Merge branch 'i2c/for-4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa/linux
[deliverable/linux.git] / mm / page-writeback.c
1 /*
2 * mm/page-writeback.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
10 * 10Apr2002 Andrew Morton
11 * Initial version
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41
42 #include "internal.h"
43
44 /*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47 #define MAX_PAUSE max(HZ/5, 1)
48
49 /*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
55 /*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
60 #define RATELIMIT_CALC_SHIFT 10
61
62 /*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66 static long ratelimit_pages = 32;
67
68 /* The following parameters are exported via /proc/sys/vm */
69
70 /*
71 * Start background writeback (via writeback threads) at this percentage
72 */
73 int dirty_background_ratio = 10;
74
75 /*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79 unsigned long dirty_background_bytes;
80
81 /*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85 int vm_highmem_is_dirtyable;
86
87 /*
88 * The generator of dirty data starts writeback at this percentage
89 */
90 int vm_dirty_ratio = 20;
91
92 /*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96 unsigned long vm_dirty_bytes;
97
98 /*
99 * The interval between `kupdate'-style writebacks
100 */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
105 /*
106 * The longest time for which data is allowed to remain dirty
107 */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109
110 /*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113 int block_dump;
114
115 /*
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
118 */
119 int laptop_mode;
120
121 EXPORT_SYMBOL(laptop_mode);
122
123 /* End of sysctl-exported parameters */
124
125 struct wb_domain global_wb_domain;
126
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 struct wb_domain *dom;
131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
132 #endif
133 struct bdi_writeback *wb;
134 struct fprop_local_percpu *wb_completions;
135
136 unsigned long avail; /* dirtyable */
137 unsigned long dirty; /* file_dirty + write + nfs */
138 unsigned long thresh; /* dirty threshold */
139 unsigned long bg_thresh; /* dirty background threshold */
140
141 unsigned long wb_dirty; /* per-wb counterparts */
142 unsigned long wb_thresh;
143 unsigned long wb_bg_thresh;
144
145 unsigned long pos_ratio;
146 };
147
148 /*
149 * Length of period for aging writeout fractions of bdis. This is an
150 * arbitrarily chosen number. The longer the period, the slower fractions will
151 * reflect changes in current writeout rate.
152 */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154
155 #ifdef CONFIG_CGROUP_WRITEBACK
156
157 #define GDTC_INIT(__wb) .wb = (__wb), \
158 .dom = &global_wb_domain, \
159 .wb_completions = &(__wb)->completions
160
161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
162
163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
164 .dom = mem_cgroup_wb_domain(__wb), \
165 .wb_completions = &(__wb)->memcg_completions, \
166 .gdtc = __gdtc
167
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170 return dtc->dom;
171 }
172
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175 return dtc->dom;
176 }
177
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180 return mdtc->gdtc;
181 }
182
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185 return &wb->memcg_completions;
186 }
187
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 unsigned long *minp, unsigned long *maxp)
190 {
191 unsigned long this_bw = wb->avg_write_bandwidth;
192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 unsigned long long min = wb->bdi->min_ratio;
194 unsigned long long max = wb->bdi->max_ratio;
195
196 /*
197 * @wb may already be clean by the time control reaches here and
198 * the total may not include its bw.
199 */
200 if (this_bw < tot_bw) {
201 if (min) {
202 min *= this_bw;
203 do_div(min, tot_bw);
204 }
205 if (max < 100) {
206 max *= this_bw;
207 do_div(max, tot_bw);
208 }
209 }
210
211 *minp = min;
212 *maxp = max;
213 }
214
215 #else /* CONFIG_CGROUP_WRITEBACK */
216
217 #define GDTC_INIT(__wb) .wb = (__wb), \
218 .wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224 return false;
225 }
226
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229 return &global_wb_domain;
230 }
231
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234 return NULL;
235 }
236
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239 return NULL;
240 }
241
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 unsigned long *minp, unsigned long *maxp)
244 {
245 *minp = wb->bdi->min_ratio;
246 *maxp = wb->bdi->max_ratio;
247 }
248
249 #endif /* CONFIG_CGROUP_WRITEBACK */
250
251 /*
252 * In a memory zone, there is a certain amount of pages we consider
253 * available for the page cache, which is essentially the number of
254 * free and reclaimable pages, minus some zone reserves to protect
255 * lowmem and the ability to uphold the zone's watermarks without
256 * requiring writeback.
257 *
258 * This number of dirtyable pages is the base value of which the
259 * user-configurable dirty ratio is the effictive number of pages that
260 * are allowed to be actually dirtied. Per individual zone, or
261 * globally by using the sum of dirtyable pages over all zones.
262 *
263 * Because the user is allowed to specify the dirty limit globally as
264 * absolute number of bytes, calculating the per-zone dirty limit can
265 * require translating the configured limit into a percentage of
266 * global dirtyable memory first.
267 */
268
269 /**
270 * zone_dirtyable_memory - number of dirtyable pages in a zone
271 * @zone: the zone
272 *
273 * Returns the zone's number of pages potentially available for dirty
274 * page cache. This is the base value for the per-zone dirty limits.
275 */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278 unsigned long nr_pages;
279
280 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 /*
282 * Pages reserved for the kernel should not be considered
283 * dirtyable, to prevent a situation where reclaim has to
284 * clean pages in order to balance the zones.
285 */
286 nr_pages -= min(nr_pages, zone->totalreserve_pages);
287
288 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
289 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290
291 return nr_pages;
292 }
293
294 static unsigned long highmem_dirtyable_memory(unsigned long total)
295 {
296 #ifdef CONFIG_HIGHMEM
297 int node;
298 unsigned long x = 0;
299 int i;
300
301 for_each_node_state(node, N_HIGH_MEMORY) {
302 for (i = 0; i < MAX_NR_ZONES; i++) {
303 struct zone *z = &NODE_DATA(node)->node_zones[i];
304
305 if (is_highmem(z))
306 x += zone_dirtyable_memory(z);
307 }
308 }
309 /*
310 * Unreclaimable memory (kernel memory or anonymous memory
311 * without swap) can bring down the dirtyable pages below
312 * the zone's dirty balance reserve and the above calculation
313 * will underflow. However we still want to add in nodes
314 * which are below threshold (negative values) to get a more
315 * accurate calculation but make sure that the total never
316 * underflows.
317 */
318 if ((long)x < 0)
319 x = 0;
320
321 /*
322 * Make sure that the number of highmem pages is never larger
323 * than the number of the total dirtyable memory. This can only
324 * occur in very strange VM situations but we want to make sure
325 * that this does not occur.
326 */
327 return min(x, total);
328 #else
329 return 0;
330 #endif
331 }
332
333 /**
334 * global_dirtyable_memory - number of globally dirtyable pages
335 *
336 * Returns the global number of pages potentially available for dirty
337 * page cache. This is the base value for the global dirty limits.
338 */
339 static unsigned long global_dirtyable_memory(void)
340 {
341 unsigned long x;
342
343 x = global_page_state(NR_FREE_PAGES);
344 /*
345 * Pages reserved for the kernel should not be considered
346 * dirtyable, to prevent a situation where reclaim has to
347 * clean pages in order to balance the zones.
348 */
349 x -= min(x, totalreserve_pages);
350
351 x += global_page_state(NR_INACTIVE_FILE);
352 x += global_page_state(NR_ACTIVE_FILE);
353
354 if (!vm_highmem_is_dirtyable)
355 x -= highmem_dirtyable_memory(x);
356
357 return x + 1; /* Ensure that we never return 0 */
358 }
359
360 /**
361 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
362 * @dtc: dirty_throttle_control of interest
363 *
364 * Calculate @dtc->thresh and ->bg_thresh considering
365 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
366 * must ensure that @dtc->avail is set before calling this function. The
367 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
368 * real-time tasks.
369 */
370 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
371 {
372 const unsigned long available_memory = dtc->avail;
373 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
374 unsigned long bytes = vm_dirty_bytes;
375 unsigned long bg_bytes = dirty_background_bytes;
376 /* convert ratios to per-PAGE_SIZE for higher precision */
377 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
378 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
379 unsigned long thresh;
380 unsigned long bg_thresh;
381 struct task_struct *tsk;
382
383 /* gdtc is !NULL iff @dtc is for memcg domain */
384 if (gdtc) {
385 unsigned long global_avail = gdtc->avail;
386
387 /*
388 * The byte settings can't be applied directly to memcg
389 * domains. Convert them to ratios by scaling against
390 * globally available memory. As the ratios are in
391 * per-PAGE_SIZE, they can be obtained by dividing bytes by
392 * number of pages.
393 */
394 if (bytes)
395 ratio = min(DIV_ROUND_UP(bytes, global_avail),
396 PAGE_SIZE);
397 if (bg_bytes)
398 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
399 PAGE_SIZE);
400 bytes = bg_bytes = 0;
401 }
402
403 if (bytes)
404 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
405 else
406 thresh = (ratio * available_memory) / PAGE_SIZE;
407
408 if (bg_bytes)
409 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
410 else
411 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
412
413 if (bg_thresh >= thresh)
414 bg_thresh = thresh / 2;
415 tsk = current;
416 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
417 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
418 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
419 }
420 dtc->thresh = thresh;
421 dtc->bg_thresh = bg_thresh;
422
423 /* we should eventually report the domain in the TP */
424 if (!gdtc)
425 trace_global_dirty_state(bg_thresh, thresh);
426 }
427
428 /**
429 * global_dirty_limits - background-writeback and dirty-throttling thresholds
430 * @pbackground: out parameter for bg_thresh
431 * @pdirty: out parameter for thresh
432 *
433 * Calculate bg_thresh and thresh for global_wb_domain. See
434 * domain_dirty_limits() for details.
435 */
436 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
437 {
438 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
439
440 gdtc.avail = global_dirtyable_memory();
441 domain_dirty_limits(&gdtc);
442
443 *pbackground = gdtc.bg_thresh;
444 *pdirty = gdtc.thresh;
445 }
446
447 /**
448 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
449 * @zone: the zone
450 *
451 * Returns the maximum number of dirty pages allowed in a zone, based
452 * on the zone's dirtyable memory.
453 */
454 static unsigned long zone_dirty_limit(struct zone *zone)
455 {
456 unsigned long zone_memory = zone_dirtyable_memory(zone);
457 struct task_struct *tsk = current;
458 unsigned long dirty;
459
460 if (vm_dirty_bytes)
461 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
462 zone_memory / global_dirtyable_memory();
463 else
464 dirty = vm_dirty_ratio * zone_memory / 100;
465
466 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
467 dirty += dirty / 4;
468
469 return dirty;
470 }
471
472 /**
473 * zone_dirty_ok - tells whether a zone is within its dirty limits
474 * @zone: the zone to check
475 *
476 * Returns %true when the dirty pages in @zone are within the zone's
477 * dirty limit, %false if the limit is exceeded.
478 */
479 bool zone_dirty_ok(struct zone *zone)
480 {
481 unsigned long limit = zone_dirty_limit(zone);
482
483 return zone_page_state(zone, NR_FILE_DIRTY) +
484 zone_page_state(zone, NR_UNSTABLE_NFS) +
485 zone_page_state(zone, NR_WRITEBACK) <= limit;
486 }
487
488 int dirty_background_ratio_handler(struct ctl_table *table, int write,
489 void __user *buffer, size_t *lenp,
490 loff_t *ppos)
491 {
492 int ret;
493
494 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
495 if (ret == 0 && write)
496 dirty_background_bytes = 0;
497 return ret;
498 }
499
500 int dirty_background_bytes_handler(struct ctl_table *table, int write,
501 void __user *buffer, size_t *lenp,
502 loff_t *ppos)
503 {
504 int ret;
505
506 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
507 if (ret == 0 && write)
508 dirty_background_ratio = 0;
509 return ret;
510 }
511
512 int dirty_ratio_handler(struct ctl_table *table, int write,
513 void __user *buffer, size_t *lenp,
514 loff_t *ppos)
515 {
516 int old_ratio = vm_dirty_ratio;
517 int ret;
518
519 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
520 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
521 writeback_set_ratelimit();
522 vm_dirty_bytes = 0;
523 }
524 return ret;
525 }
526
527 int dirty_bytes_handler(struct ctl_table *table, int write,
528 void __user *buffer, size_t *lenp,
529 loff_t *ppos)
530 {
531 unsigned long old_bytes = vm_dirty_bytes;
532 int ret;
533
534 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
535 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
536 writeback_set_ratelimit();
537 vm_dirty_ratio = 0;
538 }
539 return ret;
540 }
541
542 static unsigned long wp_next_time(unsigned long cur_time)
543 {
544 cur_time += VM_COMPLETIONS_PERIOD_LEN;
545 /* 0 has a special meaning... */
546 if (!cur_time)
547 return 1;
548 return cur_time;
549 }
550
551 static void wb_domain_writeout_inc(struct wb_domain *dom,
552 struct fprop_local_percpu *completions,
553 unsigned int max_prop_frac)
554 {
555 __fprop_inc_percpu_max(&dom->completions, completions,
556 max_prop_frac);
557 /* First event after period switching was turned off? */
558 if (!unlikely(dom->period_time)) {
559 /*
560 * We can race with other __bdi_writeout_inc calls here but
561 * it does not cause any harm since the resulting time when
562 * timer will fire and what is in writeout_period_time will be
563 * roughly the same.
564 */
565 dom->period_time = wp_next_time(jiffies);
566 mod_timer(&dom->period_timer, dom->period_time);
567 }
568 }
569
570 /*
571 * Increment @wb's writeout completion count and the global writeout
572 * completion count. Called from test_clear_page_writeback().
573 */
574 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
575 {
576 struct wb_domain *cgdom;
577
578 __inc_wb_stat(wb, WB_WRITTEN);
579 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
580 wb->bdi->max_prop_frac);
581
582 cgdom = mem_cgroup_wb_domain(wb);
583 if (cgdom)
584 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
585 wb->bdi->max_prop_frac);
586 }
587
588 void wb_writeout_inc(struct bdi_writeback *wb)
589 {
590 unsigned long flags;
591
592 local_irq_save(flags);
593 __wb_writeout_inc(wb);
594 local_irq_restore(flags);
595 }
596 EXPORT_SYMBOL_GPL(wb_writeout_inc);
597
598 /*
599 * On idle system, we can be called long after we scheduled because we use
600 * deferred timers so count with missed periods.
601 */
602 static void writeout_period(unsigned long t)
603 {
604 struct wb_domain *dom = (void *)t;
605 int miss_periods = (jiffies - dom->period_time) /
606 VM_COMPLETIONS_PERIOD_LEN;
607
608 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
609 dom->period_time = wp_next_time(dom->period_time +
610 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
611 mod_timer(&dom->period_timer, dom->period_time);
612 } else {
613 /*
614 * Aging has zeroed all fractions. Stop wasting CPU on period
615 * updates.
616 */
617 dom->period_time = 0;
618 }
619 }
620
621 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
622 {
623 memset(dom, 0, sizeof(*dom));
624
625 spin_lock_init(&dom->lock);
626
627 init_timer_deferrable(&dom->period_timer);
628 dom->period_timer.function = writeout_period;
629 dom->period_timer.data = (unsigned long)dom;
630
631 dom->dirty_limit_tstamp = jiffies;
632
633 return fprop_global_init(&dom->completions, gfp);
634 }
635
636 #ifdef CONFIG_CGROUP_WRITEBACK
637 void wb_domain_exit(struct wb_domain *dom)
638 {
639 del_timer_sync(&dom->period_timer);
640 fprop_global_destroy(&dom->completions);
641 }
642 #endif
643
644 /*
645 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
646 * registered backing devices, which, for obvious reasons, can not
647 * exceed 100%.
648 */
649 static unsigned int bdi_min_ratio;
650
651 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
652 {
653 int ret = 0;
654
655 spin_lock_bh(&bdi_lock);
656 if (min_ratio > bdi->max_ratio) {
657 ret = -EINVAL;
658 } else {
659 min_ratio -= bdi->min_ratio;
660 if (bdi_min_ratio + min_ratio < 100) {
661 bdi_min_ratio += min_ratio;
662 bdi->min_ratio += min_ratio;
663 } else {
664 ret = -EINVAL;
665 }
666 }
667 spin_unlock_bh(&bdi_lock);
668
669 return ret;
670 }
671
672 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
673 {
674 int ret = 0;
675
676 if (max_ratio > 100)
677 return -EINVAL;
678
679 spin_lock_bh(&bdi_lock);
680 if (bdi->min_ratio > max_ratio) {
681 ret = -EINVAL;
682 } else {
683 bdi->max_ratio = max_ratio;
684 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
685 }
686 spin_unlock_bh(&bdi_lock);
687
688 return ret;
689 }
690 EXPORT_SYMBOL(bdi_set_max_ratio);
691
692 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
693 unsigned long bg_thresh)
694 {
695 return (thresh + bg_thresh) / 2;
696 }
697
698 static unsigned long hard_dirty_limit(struct wb_domain *dom,
699 unsigned long thresh)
700 {
701 return max(thresh, dom->dirty_limit);
702 }
703
704 /*
705 * Memory which can be further allocated to a memcg domain is capped by
706 * system-wide clean memory excluding the amount being used in the domain.
707 */
708 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
709 unsigned long filepages, unsigned long headroom)
710 {
711 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
712 unsigned long clean = filepages - min(filepages, mdtc->dirty);
713 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
714 unsigned long other_clean = global_clean - min(global_clean, clean);
715
716 mdtc->avail = filepages + min(headroom, other_clean);
717 }
718
719 /**
720 * __wb_calc_thresh - @wb's share of dirty throttling threshold
721 * @dtc: dirty_throttle_context of interest
722 *
723 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
724 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
725 *
726 * Note that balance_dirty_pages() will only seriously take it as a hard limit
727 * when sleeping max_pause per page is not enough to keep the dirty pages under
728 * control. For example, when the device is completely stalled due to some error
729 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
730 * In the other normal situations, it acts more gently by throttling the tasks
731 * more (rather than completely block them) when the wb dirty pages go high.
732 *
733 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
734 * - starving fast devices
735 * - piling up dirty pages (that will take long time to sync) on slow devices
736 *
737 * The wb's share of dirty limit will be adapting to its throughput and
738 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
739 */
740 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
741 {
742 struct wb_domain *dom = dtc_dom(dtc);
743 unsigned long thresh = dtc->thresh;
744 u64 wb_thresh;
745 long numerator, denominator;
746 unsigned long wb_min_ratio, wb_max_ratio;
747
748 /*
749 * Calculate this BDI's share of the thresh ratio.
750 */
751 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
752 &numerator, &denominator);
753
754 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
755 wb_thresh *= numerator;
756 do_div(wb_thresh, denominator);
757
758 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
759
760 wb_thresh += (thresh * wb_min_ratio) / 100;
761 if (wb_thresh > (thresh * wb_max_ratio) / 100)
762 wb_thresh = thresh * wb_max_ratio / 100;
763
764 return wb_thresh;
765 }
766
767 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
768 {
769 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
770 .thresh = thresh };
771 return __wb_calc_thresh(&gdtc);
772 }
773
774 /*
775 * setpoint - dirty 3
776 * f(dirty) := 1.0 + (----------------)
777 * limit - setpoint
778 *
779 * it's a 3rd order polynomial that subjects to
780 *
781 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
782 * (2) f(setpoint) = 1.0 => the balance point
783 * (3) f(limit) = 0 => the hard limit
784 * (4) df/dx <= 0 => negative feedback control
785 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
786 * => fast response on large errors; small oscillation near setpoint
787 */
788 static long long pos_ratio_polynom(unsigned long setpoint,
789 unsigned long dirty,
790 unsigned long limit)
791 {
792 long long pos_ratio;
793 long x;
794
795 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
796 (limit - setpoint) | 1);
797 pos_ratio = x;
798 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
799 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
800 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
801
802 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
803 }
804
805 /*
806 * Dirty position control.
807 *
808 * (o) global/bdi setpoints
809 *
810 * We want the dirty pages be balanced around the global/wb setpoints.
811 * When the number of dirty pages is higher/lower than the setpoint, the
812 * dirty position control ratio (and hence task dirty ratelimit) will be
813 * decreased/increased to bring the dirty pages back to the setpoint.
814 *
815 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
816 *
817 * if (dirty < setpoint) scale up pos_ratio
818 * if (dirty > setpoint) scale down pos_ratio
819 *
820 * if (wb_dirty < wb_setpoint) scale up pos_ratio
821 * if (wb_dirty > wb_setpoint) scale down pos_ratio
822 *
823 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
824 *
825 * (o) global control line
826 *
827 * ^ pos_ratio
828 * |
829 * | |<===== global dirty control scope ======>|
830 * 2.0 .............*
831 * | .*
832 * | . *
833 * | . *
834 * | . *
835 * | . *
836 * | . *
837 * 1.0 ................................*
838 * | . . *
839 * | . . *
840 * | . . *
841 * | . . *
842 * | . . *
843 * 0 +------------.------------------.----------------------*------------->
844 * freerun^ setpoint^ limit^ dirty pages
845 *
846 * (o) wb control line
847 *
848 * ^ pos_ratio
849 * |
850 * | *
851 * | *
852 * | *
853 * | *
854 * | * |<=========== span ============>|
855 * 1.0 .......................*
856 * | . *
857 * | . *
858 * | . *
859 * | . *
860 * | . *
861 * | . *
862 * | . *
863 * | . *
864 * | . *
865 * | . *
866 * | . *
867 * 1/4 ...............................................* * * * * * * * * * * *
868 * | . .
869 * | . .
870 * | . .
871 * 0 +----------------------.-------------------------------.------------->
872 * wb_setpoint^ x_intercept^
873 *
874 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
875 * be smoothly throttled down to normal if it starts high in situations like
876 * - start writing to a slow SD card and a fast disk at the same time. The SD
877 * card's wb_dirty may rush to many times higher than wb_setpoint.
878 * - the wb dirty thresh drops quickly due to change of JBOD workload
879 */
880 static void wb_position_ratio(struct dirty_throttle_control *dtc)
881 {
882 struct bdi_writeback *wb = dtc->wb;
883 unsigned long write_bw = wb->avg_write_bandwidth;
884 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
885 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
886 unsigned long wb_thresh = dtc->wb_thresh;
887 unsigned long x_intercept;
888 unsigned long setpoint; /* dirty pages' target balance point */
889 unsigned long wb_setpoint;
890 unsigned long span;
891 long long pos_ratio; /* for scaling up/down the rate limit */
892 long x;
893
894 dtc->pos_ratio = 0;
895
896 if (unlikely(dtc->dirty >= limit))
897 return;
898
899 /*
900 * global setpoint
901 *
902 * See comment for pos_ratio_polynom().
903 */
904 setpoint = (freerun + limit) / 2;
905 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
906
907 /*
908 * The strictlimit feature is a tool preventing mistrusted filesystems
909 * from growing a large number of dirty pages before throttling. For
910 * such filesystems balance_dirty_pages always checks wb counters
911 * against wb limits. Even if global "nr_dirty" is under "freerun".
912 * This is especially important for fuse which sets bdi->max_ratio to
913 * 1% by default. Without strictlimit feature, fuse writeback may
914 * consume arbitrary amount of RAM because it is accounted in
915 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
916 *
917 * Here, in wb_position_ratio(), we calculate pos_ratio based on
918 * two values: wb_dirty and wb_thresh. Let's consider an example:
919 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
920 * limits are set by default to 10% and 20% (background and throttle).
921 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
922 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
923 * about ~6K pages (as the average of background and throttle wb
924 * limits). The 3rd order polynomial will provide positive feedback if
925 * wb_dirty is under wb_setpoint and vice versa.
926 *
927 * Note, that we cannot use global counters in these calculations
928 * because we want to throttle process writing to a strictlimit wb
929 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
930 * in the example above).
931 */
932 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
933 long long wb_pos_ratio;
934
935 if (dtc->wb_dirty < 8) {
936 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
937 2 << RATELIMIT_CALC_SHIFT);
938 return;
939 }
940
941 if (dtc->wb_dirty >= wb_thresh)
942 return;
943
944 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
945 dtc->wb_bg_thresh);
946
947 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
948 return;
949
950 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
951 wb_thresh);
952
953 /*
954 * Typically, for strictlimit case, wb_setpoint << setpoint
955 * and pos_ratio >> wb_pos_ratio. In the other words global
956 * state ("dirty") is not limiting factor and we have to
957 * make decision based on wb counters. But there is an
958 * important case when global pos_ratio should get precedence:
959 * global limits are exceeded (e.g. due to activities on other
960 * wb's) while given strictlimit wb is below limit.
961 *
962 * "pos_ratio * wb_pos_ratio" would work for the case above,
963 * but it would look too non-natural for the case of all
964 * activity in the system coming from a single strictlimit wb
965 * with bdi->max_ratio == 100%.
966 *
967 * Note that min() below somewhat changes the dynamics of the
968 * control system. Normally, pos_ratio value can be well over 3
969 * (when globally we are at freerun and wb is well below wb
970 * setpoint). Now the maximum pos_ratio in the same situation
971 * is 2. We might want to tweak this if we observe the control
972 * system is too slow to adapt.
973 */
974 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
975 return;
976 }
977
978 /*
979 * We have computed basic pos_ratio above based on global situation. If
980 * the wb is over/under its share of dirty pages, we want to scale
981 * pos_ratio further down/up. That is done by the following mechanism.
982 */
983
984 /*
985 * wb setpoint
986 *
987 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
988 *
989 * x_intercept - wb_dirty
990 * := --------------------------
991 * x_intercept - wb_setpoint
992 *
993 * The main wb control line is a linear function that subjects to
994 *
995 * (1) f(wb_setpoint) = 1.0
996 * (2) k = - 1 / (8 * write_bw) (in single wb case)
997 * or equally: x_intercept = wb_setpoint + 8 * write_bw
998 *
999 * For single wb case, the dirty pages are observed to fluctuate
1000 * regularly within range
1001 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1002 * for various filesystems, where (2) can yield in a reasonable 12.5%
1003 * fluctuation range for pos_ratio.
1004 *
1005 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1006 * own size, so move the slope over accordingly and choose a slope that
1007 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1008 */
1009 if (unlikely(wb_thresh > dtc->thresh))
1010 wb_thresh = dtc->thresh;
1011 /*
1012 * It's very possible that wb_thresh is close to 0 not because the
1013 * device is slow, but that it has remained inactive for long time.
1014 * Honour such devices a reasonable good (hopefully IO efficient)
1015 * threshold, so that the occasional writes won't be blocked and active
1016 * writes can rampup the threshold quickly.
1017 */
1018 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1019 /*
1020 * scale global setpoint to wb's:
1021 * wb_setpoint = setpoint * wb_thresh / thresh
1022 */
1023 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1024 wb_setpoint = setpoint * (u64)x >> 16;
1025 /*
1026 * Use span=(8*write_bw) in single wb case as indicated by
1027 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1028 *
1029 * wb_thresh thresh - wb_thresh
1030 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1031 * thresh thresh
1032 */
1033 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1034 x_intercept = wb_setpoint + span;
1035
1036 if (dtc->wb_dirty < x_intercept - span / 4) {
1037 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1038 (x_intercept - wb_setpoint) | 1);
1039 } else
1040 pos_ratio /= 4;
1041
1042 /*
1043 * wb reserve area, safeguard against dirty pool underrun and disk idle
1044 * It may push the desired control point of global dirty pages higher
1045 * than setpoint.
1046 */
1047 x_intercept = wb_thresh / 2;
1048 if (dtc->wb_dirty < x_intercept) {
1049 if (dtc->wb_dirty > x_intercept / 8)
1050 pos_ratio = div_u64(pos_ratio * x_intercept,
1051 dtc->wb_dirty);
1052 else
1053 pos_ratio *= 8;
1054 }
1055
1056 dtc->pos_ratio = pos_ratio;
1057 }
1058
1059 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1060 unsigned long elapsed,
1061 unsigned long written)
1062 {
1063 const unsigned long period = roundup_pow_of_two(3 * HZ);
1064 unsigned long avg = wb->avg_write_bandwidth;
1065 unsigned long old = wb->write_bandwidth;
1066 u64 bw;
1067
1068 /*
1069 * bw = written * HZ / elapsed
1070 *
1071 * bw * elapsed + write_bandwidth * (period - elapsed)
1072 * write_bandwidth = ---------------------------------------------------
1073 * period
1074 *
1075 * @written may have decreased due to account_page_redirty().
1076 * Avoid underflowing @bw calculation.
1077 */
1078 bw = written - min(written, wb->written_stamp);
1079 bw *= HZ;
1080 if (unlikely(elapsed > period)) {
1081 do_div(bw, elapsed);
1082 avg = bw;
1083 goto out;
1084 }
1085 bw += (u64)wb->write_bandwidth * (period - elapsed);
1086 bw >>= ilog2(period);
1087
1088 /*
1089 * one more level of smoothing, for filtering out sudden spikes
1090 */
1091 if (avg > old && old >= (unsigned long)bw)
1092 avg -= (avg - old) >> 3;
1093
1094 if (avg < old && old <= (unsigned long)bw)
1095 avg += (old - avg) >> 3;
1096
1097 out:
1098 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1099 avg = max(avg, 1LU);
1100 if (wb_has_dirty_io(wb)) {
1101 long delta = avg - wb->avg_write_bandwidth;
1102 WARN_ON_ONCE(atomic_long_add_return(delta,
1103 &wb->bdi->tot_write_bandwidth) <= 0);
1104 }
1105 wb->write_bandwidth = bw;
1106 wb->avg_write_bandwidth = avg;
1107 }
1108
1109 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1110 {
1111 struct wb_domain *dom = dtc_dom(dtc);
1112 unsigned long thresh = dtc->thresh;
1113 unsigned long limit = dom->dirty_limit;
1114
1115 /*
1116 * Follow up in one step.
1117 */
1118 if (limit < thresh) {
1119 limit = thresh;
1120 goto update;
1121 }
1122
1123 /*
1124 * Follow down slowly. Use the higher one as the target, because thresh
1125 * may drop below dirty. This is exactly the reason to introduce
1126 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1127 */
1128 thresh = max(thresh, dtc->dirty);
1129 if (limit > thresh) {
1130 limit -= (limit - thresh) >> 5;
1131 goto update;
1132 }
1133 return;
1134 update:
1135 dom->dirty_limit = limit;
1136 }
1137
1138 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1139 unsigned long now)
1140 {
1141 struct wb_domain *dom = dtc_dom(dtc);
1142
1143 /*
1144 * check locklessly first to optimize away locking for the most time
1145 */
1146 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1147 return;
1148
1149 spin_lock(&dom->lock);
1150 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1151 update_dirty_limit(dtc);
1152 dom->dirty_limit_tstamp = now;
1153 }
1154 spin_unlock(&dom->lock);
1155 }
1156
1157 /*
1158 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1159 *
1160 * Normal wb tasks will be curbed at or below it in long term.
1161 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1162 */
1163 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1164 unsigned long dirtied,
1165 unsigned long elapsed)
1166 {
1167 struct bdi_writeback *wb = dtc->wb;
1168 unsigned long dirty = dtc->dirty;
1169 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1170 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1171 unsigned long setpoint = (freerun + limit) / 2;
1172 unsigned long write_bw = wb->avg_write_bandwidth;
1173 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1174 unsigned long dirty_rate;
1175 unsigned long task_ratelimit;
1176 unsigned long balanced_dirty_ratelimit;
1177 unsigned long step;
1178 unsigned long x;
1179 unsigned long shift;
1180
1181 /*
1182 * The dirty rate will match the writeout rate in long term, except
1183 * when dirty pages are truncated by userspace or re-dirtied by FS.
1184 */
1185 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1186
1187 /*
1188 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1189 */
1190 task_ratelimit = (u64)dirty_ratelimit *
1191 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1192 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1193
1194 /*
1195 * A linear estimation of the "balanced" throttle rate. The theory is,
1196 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1197 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1198 * formula will yield the balanced rate limit (write_bw / N).
1199 *
1200 * Note that the expanded form is not a pure rate feedback:
1201 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1202 * but also takes pos_ratio into account:
1203 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1204 *
1205 * (1) is not realistic because pos_ratio also takes part in balancing
1206 * the dirty rate. Consider the state
1207 * pos_ratio = 0.5 (3)
1208 * rate = 2 * (write_bw / N) (4)
1209 * If (1) is used, it will stuck in that state! Because each dd will
1210 * be throttled at
1211 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1212 * yielding
1213 * dirty_rate = N * task_ratelimit = write_bw (6)
1214 * put (6) into (1) we get
1215 * rate_(i+1) = rate_(i) (7)
1216 *
1217 * So we end up using (2) to always keep
1218 * rate_(i+1) ~= (write_bw / N) (8)
1219 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1220 * pos_ratio is able to drive itself to 1.0, which is not only where
1221 * the dirty count meet the setpoint, but also where the slope of
1222 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1223 */
1224 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1225 dirty_rate | 1);
1226 /*
1227 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1228 */
1229 if (unlikely(balanced_dirty_ratelimit > write_bw))
1230 balanced_dirty_ratelimit = write_bw;
1231
1232 /*
1233 * We could safely do this and return immediately:
1234 *
1235 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1236 *
1237 * However to get a more stable dirty_ratelimit, the below elaborated
1238 * code makes use of task_ratelimit to filter out singular points and
1239 * limit the step size.
1240 *
1241 * The below code essentially only uses the relative value of
1242 *
1243 * task_ratelimit - dirty_ratelimit
1244 * = (pos_ratio - 1) * dirty_ratelimit
1245 *
1246 * which reflects the direction and size of dirty position error.
1247 */
1248
1249 /*
1250 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1251 * task_ratelimit is on the same side of dirty_ratelimit, too.
1252 * For example, when
1253 * - dirty_ratelimit > balanced_dirty_ratelimit
1254 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1255 * lowering dirty_ratelimit will help meet both the position and rate
1256 * control targets. Otherwise, don't update dirty_ratelimit if it will
1257 * only help meet the rate target. After all, what the users ultimately
1258 * feel and care are stable dirty rate and small position error.
1259 *
1260 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1261 * and filter out the singular points of balanced_dirty_ratelimit. Which
1262 * keeps jumping around randomly and can even leap far away at times
1263 * due to the small 200ms estimation period of dirty_rate (we want to
1264 * keep that period small to reduce time lags).
1265 */
1266 step = 0;
1267
1268 /*
1269 * For strictlimit case, calculations above were based on wb counters
1270 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1271 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1272 * Hence, to calculate "step" properly, we have to use wb_dirty as
1273 * "dirty" and wb_setpoint as "setpoint".
1274 *
1275 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1276 * it's possible that wb_thresh is close to zero due to inactivity
1277 * of backing device.
1278 */
1279 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1280 dirty = dtc->wb_dirty;
1281 if (dtc->wb_dirty < 8)
1282 setpoint = dtc->wb_dirty + 1;
1283 else
1284 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1285 }
1286
1287 if (dirty < setpoint) {
1288 x = min3(wb->balanced_dirty_ratelimit,
1289 balanced_dirty_ratelimit, task_ratelimit);
1290 if (dirty_ratelimit < x)
1291 step = x - dirty_ratelimit;
1292 } else {
1293 x = max3(wb->balanced_dirty_ratelimit,
1294 balanced_dirty_ratelimit, task_ratelimit);
1295 if (dirty_ratelimit > x)
1296 step = dirty_ratelimit - x;
1297 }
1298
1299 /*
1300 * Don't pursue 100% rate matching. It's impossible since the balanced
1301 * rate itself is constantly fluctuating. So decrease the track speed
1302 * when it gets close to the target. Helps eliminate pointless tremors.
1303 */
1304 shift = dirty_ratelimit / (2 * step + 1);
1305 if (shift < BITS_PER_LONG)
1306 step = DIV_ROUND_UP(step >> shift, 8);
1307 else
1308 step = 0;
1309
1310 if (dirty_ratelimit < balanced_dirty_ratelimit)
1311 dirty_ratelimit += step;
1312 else
1313 dirty_ratelimit -= step;
1314
1315 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1316 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1317
1318 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1319 }
1320
1321 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1322 struct dirty_throttle_control *mdtc,
1323 unsigned long start_time,
1324 bool update_ratelimit)
1325 {
1326 struct bdi_writeback *wb = gdtc->wb;
1327 unsigned long now = jiffies;
1328 unsigned long elapsed = now - wb->bw_time_stamp;
1329 unsigned long dirtied;
1330 unsigned long written;
1331
1332 lockdep_assert_held(&wb->list_lock);
1333
1334 /*
1335 * rate-limit, only update once every 200ms.
1336 */
1337 if (elapsed < BANDWIDTH_INTERVAL)
1338 return;
1339
1340 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1341 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1342
1343 /*
1344 * Skip quiet periods when disk bandwidth is under-utilized.
1345 * (at least 1s idle time between two flusher runs)
1346 */
1347 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1348 goto snapshot;
1349
1350 if (update_ratelimit) {
1351 domain_update_bandwidth(gdtc, now);
1352 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1353
1354 /*
1355 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1356 * compiler has no way to figure that out. Help it.
1357 */
1358 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1359 domain_update_bandwidth(mdtc, now);
1360 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1361 }
1362 }
1363 wb_update_write_bandwidth(wb, elapsed, written);
1364
1365 snapshot:
1366 wb->dirtied_stamp = dirtied;
1367 wb->written_stamp = written;
1368 wb->bw_time_stamp = now;
1369 }
1370
1371 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1372 {
1373 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1374
1375 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
1376 }
1377
1378 /*
1379 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1380 * will look to see if it needs to start dirty throttling.
1381 *
1382 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1383 * global_page_state() too often. So scale it near-sqrt to the safety margin
1384 * (the number of pages we may dirty without exceeding the dirty limits).
1385 */
1386 static unsigned long dirty_poll_interval(unsigned long dirty,
1387 unsigned long thresh)
1388 {
1389 if (thresh > dirty)
1390 return 1UL << (ilog2(thresh - dirty) >> 1);
1391
1392 return 1;
1393 }
1394
1395 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1396 unsigned long wb_dirty)
1397 {
1398 unsigned long bw = wb->avg_write_bandwidth;
1399 unsigned long t;
1400
1401 /*
1402 * Limit pause time for small memory systems. If sleeping for too long
1403 * time, a small pool of dirty/writeback pages may go empty and disk go
1404 * idle.
1405 *
1406 * 8 serves as the safety ratio.
1407 */
1408 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1409 t++;
1410
1411 return min_t(unsigned long, t, MAX_PAUSE);
1412 }
1413
1414 static long wb_min_pause(struct bdi_writeback *wb,
1415 long max_pause,
1416 unsigned long task_ratelimit,
1417 unsigned long dirty_ratelimit,
1418 int *nr_dirtied_pause)
1419 {
1420 long hi = ilog2(wb->avg_write_bandwidth);
1421 long lo = ilog2(wb->dirty_ratelimit);
1422 long t; /* target pause */
1423 long pause; /* estimated next pause */
1424 int pages; /* target nr_dirtied_pause */
1425
1426 /* target for 10ms pause on 1-dd case */
1427 t = max(1, HZ / 100);
1428
1429 /*
1430 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1431 * overheads.
1432 *
1433 * (N * 10ms) on 2^N concurrent tasks.
1434 */
1435 if (hi > lo)
1436 t += (hi - lo) * (10 * HZ) / 1024;
1437
1438 /*
1439 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1440 * on the much more stable dirty_ratelimit. However the next pause time
1441 * will be computed based on task_ratelimit and the two rate limits may
1442 * depart considerably at some time. Especially if task_ratelimit goes
1443 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1444 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1445 * result task_ratelimit won't be executed faithfully, which could
1446 * eventually bring down dirty_ratelimit.
1447 *
1448 * We apply two rules to fix it up:
1449 * 1) try to estimate the next pause time and if necessary, use a lower
1450 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1451 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1452 * 2) limit the target pause time to max_pause/2, so that the normal
1453 * small fluctuations of task_ratelimit won't trigger rule (1) and
1454 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1455 */
1456 t = min(t, 1 + max_pause / 2);
1457 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1458
1459 /*
1460 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1461 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1462 * When the 16 consecutive reads are often interrupted by some dirty
1463 * throttling pause during the async writes, cfq will go into idles
1464 * (deadline is fine). So push nr_dirtied_pause as high as possible
1465 * until reaches DIRTY_POLL_THRESH=32 pages.
1466 */
1467 if (pages < DIRTY_POLL_THRESH) {
1468 t = max_pause;
1469 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1470 if (pages > DIRTY_POLL_THRESH) {
1471 pages = DIRTY_POLL_THRESH;
1472 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1473 }
1474 }
1475
1476 pause = HZ * pages / (task_ratelimit + 1);
1477 if (pause > max_pause) {
1478 t = max_pause;
1479 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1480 }
1481
1482 *nr_dirtied_pause = pages;
1483 /*
1484 * The minimal pause time will normally be half the target pause time.
1485 */
1486 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1487 }
1488
1489 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1490 {
1491 struct bdi_writeback *wb = dtc->wb;
1492 unsigned long wb_reclaimable;
1493
1494 /*
1495 * wb_thresh is not treated as some limiting factor as
1496 * dirty_thresh, due to reasons
1497 * - in JBOD setup, wb_thresh can fluctuate a lot
1498 * - in a system with HDD and USB key, the USB key may somehow
1499 * go into state (wb_dirty >> wb_thresh) either because
1500 * wb_dirty starts high, or because wb_thresh drops low.
1501 * In this case we don't want to hard throttle the USB key
1502 * dirtiers for 100 seconds until wb_dirty drops under
1503 * wb_thresh. Instead the auxiliary wb control line in
1504 * wb_position_ratio() will let the dirtier task progress
1505 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1506 */
1507 dtc->wb_thresh = __wb_calc_thresh(dtc);
1508 dtc->wb_bg_thresh = dtc->thresh ?
1509 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1510
1511 /*
1512 * In order to avoid the stacked BDI deadlock we need
1513 * to ensure we accurately count the 'dirty' pages when
1514 * the threshold is low.
1515 *
1516 * Otherwise it would be possible to get thresh+n pages
1517 * reported dirty, even though there are thresh-m pages
1518 * actually dirty; with m+n sitting in the percpu
1519 * deltas.
1520 */
1521 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1522 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1523 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1524 } else {
1525 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1526 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1527 }
1528 }
1529
1530 /*
1531 * balance_dirty_pages() must be called by processes which are generating dirty
1532 * data. It looks at the number of dirty pages in the machine and will force
1533 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1534 * If we're over `background_thresh' then the writeback threads are woken to
1535 * perform some writeout.
1536 */
1537 static void balance_dirty_pages(struct address_space *mapping,
1538 struct bdi_writeback *wb,
1539 unsigned long pages_dirtied)
1540 {
1541 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1542 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1543 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1544 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1545 &mdtc_stor : NULL;
1546 struct dirty_throttle_control *sdtc;
1547 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
1548 long period;
1549 long pause;
1550 long max_pause;
1551 long min_pause;
1552 int nr_dirtied_pause;
1553 bool dirty_exceeded = false;
1554 unsigned long task_ratelimit;
1555 unsigned long dirty_ratelimit;
1556 struct backing_dev_info *bdi = wb->bdi;
1557 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1558 unsigned long start_time = jiffies;
1559
1560 for (;;) {
1561 unsigned long now = jiffies;
1562 unsigned long dirty, thresh, bg_thresh;
1563 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1564 unsigned long m_thresh = 0;
1565 unsigned long m_bg_thresh = 0;
1566
1567 /*
1568 * Unstable writes are a feature of certain networked
1569 * filesystems (i.e. NFS) in which data may have been
1570 * written to the server's write cache, but has not yet
1571 * been flushed to permanent storage.
1572 */
1573 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1574 global_page_state(NR_UNSTABLE_NFS);
1575 gdtc->avail = global_dirtyable_memory();
1576 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1577
1578 domain_dirty_limits(gdtc);
1579
1580 if (unlikely(strictlimit)) {
1581 wb_dirty_limits(gdtc);
1582
1583 dirty = gdtc->wb_dirty;
1584 thresh = gdtc->wb_thresh;
1585 bg_thresh = gdtc->wb_bg_thresh;
1586 } else {
1587 dirty = gdtc->dirty;
1588 thresh = gdtc->thresh;
1589 bg_thresh = gdtc->bg_thresh;
1590 }
1591
1592 if (mdtc) {
1593 unsigned long filepages, headroom, writeback;
1594
1595 /*
1596 * If @wb belongs to !root memcg, repeat the same
1597 * basic calculations for the memcg domain.
1598 */
1599 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1600 &mdtc->dirty, &writeback);
1601 mdtc->dirty += writeback;
1602 mdtc_calc_avail(mdtc, filepages, headroom);
1603
1604 domain_dirty_limits(mdtc);
1605
1606 if (unlikely(strictlimit)) {
1607 wb_dirty_limits(mdtc);
1608 m_dirty = mdtc->wb_dirty;
1609 m_thresh = mdtc->wb_thresh;
1610 m_bg_thresh = mdtc->wb_bg_thresh;
1611 } else {
1612 m_dirty = mdtc->dirty;
1613 m_thresh = mdtc->thresh;
1614 m_bg_thresh = mdtc->bg_thresh;
1615 }
1616 }
1617
1618 /*
1619 * Throttle it only when the background writeback cannot
1620 * catch-up. This avoids (excessively) small writeouts
1621 * when the wb limits are ramping up in case of !strictlimit.
1622 *
1623 * In strictlimit case make decision based on the wb counters
1624 * and limits. Small writeouts when the wb limits are ramping
1625 * up are the price we consciously pay for strictlimit-ing.
1626 *
1627 * If memcg domain is in effect, @dirty should be under
1628 * both global and memcg freerun ceilings.
1629 */
1630 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1631 (!mdtc ||
1632 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1633 unsigned long intv = dirty_poll_interval(dirty, thresh);
1634 unsigned long m_intv = ULONG_MAX;
1635
1636 current->dirty_paused_when = now;
1637 current->nr_dirtied = 0;
1638 if (mdtc)
1639 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1640 current->nr_dirtied_pause = min(intv, m_intv);
1641 break;
1642 }
1643
1644 if (unlikely(!writeback_in_progress(wb)))
1645 wb_start_background_writeback(wb);
1646
1647 /*
1648 * Calculate global domain's pos_ratio and select the
1649 * global dtc by default.
1650 */
1651 if (!strictlimit)
1652 wb_dirty_limits(gdtc);
1653
1654 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1655 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1656
1657 wb_position_ratio(gdtc);
1658 sdtc = gdtc;
1659
1660 if (mdtc) {
1661 /*
1662 * If memcg domain is in effect, calculate its
1663 * pos_ratio. @wb should satisfy constraints from
1664 * both global and memcg domains. Choose the one
1665 * w/ lower pos_ratio.
1666 */
1667 if (!strictlimit)
1668 wb_dirty_limits(mdtc);
1669
1670 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1671 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1672
1673 wb_position_ratio(mdtc);
1674 if (mdtc->pos_ratio < gdtc->pos_ratio)
1675 sdtc = mdtc;
1676 }
1677
1678 if (dirty_exceeded && !wb->dirty_exceeded)
1679 wb->dirty_exceeded = 1;
1680
1681 if (time_is_before_jiffies(wb->bw_time_stamp +
1682 BANDWIDTH_INTERVAL)) {
1683 spin_lock(&wb->list_lock);
1684 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
1685 spin_unlock(&wb->list_lock);
1686 }
1687
1688 /* throttle according to the chosen dtc */
1689 dirty_ratelimit = wb->dirty_ratelimit;
1690 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1691 RATELIMIT_CALC_SHIFT;
1692 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1693 min_pause = wb_min_pause(wb, max_pause,
1694 task_ratelimit, dirty_ratelimit,
1695 &nr_dirtied_pause);
1696
1697 if (unlikely(task_ratelimit == 0)) {
1698 period = max_pause;
1699 pause = max_pause;
1700 goto pause;
1701 }
1702 period = HZ * pages_dirtied / task_ratelimit;
1703 pause = period;
1704 if (current->dirty_paused_when)
1705 pause -= now - current->dirty_paused_when;
1706 /*
1707 * For less than 1s think time (ext3/4 may block the dirtier
1708 * for up to 800ms from time to time on 1-HDD; so does xfs,
1709 * however at much less frequency), try to compensate it in
1710 * future periods by updating the virtual time; otherwise just
1711 * do a reset, as it may be a light dirtier.
1712 */
1713 if (pause < min_pause) {
1714 trace_balance_dirty_pages(wb,
1715 sdtc->thresh,
1716 sdtc->bg_thresh,
1717 sdtc->dirty,
1718 sdtc->wb_thresh,
1719 sdtc->wb_dirty,
1720 dirty_ratelimit,
1721 task_ratelimit,
1722 pages_dirtied,
1723 period,
1724 min(pause, 0L),
1725 start_time);
1726 if (pause < -HZ) {
1727 current->dirty_paused_when = now;
1728 current->nr_dirtied = 0;
1729 } else if (period) {
1730 current->dirty_paused_when += period;
1731 current->nr_dirtied = 0;
1732 } else if (current->nr_dirtied_pause <= pages_dirtied)
1733 current->nr_dirtied_pause += pages_dirtied;
1734 break;
1735 }
1736 if (unlikely(pause > max_pause)) {
1737 /* for occasional dropped task_ratelimit */
1738 now += min(pause - max_pause, max_pause);
1739 pause = max_pause;
1740 }
1741
1742 pause:
1743 trace_balance_dirty_pages(wb,
1744 sdtc->thresh,
1745 sdtc->bg_thresh,
1746 sdtc->dirty,
1747 sdtc->wb_thresh,
1748 sdtc->wb_dirty,
1749 dirty_ratelimit,
1750 task_ratelimit,
1751 pages_dirtied,
1752 period,
1753 pause,
1754 start_time);
1755 __set_current_state(TASK_KILLABLE);
1756 io_schedule_timeout(pause);
1757
1758 current->dirty_paused_when = now + pause;
1759 current->nr_dirtied = 0;
1760 current->nr_dirtied_pause = nr_dirtied_pause;
1761
1762 /*
1763 * This is typically equal to (dirty < thresh) and can also
1764 * keep "1000+ dd on a slow USB stick" under control.
1765 */
1766 if (task_ratelimit)
1767 break;
1768
1769 /*
1770 * In the case of an unresponding NFS server and the NFS dirty
1771 * pages exceeds dirty_thresh, give the other good wb's a pipe
1772 * to go through, so that tasks on them still remain responsive.
1773 *
1774 * In theory 1 page is enough to keep the comsumer-producer
1775 * pipe going: the flusher cleans 1 page => the task dirties 1
1776 * more page. However wb_dirty has accounting errors. So use
1777 * the larger and more IO friendly wb_stat_error.
1778 */
1779 if (sdtc->wb_dirty <= wb_stat_error(wb))
1780 break;
1781
1782 if (fatal_signal_pending(current))
1783 break;
1784 }
1785
1786 if (!dirty_exceeded && wb->dirty_exceeded)
1787 wb->dirty_exceeded = 0;
1788
1789 if (writeback_in_progress(wb))
1790 return;
1791
1792 /*
1793 * In laptop mode, we wait until hitting the higher threshold before
1794 * starting background writeout, and then write out all the way down
1795 * to the lower threshold. So slow writers cause minimal disk activity.
1796 *
1797 * In normal mode, we start background writeout at the lower
1798 * background_thresh, to keep the amount of dirty memory low.
1799 */
1800 if (laptop_mode)
1801 return;
1802
1803 if (nr_reclaimable > gdtc->bg_thresh)
1804 wb_start_background_writeback(wb);
1805 }
1806
1807 static DEFINE_PER_CPU(int, bdp_ratelimits);
1808
1809 /*
1810 * Normal tasks are throttled by
1811 * loop {
1812 * dirty tsk->nr_dirtied_pause pages;
1813 * take a snap in balance_dirty_pages();
1814 * }
1815 * However there is a worst case. If every task exit immediately when dirtied
1816 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1817 * called to throttle the page dirties. The solution is to save the not yet
1818 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1819 * randomly into the running tasks. This works well for the above worst case,
1820 * as the new task will pick up and accumulate the old task's leaked dirty
1821 * count and eventually get throttled.
1822 */
1823 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1824
1825 /**
1826 * balance_dirty_pages_ratelimited - balance dirty memory state
1827 * @mapping: address_space which was dirtied
1828 *
1829 * Processes which are dirtying memory should call in here once for each page
1830 * which was newly dirtied. The function will periodically check the system's
1831 * dirty state and will initiate writeback if needed.
1832 *
1833 * On really big machines, get_writeback_state is expensive, so try to avoid
1834 * calling it too often (ratelimiting). But once we're over the dirty memory
1835 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1836 * from overshooting the limit by (ratelimit_pages) each.
1837 */
1838 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1839 {
1840 struct inode *inode = mapping->host;
1841 struct backing_dev_info *bdi = inode_to_bdi(inode);
1842 struct bdi_writeback *wb = NULL;
1843 int ratelimit;
1844 int *p;
1845
1846 if (!bdi_cap_account_dirty(bdi))
1847 return;
1848
1849 if (inode_cgwb_enabled(inode))
1850 wb = wb_get_create_current(bdi, GFP_KERNEL);
1851 if (!wb)
1852 wb = &bdi->wb;
1853
1854 ratelimit = current->nr_dirtied_pause;
1855 if (wb->dirty_exceeded)
1856 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1857
1858 preempt_disable();
1859 /*
1860 * This prevents one CPU to accumulate too many dirtied pages without
1861 * calling into balance_dirty_pages(), which can happen when there are
1862 * 1000+ tasks, all of them start dirtying pages at exactly the same
1863 * time, hence all honoured too large initial task->nr_dirtied_pause.
1864 */
1865 p = this_cpu_ptr(&bdp_ratelimits);
1866 if (unlikely(current->nr_dirtied >= ratelimit))
1867 *p = 0;
1868 else if (unlikely(*p >= ratelimit_pages)) {
1869 *p = 0;
1870 ratelimit = 0;
1871 }
1872 /*
1873 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1874 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1875 * the dirty throttling and livelock other long-run dirtiers.
1876 */
1877 p = this_cpu_ptr(&dirty_throttle_leaks);
1878 if (*p > 0 && current->nr_dirtied < ratelimit) {
1879 unsigned long nr_pages_dirtied;
1880 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1881 *p -= nr_pages_dirtied;
1882 current->nr_dirtied += nr_pages_dirtied;
1883 }
1884 preempt_enable();
1885
1886 if (unlikely(current->nr_dirtied >= ratelimit))
1887 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1888
1889 wb_put(wb);
1890 }
1891 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1892
1893 /**
1894 * wb_over_bg_thresh - does @wb need to be written back?
1895 * @wb: bdi_writeback of interest
1896 *
1897 * Determines whether background writeback should keep writing @wb or it's
1898 * clean enough. Returns %true if writeback should continue.
1899 */
1900 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1901 {
1902 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1903 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1904 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1905 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1906 &mdtc_stor : NULL;
1907
1908 /*
1909 * Similar to balance_dirty_pages() but ignores pages being written
1910 * as we're trying to decide whether to put more under writeback.
1911 */
1912 gdtc->avail = global_dirtyable_memory();
1913 gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1914 global_page_state(NR_UNSTABLE_NFS);
1915 domain_dirty_limits(gdtc);
1916
1917 if (gdtc->dirty > gdtc->bg_thresh)
1918 return true;
1919
1920 if (wb_stat(wb, WB_RECLAIMABLE) >
1921 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1922 return true;
1923
1924 if (mdtc) {
1925 unsigned long filepages, headroom, writeback;
1926
1927 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1928 &writeback);
1929 mdtc_calc_avail(mdtc, filepages, headroom);
1930 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1931
1932 if (mdtc->dirty > mdtc->bg_thresh)
1933 return true;
1934
1935 if (wb_stat(wb, WB_RECLAIMABLE) >
1936 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1937 return true;
1938 }
1939
1940 return false;
1941 }
1942
1943 void throttle_vm_writeout(gfp_t gfp_mask)
1944 {
1945 unsigned long background_thresh;
1946 unsigned long dirty_thresh;
1947
1948 for ( ; ; ) {
1949 global_dirty_limits(&background_thresh, &dirty_thresh);
1950 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1951
1952 /*
1953 * Boost the allowable dirty threshold a bit for page
1954 * allocators so they don't get DoS'ed by heavy writers
1955 */
1956 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1957
1958 if (global_page_state(NR_UNSTABLE_NFS) +
1959 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1960 break;
1961 congestion_wait(BLK_RW_ASYNC, HZ/10);
1962
1963 /*
1964 * The caller might hold locks which can prevent IO completion
1965 * or progress in the filesystem. So we cannot just sit here
1966 * waiting for IO to complete.
1967 */
1968 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1969 break;
1970 }
1971 }
1972
1973 /*
1974 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1975 */
1976 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1977 void __user *buffer, size_t *length, loff_t *ppos)
1978 {
1979 proc_dointvec(table, write, buffer, length, ppos);
1980 return 0;
1981 }
1982
1983 #ifdef CONFIG_BLOCK
1984 void laptop_mode_timer_fn(unsigned long data)
1985 {
1986 struct request_queue *q = (struct request_queue *)data;
1987 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1988 global_page_state(NR_UNSTABLE_NFS);
1989 struct bdi_writeback *wb;
1990
1991 /*
1992 * We want to write everything out, not just down to the dirty
1993 * threshold
1994 */
1995 if (!bdi_has_dirty_io(&q->backing_dev_info))
1996 return;
1997
1998 rcu_read_lock();
1999 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
2000 if (wb_has_dirty_io(wb))
2001 wb_start_writeback(wb, nr_pages, true,
2002 WB_REASON_LAPTOP_TIMER);
2003 rcu_read_unlock();
2004 }
2005
2006 /*
2007 * We've spun up the disk and we're in laptop mode: schedule writeback
2008 * of all dirty data a few seconds from now. If the flush is already scheduled
2009 * then push it back - the user is still using the disk.
2010 */
2011 void laptop_io_completion(struct backing_dev_info *info)
2012 {
2013 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2014 }
2015
2016 /*
2017 * We're in laptop mode and we've just synced. The sync's writes will have
2018 * caused another writeback to be scheduled by laptop_io_completion.
2019 * Nothing needs to be written back anymore, so we unschedule the writeback.
2020 */
2021 void laptop_sync_completion(void)
2022 {
2023 struct backing_dev_info *bdi;
2024
2025 rcu_read_lock();
2026
2027 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2028 del_timer(&bdi->laptop_mode_wb_timer);
2029
2030 rcu_read_unlock();
2031 }
2032 #endif
2033
2034 /*
2035 * If ratelimit_pages is too high then we can get into dirty-data overload
2036 * if a large number of processes all perform writes at the same time.
2037 * If it is too low then SMP machines will call the (expensive)
2038 * get_writeback_state too often.
2039 *
2040 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2041 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2042 * thresholds.
2043 */
2044
2045 void writeback_set_ratelimit(void)
2046 {
2047 struct wb_domain *dom = &global_wb_domain;
2048 unsigned long background_thresh;
2049 unsigned long dirty_thresh;
2050
2051 global_dirty_limits(&background_thresh, &dirty_thresh);
2052 dom->dirty_limit = dirty_thresh;
2053 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2054 if (ratelimit_pages < 16)
2055 ratelimit_pages = 16;
2056 }
2057
2058 static int
2059 ratelimit_handler(struct notifier_block *self, unsigned long action,
2060 void *hcpu)
2061 {
2062
2063 switch (action & ~CPU_TASKS_FROZEN) {
2064 case CPU_ONLINE:
2065 case CPU_DEAD:
2066 writeback_set_ratelimit();
2067 return NOTIFY_OK;
2068 default:
2069 return NOTIFY_DONE;
2070 }
2071 }
2072
2073 static struct notifier_block ratelimit_nb = {
2074 .notifier_call = ratelimit_handler,
2075 .next = NULL,
2076 };
2077
2078 /*
2079 * Called early on to tune the page writeback dirty limits.
2080 *
2081 * We used to scale dirty pages according to how total memory
2082 * related to pages that could be allocated for buffers (by
2083 * comparing nr_free_buffer_pages() to vm_total_pages.
2084 *
2085 * However, that was when we used "dirty_ratio" to scale with
2086 * all memory, and we don't do that any more. "dirty_ratio"
2087 * is now applied to total non-HIGHPAGE memory (by subtracting
2088 * totalhigh_pages from vm_total_pages), and as such we can't
2089 * get into the old insane situation any more where we had
2090 * large amounts of dirty pages compared to a small amount of
2091 * non-HIGHMEM memory.
2092 *
2093 * But we might still want to scale the dirty_ratio by how
2094 * much memory the box has..
2095 */
2096 void __init page_writeback_init(void)
2097 {
2098 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2099
2100 writeback_set_ratelimit();
2101 register_cpu_notifier(&ratelimit_nb);
2102 }
2103
2104 /**
2105 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2106 * @mapping: address space structure to write
2107 * @start: starting page index
2108 * @end: ending page index (inclusive)
2109 *
2110 * This function scans the page range from @start to @end (inclusive) and tags
2111 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2112 * that write_cache_pages (or whoever calls this function) will then use
2113 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2114 * used to avoid livelocking of writeback by a process steadily creating new
2115 * dirty pages in the file (thus it is important for this function to be quick
2116 * so that it can tag pages faster than a dirtying process can create them).
2117 */
2118 /*
2119 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2120 */
2121 void tag_pages_for_writeback(struct address_space *mapping,
2122 pgoff_t start, pgoff_t end)
2123 {
2124 #define WRITEBACK_TAG_BATCH 4096
2125 unsigned long tagged;
2126
2127 do {
2128 spin_lock_irq(&mapping->tree_lock);
2129 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2130 &start, end, WRITEBACK_TAG_BATCH,
2131 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2132 spin_unlock_irq(&mapping->tree_lock);
2133 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2134 cond_resched();
2135 /* We check 'start' to handle wrapping when end == ~0UL */
2136 } while (tagged >= WRITEBACK_TAG_BATCH && start);
2137 }
2138 EXPORT_SYMBOL(tag_pages_for_writeback);
2139
2140 /**
2141 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2142 * @mapping: address space structure to write
2143 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2144 * @writepage: function called for each page
2145 * @data: data passed to writepage function
2146 *
2147 * If a page is already under I/O, write_cache_pages() skips it, even
2148 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2149 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2150 * and msync() need to guarantee that all the data which was dirty at the time
2151 * the call was made get new I/O started against them. If wbc->sync_mode is
2152 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2153 * existing IO to complete.
2154 *
2155 * To avoid livelocks (when other process dirties new pages), we first tag
2156 * pages which should be written back with TOWRITE tag and only then start
2157 * writing them. For data-integrity sync we have to be careful so that we do
2158 * not miss some pages (e.g., because some other process has cleared TOWRITE
2159 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2160 * by the process clearing the DIRTY tag (and submitting the page for IO).
2161 */
2162 int write_cache_pages(struct address_space *mapping,
2163 struct writeback_control *wbc, writepage_t writepage,
2164 void *data)
2165 {
2166 int ret = 0;
2167 int done = 0;
2168 struct pagevec pvec;
2169 int nr_pages;
2170 pgoff_t uninitialized_var(writeback_index);
2171 pgoff_t index;
2172 pgoff_t end; /* Inclusive */
2173 pgoff_t done_index;
2174 int cycled;
2175 int range_whole = 0;
2176 int tag;
2177
2178 pagevec_init(&pvec, 0);
2179 if (wbc->range_cyclic) {
2180 writeback_index = mapping->writeback_index; /* prev offset */
2181 index = writeback_index;
2182 if (index == 0)
2183 cycled = 1;
2184 else
2185 cycled = 0;
2186 end = -1;
2187 } else {
2188 index = wbc->range_start >> PAGE_SHIFT;
2189 end = wbc->range_end >> PAGE_SHIFT;
2190 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2191 range_whole = 1;
2192 cycled = 1; /* ignore range_cyclic tests */
2193 }
2194 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2195 tag = PAGECACHE_TAG_TOWRITE;
2196 else
2197 tag = PAGECACHE_TAG_DIRTY;
2198 retry:
2199 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2200 tag_pages_for_writeback(mapping, index, end);
2201 done_index = index;
2202 while (!done && (index <= end)) {
2203 int i;
2204
2205 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2206 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2207 if (nr_pages == 0)
2208 break;
2209
2210 for (i = 0; i < nr_pages; i++) {
2211 struct page *page = pvec.pages[i];
2212
2213 /*
2214 * At this point, the page may be truncated or
2215 * invalidated (changing page->mapping to NULL), or
2216 * even swizzled back from swapper_space to tmpfs file
2217 * mapping. However, page->index will not change
2218 * because we have a reference on the page.
2219 */
2220 if (page->index > end) {
2221 /*
2222 * can't be range_cyclic (1st pass) because
2223 * end == -1 in that case.
2224 */
2225 done = 1;
2226 break;
2227 }
2228
2229 done_index = page->index;
2230
2231 lock_page(page);
2232
2233 /*
2234 * Page truncated or invalidated. We can freely skip it
2235 * then, even for data integrity operations: the page
2236 * has disappeared concurrently, so there could be no
2237 * real expectation of this data interity operation
2238 * even if there is now a new, dirty page at the same
2239 * pagecache address.
2240 */
2241 if (unlikely(page->mapping != mapping)) {
2242 continue_unlock:
2243 unlock_page(page);
2244 continue;
2245 }
2246
2247 if (!PageDirty(page)) {
2248 /* someone wrote it for us */
2249 goto continue_unlock;
2250 }
2251
2252 if (PageWriteback(page)) {
2253 if (wbc->sync_mode != WB_SYNC_NONE)
2254 wait_on_page_writeback(page);
2255 else
2256 goto continue_unlock;
2257 }
2258
2259 BUG_ON(PageWriteback(page));
2260 if (!clear_page_dirty_for_io(page))
2261 goto continue_unlock;
2262
2263 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2264 ret = (*writepage)(page, wbc, data);
2265 if (unlikely(ret)) {
2266 if (ret == AOP_WRITEPAGE_ACTIVATE) {
2267 unlock_page(page);
2268 ret = 0;
2269 } else {
2270 /*
2271 * done_index is set past this page,
2272 * so media errors will not choke
2273 * background writeout for the entire
2274 * file. This has consequences for
2275 * range_cyclic semantics (ie. it may
2276 * not be suitable for data integrity
2277 * writeout).
2278 */
2279 done_index = page->index + 1;
2280 done = 1;
2281 break;
2282 }
2283 }
2284
2285 /*
2286 * We stop writing back only if we are not doing
2287 * integrity sync. In case of integrity sync we have to
2288 * keep going until we have written all the pages
2289 * we tagged for writeback prior to entering this loop.
2290 */
2291 if (--wbc->nr_to_write <= 0 &&
2292 wbc->sync_mode == WB_SYNC_NONE) {
2293 done = 1;
2294 break;
2295 }
2296 }
2297 pagevec_release(&pvec);
2298 cond_resched();
2299 }
2300 if (!cycled && !done) {
2301 /*
2302 * range_cyclic:
2303 * We hit the last page and there is more work to be done: wrap
2304 * back to the start of the file
2305 */
2306 cycled = 1;
2307 index = 0;
2308 end = writeback_index - 1;
2309 goto retry;
2310 }
2311 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2312 mapping->writeback_index = done_index;
2313
2314 return ret;
2315 }
2316 EXPORT_SYMBOL(write_cache_pages);
2317
2318 /*
2319 * Function used by generic_writepages to call the real writepage
2320 * function and set the mapping flags on error
2321 */
2322 static int __writepage(struct page *page, struct writeback_control *wbc,
2323 void *data)
2324 {
2325 struct address_space *mapping = data;
2326 int ret = mapping->a_ops->writepage(page, wbc);
2327 mapping_set_error(mapping, ret);
2328 return ret;
2329 }
2330
2331 /**
2332 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2333 * @mapping: address space structure to write
2334 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2335 *
2336 * This is a library function, which implements the writepages()
2337 * address_space_operation.
2338 */
2339 int generic_writepages(struct address_space *mapping,
2340 struct writeback_control *wbc)
2341 {
2342 struct blk_plug plug;
2343 int ret;
2344
2345 /* deal with chardevs and other special file */
2346 if (!mapping->a_ops->writepage)
2347 return 0;
2348
2349 blk_start_plug(&plug);
2350 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2351 blk_finish_plug(&plug);
2352 return ret;
2353 }
2354
2355 EXPORT_SYMBOL(generic_writepages);
2356
2357 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2358 {
2359 int ret;
2360
2361 if (wbc->nr_to_write <= 0)
2362 return 0;
2363 if (mapping->a_ops->writepages)
2364 ret = mapping->a_ops->writepages(mapping, wbc);
2365 else
2366 ret = generic_writepages(mapping, wbc);
2367 return ret;
2368 }
2369
2370 /**
2371 * write_one_page - write out a single page and optionally wait on I/O
2372 * @page: the page to write
2373 * @wait: if true, wait on writeout
2374 *
2375 * The page must be locked by the caller and will be unlocked upon return.
2376 *
2377 * write_one_page() returns a negative error code if I/O failed.
2378 */
2379 int write_one_page(struct page *page, int wait)
2380 {
2381 struct address_space *mapping = page->mapping;
2382 int ret = 0;
2383 struct writeback_control wbc = {
2384 .sync_mode = WB_SYNC_ALL,
2385 .nr_to_write = 1,
2386 };
2387
2388 BUG_ON(!PageLocked(page));
2389
2390 if (wait)
2391 wait_on_page_writeback(page);
2392
2393 if (clear_page_dirty_for_io(page)) {
2394 get_page(page);
2395 ret = mapping->a_ops->writepage(page, &wbc);
2396 if (ret == 0 && wait) {
2397 wait_on_page_writeback(page);
2398 if (PageError(page))
2399 ret = -EIO;
2400 }
2401 put_page(page);
2402 } else {
2403 unlock_page(page);
2404 }
2405 return ret;
2406 }
2407 EXPORT_SYMBOL(write_one_page);
2408
2409 /*
2410 * For address_spaces which do not use buffers nor write back.
2411 */
2412 int __set_page_dirty_no_writeback(struct page *page)
2413 {
2414 if (!PageDirty(page))
2415 return !TestSetPageDirty(page);
2416 return 0;
2417 }
2418
2419 /*
2420 * Helper function for set_page_dirty family.
2421 *
2422 * Caller must hold lock_page_memcg().
2423 *
2424 * NOTE: This relies on being atomic wrt interrupts.
2425 */
2426 void account_page_dirtied(struct page *page, struct address_space *mapping)
2427 {
2428 struct inode *inode = mapping->host;
2429
2430 trace_writeback_dirty_page(page, mapping);
2431
2432 if (mapping_cap_account_dirty(mapping)) {
2433 struct bdi_writeback *wb;
2434
2435 inode_attach_wb(inode, page);
2436 wb = inode_to_wb(inode);
2437
2438 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2439 __inc_zone_page_state(page, NR_FILE_DIRTY);
2440 __inc_zone_page_state(page, NR_DIRTIED);
2441 __inc_wb_stat(wb, WB_RECLAIMABLE);
2442 __inc_wb_stat(wb, WB_DIRTIED);
2443 task_io_account_write(PAGE_SIZE);
2444 current->nr_dirtied++;
2445 this_cpu_inc(bdp_ratelimits);
2446 }
2447 }
2448 EXPORT_SYMBOL(account_page_dirtied);
2449
2450 /*
2451 * Helper function for deaccounting dirty page without writeback.
2452 *
2453 * Caller must hold lock_page_memcg().
2454 */
2455 void account_page_cleaned(struct page *page, struct address_space *mapping,
2456 struct bdi_writeback *wb)
2457 {
2458 if (mapping_cap_account_dirty(mapping)) {
2459 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2460 dec_zone_page_state(page, NR_FILE_DIRTY);
2461 dec_wb_stat(wb, WB_RECLAIMABLE);
2462 task_io_account_cancelled_write(PAGE_SIZE);
2463 }
2464 }
2465
2466 /*
2467 * For address_spaces which do not use buffers. Just tag the page as dirty in
2468 * its radix tree.
2469 *
2470 * This is also used when a single buffer is being dirtied: we want to set the
2471 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2472 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2473 *
2474 * The caller must ensure this doesn't race with truncation. Most will simply
2475 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2476 * the pte lock held, which also locks out truncation.
2477 */
2478 int __set_page_dirty_nobuffers(struct page *page)
2479 {
2480 lock_page_memcg(page);
2481 if (!TestSetPageDirty(page)) {
2482 struct address_space *mapping = page_mapping(page);
2483 unsigned long flags;
2484
2485 if (!mapping) {
2486 unlock_page_memcg(page);
2487 return 1;
2488 }
2489
2490 spin_lock_irqsave(&mapping->tree_lock, flags);
2491 BUG_ON(page_mapping(page) != mapping);
2492 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2493 account_page_dirtied(page, mapping);
2494 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2495 PAGECACHE_TAG_DIRTY);
2496 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2497 unlock_page_memcg(page);
2498
2499 if (mapping->host) {
2500 /* !PageAnon && !swapper_space */
2501 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2502 }
2503 return 1;
2504 }
2505 unlock_page_memcg(page);
2506 return 0;
2507 }
2508 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2509
2510 /*
2511 * Call this whenever redirtying a page, to de-account the dirty counters
2512 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2513 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2514 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2515 * control.
2516 */
2517 void account_page_redirty(struct page *page)
2518 {
2519 struct address_space *mapping = page->mapping;
2520
2521 if (mapping && mapping_cap_account_dirty(mapping)) {
2522 struct inode *inode = mapping->host;
2523 struct bdi_writeback *wb;
2524 bool locked;
2525
2526 wb = unlocked_inode_to_wb_begin(inode, &locked);
2527 current->nr_dirtied--;
2528 dec_zone_page_state(page, NR_DIRTIED);
2529 dec_wb_stat(wb, WB_DIRTIED);
2530 unlocked_inode_to_wb_end(inode, locked);
2531 }
2532 }
2533 EXPORT_SYMBOL(account_page_redirty);
2534
2535 /*
2536 * When a writepage implementation decides that it doesn't want to write this
2537 * page for some reason, it should redirty the locked page via
2538 * redirty_page_for_writepage() and it should then unlock the page and return 0
2539 */
2540 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2541 {
2542 int ret;
2543
2544 wbc->pages_skipped++;
2545 ret = __set_page_dirty_nobuffers(page);
2546 account_page_redirty(page);
2547 return ret;
2548 }
2549 EXPORT_SYMBOL(redirty_page_for_writepage);
2550
2551 /*
2552 * Dirty a page.
2553 *
2554 * For pages with a mapping this should be done under the page lock
2555 * for the benefit of asynchronous memory errors who prefer a consistent
2556 * dirty state. This rule can be broken in some special cases,
2557 * but should be better not to.
2558 *
2559 * If the mapping doesn't provide a set_page_dirty a_op, then
2560 * just fall through and assume that it wants buffer_heads.
2561 */
2562 int set_page_dirty(struct page *page)
2563 {
2564 struct address_space *mapping = page_mapping(page);
2565
2566 page = compound_head(page);
2567 if (likely(mapping)) {
2568 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2569 /*
2570 * readahead/lru_deactivate_page could remain
2571 * PG_readahead/PG_reclaim due to race with end_page_writeback
2572 * About readahead, if the page is written, the flags would be
2573 * reset. So no problem.
2574 * About lru_deactivate_page, if the page is redirty, the flag
2575 * will be reset. So no problem. but if the page is used by readahead
2576 * it will confuse readahead and make it restart the size rampup
2577 * process. But it's a trivial problem.
2578 */
2579 if (PageReclaim(page))
2580 ClearPageReclaim(page);
2581 #ifdef CONFIG_BLOCK
2582 if (!spd)
2583 spd = __set_page_dirty_buffers;
2584 #endif
2585 return (*spd)(page);
2586 }
2587 if (!PageDirty(page)) {
2588 if (!TestSetPageDirty(page))
2589 return 1;
2590 }
2591 return 0;
2592 }
2593 EXPORT_SYMBOL(set_page_dirty);
2594
2595 /*
2596 * set_page_dirty() is racy if the caller has no reference against
2597 * page->mapping->host, and if the page is unlocked. This is because another
2598 * CPU could truncate the page off the mapping and then free the mapping.
2599 *
2600 * Usually, the page _is_ locked, or the caller is a user-space process which
2601 * holds a reference on the inode by having an open file.
2602 *
2603 * In other cases, the page should be locked before running set_page_dirty().
2604 */
2605 int set_page_dirty_lock(struct page *page)
2606 {
2607 int ret;
2608
2609 lock_page(page);
2610 ret = set_page_dirty(page);
2611 unlock_page(page);
2612 return ret;
2613 }
2614 EXPORT_SYMBOL(set_page_dirty_lock);
2615
2616 /*
2617 * This cancels just the dirty bit on the kernel page itself, it does NOT
2618 * actually remove dirty bits on any mmap's that may be around. It also
2619 * leaves the page tagged dirty, so any sync activity will still find it on
2620 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2621 * look at the dirty bits in the VM.
2622 *
2623 * Doing this should *normally* only ever be done when a page is truncated,
2624 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2625 * this when it notices that somebody has cleaned out all the buffers on a
2626 * page without actually doing it through the VM. Can you say "ext3 is
2627 * horribly ugly"? Thought you could.
2628 */
2629 void cancel_dirty_page(struct page *page)
2630 {
2631 struct address_space *mapping = page_mapping(page);
2632
2633 if (mapping_cap_account_dirty(mapping)) {
2634 struct inode *inode = mapping->host;
2635 struct bdi_writeback *wb;
2636 bool locked;
2637
2638 lock_page_memcg(page);
2639 wb = unlocked_inode_to_wb_begin(inode, &locked);
2640
2641 if (TestClearPageDirty(page))
2642 account_page_cleaned(page, mapping, wb);
2643
2644 unlocked_inode_to_wb_end(inode, locked);
2645 unlock_page_memcg(page);
2646 } else {
2647 ClearPageDirty(page);
2648 }
2649 }
2650 EXPORT_SYMBOL(cancel_dirty_page);
2651
2652 /*
2653 * Clear a page's dirty flag, while caring for dirty memory accounting.
2654 * Returns true if the page was previously dirty.
2655 *
2656 * This is for preparing to put the page under writeout. We leave the page
2657 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2658 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2659 * implementation will run either set_page_writeback() or set_page_dirty(),
2660 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2661 * back into sync.
2662 *
2663 * This incoherency between the page's dirty flag and radix-tree tag is
2664 * unfortunate, but it only exists while the page is locked.
2665 */
2666 int clear_page_dirty_for_io(struct page *page)
2667 {
2668 struct address_space *mapping = page_mapping(page);
2669 int ret = 0;
2670
2671 BUG_ON(!PageLocked(page));
2672
2673 if (mapping && mapping_cap_account_dirty(mapping)) {
2674 struct inode *inode = mapping->host;
2675 struct bdi_writeback *wb;
2676 bool locked;
2677
2678 /*
2679 * Yes, Virginia, this is indeed insane.
2680 *
2681 * We use this sequence to make sure that
2682 * (a) we account for dirty stats properly
2683 * (b) we tell the low-level filesystem to
2684 * mark the whole page dirty if it was
2685 * dirty in a pagetable. Only to then
2686 * (c) clean the page again and return 1 to
2687 * cause the writeback.
2688 *
2689 * This way we avoid all nasty races with the
2690 * dirty bit in multiple places and clearing
2691 * them concurrently from different threads.
2692 *
2693 * Note! Normally the "set_page_dirty(page)"
2694 * has no effect on the actual dirty bit - since
2695 * that will already usually be set. But we
2696 * need the side effects, and it can help us
2697 * avoid races.
2698 *
2699 * We basically use the page "master dirty bit"
2700 * as a serialization point for all the different
2701 * threads doing their things.
2702 */
2703 if (page_mkclean(page))
2704 set_page_dirty(page);
2705 /*
2706 * We carefully synchronise fault handlers against
2707 * installing a dirty pte and marking the page dirty
2708 * at this point. We do this by having them hold the
2709 * page lock while dirtying the page, and pages are
2710 * always locked coming in here, so we get the desired
2711 * exclusion.
2712 */
2713 wb = unlocked_inode_to_wb_begin(inode, &locked);
2714 if (TestClearPageDirty(page)) {
2715 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2716 dec_zone_page_state(page, NR_FILE_DIRTY);
2717 dec_wb_stat(wb, WB_RECLAIMABLE);
2718 ret = 1;
2719 }
2720 unlocked_inode_to_wb_end(inode, locked);
2721 return ret;
2722 }
2723 return TestClearPageDirty(page);
2724 }
2725 EXPORT_SYMBOL(clear_page_dirty_for_io);
2726
2727 int test_clear_page_writeback(struct page *page)
2728 {
2729 struct address_space *mapping = page_mapping(page);
2730 int ret;
2731
2732 lock_page_memcg(page);
2733 if (mapping) {
2734 struct inode *inode = mapping->host;
2735 struct backing_dev_info *bdi = inode_to_bdi(inode);
2736 unsigned long flags;
2737
2738 spin_lock_irqsave(&mapping->tree_lock, flags);
2739 ret = TestClearPageWriteback(page);
2740 if (ret) {
2741 radix_tree_tag_clear(&mapping->page_tree,
2742 page_index(page),
2743 PAGECACHE_TAG_WRITEBACK);
2744 if (bdi_cap_account_writeback(bdi)) {
2745 struct bdi_writeback *wb = inode_to_wb(inode);
2746
2747 __dec_wb_stat(wb, WB_WRITEBACK);
2748 __wb_writeout_inc(wb);
2749 }
2750 }
2751
2752 if (mapping->host && !mapping_tagged(mapping,
2753 PAGECACHE_TAG_WRITEBACK))
2754 sb_clear_inode_writeback(mapping->host);
2755
2756 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2757 } else {
2758 ret = TestClearPageWriteback(page);
2759 }
2760 if (ret) {
2761 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2762 dec_zone_page_state(page, NR_WRITEBACK);
2763 inc_zone_page_state(page, NR_WRITTEN);
2764 }
2765 unlock_page_memcg(page);
2766 return ret;
2767 }
2768
2769 int __test_set_page_writeback(struct page *page, bool keep_write)
2770 {
2771 struct address_space *mapping = page_mapping(page);
2772 int ret;
2773
2774 lock_page_memcg(page);
2775 if (mapping) {
2776 struct inode *inode = mapping->host;
2777 struct backing_dev_info *bdi = inode_to_bdi(inode);
2778 unsigned long flags;
2779
2780 spin_lock_irqsave(&mapping->tree_lock, flags);
2781 ret = TestSetPageWriteback(page);
2782 if (!ret) {
2783 bool on_wblist;
2784
2785 on_wblist = mapping_tagged(mapping,
2786 PAGECACHE_TAG_WRITEBACK);
2787
2788 radix_tree_tag_set(&mapping->page_tree,
2789 page_index(page),
2790 PAGECACHE_TAG_WRITEBACK);
2791 if (bdi_cap_account_writeback(bdi))
2792 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2793
2794 /*
2795 * We can come through here when swapping anonymous
2796 * pages, so we don't necessarily have an inode to track
2797 * for sync.
2798 */
2799 if (mapping->host && !on_wblist)
2800 sb_mark_inode_writeback(mapping->host);
2801 }
2802 if (!PageDirty(page))
2803 radix_tree_tag_clear(&mapping->page_tree,
2804 page_index(page),
2805 PAGECACHE_TAG_DIRTY);
2806 if (!keep_write)
2807 radix_tree_tag_clear(&mapping->page_tree,
2808 page_index(page),
2809 PAGECACHE_TAG_TOWRITE);
2810 spin_unlock_irqrestore(&mapping->tree_lock, flags);
2811 } else {
2812 ret = TestSetPageWriteback(page);
2813 }
2814 if (!ret) {
2815 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2816 inc_zone_page_state(page, NR_WRITEBACK);
2817 }
2818 unlock_page_memcg(page);
2819 return ret;
2820
2821 }
2822 EXPORT_SYMBOL(__test_set_page_writeback);
2823
2824 /*
2825 * Return true if any of the pages in the mapping are marked with the
2826 * passed tag.
2827 */
2828 int mapping_tagged(struct address_space *mapping, int tag)
2829 {
2830 return radix_tree_tagged(&mapping->page_tree, tag);
2831 }
2832 EXPORT_SYMBOL(mapping_tagged);
2833
2834 /**
2835 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2836 * @page: The page to wait on.
2837 *
2838 * This function determines if the given page is related to a backing device
2839 * that requires page contents to be held stable during writeback. If so, then
2840 * it will wait for any pending writeback to complete.
2841 */
2842 void wait_for_stable_page(struct page *page)
2843 {
2844 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2845 wait_on_page_writeback(page);
2846 }
2847 EXPORT_SYMBOL_GPL(wait_for_stable_page);
This page took 0.120364 seconds and 6 git commands to generate.