 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2016 {
2017 struct mm_struct *mm;
2018
2019 if (addr + len < addr)
2020 return 0;
2021
2022 mm = get_task_mm(tsk);
2023 if (!mm)
2024 return 0;
2025
2026 len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2027
2028 mmput(mm);
2029 return len;
2030 }
2031
2032 /**
2033 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2034 * @inode: The inode to check
2035 * @size: The current filesize of the inode
2036 * @newsize: The proposed filesize of the inode
2037 *
2038 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2039 * make sure that that any outstanding VMAs aren't broken and then shrink the
2040 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2041 * automatically grant mappings that are too large.
2042 */
2043 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2044 size_t newsize)
2045 {
2046 struct vm_area_struct *vma;
2047 struct vm_region *region;
2048 pgoff_t low, high;
2049 size_t r_size, r_top;
2050
2051 low = newsize >> PAGE_SHIFT;
2052 high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2053
2054 down_write(&nommu_region_sem);
2055 mutex_lock(&inode->i_mapping->i_mmap_mutex);
2056
2057 /* search for VMAs that fall within the dead zone */
2058 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap, low, high) {
2059 /* found one - only interested if it's shared out of the page
2060 * cache */
2061 if (vma->vm_flags & VM_SHARED) {
2062 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2063 up_write(&nommu_region_sem);
2064 return -ETXTBSY; /* not quite true, but near enough */
2065 }
2066 }
2067
2068 /* reduce any regions that overlap the dead zone - if in existence,
2069 * these will be pointed to by VMAs that don't overlap the dead zone
2070 *
2071 * we don't check for any regions that start beyond the EOF as there
2072 * shouldn't be any
2073 */
2074 vma_interval_tree_foreach(vma, &inode->i_mapping->i_mmap,
2075 0, ULONG_MAX) {
2076 if (!(vma->vm_flags & VM_SHARED))
2077 continue;
2078
2079 region = vma->vm_region;
2080 r_size = region->vm_top - region->vm_start;
2081 r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2082
2083 if (r_top > newsize) {
2084 region->vm_top -= r_top - newsize;
2085 if (region->vm_end > region->vm_top)
2086 region->vm_end = region->vm_top;
2087 }
2088 }
2089
2090 mutex_unlock(&inode->i_mapping->i_mmap_mutex);
2091 up_write(&nommu_region_sem);
2092 return 0;
2093 }
This page took 0.073703 seconds and 6 git commands to generate.