timekeeping; Use ktime based data for ktime_get_update_offsets_tick()
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72 #define MIN_PERCPU_PAGELIST_FRACTION (8)
73
74 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
75 DEFINE_PER_CPU(int, numa_node);
76 EXPORT_PER_CPU_SYMBOL(numa_node);
77 #endif
78
79 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
80 /*
81 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
82 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
83 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
84 * defined in <linux/topology.h>.
85 */
86 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
87 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
88 #endif
89
90 /*
91 * Array of node states.
92 */
93 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
94 [N_POSSIBLE] = NODE_MASK_ALL,
95 [N_ONLINE] = { { [0] = 1UL } },
96 #ifndef CONFIG_NUMA
97 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
98 #ifdef CONFIG_HIGHMEM
99 [N_HIGH_MEMORY] = { { [0] = 1UL } },
100 #endif
101 #ifdef CONFIG_MOVABLE_NODE
102 [N_MEMORY] = { { [0] = 1UL } },
103 #endif
104 [N_CPU] = { { [0] = 1UL } },
105 #endif /* NUMA */
106 };
107 EXPORT_SYMBOL(node_states);
108
109 /* Protect totalram_pages and zone->managed_pages */
110 static DEFINE_SPINLOCK(managed_page_count_lock);
111
112 unsigned long totalram_pages __read_mostly;
113 unsigned long totalreserve_pages __read_mostly;
114 /*
115 * When calculating the number of globally allowed dirty pages, there
116 * is a certain number of per-zone reserves that should not be
117 * considered dirtyable memory. This is the sum of those reserves
118 * over all existing zones that contribute dirtyable memory.
119 */
120 unsigned long dirty_balance_reserve __read_mostly;
121
122 int percpu_pagelist_fraction;
123 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
124
125 #ifdef CONFIG_PM_SLEEP
126 /*
127 * The following functions are used by the suspend/hibernate code to temporarily
128 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
129 * while devices are suspended. To avoid races with the suspend/hibernate code,
130 * they should always be called with pm_mutex held (gfp_allowed_mask also should
131 * only be modified with pm_mutex held, unless the suspend/hibernate code is
132 * guaranteed not to run in parallel with that modification).
133 */
134
135 static gfp_t saved_gfp_mask;
136
137 void pm_restore_gfp_mask(void)
138 {
139 WARN_ON(!mutex_is_locked(&pm_mutex));
140 if (saved_gfp_mask) {
141 gfp_allowed_mask = saved_gfp_mask;
142 saved_gfp_mask = 0;
143 }
144 }
145
146 void pm_restrict_gfp_mask(void)
147 {
148 WARN_ON(!mutex_is_locked(&pm_mutex));
149 WARN_ON(saved_gfp_mask);
150 saved_gfp_mask = gfp_allowed_mask;
151 gfp_allowed_mask &= ~GFP_IOFS;
152 }
153
154 bool pm_suspended_storage(void)
155 {
156 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
157 return false;
158 return true;
159 }
160 #endif /* CONFIG_PM_SLEEP */
161
162 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
163 int pageblock_order __read_mostly;
164 #endif
165
166 static void __free_pages_ok(struct page *page, unsigned int order);
167
168 /*
169 * results with 256, 32 in the lowmem_reserve sysctl:
170 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
171 * 1G machine -> (16M dma, 784M normal, 224M high)
172 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
173 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
174 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
175 *
176 * TBD: should special case ZONE_DMA32 machines here - in those we normally
177 * don't need any ZONE_NORMAL reservation
178 */
179 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
180 #ifdef CONFIG_ZONE_DMA
181 256,
182 #endif
183 #ifdef CONFIG_ZONE_DMA32
184 256,
185 #endif
186 #ifdef CONFIG_HIGHMEM
187 32,
188 #endif
189 32,
190 };
191
192 EXPORT_SYMBOL(totalram_pages);
193
194 static char * const zone_names[MAX_NR_ZONES] = {
195 #ifdef CONFIG_ZONE_DMA
196 "DMA",
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 "DMA32",
200 #endif
201 "Normal",
202 #ifdef CONFIG_HIGHMEM
203 "HighMem",
204 #endif
205 "Movable",
206 };
207
208 int min_free_kbytes = 1024;
209 int user_min_free_kbytes = -1;
210
211 static unsigned long __meminitdata nr_kernel_pages;
212 static unsigned long __meminitdata nr_all_pages;
213 static unsigned long __meminitdata dma_reserve;
214
215 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
216 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
218 static unsigned long __initdata required_kernelcore;
219 static unsigned long __initdata required_movablecore;
220 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
221
222 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
223 int movable_zone;
224 EXPORT_SYMBOL(movable_zone);
225 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
226
227 #if MAX_NUMNODES > 1
228 int nr_node_ids __read_mostly = MAX_NUMNODES;
229 int nr_online_nodes __read_mostly = 1;
230 EXPORT_SYMBOL(nr_node_ids);
231 EXPORT_SYMBOL(nr_online_nodes);
232 #endif
233
234 int page_group_by_mobility_disabled __read_mostly;
235
236 void set_pageblock_migratetype(struct page *page, int migratetype)
237 {
238 if (unlikely(page_group_by_mobility_disabled &&
239 migratetype < MIGRATE_PCPTYPES))
240 migratetype = MIGRATE_UNMOVABLE;
241
242 set_pageblock_flags_group(page, (unsigned long)migratetype,
243 PB_migrate, PB_migrate_end);
244 }
245
246 bool oom_killer_disabled __read_mostly;
247
248 #ifdef CONFIG_DEBUG_VM
249 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
250 {
251 int ret = 0;
252 unsigned seq;
253 unsigned long pfn = page_to_pfn(page);
254 unsigned long sp, start_pfn;
255
256 do {
257 seq = zone_span_seqbegin(zone);
258 start_pfn = zone->zone_start_pfn;
259 sp = zone->spanned_pages;
260 if (!zone_spans_pfn(zone, pfn))
261 ret = 1;
262 } while (zone_span_seqretry(zone, seq));
263
264 if (ret)
265 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
266 pfn, zone_to_nid(zone), zone->name,
267 start_pfn, start_pfn + sp);
268
269 return ret;
270 }
271
272 static int page_is_consistent(struct zone *zone, struct page *page)
273 {
274 if (!pfn_valid_within(page_to_pfn(page)))
275 return 0;
276 if (zone != page_zone(page))
277 return 0;
278
279 return 1;
280 }
281 /*
282 * Temporary debugging check for pages not lying within a given zone.
283 */
284 static int bad_range(struct zone *zone, struct page *page)
285 {
286 if (page_outside_zone_boundaries(zone, page))
287 return 1;
288 if (!page_is_consistent(zone, page))
289 return 1;
290
291 return 0;
292 }
293 #else
294 static inline int bad_range(struct zone *zone, struct page *page)
295 {
296 return 0;
297 }
298 #endif
299
300 static void bad_page(struct page *page, const char *reason,
301 unsigned long bad_flags)
302 {
303 static unsigned long resume;
304 static unsigned long nr_shown;
305 static unsigned long nr_unshown;
306
307 /* Don't complain about poisoned pages */
308 if (PageHWPoison(page)) {
309 page_mapcount_reset(page); /* remove PageBuddy */
310 return;
311 }
312
313 /*
314 * Allow a burst of 60 reports, then keep quiet for that minute;
315 * or allow a steady drip of one report per second.
316 */
317 if (nr_shown == 60) {
318 if (time_before(jiffies, resume)) {
319 nr_unshown++;
320 goto out;
321 }
322 if (nr_unshown) {
323 printk(KERN_ALERT
324 "BUG: Bad page state: %lu messages suppressed\n",
325 nr_unshown);
326 nr_unshown = 0;
327 }
328 nr_shown = 0;
329 }
330 if (nr_shown++ == 0)
331 resume = jiffies + 60 * HZ;
332
333 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
334 current->comm, page_to_pfn(page));
335 dump_page_badflags(page, reason, bad_flags);
336
337 print_modules();
338 dump_stack();
339 out:
340 /* Leave bad fields for debug, except PageBuddy could make trouble */
341 page_mapcount_reset(page); /* remove PageBuddy */
342 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
343 }
344
345 /*
346 * Higher-order pages are called "compound pages". They are structured thusly:
347 *
348 * The first PAGE_SIZE page is called the "head page".
349 *
350 * The remaining PAGE_SIZE pages are called "tail pages".
351 *
352 * All pages have PG_compound set. All tail pages have their ->first_page
353 * pointing at the head page.
354 *
355 * The first tail page's ->lru.next holds the address of the compound page's
356 * put_page() function. Its ->lru.prev holds the order of allocation.
357 * This usage means that zero-order pages may not be compound.
358 */
359
360 static void free_compound_page(struct page *page)
361 {
362 __free_pages_ok(page, compound_order(page));
363 }
364
365 void prep_compound_page(struct page *page, unsigned long order)
366 {
367 int i;
368 int nr_pages = 1 << order;
369
370 set_compound_page_dtor(page, free_compound_page);
371 set_compound_order(page, order);
372 __SetPageHead(page);
373 for (i = 1; i < nr_pages; i++) {
374 struct page *p = page + i;
375 set_page_count(p, 0);
376 p->first_page = page;
377 /* Make sure p->first_page is always valid for PageTail() */
378 smp_wmb();
379 __SetPageTail(p);
380 }
381 }
382
383 /* update __split_huge_page_refcount if you change this function */
384 static int destroy_compound_page(struct page *page, unsigned long order)
385 {
386 int i;
387 int nr_pages = 1 << order;
388 int bad = 0;
389
390 if (unlikely(compound_order(page) != order)) {
391 bad_page(page, "wrong compound order", 0);
392 bad++;
393 }
394
395 __ClearPageHead(page);
396
397 for (i = 1; i < nr_pages; i++) {
398 struct page *p = page + i;
399
400 if (unlikely(!PageTail(p))) {
401 bad_page(page, "PageTail not set", 0);
402 bad++;
403 } else if (unlikely(p->first_page != page)) {
404 bad_page(page, "first_page not consistent", 0);
405 bad++;
406 }
407 __ClearPageTail(p);
408 }
409
410 return bad;
411 }
412
413 static inline void prep_zero_page(struct page *page, unsigned int order,
414 gfp_t gfp_flags)
415 {
416 int i;
417
418 /*
419 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
420 * and __GFP_HIGHMEM from hard or soft interrupt context.
421 */
422 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
423 for (i = 0; i < (1 << order); i++)
424 clear_highpage(page + i);
425 }
426
427 #ifdef CONFIG_DEBUG_PAGEALLOC
428 unsigned int _debug_guardpage_minorder;
429
430 static int __init debug_guardpage_minorder_setup(char *buf)
431 {
432 unsigned long res;
433
434 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
435 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
436 return 0;
437 }
438 _debug_guardpage_minorder = res;
439 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
440 return 0;
441 }
442 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
443
444 static inline void set_page_guard_flag(struct page *page)
445 {
446 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
447 }
448
449 static inline void clear_page_guard_flag(struct page *page)
450 {
451 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
452 }
453 #else
454 static inline void set_page_guard_flag(struct page *page) { }
455 static inline void clear_page_guard_flag(struct page *page) { }
456 #endif
457
458 static inline void set_page_order(struct page *page, unsigned int order)
459 {
460 set_page_private(page, order);
461 __SetPageBuddy(page);
462 }
463
464 static inline void rmv_page_order(struct page *page)
465 {
466 __ClearPageBuddy(page);
467 set_page_private(page, 0);
468 }
469
470 /*
471 * Locate the struct page for both the matching buddy in our
472 * pair (buddy1) and the combined O(n+1) page they form (page).
473 *
474 * 1) Any buddy B1 will have an order O twin B2 which satisfies
475 * the following equation:
476 * B2 = B1 ^ (1 << O)
477 * For example, if the starting buddy (buddy2) is #8 its order
478 * 1 buddy is #10:
479 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
480 *
481 * 2) Any buddy B will have an order O+1 parent P which
482 * satisfies the following equation:
483 * P = B & ~(1 << O)
484 *
485 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
486 */
487 static inline unsigned long
488 __find_buddy_index(unsigned long page_idx, unsigned int order)
489 {
490 return page_idx ^ (1 << order);
491 }
492
493 /*
494 * This function checks whether a page is free && is the buddy
495 * we can do coalesce a page and its buddy if
496 * (a) the buddy is not in a hole &&
497 * (b) the buddy is in the buddy system &&
498 * (c) a page and its buddy have the same order &&
499 * (d) a page and its buddy are in the same zone.
500 *
501 * For recording whether a page is in the buddy system, we set ->_mapcount
502 * PAGE_BUDDY_MAPCOUNT_VALUE.
503 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
504 * serialized by zone->lock.
505 *
506 * For recording page's order, we use page_private(page).
507 */
508 static inline int page_is_buddy(struct page *page, struct page *buddy,
509 unsigned int order)
510 {
511 if (!pfn_valid_within(page_to_pfn(buddy)))
512 return 0;
513
514 if (page_is_guard(buddy) && page_order(buddy) == order) {
515 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
516
517 if (page_zone_id(page) != page_zone_id(buddy))
518 return 0;
519
520 return 1;
521 }
522
523 if (PageBuddy(buddy) && page_order(buddy) == order) {
524 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
525
526 /*
527 * zone check is done late to avoid uselessly
528 * calculating zone/node ids for pages that could
529 * never merge.
530 */
531 if (page_zone_id(page) != page_zone_id(buddy))
532 return 0;
533
534 return 1;
535 }
536 return 0;
537 }
538
539 /*
540 * Freeing function for a buddy system allocator.
541 *
542 * The concept of a buddy system is to maintain direct-mapped table
543 * (containing bit values) for memory blocks of various "orders".
544 * The bottom level table contains the map for the smallest allocatable
545 * units of memory (here, pages), and each level above it describes
546 * pairs of units from the levels below, hence, "buddies".
547 * At a high level, all that happens here is marking the table entry
548 * at the bottom level available, and propagating the changes upward
549 * as necessary, plus some accounting needed to play nicely with other
550 * parts of the VM system.
551 * At each level, we keep a list of pages, which are heads of continuous
552 * free pages of length of (1 << order) and marked with _mapcount
553 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
554 * field.
555 * So when we are allocating or freeing one, we can derive the state of the
556 * other. That is, if we allocate a small block, and both were
557 * free, the remainder of the region must be split into blocks.
558 * If a block is freed, and its buddy is also free, then this
559 * triggers coalescing into a block of larger size.
560 *
561 * -- nyc
562 */
563
564 static inline void __free_one_page(struct page *page,
565 unsigned long pfn,
566 struct zone *zone, unsigned int order,
567 int migratetype)
568 {
569 unsigned long page_idx;
570 unsigned long combined_idx;
571 unsigned long uninitialized_var(buddy_idx);
572 struct page *buddy;
573
574 VM_BUG_ON(!zone_is_initialized(zone));
575
576 if (unlikely(PageCompound(page)))
577 if (unlikely(destroy_compound_page(page, order)))
578 return;
579
580 VM_BUG_ON(migratetype == -1);
581
582 page_idx = pfn & ((1 << MAX_ORDER) - 1);
583
584 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
585 VM_BUG_ON_PAGE(bad_range(zone, page), page);
586
587 while (order < MAX_ORDER-1) {
588 buddy_idx = __find_buddy_index(page_idx, order);
589 buddy = page + (buddy_idx - page_idx);
590 if (!page_is_buddy(page, buddy, order))
591 break;
592 /*
593 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
594 * merge with it and move up one order.
595 */
596 if (page_is_guard(buddy)) {
597 clear_page_guard_flag(buddy);
598 set_page_private(page, 0);
599 __mod_zone_freepage_state(zone, 1 << order,
600 migratetype);
601 } else {
602 list_del(&buddy->lru);
603 zone->free_area[order].nr_free--;
604 rmv_page_order(buddy);
605 }
606 combined_idx = buddy_idx & page_idx;
607 page = page + (combined_idx - page_idx);
608 page_idx = combined_idx;
609 order++;
610 }
611 set_page_order(page, order);
612
613 /*
614 * If this is not the largest possible page, check if the buddy
615 * of the next-highest order is free. If it is, it's possible
616 * that pages are being freed that will coalesce soon. In case,
617 * that is happening, add the free page to the tail of the list
618 * so it's less likely to be used soon and more likely to be merged
619 * as a higher order page
620 */
621 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
622 struct page *higher_page, *higher_buddy;
623 combined_idx = buddy_idx & page_idx;
624 higher_page = page + (combined_idx - page_idx);
625 buddy_idx = __find_buddy_index(combined_idx, order + 1);
626 higher_buddy = higher_page + (buddy_idx - combined_idx);
627 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
628 list_add_tail(&page->lru,
629 &zone->free_area[order].free_list[migratetype]);
630 goto out;
631 }
632 }
633
634 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
635 out:
636 zone->free_area[order].nr_free++;
637 }
638
639 static inline int free_pages_check(struct page *page)
640 {
641 const char *bad_reason = NULL;
642 unsigned long bad_flags = 0;
643
644 if (unlikely(page_mapcount(page)))
645 bad_reason = "nonzero mapcount";
646 if (unlikely(page->mapping != NULL))
647 bad_reason = "non-NULL mapping";
648 if (unlikely(atomic_read(&page->_count) != 0))
649 bad_reason = "nonzero _count";
650 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
651 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
652 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
653 }
654 if (unlikely(mem_cgroup_bad_page_check(page)))
655 bad_reason = "cgroup check failed";
656 if (unlikely(bad_reason)) {
657 bad_page(page, bad_reason, bad_flags);
658 return 1;
659 }
660 page_cpupid_reset_last(page);
661 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
662 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
663 return 0;
664 }
665
666 /*
667 * Frees a number of pages from the PCP lists
668 * Assumes all pages on list are in same zone, and of same order.
669 * count is the number of pages to free.
670 *
671 * If the zone was previously in an "all pages pinned" state then look to
672 * see if this freeing clears that state.
673 *
674 * And clear the zone's pages_scanned counter, to hold off the "all pages are
675 * pinned" detection logic.
676 */
677 static void free_pcppages_bulk(struct zone *zone, int count,
678 struct per_cpu_pages *pcp)
679 {
680 int migratetype = 0;
681 int batch_free = 0;
682 int to_free = count;
683
684 spin_lock(&zone->lock);
685 zone->pages_scanned = 0;
686
687 while (to_free) {
688 struct page *page;
689 struct list_head *list;
690
691 /*
692 * Remove pages from lists in a round-robin fashion. A
693 * batch_free count is maintained that is incremented when an
694 * empty list is encountered. This is so more pages are freed
695 * off fuller lists instead of spinning excessively around empty
696 * lists
697 */
698 do {
699 batch_free++;
700 if (++migratetype == MIGRATE_PCPTYPES)
701 migratetype = 0;
702 list = &pcp->lists[migratetype];
703 } while (list_empty(list));
704
705 /* This is the only non-empty list. Free them all. */
706 if (batch_free == MIGRATE_PCPTYPES)
707 batch_free = to_free;
708
709 do {
710 int mt; /* migratetype of the to-be-freed page */
711
712 page = list_entry(list->prev, struct page, lru);
713 /* must delete as __free_one_page list manipulates */
714 list_del(&page->lru);
715 mt = get_freepage_migratetype(page);
716 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
717 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
718 trace_mm_page_pcpu_drain(page, 0, mt);
719 if (likely(!is_migrate_isolate_page(page))) {
720 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
721 if (is_migrate_cma(mt))
722 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
723 }
724 } while (--to_free && --batch_free && !list_empty(list));
725 }
726 spin_unlock(&zone->lock);
727 }
728
729 static void free_one_page(struct zone *zone,
730 struct page *page, unsigned long pfn,
731 unsigned int order,
732 int migratetype)
733 {
734 spin_lock(&zone->lock);
735 zone->pages_scanned = 0;
736
737 __free_one_page(page, pfn, zone, order, migratetype);
738 if (unlikely(!is_migrate_isolate(migratetype)))
739 __mod_zone_freepage_state(zone, 1 << order, migratetype);
740 spin_unlock(&zone->lock);
741 }
742
743 static bool free_pages_prepare(struct page *page, unsigned int order)
744 {
745 int i;
746 int bad = 0;
747
748 trace_mm_page_free(page, order);
749 kmemcheck_free_shadow(page, order);
750
751 if (PageAnon(page))
752 page->mapping = NULL;
753 for (i = 0; i < (1 << order); i++)
754 bad += free_pages_check(page + i);
755 if (bad)
756 return false;
757
758 if (!PageHighMem(page)) {
759 debug_check_no_locks_freed(page_address(page),
760 PAGE_SIZE << order);
761 debug_check_no_obj_freed(page_address(page),
762 PAGE_SIZE << order);
763 }
764 arch_free_page(page, order);
765 kernel_map_pages(page, 1 << order, 0);
766
767 return true;
768 }
769
770 static void __free_pages_ok(struct page *page, unsigned int order)
771 {
772 unsigned long flags;
773 int migratetype;
774 unsigned long pfn = page_to_pfn(page);
775
776 if (!free_pages_prepare(page, order))
777 return;
778
779 migratetype = get_pfnblock_migratetype(page, pfn);
780 local_irq_save(flags);
781 __count_vm_events(PGFREE, 1 << order);
782 set_freepage_migratetype(page, migratetype);
783 free_one_page(page_zone(page), page, pfn, order, migratetype);
784 local_irq_restore(flags);
785 }
786
787 void __init __free_pages_bootmem(struct page *page, unsigned int order)
788 {
789 unsigned int nr_pages = 1 << order;
790 struct page *p = page;
791 unsigned int loop;
792
793 prefetchw(p);
794 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
795 prefetchw(p + 1);
796 __ClearPageReserved(p);
797 set_page_count(p, 0);
798 }
799 __ClearPageReserved(p);
800 set_page_count(p, 0);
801
802 page_zone(page)->managed_pages += nr_pages;
803 set_page_refcounted(page);
804 __free_pages(page, order);
805 }
806
807 #ifdef CONFIG_CMA
808 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
809 void __init init_cma_reserved_pageblock(struct page *page)
810 {
811 unsigned i = pageblock_nr_pages;
812 struct page *p = page;
813
814 do {
815 __ClearPageReserved(p);
816 set_page_count(p, 0);
817 } while (++p, --i);
818
819 set_pageblock_migratetype(page, MIGRATE_CMA);
820
821 if (pageblock_order >= MAX_ORDER) {
822 i = pageblock_nr_pages;
823 p = page;
824 do {
825 set_page_refcounted(p);
826 __free_pages(p, MAX_ORDER - 1);
827 p += MAX_ORDER_NR_PAGES;
828 } while (i -= MAX_ORDER_NR_PAGES);
829 } else {
830 set_page_refcounted(page);
831 __free_pages(page, pageblock_order);
832 }
833
834 adjust_managed_page_count(page, pageblock_nr_pages);
835 }
836 #endif
837
838 /*
839 * The order of subdivision here is critical for the IO subsystem.
840 * Please do not alter this order without good reasons and regression
841 * testing. Specifically, as large blocks of memory are subdivided,
842 * the order in which smaller blocks are delivered depends on the order
843 * they're subdivided in this function. This is the primary factor
844 * influencing the order in which pages are delivered to the IO
845 * subsystem according to empirical testing, and this is also justified
846 * by considering the behavior of a buddy system containing a single
847 * large block of memory acted on by a series of small allocations.
848 * This behavior is a critical factor in sglist merging's success.
849 *
850 * -- nyc
851 */
852 static inline void expand(struct zone *zone, struct page *page,
853 int low, int high, struct free_area *area,
854 int migratetype)
855 {
856 unsigned long size = 1 << high;
857
858 while (high > low) {
859 area--;
860 high--;
861 size >>= 1;
862 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
863
864 #ifdef CONFIG_DEBUG_PAGEALLOC
865 if (high < debug_guardpage_minorder()) {
866 /*
867 * Mark as guard pages (or page), that will allow to
868 * merge back to allocator when buddy will be freed.
869 * Corresponding page table entries will not be touched,
870 * pages will stay not present in virtual address space
871 */
872 INIT_LIST_HEAD(&page[size].lru);
873 set_page_guard_flag(&page[size]);
874 set_page_private(&page[size], high);
875 /* Guard pages are not available for any usage */
876 __mod_zone_freepage_state(zone, -(1 << high),
877 migratetype);
878 continue;
879 }
880 #endif
881 list_add(&page[size].lru, &area->free_list[migratetype]);
882 area->nr_free++;
883 set_page_order(&page[size], high);
884 }
885 }
886
887 /*
888 * This page is about to be returned from the page allocator
889 */
890 static inline int check_new_page(struct page *page)
891 {
892 const char *bad_reason = NULL;
893 unsigned long bad_flags = 0;
894
895 if (unlikely(page_mapcount(page)))
896 bad_reason = "nonzero mapcount";
897 if (unlikely(page->mapping != NULL))
898 bad_reason = "non-NULL mapping";
899 if (unlikely(atomic_read(&page->_count) != 0))
900 bad_reason = "nonzero _count";
901 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
902 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
903 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
904 }
905 if (unlikely(mem_cgroup_bad_page_check(page)))
906 bad_reason = "cgroup check failed";
907 if (unlikely(bad_reason)) {
908 bad_page(page, bad_reason, bad_flags);
909 return 1;
910 }
911 return 0;
912 }
913
914 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags)
915 {
916 int i;
917
918 for (i = 0; i < (1 << order); i++) {
919 struct page *p = page + i;
920 if (unlikely(check_new_page(p)))
921 return 1;
922 }
923
924 set_page_private(page, 0);
925 set_page_refcounted(page);
926
927 arch_alloc_page(page, order);
928 kernel_map_pages(page, 1 << order, 1);
929
930 if (gfp_flags & __GFP_ZERO)
931 prep_zero_page(page, order, gfp_flags);
932
933 if (order && (gfp_flags & __GFP_COMP))
934 prep_compound_page(page, order);
935
936 return 0;
937 }
938
939 /*
940 * Go through the free lists for the given migratetype and remove
941 * the smallest available page from the freelists
942 */
943 static inline
944 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
945 int migratetype)
946 {
947 unsigned int current_order;
948 struct free_area *area;
949 struct page *page;
950
951 /* Find a page of the appropriate size in the preferred list */
952 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
953 area = &(zone->free_area[current_order]);
954 if (list_empty(&area->free_list[migratetype]))
955 continue;
956
957 page = list_entry(area->free_list[migratetype].next,
958 struct page, lru);
959 list_del(&page->lru);
960 rmv_page_order(page);
961 area->nr_free--;
962 expand(zone, page, order, current_order, area, migratetype);
963 set_freepage_migratetype(page, migratetype);
964 return page;
965 }
966
967 return NULL;
968 }
969
970
971 /*
972 * This array describes the order lists are fallen back to when
973 * the free lists for the desirable migrate type are depleted
974 */
975 static int fallbacks[MIGRATE_TYPES][4] = {
976 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
977 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
978 #ifdef CONFIG_CMA
979 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
980 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
981 #else
982 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
983 #endif
984 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
985 #ifdef CONFIG_MEMORY_ISOLATION
986 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
987 #endif
988 };
989
990 /*
991 * Move the free pages in a range to the free lists of the requested type.
992 * Note that start_page and end_pages are not aligned on a pageblock
993 * boundary. If alignment is required, use move_freepages_block()
994 */
995 int move_freepages(struct zone *zone,
996 struct page *start_page, struct page *end_page,
997 int migratetype)
998 {
999 struct page *page;
1000 unsigned long order;
1001 int pages_moved = 0;
1002
1003 #ifndef CONFIG_HOLES_IN_ZONE
1004 /*
1005 * page_zone is not safe to call in this context when
1006 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1007 * anyway as we check zone boundaries in move_freepages_block().
1008 * Remove at a later date when no bug reports exist related to
1009 * grouping pages by mobility
1010 */
1011 BUG_ON(page_zone(start_page) != page_zone(end_page));
1012 #endif
1013
1014 for (page = start_page; page <= end_page;) {
1015 /* Make sure we are not inadvertently changing nodes */
1016 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1017
1018 if (!pfn_valid_within(page_to_pfn(page))) {
1019 page++;
1020 continue;
1021 }
1022
1023 if (!PageBuddy(page)) {
1024 page++;
1025 continue;
1026 }
1027
1028 order = page_order(page);
1029 list_move(&page->lru,
1030 &zone->free_area[order].free_list[migratetype]);
1031 set_freepage_migratetype(page, migratetype);
1032 page += 1 << order;
1033 pages_moved += 1 << order;
1034 }
1035
1036 return pages_moved;
1037 }
1038
1039 int move_freepages_block(struct zone *zone, struct page *page,
1040 int migratetype)
1041 {
1042 unsigned long start_pfn, end_pfn;
1043 struct page *start_page, *end_page;
1044
1045 start_pfn = page_to_pfn(page);
1046 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1047 start_page = pfn_to_page(start_pfn);
1048 end_page = start_page + pageblock_nr_pages - 1;
1049 end_pfn = start_pfn + pageblock_nr_pages - 1;
1050
1051 /* Do not cross zone boundaries */
1052 if (!zone_spans_pfn(zone, start_pfn))
1053 start_page = page;
1054 if (!zone_spans_pfn(zone, end_pfn))
1055 return 0;
1056
1057 return move_freepages(zone, start_page, end_page, migratetype);
1058 }
1059
1060 static void change_pageblock_range(struct page *pageblock_page,
1061 int start_order, int migratetype)
1062 {
1063 int nr_pageblocks = 1 << (start_order - pageblock_order);
1064
1065 while (nr_pageblocks--) {
1066 set_pageblock_migratetype(pageblock_page, migratetype);
1067 pageblock_page += pageblock_nr_pages;
1068 }
1069 }
1070
1071 /*
1072 * If breaking a large block of pages, move all free pages to the preferred
1073 * allocation list. If falling back for a reclaimable kernel allocation, be
1074 * more aggressive about taking ownership of free pages.
1075 *
1076 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1077 * nor move CMA pages to different free lists. We don't want unmovable pages
1078 * to be allocated from MIGRATE_CMA areas.
1079 *
1080 * Returns the new migratetype of the pageblock (or the same old migratetype
1081 * if it was unchanged).
1082 */
1083 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1084 int start_type, int fallback_type)
1085 {
1086 int current_order = page_order(page);
1087
1088 /*
1089 * When borrowing from MIGRATE_CMA, we need to release the excess
1090 * buddy pages to CMA itself. We also ensure the freepage_migratetype
1091 * is set to CMA so it is returned to the correct freelist in case
1092 * the page ends up being not actually allocated from the pcp lists.
1093 */
1094 if (is_migrate_cma(fallback_type))
1095 return fallback_type;
1096
1097 /* Take ownership for orders >= pageblock_order */
1098 if (current_order >= pageblock_order) {
1099 change_pageblock_range(page, current_order, start_type);
1100 return start_type;
1101 }
1102
1103 if (current_order >= pageblock_order / 2 ||
1104 start_type == MIGRATE_RECLAIMABLE ||
1105 page_group_by_mobility_disabled) {
1106 int pages;
1107
1108 pages = move_freepages_block(zone, page, start_type);
1109
1110 /* Claim the whole block if over half of it is free */
1111 if (pages >= (1 << (pageblock_order-1)) ||
1112 page_group_by_mobility_disabled) {
1113
1114 set_pageblock_migratetype(page, start_type);
1115 return start_type;
1116 }
1117
1118 }
1119
1120 return fallback_type;
1121 }
1122
1123 /* Remove an element from the buddy allocator from the fallback list */
1124 static inline struct page *
1125 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1126 {
1127 struct free_area *area;
1128 unsigned int current_order;
1129 struct page *page;
1130 int migratetype, new_type, i;
1131
1132 /* Find the largest possible block of pages in the other list */
1133 for (current_order = MAX_ORDER-1;
1134 current_order >= order && current_order <= MAX_ORDER-1;
1135 --current_order) {
1136 for (i = 0;; i++) {
1137 migratetype = fallbacks[start_migratetype][i];
1138
1139 /* MIGRATE_RESERVE handled later if necessary */
1140 if (migratetype == MIGRATE_RESERVE)
1141 break;
1142
1143 area = &(zone->free_area[current_order]);
1144 if (list_empty(&area->free_list[migratetype]))
1145 continue;
1146
1147 page = list_entry(area->free_list[migratetype].next,
1148 struct page, lru);
1149 area->nr_free--;
1150
1151 new_type = try_to_steal_freepages(zone, page,
1152 start_migratetype,
1153 migratetype);
1154
1155 /* Remove the page from the freelists */
1156 list_del(&page->lru);
1157 rmv_page_order(page);
1158
1159 expand(zone, page, order, current_order, area,
1160 new_type);
1161 /* The freepage_migratetype may differ from pageblock's
1162 * migratetype depending on the decisions in
1163 * try_to_steal_freepages. This is OK as long as it does
1164 * not differ for MIGRATE_CMA type.
1165 */
1166 set_freepage_migratetype(page, new_type);
1167
1168 trace_mm_page_alloc_extfrag(page, order, current_order,
1169 start_migratetype, migratetype, new_type);
1170
1171 return page;
1172 }
1173 }
1174
1175 return NULL;
1176 }
1177
1178 /*
1179 * Do the hard work of removing an element from the buddy allocator.
1180 * Call me with the zone->lock already held.
1181 */
1182 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1183 int migratetype)
1184 {
1185 struct page *page;
1186
1187 retry_reserve:
1188 page = __rmqueue_smallest(zone, order, migratetype);
1189
1190 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1191 page = __rmqueue_fallback(zone, order, migratetype);
1192
1193 /*
1194 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1195 * is used because __rmqueue_smallest is an inline function
1196 * and we want just one call site
1197 */
1198 if (!page) {
1199 migratetype = MIGRATE_RESERVE;
1200 goto retry_reserve;
1201 }
1202 }
1203
1204 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1205 return page;
1206 }
1207
1208 /*
1209 * Obtain a specified number of elements from the buddy allocator, all under
1210 * a single hold of the lock, for efficiency. Add them to the supplied list.
1211 * Returns the number of new pages which were placed at *list.
1212 */
1213 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1214 unsigned long count, struct list_head *list,
1215 int migratetype, bool cold)
1216 {
1217 int i;
1218
1219 spin_lock(&zone->lock);
1220 for (i = 0; i < count; ++i) {
1221 struct page *page = __rmqueue(zone, order, migratetype);
1222 if (unlikely(page == NULL))
1223 break;
1224
1225 /*
1226 * Split buddy pages returned by expand() are received here
1227 * in physical page order. The page is added to the callers and
1228 * list and the list head then moves forward. From the callers
1229 * perspective, the linked list is ordered by page number in
1230 * some conditions. This is useful for IO devices that can
1231 * merge IO requests if the physical pages are ordered
1232 * properly.
1233 */
1234 if (likely(!cold))
1235 list_add(&page->lru, list);
1236 else
1237 list_add_tail(&page->lru, list);
1238 list = &page->lru;
1239 if (is_migrate_cma(get_freepage_migratetype(page)))
1240 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1241 -(1 << order));
1242 }
1243 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1244 spin_unlock(&zone->lock);
1245 return i;
1246 }
1247
1248 #ifdef CONFIG_NUMA
1249 /*
1250 * Called from the vmstat counter updater to drain pagesets of this
1251 * currently executing processor on remote nodes after they have
1252 * expired.
1253 *
1254 * Note that this function must be called with the thread pinned to
1255 * a single processor.
1256 */
1257 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1258 {
1259 unsigned long flags;
1260 int to_drain;
1261 unsigned long batch;
1262
1263 local_irq_save(flags);
1264 batch = ACCESS_ONCE(pcp->batch);
1265 if (pcp->count >= batch)
1266 to_drain = batch;
1267 else
1268 to_drain = pcp->count;
1269 if (to_drain > 0) {
1270 free_pcppages_bulk(zone, to_drain, pcp);
1271 pcp->count -= to_drain;
1272 }
1273 local_irq_restore(flags);
1274 }
1275 #endif
1276
1277 /*
1278 * Drain pages of the indicated processor.
1279 *
1280 * The processor must either be the current processor and the
1281 * thread pinned to the current processor or a processor that
1282 * is not online.
1283 */
1284 static void drain_pages(unsigned int cpu)
1285 {
1286 unsigned long flags;
1287 struct zone *zone;
1288
1289 for_each_populated_zone(zone) {
1290 struct per_cpu_pageset *pset;
1291 struct per_cpu_pages *pcp;
1292
1293 local_irq_save(flags);
1294 pset = per_cpu_ptr(zone->pageset, cpu);
1295
1296 pcp = &pset->pcp;
1297 if (pcp->count) {
1298 free_pcppages_bulk(zone, pcp->count, pcp);
1299 pcp->count = 0;
1300 }
1301 local_irq_restore(flags);
1302 }
1303 }
1304
1305 /*
1306 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1307 */
1308 void drain_local_pages(void *arg)
1309 {
1310 drain_pages(smp_processor_id());
1311 }
1312
1313 /*
1314 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1315 *
1316 * Note that this code is protected against sending an IPI to an offline
1317 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1318 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1319 * nothing keeps CPUs from showing up after we populated the cpumask and
1320 * before the call to on_each_cpu_mask().
1321 */
1322 void drain_all_pages(void)
1323 {
1324 int cpu;
1325 struct per_cpu_pageset *pcp;
1326 struct zone *zone;
1327
1328 /*
1329 * Allocate in the BSS so we wont require allocation in
1330 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1331 */
1332 static cpumask_t cpus_with_pcps;
1333
1334 /*
1335 * We don't care about racing with CPU hotplug event
1336 * as offline notification will cause the notified
1337 * cpu to drain that CPU pcps and on_each_cpu_mask
1338 * disables preemption as part of its processing
1339 */
1340 for_each_online_cpu(cpu) {
1341 bool has_pcps = false;
1342 for_each_populated_zone(zone) {
1343 pcp = per_cpu_ptr(zone->pageset, cpu);
1344 if (pcp->pcp.count) {
1345 has_pcps = true;
1346 break;
1347 }
1348 }
1349 if (has_pcps)
1350 cpumask_set_cpu(cpu, &cpus_with_pcps);
1351 else
1352 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1353 }
1354 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1355 }
1356
1357 #ifdef CONFIG_HIBERNATION
1358
1359 void mark_free_pages(struct zone *zone)
1360 {
1361 unsigned long pfn, max_zone_pfn;
1362 unsigned long flags;
1363 unsigned int order, t;
1364 struct list_head *curr;
1365
1366 if (zone_is_empty(zone))
1367 return;
1368
1369 spin_lock_irqsave(&zone->lock, flags);
1370
1371 max_zone_pfn = zone_end_pfn(zone);
1372 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1373 if (pfn_valid(pfn)) {
1374 struct page *page = pfn_to_page(pfn);
1375
1376 if (!swsusp_page_is_forbidden(page))
1377 swsusp_unset_page_free(page);
1378 }
1379
1380 for_each_migratetype_order(order, t) {
1381 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1382 unsigned long i;
1383
1384 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1385 for (i = 0; i < (1UL << order); i++)
1386 swsusp_set_page_free(pfn_to_page(pfn + i));
1387 }
1388 }
1389 spin_unlock_irqrestore(&zone->lock, flags);
1390 }
1391 #endif /* CONFIG_PM */
1392
1393 /*
1394 * Free a 0-order page
1395 * cold == true ? free a cold page : free a hot page
1396 */
1397 void free_hot_cold_page(struct page *page, bool cold)
1398 {
1399 struct zone *zone = page_zone(page);
1400 struct per_cpu_pages *pcp;
1401 unsigned long flags;
1402 unsigned long pfn = page_to_pfn(page);
1403 int migratetype;
1404
1405 if (!free_pages_prepare(page, 0))
1406 return;
1407
1408 migratetype = get_pfnblock_migratetype(page, pfn);
1409 set_freepage_migratetype(page, migratetype);
1410 local_irq_save(flags);
1411 __count_vm_event(PGFREE);
1412
1413 /*
1414 * We only track unmovable, reclaimable and movable on pcp lists.
1415 * Free ISOLATE pages back to the allocator because they are being
1416 * offlined but treat RESERVE as movable pages so we can get those
1417 * areas back if necessary. Otherwise, we may have to free
1418 * excessively into the page allocator
1419 */
1420 if (migratetype >= MIGRATE_PCPTYPES) {
1421 if (unlikely(is_migrate_isolate(migratetype))) {
1422 free_one_page(zone, page, pfn, 0, migratetype);
1423 goto out;
1424 }
1425 migratetype = MIGRATE_MOVABLE;
1426 }
1427
1428 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1429 if (!cold)
1430 list_add(&page->lru, &pcp->lists[migratetype]);
1431 else
1432 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1433 pcp->count++;
1434 if (pcp->count >= pcp->high) {
1435 unsigned long batch = ACCESS_ONCE(pcp->batch);
1436 free_pcppages_bulk(zone, batch, pcp);
1437 pcp->count -= batch;
1438 }
1439
1440 out:
1441 local_irq_restore(flags);
1442 }
1443
1444 /*
1445 * Free a list of 0-order pages
1446 */
1447 void free_hot_cold_page_list(struct list_head *list, bool cold)
1448 {
1449 struct page *page, *next;
1450
1451 list_for_each_entry_safe(page, next, list, lru) {
1452 trace_mm_page_free_batched(page, cold);
1453 free_hot_cold_page(page, cold);
1454 }
1455 }
1456
1457 /*
1458 * split_page takes a non-compound higher-order page, and splits it into
1459 * n (1<<order) sub-pages: page[0..n]
1460 * Each sub-page must be freed individually.
1461 *
1462 * Note: this is probably too low level an operation for use in drivers.
1463 * Please consult with lkml before using this in your driver.
1464 */
1465 void split_page(struct page *page, unsigned int order)
1466 {
1467 int i;
1468
1469 VM_BUG_ON_PAGE(PageCompound(page), page);
1470 VM_BUG_ON_PAGE(!page_count(page), page);
1471
1472 #ifdef CONFIG_KMEMCHECK
1473 /*
1474 * Split shadow pages too, because free(page[0]) would
1475 * otherwise free the whole shadow.
1476 */
1477 if (kmemcheck_page_is_tracked(page))
1478 split_page(virt_to_page(page[0].shadow), order);
1479 #endif
1480
1481 for (i = 1; i < (1 << order); i++)
1482 set_page_refcounted(page + i);
1483 }
1484 EXPORT_SYMBOL_GPL(split_page);
1485
1486 static int __isolate_free_page(struct page *page, unsigned int order)
1487 {
1488 unsigned long watermark;
1489 struct zone *zone;
1490 int mt;
1491
1492 BUG_ON(!PageBuddy(page));
1493
1494 zone = page_zone(page);
1495 mt = get_pageblock_migratetype(page);
1496
1497 if (!is_migrate_isolate(mt)) {
1498 /* Obey watermarks as if the page was being allocated */
1499 watermark = low_wmark_pages(zone) + (1 << order);
1500 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1501 return 0;
1502
1503 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1504 }
1505
1506 /* Remove page from free list */
1507 list_del(&page->lru);
1508 zone->free_area[order].nr_free--;
1509 rmv_page_order(page);
1510
1511 /* Set the pageblock if the isolated page is at least a pageblock */
1512 if (order >= pageblock_order - 1) {
1513 struct page *endpage = page + (1 << order) - 1;
1514 for (; page < endpage; page += pageblock_nr_pages) {
1515 int mt = get_pageblock_migratetype(page);
1516 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1517 set_pageblock_migratetype(page,
1518 MIGRATE_MOVABLE);
1519 }
1520 }
1521
1522 return 1UL << order;
1523 }
1524
1525 /*
1526 * Similar to split_page except the page is already free. As this is only
1527 * being used for migration, the migratetype of the block also changes.
1528 * As this is called with interrupts disabled, the caller is responsible
1529 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1530 * are enabled.
1531 *
1532 * Note: this is probably too low level an operation for use in drivers.
1533 * Please consult with lkml before using this in your driver.
1534 */
1535 int split_free_page(struct page *page)
1536 {
1537 unsigned int order;
1538 int nr_pages;
1539
1540 order = page_order(page);
1541
1542 nr_pages = __isolate_free_page(page, order);
1543 if (!nr_pages)
1544 return 0;
1545
1546 /* Split into individual pages */
1547 set_page_refcounted(page);
1548 split_page(page, order);
1549 return nr_pages;
1550 }
1551
1552 /*
1553 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1554 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1555 * or two.
1556 */
1557 static inline
1558 struct page *buffered_rmqueue(struct zone *preferred_zone,
1559 struct zone *zone, unsigned int order,
1560 gfp_t gfp_flags, int migratetype)
1561 {
1562 unsigned long flags;
1563 struct page *page;
1564 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1565
1566 again:
1567 if (likely(order == 0)) {
1568 struct per_cpu_pages *pcp;
1569 struct list_head *list;
1570
1571 local_irq_save(flags);
1572 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1573 list = &pcp->lists[migratetype];
1574 if (list_empty(list)) {
1575 pcp->count += rmqueue_bulk(zone, 0,
1576 pcp->batch, list,
1577 migratetype, cold);
1578 if (unlikely(list_empty(list)))
1579 goto failed;
1580 }
1581
1582 if (cold)
1583 page = list_entry(list->prev, struct page, lru);
1584 else
1585 page = list_entry(list->next, struct page, lru);
1586
1587 list_del(&page->lru);
1588 pcp->count--;
1589 } else {
1590 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1591 /*
1592 * __GFP_NOFAIL is not to be used in new code.
1593 *
1594 * All __GFP_NOFAIL callers should be fixed so that they
1595 * properly detect and handle allocation failures.
1596 *
1597 * We most definitely don't want callers attempting to
1598 * allocate greater than order-1 page units with
1599 * __GFP_NOFAIL.
1600 */
1601 WARN_ON_ONCE(order > 1);
1602 }
1603 spin_lock_irqsave(&zone->lock, flags);
1604 page = __rmqueue(zone, order, migratetype);
1605 spin_unlock(&zone->lock);
1606 if (!page)
1607 goto failed;
1608 __mod_zone_freepage_state(zone, -(1 << order),
1609 get_freepage_migratetype(page));
1610 }
1611
1612 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1613
1614 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1615 zone_statistics(preferred_zone, zone, gfp_flags);
1616 local_irq_restore(flags);
1617
1618 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1619 if (prep_new_page(page, order, gfp_flags))
1620 goto again;
1621 return page;
1622
1623 failed:
1624 local_irq_restore(flags);
1625 return NULL;
1626 }
1627
1628 #ifdef CONFIG_FAIL_PAGE_ALLOC
1629
1630 static struct {
1631 struct fault_attr attr;
1632
1633 u32 ignore_gfp_highmem;
1634 u32 ignore_gfp_wait;
1635 u32 min_order;
1636 } fail_page_alloc = {
1637 .attr = FAULT_ATTR_INITIALIZER,
1638 .ignore_gfp_wait = 1,
1639 .ignore_gfp_highmem = 1,
1640 .min_order = 1,
1641 };
1642
1643 static int __init setup_fail_page_alloc(char *str)
1644 {
1645 return setup_fault_attr(&fail_page_alloc.attr, str);
1646 }
1647 __setup("fail_page_alloc=", setup_fail_page_alloc);
1648
1649 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1650 {
1651 if (order < fail_page_alloc.min_order)
1652 return false;
1653 if (gfp_mask & __GFP_NOFAIL)
1654 return false;
1655 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1656 return false;
1657 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1658 return false;
1659
1660 return should_fail(&fail_page_alloc.attr, 1 << order);
1661 }
1662
1663 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1664
1665 static int __init fail_page_alloc_debugfs(void)
1666 {
1667 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1668 struct dentry *dir;
1669
1670 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1671 &fail_page_alloc.attr);
1672 if (IS_ERR(dir))
1673 return PTR_ERR(dir);
1674
1675 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1676 &fail_page_alloc.ignore_gfp_wait))
1677 goto fail;
1678 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1679 &fail_page_alloc.ignore_gfp_highmem))
1680 goto fail;
1681 if (!debugfs_create_u32("min-order", mode, dir,
1682 &fail_page_alloc.min_order))
1683 goto fail;
1684
1685 return 0;
1686 fail:
1687 debugfs_remove_recursive(dir);
1688
1689 return -ENOMEM;
1690 }
1691
1692 late_initcall(fail_page_alloc_debugfs);
1693
1694 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1695
1696 #else /* CONFIG_FAIL_PAGE_ALLOC */
1697
1698 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1699 {
1700 return false;
1701 }
1702
1703 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1704
1705 /*
1706 * Return true if free pages are above 'mark'. This takes into account the order
1707 * of the allocation.
1708 */
1709 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
1710 unsigned long mark, int classzone_idx, int alloc_flags,
1711 long free_pages)
1712 {
1713 /* free_pages my go negative - that's OK */
1714 long min = mark;
1715 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1716 int o;
1717 long free_cma = 0;
1718
1719 free_pages -= (1 << order) - 1;
1720 if (alloc_flags & ALLOC_HIGH)
1721 min -= min / 2;
1722 if (alloc_flags & ALLOC_HARDER)
1723 min -= min / 4;
1724 #ifdef CONFIG_CMA
1725 /* If allocation can't use CMA areas don't use free CMA pages */
1726 if (!(alloc_flags & ALLOC_CMA))
1727 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1728 #endif
1729
1730 if (free_pages - free_cma <= min + lowmem_reserve)
1731 return false;
1732 for (o = 0; o < order; o++) {
1733 /* At the next order, this order's pages become unavailable */
1734 free_pages -= z->free_area[o].nr_free << o;
1735
1736 /* Require fewer higher order pages to be free */
1737 min >>= 1;
1738
1739 if (free_pages <= min)
1740 return false;
1741 }
1742 return true;
1743 }
1744
1745 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1746 int classzone_idx, int alloc_flags)
1747 {
1748 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1749 zone_page_state(z, NR_FREE_PAGES));
1750 }
1751
1752 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1753 unsigned long mark, int classzone_idx, int alloc_flags)
1754 {
1755 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1756
1757 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1758 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1759
1760 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1761 free_pages);
1762 }
1763
1764 #ifdef CONFIG_NUMA
1765 /*
1766 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1767 * skip over zones that are not allowed by the cpuset, or that have
1768 * been recently (in last second) found to be nearly full. See further
1769 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1770 * that have to skip over a lot of full or unallowed zones.
1771 *
1772 * If the zonelist cache is present in the passed zonelist, then
1773 * returns a pointer to the allowed node mask (either the current
1774 * tasks mems_allowed, or node_states[N_MEMORY].)
1775 *
1776 * If the zonelist cache is not available for this zonelist, does
1777 * nothing and returns NULL.
1778 *
1779 * If the fullzones BITMAP in the zonelist cache is stale (more than
1780 * a second since last zap'd) then we zap it out (clear its bits.)
1781 *
1782 * We hold off even calling zlc_setup, until after we've checked the
1783 * first zone in the zonelist, on the theory that most allocations will
1784 * be satisfied from that first zone, so best to examine that zone as
1785 * quickly as we can.
1786 */
1787 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1788 {
1789 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1790 nodemask_t *allowednodes; /* zonelist_cache approximation */
1791
1792 zlc = zonelist->zlcache_ptr;
1793 if (!zlc)
1794 return NULL;
1795
1796 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1797 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1798 zlc->last_full_zap = jiffies;
1799 }
1800
1801 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1802 &cpuset_current_mems_allowed :
1803 &node_states[N_MEMORY];
1804 return allowednodes;
1805 }
1806
1807 /*
1808 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1809 * if it is worth looking at further for free memory:
1810 * 1) Check that the zone isn't thought to be full (doesn't have its
1811 * bit set in the zonelist_cache fullzones BITMAP).
1812 * 2) Check that the zones node (obtained from the zonelist_cache
1813 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1814 * Return true (non-zero) if zone is worth looking at further, or
1815 * else return false (zero) if it is not.
1816 *
1817 * This check -ignores- the distinction between various watermarks,
1818 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1819 * found to be full for any variation of these watermarks, it will
1820 * be considered full for up to one second by all requests, unless
1821 * we are so low on memory on all allowed nodes that we are forced
1822 * into the second scan of the zonelist.
1823 *
1824 * In the second scan we ignore this zonelist cache and exactly
1825 * apply the watermarks to all zones, even it is slower to do so.
1826 * We are low on memory in the second scan, and should leave no stone
1827 * unturned looking for a free page.
1828 */
1829 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1830 nodemask_t *allowednodes)
1831 {
1832 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1833 int i; /* index of *z in zonelist zones */
1834 int n; /* node that zone *z is on */
1835
1836 zlc = zonelist->zlcache_ptr;
1837 if (!zlc)
1838 return 1;
1839
1840 i = z - zonelist->_zonerefs;
1841 n = zlc->z_to_n[i];
1842
1843 /* This zone is worth trying if it is allowed but not full */
1844 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1845 }
1846
1847 /*
1848 * Given 'z' scanning a zonelist, set the corresponding bit in
1849 * zlc->fullzones, so that subsequent attempts to allocate a page
1850 * from that zone don't waste time re-examining it.
1851 */
1852 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1853 {
1854 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1855 int i; /* index of *z in zonelist zones */
1856
1857 zlc = zonelist->zlcache_ptr;
1858 if (!zlc)
1859 return;
1860
1861 i = z - zonelist->_zonerefs;
1862
1863 set_bit(i, zlc->fullzones);
1864 }
1865
1866 /*
1867 * clear all zones full, called after direct reclaim makes progress so that
1868 * a zone that was recently full is not skipped over for up to a second
1869 */
1870 static void zlc_clear_zones_full(struct zonelist *zonelist)
1871 {
1872 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1873
1874 zlc = zonelist->zlcache_ptr;
1875 if (!zlc)
1876 return;
1877
1878 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1879 }
1880
1881 static bool zone_local(struct zone *local_zone, struct zone *zone)
1882 {
1883 return local_zone->node == zone->node;
1884 }
1885
1886 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1887 {
1888 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
1889 RECLAIM_DISTANCE;
1890 }
1891
1892 #else /* CONFIG_NUMA */
1893
1894 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1895 {
1896 return NULL;
1897 }
1898
1899 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1900 nodemask_t *allowednodes)
1901 {
1902 return 1;
1903 }
1904
1905 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1906 {
1907 }
1908
1909 static void zlc_clear_zones_full(struct zonelist *zonelist)
1910 {
1911 }
1912
1913 static bool zone_local(struct zone *local_zone, struct zone *zone)
1914 {
1915 return true;
1916 }
1917
1918 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1919 {
1920 return true;
1921 }
1922
1923 #endif /* CONFIG_NUMA */
1924
1925 /*
1926 * get_page_from_freelist goes through the zonelist trying to allocate
1927 * a page.
1928 */
1929 static struct page *
1930 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1931 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1932 struct zone *preferred_zone, int classzone_idx, int migratetype)
1933 {
1934 struct zoneref *z;
1935 struct page *page = NULL;
1936 struct zone *zone;
1937 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1938 int zlc_active = 0; /* set if using zonelist_cache */
1939 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1940 bool consider_zone_dirty = (alloc_flags & ALLOC_WMARK_LOW) &&
1941 (gfp_mask & __GFP_WRITE);
1942
1943 zonelist_scan:
1944 /*
1945 * Scan zonelist, looking for a zone with enough free.
1946 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1947 */
1948 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1949 high_zoneidx, nodemask) {
1950 unsigned long mark;
1951
1952 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1953 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1954 continue;
1955 if (cpusets_enabled() &&
1956 (alloc_flags & ALLOC_CPUSET) &&
1957 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1958 continue;
1959 /*
1960 * Distribute pages in proportion to the individual
1961 * zone size to ensure fair page aging. The zone a
1962 * page was allocated in should have no effect on the
1963 * time the page has in memory before being reclaimed.
1964 */
1965 if (alloc_flags & ALLOC_FAIR) {
1966 if (!zone_local(preferred_zone, zone))
1967 continue;
1968 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1969 continue;
1970 }
1971 /*
1972 * When allocating a page cache page for writing, we
1973 * want to get it from a zone that is within its dirty
1974 * limit, such that no single zone holds more than its
1975 * proportional share of globally allowed dirty pages.
1976 * The dirty limits take into account the zone's
1977 * lowmem reserves and high watermark so that kswapd
1978 * should be able to balance it without having to
1979 * write pages from its LRU list.
1980 *
1981 * This may look like it could increase pressure on
1982 * lower zones by failing allocations in higher zones
1983 * before they are full. But the pages that do spill
1984 * over are limited as the lower zones are protected
1985 * by this very same mechanism. It should not become
1986 * a practical burden to them.
1987 *
1988 * XXX: For now, allow allocations to potentially
1989 * exceed the per-zone dirty limit in the slowpath
1990 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1991 * which is important when on a NUMA setup the allowed
1992 * zones are together not big enough to reach the
1993 * global limit. The proper fix for these situations
1994 * will require awareness of zones in the
1995 * dirty-throttling and the flusher threads.
1996 */
1997 if (consider_zone_dirty && !zone_dirty_ok(zone))
1998 continue;
1999
2000 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2001 if (!zone_watermark_ok(zone, order, mark,
2002 classzone_idx, alloc_flags)) {
2003 int ret;
2004
2005 /* Checked here to keep the fast path fast */
2006 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2007 if (alloc_flags & ALLOC_NO_WATERMARKS)
2008 goto try_this_zone;
2009
2010 if (IS_ENABLED(CONFIG_NUMA) &&
2011 !did_zlc_setup && nr_online_nodes > 1) {
2012 /*
2013 * we do zlc_setup if there are multiple nodes
2014 * and before considering the first zone allowed
2015 * by the cpuset.
2016 */
2017 allowednodes = zlc_setup(zonelist, alloc_flags);
2018 zlc_active = 1;
2019 did_zlc_setup = 1;
2020 }
2021
2022 if (zone_reclaim_mode == 0 ||
2023 !zone_allows_reclaim(preferred_zone, zone))
2024 goto this_zone_full;
2025
2026 /*
2027 * As we may have just activated ZLC, check if the first
2028 * eligible zone has failed zone_reclaim recently.
2029 */
2030 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
2031 !zlc_zone_worth_trying(zonelist, z, allowednodes))
2032 continue;
2033
2034 ret = zone_reclaim(zone, gfp_mask, order);
2035 switch (ret) {
2036 case ZONE_RECLAIM_NOSCAN:
2037 /* did not scan */
2038 continue;
2039 case ZONE_RECLAIM_FULL:
2040 /* scanned but unreclaimable */
2041 continue;
2042 default:
2043 /* did we reclaim enough */
2044 if (zone_watermark_ok(zone, order, mark,
2045 classzone_idx, alloc_flags))
2046 goto try_this_zone;
2047
2048 /*
2049 * Failed to reclaim enough to meet watermark.
2050 * Only mark the zone full if checking the min
2051 * watermark or if we failed to reclaim just
2052 * 1<<order pages or else the page allocator
2053 * fastpath will prematurely mark zones full
2054 * when the watermark is between the low and
2055 * min watermarks.
2056 */
2057 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2058 ret == ZONE_RECLAIM_SOME)
2059 goto this_zone_full;
2060
2061 continue;
2062 }
2063 }
2064
2065 try_this_zone:
2066 page = buffered_rmqueue(preferred_zone, zone, order,
2067 gfp_mask, migratetype);
2068 if (page)
2069 break;
2070 this_zone_full:
2071 if (IS_ENABLED(CONFIG_NUMA) && zlc_active)
2072 zlc_mark_zone_full(zonelist, z);
2073 }
2074
2075 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2076 /* Disable zlc cache for second zonelist scan */
2077 zlc_active = 0;
2078 goto zonelist_scan;
2079 }
2080
2081 if (page)
2082 /*
2083 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2084 * necessary to allocate the page. The expectation is
2085 * that the caller is taking steps that will free more
2086 * memory. The caller should avoid the page being used
2087 * for !PFMEMALLOC purposes.
2088 */
2089 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2090
2091 return page;
2092 }
2093
2094 /*
2095 * Large machines with many possible nodes should not always dump per-node
2096 * meminfo in irq context.
2097 */
2098 static inline bool should_suppress_show_mem(void)
2099 {
2100 bool ret = false;
2101
2102 #if NODES_SHIFT > 8
2103 ret = in_interrupt();
2104 #endif
2105 return ret;
2106 }
2107
2108 static DEFINE_RATELIMIT_STATE(nopage_rs,
2109 DEFAULT_RATELIMIT_INTERVAL,
2110 DEFAULT_RATELIMIT_BURST);
2111
2112 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2113 {
2114 unsigned int filter = SHOW_MEM_FILTER_NODES;
2115
2116 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2117 debug_guardpage_minorder() > 0)
2118 return;
2119
2120 /*
2121 * This documents exceptions given to allocations in certain
2122 * contexts that are allowed to allocate outside current's set
2123 * of allowed nodes.
2124 */
2125 if (!(gfp_mask & __GFP_NOMEMALLOC))
2126 if (test_thread_flag(TIF_MEMDIE) ||
2127 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2128 filter &= ~SHOW_MEM_FILTER_NODES;
2129 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2130 filter &= ~SHOW_MEM_FILTER_NODES;
2131
2132 if (fmt) {
2133 struct va_format vaf;
2134 va_list args;
2135
2136 va_start(args, fmt);
2137
2138 vaf.fmt = fmt;
2139 vaf.va = &args;
2140
2141 pr_warn("%pV", &vaf);
2142
2143 va_end(args);
2144 }
2145
2146 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2147 current->comm, order, gfp_mask);
2148
2149 dump_stack();
2150 if (!should_suppress_show_mem())
2151 show_mem(filter);
2152 }
2153
2154 static inline int
2155 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2156 unsigned long did_some_progress,
2157 unsigned long pages_reclaimed)
2158 {
2159 /* Do not loop if specifically requested */
2160 if (gfp_mask & __GFP_NORETRY)
2161 return 0;
2162
2163 /* Always retry if specifically requested */
2164 if (gfp_mask & __GFP_NOFAIL)
2165 return 1;
2166
2167 /*
2168 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2169 * making forward progress without invoking OOM. Suspend also disables
2170 * storage devices so kswapd will not help. Bail if we are suspending.
2171 */
2172 if (!did_some_progress && pm_suspended_storage())
2173 return 0;
2174
2175 /*
2176 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2177 * means __GFP_NOFAIL, but that may not be true in other
2178 * implementations.
2179 */
2180 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2181 return 1;
2182
2183 /*
2184 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2185 * specified, then we retry until we no longer reclaim any pages
2186 * (above), or we've reclaimed an order of pages at least as
2187 * large as the allocation's order. In both cases, if the
2188 * allocation still fails, we stop retrying.
2189 */
2190 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2191 return 1;
2192
2193 return 0;
2194 }
2195
2196 static inline struct page *
2197 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2198 struct zonelist *zonelist, enum zone_type high_zoneidx,
2199 nodemask_t *nodemask, struct zone *preferred_zone,
2200 int classzone_idx, int migratetype)
2201 {
2202 struct page *page;
2203
2204 /* Acquire the OOM killer lock for the zones in zonelist */
2205 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2206 schedule_timeout_uninterruptible(1);
2207 return NULL;
2208 }
2209
2210 /*
2211 * Go through the zonelist yet one more time, keep very high watermark
2212 * here, this is only to catch a parallel oom killing, we must fail if
2213 * we're still under heavy pressure.
2214 */
2215 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2216 order, zonelist, high_zoneidx,
2217 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2218 preferred_zone, classzone_idx, migratetype);
2219 if (page)
2220 goto out;
2221
2222 if (!(gfp_mask & __GFP_NOFAIL)) {
2223 /* The OOM killer will not help higher order allocs */
2224 if (order > PAGE_ALLOC_COSTLY_ORDER)
2225 goto out;
2226 /* The OOM killer does not needlessly kill tasks for lowmem */
2227 if (high_zoneidx < ZONE_NORMAL)
2228 goto out;
2229 /*
2230 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2231 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2232 * The caller should handle page allocation failure by itself if
2233 * it specifies __GFP_THISNODE.
2234 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2235 */
2236 if (gfp_mask & __GFP_THISNODE)
2237 goto out;
2238 }
2239 /* Exhausted what can be done so it's blamo time */
2240 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2241
2242 out:
2243 clear_zonelist_oom(zonelist, gfp_mask);
2244 return page;
2245 }
2246
2247 #ifdef CONFIG_COMPACTION
2248 /* Try memory compaction for high-order allocations before reclaim */
2249 static struct page *
2250 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2251 struct zonelist *zonelist, enum zone_type high_zoneidx,
2252 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2253 int classzone_idx, int migratetype, enum migrate_mode mode,
2254 bool *contended_compaction, bool *deferred_compaction,
2255 unsigned long *did_some_progress)
2256 {
2257 if (!order)
2258 return NULL;
2259
2260 if (compaction_deferred(preferred_zone, order)) {
2261 *deferred_compaction = true;
2262 return NULL;
2263 }
2264
2265 current->flags |= PF_MEMALLOC;
2266 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2267 nodemask, mode,
2268 contended_compaction);
2269 current->flags &= ~PF_MEMALLOC;
2270
2271 if (*did_some_progress != COMPACT_SKIPPED) {
2272 struct page *page;
2273
2274 /* Page migration frees to the PCP lists but we want merging */
2275 drain_pages(get_cpu());
2276 put_cpu();
2277
2278 page = get_page_from_freelist(gfp_mask, nodemask,
2279 order, zonelist, high_zoneidx,
2280 alloc_flags & ~ALLOC_NO_WATERMARKS,
2281 preferred_zone, classzone_idx, migratetype);
2282 if (page) {
2283 preferred_zone->compact_blockskip_flush = false;
2284 compaction_defer_reset(preferred_zone, order, true);
2285 count_vm_event(COMPACTSUCCESS);
2286 return page;
2287 }
2288
2289 /*
2290 * It's bad if compaction run occurs and fails.
2291 * The most likely reason is that pages exist,
2292 * but not enough to satisfy watermarks.
2293 */
2294 count_vm_event(COMPACTFAIL);
2295
2296 /*
2297 * As async compaction considers a subset of pageblocks, only
2298 * defer if the failure was a sync compaction failure.
2299 */
2300 if (mode != MIGRATE_ASYNC)
2301 defer_compaction(preferred_zone, order);
2302
2303 cond_resched();
2304 }
2305
2306 return NULL;
2307 }
2308 #else
2309 static inline struct page *
2310 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2311 struct zonelist *zonelist, enum zone_type high_zoneidx,
2312 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2313 int classzone_idx, int migratetype,
2314 enum migrate_mode mode, bool *contended_compaction,
2315 bool *deferred_compaction, unsigned long *did_some_progress)
2316 {
2317 return NULL;
2318 }
2319 #endif /* CONFIG_COMPACTION */
2320
2321 /* Perform direct synchronous page reclaim */
2322 static int
2323 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2324 nodemask_t *nodemask)
2325 {
2326 struct reclaim_state reclaim_state;
2327 int progress;
2328
2329 cond_resched();
2330
2331 /* We now go into synchronous reclaim */
2332 cpuset_memory_pressure_bump();
2333 current->flags |= PF_MEMALLOC;
2334 lockdep_set_current_reclaim_state(gfp_mask);
2335 reclaim_state.reclaimed_slab = 0;
2336 current->reclaim_state = &reclaim_state;
2337
2338 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2339
2340 current->reclaim_state = NULL;
2341 lockdep_clear_current_reclaim_state();
2342 current->flags &= ~PF_MEMALLOC;
2343
2344 cond_resched();
2345
2346 return progress;
2347 }
2348
2349 /* The really slow allocator path where we enter direct reclaim */
2350 static inline struct page *
2351 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2352 struct zonelist *zonelist, enum zone_type high_zoneidx,
2353 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2354 int classzone_idx, int migratetype, unsigned long *did_some_progress)
2355 {
2356 struct page *page = NULL;
2357 bool drained = false;
2358
2359 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2360 nodemask);
2361 if (unlikely(!(*did_some_progress)))
2362 return NULL;
2363
2364 /* After successful reclaim, reconsider all zones for allocation */
2365 if (IS_ENABLED(CONFIG_NUMA))
2366 zlc_clear_zones_full(zonelist);
2367
2368 retry:
2369 page = get_page_from_freelist(gfp_mask, nodemask, order,
2370 zonelist, high_zoneidx,
2371 alloc_flags & ~ALLOC_NO_WATERMARKS,
2372 preferred_zone, classzone_idx,
2373 migratetype);
2374
2375 /*
2376 * If an allocation failed after direct reclaim, it could be because
2377 * pages are pinned on the per-cpu lists. Drain them and try again
2378 */
2379 if (!page && !drained) {
2380 drain_all_pages();
2381 drained = true;
2382 goto retry;
2383 }
2384
2385 return page;
2386 }
2387
2388 /*
2389 * This is called in the allocator slow-path if the allocation request is of
2390 * sufficient urgency to ignore watermarks and take other desperate measures
2391 */
2392 static inline struct page *
2393 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2394 struct zonelist *zonelist, enum zone_type high_zoneidx,
2395 nodemask_t *nodemask, struct zone *preferred_zone,
2396 int classzone_idx, int migratetype)
2397 {
2398 struct page *page;
2399
2400 do {
2401 page = get_page_from_freelist(gfp_mask, nodemask, order,
2402 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2403 preferred_zone, classzone_idx, migratetype);
2404
2405 if (!page && gfp_mask & __GFP_NOFAIL)
2406 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2407 } while (!page && (gfp_mask & __GFP_NOFAIL));
2408
2409 return page;
2410 }
2411
2412 static void reset_alloc_batches(struct zonelist *zonelist,
2413 enum zone_type high_zoneidx,
2414 struct zone *preferred_zone)
2415 {
2416 struct zoneref *z;
2417 struct zone *zone;
2418
2419 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2420 /*
2421 * Only reset the batches of zones that were actually
2422 * considered in the fairness pass, we don't want to
2423 * trash fairness information for zones that are not
2424 * actually part of this zonelist's round-robin cycle.
2425 */
2426 if (!zone_local(preferred_zone, zone))
2427 continue;
2428 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2429 high_wmark_pages(zone) - low_wmark_pages(zone) -
2430 atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2431 }
2432 }
2433
2434 static void wake_all_kswapds(unsigned int order,
2435 struct zonelist *zonelist,
2436 enum zone_type high_zoneidx,
2437 struct zone *preferred_zone)
2438 {
2439 struct zoneref *z;
2440 struct zone *zone;
2441
2442 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2443 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2444 }
2445
2446 static inline int
2447 gfp_to_alloc_flags(gfp_t gfp_mask)
2448 {
2449 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2450 const gfp_t wait = gfp_mask & __GFP_WAIT;
2451
2452 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2453 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2454
2455 /*
2456 * The caller may dip into page reserves a bit more if the caller
2457 * cannot run direct reclaim, or if the caller has realtime scheduling
2458 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2459 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2460 */
2461 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2462
2463 if (!wait) {
2464 /*
2465 * Not worth trying to allocate harder for
2466 * __GFP_NOMEMALLOC even if it can't schedule.
2467 */
2468 if (!(gfp_mask & __GFP_NOMEMALLOC))
2469 alloc_flags |= ALLOC_HARDER;
2470 /*
2471 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2472 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2473 */
2474 alloc_flags &= ~ALLOC_CPUSET;
2475 } else if (unlikely(rt_task(current)) && !in_interrupt())
2476 alloc_flags |= ALLOC_HARDER;
2477
2478 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2479 if (gfp_mask & __GFP_MEMALLOC)
2480 alloc_flags |= ALLOC_NO_WATERMARKS;
2481 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2482 alloc_flags |= ALLOC_NO_WATERMARKS;
2483 else if (!in_interrupt() &&
2484 ((current->flags & PF_MEMALLOC) ||
2485 unlikely(test_thread_flag(TIF_MEMDIE))))
2486 alloc_flags |= ALLOC_NO_WATERMARKS;
2487 }
2488 #ifdef CONFIG_CMA
2489 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2490 alloc_flags |= ALLOC_CMA;
2491 #endif
2492 return alloc_flags;
2493 }
2494
2495 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2496 {
2497 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2498 }
2499
2500 static inline struct page *
2501 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2502 struct zonelist *zonelist, enum zone_type high_zoneidx,
2503 nodemask_t *nodemask, struct zone *preferred_zone,
2504 int classzone_idx, int migratetype)
2505 {
2506 const gfp_t wait = gfp_mask & __GFP_WAIT;
2507 struct page *page = NULL;
2508 int alloc_flags;
2509 unsigned long pages_reclaimed = 0;
2510 unsigned long did_some_progress;
2511 enum migrate_mode migration_mode = MIGRATE_ASYNC;
2512 bool deferred_compaction = false;
2513 bool contended_compaction = false;
2514
2515 /*
2516 * In the slowpath, we sanity check order to avoid ever trying to
2517 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2518 * be using allocators in order of preference for an area that is
2519 * too large.
2520 */
2521 if (order >= MAX_ORDER) {
2522 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2523 return NULL;
2524 }
2525
2526 /*
2527 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2528 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2529 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2530 * using a larger set of nodes after it has established that the
2531 * allowed per node queues are empty and that nodes are
2532 * over allocated.
2533 */
2534 if (IS_ENABLED(CONFIG_NUMA) &&
2535 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2536 goto nopage;
2537
2538 restart:
2539 if (!(gfp_mask & __GFP_NO_KSWAPD))
2540 wake_all_kswapds(order, zonelist, high_zoneidx, preferred_zone);
2541
2542 /*
2543 * OK, we're below the kswapd watermark and have kicked background
2544 * reclaim. Now things get more complex, so set up alloc_flags according
2545 * to how we want to proceed.
2546 */
2547 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2548
2549 /*
2550 * Find the true preferred zone if the allocation is unconstrained by
2551 * cpusets.
2552 */
2553 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) {
2554 struct zoneref *preferred_zoneref;
2555 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2556 NULL, &preferred_zone);
2557 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2558 }
2559
2560 rebalance:
2561 /* This is the last chance, in general, before the goto nopage. */
2562 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2563 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2564 preferred_zone, classzone_idx, migratetype);
2565 if (page)
2566 goto got_pg;
2567
2568 /* Allocate without watermarks if the context allows */
2569 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2570 /*
2571 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2572 * the allocation is high priority and these type of
2573 * allocations are system rather than user orientated
2574 */
2575 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2576
2577 page = __alloc_pages_high_priority(gfp_mask, order,
2578 zonelist, high_zoneidx, nodemask,
2579 preferred_zone, classzone_idx, migratetype);
2580 if (page) {
2581 goto got_pg;
2582 }
2583 }
2584
2585 /* Atomic allocations - we can't balance anything */
2586 if (!wait) {
2587 /*
2588 * All existing users of the deprecated __GFP_NOFAIL are
2589 * blockable, so warn of any new users that actually allow this
2590 * type of allocation to fail.
2591 */
2592 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
2593 goto nopage;
2594 }
2595
2596 /* Avoid recursion of direct reclaim */
2597 if (current->flags & PF_MEMALLOC)
2598 goto nopage;
2599
2600 /* Avoid allocations with no watermarks from looping endlessly */
2601 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2602 goto nopage;
2603
2604 /*
2605 * Try direct compaction. The first pass is asynchronous. Subsequent
2606 * attempts after direct reclaim are synchronous
2607 */
2608 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2609 high_zoneidx, nodemask, alloc_flags,
2610 preferred_zone,
2611 classzone_idx, migratetype,
2612 migration_mode, &contended_compaction,
2613 &deferred_compaction,
2614 &did_some_progress);
2615 if (page)
2616 goto got_pg;
2617
2618 /*
2619 * It can become very expensive to allocate transparent hugepages at
2620 * fault, so use asynchronous memory compaction for THP unless it is
2621 * khugepaged trying to collapse.
2622 */
2623 if (!(gfp_mask & __GFP_NO_KSWAPD) || (current->flags & PF_KTHREAD))
2624 migration_mode = MIGRATE_SYNC_LIGHT;
2625
2626 /*
2627 * If compaction is deferred for high-order allocations, it is because
2628 * sync compaction recently failed. In this is the case and the caller
2629 * requested a movable allocation that does not heavily disrupt the
2630 * system then fail the allocation instead of entering direct reclaim.
2631 */
2632 if ((deferred_compaction || contended_compaction) &&
2633 (gfp_mask & __GFP_NO_KSWAPD))
2634 goto nopage;
2635
2636 /* Try direct reclaim and then allocating */
2637 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2638 zonelist, high_zoneidx,
2639 nodemask,
2640 alloc_flags, preferred_zone,
2641 classzone_idx, migratetype,
2642 &did_some_progress);
2643 if (page)
2644 goto got_pg;
2645
2646 /*
2647 * If we failed to make any progress reclaiming, then we are
2648 * running out of options and have to consider going OOM
2649 */
2650 if (!did_some_progress) {
2651 if (oom_gfp_allowed(gfp_mask)) {
2652 if (oom_killer_disabled)
2653 goto nopage;
2654 /* Coredumps can quickly deplete all memory reserves */
2655 if ((current->flags & PF_DUMPCORE) &&
2656 !(gfp_mask & __GFP_NOFAIL))
2657 goto nopage;
2658 page = __alloc_pages_may_oom(gfp_mask, order,
2659 zonelist, high_zoneidx,
2660 nodemask, preferred_zone,
2661 classzone_idx, migratetype);
2662 if (page)
2663 goto got_pg;
2664
2665 if (!(gfp_mask & __GFP_NOFAIL)) {
2666 /*
2667 * The oom killer is not called for high-order
2668 * allocations that may fail, so if no progress
2669 * is being made, there are no other options and
2670 * retrying is unlikely to help.
2671 */
2672 if (order > PAGE_ALLOC_COSTLY_ORDER)
2673 goto nopage;
2674 /*
2675 * The oom killer is not called for lowmem
2676 * allocations to prevent needlessly killing
2677 * innocent tasks.
2678 */
2679 if (high_zoneidx < ZONE_NORMAL)
2680 goto nopage;
2681 }
2682
2683 goto restart;
2684 }
2685 }
2686
2687 /* Check if we should retry the allocation */
2688 pages_reclaimed += did_some_progress;
2689 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2690 pages_reclaimed)) {
2691 /* Wait for some write requests to complete then retry */
2692 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2693 goto rebalance;
2694 } else {
2695 /*
2696 * High-order allocations do not necessarily loop after
2697 * direct reclaim and reclaim/compaction depends on compaction
2698 * being called after reclaim so call directly if necessary
2699 */
2700 page = __alloc_pages_direct_compact(gfp_mask, order, zonelist,
2701 high_zoneidx, nodemask, alloc_flags,
2702 preferred_zone,
2703 classzone_idx, migratetype,
2704 migration_mode, &contended_compaction,
2705 &deferred_compaction,
2706 &did_some_progress);
2707 if (page)
2708 goto got_pg;
2709 }
2710
2711 nopage:
2712 warn_alloc_failed(gfp_mask, order, NULL);
2713 return page;
2714 got_pg:
2715 if (kmemcheck_enabled)
2716 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2717
2718 return page;
2719 }
2720
2721 /*
2722 * This is the 'heart' of the zoned buddy allocator.
2723 */
2724 struct page *
2725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2726 struct zonelist *zonelist, nodemask_t *nodemask)
2727 {
2728 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2729 struct zone *preferred_zone;
2730 struct zoneref *preferred_zoneref;
2731 struct page *page = NULL;
2732 int migratetype = allocflags_to_migratetype(gfp_mask);
2733 unsigned int cpuset_mems_cookie;
2734 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
2735 int classzone_idx;
2736
2737 gfp_mask &= gfp_allowed_mask;
2738
2739 lockdep_trace_alloc(gfp_mask);
2740
2741 might_sleep_if(gfp_mask & __GFP_WAIT);
2742
2743 if (should_fail_alloc_page(gfp_mask, order))
2744 return NULL;
2745
2746 /*
2747 * Check the zones suitable for the gfp_mask contain at least one
2748 * valid zone. It's possible to have an empty zonelist as a result
2749 * of GFP_THISNODE and a memoryless node
2750 */
2751 if (unlikely(!zonelist->_zonerefs->zone))
2752 return NULL;
2753
2754 retry_cpuset:
2755 cpuset_mems_cookie = read_mems_allowed_begin();
2756
2757 /* The preferred zone is used for statistics later */
2758 preferred_zoneref = first_zones_zonelist(zonelist, high_zoneidx,
2759 nodemask ? : &cpuset_current_mems_allowed,
2760 &preferred_zone);
2761 if (!preferred_zone)
2762 goto out;
2763 classzone_idx = zonelist_zone_idx(preferred_zoneref);
2764
2765 #ifdef CONFIG_CMA
2766 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2767 alloc_flags |= ALLOC_CMA;
2768 #endif
2769 retry:
2770 /* First allocation attempt */
2771 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2772 zonelist, high_zoneidx, alloc_flags,
2773 preferred_zone, classzone_idx, migratetype);
2774 if (unlikely(!page)) {
2775 /*
2776 * The first pass makes sure allocations are spread
2777 * fairly within the local node. However, the local
2778 * node might have free pages left after the fairness
2779 * batches are exhausted, and remote zones haven't
2780 * even been considered yet. Try once more without
2781 * fairness, and include remote zones now, before
2782 * entering the slowpath and waking kswapd: prefer
2783 * spilling to a remote zone over swapping locally.
2784 */
2785 if (alloc_flags & ALLOC_FAIR) {
2786 reset_alloc_batches(zonelist, high_zoneidx,
2787 preferred_zone);
2788 alloc_flags &= ~ALLOC_FAIR;
2789 goto retry;
2790 }
2791 /*
2792 * Runtime PM, block IO and its error handling path
2793 * can deadlock because I/O on the device might not
2794 * complete.
2795 */
2796 gfp_mask = memalloc_noio_flags(gfp_mask);
2797 page = __alloc_pages_slowpath(gfp_mask, order,
2798 zonelist, high_zoneidx, nodemask,
2799 preferred_zone, classzone_idx, migratetype);
2800 }
2801
2802 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2803
2804 out:
2805 /*
2806 * When updating a task's mems_allowed, it is possible to race with
2807 * parallel threads in such a way that an allocation can fail while
2808 * the mask is being updated. If a page allocation is about to fail,
2809 * check if the cpuset changed during allocation and if so, retry.
2810 */
2811 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
2812 goto retry_cpuset;
2813
2814 return page;
2815 }
2816 EXPORT_SYMBOL(__alloc_pages_nodemask);
2817
2818 /*
2819 * Common helper functions.
2820 */
2821 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2822 {
2823 struct page *page;
2824
2825 /*
2826 * __get_free_pages() returns a 32-bit address, which cannot represent
2827 * a highmem page
2828 */
2829 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2830
2831 page = alloc_pages(gfp_mask, order);
2832 if (!page)
2833 return 0;
2834 return (unsigned long) page_address(page);
2835 }
2836 EXPORT_SYMBOL(__get_free_pages);
2837
2838 unsigned long get_zeroed_page(gfp_t gfp_mask)
2839 {
2840 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2841 }
2842 EXPORT_SYMBOL(get_zeroed_page);
2843
2844 void __free_pages(struct page *page, unsigned int order)
2845 {
2846 if (put_page_testzero(page)) {
2847 if (order == 0)
2848 free_hot_cold_page(page, false);
2849 else
2850 __free_pages_ok(page, order);
2851 }
2852 }
2853
2854 EXPORT_SYMBOL(__free_pages);
2855
2856 void free_pages(unsigned long addr, unsigned int order)
2857 {
2858 if (addr != 0) {
2859 VM_BUG_ON(!virt_addr_valid((void *)addr));
2860 __free_pages(virt_to_page((void *)addr), order);
2861 }
2862 }
2863
2864 EXPORT_SYMBOL(free_pages);
2865
2866 /*
2867 * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
2868 * of the current memory cgroup.
2869 *
2870 * It should be used when the caller would like to use kmalloc, but since the
2871 * allocation is large, it has to fall back to the page allocator.
2872 */
2873 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
2874 {
2875 struct page *page;
2876 struct mem_cgroup *memcg = NULL;
2877
2878 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2879 return NULL;
2880 page = alloc_pages(gfp_mask, order);
2881 memcg_kmem_commit_charge(page, memcg, order);
2882 return page;
2883 }
2884
2885 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
2886 {
2887 struct page *page;
2888 struct mem_cgroup *memcg = NULL;
2889
2890 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2891 return NULL;
2892 page = alloc_pages_node(nid, gfp_mask, order);
2893 memcg_kmem_commit_charge(page, memcg, order);
2894 return page;
2895 }
2896
2897 /*
2898 * __free_kmem_pages and free_kmem_pages will free pages allocated with
2899 * alloc_kmem_pages.
2900 */
2901 void __free_kmem_pages(struct page *page, unsigned int order)
2902 {
2903 memcg_kmem_uncharge_pages(page, order);
2904 __free_pages(page, order);
2905 }
2906
2907 void free_kmem_pages(unsigned long addr, unsigned int order)
2908 {
2909 if (addr != 0) {
2910 VM_BUG_ON(!virt_addr_valid((void *)addr));
2911 __free_kmem_pages(virt_to_page((void *)addr), order);
2912 }
2913 }
2914
2915 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2916 {
2917 if (addr) {
2918 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2919 unsigned long used = addr + PAGE_ALIGN(size);
2920
2921 split_page(virt_to_page((void *)addr), order);
2922 while (used < alloc_end) {
2923 free_page(used);
2924 used += PAGE_SIZE;
2925 }
2926 }
2927 return (void *)addr;
2928 }
2929
2930 /**
2931 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2932 * @size: the number of bytes to allocate
2933 * @gfp_mask: GFP flags for the allocation
2934 *
2935 * This function is similar to alloc_pages(), except that it allocates the
2936 * minimum number of pages to satisfy the request. alloc_pages() can only
2937 * allocate memory in power-of-two pages.
2938 *
2939 * This function is also limited by MAX_ORDER.
2940 *
2941 * Memory allocated by this function must be released by free_pages_exact().
2942 */
2943 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2944 {
2945 unsigned int order = get_order(size);
2946 unsigned long addr;
2947
2948 addr = __get_free_pages(gfp_mask, order);
2949 return make_alloc_exact(addr, order, size);
2950 }
2951 EXPORT_SYMBOL(alloc_pages_exact);
2952
2953 /**
2954 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2955 * pages on a node.
2956 * @nid: the preferred node ID where memory should be allocated
2957 * @size: the number of bytes to allocate
2958 * @gfp_mask: GFP flags for the allocation
2959 *
2960 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2961 * back.
2962 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2963 * but is not exact.
2964 */
2965 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2966 {
2967 unsigned order = get_order(size);
2968 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2969 if (!p)
2970 return NULL;
2971 return make_alloc_exact((unsigned long)page_address(p), order, size);
2972 }
2973 EXPORT_SYMBOL(alloc_pages_exact_nid);
2974
2975 /**
2976 * free_pages_exact - release memory allocated via alloc_pages_exact()
2977 * @virt: the value returned by alloc_pages_exact.
2978 * @size: size of allocation, same value as passed to alloc_pages_exact().
2979 *
2980 * Release the memory allocated by a previous call to alloc_pages_exact.
2981 */
2982 void free_pages_exact(void *virt, size_t size)
2983 {
2984 unsigned long addr = (unsigned long)virt;
2985 unsigned long end = addr + PAGE_ALIGN(size);
2986
2987 while (addr < end) {
2988 free_page(addr);
2989 addr += PAGE_SIZE;
2990 }
2991 }
2992 EXPORT_SYMBOL(free_pages_exact);
2993
2994 /**
2995 * nr_free_zone_pages - count number of pages beyond high watermark
2996 * @offset: The zone index of the highest zone
2997 *
2998 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2999 * high watermark within all zones at or below a given zone index. For each
3000 * zone, the number of pages is calculated as:
3001 * managed_pages - high_pages
3002 */
3003 static unsigned long nr_free_zone_pages(int offset)
3004 {
3005 struct zoneref *z;
3006 struct zone *zone;
3007
3008 /* Just pick one node, since fallback list is circular */
3009 unsigned long sum = 0;
3010
3011 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3012
3013 for_each_zone_zonelist(zone, z, zonelist, offset) {
3014 unsigned long size = zone->managed_pages;
3015 unsigned long high = high_wmark_pages(zone);
3016 if (size > high)
3017 sum += size - high;
3018 }
3019
3020 return sum;
3021 }
3022
3023 /**
3024 * nr_free_buffer_pages - count number of pages beyond high watermark
3025 *
3026 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3027 * watermark within ZONE_DMA and ZONE_NORMAL.
3028 */
3029 unsigned long nr_free_buffer_pages(void)
3030 {
3031 return nr_free_zone_pages(gfp_zone(GFP_USER));
3032 }
3033 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3034
3035 /**
3036 * nr_free_pagecache_pages - count number of pages beyond high watermark
3037 *
3038 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3039 * high watermark within all zones.
3040 */
3041 unsigned long nr_free_pagecache_pages(void)
3042 {
3043 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3044 }
3045
3046 static inline void show_node(struct zone *zone)
3047 {
3048 if (IS_ENABLED(CONFIG_NUMA))
3049 printk("Node %d ", zone_to_nid(zone));
3050 }
3051
3052 void si_meminfo(struct sysinfo *val)
3053 {
3054 val->totalram = totalram_pages;
3055 val->sharedram = 0;
3056 val->freeram = global_page_state(NR_FREE_PAGES);
3057 val->bufferram = nr_blockdev_pages();
3058 val->totalhigh = totalhigh_pages;
3059 val->freehigh = nr_free_highpages();
3060 val->mem_unit = PAGE_SIZE;
3061 }
3062
3063 EXPORT_SYMBOL(si_meminfo);
3064
3065 #ifdef CONFIG_NUMA
3066 void si_meminfo_node(struct sysinfo *val, int nid)
3067 {
3068 int zone_type; /* needs to be signed */
3069 unsigned long managed_pages = 0;
3070 pg_data_t *pgdat = NODE_DATA(nid);
3071
3072 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3073 managed_pages += pgdat->node_zones[zone_type].managed_pages;
3074 val->totalram = managed_pages;
3075 val->freeram = node_page_state(nid, NR_FREE_PAGES);
3076 #ifdef CONFIG_HIGHMEM
3077 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3078 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3079 NR_FREE_PAGES);
3080 #else
3081 val->totalhigh = 0;
3082 val->freehigh = 0;
3083 #endif
3084 val->mem_unit = PAGE_SIZE;
3085 }
3086 #endif
3087
3088 /*
3089 * Determine whether the node should be displayed or not, depending on whether
3090 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3091 */
3092 bool skip_free_areas_node(unsigned int flags, int nid)
3093 {
3094 bool ret = false;
3095 unsigned int cpuset_mems_cookie;
3096
3097 if (!(flags & SHOW_MEM_FILTER_NODES))
3098 goto out;
3099
3100 do {
3101 cpuset_mems_cookie = read_mems_allowed_begin();
3102 ret = !node_isset(nid, cpuset_current_mems_allowed);
3103 } while (read_mems_allowed_retry(cpuset_mems_cookie));
3104 out:
3105 return ret;
3106 }
3107
3108 #define K(x) ((x) << (PAGE_SHIFT-10))
3109
3110 static void show_migration_types(unsigned char type)
3111 {
3112 static const char types[MIGRATE_TYPES] = {
3113 [MIGRATE_UNMOVABLE] = 'U',
3114 [MIGRATE_RECLAIMABLE] = 'E',
3115 [MIGRATE_MOVABLE] = 'M',
3116 [MIGRATE_RESERVE] = 'R',
3117 #ifdef CONFIG_CMA
3118 [MIGRATE_CMA] = 'C',
3119 #endif
3120 #ifdef CONFIG_MEMORY_ISOLATION
3121 [MIGRATE_ISOLATE] = 'I',
3122 #endif
3123 };
3124 char tmp[MIGRATE_TYPES + 1];
3125 char *p = tmp;
3126 int i;
3127
3128 for (i = 0; i < MIGRATE_TYPES; i++) {
3129 if (type & (1 << i))
3130 *p++ = types[i];
3131 }
3132
3133 *p = '\0';
3134 printk("(%s) ", tmp);
3135 }
3136
3137 /*
3138 * Show free area list (used inside shift_scroll-lock stuff)
3139 * We also calculate the percentage fragmentation. We do this by counting the
3140 * memory on each free list with the exception of the first item on the list.
3141 * Suppresses nodes that are not allowed by current's cpuset if
3142 * SHOW_MEM_FILTER_NODES is passed.
3143 */
3144 void show_free_areas(unsigned int filter)
3145 {
3146 int cpu;
3147 struct zone *zone;
3148
3149 for_each_populated_zone(zone) {
3150 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3151 continue;
3152 show_node(zone);
3153 printk("%s per-cpu:\n", zone->name);
3154
3155 for_each_online_cpu(cpu) {
3156 struct per_cpu_pageset *pageset;
3157
3158 pageset = per_cpu_ptr(zone->pageset, cpu);
3159
3160 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3161 cpu, pageset->pcp.high,
3162 pageset->pcp.batch, pageset->pcp.count);
3163 }
3164 }
3165
3166 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3167 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3168 " unevictable:%lu"
3169 " dirty:%lu writeback:%lu unstable:%lu\n"
3170 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3171 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3172 " free_cma:%lu\n",
3173 global_page_state(NR_ACTIVE_ANON),
3174 global_page_state(NR_INACTIVE_ANON),
3175 global_page_state(NR_ISOLATED_ANON),
3176 global_page_state(NR_ACTIVE_FILE),
3177 global_page_state(NR_INACTIVE_FILE),
3178 global_page_state(NR_ISOLATED_FILE),
3179 global_page_state(NR_UNEVICTABLE),
3180 global_page_state(NR_FILE_DIRTY),
3181 global_page_state(NR_WRITEBACK),
3182 global_page_state(NR_UNSTABLE_NFS),
3183 global_page_state(NR_FREE_PAGES),
3184 global_page_state(NR_SLAB_RECLAIMABLE),
3185 global_page_state(NR_SLAB_UNRECLAIMABLE),
3186 global_page_state(NR_FILE_MAPPED),
3187 global_page_state(NR_SHMEM),
3188 global_page_state(NR_PAGETABLE),
3189 global_page_state(NR_BOUNCE),
3190 global_page_state(NR_FREE_CMA_PAGES));
3191
3192 for_each_populated_zone(zone) {
3193 int i;
3194
3195 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3196 continue;
3197 show_node(zone);
3198 printk("%s"
3199 " free:%lukB"
3200 " min:%lukB"
3201 " low:%lukB"
3202 " high:%lukB"
3203 " active_anon:%lukB"
3204 " inactive_anon:%lukB"
3205 " active_file:%lukB"
3206 " inactive_file:%lukB"
3207 " unevictable:%lukB"
3208 " isolated(anon):%lukB"
3209 " isolated(file):%lukB"
3210 " present:%lukB"
3211 " managed:%lukB"
3212 " mlocked:%lukB"
3213 " dirty:%lukB"
3214 " writeback:%lukB"
3215 " mapped:%lukB"
3216 " shmem:%lukB"
3217 " slab_reclaimable:%lukB"
3218 " slab_unreclaimable:%lukB"
3219 " kernel_stack:%lukB"
3220 " pagetables:%lukB"
3221 " unstable:%lukB"
3222 " bounce:%lukB"
3223 " free_cma:%lukB"
3224 " writeback_tmp:%lukB"
3225 " pages_scanned:%lu"
3226 " all_unreclaimable? %s"
3227 "\n",
3228 zone->name,
3229 K(zone_page_state(zone, NR_FREE_PAGES)),
3230 K(min_wmark_pages(zone)),
3231 K(low_wmark_pages(zone)),
3232 K(high_wmark_pages(zone)),
3233 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3234 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3235 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3236 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3237 K(zone_page_state(zone, NR_UNEVICTABLE)),
3238 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3239 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3240 K(zone->present_pages),
3241 K(zone->managed_pages),
3242 K(zone_page_state(zone, NR_MLOCK)),
3243 K(zone_page_state(zone, NR_FILE_DIRTY)),
3244 K(zone_page_state(zone, NR_WRITEBACK)),
3245 K(zone_page_state(zone, NR_FILE_MAPPED)),
3246 K(zone_page_state(zone, NR_SHMEM)),
3247 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3248 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3249 zone_page_state(zone, NR_KERNEL_STACK) *
3250 THREAD_SIZE / 1024,
3251 K(zone_page_state(zone, NR_PAGETABLE)),
3252 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3253 K(zone_page_state(zone, NR_BOUNCE)),
3254 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3255 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3256 zone->pages_scanned,
3257 (!zone_reclaimable(zone) ? "yes" : "no")
3258 );
3259 printk("lowmem_reserve[]:");
3260 for (i = 0; i < MAX_NR_ZONES; i++)
3261 printk(" %lu", zone->lowmem_reserve[i]);
3262 printk("\n");
3263 }
3264
3265 for_each_populated_zone(zone) {
3266 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3267 unsigned char types[MAX_ORDER];
3268
3269 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3270 continue;
3271 show_node(zone);
3272 printk("%s: ", zone->name);
3273
3274 spin_lock_irqsave(&zone->lock, flags);
3275 for (order = 0; order < MAX_ORDER; order++) {
3276 struct free_area *area = &zone->free_area[order];
3277 int type;
3278
3279 nr[order] = area->nr_free;
3280 total += nr[order] << order;
3281
3282 types[order] = 0;
3283 for (type = 0; type < MIGRATE_TYPES; type++) {
3284 if (!list_empty(&area->free_list[type]))
3285 types[order] |= 1 << type;
3286 }
3287 }
3288 spin_unlock_irqrestore(&zone->lock, flags);
3289 for (order = 0; order < MAX_ORDER; order++) {
3290 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3291 if (nr[order])
3292 show_migration_types(types[order]);
3293 }
3294 printk("= %lukB\n", K(total));
3295 }
3296
3297 hugetlb_show_meminfo();
3298
3299 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3300
3301 show_swap_cache_info();
3302 }
3303
3304 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3305 {
3306 zoneref->zone = zone;
3307 zoneref->zone_idx = zone_idx(zone);
3308 }
3309
3310 /*
3311 * Builds allocation fallback zone lists.
3312 *
3313 * Add all populated zones of a node to the zonelist.
3314 */
3315 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3316 int nr_zones)
3317 {
3318 struct zone *zone;
3319 enum zone_type zone_type = MAX_NR_ZONES;
3320
3321 do {
3322 zone_type--;
3323 zone = pgdat->node_zones + zone_type;
3324 if (populated_zone(zone)) {
3325 zoneref_set_zone(zone,
3326 &zonelist->_zonerefs[nr_zones++]);
3327 check_highest_zone(zone_type);
3328 }
3329 } while (zone_type);
3330
3331 return nr_zones;
3332 }
3333
3334
3335 /*
3336 * zonelist_order:
3337 * 0 = automatic detection of better ordering.
3338 * 1 = order by ([node] distance, -zonetype)
3339 * 2 = order by (-zonetype, [node] distance)
3340 *
3341 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3342 * the same zonelist. So only NUMA can configure this param.
3343 */
3344 #define ZONELIST_ORDER_DEFAULT 0
3345 #define ZONELIST_ORDER_NODE 1
3346 #define ZONELIST_ORDER_ZONE 2
3347
3348 /* zonelist order in the kernel.
3349 * set_zonelist_order() will set this to NODE or ZONE.
3350 */
3351 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3352 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3353
3354
3355 #ifdef CONFIG_NUMA
3356 /* The value user specified ....changed by config */
3357 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3358 /* string for sysctl */
3359 #define NUMA_ZONELIST_ORDER_LEN 16
3360 char numa_zonelist_order[16] = "default";
3361
3362 /*
3363 * interface for configure zonelist ordering.
3364 * command line option "numa_zonelist_order"
3365 * = "[dD]efault - default, automatic configuration.
3366 * = "[nN]ode - order by node locality, then by zone within node
3367 * = "[zZ]one - order by zone, then by locality within zone
3368 */
3369
3370 static int __parse_numa_zonelist_order(char *s)
3371 {
3372 if (*s == 'd' || *s == 'D') {
3373 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3374 } else if (*s == 'n' || *s == 'N') {
3375 user_zonelist_order = ZONELIST_ORDER_NODE;
3376 } else if (*s == 'z' || *s == 'Z') {
3377 user_zonelist_order = ZONELIST_ORDER_ZONE;
3378 } else {
3379 printk(KERN_WARNING
3380 "Ignoring invalid numa_zonelist_order value: "
3381 "%s\n", s);
3382 return -EINVAL;
3383 }
3384 return 0;
3385 }
3386
3387 static __init int setup_numa_zonelist_order(char *s)
3388 {
3389 int ret;
3390
3391 if (!s)
3392 return 0;
3393
3394 ret = __parse_numa_zonelist_order(s);
3395 if (ret == 0)
3396 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3397
3398 return ret;
3399 }
3400 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3401
3402 /*
3403 * sysctl handler for numa_zonelist_order
3404 */
3405 int numa_zonelist_order_handler(struct ctl_table *table, int write,
3406 void __user *buffer, size_t *length,
3407 loff_t *ppos)
3408 {
3409 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3410 int ret;
3411 static DEFINE_MUTEX(zl_order_mutex);
3412
3413 mutex_lock(&zl_order_mutex);
3414 if (write) {
3415 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3416 ret = -EINVAL;
3417 goto out;
3418 }
3419 strcpy(saved_string, (char *)table->data);
3420 }
3421 ret = proc_dostring(table, write, buffer, length, ppos);
3422 if (ret)
3423 goto out;
3424 if (write) {
3425 int oldval = user_zonelist_order;
3426
3427 ret = __parse_numa_zonelist_order((char *)table->data);
3428 if (ret) {
3429 /*
3430 * bogus value. restore saved string
3431 */
3432 strncpy((char *)table->data, saved_string,
3433 NUMA_ZONELIST_ORDER_LEN);
3434 user_zonelist_order = oldval;
3435 } else if (oldval != user_zonelist_order) {
3436 mutex_lock(&zonelists_mutex);
3437 build_all_zonelists(NULL, NULL);
3438 mutex_unlock(&zonelists_mutex);
3439 }
3440 }
3441 out:
3442 mutex_unlock(&zl_order_mutex);
3443 return ret;
3444 }
3445
3446
3447 #define MAX_NODE_LOAD (nr_online_nodes)
3448 static int node_load[MAX_NUMNODES];
3449
3450 /**
3451 * find_next_best_node - find the next node that should appear in a given node's fallback list
3452 * @node: node whose fallback list we're appending
3453 * @used_node_mask: nodemask_t of already used nodes
3454 *
3455 * We use a number of factors to determine which is the next node that should
3456 * appear on a given node's fallback list. The node should not have appeared
3457 * already in @node's fallback list, and it should be the next closest node
3458 * according to the distance array (which contains arbitrary distance values
3459 * from each node to each node in the system), and should also prefer nodes
3460 * with no CPUs, since presumably they'll have very little allocation pressure
3461 * on them otherwise.
3462 * It returns -1 if no node is found.
3463 */
3464 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3465 {
3466 int n, val;
3467 int min_val = INT_MAX;
3468 int best_node = NUMA_NO_NODE;
3469 const struct cpumask *tmp = cpumask_of_node(0);
3470
3471 /* Use the local node if we haven't already */
3472 if (!node_isset(node, *used_node_mask)) {
3473 node_set(node, *used_node_mask);
3474 return node;
3475 }
3476
3477 for_each_node_state(n, N_MEMORY) {
3478
3479 /* Don't want a node to appear more than once */
3480 if (node_isset(n, *used_node_mask))
3481 continue;
3482
3483 /* Use the distance array to find the distance */
3484 val = node_distance(node, n);
3485
3486 /* Penalize nodes under us ("prefer the next node") */
3487 val += (n < node);
3488
3489 /* Give preference to headless and unused nodes */
3490 tmp = cpumask_of_node(n);
3491 if (!cpumask_empty(tmp))
3492 val += PENALTY_FOR_NODE_WITH_CPUS;
3493
3494 /* Slight preference for less loaded node */
3495 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3496 val += node_load[n];
3497
3498 if (val < min_val) {
3499 min_val = val;
3500 best_node = n;
3501 }
3502 }
3503
3504 if (best_node >= 0)
3505 node_set(best_node, *used_node_mask);
3506
3507 return best_node;
3508 }
3509
3510
3511 /*
3512 * Build zonelists ordered by node and zones within node.
3513 * This results in maximum locality--normal zone overflows into local
3514 * DMA zone, if any--but risks exhausting DMA zone.
3515 */
3516 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3517 {
3518 int j;
3519 struct zonelist *zonelist;
3520
3521 zonelist = &pgdat->node_zonelists[0];
3522 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3523 ;
3524 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3525 zonelist->_zonerefs[j].zone = NULL;
3526 zonelist->_zonerefs[j].zone_idx = 0;
3527 }
3528
3529 /*
3530 * Build gfp_thisnode zonelists
3531 */
3532 static void build_thisnode_zonelists(pg_data_t *pgdat)
3533 {
3534 int j;
3535 struct zonelist *zonelist;
3536
3537 zonelist = &pgdat->node_zonelists[1];
3538 j = build_zonelists_node(pgdat, zonelist, 0);
3539 zonelist->_zonerefs[j].zone = NULL;
3540 zonelist->_zonerefs[j].zone_idx = 0;
3541 }
3542
3543 /*
3544 * Build zonelists ordered by zone and nodes within zones.
3545 * This results in conserving DMA zone[s] until all Normal memory is
3546 * exhausted, but results in overflowing to remote node while memory
3547 * may still exist in local DMA zone.
3548 */
3549 static int node_order[MAX_NUMNODES];
3550
3551 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3552 {
3553 int pos, j, node;
3554 int zone_type; /* needs to be signed */
3555 struct zone *z;
3556 struct zonelist *zonelist;
3557
3558 zonelist = &pgdat->node_zonelists[0];
3559 pos = 0;
3560 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3561 for (j = 0; j < nr_nodes; j++) {
3562 node = node_order[j];
3563 z = &NODE_DATA(node)->node_zones[zone_type];
3564 if (populated_zone(z)) {
3565 zoneref_set_zone(z,
3566 &zonelist->_zonerefs[pos++]);
3567 check_highest_zone(zone_type);
3568 }
3569 }
3570 }
3571 zonelist->_zonerefs[pos].zone = NULL;
3572 zonelist->_zonerefs[pos].zone_idx = 0;
3573 }
3574
3575 static int default_zonelist_order(void)
3576 {
3577 int nid, zone_type;
3578 unsigned long low_kmem_size, total_size;
3579 struct zone *z;
3580 int average_size;
3581 /*
3582 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3583 * If they are really small and used heavily, the system can fall
3584 * into OOM very easily.
3585 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3586 */
3587 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3588 low_kmem_size = 0;
3589 total_size = 0;
3590 for_each_online_node(nid) {
3591 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3592 z = &NODE_DATA(nid)->node_zones[zone_type];
3593 if (populated_zone(z)) {
3594 if (zone_type < ZONE_NORMAL)
3595 low_kmem_size += z->managed_pages;
3596 total_size += z->managed_pages;
3597 } else if (zone_type == ZONE_NORMAL) {
3598 /*
3599 * If any node has only lowmem, then node order
3600 * is preferred to allow kernel allocations
3601 * locally; otherwise, they can easily infringe
3602 * on other nodes when there is an abundance of
3603 * lowmem available to allocate from.
3604 */
3605 return ZONELIST_ORDER_NODE;
3606 }
3607 }
3608 }
3609 if (!low_kmem_size || /* there are no DMA area. */
3610 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3611 return ZONELIST_ORDER_NODE;
3612 /*
3613 * look into each node's config.
3614 * If there is a node whose DMA/DMA32 memory is very big area on
3615 * local memory, NODE_ORDER may be suitable.
3616 */
3617 average_size = total_size /
3618 (nodes_weight(node_states[N_MEMORY]) + 1);
3619 for_each_online_node(nid) {
3620 low_kmem_size = 0;
3621 total_size = 0;
3622 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3623 z = &NODE_DATA(nid)->node_zones[zone_type];
3624 if (populated_zone(z)) {
3625 if (zone_type < ZONE_NORMAL)
3626 low_kmem_size += z->present_pages;
3627 total_size += z->present_pages;
3628 }
3629 }
3630 if (low_kmem_size &&
3631 total_size > average_size && /* ignore small node */
3632 low_kmem_size > total_size * 70/100)
3633 return ZONELIST_ORDER_NODE;
3634 }
3635 return ZONELIST_ORDER_ZONE;
3636 }
3637
3638 static void set_zonelist_order(void)
3639 {
3640 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3641 current_zonelist_order = default_zonelist_order();
3642 else
3643 current_zonelist_order = user_zonelist_order;
3644 }
3645
3646 static void build_zonelists(pg_data_t *pgdat)
3647 {
3648 int j, node, load;
3649 enum zone_type i;
3650 nodemask_t used_mask;
3651 int local_node, prev_node;
3652 struct zonelist *zonelist;
3653 int order = current_zonelist_order;
3654
3655 /* initialize zonelists */
3656 for (i = 0; i < MAX_ZONELISTS; i++) {
3657 zonelist = pgdat->node_zonelists + i;
3658 zonelist->_zonerefs[0].zone = NULL;
3659 zonelist->_zonerefs[0].zone_idx = 0;
3660 }
3661
3662 /* NUMA-aware ordering of nodes */
3663 local_node = pgdat->node_id;
3664 load = nr_online_nodes;
3665 prev_node = local_node;
3666 nodes_clear(used_mask);
3667
3668 memset(node_order, 0, sizeof(node_order));
3669 j = 0;
3670
3671 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3672 /*
3673 * We don't want to pressure a particular node.
3674 * So adding penalty to the first node in same
3675 * distance group to make it round-robin.
3676 */
3677 if (node_distance(local_node, node) !=
3678 node_distance(local_node, prev_node))
3679 node_load[node] = load;
3680
3681 prev_node = node;
3682 load--;
3683 if (order == ZONELIST_ORDER_NODE)
3684 build_zonelists_in_node_order(pgdat, node);
3685 else
3686 node_order[j++] = node; /* remember order */
3687 }
3688
3689 if (order == ZONELIST_ORDER_ZONE) {
3690 /* calculate node order -- i.e., DMA last! */
3691 build_zonelists_in_zone_order(pgdat, j);
3692 }
3693
3694 build_thisnode_zonelists(pgdat);
3695 }
3696
3697 /* Construct the zonelist performance cache - see further mmzone.h */
3698 static void build_zonelist_cache(pg_data_t *pgdat)
3699 {
3700 struct zonelist *zonelist;
3701 struct zonelist_cache *zlc;
3702 struct zoneref *z;
3703
3704 zonelist = &pgdat->node_zonelists[0];
3705 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3706 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3707 for (z = zonelist->_zonerefs; z->zone; z++)
3708 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3709 }
3710
3711 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3712 /*
3713 * Return node id of node used for "local" allocations.
3714 * I.e., first node id of first zone in arg node's generic zonelist.
3715 * Used for initializing percpu 'numa_mem', which is used primarily
3716 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3717 */
3718 int local_memory_node(int node)
3719 {
3720 struct zone *zone;
3721
3722 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3723 gfp_zone(GFP_KERNEL),
3724 NULL,
3725 &zone);
3726 return zone->node;
3727 }
3728 #endif
3729
3730 #else /* CONFIG_NUMA */
3731
3732 static void set_zonelist_order(void)
3733 {
3734 current_zonelist_order = ZONELIST_ORDER_ZONE;
3735 }
3736
3737 static void build_zonelists(pg_data_t *pgdat)
3738 {
3739 int node, local_node;
3740 enum zone_type j;
3741 struct zonelist *zonelist;
3742
3743 local_node = pgdat->node_id;
3744
3745 zonelist = &pgdat->node_zonelists[0];
3746 j = build_zonelists_node(pgdat, zonelist, 0);
3747
3748 /*
3749 * Now we build the zonelist so that it contains the zones
3750 * of all the other nodes.
3751 * We don't want to pressure a particular node, so when
3752 * building the zones for node N, we make sure that the
3753 * zones coming right after the local ones are those from
3754 * node N+1 (modulo N)
3755 */
3756 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3757 if (!node_online(node))
3758 continue;
3759 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3760 }
3761 for (node = 0; node < local_node; node++) {
3762 if (!node_online(node))
3763 continue;
3764 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3765 }
3766
3767 zonelist->_zonerefs[j].zone = NULL;
3768 zonelist->_zonerefs[j].zone_idx = 0;
3769 }
3770
3771 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3772 static void build_zonelist_cache(pg_data_t *pgdat)
3773 {
3774 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3775 }
3776
3777 #endif /* CONFIG_NUMA */
3778
3779 /*
3780 * Boot pageset table. One per cpu which is going to be used for all
3781 * zones and all nodes. The parameters will be set in such a way
3782 * that an item put on a list will immediately be handed over to
3783 * the buddy list. This is safe since pageset manipulation is done
3784 * with interrupts disabled.
3785 *
3786 * The boot_pagesets must be kept even after bootup is complete for
3787 * unused processors and/or zones. They do play a role for bootstrapping
3788 * hotplugged processors.
3789 *
3790 * zoneinfo_show() and maybe other functions do
3791 * not check if the processor is online before following the pageset pointer.
3792 * Other parts of the kernel may not check if the zone is available.
3793 */
3794 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3795 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3796 static void setup_zone_pageset(struct zone *zone);
3797
3798 /*
3799 * Global mutex to protect against size modification of zonelists
3800 * as well as to serialize pageset setup for the new populated zone.
3801 */
3802 DEFINE_MUTEX(zonelists_mutex);
3803
3804 /* return values int ....just for stop_machine() */
3805 static int __build_all_zonelists(void *data)
3806 {
3807 int nid;
3808 int cpu;
3809 pg_data_t *self = data;
3810
3811 #ifdef CONFIG_NUMA
3812 memset(node_load, 0, sizeof(node_load));
3813 #endif
3814
3815 if (self && !node_online(self->node_id)) {
3816 build_zonelists(self);
3817 build_zonelist_cache(self);
3818 }
3819
3820 for_each_online_node(nid) {
3821 pg_data_t *pgdat = NODE_DATA(nid);
3822
3823 build_zonelists(pgdat);
3824 build_zonelist_cache(pgdat);
3825 }
3826
3827 /*
3828 * Initialize the boot_pagesets that are going to be used
3829 * for bootstrapping processors. The real pagesets for
3830 * each zone will be allocated later when the per cpu
3831 * allocator is available.
3832 *
3833 * boot_pagesets are used also for bootstrapping offline
3834 * cpus if the system is already booted because the pagesets
3835 * are needed to initialize allocators on a specific cpu too.
3836 * F.e. the percpu allocator needs the page allocator which
3837 * needs the percpu allocator in order to allocate its pagesets
3838 * (a chicken-egg dilemma).
3839 */
3840 for_each_possible_cpu(cpu) {
3841 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3842
3843 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3844 /*
3845 * We now know the "local memory node" for each node--
3846 * i.e., the node of the first zone in the generic zonelist.
3847 * Set up numa_mem percpu variable for on-line cpus. During
3848 * boot, only the boot cpu should be on-line; we'll init the
3849 * secondary cpus' numa_mem as they come on-line. During
3850 * node/memory hotplug, we'll fixup all on-line cpus.
3851 */
3852 if (cpu_online(cpu))
3853 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3854 #endif
3855 }
3856
3857 return 0;
3858 }
3859
3860 /*
3861 * Called with zonelists_mutex held always
3862 * unless system_state == SYSTEM_BOOTING.
3863 */
3864 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3865 {
3866 set_zonelist_order();
3867
3868 if (system_state == SYSTEM_BOOTING) {
3869 __build_all_zonelists(NULL);
3870 mminit_verify_zonelist();
3871 cpuset_init_current_mems_allowed();
3872 } else {
3873 #ifdef CONFIG_MEMORY_HOTPLUG
3874 if (zone)
3875 setup_zone_pageset(zone);
3876 #endif
3877 /* we have to stop all cpus to guarantee there is no user
3878 of zonelist */
3879 stop_machine(__build_all_zonelists, pgdat, NULL);
3880 /* cpuset refresh routine should be here */
3881 }
3882 vm_total_pages = nr_free_pagecache_pages();
3883 /*
3884 * Disable grouping by mobility if the number of pages in the
3885 * system is too low to allow the mechanism to work. It would be
3886 * more accurate, but expensive to check per-zone. This check is
3887 * made on memory-hotadd so a system can start with mobility
3888 * disabled and enable it later
3889 */
3890 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3891 page_group_by_mobility_disabled = 1;
3892 else
3893 page_group_by_mobility_disabled = 0;
3894
3895 printk("Built %i zonelists in %s order, mobility grouping %s. "
3896 "Total pages: %ld\n",
3897 nr_online_nodes,
3898 zonelist_order_name[current_zonelist_order],
3899 page_group_by_mobility_disabled ? "off" : "on",
3900 vm_total_pages);
3901 #ifdef CONFIG_NUMA
3902 printk("Policy zone: %s\n", zone_names[policy_zone]);
3903 #endif
3904 }
3905
3906 /*
3907 * Helper functions to size the waitqueue hash table.
3908 * Essentially these want to choose hash table sizes sufficiently
3909 * large so that collisions trying to wait on pages are rare.
3910 * But in fact, the number of active page waitqueues on typical
3911 * systems is ridiculously low, less than 200. So this is even
3912 * conservative, even though it seems large.
3913 *
3914 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3915 * waitqueues, i.e. the size of the waitq table given the number of pages.
3916 */
3917 #define PAGES_PER_WAITQUEUE 256
3918
3919 #ifndef CONFIG_MEMORY_HOTPLUG
3920 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3921 {
3922 unsigned long size = 1;
3923
3924 pages /= PAGES_PER_WAITQUEUE;
3925
3926 while (size < pages)
3927 size <<= 1;
3928
3929 /*
3930 * Once we have dozens or even hundreds of threads sleeping
3931 * on IO we've got bigger problems than wait queue collision.
3932 * Limit the size of the wait table to a reasonable size.
3933 */
3934 size = min(size, 4096UL);
3935
3936 return max(size, 4UL);
3937 }
3938 #else
3939 /*
3940 * A zone's size might be changed by hot-add, so it is not possible to determine
3941 * a suitable size for its wait_table. So we use the maximum size now.
3942 *
3943 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3944 *
3945 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3946 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3947 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3948 *
3949 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3950 * or more by the traditional way. (See above). It equals:
3951 *
3952 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3953 * ia64(16K page size) : = ( 8G + 4M)byte.
3954 * powerpc (64K page size) : = (32G +16M)byte.
3955 */
3956 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3957 {
3958 return 4096UL;
3959 }
3960 #endif
3961
3962 /*
3963 * This is an integer logarithm so that shifts can be used later
3964 * to extract the more random high bits from the multiplicative
3965 * hash function before the remainder is taken.
3966 */
3967 static inline unsigned long wait_table_bits(unsigned long size)
3968 {
3969 return ffz(~size);
3970 }
3971
3972 /*
3973 * Check if a pageblock contains reserved pages
3974 */
3975 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3976 {
3977 unsigned long pfn;
3978
3979 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3980 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3981 return 1;
3982 }
3983 return 0;
3984 }
3985
3986 /*
3987 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3988 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3989 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3990 * higher will lead to a bigger reserve which will get freed as contiguous
3991 * blocks as reclaim kicks in
3992 */
3993 static void setup_zone_migrate_reserve(struct zone *zone)
3994 {
3995 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3996 struct page *page;
3997 unsigned long block_migratetype;
3998 int reserve;
3999 int old_reserve;
4000
4001 /*
4002 * Get the start pfn, end pfn and the number of blocks to reserve
4003 * We have to be careful to be aligned to pageblock_nr_pages to
4004 * make sure that we always check pfn_valid for the first page in
4005 * the block.
4006 */
4007 start_pfn = zone->zone_start_pfn;
4008 end_pfn = zone_end_pfn(zone);
4009 start_pfn = roundup(start_pfn, pageblock_nr_pages);
4010 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
4011 pageblock_order;
4012
4013 /*
4014 * Reserve blocks are generally in place to help high-order atomic
4015 * allocations that are short-lived. A min_free_kbytes value that
4016 * would result in more than 2 reserve blocks for atomic allocations
4017 * is assumed to be in place to help anti-fragmentation for the
4018 * future allocation of hugepages at runtime.
4019 */
4020 reserve = min(2, reserve);
4021 old_reserve = zone->nr_migrate_reserve_block;
4022
4023 /* When memory hot-add, we almost always need to do nothing */
4024 if (reserve == old_reserve)
4025 return;
4026 zone->nr_migrate_reserve_block = reserve;
4027
4028 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
4029 if (!pfn_valid(pfn))
4030 continue;
4031 page = pfn_to_page(pfn);
4032
4033 /* Watch out for overlapping nodes */
4034 if (page_to_nid(page) != zone_to_nid(zone))
4035 continue;
4036
4037 block_migratetype = get_pageblock_migratetype(page);
4038
4039 /* Only test what is necessary when the reserves are not met */
4040 if (reserve > 0) {
4041 /*
4042 * Blocks with reserved pages will never free, skip
4043 * them.
4044 */
4045 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
4046 if (pageblock_is_reserved(pfn, block_end_pfn))
4047 continue;
4048
4049 /* If this block is reserved, account for it */
4050 if (block_migratetype == MIGRATE_RESERVE) {
4051 reserve--;
4052 continue;
4053 }
4054
4055 /* Suitable for reserving if this block is movable */
4056 if (block_migratetype == MIGRATE_MOVABLE) {
4057 set_pageblock_migratetype(page,
4058 MIGRATE_RESERVE);
4059 move_freepages_block(zone, page,
4060 MIGRATE_RESERVE);
4061 reserve--;
4062 continue;
4063 }
4064 } else if (!old_reserve) {
4065 /*
4066 * At boot time we don't need to scan the whole zone
4067 * for turning off MIGRATE_RESERVE.
4068 */
4069 break;
4070 }
4071
4072 /*
4073 * If the reserve is met and this is a previous reserved block,
4074 * take it back
4075 */
4076 if (block_migratetype == MIGRATE_RESERVE) {
4077 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4078 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4079 }
4080 }
4081 }
4082
4083 /*
4084 * Initially all pages are reserved - free ones are freed
4085 * up by free_all_bootmem() once the early boot process is
4086 * done. Non-atomic initialization, single-pass.
4087 */
4088 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4089 unsigned long start_pfn, enum memmap_context context)
4090 {
4091 struct page *page;
4092 unsigned long end_pfn = start_pfn + size;
4093 unsigned long pfn;
4094 struct zone *z;
4095
4096 if (highest_memmap_pfn < end_pfn - 1)
4097 highest_memmap_pfn = end_pfn - 1;
4098
4099 z = &NODE_DATA(nid)->node_zones[zone];
4100 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4101 /*
4102 * There can be holes in boot-time mem_map[]s
4103 * handed to this function. They do not
4104 * exist on hotplugged memory.
4105 */
4106 if (context == MEMMAP_EARLY) {
4107 if (!early_pfn_valid(pfn))
4108 continue;
4109 if (!early_pfn_in_nid(pfn, nid))
4110 continue;
4111 }
4112 page = pfn_to_page(pfn);
4113 set_page_links(page, zone, nid, pfn);
4114 mminit_verify_page_links(page, zone, nid, pfn);
4115 init_page_count(page);
4116 page_mapcount_reset(page);
4117 page_cpupid_reset_last(page);
4118 SetPageReserved(page);
4119 /*
4120 * Mark the block movable so that blocks are reserved for
4121 * movable at startup. This will force kernel allocations
4122 * to reserve their blocks rather than leaking throughout
4123 * the address space during boot when many long-lived
4124 * kernel allocations are made. Later some blocks near
4125 * the start are marked MIGRATE_RESERVE by
4126 * setup_zone_migrate_reserve()
4127 *
4128 * bitmap is created for zone's valid pfn range. but memmap
4129 * can be created for invalid pages (for alignment)
4130 * check here not to call set_pageblock_migratetype() against
4131 * pfn out of zone.
4132 */
4133 if ((z->zone_start_pfn <= pfn)
4134 && (pfn < zone_end_pfn(z))
4135 && !(pfn & (pageblock_nr_pages - 1)))
4136 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4137
4138 INIT_LIST_HEAD(&page->lru);
4139 #ifdef WANT_PAGE_VIRTUAL
4140 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4141 if (!is_highmem_idx(zone))
4142 set_page_address(page, __va(pfn << PAGE_SHIFT));
4143 #endif
4144 }
4145 }
4146
4147 static void __meminit zone_init_free_lists(struct zone *zone)
4148 {
4149 unsigned int order, t;
4150 for_each_migratetype_order(order, t) {
4151 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4152 zone->free_area[order].nr_free = 0;
4153 }
4154 }
4155
4156 #ifndef __HAVE_ARCH_MEMMAP_INIT
4157 #define memmap_init(size, nid, zone, start_pfn) \
4158 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4159 #endif
4160
4161 static int zone_batchsize(struct zone *zone)
4162 {
4163 #ifdef CONFIG_MMU
4164 int batch;
4165
4166 /*
4167 * The per-cpu-pages pools are set to around 1000th of the
4168 * size of the zone. But no more than 1/2 of a meg.
4169 *
4170 * OK, so we don't know how big the cache is. So guess.
4171 */
4172 batch = zone->managed_pages / 1024;
4173 if (batch * PAGE_SIZE > 512 * 1024)
4174 batch = (512 * 1024) / PAGE_SIZE;
4175 batch /= 4; /* We effectively *= 4 below */
4176 if (batch < 1)
4177 batch = 1;
4178
4179 /*
4180 * Clamp the batch to a 2^n - 1 value. Having a power
4181 * of 2 value was found to be more likely to have
4182 * suboptimal cache aliasing properties in some cases.
4183 *
4184 * For example if 2 tasks are alternately allocating
4185 * batches of pages, one task can end up with a lot
4186 * of pages of one half of the possible page colors
4187 * and the other with pages of the other colors.
4188 */
4189 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4190
4191 return batch;
4192
4193 #else
4194 /* The deferral and batching of frees should be suppressed under NOMMU
4195 * conditions.
4196 *
4197 * The problem is that NOMMU needs to be able to allocate large chunks
4198 * of contiguous memory as there's no hardware page translation to
4199 * assemble apparent contiguous memory from discontiguous pages.
4200 *
4201 * Queueing large contiguous runs of pages for batching, however,
4202 * causes the pages to actually be freed in smaller chunks. As there
4203 * can be a significant delay between the individual batches being
4204 * recycled, this leads to the once large chunks of space being
4205 * fragmented and becoming unavailable for high-order allocations.
4206 */
4207 return 0;
4208 #endif
4209 }
4210
4211 /*
4212 * pcp->high and pcp->batch values are related and dependent on one another:
4213 * ->batch must never be higher then ->high.
4214 * The following function updates them in a safe manner without read side
4215 * locking.
4216 *
4217 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4218 * those fields changing asynchronously (acording the the above rule).
4219 *
4220 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4221 * outside of boot time (or some other assurance that no concurrent updaters
4222 * exist).
4223 */
4224 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4225 unsigned long batch)
4226 {
4227 /* start with a fail safe value for batch */
4228 pcp->batch = 1;
4229 smp_wmb();
4230
4231 /* Update high, then batch, in order */
4232 pcp->high = high;
4233 smp_wmb();
4234
4235 pcp->batch = batch;
4236 }
4237
4238 /* a companion to pageset_set_high() */
4239 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4240 {
4241 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4242 }
4243
4244 static void pageset_init(struct per_cpu_pageset *p)
4245 {
4246 struct per_cpu_pages *pcp;
4247 int migratetype;
4248
4249 memset(p, 0, sizeof(*p));
4250
4251 pcp = &p->pcp;
4252 pcp->count = 0;
4253 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4254 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4255 }
4256
4257 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4258 {
4259 pageset_init(p);
4260 pageset_set_batch(p, batch);
4261 }
4262
4263 /*
4264 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4265 * to the value high for the pageset p.
4266 */
4267 static void pageset_set_high(struct per_cpu_pageset *p,
4268 unsigned long high)
4269 {
4270 unsigned long batch = max(1UL, high / 4);
4271 if ((high / 4) > (PAGE_SHIFT * 8))
4272 batch = PAGE_SHIFT * 8;
4273
4274 pageset_update(&p->pcp, high, batch);
4275 }
4276
4277 static void pageset_set_high_and_batch(struct zone *zone,
4278 struct per_cpu_pageset *pcp)
4279 {
4280 if (percpu_pagelist_fraction)
4281 pageset_set_high(pcp,
4282 (zone->managed_pages /
4283 percpu_pagelist_fraction));
4284 else
4285 pageset_set_batch(pcp, zone_batchsize(zone));
4286 }
4287
4288 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4289 {
4290 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4291
4292 pageset_init(pcp);
4293 pageset_set_high_and_batch(zone, pcp);
4294 }
4295
4296 static void __meminit setup_zone_pageset(struct zone *zone)
4297 {
4298 int cpu;
4299 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4300 for_each_possible_cpu(cpu)
4301 zone_pageset_init(zone, cpu);
4302 }
4303
4304 /*
4305 * Allocate per cpu pagesets and initialize them.
4306 * Before this call only boot pagesets were available.
4307 */
4308 void __init setup_per_cpu_pageset(void)
4309 {
4310 struct zone *zone;
4311
4312 for_each_populated_zone(zone)
4313 setup_zone_pageset(zone);
4314 }
4315
4316 static noinline __init_refok
4317 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4318 {
4319 int i;
4320 size_t alloc_size;
4321
4322 /*
4323 * The per-page waitqueue mechanism uses hashed waitqueues
4324 * per zone.
4325 */
4326 zone->wait_table_hash_nr_entries =
4327 wait_table_hash_nr_entries(zone_size_pages);
4328 zone->wait_table_bits =
4329 wait_table_bits(zone->wait_table_hash_nr_entries);
4330 alloc_size = zone->wait_table_hash_nr_entries
4331 * sizeof(wait_queue_head_t);
4332
4333 if (!slab_is_available()) {
4334 zone->wait_table = (wait_queue_head_t *)
4335 memblock_virt_alloc_node_nopanic(
4336 alloc_size, zone->zone_pgdat->node_id);
4337 } else {
4338 /*
4339 * This case means that a zone whose size was 0 gets new memory
4340 * via memory hot-add.
4341 * But it may be the case that a new node was hot-added. In
4342 * this case vmalloc() will not be able to use this new node's
4343 * memory - this wait_table must be initialized to use this new
4344 * node itself as well.
4345 * To use this new node's memory, further consideration will be
4346 * necessary.
4347 */
4348 zone->wait_table = vmalloc(alloc_size);
4349 }
4350 if (!zone->wait_table)
4351 return -ENOMEM;
4352
4353 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4354 init_waitqueue_head(zone->wait_table + i);
4355
4356 return 0;
4357 }
4358
4359 static __meminit void zone_pcp_init(struct zone *zone)
4360 {
4361 /*
4362 * per cpu subsystem is not up at this point. The following code
4363 * relies on the ability of the linker to provide the
4364 * offset of a (static) per cpu variable into the per cpu area.
4365 */
4366 zone->pageset = &boot_pageset;
4367
4368 if (populated_zone(zone))
4369 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4370 zone->name, zone->present_pages,
4371 zone_batchsize(zone));
4372 }
4373
4374 int __meminit init_currently_empty_zone(struct zone *zone,
4375 unsigned long zone_start_pfn,
4376 unsigned long size,
4377 enum memmap_context context)
4378 {
4379 struct pglist_data *pgdat = zone->zone_pgdat;
4380 int ret;
4381 ret = zone_wait_table_init(zone, size);
4382 if (ret)
4383 return ret;
4384 pgdat->nr_zones = zone_idx(zone) + 1;
4385
4386 zone->zone_start_pfn = zone_start_pfn;
4387
4388 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4389 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4390 pgdat->node_id,
4391 (unsigned long)zone_idx(zone),
4392 zone_start_pfn, (zone_start_pfn + size));
4393
4394 zone_init_free_lists(zone);
4395
4396 return 0;
4397 }
4398
4399 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4400 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4401 /*
4402 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4403 */
4404 int __meminit __early_pfn_to_nid(unsigned long pfn)
4405 {
4406 unsigned long start_pfn, end_pfn;
4407 int nid;
4408 /*
4409 * NOTE: The following SMP-unsafe globals are only used early in boot
4410 * when the kernel is running single-threaded.
4411 */
4412 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4413 static int __meminitdata last_nid;
4414
4415 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4416 return last_nid;
4417
4418 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4419 if (nid != -1) {
4420 last_start_pfn = start_pfn;
4421 last_end_pfn = end_pfn;
4422 last_nid = nid;
4423 }
4424
4425 return nid;
4426 }
4427 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4428
4429 int __meminit early_pfn_to_nid(unsigned long pfn)
4430 {
4431 int nid;
4432
4433 nid = __early_pfn_to_nid(pfn);
4434 if (nid >= 0)
4435 return nid;
4436 /* just returns 0 */
4437 return 0;
4438 }
4439
4440 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4441 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4442 {
4443 int nid;
4444
4445 nid = __early_pfn_to_nid(pfn);
4446 if (nid >= 0 && nid != node)
4447 return false;
4448 return true;
4449 }
4450 #endif
4451
4452 /**
4453 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
4454 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4455 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
4456 *
4457 * If an architecture guarantees that all ranges registered contain no holes
4458 * and may be freed, this this function may be used instead of calling
4459 * memblock_free_early_nid() manually.
4460 */
4461 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4462 {
4463 unsigned long start_pfn, end_pfn;
4464 int i, this_nid;
4465
4466 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4467 start_pfn = min(start_pfn, max_low_pfn);
4468 end_pfn = min(end_pfn, max_low_pfn);
4469
4470 if (start_pfn < end_pfn)
4471 memblock_free_early_nid(PFN_PHYS(start_pfn),
4472 (end_pfn - start_pfn) << PAGE_SHIFT,
4473 this_nid);
4474 }
4475 }
4476
4477 /**
4478 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4479 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4480 *
4481 * If an architecture guarantees that all ranges registered contain no holes and may
4482 * be freed, this function may be used instead of calling memory_present() manually.
4483 */
4484 void __init sparse_memory_present_with_active_regions(int nid)
4485 {
4486 unsigned long start_pfn, end_pfn;
4487 int i, this_nid;
4488
4489 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4490 memory_present(this_nid, start_pfn, end_pfn);
4491 }
4492
4493 /**
4494 * get_pfn_range_for_nid - Return the start and end page frames for a node
4495 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4496 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4497 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4498 *
4499 * It returns the start and end page frame of a node based on information
4500 * provided by memblock_set_node(). If called for a node
4501 * with no available memory, a warning is printed and the start and end
4502 * PFNs will be 0.
4503 */
4504 void __meminit get_pfn_range_for_nid(unsigned int nid,
4505 unsigned long *start_pfn, unsigned long *end_pfn)
4506 {
4507 unsigned long this_start_pfn, this_end_pfn;
4508 int i;
4509
4510 *start_pfn = -1UL;
4511 *end_pfn = 0;
4512
4513 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4514 *start_pfn = min(*start_pfn, this_start_pfn);
4515 *end_pfn = max(*end_pfn, this_end_pfn);
4516 }
4517
4518 if (*start_pfn == -1UL)
4519 *start_pfn = 0;
4520 }
4521
4522 /*
4523 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4524 * assumption is made that zones within a node are ordered in monotonic
4525 * increasing memory addresses so that the "highest" populated zone is used
4526 */
4527 static void __init find_usable_zone_for_movable(void)
4528 {
4529 int zone_index;
4530 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4531 if (zone_index == ZONE_MOVABLE)
4532 continue;
4533
4534 if (arch_zone_highest_possible_pfn[zone_index] >
4535 arch_zone_lowest_possible_pfn[zone_index])
4536 break;
4537 }
4538
4539 VM_BUG_ON(zone_index == -1);
4540 movable_zone = zone_index;
4541 }
4542
4543 /*
4544 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4545 * because it is sized independent of architecture. Unlike the other zones,
4546 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4547 * in each node depending on the size of each node and how evenly kernelcore
4548 * is distributed. This helper function adjusts the zone ranges
4549 * provided by the architecture for a given node by using the end of the
4550 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4551 * zones within a node are in order of monotonic increases memory addresses
4552 */
4553 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4554 unsigned long zone_type,
4555 unsigned long node_start_pfn,
4556 unsigned long node_end_pfn,
4557 unsigned long *zone_start_pfn,
4558 unsigned long *zone_end_pfn)
4559 {
4560 /* Only adjust if ZONE_MOVABLE is on this node */
4561 if (zone_movable_pfn[nid]) {
4562 /* Size ZONE_MOVABLE */
4563 if (zone_type == ZONE_MOVABLE) {
4564 *zone_start_pfn = zone_movable_pfn[nid];
4565 *zone_end_pfn = min(node_end_pfn,
4566 arch_zone_highest_possible_pfn[movable_zone]);
4567
4568 /* Adjust for ZONE_MOVABLE starting within this range */
4569 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4570 *zone_end_pfn > zone_movable_pfn[nid]) {
4571 *zone_end_pfn = zone_movable_pfn[nid];
4572
4573 /* Check if this whole range is within ZONE_MOVABLE */
4574 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4575 *zone_start_pfn = *zone_end_pfn;
4576 }
4577 }
4578
4579 /*
4580 * Return the number of pages a zone spans in a node, including holes
4581 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4582 */
4583 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4584 unsigned long zone_type,
4585 unsigned long node_start_pfn,
4586 unsigned long node_end_pfn,
4587 unsigned long *ignored)
4588 {
4589 unsigned long zone_start_pfn, zone_end_pfn;
4590
4591 /* Get the start and end of the zone */
4592 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4593 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4594 adjust_zone_range_for_zone_movable(nid, zone_type,
4595 node_start_pfn, node_end_pfn,
4596 &zone_start_pfn, &zone_end_pfn);
4597
4598 /* Check that this node has pages within the zone's required range */
4599 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4600 return 0;
4601
4602 /* Move the zone boundaries inside the node if necessary */
4603 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4604 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4605
4606 /* Return the spanned pages */
4607 return zone_end_pfn - zone_start_pfn;
4608 }
4609
4610 /*
4611 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4612 * then all holes in the requested range will be accounted for.
4613 */
4614 unsigned long __meminit __absent_pages_in_range(int nid,
4615 unsigned long range_start_pfn,
4616 unsigned long range_end_pfn)
4617 {
4618 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4619 unsigned long start_pfn, end_pfn;
4620 int i;
4621
4622 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4623 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4624 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4625 nr_absent -= end_pfn - start_pfn;
4626 }
4627 return nr_absent;
4628 }
4629
4630 /**
4631 * absent_pages_in_range - Return number of page frames in holes within a range
4632 * @start_pfn: The start PFN to start searching for holes
4633 * @end_pfn: The end PFN to stop searching for holes
4634 *
4635 * It returns the number of pages frames in memory holes within a range.
4636 */
4637 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4638 unsigned long end_pfn)
4639 {
4640 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4641 }
4642
4643 /* Return the number of page frames in holes in a zone on a node */
4644 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4645 unsigned long zone_type,
4646 unsigned long node_start_pfn,
4647 unsigned long node_end_pfn,
4648 unsigned long *ignored)
4649 {
4650 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4651 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4652 unsigned long zone_start_pfn, zone_end_pfn;
4653
4654 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4655 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4656
4657 adjust_zone_range_for_zone_movable(nid, zone_type,
4658 node_start_pfn, node_end_pfn,
4659 &zone_start_pfn, &zone_end_pfn);
4660 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4661 }
4662
4663 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4664 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4665 unsigned long zone_type,
4666 unsigned long node_start_pfn,
4667 unsigned long node_end_pfn,
4668 unsigned long *zones_size)
4669 {
4670 return zones_size[zone_type];
4671 }
4672
4673 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4674 unsigned long zone_type,
4675 unsigned long node_start_pfn,
4676 unsigned long node_end_pfn,
4677 unsigned long *zholes_size)
4678 {
4679 if (!zholes_size)
4680 return 0;
4681
4682 return zholes_size[zone_type];
4683 }
4684
4685 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4686
4687 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4688 unsigned long node_start_pfn,
4689 unsigned long node_end_pfn,
4690 unsigned long *zones_size,
4691 unsigned long *zholes_size)
4692 {
4693 unsigned long realtotalpages, totalpages = 0;
4694 enum zone_type i;
4695
4696 for (i = 0; i < MAX_NR_ZONES; i++)
4697 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4698 node_start_pfn,
4699 node_end_pfn,
4700 zones_size);
4701 pgdat->node_spanned_pages = totalpages;
4702
4703 realtotalpages = totalpages;
4704 for (i = 0; i < MAX_NR_ZONES; i++)
4705 realtotalpages -=
4706 zone_absent_pages_in_node(pgdat->node_id, i,
4707 node_start_pfn, node_end_pfn,
4708 zholes_size);
4709 pgdat->node_present_pages = realtotalpages;
4710 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4711 realtotalpages);
4712 }
4713
4714 #ifndef CONFIG_SPARSEMEM
4715 /*
4716 * Calculate the size of the zone->blockflags rounded to an unsigned long
4717 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4718 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4719 * round what is now in bits to nearest long in bits, then return it in
4720 * bytes.
4721 */
4722 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4723 {
4724 unsigned long usemapsize;
4725
4726 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4727 usemapsize = roundup(zonesize, pageblock_nr_pages);
4728 usemapsize = usemapsize >> pageblock_order;
4729 usemapsize *= NR_PAGEBLOCK_BITS;
4730 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4731
4732 return usemapsize / 8;
4733 }
4734
4735 static void __init setup_usemap(struct pglist_data *pgdat,
4736 struct zone *zone,
4737 unsigned long zone_start_pfn,
4738 unsigned long zonesize)
4739 {
4740 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4741 zone->pageblock_flags = NULL;
4742 if (usemapsize)
4743 zone->pageblock_flags =
4744 memblock_virt_alloc_node_nopanic(usemapsize,
4745 pgdat->node_id);
4746 }
4747 #else
4748 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4749 unsigned long zone_start_pfn, unsigned long zonesize) {}
4750 #endif /* CONFIG_SPARSEMEM */
4751
4752 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4753
4754 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4755 void __paginginit set_pageblock_order(void)
4756 {
4757 unsigned int order;
4758
4759 /* Check that pageblock_nr_pages has not already been setup */
4760 if (pageblock_order)
4761 return;
4762
4763 if (HPAGE_SHIFT > PAGE_SHIFT)
4764 order = HUGETLB_PAGE_ORDER;
4765 else
4766 order = MAX_ORDER - 1;
4767
4768 /*
4769 * Assume the largest contiguous order of interest is a huge page.
4770 * This value may be variable depending on boot parameters on IA64 and
4771 * powerpc.
4772 */
4773 pageblock_order = order;
4774 }
4775 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4776
4777 /*
4778 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4779 * is unused as pageblock_order is set at compile-time. See
4780 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4781 * the kernel config
4782 */
4783 void __paginginit set_pageblock_order(void)
4784 {
4785 }
4786
4787 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4788
4789 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4790 unsigned long present_pages)
4791 {
4792 unsigned long pages = spanned_pages;
4793
4794 /*
4795 * Provide a more accurate estimation if there are holes within
4796 * the zone and SPARSEMEM is in use. If there are holes within the
4797 * zone, each populated memory region may cost us one or two extra
4798 * memmap pages due to alignment because memmap pages for each
4799 * populated regions may not naturally algined on page boundary.
4800 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4801 */
4802 if (spanned_pages > present_pages + (present_pages >> 4) &&
4803 IS_ENABLED(CONFIG_SPARSEMEM))
4804 pages = present_pages;
4805
4806 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4807 }
4808
4809 /*
4810 * Set up the zone data structures:
4811 * - mark all pages reserved
4812 * - mark all memory queues empty
4813 * - clear the memory bitmaps
4814 *
4815 * NOTE: pgdat should get zeroed by caller.
4816 */
4817 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4818 unsigned long node_start_pfn, unsigned long node_end_pfn,
4819 unsigned long *zones_size, unsigned long *zholes_size)
4820 {
4821 enum zone_type j;
4822 int nid = pgdat->node_id;
4823 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4824 int ret;
4825
4826 pgdat_resize_init(pgdat);
4827 #ifdef CONFIG_NUMA_BALANCING
4828 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4829 pgdat->numabalancing_migrate_nr_pages = 0;
4830 pgdat->numabalancing_migrate_next_window = jiffies;
4831 #endif
4832 init_waitqueue_head(&pgdat->kswapd_wait);
4833 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4834 pgdat_page_cgroup_init(pgdat);
4835
4836 for (j = 0; j < MAX_NR_ZONES; j++) {
4837 struct zone *zone = pgdat->node_zones + j;
4838 unsigned long size, realsize, freesize, memmap_pages;
4839
4840 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4841 node_end_pfn, zones_size);
4842 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4843 node_start_pfn,
4844 node_end_pfn,
4845 zholes_size);
4846
4847 /*
4848 * Adjust freesize so that it accounts for how much memory
4849 * is used by this zone for memmap. This affects the watermark
4850 * and per-cpu initialisations
4851 */
4852 memmap_pages = calc_memmap_size(size, realsize);
4853 if (freesize >= memmap_pages) {
4854 freesize -= memmap_pages;
4855 if (memmap_pages)
4856 printk(KERN_DEBUG
4857 " %s zone: %lu pages used for memmap\n",
4858 zone_names[j], memmap_pages);
4859 } else
4860 printk(KERN_WARNING
4861 " %s zone: %lu pages exceeds freesize %lu\n",
4862 zone_names[j], memmap_pages, freesize);
4863
4864 /* Account for reserved pages */
4865 if (j == 0 && freesize > dma_reserve) {
4866 freesize -= dma_reserve;
4867 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4868 zone_names[0], dma_reserve);
4869 }
4870
4871 if (!is_highmem_idx(j))
4872 nr_kernel_pages += freesize;
4873 /* Charge for highmem memmap if there are enough kernel pages */
4874 else if (nr_kernel_pages > memmap_pages * 2)
4875 nr_kernel_pages -= memmap_pages;
4876 nr_all_pages += freesize;
4877
4878 zone->spanned_pages = size;
4879 zone->present_pages = realsize;
4880 /*
4881 * Set an approximate value for lowmem here, it will be adjusted
4882 * when the bootmem allocator frees pages into the buddy system.
4883 * And all highmem pages will be managed by the buddy system.
4884 */
4885 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4886 #ifdef CONFIG_NUMA
4887 zone->node = nid;
4888 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4889 / 100;
4890 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4891 #endif
4892 zone->name = zone_names[j];
4893 spin_lock_init(&zone->lock);
4894 spin_lock_init(&zone->lru_lock);
4895 zone_seqlock_init(zone);
4896 zone->zone_pgdat = pgdat;
4897 zone_pcp_init(zone);
4898
4899 /* For bootup, initialized properly in watermark setup */
4900 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4901
4902 lruvec_init(&zone->lruvec);
4903 if (!size)
4904 continue;
4905
4906 set_pageblock_order();
4907 setup_usemap(pgdat, zone, zone_start_pfn, size);
4908 ret = init_currently_empty_zone(zone, zone_start_pfn,
4909 size, MEMMAP_EARLY);
4910 BUG_ON(ret);
4911 memmap_init(size, nid, j, zone_start_pfn);
4912 zone_start_pfn += size;
4913 }
4914 }
4915
4916 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4917 {
4918 /* Skip empty nodes */
4919 if (!pgdat->node_spanned_pages)
4920 return;
4921
4922 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4923 /* ia64 gets its own node_mem_map, before this, without bootmem */
4924 if (!pgdat->node_mem_map) {
4925 unsigned long size, start, end;
4926 struct page *map;
4927
4928 /*
4929 * The zone's endpoints aren't required to be MAX_ORDER
4930 * aligned but the node_mem_map endpoints must be in order
4931 * for the buddy allocator to function correctly.
4932 */
4933 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4934 end = pgdat_end_pfn(pgdat);
4935 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4936 size = (end - start) * sizeof(struct page);
4937 map = alloc_remap(pgdat->node_id, size);
4938 if (!map)
4939 map = memblock_virt_alloc_node_nopanic(size,
4940 pgdat->node_id);
4941 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4942 }
4943 #ifndef CONFIG_NEED_MULTIPLE_NODES
4944 /*
4945 * With no DISCONTIG, the global mem_map is just set as node 0's
4946 */
4947 if (pgdat == NODE_DATA(0)) {
4948 mem_map = NODE_DATA(0)->node_mem_map;
4949 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4950 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4951 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4952 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4953 }
4954 #endif
4955 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4956 }
4957
4958 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4959 unsigned long node_start_pfn, unsigned long *zholes_size)
4960 {
4961 pg_data_t *pgdat = NODE_DATA(nid);
4962 unsigned long start_pfn = 0;
4963 unsigned long end_pfn = 0;
4964
4965 /* pg_data_t should be reset to zero when it's allocated */
4966 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4967
4968 pgdat->node_id = nid;
4969 pgdat->node_start_pfn = node_start_pfn;
4970 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4971 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4972 #endif
4973 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4974 zones_size, zholes_size);
4975
4976 alloc_node_mem_map(pgdat);
4977 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4978 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4979 nid, (unsigned long)pgdat,
4980 (unsigned long)pgdat->node_mem_map);
4981 #endif
4982
4983 free_area_init_core(pgdat, start_pfn, end_pfn,
4984 zones_size, zholes_size);
4985 }
4986
4987 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4988
4989 #if MAX_NUMNODES > 1
4990 /*
4991 * Figure out the number of possible node ids.
4992 */
4993 void __init setup_nr_node_ids(void)
4994 {
4995 unsigned int node;
4996 unsigned int highest = 0;
4997
4998 for_each_node_mask(node, node_possible_map)
4999 highest = node;
5000 nr_node_ids = highest + 1;
5001 }
5002 #endif
5003
5004 /**
5005 * node_map_pfn_alignment - determine the maximum internode alignment
5006 *
5007 * This function should be called after node map is populated and sorted.
5008 * It calculates the maximum power of two alignment which can distinguish
5009 * all the nodes.
5010 *
5011 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5012 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5013 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5014 * shifted, 1GiB is enough and this function will indicate so.
5015 *
5016 * This is used to test whether pfn -> nid mapping of the chosen memory
5017 * model has fine enough granularity to avoid incorrect mapping for the
5018 * populated node map.
5019 *
5020 * Returns the determined alignment in pfn's. 0 if there is no alignment
5021 * requirement (single node).
5022 */
5023 unsigned long __init node_map_pfn_alignment(void)
5024 {
5025 unsigned long accl_mask = 0, last_end = 0;
5026 unsigned long start, end, mask;
5027 int last_nid = -1;
5028 int i, nid;
5029
5030 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5031 if (!start || last_nid < 0 || last_nid == nid) {
5032 last_nid = nid;
5033 last_end = end;
5034 continue;
5035 }
5036
5037 /*
5038 * Start with a mask granular enough to pin-point to the
5039 * start pfn and tick off bits one-by-one until it becomes
5040 * too coarse to separate the current node from the last.
5041 */
5042 mask = ~((1 << __ffs(start)) - 1);
5043 while (mask && last_end <= (start & (mask << 1)))
5044 mask <<= 1;
5045
5046 /* accumulate all internode masks */
5047 accl_mask |= mask;
5048 }
5049
5050 /* convert mask to number of pages */
5051 return ~accl_mask + 1;
5052 }
5053
5054 /* Find the lowest pfn for a node */
5055 static unsigned long __init find_min_pfn_for_node(int nid)
5056 {
5057 unsigned long min_pfn = ULONG_MAX;
5058 unsigned long start_pfn;
5059 int i;
5060
5061 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5062 min_pfn = min(min_pfn, start_pfn);
5063
5064 if (min_pfn == ULONG_MAX) {
5065 printk(KERN_WARNING
5066 "Could not find start_pfn for node %d\n", nid);
5067 return 0;
5068 }
5069
5070 return min_pfn;
5071 }
5072
5073 /**
5074 * find_min_pfn_with_active_regions - Find the minimum PFN registered
5075 *
5076 * It returns the minimum PFN based on information provided via
5077 * memblock_set_node().
5078 */
5079 unsigned long __init find_min_pfn_with_active_regions(void)
5080 {
5081 return find_min_pfn_for_node(MAX_NUMNODES);
5082 }
5083
5084 /*
5085 * early_calculate_totalpages()
5086 * Sum pages in active regions for movable zone.
5087 * Populate N_MEMORY for calculating usable_nodes.
5088 */
5089 static unsigned long __init early_calculate_totalpages(void)
5090 {
5091 unsigned long totalpages = 0;
5092 unsigned long start_pfn, end_pfn;
5093 int i, nid;
5094
5095 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5096 unsigned long pages = end_pfn - start_pfn;
5097
5098 totalpages += pages;
5099 if (pages)
5100 node_set_state(nid, N_MEMORY);
5101 }
5102 return totalpages;
5103 }
5104
5105 /*
5106 * Find the PFN the Movable zone begins in each node. Kernel memory
5107 * is spread evenly between nodes as long as the nodes have enough
5108 * memory. When they don't, some nodes will have more kernelcore than
5109 * others
5110 */
5111 static void __init find_zone_movable_pfns_for_nodes(void)
5112 {
5113 int i, nid;
5114 unsigned long usable_startpfn;
5115 unsigned long kernelcore_node, kernelcore_remaining;
5116 /* save the state before borrow the nodemask */
5117 nodemask_t saved_node_state = node_states[N_MEMORY];
5118 unsigned long totalpages = early_calculate_totalpages();
5119 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5120 struct memblock_region *r;
5121
5122 /* Need to find movable_zone earlier when movable_node is specified. */
5123 find_usable_zone_for_movable();
5124
5125 /*
5126 * If movable_node is specified, ignore kernelcore and movablecore
5127 * options.
5128 */
5129 if (movable_node_is_enabled()) {
5130 for_each_memblock(memory, r) {
5131 if (!memblock_is_hotpluggable(r))
5132 continue;
5133
5134 nid = r->nid;
5135
5136 usable_startpfn = PFN_DOWN(r->base);
5137 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5138 min(usable_startpfn, zone_movable_pfn[nid]) :
5139 usable_startpfn;
5140 }
5141
5142 goto out2;
5143 }
5144
5145 /*
5146 * If movablecore=nn[KMG] was specified, calculate what size of
5147 * kernelcore that corresponds so that memory usable for
5148 * any allocation type is evenly spread. If both kernelcore
5149 * and movablecore are specified, then the value of kernelcore
5150 * will be used for required_kernelcore if it's greater than
5151 * what movablecore would have allowed.
5152 */
5153 if (required_movablecore) {
5154 unsigned long corepages;
5155
5156 /*
5157 * Round-up so that ZONE_MOVABLE is at least as large as what
5158 * was requested by the user
5159 */
5160 required_movablecore =
5161 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5162 corepages = totalpages - required_movablecore;
5163
5164 required_kernelcore = max(required_kernelcore, corepages);
5165 }
5166
5167 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5168 if (!required_kernelcore)
5169 goto out;
5170
5171 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5172 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5173
5174 restart:
5175 /* Spread kernelcore memory as evenly as possible throughout nodes */
5176 kernelcore_node = required_kernelcore / usable_nodes;
5177 for_each_node_state(nid, N_MEMORY) {
5178 unsigned long start_pfn, end_pfn;
5179
5180 /*
5181 * Recalculate kernelcore_node if the division per node
5182 * now exceeds what is necessary to satisfy the requested
5183 * amount of memory for the kernel
5184 */
5185 if (required_kernelcore < kernelcore_node)
5186 kernelcore_node = required_kernelcore / usable_nodes;
5187
5188 /*
5189 * As the map is walked, we track how much memory is usable
5190 * by the kernel using kernelcore_remaining. When it is
5191 * 0, the rest of the node is usable by ZONE_MOVABLE
5192 */
5193 kernelcore_remaining = kernelcore_node;
5194
5195 /* Go through each range of PFNs within this node */
5196 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5197 unsigned long size_pages;
5198
5199 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5200 if (start_pfn >= end_pfn)
5201 continue;
5202
5203 /* Account for what is only usable for kernelcore */
5204 if (start_pfn < usable_startpfn) {
5205 unsigned long kernel_pages;
5206 kernel_pages = min(end_pfn, usable_startpfn)
5207 - start_pfn;
5208
5209 kernelcore_remaining -= min(kernel_pages,
5210 kernelcore_remaining);
5211 required_kernelcore -= min(kernel_pages,
5212 required_kernelcore);
5213
5214 /* Continue if range is now fully accounted */
5215 if (end_pfn <= usable_startpfn) {
5216
5217 /*
5218 * Push zone_movable_pfn to the end so
5219 * that if we have to rebalance
5220 * kernelcore across nodes, we will
5221 * not double account here
5222 */
5223 zone_movable_pfn[nid] = end_pfn;
5224 continue;
5225 }
5226 start_pfn = usable_startpfn;
5227 }
5228
5229 /*
5230 * The usable PFN range for ZONE_MOVABLE is from
5231 * start_pfn->end_pfn. Calculate size_pages as the
5232 * number of pages used as kernelcore
5233 */
5234 size_pages = end_pfn - start_pfn;
5235 if (size_pages > kernelcore_remaining)
5236 size_pages = kernelcore_remaining;
5237 zone_movable_pfn[nid] = start_pfn + size_pages;
5238
5239 /*
5240 * Some kernelcore has been met, update counts and
5241 * break if the kernelcore for this node has been
5242 * satisfied
5243 */
5244 required_kernelcore -= min(required_kernelcore,
5245 size_pages);
5246 kernelcore_remaining -= size_pages;
5247 if (!kernelcore_remaining)
5248 break;
5249 }
5250 }
5251
5252 /*
5253 * If there is still required_kernelcore, we do another pass with one
5254 * less node in the count. This will push zone_movable_pfn[nid] further
5255 * along on the nodes that still have memory until kernelcore is
5256 * satisfied
5257 */
5258 usable_nodes--;
5259 if (usable_nodes && required_kernelcore > usable_nodes)
5260 goto restart;
5261
5262 out2:
5263 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5264 for (nid = 0; nid < MAX_NUMNODES; nid++)
5265 zone_movable_pfn[nid] =
5266 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5267
5268 out:
5269 /* restore the node_state */
5270 node_states[N_MEMORY] = saved_node_state;
5271 }
5272
5273 /* Any regular or high memory on that node ? */
5274 static void check_for_memory(pg_data_t *pgdat, int nid)
5275 {
5276 enum zone_type zone_type;
5277
5278 if (N_MEMORY == N_NORMAL_MEMORY)
5279 return;
5280
5281 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5282 struct zone *zone = &pgdat->node_zones[zone_type];
5283 if (populated_zone(zone)) {
5284 node_set_state(nid, N_HIGH_MEMORY);
5285 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5286 zone_type <= ZONE_NORMAL)
5287 node_set_state(nid, N_NORMAL_MEMORY);
5288 break;
5289 }
5290 }
5291 }
5292
5293 /**
5294 * free_area_init_nodes - Initialise all pg_data_t and zone data
5295 * @max_zone_pfn: an array of max PFNs for each zone
5296 *
5297 * This will call free_area_init_node() for each active node in the system.
5298 * Using the page ranges provided by memblock_set_node(), the size of each
5299 * zone in each node and their holes is calculated. If the maximum PFN
5300 * between two adjacent zones match, it is assumed that the zone is empty.
5301 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5302 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5303 * starts where the previous one ended. For example, ZONE_DMA32 starts
5304 * at arch_max_dma_pfn.
5305 */
5306 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5307 {
5308 unsigned long start_pfn, end_pfn;
5309 int i, nid;
5310
5311 /* Record where the zone boundaries are */
5312 memset(arch_zone_lowest_possible_pfn, 0,
5313 sizeof(arch_zone_lowest_possible_pfn));
5314 memset(arch_zone_highest_possible_pfn, 0,
5315 sizeof(arch_zone_highest_possible_pfn));
5316 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5317 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5318 for (i = 1; i < MAX_NR_ZONES; i++) {
5319 if (i == ZONE_MOVABLE)
5320 continue;
5321 arch_zone_lowest_possible_pfn[i] =
5322 arch_zone_highest_possible_pfn[i-1];
5323 arch_zone_highest_possible_pfn[i] =
5324 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5325 }
5326 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5327 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5328
5329 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5330 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5331 find_zone_movable_pfns_for_nodes();
5332
5333 /* Print out the zone ranges */
5334 printk("Zone ranges:\n");
5335 for (i = 0; i < MAX_NR_ZONES; i++) {
5336 if (i == ZONE_MOVABLE)
5337 continue;
5338 printk(KERN_CONT " %-8s ", zone_names[i]);
5339 if (arch_zone_lowest_possible_pfn[i] ==
5340 arch_zone_highest_possible_pfn[i])
5341 printk(KERN_CONT "empty\n");
5342 else
5343 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5344 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5345 (arch_zone_highest_possible_pfn[i]
5346 << PAGE_SHIFT) - 1);
5347 }
5348
5349 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5350 printk("Movable zone start for each node\n");
5351 for (i = 0; i < MAX_NUMNODES; i++) {
5352 if (zone_movable_pfn[i])
5353 printk(" Node %d: %#010lx\n", i,
5354 zone_movable_pfn[i] << PAGE_SHIFT);
5355 }
5356
5357 /* Print out the early node map */
5358 printk("Early memory node ranges\n");
5359 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5360 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5361 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5362
5363 /* Initialise every node */
5364 mminit_verify_pageflags_layout();
5365 setup_nr_node_ids();
5366 for_each_online_node(nid) {
5367 pg_data_t *pgdat = NODE_DATA(nid);
5368 free_area_init_node(nid, NULL,
5369 find_min_pfn_for_node(nid), NULL);
5370
5371 /* Any memory on that node */
5372 if (pgdat->node_present_pages)
5373 node_set_state(nid, N_MEMORY);
5374 check_for_memory(pgdat, nid);
5375 }
5376 }
5377
5378 static int __init cmdline_parse_core(char *p, unsigned long *core)
5379 {
5380 unsigned long long coremem;
5381 if (!p)
5382 return -EINVAL;
5383
5384 coremem = memparse(p, &p);
5385 *core = coremem >> PAGE_SHIFT;
5386
5387 /* Paranoid check that UL is enough for the coremem value */
5388 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5389
5390 return 0;
5391 }
5392
5393 /*
5394 * kernelcore=size sets the amount of memory for use for allocations that
5395 * cannot be reclaimed or migrated.
5396 */
5397 static int __init cmdline_parse_kernelcore(char *p)
5398 {
5399 return cmdline_parse_core(p, &required_kernelcore);
5400 }
5401
5402 /*
5403 * movablecore=size sets the amount of memory for use for allocations that
5404 * can be reclaimed or migrated.
5405 */
5406 static int __init cmdline_parse_movablecore(char *p)
5407 {
5408 return cmdline_parse_core(p, &required_movablecore);
5409 }
5410
5411 early_param("kernelcore", cmdline_parse_kernelcore);
5412 early_param("movablecore", cmdline_parse_movablecore);
5413
5414 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5415
5416 void adjust_managed_page_count(struct page *page, long count)
5417 {
5418 spin_lock(&managed_page_count_lock);
5419 page_zone(page)->managed_pages += count;
5420 totalram_pages += count;
5421 #ifdef CONFIG_HIGHMEM
5422 if (PageHighMem(page))
5423 totalhigh_pages += count;
5424 #endif
5425 spin_unlock(&managed_page_count_lock);
5426 }
5427 EXPORT_SYMBOL(adjust_managed_page_count);
5428
5429 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5430 {
5431 void *pos;
5432 unsigned long pages = 0;
5433
5434 start = (void *)PAGE_ALIGN((unsigned long)start);
5435 end = (void *)((unsigned long)end & PAGE_MASK);
5436 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5437 if ((unsigned int)poison <= 0xFF)
5438 memset(pos, poison, PAGE_SIZE);
5439 free_reserved_page(virt_to_page(pos));
5440 }
5441
5442 if (pages && s)
5443 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5444 s, pages << (PAGE_SHIFT - 10), start, end);
5445
5446 return pages;
5447 }
5448 EXPORT_SYMBOL(free_reserved_area);
5449
5450 #ifdef CONFIG_HIGHMEM
5451 void free_highmem_page(struct page *page)
5452 {
5453 __free_reserved_page(page);
5454 totalram_pages++;
5455 page_zone(page)->managed_pages++;
5456 totalhigh_pages++;
5457 }
5458 #endif
5459
5460
5461 void __init mem_init_print_info(const char *str)
5462 {
5463 unsigned long physpages, codesize, datasize, rosize, bss_size;
5464 unsigned long init_code_size, init_data_size;
5465
5466 physpages = get_num_physpages();
5467 codesize = _etext - _stext;
5468 datasize = _edata - _sdata;
5469 rosize = __end_rodata - __start_rodata;
5470 bss_size = __bss_stop - __bss_start;
5471 init_data_size = __init_end - __init_begin;
5472 init_code_size = _einittext - _sinittext;
5473
5474 /*
5475 * Detect special cases and adjust section sizes accordingly:
5476 * 1) .init.* may be embedded into .data sections
5477 * 2) .init.text.* may be out of [__init_begin, __init_end],
5478 * please refer to arch/tile/kernel/vmlinux.lds.S.
5479 * 3) .rodata.* may be embedded into .text or .data sections.
5480 */
5481 #define adj_init_size(start, end, size, pos, adj) \
5482 do { \
5483 if (start <= pos && pos < end && size > adj) \
5484 size -= adj; \
5485 } while (0)
5486
5487 adj_init_size(__init_begin, __init_end, init_data_size,
5488 _sinittext, init_code_size);
5489 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5490 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5491 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5492 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5493
5494 #undef adj_init_size
5495
5496 printk("Memory: %luK/%luK available "
5497 "(%luK kernel code, %luK rwdata, %luK rodata, "
5498 "%luK init, %luK bss, %luK reserved"
5499 #ifdef CONFIG_HIGHMEM
5500 ", %luK highmem"
5501 #endif
5502 "%s%s)\n",
5503 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5504 codesize >> 10, datasize >> 10, rosize >> 10,
5505 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5506 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5507 #ifdef CONFIG_HIGHMEM
5508 totalhigh_pages << (PAGE_SHIFT-10),
5509 #endif
5510 str ? ", " : "", str ? str : "");
5511 }
5512
5513 /**
5514 * set_dma_reserve - set the specified number of pages reserved in the first zone
5515 * @new_dma_reserve: The number of pages to mark reserved
5516 *
5517 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5518 * In the DMA zone, a significant percentage may be consumed by kernel image
5519 * and other unfreeable allocations which can skew the watermarks badly. This
5520 * function may optionally be used to account for unfreeable pages in the
5521 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5522 * smaller per-cpu batchsize.
5523 */
5524 void __init set_dma_reserve(unsigned long new_dma_reserve)
5525 {
5526 dma_reserve = new_dma_reserve;
5527 }
5528
5529 void __init free_area_init(unsigned long *zones_size)
5530 {
5531 free_area_init_node(0, zones_size,
5532 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5533 }
5534
5535 static int page_alloc_cpu_notify(struct notifier_block *self,
5536 unsigned long action, void *hcpu)
5537 {
5538 int cpu = (unsigned long)hcpu;
5539
5540 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5541 lru_add_drain_cpu(cpu);
5542 drain_pages(cpu);
5543
5544 /*
5545 * Spill the event counters of the dead processor
5546 * into the current processors event counters.
5547 * This artificially elevates the count of the current
5548 * processor.
5549 */
5550 vm_events_fold_cpu(cpu);
5551
5552 /*
5553 * Zero the differential counters of the dead processor
5554 * so that the vm statistics are consistent.
5555 *
5556 * This is only okay since the processor is dead and cannot
5557 * race with what we are doing.
5558 */
5559 cpu_vm_stats_fold(cpu);
5560 }
5561 return NOTIFY_OK;
5562 }
5563
5564 void __init page_alloc_init(void)
5565 {
5566 hotcpu_notifier(page_alloc_cpu_notify, 0);
5567 }
5568
5569 /*
5570 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5571 * or min_free_kbytes changes.
5572 */
5573 static void calculate_totalreserve_pages(void)
5574 {
5575 struct pglist_data *pgdat;
5576 unsigned long reserve_pages = 0;
5577 enum zone_type i, j;
5578
5579 for_each_online_pgdat(pgdat) {
5580 for (i = 0; i < MAX_NR_ZONES; i++) {
5581 struct zone *zone = pgdat->node_zones + i;
5582 unsigned long max = 0;
5583
5584 /* Find valid and maximum lowmem_reserve in the zone */
5585 for (j = i; j < MAX_NR_ZONES; j++) {
5586 if (zone->lowmem_reserve[j] > max)
5587 max = zone->lowmem_reserve[j];
5588 }
5589
5590 /* we treat the high watermark as reserved pages. */
5591 max += high_wmark_pages(zone);
5592
5593 if (max > zone->managed_pages)
5594 max = zone->managed_pages;
5595 reserve_pages += max;
5596 /*
5597 * Lowmem reserves are not available to
5598 * GFP_HIGHUSER page cache allocations and
5599 * kswapd tries to balance zones to their high
5600 * watermark. As a result, neither should be
5601 * regarded as dirtyable memory, to prevent a
5602 * situation where reclaim has to clean pages
5603 * in order to balance the zones.
5604 */
5605 zone->dirty_balance_reserve = max;
5606 }
5607 }
5608 dirty_balance_reserve = reserve_pages;
5609 totalreserve_pages = reserve_pages;
5610 }
5611
5612 /*
5613 * setup_per_zone_lowmem_reserve - called whenever
5614 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5615 * has a correct pages reserved value, so an adequate number of
5616 * pages are left in the zone after a successful __alloc_pages().
5617 */
5618 static void setup_per_zone_lowmem_reserve(void)
5619 {
5620 struct pglist_data *pgdat;
5621 enum zone_type j, idx;
5622
5623 for_each_online_pgdat(pgdat) {
5624 for (j = 0; j < MAX_NR_ZONES; j++) {
5625 struct zone *zone = pgdat->node_zones + j;
5626 unsigned long managed_pages = zone->managed_pages;
5627
5628 zone->lowmem_reserve[j] = 0;
5629
5630 idx = j;
5631 while (idx) {
5632 struct zone *lower_zone;
5633
5634 idx--;
5635
5636 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5637 sysctl_lowmem_reserve_ratio[idx] = 1;
5638
5639 lower_zone = pgdat->node_zones + idx;
5640 lower_zone->lowmem_reserve[j] = managed_pages /
5641 sysctl_lowmem_reserve_ratio[idx];
5642 managed_pages += lower_zone->managed_pages;
5643 }
5644 }
5645 }
5646
5647 /* update totalreserve_pages */
5648 calculate_totalreserve_pages();
5649 }
5650
5651 static void __setup_per_zone_wmarks(void)
5652 {
5653 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5654 unsigned long lowmem_pages = 0;
5655 struct zone *zone;
5656 unsigned long flags;
5657
5658 /* Calculate total number of !ZONE_HIGHMEM pages */
5659 for_each_zone(zone) {
5660 if (!is_highmem(zone))
5661 lowmem_pages += zone->managed_pages;
5662 }
5663
5664 for_each_zone(zone) {
5665 u64 tmp;
5666
5667 spin_lock_irqsave(&zone->lock, flags);
5668 tmp = (u64)pages_min * zone->managed_pages;
5669 do_div(tmp, lowmem_pages);
5670 if (is_highmem(zone)) {
5671 /*
5672 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5673 * need highmem pages, so cap pages_min to a small
5674 * value here.
5675 *
5676 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5677 * deltas controls asynch page reclaim, and so should
5678 * not be capped for highmem.
5679 */
5680 unsigned long min_pages;
5681
5682 min_pages = zone->managed_pages / 1024;
5683 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5684 zone->watermark[WMARK_MIN] = min_pages;
5685 } else {
5686 /*
5687 * If it's a lowmem zone, reserve a number of pages
5688 * proportionate to the zone's size.
5689 */
5690 zone->watermark[WMARK_MIN] = tmp;
5691 }
5692
5693 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5694 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5695
5696 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5697 high_wmark_pages(zone) -
5698 low_wmark_pages(zone) -
5699 zone_page_state(zone, NR_ALLOC_BATCH));
5700
5701 setup_zone_migrate_reserve(zone);
5702 spin_unlock_irqrestore(&zone->lock, flags);
5703 }
5704
5705 /* update totalreserve_pages */
5706 calculate_totalreserve_pages();
5707 }
5708
5709 /**
5710 * setup_per_zone_wmarks - called when min_free_kbytes changes
5711 * or when memory is hot-{added|removed}
5712 *
5713 * Ensures that the watermark[min,low,high] values for each zone are set
5714 * correctly with respect to min_free_kbytes.
5715 */
5716 void setup_per_zone_wmarks(void)
5717 {
5718 mutex_lock(&zonelists_mutex);
5719 __setup_per_zone_wmarks();
5720 mutex_unlock(&zonelists_mutex);
5721 }
5722
5723 /*
5724 * The inactive anon list should be small enough that the VM never has to
5725 * do too much work, but large enough that each inactive page has a chance
5726 * to be referenced again before it is swapped out.
5727 *
5728 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5729 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5730 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5731 * the anonymous pages are kept on the inactive list.
5732 *
5733 * total target max
5734 * memory ratio inactive anon
5735 * -------------------------------------
5736 * 10MB 1 5MB
5737 * 100MB 1 50MB
5738 * 1GB 3 250MB
5739 * 10GB 10 0.9GB
5740 * 100GB 31 3GB
5741 * 1TB 101 10GB
5742 * 10TB 320 32GB
5743 */
5744 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5745 {
5746 unsigned int gb, ratio;
5747
5748 /* Zone size in gigabytes */
5749 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5750 if (gb)
5751 ratio = int_sqrt(10 * gb);
5752 else
5753 ratio = 1;
5754
5755 zone->inactive_ratio = ratio;
5756 }
5757
5758 static void __meminit setup_per_zone_inactive_ratio(void)
5759 {
5760 struct zone *zone;
5761
5762 for_each_zone(zone)
5763 calculate_zone_inactive_ratio(zone);
5764 }
5765
5766 /*
5767 * Initialise min_free_kbytes.
5768 *
5769 * For small machines we want it small (128k min). For large machines
5770 * we want it large (64MB max). But it is not linear, because network
5771 * bandwidth does not increase linearly with machine size. We use
5772 *
5773 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5774 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5775 *
5776 * which yields
5777 *
5778 * 16MB: 512k
5779 * 32MB: 724k
5780 * 64MB: 1024k
5781 * 128MB: 1448k
5782 * 256MB: 2048k
5783 * 512MB: 2896k
5784 * 1024MB: 4096k
5785 * 2048MB: 5792k
5786 * 4096MB: 8192k
5787 * 8192MB: 11584k
5788 * 16384MB: 16384k
5789 */
5790 int __meminit init_per_zone_wmark_min(void)
5791 {
5792 unsigned long lowmem_kbytes;
5793 int new_min_free_kbytes;
5794
5795 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5796 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5797
5798 if (new_min_free_kbytes > user_min_free_kbytes) {
5799 min_free_kbytes = new_min_free_kbytes;
5800 if (min_free_kbytes < 128)
5801 min_free_kbytes = 128;
5802 if (min_free_kbytes > 65536)
5803 min_free_kbytes = 65536;
5804 } else {
5805 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5806 new_min_free_kbytes, user_min_free_kbytes);
5807 }
5808 setup_per_zone_wmarks();
5809 refresh_zone_stat_thresholds();
5810 setup_per_zone_lowmem_reserve();
5811 setup_per_zone_inactive_ratio();
5812 return 0;
5813 }
5814 module_init(init_per_zone_wmark_min)
5815
5816 /*
5817 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5818 * that we can call two helper functions whenever min_free_kbytes
5819 * changes.
5820 */
5821 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
5822 void __user *buffer, size_t *length, loff_t *ppos)
5823 {
5824 int rc;
5825
5826 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5827 if (rc)
5828 return rc;
5829
5830 if (write) {
5831 user_min_free_kbytes = min_free_kbytes;
5832 setup_per_zone_wmarks();
5833 }
5834 return 0;
5835 }
5836
5837 #ifdef CONFIG_NUMA
5838 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
5839 void __user *buffer, size_t *length, loff_t *ppos)
5840 {
5841 struct zone *zone;
5842 int rc;
5843
5844 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5845 if (rc)
5846 return rc;
5847
5848 for_each_zone(zone)
5849 zone->min_unmapped_pages = (zone->managed_pages *
5850 sysctl_min_unmapped_ratio) / 100;
5851 return 0;
5852 }
5853
5854 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
5855 void __user *buffer, size_t *length, loff_t *ppos)
5856 {
5857 struct zone *zone;
5858 int rc;
5859
5860 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5861 if (rc)
5862 return rc;
5863
5864 for_each_zone(zone)
5865 zone->min_slab_pages = (zone->managed_pages *
5866 sysctl_min_slab_ratio) / 100;
5867 return 0;
5868 }
5869 #endif
5870
5871 /*
5872 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5873 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5874 * whenever sysctl_lowmem_reserve_ratio changes.
5875 *
5876 * The reserve ratio obviously has absolutely no relation with the
5877 * minimum watermarks. The lowmem reserve ratio can only make sense
5878 * if in function of the boot time zone sizes.
5879 */
5880 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
5881 void __user *buffer, size_t *length, loff_t *ppos)
5882 {
5883 proc_dointvec_minmax(table, write, buffer, length, ppos);
5884 setup_per_zone_lowmem_reserve();
5885 return 0;
5886 }
5887
5888 /*
5889 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5890 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5891 * pagelist can have before it gets flushed back to buddy allocator.
5892 */
5893 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
5894 void __user *buffer, size_t *length, loff_t *ppos)
5895 {
5896 struct zone *zone;
5897 int old_percpu_pagelist_fraction;
5898 int ret;
5899
5900 mutex_lock(&pcp_batch_high_lock);
5901 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
5902
5903 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5904 if (!write || ret < 0)
5905 goto out;
5906
5907 /* Sanity checking to avoid pcp imbalance */
5908 if (percpu_pagelist_fraction &&
5909 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
5910 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
5911 ret = -EINVAL;
5912 goto out;
5913 }
5914
5915 /* No change? */
5916 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
5917 goto out;
5918
5919 for_each_populated_zone(zone) {
5920 unsigned int cpu;
5921
5922 for_each_possible_cpu(cpu)
5923 pageset_set_high_and_batch(zone,
5924 per_cpu_ptr(zone->pageset, cpu));
5925 }
5926 out:
5927 mutex_unlock(&pcp_batch_high_lock);
5928 return ret;
5929 }
5930
5931 int hashdist = HASHDIST_DEFAULT;
5932
5933 #ifdef CONFIG_NUMA
5934 static int __init set_hashdist(char *str)
5935 {
5936 if (!str)
5937 return 0;
5938 hashdist = simple_strtoul(str, &str, 0);
5939 return 1;
5940 }
5941 __setup("hashdist=", set_hashdist);
5942 #endif
5943
5944 /*
5945 * allocate a large system hash table from bootmem
5946 * - it is assumed that the hash table must contain an exact power-of-2
5947 * quantity of entries
5948 * - limit is the number of hash buckets, not the total allocation size
5949 */
5950 void *__init alloc_large_system_hash(const char *tablename,
5951 unsigned long bucketsize,
5952 unsigned long numentries,
5953 int scale,
5954 int flags,
5955 unsigned int *_hash_shift,
5956 unsigned int *_hash_mask,
5957 unsigned long low_limit,
5958 unsigned long high_limit)
5959 {
5960 unsigned long long max = high_limit;
5961 unsigned long log2qty, size;
5962 void *table = NULL;
5963
5964 /* allow the kernel cmdline to have a say */
5965 if (!numentries) {
5966 /* round applicable memory size up to nearest megabyte */
5967 numentries = nr_kernel_pages;
5968
5969 /* It isn't necessary when PAGE_SIZE >= 1MB */
5970 if (PAGE_SHIFT < 20)
5971 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5972
5973 /* limit to 1 bucket per 2^scale bytes of low memory */
5974 if (scale > PAGE_SHIFT)
5975 numentries >>= (scale - PAGE_SHIFT);
5976 else
5977 numentries <<= (PAGE_SHIFT - scale);
5978
5979 /* Make sure we've got at least a 0-order allocation.. */
5980 if (unlikely(flags & HASH_SMALL)) {
5981 /* Makes no sense without HASH_EARLY */
5982 WARN_ON(!(flags & HASH_EARLY));
5983 if (!(numentries >> *_hash_shift)) {
5984 numentries = 1UL << *_hash_shift;
5985 BUG_ON(!numentries);
5986 }
5987 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5988 numentries = PAGE_SIZE / bucketsize;
5989 }
5990 numentries = roundup_pow_of_two(numentries);
5991
5992 /* limit allocation size to 1/16 total memory by default */
5993 if (max == 0) {
5994 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5995 do_div(max, bucketsize);
5996 }
5997 max = min(max, 0x80000000ULL);
5998
5999 if (numentries < low_limit)
6000 numentries = low_limit;
6001 if (numentries > max)
6002 numentries = max;
6003
6004 log2qty = ilog2(numentries);
6005
6006 do {
6007 size = bucketsize << log2qty;
6008 if (flags & HASH_EARLY)
6009 table = memblock_virt_alloc_nopanic(size, 0);
6010 else if (hashdist)
6011 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6012 else {
6013 /*
6014 * If bucketsize is not a power-of-two, we may free
6015 * some pages at the end of hash table which
6016 * alloc_pages_exact() automatically does
6017 */
6018 if (get_order(size) < MAX_ORDER) {
6019 table = alloc_pages_exact(size, GFP_ATOMIC);
6020 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6021 }
6022 }
6023 } while (!table && size > PAGE_SIZE && --log2qty);
6024
6025 if (!table)
6026 panic("Failed to allocate %s hash table\n", tablename);
6027
6028 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
6029 tablename,
6030 (1UL << log2qty),
6031 ilog2(size) - PAGE_SHIFT,
6032 size);
6033
6034 if (_hash_shift)
6035 *_hash_shift = log2qty;
6036 if (_hash_mask)
6037 *_hash_mask = (1 << log2qty) - 1;
6038
6039 return table;
6040 }
6041
6042 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6043 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6044 unsigned long pfn)
6045 {
6046 #ifdef CONFIG_SPARSEMEM
6047 return __pfn_to_section(pfn)->pageblock_flags;
6048 #else
6049 return zone->pageblock_flags;
6050 #endif /* CONFIG_SPARSEMEM */
6051 }
6052
6053 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6054 {
6055 #ifdef CONFIG_SPARSEMEM
6056 pfn &= (PAGES_PER_SECTION-1);
6057 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6058 #else
6059 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6060 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6061 #endif /* CONFIG_SPARSEMEM */
6062 }
6063
6064 /**
6065 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
6066 * @page: The page within the block of interest
6067 * @start_bitidx: The first bit of interest to retrieve
6068 * @end_bitidx: The last bit of interest
6069 * returns pageblock_bits flags
6070 */
6071 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6072 unsigned long end_bitidx,
6073 unsigned long mask)
6074 {
6075 struct zone *zone;
6076 unsigned long *bitmap;
6077 unsigned long bitidx, word_bitidx;
6078 unsigned long word;
6079
6080 zone = page_zone(page);
6081 bitmap = get_pageblock_bitmap(zone, pfn);
6082 bitidx = pfn_to_bitidx(zone, pfn);
6083 word_bitidx = bitidx / BITS_PER_LONG;
6084 bitidx &= (BITS_PER_LONG-1);
6085
6086 word = bitmap[word_bitidx];
6087 bitidx += end_bitidx;
6088 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6089 }
6090
6091 /**
6092 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6093 * @page: The page within the block of interest
6094 * @start_bitidx: The first bit of interest
6095 * @end_bitidx: The last bit of interest
6096 * @flags: The flags to set
6097 */
6098 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6099 unsigned long pfn,
6100 unsigned long end_bitidx,
6101 unsigned long mask)
6102 {
6103 struct zone *zone;
6104 unsigned long *bitmap;
6105 unsigned long bitidx, word_bitidx;
6106 unsigned long old_word, word;
6107
6108 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6109
6110 zone = page_zone(page);
6111 bitmap = get_pageblock_bitmap(zone, pfn);
6112 bitidx = pfn_to_bitidx(zone, pfn);
6113 word_bitidx = bitidx / BITS_PER_LONG;
6114 bitidx &= (BITS_PER_LONG-1);
6115
6116 VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6117
6118 bitidx += end_bitidx;
6119 mask <<= (BITS_PER_LONG - bitidx - 1);
6120 flags <<= (BITS_PER_LONG - bitidx - 1);
6121
6122 word = ACCESS_ONCE(bitmap[word_bitidx]);
6123 for (;;) {
6124 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6125 if (word == old_word)
6126 break;
6127 word = old_word;
6128 }
6129 }
6130
6131 /*
6132 * This function checks whether pageblock includes unmovable pages or not.
6133 * If @count is not zero, it is okay to include less @count unmovable pages
6134 *
6135 * PageLRU check without isolation or lru_lock could race so that
6136 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6137 * expect this function should be exact.
6138 */
6139 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6140 bool skip_hwpoisoned_pages)
6141 {
6142 unsigned long pfn, iter, found;
6143 int mt;
6144
6145 /*
6146 * For avoiding noise data, lru_add_drain_all() should be called
6147 * If ZONE_MOVABLE, the zone never contains unmovable pages
6148 */
6149 if (zone_idx(zone) == ZONE_MOVABLE)
6150 return false;
6151 mt = get_pageblock_migratetype(page);
6152 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6153 return false;
6154
6155 pfn = page_to_pfn(page);
6156 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6157 unsigned long check = pfn + iter;
6158
6159 if (!pfn_valid_within(check))
6160 continue;
6161
6162 page = pfn_to_page(check);
6163
6164 /*
6165 * Hugepages are not in LRU lists, but they're movable.
6166 * We need not scan over tail pages bacause we don't
6167 * handle each tail page individually in migration.
6168 */
6169 if (PageHuge(page)) {
6170 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6171 continue;
6172 }
6173
6174 /*
6175 * We can't use page_count without pin a page
6176 * because another CPU can free compound page.
6177 * This check already skips compound tails of THP
6178 * because their page->_count is zero at all time.
6179 */
6180 if (!atomic_read(&page->_count)) {
6181 if (PageBuddy(page))
6182 iter += (1 << page_order(page)) - 1;
6183 continue;
6184 }
6185
6186 /*
6187 * The HWPoisoned page may be not in buddy system, and
6188 * page_count() is not 0.
6189 */
6190 if (skip_hwpoisoned_pages && PageHWPoison(page))
6191 continue;
6192
6193 if (!PageLRU(page))
6194 found++;
6195 /*
6196 * If there are RECLAIMABLE pages, we need to check it.
6197 * But now, memory offline itself doesn't call shrink_slab()
6198 * and it still to be fixed.
6199 */
6200 /*
6201 * If the page is not RAM, page_count()should be 0.
6202 * we don't need more check. This is an _used_ not-movable page.
6203 *
6204 * The problematic thing here is PG_reserved pages. PG_reserved
6205 * is set to both of a memory hole page and a _used_ kernel
6206 * page at boot.
6207 */
6208 if (found > count)
6209 return true;
6210 }
6211 return false;
6212 }
6213
6214 bool is_pageblock_removable_nolock(struct page *page)
6215 {
6216 struct zone *zone;
6217 unsigned long pfn;
6218
6219 /*
6220 * We have to be careful here because we are iterating over memory
6221 * sections which are not zone aware so we might end up outside of
6222 * the zone but still within the section.
6223 * We have to take care about the node as well. If the node is offline
6224 * its NODE_DATA will be NULL - see page_zone.
6225 */
6226 if (!node_online(page_to_nid(page)))
6227 return false;
6228
6229 zone = page_zone(page);
6230 pfn = page_to_pfn(page);
6231 if (!zone_spans_pfn(zone, pfn))
6232 return false;
6233
6234 return !has_unmovable_pages(zone, page, 0, true);
6235 }
6236
6237 #ifdef CONFIG_CMA
6238
6239 static unsigned long pfn_max_align_down(unsigned long pfn)
6240 {
6241 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6242 pageblock_nr_pages) - 1);
6243 }
6244
6245 static unsigned long pfn_max_align_up(unsigned long pfn)
6246 {
6247 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6248 pageblock_nr_pages));
6249 }
6250
6251 /* [start, end) must belong to a single zone. */
6252 static int __alloc_contig_migrate_range(struct compact_control *cc,
6253 unsigned long start, unsigned long end)
6254 {
6255 /* This function is based on compact_zone() from compaction.c. */
6256 unsigned long nr_reclaimed;
6257 unsigned long pfn = start;
6258 unsigned int tries = 0;
6259 int ret = 0;
6260
6261 migrate_prep();
6262
6263 while (pfn < end || !list_empty(&cc->migratepages)) {
6264 if (fatal_signal_pending(current)) {
6265 ret = -EINTR;
6266 break;
6267 }
6268
6269 if (list_empty(&cc->migratepages)) {
6270 cc->nr_migratepages = 0;
6271 pfn = isolate_migratepages_range(cc->zone, cc,
6272 pfn, end, true);
6273 if (!pfn) {
6274 ret = -EINTR;
6275 break;
6276 }
6277 tries = 0;
6278 } else if (++tries == 5) {
6279 ret = ret < 0 ? ret : -EBUSY;
6280 break;
6281 }
6282
6283 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6284 &cc->migratepages);
6285 cc->nr_migratepages -= nr_reclaimed;
6286
6287 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6288 NULL, 0, cc->mode, MR_CMA);
6289 }
6290 if (ret < 0) {
6291 putback_movable_pages(&cc->migratepages);
6292 return ret;
6293 }
6294 return 0;
6295 }
6296
6297 /**
6298 * alloc_contig_range() -- tries to allocate given range of pages
6299 * @start: start PFN to allocate
6300 * @end: one-past-the-last PFN to allocate
6301 * @migratetype: migratetype of the underlaying pageblocks (either
6302 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6303 * in range must have the same migratetype and it must
6304 * be either of the two.
6305 *
6306 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6307 * aligned, however it's the caller's responsibility to guarantee that
6308 * we are the only thread that changes migrate type of pageblocks the
6309 * pages fall in.
6310 *
6311 * The PFN range must belong to a single zone.
6312 *
6313 * Returns zero on success or negative error code. On success all
6314 * pages which PFN is in [start, end) are allocated for the caller and
6315 * need to be freed with free_contig_range().
6316 */
6317 int alloc_contig_range(unsigned long start, unsigned long end,
6318 unsigned migratetype)
6319 {
6320 unsigned long outer_start, outer_end;
6321 int ret = 0, order;
6322
6323 struct compact_control cc = {
6324 .nr_migratepages = 0,
6325 .order = -1,
6326 .zone = page_zone(pfn_to_page(start)),
6327 .mode = MIGRATE_SYNC,
6328 .ignore_skip_hint = true,
6329 };
6330 INIT_LIST_HEAD(&cc.migratepages);
6331
6332 /*
6333 * What we do here is we mark all pageblocks in range as
6334 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6335 * have different sizes, and due to the way page allocator
6336 * work, we align the range to biggest of the two pages so
6337 * that page allocator won't try to merge buddies from
6338 * different pageblocks and change MIGRATE_ISOLATE to some
6339 * other migration type.
6340 *
6341 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6342 * migrate the pages from an unaligned range (ie. pages that
6343 * we are interested in). This will put all the pages in
6344 * range back to page allocator as MIGRATE_ISOLATE.
6345 *
6346 * When this is done, we take the pages in range from page
6347 * allocator removing them from the buddy system. This way
6348 * page allocator will never consider using them.
6349 *
6350 * This lets us mark the pageblocks back as
6351 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6352 * aligned range but not in the unaligned, original range are
6353 * put back to page allocator so that buddy can use them.
6354 */
6355
6356 ret = start_isolate_page_range(pfn_max_align_down(start),
6357 pfn_max_align_up(end), migratetype,
6358 false);
6359 if (ret)
6360 return ret;
6361
6362 ret = __alloc_contig_migrate_range(&cc, start, end);
6363 if (ret)
6364 goto done;
6365
6366 /*
6367 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6368 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6369 * more, all pages in [start, end) are free in page allocator.
6370 * What we are going to do is to allocate all pages from
6371 * [start, end) (that is remove them from page allocator).
6372 *
6373 * The only problem is that pages at the beginning and at the
6374 * end of interesting range may be not aligned with pages that
6375 * page allocator holds, ie. they can be part of higher order
6376 * pages. Because of this, we reserve the bigger range and
6377 * once this is done free the pages we are not interested in.
6378 *
6379 * We don't have to hold zone->lock here because the pages are
6380 * isolated thus they won't get removed from buddy.
6381 */
6382
6383 lru_add_drain_all();
6384 drain_all_pages();
6385
6386 order = 0;
6387 outer_start = start;
6388 while (!PageBuddy(pfn_to_page(outer_start))) {
6389 if (++order >= MAX_ORDER) {
6390 ret = -EBUSY;
6391 goto done;
6392 }
6393 outer_start &= ~0UL << order;
6394 }
6395
6396 /* Make sure the range is really isolated. */
6397 if (test_pages_isolated(outer_start, end, false)) {
6398 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6399 outer_start, end);
6400 ret = -EBUSY;
6401 goto done;
6402 }
6403
6404
6405 /* Grab isolated pages from freelists. */
6406 outer_end = isolate_freepages_range(&cc, outer_start, end);
6407 if (!outer_end) {
6408 ret = -EBUSY;
6409 goto done;
6410 }
6411
6412 /* Free head and tail (if any) */
6413 if (start != outer_start)
6414 free_contig_range(outer_start, start - outer_start);
6415 if (end != outer_end)
6416 free_contig_range(end, outer_end - end);
6417
6418 done:
6419 undo_isolate_page_range(pfn_max_align_down(start),
6420 pfn_max_align_up(end), migratetype);
6421 return ret;
6422 }
6423
6424 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6425 {
6426 unsigned int count = 0;
6427
6428 for (; nr_pages--; pfn++) {
6429 struct page *page = pfn_to_page(pfn);
6430
6431 count += page_count(page) != 1;
6432 __free_page(page);
6433 }
6434 WARN(count != 0, "%d pages are still in use!\n", count);
6435 }
6436 #endif
6437
6438 #ifdef CONFIG_MEMORY_HOTPLUG
6439 /*
6440 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6441 * page high values need to be recalulated.
6442 */
6443 void __meminit zone_pcp_update(struct zone *zone)
6444 {
6445 unsigned cpu;
6446 mutex_lock(&pcp_batch_high_lock);
6447 for_each_possible_cpu(cpu)
6448 pageset_set_high_and_batch(zone,
6449 per_cpu_ptr(zone->pageset, cpu));
6450 mutex_unlock(&pcp_batch_high_lock);
6451 }
6452 #endif
6453
6454 void zone_pcp_reset(struct zone *zone)
6455 {
6456 unsigned long flags;
6457 int cpu;
6458 struct per_cpu_pageset *pset;
6459
6460 /* avoid races with drain_pages() */
6461 local_irq_save(flags);
6462 if (zone->pageset != &boot_pageset) {
6463 for_each_online_cpu(cpu) {
6464 pset = per_cpu_ptr(zone->pageset, cpu);
6465 drain_zonestat(zone, pset);
6466 }
6467 free_percpu(zone->pageset);
6468 zone->pageset = &boot_pageset;
6469 }
6470 local_irq_restore(flags);
6471 }
6472
6473 #ifdef CONFIG_MEMORY_HOTREMOVE
6474 /*
6475 * All pages in the range must be isolated before calling this.
6476 */
6477 void
6478 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6479 {
6480 struct page *page;
6481 struct zone *zone;
6482 unsigned int order, i;
6483 unsigned long pfn;
6484 unsigned long flags;
6485 /* find the first valid pfn */
6486 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6487 if (pfn_valid(pfn))
6488 break;
6489 if (pfn == end_pfn)
6490 return;
6491 zone = page_zone(pfn_to_page(pfn));
6492 spin_lock_irqsave(&zone->lock, flags);
6493 pfn = start_pfn;
6494 while (pfn < end_pfn) {
6495 if (!pfn_valid(pfn)) {
6496 pfn++;
6497 continue;
6498 }
6499 page = pfn_to_page(pfn);
6500 /*
6501 * The HWPoisoned page may be not in buddy system, and
6502 * page_count() is not 0.
6503 */
6504 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6505 pfn++;
6506 SetPageReserved(page);
6507 continue;
6508 }
6509
6510 BUG_ON(page_count(page));
6511 BUG_ON(!PageBuddy(page));
6512 order = page_order(page);
6513 #ifdef CONFIG_DEBUG_VM
6514 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6515 pfn, 1 << order, end_pfn);
6516 #endif
6517 list_del(&page->lru);
6518 rmv_page_order(page);
6519 zone->free_area[order].nr_free--;
6520 for (i = 0; i < (1 << order); i++)
6521 SetPageReserved((page+i));
6522 pfn += (1 << order);
6523 }
6524 spin_unlock_irqrestore(&zone->lock, flags);
6525 }
6526 #endif
6527
6528 #ifdef CONFIG_MEMORY_FAILURE
6529 bool is_free_buddy_page(struct page *page)
6530 {
6531 struct zone *zone = page_zone(page);
6532 unsigned long pfn = page_to_pfn(page);
6533 unsigned long flags;
6534 unsigned int order;
6535
6536 spin_lock_irqsave(&zone->lock, flags);
6537 for (order = 0; order < MAX_ORDER; order++) {
6538 struct page *page_head = page - (pfn & ((1 << order) - 1));
6539
6540 if (PageBuddy(page_head) && page_order(page_head) >= order)
6541 break;
6542 }
6543 spin_unlock_irqrestore(&zone->lock, flags);
6544
6545 return order < MAX_ORDER;
6546 }
6547 #endif
6548
6549 static const struct trace_print_flags pageflag_names[] = {
6550 {1UL << PG_locked, "locked" },
6551 {1UL << PG_error, "error" },
6552 {1UL << PG_referenced, "referenced" },
6553 {1UL << PG_uptodate, "uptodate" },
6554 {1UL << PG_dirty, "dirty" },
6555 {1UL << PG_lru, "lru" },
6556 {1UL << PG_active, "active" },
6557 {1UL << PG_slab, "slab" },
6558 {1UL << PG_owner_priv_1, "owner_priv_1" },
6559 {1UL << PG_arch_1, "arch_1" },
6560 {1UL << PG_reserved, "reserved" },
6561 {1UL << PG_private, "private" },
6562 {1UL << PG_private_2, "private_2" },
6563 {1UL << PG_writeback, "writeback" },
6564 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6565 {1UL << PG_head, "head" },
6566 {1UL << PG_tail, "tail" },
6567 #else
6568 {1UL << PG_compound, "compound" },
6569 #endif
6570 {1UL << PG_swapcache, "swapcache" },
6571 {1UL << PG_mappedtodisk, "mappedtodisk" },
6572 {1UL << PG_reclaim, "reclaim" },
6573 {1UL << PG_swapbacked, "swapbacked" },
6574 {1UL << PG_unevictable, "unevictable" },
6575 #ifdef CONFIG_MMU
6576 {1UL << PG_mlocked, "mlocked" },
6577 #endif
6578 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6579 {1UL << PG_uncached, "uncached" },
6580 #endif
6581 #ifdef CONFIG_MEMORY_FAILURE
6582 {1UL << PG_hwpoison, "hwpoison" },
6583 #endif
6584 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6585 {1UL << PG_compound_lock, "compound_lock" },
6586 #endif
6587 };
6588
6589 static void dump_page_flags(unsigned long flags)
6590 {
6591 const char *delim = "";
6592 unsigned long mask;
6593 int i;
6594
6595 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6596
6597 printk(KERN_ALERT "page flags: %#lx(", flags);
6598
6599 /* remove zone id */
6600 flags &= (1UL << NR_PAGEFLAGS) - 1;
6601
6602 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6603
6604 mask = pageflag_names[i].mask;
6605 if ((flags & mask) != mask)
6606 continue;
6607
6608 flags &= ~mask;
6609 printk("%s%s", delim, pageflag_names[i].name);
6610 delim = "|";
6611 }
6612
6613 /* check for left over flags */
6614 if (flags)
6615 printk("%s%#lx", delim, flags);
6616
6617 printk(")\n");
6618 }
6619
6620 void dump_page_badflags(struct page *page, const char *reason,
6621 unsigned long badflags)
6622 {
6623 printk(KERN_ALERT
6624 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6625 page, atomic_read(&page->_count), page_mapcount(page),
6626 page->mapping, page->index);
6627 dump_page_flags(page->flags);
6628 if (reason)
6629 pr_alert("page dumped because: %s\n", reason);
6630 if (page->flags & badflags) {
6631 pr_alert("bad because of flags:\n");
6632 dump_page_flags(page->flags & badflags);
6633 }
6634 mem_cgroup_print_bad_page(page);
6635 }
6636
6637 void dump_page(struct page *page, const char *reason)
6638 {
6639 dump_page_badflags(page, reason, 0);
6640 }
6641 EXPORT_SYMBOL(dump_page);
This page took 0.178921 seconds and 5 git commands to generate.