Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/shaggy...
[deliverable/linux.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 *
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
11 *
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
16 */
17
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/sched.h>
21 #include <linux/swap.h>
22 #include <linux/timex.h>
23 #include <linux/jiffies.h>
24 #include <linux/cpuset.h>
25 #include <linux/module.h>
26 #include <linux/notifier.h>
27
28 int sysctl_panic_on_oom;
29 /* #define DEBUG */
30
31 /**
32 * badness - calculate a numeric value for how bad this task has been
33 * @p: task struct of which task we should calculate
34 * @uptime: current uptime in seconds
35 *
36 * The formula used is relatively simple and documented inline in the
37 * function. The main rationale is that we want to select a good task
38 * to kill when we run out of memory.
39 *
40 * Good in this context means that:
41 * 1) we lose the minimum amount of work done
42 * 2) we recover a large amount of memory
43 * 3) we don't kill anything innocent of eating tons of memory
44 * 4) we want to kill the minimum amount of processes (one)
45 * 5) we try to kill the process the user expects us to kill, this
46 * algorithm has been meticulously tuned to meet the principle
47 * of least surprise ... (be careful when you change it)
48 */
49
50 unsigned long badness(struct task_struct *p, unsigned long uptime)
51 {
52 unsigned long points, cpu_time, run_time, s;
53 struct mm_struct *mm;
54 struct task_struct *child;
55
56 task_lock(p);
57 mm = p->mm;
58 if (!mm) {
59 task_unlock(p);
60 return 0;
61 }
62
63 /*
64 * swapoff can easily use up all memory, so kill those first.
65 */
66 if (p->flags & PF_SWAPOFF)
67 return ULONG_MAX;
68
69 /*
70 * The memory size of the process is the basis for the badness.
71 */
72 points = mm->total_vm;
73
74 /*
75 * After this unlock we can no longer dereference local variable `mm'
76 */
77 task_unlock(p);
78
79 /*
80 * Processes which fork a lot of child processes are likely
81 * a good choice. We add half the vmsize of the children if they
82 * have an own mm. This prevents forking servers to flood the
83 * machine with an endless amount of children. In case a single
84 * child is eating the vast majority of memory, adding only half
85 * to the parents will make the child our kill candidate of choice.
86 */
87 list_for_each_entry(child, &p->children, sibling) {
88 task_lock(child);
89 if (child->mm != mm && child->mm)
90 points += child->mm->total_vm/2 + 1;
91 task_unlock(child);
92 }
93
94 /*
95 * CPU time is in tens of seconds and run time is in thousands
96 * of seconds. There is no particular reason for this other than
97 * that it turned out to work very well in practice.
98 */
99 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
100 >> (SHIFT_HZ + 3);
101
102 if (uptime >= p->start_time.tv_sec)
103 run_time = (uptime - p->start_time.tv_sec) >> 10;
104 else
105 run_time = 0;
106
107 s = int_sqrt(cpu_time);
108 if (s)
109 points /= s;
110 s = int_sqrt(int_sqrt(run_time));
111 if (s)
112 points /= s;
113
114 /*
115 * Niced processes are most likely less important, so double
116 * their badness points.
117 */
118 if (task_nice(p) > 0)
119 points *= 2;
120
121 /*
122 * Superuser processes are usually more important, so we make it
123 * less likely that we kill those.
124 */
125 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_ADMIN) ||
126 p->uid == 0 || p->euid == 0)
127 points /= 4;
128
129 /*
130 * We don't want to kill a process with direct hardware access.
131 * Not only could that mess up the hardware, but usually users
132 * tend to only have this flag set on applications they think
133 * of as important.
134 */
135 if (cap_t(p->cap_effective) & CAP_TO_MASK(CAP_SYS_RAWIO))
136 points /= 4;
137
138 /*
139 * If p's nodes don't overlap ours, it may still help to kill p
140 * because p may have allocated or otherwise mapped memory on
141 * this node before. However it will be less likely.
142 */
143 if (!cpuset_excl_nodes_overlap(p))
144 points /= 8;
145
146 /*
147 * Adjust the score by oomkilladj.
148 */
149 if (p->oomkilladj) {
150 if (p->oomkilladj > 0)
151 points <<= p->oomkilladj;
152 else
153 points >>= -(p->oomkilladj);
154 }
155
156 #ifdef DEBUG
157 printk(KERN_DEBUG "OOMkill: task %d (%s) got %d points\n",
158 p->pid, p->comm, points);
159 #endif
160 return points;
161 }
162
163 /*
164 * Types of limitations to the nodes from which allocations may occur
165 */
166 #define CONSTRAINT_NONE 1
167 #define CONSTRAINT_MEMORY_POLICY 2
168 #define CONSTRAINT_CPUSET 3
169
170 /*
171 * Determine the type of allocation constraint.
172 */
173 static inline int constrained_alloc(struct zonelist *zonelist, gfp_t gfp_mask)
174 {
175 #ifdef CONFIG_NUMA
176 struct zone **z;
177 nodemask_t nodes = node_online_map;
178
179 for (z = zonelist->zones; *z; z++)
180 if (cpuset_zone_allowed(*z, gfp_mask))
181 node_clear(zone_to_nid(*z), nodes);
182 else
183 return CONSTRAINT_CPUSET;
184
185 if (!nodes_empty(nodes))
186 return CONSTRAINT_MEMORY_POLICY;
187 #endif
188
189 return CONSTRAINT_NONE;
190 }
191
192 /*
193 * Simple selection loop. We chose the process with the highest
194 * number of 'points'. We expect the caller will lock the tasklist.
195 *
196 * (not docbooked, we don't want this one cluttering up the manual)
197 */
198 static struct task_struct *select_bad_process(unsigned long *ppoints)
199 {
200 struct task_struct *g, *p;
201 struct task_struct *chosen = NULL;
202 struct timespec uptime;
203 *ppoints = 0;
204
205 do_posix_clock_monotonic_gettime(&uptime);
206 do_each_thread(g, p) {
207 unsigned long points;
208
209 /*
210 * skip kernel threads and tasks which have already released
211 * their mm.
212 */
213 if (!p->mm)
214 continue;
215 /* skip the init task */
216 if (is_init(p))
217 continue;
218
219 /*
220 * This task already has access to memory reserves and is
221 * being killed. Don't allow any other task access to the
222 * memory reserve.
223 *
224 * Note: this may have a chance of deadlock if it gets
225 * blocked waiting for another task which itself is waiting
226 * for memory. Is there a better alternative?
227 */
228 if (test_tsk_thread_flag(p, TIF_MEMDIE))
229 return ERR_PTR(-1UL);
230
231 /*
232 * This is in the process of releasing memory so wait for it
233 * to finish before killing some other task by mistake.
234 *
235 * However, if p is the current task, we allow the 'kill' to
236 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
237 * which will allow it to gain access to memory reserves in
238 * the process of exiting and releasing its resources.
239 * Otherwise we could get an easy OOM deadlock.
240 */
241 if (p->flags & PF_EXITING) {
242 if (p != current)
243 return ERR_PTR(-1UL);
244
245 chosen = p;
246 *ppoints = ULONG_MAX;
247 }
248
249 if (p->oomkilladj == OOM_DISABLE)
250 continue;
251
252 points = badness(p, uptime.tv_sec);
253 if (points > *ppoints || !chosen) {
254 chosen = p;
255 *ppoints = points;
256 }
257 } while_each_thread(g, p);
258
259 return chosen;
260 }
261
262 /**
263 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
264 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
265 * set.
266 */
267 static void __oom_kill_task(struct task_struct *p, int verbose)
268 {
269 if (is_init(p)) {
270 WARN_ON(1);
271 printk(KERN_WARNING "tried to kill init!\n");
272 return;
273 }
274
275 if (!p->mm) {
276 WARN_ON(1);
277 printk(KERN_WARNING "tried to kill an mm-less task!\n");
278 return;
279 }
280
281 if (verbose)
282 printk(KERN_ERR "Killed process %d (%s)\n", p->pid, p->comm);
283
284 /*
285 * We give our sacrificial lamb high priority and access to
286 * all the memory it needs. That way it should be able to
287 * exit() and clear out its resources quickly...
288 */
289 p->time_slice = HZ;
290 set_tsk_thread_flag(p, TIF_MEMDIE);
291
292 force_sig(SIGKILL, p);
293 }
294
295 static int oom_kill_task(struct task_struct *p)
296 {
297 struct mm_struct *mm;
298 struct task_struct *g, *q;
299
300 mm = p->mm;
301
302 /* WARNING: mm may not be dereferenced since we did not obtain its
303 * value from get_task_mm(p). This is OK since all we need to do is
304 * compare mm to q->mm below.
305 *
306 * Furthermore, even if mm contains a non-NULL value, p->mm may
307 * change to NULL at any time since we do not hold task_lock(p).
308 * However, this is of no concern to us.
309 */
310
311 if (mm == NULL)
312 return 1;
313
314 /*
315 * Don't kill the process if any threads are set to OOM_DISABLE
316 */
317 do_each_thread(g, q) {
318 if (q->mm == mm && p->oomkilladj == OOM_DISABLE)
319 return 1;
320 } while_each_thread(g, q);
321
322 __oom_kill_task(p, 1);
323
324 /*
325 * kill all processes that share the ->mm (i.e. all threads),
326 * but are in a different thread group. Don't let them have access
327 * to memory reserves though, otherwise we might deplete all memory.
328 */
329 do_each_thread(g, q) {
330 if (q->mm == mm && q->tgid != p->tgid)
331 force_sig(SIGKILL, p);
332 } while_each_thread(g, q);
333
334 return 0;
335 }
336
337 static int oom_kill_process(struct task_struct *p, unsigned long points,
338 const char *message)
339 {
340 struct task_struct *c;
341 struct list_head *tsk;
342
343 /*
344 * If the task is already exiting, don't alarm the sysadmin or kill
345 * its children or threads, just set TIF_MEMDIE so it can die quickly
346 */
347 if (p->flags & PF_EXITING) {
348 __oom_kill_task(p, 0);
349 return 0;
350 }
351
352 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
353 message, p->pid, p->comm, points);
354
355 /* Try to kill a child first */
356 list_for_each(tsk, &p->children) {
357 c = list_entry(tsk, struct task_struct, sibling);
358 if (c->mm == p->mm)
359 continue;
360 if (!oom_kill_task(c))
361 return 0;
362 }
363 return oom_kill_task(p);
364 }
365
366 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
367
368 int register_oom_notifier(struct notifier_block *nb)
369 {
370 return blocking_notifier_chain_register(&oom_notify_list, nb);
371 }
372 EXPORT_SYMBOL_GPL(register_oom_notifier);
373
374 int unregister_oom_notifier(struct notifier_block *nb)
375 {
376 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
377 }
378 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
379
380 /**
381 * out_of_memory - kill the "best" process when we run out of memory
382 *
383 * If we run out of memory, we have the choice between either
384 * killing a random task (bad), letting the system crash (worse)
385 * OR try to be smart about which process to kill. Note that we
386 * don't have to be perfect here, we just have to be good.
387 */
388 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
389 {
390 struct task_struct *p;
391 unsigned long points = 0;
392 unsigned long freed = 0;
393
394 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
395 if (freed > 0)
396 /* Got some memory back in the last second. */
397 return;
398
399 if (printk_ratelimit()) {
400 printk(KERN_WARNING "%s invoked oom-killer: "
401 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
402 current->comm, gfp_mask, order, current->oomkilladj);
403 dump_stack();
404 show_mem();
405 }
406
407 cpuset_lock();
408 read_lock(&tasklist_lock);
409
410 /*
411 * Check if there were limitations on the allocation (only relevant for
412 * NUMA) that may require different handling.
413 */
414 switch (constrained_alloc(zonelist, gfp_mask)) {
415 case CONSTRAINT_MEMORY_POLICY:
416 oom_kill_process(current, points,
417 "No available memory (MPOL_BIND)");
418 break;
419
420 case CONSTRAINT_CPUSET:
421 oom_kill_process(current, points,
422 "No available memory in cpuset");
423 break;
424
425 case CONSTRAINT_NONE:
426 if (sysctl_panic_on_oom)
427 panic("out of memory. panic_on_oom is selected\n");
428 retry:
429 /*
430 * Rambo mode: Shoot down a process and hope it solves whatever
431 * issues we may have.
432 */
433 p = select_bad_process(&points);
434
435 if (PTR_ERR(p) == -1UL)
436 goto out;
437
438 /* Found nothing?!?! Either we hang forever, or we panic. */
439 if (!p) {
440 read_unlock(&tasklist_lock);
441 cpuset_unlock();
442 panic("Out of memory and no killable processes...\n");
443 }
444
445 if (oom_kill_process(p, points, "Out of memory"))
446 goto retry;
447
448 break;
449 }
450
451 out:
452 read_unlock(&tasklist_lock);
453 cpuset_unlock();
454
455 /*
456 * Give "p" a good chance of killing itself before we
457 * retry to allocate memory unless "p" is current
458 */
459 if (!test_thread_flag(TIF_MEMDIE))
460 schedule_timeout_uninterruptible(1);
461 }
This page took 0.046613 seconds and 6 git commands to generate.