memcontrol: move oom task exclusion to tasklist scan
[deliverable/linux.git] / mm / oom_kill.c
1 /*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
7 *
8 * The routines in this file are used to kill a process when
9 * we're seriously out of memory. This gets called from __alloc_pages()
10 * in mm/page_alloc.c when we really run out of memory.
11 *
12 * Since we won't call these routines often (on a well-configured
13 * machine) this file will double as a 'coding guide' and a signpost
14 * for newbie kernel hackers. It features several pointers to major
15 * kernel subsystems and hints as to where to find out what things do.
16 */
17
18 #include <linux/oom.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/sched.h>
22 #include <linux/swap.h>
23 #include <linux/timex.h>
24 #include <linux/jiffies.h>
25 #include <linux/cpuset.h>
26 #include <linux/module.h>
27 #include <linux/notifier.h>
28 #include <linux/memcontrol.h>
29
30 int sysctl_panic_on_oom;
31 int sysctl_oom_kill_allocating_task;
32 static DEFINE_SPINLOCK(zone_scan_mutex);
33 /* #define DEBUG */
34
35 /**
36 * badness - calculate a numeric value for how bad this task has been
37 * @p: task struct of which task we should calculate
38 * @uptime: current uptime in seconds
39 *
40 * The formula used is relatively simple and documented inline in the
41 * function. The main rationale is that we want to select a good task
42 * to kill when we run out of memory.
43 *
44 * Good in this context means that:
45 * 1) we lose the minimum amount of work done
46 * 2) we recover a large amount of memory
47 * 3) we don't kill anything innocent of eating tons of memory
48 * 4) we want to kill the minimum amount of processes (one)
49 * 5) we try to kill the process the user expects us to kill, this
50 * algorithm has been meticulously tuned to meet the principle
51 * of least surprise ... (be careful when you change it)
52 */
53
54 unsigned long badness(struct task_struct *p, unsigned long uptime,
55 struct mem_cgroup *mem)
56 {
57 unsigned long points, cpu_time, run_time, s;
58 struct mm_struct *mm;
59 struct task_struct *child;
60
61 task_lock(p);
62 mm = p->mm;
63 if (!mm) {
64 task_unlock(p);
65 return 0;
66 }
67
68 /*
69 * The memory size of the process is the basis for the badness.
70 */
71 points = mm->total_vm;
72
73 /*
74 * After this unlock we can no longer dereference local variable `mm'
75 */
76 task_unlock(p);
77
78 /*
79 * swapoff can easily use up all memory, so kill those first.
80 */
81 if (p->flags & PF_SWAPOFF)
82 return ULONG_MAX;
83
84 /*
85 * Processes which fork a lot of child processes are likely
86 * a good choice. We add half the vmsize of the children if they
87 * have an own mm. This prevents forking servers to flood the
88 * machine with an endless amount of children. In case a single
89 * child is eating the vast majority of memory, adding only half
90 * to the parents will make the child our kill candidate of choice.
91 */
92 list_for_each_entry(child, &p->children, sibling) {
93 task_lock(child);
94 if (child->mm != mm && child->mm)
95 points += child->mm->total_vm/2 + 1;
96 task_unlock(child);
97 }
98
99 /*
100 * CPU time is in tens of seconds and run time is in thousands
101 * of seconds. There is no particular reason for this other than
102 * that it turned out to work very well in practice.
103 */
104 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
105 >> (SHIFT_HZ + 3);
106
107 if (uptime >= p->start_time.tv_sec)
108 run_time = (uptime - p->start_time.tv_sec) >> 10;
109 else
110 run_time = 0;
111
112 s = int_sqrt(cpu_time);
113 if (s)
114 points /= s;
115 s = int_sqrt(int_sqrt(run_time));
116 if (s)
117 points /= s;
118
119 /*
120 * Niced processes are most likely less important, so double
121 * their badness points.
122 */
123 if (task_nice(p) > 0)
124 points *= 2;
125
126 /*
127 * Superuser processes are usually more important, so we make it
128 * less likely that we kill those.
129 */
130 if (__capable(p, CAP_SYS_ADMIN) || __capable(p, CAP_SYS_RESOURCE))
131 points /= 4;
132
133 /*
134 * We don't want to kill a process with direct hardware access.
135 * Not only could that mess up the hardware, but usually users
136 * tend to only have this flag set on applications they think
137 * of as important.
138 */
139 if (__capable(p, CAP_SYS_RAWIO))
140 points /= 4;
141
142 /*
143 * If p's nodes don't overlap ours, it may still help to kill p
144 * because p may have allocated or otherwise mapped memory on
145 * this node before. However it will be less likely.
146 */
147 if (!cpuset_mems_allowed_intersects(current, p))
148 points /= 8;
149
150 /*
151 * Adjust the score by oomkilladj.
152 */
153 if (p->oomkilladj) {
154 if (p->oomkilladj > 0) {
155 if (!points)
156 points = 1;
157 points <<= p->oomkilladj;
158 } else
159 points >>= -(p->oomkilladj);
160 }
161
162 #ifdef DEBUG
163 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
164 p->pid, p->comm, points);
165 #endif
166 return points;
167 }
168
169 /*
170 * Determine the type of allocation constraint.
171 */
172 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
173 gfp_t gfp_mask)
174 {
175 #ifdef CONFIG_NUMA
176 struct zone **z;
177 nodemask_t nodes = node_states[N_HIGH_MEMORY];
178
179 for (z = zonelist->zones; *z; z++)
180 if (cpuset_zone_allowed_softwall(*z, gfp_mask))
181 node_clear(zone_to_nid(*z), nodes);
182 else
183 return CONSTRAINT_CPUSET;
184
185 if (!nodes_empty(nodes))
186 return CONSTRAINT_MEMORY_POLICY;
187 #endif
188
189 return CONSTRAINT_NONE;
190 }
191
192 /*
193 * Simple selection loop. We chose the process with the highest
194 * number of 'points'. We expect the caller will lock the tasklist.
195 *
196 * (not docbooked, we don't want this one cluttering up the manual)
197 */
198 static struct task_struct *select_bad_process(unsigned long *ppoints,
199 struct mem_cgroup *mem)
200 {
201 struct task_struct *g, *p;
202 struct task_struct *chosen = NULL;
203 struct timespec uptime;
204 *ppoints = 0;
205
206 do_posix_clock_monotonic_gettime(&uptime);
207 do_each_thread(g, p) {
208 unsigned long points;
209
210 /*
211 * skip kernel threads and tasks which have already released
212 * their mm.
213 */
214 if (!p->mm)
215 continue;
216 /* skip the init task */
217 if (is_global_init(p))
218 continue;
219 if (mem && !task_in_mem_cgroup(p, mem))
220 continue;
221
222 /*
223 * This task already has access to memory reserves and is
224 * being killed. Don't allow any other task access to the
225 * memory reserve.
226 *
227 * Note: this may have a chance of deadlock if it gets
228 * blocked waiting for another task which itself is waiting
229 * for memory. Is there a better alternative?
230 */
231 if (test_tsk_thread_flag(p, TIF_MEMDIE))
232 return ERR_PTR(-1UL);
233
234 /*
235 * This is in the process of releasing memory so wait for it
236 * to finish before killing some other task by mistake.
237 *
238 * However, if p is the current task, we allow the 'kill' to
239 * go ahead if it is exiting: this will simply set TIF_MEMDIE,
240 * which will allow it to gain access to memory reserves in
241 * the process of exiting and releasing its resources.
242 * Otherwise we could get an easy OOM deadlock.
243 */
244 if (p->flags & PF_EXITING) {
245 if (p != current)
246 return ERR_PTR(-1UL);
247
248 chosen = p;
249 *ppoints = ULONG_MAX;
250 }
251
252 if (p->oomkilladj == OOM_DISABLE)
253 continue;
254
255 points = badness(p, uptime.tv_sec, mem);
256 if (points > *ppoints || !chosen) {
257 chosen = p;
258 *ppoints = points;
259 }
260 } while_each_thread(g, p);
261
262 return chosen;
263 }
264
265 /**
266 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
267 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
268 * set.
269 */
270 static void __oom_kill_task(struct task_struct *p, int verbose)
271 {
272 if (is_global_init(p)) {
273 WARN_ON(1);
274 printk(KERN_WARNING "tried to kill init!\n");
275 return;
276 }
277
278 if (!p->mm) {
279 WARN_ON(1);
280 printk(KERN_WARNING "tried to kill an mm-less task!\n");
281 return;
282 }
283
284 if (verbose)
285 printk(KERN_ERR "Killed process %d (%s)\n",
286 task_pid_nr(p), p->comm);
287
288 /*
289 * We give our sacrificial lamb high priority and access to
290 * all the memory it needs. That way it should be able to
291 * exit() and clear out its resources quickly...
292 */
293 p->rt.time_slice = HZ;
294 set_tsk_thread_flag(p, TIF_MEMDIE);
295
296 force_sig(SIGKILL, p);
297 }
298
299 static int oom_kill_task(struct task_struct *p)
300 {
301 struct mm_struct *mm;
302 struct task_struct *g, *q;
303
304 mm = p->mm;
305
306 /* WARNING: mm may not be dereferenced since we did not obtain its
307 * value from get_task_mm(p). This is OK since all we need to do is
308 * compare mm to q->mm below.
309 *
310 * Furthermore, even if mm contains a non-NULL value, p->mm may
311 * change to NULL at any time since we do not hold task_lock(p).
312 * However, this is of no concern to us.
313 */
314
315 if (mm == NULL)
316 return 1;
317
318 /*
319 * Don't kill the process if any threads are set to OOM_DISABLE
320 */
321 do_each_thread(g, q) {
322 if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
323 return 1;
324 } while_each_thread(g, q);
325
326 __oom_kill_task(p, 1);
327
328 /*
329 * kill all processes that share the ->mm (i.e. all threads),
330 * but are in a different thread group. Don't let them have access
331 * to memory reserves though, otherwise we might deplete all memory.
332 */
333 do_each_thread(g, q) {
334 if (q->mm == mm && !same_thread_group(q, p))
335 force_sig(SIGKILL, q);
336 } while_each_thread(g, q);
337
338 return 0;
339 }
340
341 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
342 unsigned long points, const char *message)
343 {
344 struct task_struct *c;
345
346 if (printk_ratelimit()) {
347 printk(KERN_WARNING "%s invoked oom-killer: "
348 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
349 current->comm, gfp_mask, order, current->oomkilladj);
350 dump_stack();
351 show_mem();
352 }
353
354 /*
355 * If the task is already exiting, don't alarm the sysadmin or kill
356 * its children or threads, just set TIF_MEMDIE so it can die quickly
357 */
358 if (p->flags & PF_EXITING) {
359 __oom_kill_task(p, 0);
360 return 0;
361 }
362
363 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
364 message, task_pid_nr(p), p->comm, points);
365
366 /* Try to kill a child first */
367 list_for_each_entry(c, &p->children, sibling) {
368 if (c->mm == p->mm)
369 continue;
370 if (!oom_kill_task(c))
371 return 0;
372 }
373 return oom_kill_task(p);
374 }
375
376 #ifdef CONFIG_CGROUP_MEM_CONT
377 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
378 {
379 unsigned long points = 0;
380 struct task_struct *p;
381
382 cgroup_lock();
383 rcu_read_lock();
384 retry:
385 p = select_bad_process(&points, mem);
386 if (PTR_ERR(p) == -1UL)
387 goto out;
388
389 if (!p)
390 p = current;
391
392 if (oom_kill_process(p, gfp_mask, 0, points,
393 "Memory cgroup out of memory"))
394 goto retry;
395 out:
396 rcu_read_unlock();
397 cgroup_unlock();
398 }
399 #endif
400
401 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
402
403 int register_oom_notifier(struct notifier_block *nb)
404 {
405 return blocking_notifier_chain_register(&oom_notify_list, nb);
406 }
407 EXPORT_SYMBOL_GPL(register_oom_notifier);
408
409 int unregister_oom_notifier(struct notifier_block *nb)
410 {
411 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
412 }
413 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
414
415 /*
416 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
417 * if a parallel OOM killing is already taking place that includes a zone in
418 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
419 */
420 int try_set_zone_oom(struct zonelist *zonelist)
421 {
422 struct zone **z;
423 int ret = 1;
424
425 z = zonelist->zones;
426
427 spin_lock(&zone_scan_mutex);
428 do {
429 if (zone_is_oom_locked(*z)) {
430 ret = 0;
431 goto out;
432 }
433 } while (*(++z) != NULL);
434
435 /*
436 * Lock each zone in the zonelist under zone_scan_mutex so a parallel
437 * invocation of try_set_zone_oom() doesn't succeed when it shouldn't.
438 */
439 z = zonelist->zones;
440 do {
441 zone_set_flag(*z, ZONE_OOM_LOCKED);
442 } while (*(++z) != NULL);
443 out:
444 spin_unlock(&zone_scan_mutex);
445 return ret;
446 }
447
448 /*
449 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
450 * allocation attempts with zonelists containing them may now recall the OOM
451 * killer, if necessary.
452 */
453 void clear_zonelist_oom(struct zonelist *zonelist)
454 {
455 struct zone **z;
456
457 z = zonelist->zones;
458
459 spin_lock(&zone_scan_mutex);
460 do {
461 zone_clear_flag(*z, ZONE_OOM_LOCKED);
462 } while (*(++z) != NULL);
463 spin_unlock(&zone_scan_mutex);
464 }
465
466 /**
467 * out_of_memory - kill the "best" process when we run out of memory
468 *
469 * If we run out of memory, we have the choice between either
470 * killing a random task (bad), letting the system crash (worse)
471 * OR try to be smart about which process to kill. Note that we
472 * don't have to be perfect here, we just have to be good.
473 */
474 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
475 {
476 struct task_struct *p;
477 unsigned long points = 0;
478 unsigned long freed = 0;
479 enum oom_constraint constraint;
480
481 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
482 if (freed > 0)
483 /* Got some memory back in the last second. */
484 return;
485
486 if (sysctl_panic_on_oom == 2)
487 panic("out of memory. Compulsory panic_on_oom is selected.\n");
488
489 /*
490 * Check if there were limitations on the allocation (only relevant for
491 * NUMA) that may require different handling.
492 */
493 constraint = constrained_alloc(zonelist, gfp_mask);
494 read_lock(&tasklist_lock);
495
496 switch (constraint) {
497 case CONSTRAINT_MEMORY_POLICY:
498 oom_kill_process(current, gfp_mask, order, points,
499 "No available memory (MPOL_BIND)");
500 break;
501
502 case CONSTRAINT_NONE:
503 if (sysctl_panic_on_oom)
504 panic("out of memory. panic_on_oom is selected\n");
505 /* Fall-through */
506 case CONSTRAINT_CPUSET:
507 if (sysctl_oom_kill_allocating_task) {
508 oom_kill_process(current, gfp_mask, order, points,
509 "Out of memory (oom_kill_allocating_task)");
510 break;
511 }
512 retry:
513 /*
514 * Rambo mode: Shoot down a process and hope it solves whatever
515 * issues we may have.
516 */
517 p = select_bad_process(&points, NULL);
518
519 if (PTR_ERR(p) == -1UL)
520 goto out;
521
522 /* Found nothing?!?! Either we hang forever, or we panic. */
523 if (!p) {
524 read_unlock(&tasklist_lock);
525 panic("Out of memory and no killable processes...\n");
526 }
527
528 if (oom_kill_process(p, gfp_mask, order, points,
529 "Out of memory"))
530 goto retry;
531
532 break;
533 }
534
535 out:
536 read_unlock(&tasklist_lock);
537
538 /*
539 * Give "p" a good chance of killing itself before we
540 * retry to allocate memory unless "p" is current
541 */
542 if (!test_thread_flag(TIF_MEMDIE))
543 schedule_timeout_uninterruptible(1);
544 }
This page took 0.06214 seconds and 6 git commands to generate.