mm, compaction: distinguish between full and partial COMPACT_COMPLETE
[deliverable/linux.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
9 *
10 * The routines in this file are used to kill a process when
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
20 #include <linux/oom.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/gfp.h>
24 #include <linux/sched.h>
25 #include <linux/swap.h>
26 #include <linux/timex.h>
27 #include <linux/jiffies.h>
28 #include <linux/cpuset.h>
29 #include <linux/export.h>
30 #include <linux/notifier.h>
31 #include <linux/memcontrol.h>
32 #include <linux/mempolicy.h>
33 #include <linux/security.h>
34 #include <linux/ptrace.h>
35 #include <linux/freezer.h>
36 #include <linux/ftrace.h>
37 #include <linux/ratelimit.h>
38 #include <linux/kthread.h>
39 #include <linux/init.h>
40
41 #include <asm/tlb.h>
42 #include "internal.h"
43
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/oom.h>
46
47 int sysctl_panic_on_oom;
48 int sysctl_oom_kill_allocating_task;
49 int sysctl_oom_dump_tasks = 1;
50
51 DEFINE_MUTEX(oom_lock);
52
53 #ifdef CONFIG_NUMA
54 /**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
56 * @start: task struct of which task to consider
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
62 */
63 static bool has_intersects_mems_allowed(struct task_struct *start,
64 const nodemask_t *mask)
65 {
66 struct task_struct *tsk;
67 bool ret = false;
68
69 rcu_read_lock();
70 for_each_thread(start, tsk) {
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
78 ret = mempolicy_nodemask_intersects(tsk, mask);
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
84 ret = cpuset_mems_allowed_intersects(current, tsk);
85 }
86 if (ret)
87 break;
88 }
89 rcu_read_unlock();
90
91 return ret;
92 }
93 #else
94 static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96 {
97 return true;
98 }
99 #endif /* CONFIG_NUMA */
100
101 /*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
107 struct task_struct *find_lock_task_mm(struct task_struct *p)
108 {
109 struct task_struct *t;
110
111 rcu_read_lock();
112
113 for_each_thread(p, t) {
114 task_lock(t);
115 if (likely(t->mm))
116 goto found;
117 task_unlock(t);
118 }
119 t = NULL;
120 found:
121 rcu_read_unlock();
122
123 return t;
124 }
125
126 /*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130 static inline bool is_sysrq_oom(struct oom_control *oc)
131 {
132 return oc->order == -1;
133 }
134
135 /* return true if the task is not adequate as candidate victim task. */
136 static bool oom_unkillable_task(struct task_struct *p,
137 struct mem_cgroup *memcg, const nodemask_t *nodemask)
138 {
139 if (is_global_init(p))
140 return true;
141 if (p->flags & PF_KTHREAD)
142 return true;
143
144 /* When mem_cgroup_out_of_memory() and p is not member of the group */
145 if (memcg && !task_in_mem_cgroup(p, memcg))
146 return true;
147
148 /* p may not have freeable memory in nodemask */
149 if (!has_intersects_mems_allowed(p, nodemask))
150 return true;
151
152 return false;
153 }
154
155 /**
156 * oom_badness - heuristic function to determine which candidate task to kill
157 * @p: task struct of which task we should calculate
158 * @totalpages: total present RAM allowed for page allocation
159 *
160 * The heuristic for determining which task to kill is made to be as simple and
161 * predictable as possible. The goal is to return the highest value for the
162 * task consuming the most memory to avoid subsequent oom failures.
163 */
164 unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
165 const nodemask_t *nodemask, unsigned long totalpages)
166 {
167 long points;
168 long adj;
169
170 if (oom_unkillable_task(p, memcg, nodemask))
171 return 0;
172
173 p = find_lock_task_mm(p);
174 if (!p)
175 return 0;
176
177 adj = (long)p->signal->oom_score_adj;
178 if (adj == OOM_SCORE_ADJ_MIN) {
179 task_unlock(p);
180 return 0;
181 }
182
183 /*
184 * The baseline for the badness score is the proportion of RAM that each
185 * task's rss, pagetable and swap space use.
186 */
187 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
188 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
189 task_unlock(p);
190
191 /*
192 * Root processes get 3% bonus, just like the __vm_enough_memory()
193 * implementation used by LSMs.
194 */
195 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
196 points -= (points * 3) / 100;
197
198 /* Normalize to oom_score_adj units */
199 adj *= totalpages / 1000;
200 points += adj;
201
202 /*
203 * Never return 0 for an eligible task regardless of the root bonus and
204 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
205 */
206 return points > 0 ? points : 1;
207 }
208
209 /*
210 * Determine the type of allocation constraint.
211 */
212 #ifdef CONFIG_NUMA
213 static enum oom_constraint constrained_alloc(struct oom_control *oc,
214 unsigned long *totalpages)
215 {
216 struct zone *zone;
217 struct zoneref *z;
218 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
219 bool cpuset_limited = false;
220 int nid;
221
222 /* Default to all available memory */
223 *totalpages = totalram_pages + total_swap_pages;
224
225 if (!oc->zonelist)
226 return CONSTRAINT_NONE;
227 /*
228 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
229 * to kill current.We have to random task kill in this case.
230 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
231 */
232 if (oc->gfp_mask & __GFP_THISNODE)
233 return CONSTRAINT_NONE;
234
235 /*
236 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
237 * the page allocator means a mempolicy is in effect. Cpuset policy
238 * is enforced in get_page_from_freelist().
239 */
240 if (oc->nodemask &&
241 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
242 *totalpages = total_swap_pages;
243 for_each_node_mask(nid, *oc->nodemask)
244 *totalpages += node_spanned_pages(nid);
245 return CONSTRAINT_MEMORY_POLICY;
246 }
247
248 /* Check this allocation failure is caused by cpuset's wall function */
249 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
250 high_zoneidx, oc->nodemask)
251 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
252 cpuset_limited = true;
253
254 if (cpuset_limited) {
255 *totalpages = total_swap_pages;
256 for_each_node_mask(nid, cpuset_current_mems_allowed)
257 *totalpages += node_spanned_pages(nid);
258 return CONSTRAINT_CPUSET;
259 }
260 return CONSTRAINT_NONE;
261 }
262 #else
263 static enum oom_constraint constrained_alloc(struct oom_control *oc,
264 unsigned long *totalpages)
265 {
266 *totalpages = totalram_pages + total_swap_pages;
267 return CONSTRAINT_NONE;
268 }
269 #endif
270
271 enum oom_scan_t oom_scan_process_thread(struct oom_control *oc,
272 struct task_struct *task, unsigned long totalpages)
273 {
274 if (oom_unkillable_task(task, NULL, oc->nodemask))
275 return OOM_SCAN_CONTINUE;
276
277 /*
278 * This task already has access to memory reserves and is being killed.
279 * Don't allow any other task to have access to the reserves.
280 */
281 if (test_tsk_thread_flag(task, TIF_MEMDIE)) {
282 if (!is_sysrq_oom(oc))
283 return OOM_SCAN_ABORT;
284 }
285 if (!task->mm)
286 return OOM_SCAN_CONTINUE;
287
288 /*
289 * If task is allocating a lot of memory and has been marked to be
290 * killed first if it triggers an oom, then select it.
291 */
292 if (oom_task_origin(task))
293 return OOM_SCAN_SELECT;
294
295 return OOM_SCAN_OK;
296 }
297
298 /*
299 * Simple selection loop. We chose the process with the highest
300 * number of 'points'. Returns -1 on scan abort.
301 */
302 static struct task_struct *select_bad_process(struct oom_control *oc,
303 unsigned int *ppoints, unsigned long totalpages)
304 {
305 struct task_struct *g, *p;
306 struct task_struct *chosen = NULL;
307 unsigned long chosen_points = 0;
308
309 rcu_read_lock();
310 for_each_process_thread(g, p) {
311 unsigned int points;
312
313 switch (oom_scan_process_thread(oc, p, totalpages)) {
314 case OOM_SCAN_SELECT:
315 chosen = p;
316 chosen_points = ULONG_MAX;
317 /* fall through */
318 case OOM_SCAN_CONTINUE:
319 continue;
320 case OOM_SCAN_ABORT:
321 rcu_read_unlock();
322 return (struct task_struct *)(-1UL);
323 case OOM_SCAN_OK:
324 break;
325 };
326 points = oom_badness(p, NULL, oc->nodemask, totalpages);
327 if (!points || points < chosen_points)
328 continue;
329 /* Prefer thread group leaders for display purposes */
330 if (points == chosen_points && thread_group_leader(chosen))
331 continue;
332
333 chosen = p;
334 chosen_points = points;
335 }
336 if (chosen)
337 get_task_struct(chosen);
338 rcu_read_unlock();
339
340 *ppoints = chosen_points * 1000 / totalpages;
341 return chosen;
342 }
343
344 /**
345 * dump_tasks - dump current memory state of all system tasks
346 * @memcg: current's memory controller, if constrained
347 * @nodemask: nodemask passed to page allocator for mempolicy ooms
348 *
349 * Dumps the current memory state of all eligible tasks. Tasks not in the same
350 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
351 * are not shown.
352 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
353 * swapents, oom_score_adj value, and name.
354 */
355 static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
356 {
357 struct task_struct *p;
358 struct task_struct *task;
359
360 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
361 rcu_read_lock();
362 for_each_process(p) {
363 if (oom_unkillable_task(p, memcg, nodemask))
364 continue;
365
366 task = find_lock_task_mm(p);
367 if (!task) {
368 /*
369 * This is a kthread or all of p's threads have already
370 * detached their mm's. There's no need to report
371 * them; they can't be oom killed anyway.
372 */
373 continue;
374 }
375
376 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
377 task->pid, from_kuid(&init_user_ns, task_uid(task)),
378 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
379 atomic_long_read(&task->mm->nr_ptes),
380 mm_nr_pmds(task->mm),
381 get_mm_counter(task->mm, MM_SWAPENTS),
382 task->signal->oom_score_adj, task->comm);
383 task_unlock(task);
384 }
385 rcu_read_unlock();
386 }
387
388 static void dump_header(struct oom_control *oc, struct task_struct *p,
389 struct mem_cgroup *memcg)
390 {
391 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
392 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
393 current->signal->oom_score_adj);
394
395 cpuset_print_current_mems_allowed();
396 dump_stack();
397 if (memcg)
398 mem_cgroup_print_oom_info(memcg, p);
399 else
400 show_mem(SHOW_MEM_FILTER_NODES);
401 if (sysctl_oom_dump_tasks)
402 dump_tasks(memcg, oc->nodemask);
403 }
404
405 /*
406 * Number of OOM victims in flight
407 */
408 static atomic_t oom_victims = ATOMIC_INIT(0);
409 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
410
411 bool oom_killer_disabled __read_mostly;
412
413 #define K(x) ((x) << (PAGE_SHIFT-10))
414
415 /*
416 * task->mm can be NULL if the task is the exited group leader. So to
417 * determine whether the task is using a particular mm, we examine all the
418 * task's threads: if one of those is using this mm then this task was also
419 * using it.
420 */
421 static bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
422 {
423 struct task_struct *t;
424
425 for_each_thread(p, t) {
426 struct mm_struct *t_mm = READ_ONCE(t->mm);
427 if (t_mm)
428 return t_mm == mm;
429 }
430 return false;
431 }
432
433
434 #ifdef CONFIG_MMU
435 /*
436 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
437 * victim (if that is possible) to help the OOM killer to move on.
438 */
439 static struct task_struct *oom_reaper_th;
440 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
441 static struct task_struct *oom_reaper_list;
442 static DEFINE_SPINLOCK(oom_reaper_lock);
443
444
445 static bool __oom_reap_task(struct task_struct *tsk)
446 {
447 struct mmu_gather tlb;
448 struct vm_area_struct *vma;
449 struct mm_struct *mm;
450 struct task_struct *p;
451 struct zap_details details = {.check_swap_entries = true,
452 .ignore_dirty = true};
453 bool ret = true;
454
455 /*
456 * Make sure we find the associated mm_struct even when the particular
457 * thread has already terminated and cleared its mm.
458 * We might have race with exit path so consider our work done if there
459 * is no mm.
460 */
461 p = find_lock_task_mm(tsk);
462 if (!p)
463 return true;
464
465 mm = p->mm;
466 if (!atomic_inc_not_zero(&mm->mm_users)) {
467 task_unlock(p);
468 return true;
469 }
470
471 task_unlock(p);
472
473 if (!down_read_trylock(&mm->mmap_sem)) {
474 ret = false;
475 goto out;
476 }
477
478 tlb_gather_mmu(&tlb, mm, 0, -1);
479 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
480 if (is_vm_hugetlb_page(vma))
481 continue;
482
483 /*
484 * mlocked VMAs require explicit munlocking before unmap.
485 * Let's keep it simple here and skip such VMAs.
486 */
487 if (vma->vm_flags & VM_LOCKED)
488 continue;
489
490 /*
491 * Only anonymous pages have a good chance to be dropped
492 * without additional steps which we cannot afford as we
493 * are OOM already.
494 *
495 * We do not even care about fs backed pages because all
496 * which are reclaimable have already been reclaimed and
497 * we do not want to block exit_mmap by keeping mm ref
498 * count elevated without a good reason.
499 */
500 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
501 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
502 &details);
503 }
504 tlb_finish_mmu(&tlb, 0, -1);
505 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
506 task_pid_nr(tsk), tsk->comm,
507 K(get_mm_counter(mm, MM_ANONPAGES)),
508 K(get_mm_counter(mm, MM_FILEPAGES)),
509 K(get_mm_counter(mm, MM_SHMEMPAGES)));
510 up_read(&mm->mmap_sem);
511
512 /*
513 * This task can be safely ignored because we cannot do much more
514 * to release its memory.
515 */
516 tsk->signal->oom_score_adj = OOM_SCORE_ADJ_MIN;
517 out:
518 mmput(mm);
519 return ret;
520 }
521
522 #define MAX_OOM_REAP_RETRIES 10
523 static void oom_reap_task(struct task_struct *tsk)
524 {
525 int attempts = 0;
526
527 /* Retry the down_read_trylock(mmap_sem) a few times */
528 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
529 schedule_timeout_idle(HZ/10);
530
531 if (attempts > MAX_OOM_REAP_RETRIES) {
532 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
533 task_pid_nr(tsk), tsk->comm);
534 debug_show_all_locks();
535 }
536
537 /*
538 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
539 * reasonably reclaimable memory anymore or it is not a good candidate
540 * for the oom victim right now because it cannot release its memory
541 * itself nor by the oom reaper.
542 */
543 tsk->oom_reaper_list = NULL;
544 exit_oom_victim(tsk);
545
546 /* Drop a reference taken by wake_oom_reaper */
547 put_task_struct(tsk);
548 }
549
550 static int oom_reaper(void *unused)
551 {
552 set_freezable();
553
554 while (true) {
555 struct task_struct *tsk = NULL;
556
557 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
558 spin_lock(&oom_reaper_lock);
559 if (oom_reaper_list != NULL) {
560 tsk = oom_reaper_list;
561 oom_reaper_list = tsk->oom_reaper_list;
562 }
563 spin_unlock(&oom_reaper_lock);
564
565 if (tsk)
566 oom_reap_task(tsk);
567 }
568
569 return 0;
570 }
571
572 static void wake_oom_reaper(struct task_struct *tsk)
573 {
574 if (!oom_reaper_th)
575 return;
576
577 /* tsk is already queued? */
578 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
579 return;
580
581 get_task_struct(tsk);
582
583 spin_lock(&oom_reaper_lock);
584 tsk->oom_reaper_list = oom_reaper_list;
585 oom_reaper_list = tsk;
586 spin_unlock(&oom_reaper_lock);
587 wake_up(&oom_reaper_wait);
588 }
589
590 /* Check if we can reap the given task. This has to be called with stable
591 * tsk->mm
592 */
593 void try_oom_reaper(struct task_struct *tsk)
594 {
595 struct mm_struct *mm = tsk->mm;
596 struct task_struct *p;
597
598 if (!mm)
599 return;
600
601 /*
602 * There might be other threads/processes which are either not
603 * dying or even not killable.
604 */
605 if (atomic_read(&mm->mm_users) > 1) {
606 rcu_read_lock();
607 for_each_process(p) {
608 bool exiting;
609
610 if (!process_shares_mm(p, mm))
611 continue;
612 if (same_thread_group(p, tsk))
613 continue;
614 if (fatal_signal_pending(p))
615 continue;
616
617 /*
618 * If the task is exiting make sure the whole thread group
619 * is exiting and cannot acces mm anymore.
620 */
621 spin_lock_irq(&p->sighand->siglock);
622 exiting = signal_group_exit(p->signal);
623 spin_unlock_irq(&p->sighand->siglock);
624 if (exiting)
625 continue;
626
627 /* Give up */
628 rcu_read_unlock();
629 return;
630 }
631 rcu_read_unlock();
632 }
633
634 wake_oom_reaper(tsk);
635 }
636
637 static int __init oom_init(void)
638 {
639 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
640 if (IS_ERR(oom_reaper_th)) {
641 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
642 PTR_ERR(oom_reaper_th));
643 oom_reaper_th = NULL;
644 }
645 return 0;
646 }
647 subsys_initcall(oom_init)
648 #else
649 static void wake_oom_reaper(struct task_struct *tsk)
650 {
651 }
652 #endif
653
654 /**
655 * mark_oom_victim - mark the given task as OOM victim
656 * @tsk: task to mark
657 *
658 * Has to be called with oom_lock held and never after
659 * oom has been disabled already.
660 */
661 void mark_oom_victim(struct task_struct *tsk)
662 {
663 WARN_ON(oom_killer_disabled);
664 /* OOM killer might race with memcg OOM */
665 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
666 return;
667 /*
668 * Make sure that the task is woken up from uninterruptible sleep
669 * if it is frozen because OOM killer wouldn't be able to free
670 * any memory and livelock. freezing_slow_path will tell the freezer
671 * that TIF_MEMDIE tasks should be ignored.
672 */
673 __thaw_task(tsk);
674 atomic_inc(&oom_victims);
675 }
676
677 /**
678 * exit_oom_victim - note the exit of an OOM victim
679 */
680 void exit_oom_victim(struct task_struct *tsk)
681 {
682 if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
683 return;
684
685 if (!atomic_dec_return(&oom_victims))
686 wake_up_all(&oom_victims_wait);
687 }
688
689 /**
690 * oom_killer_disable - disable OOM killer
691 *
692 * Forces all page allocations to fail rather than trigger OOM killer.
693 * Will block and wait until all OOM victims are killed.
694 *
695 * The function cannot be called when there are runnable user tasks because
696 * the userspace would see unexpected allocation failures as a result. Any
697 * new usage of this function should be consulted with MM people.
698 *
699 * Returns true if successful and false if the OOM killer cannot be
700 * disabled.
701 */
702 bool oom_killer_disable(void)
703 {
704 /*
705 * Make sure to not race with an ongoing OOM killer. Check that the
706 * current is not killed (possibly due to sharing the victim's memory).
707 */
708 if (mutex_lock_killable(&oom_lock))
709 return false;
710 oom_killer_disabled = true;
711 mutex_unlock(&oom_lock);
712
713 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
714
715 return true;
716 }
717
718 /**
719 * oom_killer_enable - enable OOM killer
720 */
721 void oom_killer_enable(void)
722 {
723 oom_killer_disabled = false;
724 }
725
726 /*
727 * Must be called while holding a reference to p, which will be released upon
728 * returning.
729 */
730 void oom_kill_process(struct oom_control *oc, struct task_struct *p,
731 unsigned int points, unsigned long totalpages,
732 struct mem_cgroup *memcg, const char *message)
733 {
734 struct task_struct *victim = p;
735 struct task_struct *child;
736 struct task_struct *t;
737 struct mm_struct *mm;
738 unsigned int victim_points = 0;
739 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
740 DEFAULT_RATELIMIT_BURST);
741 bool can_oom_reap = true;
742
743 /*
744 * If the task is already exiting, don't alarm the sysadmin or kill
745 * its children or threads, just set TIF_MEMDIE so it can die quickly
746 */
747 task_lock(p);
748 if (p->mm && task_will_free_mem(p)) {
749 mark_oom_victim(p);
750 try_oom_reaper(p);
751 task_unlock(p);
752 put_task_struct(p);
753 return;
754 }
755 task_unlock(p);
756
757 if (__ratelimit(&oom_rs))
758 dump_header(oc, p, memcg);
759
760 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
761 message, task_pid_nr(p), p->comm, points);
762
763 /*
764 * If any of p's children has a different mm and is eligible for kill,
765 * the one with the highest oom_badness() score is sacrificed for its
766 * parent. This attempts to lose the minimal amount of work done while
767 * still freeing memory.
768 */
769 read_lock(&tasklist_lock);
770 for_each_thread(p, t) {
771 list_for_each_entry(child, &t->children, sibling) {
772 unsigned int child_points;
773
774 if (process_shares_mm(child, p->mm))
775 continue;
776 /*
777 * oom_badness() returns 0 if the thread is unkillable
778 */
779 child_points = oom_badness(child, memcg, oc->nodemask,
780 totalpages);
781 if (child_points > victim_points) {
782 put_task_struct(victim);
783 victim = child;
784 victim_points = child_points;
785 get_task_struct(victim);
786 }
787 }
788 }
789 read_unlock(&tasklist_lock);
790
791 p = find_lock_task_mm(victim);
792 if (!p) {
793 put_task_struct(victim);
794 return;
795 } else if (victim != p) {
796 get_task_struct(p);
797 put_task_struct(victim);
798 victim = p;
799 }
800
801 /* Get a reference to safely compare mm after task_unlock(victim) */
802 mm = victim->mm;
803 atomic_inc(&mm->mm_count);
804 /*
805 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
806 * the OOM victim from depleting the memory reserves from the user
807 * space under its control.
808 */
809 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
810 mark_oom_victim(victim);
811 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
812 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
813 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
814 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
815 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
816 task_unlock(victim);
817
818 /*
819 * Kill all user processes sharing victim->mm in other thread groups, if
820 * any. They don't get access to memory reserves, though, to avoid
821 * depletion of all memory. This prevents mm->mmap_sem livelock when an
822 * oom killed thread cannot exit because it requires the semaphore and
823 * its contended by another thread trying to allocate memory itself.
824 * That thread will now get access to memory reserves since it has a
825 * pending fatal signal.
826 */
827 rcu_read_lock();
828 for_each_process(p) {
829 if (!process_shares_mm(p, mm))
830 continue;
831 if (same_thread_group(p, victim))
832 continue;
833 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p) ||
834 p->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
835 /*
836 * We cannot use oom_reaper for the mm shared by this
837 * process because it wouldn't get killed and so the
838 * memory might be still used.
839 */
840 can_oom_reap = false;
841 continue;
842 }
843 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
844 }
845 rcu_read_unlock();
846
847 if (can_oom_reap)
848 wake_oom_reaper(victim);
849
850 mmdrop(mm);
851 put_task_struct(victim);
852 }
853 #undef K
854
855 /*
856 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
857 */
858 void check_panic_on_oom(struct oom_control *oc, enum oom_constraint constraint,
859 struct mem_cgroup *memcg)
860 {
861 if (likely(!sysctl_panic_on_oom))
862 return;
863 if (sysctl_panic_on_oom != 2) {
864 /*
865 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
866 * does not panic for cpuset, mempolicy, or memcg allocation
867 * failures.
868 */
869 if (constraint != CONSTRAINT_NONE)
870 return;
871 }
872 /* Do not panic for oom kills triggered by sysrq */
873 if (is_sysrq_oom(oc))
874 return;
875 dump_header(oc, NULL, memcg);
876 panic("Out of memory: %s panic_on_oom is enabled\n",
877 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
878 }
879
880 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
881
882 int register_oom_notifier(struct notifier_block *nb)
883 {
884 return blocking_notifier_chain_register(&oom_notify_list, nb);
885 }
886 EXPORT_SYMBOL_GPL(register_oom_notifier);
887
888 int unregister_oom_notifier(struct notifier_block *nb)
889 {
890 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
891 }
892 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
893
894 /**
895 * out_of_memory - kill the "best" process when we run out of memory
896 * @oc: pointer to struct oom_control
897 *
898 * If we run out of memory, we have the choice between either
899 * killing a random task (bad), letting the system crash (worse)
900 * OR try to be smart about which process to kill. Note that we
901 * don't have to be perfect here, we just have to be good.
902 */
903 bool out_of_memory(struct oom_control *oc)
904 {
905 struct task_struct *p;
906 unsigned long totalpages;
907 unsigned long freed = 0;
908 unsigned int uninitialized_var(points);
909 enum oom_constraint constraint = CONSTRAINT_NONE;
910
911 if (oom_killer_disabled)
912 return false;
913
914 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
915 if (freed > 0)
916 /* Got some memory back in the last second. */
917 return true;
918
919 /*
920 * If current has a pending SIGKILL or is exiting, then automatically
921 * select it. The goal is to allow it to allocate so that it may
922 * quickly exit and free its memory.
923 *
924 * But don't select if current has already released its mm and cleared
925 * TIF_MEMDIE flag at exit_mm(), otherwise an OOM livelock may occur.
926 */
927 if (current->mm &&
928 (fatal_signal_pending(current) || task_will_free_mem(current))) {
929 mark_oom_victim(current);
930 try_oom_reaper(current);
931 return true;
932 }
933
934 /*
935 * The OOM killer does not compensate for IO-less reclaim.
936 * pagefault_out_of_memory lost its gfp context so we have to
937 * make sure exclude 0 mask - all other users should have at least
938 * ___GFP_DIRECT_RECLAIM to get here.
939 */
940 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
941 return true;
942
943 /*
944 * Check if there were limitations on the allocation (only relevant for
945 * NUMA) that may require different handling.
946 */
947 constraint = constrained_alloc(oc, &totalpages);
948 if (constraint != CONSTRAINT_MEMORY_POLICY)
949 oc->nodemask = NULL;
950 check_panic_on_oom(oc, constraint, NULL);
951
952 if (sysctl_oom_kill_allocating_task && current->mm &&
953 !oom_unkillable_task(current, NULL, oc->nodemask) &&
954 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
955 get_task_struct(current);
956 oom_kill_process(oc, current, 0, totalpages, NULL,
957 "Out of memory (oom_kill_allocating_task)");
958 return true;
959 }
960
961 p = select_bad_process(oc, &points, totalpages);
962 /* Found nothing?!?! Either we hang forever, or we panic. */
963 if (!p && !is_sysrq_oom(oc)) {
964 dump_header(oc, NULL, NULL);
965 panic("Out of memory and no killable processes...\n");
966 }
967 if (p && p != (void *)-1UL) {
968 oom_kill_process(oc, p, points, totalpages, NULL,
969 "Out of memory");
970 /*
971 * Give the killed process a good chance to exit before trying
972 * to allocate memory again.
973 */
974 schedule_timeout_killable(1);
975 }
976 return true;
977 }
978
979 /*
980 * The pagefault handler calls here because it is out of memory, so kill a
981 * memory-hogging task. If any populated zone has ZONE_OOM_LOCKED set, a
982 * parallel oom killing is already in progress so do nothing.
983 */
984 void pagefault_out_of_memory(void)
985 {
986 struct oom_control oc = {
987 .zonelist = NULL,
988 .nodemask = NULL,
989 .gfp_mask = 0,
990 .order = 0,
991 };
992
993 if (mem_cgroup_oom_synchronize(true))
994 return;
995
996 if (!mutex_trylock(&oom_lock))
997 return;
998
999 if (!out_of_memory(&oc)) {
1000 /*
1001 * There shouldn't be any user tasks runnable while the
1002 * OOM killer is disabled, so the current task has to
1003 * be a racing OOM victim for which oom_killer_disable()
1004 * is waiting for.
1005 */
1006 WARN_ON(test_thread_flag(TIF_MEMDIE));
1007 }
1008
1009 mutex_unlock(&oom_lock);
1010 }
This page took 0.053489 seconds and 5 git commands to generate.