kernel-wide: fix missing validations on __get/__put/__copy_to/__copy_from_user()
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page-debug-flags.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64
65 #include <asm/sections.h>
66 #include <asm/tlbflush.h>
67 #include <asm/div64.h>
68 #include "internal.h"
69
70 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
71 static DEFINE_MUTEX(pcp_batch_high_lock);
72
73 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
74 DEFINE_PER_CPU(int, numa_node);
75 EXPORT_PER_CPU_SYMBOL(numa_node);
76 #endif
77
78 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
79 /*
80 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
81 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
82 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
83 * defined in <linux/topology.h>.
84 */
85 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
86 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
87 #endif
88
89 /*
90 * Array of node states.
91 */
92 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
93 [N_POSSIBLE] = NODE_MASK_ALL,
94 [N_ONLINE] = { { [0] = 1UL } },
95 #ifndef CONFIG_NUMA
96 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
97 #ifdef CONFIG_HIGHMEM
98 [N_HIGH_MEMORY] = { { [0] = 1UL } },
99 #endif
100 #ifdef CONFIG_MOVABLE_NODE
101 [N_MEMORY] = { { [0] = 1UL } },
102 #endif
103 [N_CPU] = { { [0] = 1UL } },
104 #endif /* NUMA */
105 };
106 EXPORT_SYMBOL(node_states);
107
108 /* Protect totalram_pages and zone->managed_pages */
109 static DEFINE_SPINLOCK(managed_page_count_lock);
110
111 unsigned long totalram_pages __read_mostly;
112 unsigned long totalreserve_pages __read_mostly;
113 /*
114 * When calculating the number of globally allowed dirty pages, there
115 * is a certain number of per-zone reserves that should not be
116 * considered dirtyable memory. This is the sum of those reserves
117 * over all existing zones that contribute dirtyable memory.
118 */
119 unsigned long dirty_balance_reserve __read_mostly;
120
121 int percpu_pagelist_fraction;
122 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
123
124 #ifdef CONFIG_PM_SLEEP
125 /*
126 * The following functions are used by the suspend/hibernate code to temporarily
127 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
128 * while devices are suspended. To avoid races with the suspend/hibernate code,
129 * they should always be called with pm_mutex held (gfp_allowed_mask also should
130 * only be modified with pm_mutex held, unless the suspend/hibernate code is
131 * guaranteed not to run in parallel with that modification).
132 */
133
134 static gfp_t saved_gfp_mask;
135
136 void pm_restore_gfp_mask(void)
137 {
138 WARN_ON(!mutex_is_locked(&pm_mutex));
139 if (saved_gfp_mask) {
140 gfp_allowed_mask = saved_gfp_mask;
141 saved_gfp_mask = 0;
142 }
143 }
144
145 void pm_restrict_gfp_mask(void)
146 {
147 WARN_ON(!mutex_is_locked(&pm_mutex));
148 WARN_ON(saved_gfp_mask);
149 saved_gfp_mask = gfp_allowed_mask;
150 gfp_allowed_mask &= ~GFP_IOFS;
151 }
152
153 bool pm_suspended_storage(void)
154 {
155 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
156 return false;
157 return true;
158 }
159 #endif /* CONFIG_PM_SLEEP */
160
161 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
162 int pageblock_order __read_mostly;
163 #endif
164
165 static void __free_pages_ok(struct page *page, unsigned int order);
166
167 /*
168 * results with 256, 32 in the lowmem_reserve sysctl:
169 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
170 * 1G machine -> (16M dma, 784M normal, 224M high)
171 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
172 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
173 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
174 *
175 * TBD: should special case ZONE_DMA32 machines here - in those we normally
176 * don't need any ZONE_NORMAL reservation
177 */
178 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
179 #ifdef CONFIG_ZONE_DMA
180 256,
181 #endif
182 #ifdef CONFIG_ZONE_DMA32
183 256,
184 #endif
185 #ifdef CONFIG_HIGHMEM
186 32,
187 #endif
188 32,
189 };
190
191 EXPORT_SYMBOL(totalram_pages);
192
193 static char * const zone_names[MAX_NR_ZONES] = {
194 #ifdef CONFIG_ZONE_DMA
195 "DMA",
196 #endif
197 #ifdef CONFIG_ZONE_DMA32
198 "DMA32",
199 #endif
200 "Normal",
201 #ifdef CONFIG_HIGHMEM
202 "HighMem",
203 #endif
204 "Movable",
205 };
206
207 int min_free_kbytes = 1024;
208 int user_min_free_kbytes;
209
210 static unsigned long __meminitdata nr_kernel_pages;
211 static unsigned long __meminitdata nr_all_pages;
212 static unsigned long __meminitdata dma_reserve;
213
214 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
215 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
216 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
217 static unsigned long __initdata required_kernelcore;
218 static unsigned long __initdata required_movablecore;
219 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
220
221 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
222 int movable_zone;
223 EXPORT_SYMBOL(movable_zone);
224 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
225
226 #if MAX_NUMNODES > 1
227 int nr_node_ids __read_mostly = MAX_NUMNODES;
228 int nr_online_nodes __read_mostly = 1;
229 EXPORT_SYMBOL(nr_node_ids);
230 EXPORT_SYMBOL(nr_online_nodes);
231 #endif
232
233 int page_group_by_mobility_disabled __read_mostly;
234
235 void set_pageblock_migratetype(struct page *page, int migratetype)
236 {
237
238 if (unlikely(page_group_by_mobility_disabled))
239 migratetype = MIGRATE_UNMOVABLE;
240
241 set_pageblock_flags_group(page, (unsigned long)migratetype,
242 PB_migrate, PB_migrate_end);
243 }
244
245 bool oom_killer_disabled __read_mostly;
246
247 #ifdef CONFIG_DEBUG_VM
248 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
249 {
250 int ret = 0;
251 unsigned seq;
252 unsigned long pfn = page_to_pfn(page);
253 unsigned long sp, start_pfn;
254
255 do {
256 seq = zone_span_seqbegin(zone);
257 start_pfn = zone->zone_start_pfn;
258 sp = zone->spanned_pages;
259 if (!zone_spans_pfn(zone, pfn))
260 ret = 1;
261 } while (zone_span_seqretry(zone, seq));
262
263 if (ret)
264 pr_err("page %lu outside zone [ %lu - %lu ]\n",
265 pfn, start_pfn, start_pfn + sp);
266
267 return ret;
268 }
269
270 static int page_is_consistent(struct zone *zone, struct page *page)
271 {
272 if (!pfn_valid_within(page_to_pfn(page)))
273 return 0;
274 if (zone != page_zone(page))
275 return 0;
276
277 return 1;
278 }
279 /*
280 * Temporary debugging check for pages not lying within a given zone.
281 */
282 static int bad_range(struct zone *zone, struct page *page)
283 {
284 if (page_outside_zone_boundaries(zone, page))
285 return 1;
286 if (!page_is_consistent(zone, page))
287 return 1;
288
289 return 0;
290 }
291 #else
292 static inline int bad_range(struct zone *zone, struct page *page)
293 {
294 return 0;
295 }
296 #endif
297
298 static void bad_page(struct page *page)
299 {
300 static unsigned long resume;
301 static unsigned long nr_shown;
302 static unsigned long nr_unshown;
303
304 /* Don't complain about poisoned pages */
305 if (PageHWPoison(page)) {
306 page_mapcount_reset(page); /* remove PageBuddy */
307 return;
308 }
309
310 /*
311 * Allow a burst of 60 reports, then keep quiet for that minute;
312 * or allow a steady drip of one report per second.
313 */
314 if (nr_shown == 60) {
315 if (time_before(jiffies, resume)) {
316 nr_unshown++;
317 goto out;
318 }
319 if (nr_unshown) {
320 printk(KERN_ALERT
321 "BUG: Bad page state: %lu messages suppressed\n",
322 nr_unshown);
323 nr_unshown = 0;
324 }
325 nr_shown = 0;
326 }
327 if (nr_shown++ == 0)
328 resume = jiffies + 60 * HZ;
329
330 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
331 current->comm, page_to_pfn(page));
332 dump_page(page);
333
334 print_modules();
335 dump_stack();
336 out:
337 /* Leave bad fields for debug, except PageBuddy could make trouble */
338 page_mapcount_reset(page); /* remove PageBuddy */
339 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
340 }
341
342 /*
343 * Higher-order pages are called "compound pages". They are structured thusly:
344 *
345 * The first PAGE_SIZE page is called the "head page".
346 *
347 * The remaining PAGE_SIZE pages are called "tail pages".
348 *
349 * All pages have PG_compound set. All tail pages have their ->first_page
350 * pointing at the head page.
351 *
352 * The first tail page's ->lru.next holds the address of the compound page's
353 * put_page() function. Its ->lru.prev holds the order of allocation.
354 * This usage means that zero-order pages may not be compound.
355 */
356
357 static void free_compound_page(struct page *page)
358 {
359 __free_pages_ok(page, compound_order(page));
360 }
361
362 void prep_compound_page(struct page *page, unsigned long order)
363 {
364 int i;
365 int nr_pages = 1 << order;
366
367 set_compound_page_dtor(page, free_compound_page);
368 set_compound_order(page, order);
369 __SetPageHead(page);
370 for (i = 1; i < nr_pages; i++) {
371 struct page *p = page + i;
372 __SetPageTail(p);
373 set_page_count(p, 0);
374 p->first_page = page;
375 }
376 }
377
378 /* update __split_huge_page_refcount if you change this function */
379 static int destroy_compound_page(struct page *page, unsigned long order)
380 {
381 int i;
382 int nr_pages = 1 << order;
383 int bad = 0;
384
385 if (unlikely(compound_order(page) != order)) {
386 bad_page(page);
387 bad++;
388 }
389
390 __ClearPageHead(page);
391
392 for (i = 1; i < nr_pages; i++) {
393 struct page *p = page + i;
394
395 if (unlikely(!PageTail(p) || (p->first_page != page))) {
396 bad_page(page);
397 bad++;
398 }
399 __ClearPageTail(p);
400 }
401
402 return bad;
403 }
404
405 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
406 {
407 int i;
408
409 /*
410 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
411 * and __GFP_HIGHMEM from hard or soft interrupt context.
412 */
413 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
414 for (i = 0; i < (1 << order); i++)
415 clear_highpage(page + i);
416 }
417
418 #ifdef CONFIG_DEBUG_PAGEALLOC
419 unsigned int _debug_guardpage_minorder;
420
421 static int __init debug_guardpage_minorder_setup(char *buf)
422 {
423 unsigned long res;
424
425 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
426 printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
427 return 0;
428 }
429 _debug_guardpage_minorder = res;
430 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
431 return 0;
432 }
433 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
434
435 static inline void set_page_guard_flag(struct page *page)
436 {
437 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
438 }
439
440 static inline void clear_page_guard_flag(struct page *page)
441 {
442 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
443 }
444 #else
445 static inline void set_page_guard_flag(struct page *page) { }
446 static inline void clear_page_guard_flag(struct page *page) { }
447 #endif
448
449 static inline void set_page_order(struct page *page, int order)
450 {
451 set_page_private(page, order);
452 __SetPageBuddy(page);
453 }
454
455 static inline void rmv_page_order(struct page *page)
456 {
457 __ClearPageBuddy(page);
458 set_page_private(page, 0);
459 }
460
461 /*
462 * Locate the struct page for both the matching buddy in our
463 * pair (buddy1) and the combined O(n+1) page they form (page).
464 *
465 * 1) Any buddy B1 will have an order O twin B2 which satisfies
466 * the following equation:
467 * B2 = B1 ^ (1 << O)
468 * For example, if the starting buddy (buddy2) is #8 its order
469 * 1 buddy is #10:
470 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
471 *
472 * 2) Any buddy B will have an order O+1 parent P which
473 * satisfies the following equation:
474 * P = B & ~(1 << O)
475 *
476 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
477 */
478 static inline unsigned long
479 __find_buddy_index(unsigned long page_idx, unsigned int order)
480 {
481 return page_idx ^ (1 << order);
482 }
483
484 /*
485 * This function checks whether a page is free && is the buddy
486 * we can do coalesce a page and its buddy if
487 * (a) the buddy is not in a hole &&
488 * (b) the buddy is in the buddy system &&
489 * (c) a page and its buddy have the same order &&
490 * (d) a page and its buddy are in the same zone.
491 *
492 * For recording whether a page is in the buddy system, we set ->_mapcount
493 * PAGE_BUDDY_MAPCOUNT_VALUE.
494 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
495 * serialized by zone->lock.
496 *
497 * For recording page's order, we use page_private(page).
498 */
499 static inline int page_is_buddy(struct page *page, struct page *buddy,
500 int order)
501 {
502 if (!pfn_valid_within(page_to_pfn(buddy)))
503 return 0;
504
505 if (page_zone_id(page) != page_zone_id(buddy))
506 return 0;
507
508 if (page_is_guard(buddy) && page_order(buddy) == order) {
509 VM_BUG_ON(page_count(buddy) != 0);
510 return 1;
511 }
512
513 if (PageBuddy(buddy) && page_order(buddy) == order) {
514 VM_BUG_ON(page_count(buddy) != 0);
515 return 1;
516 }
517 return 0;
518 }
519
520 /*
521 * Freeing function for a buddy system allocator.
522 *
523 * The concept of a buddy system is to maintain direct-mapped table
524 * (containing bit values) for memory blocks of various "orders".
525 * The bottom level table contains the map for the smallest allocatable
526 * units of memory (here, pages), and each level above it describes
527 * pairs of units from the levels below, hence, "buddies".
528 * At a high level, all that happens here is marking the table entry
529 * at the bottom level available, and propagating the changes upward
530 * as necessary, plus some accounting needed to play nicely with other
531 * parts of the VM system.
532 * At each level, we keep a list of pages, which are heads of continuous
533 * free pages of length of (1 << order) and marked with _mapcount
534 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
535 * field.
536 * So when we are allocating or freeing one, we can derive the state of the
537 * other. That is, if we allocate a small block, and both were
538 * free, the remainder of the region must be split into blocks.
539 * If a block is freed, and its buddy is also free, then this
540 * triggers coalescing into a block of larger size.
541 *
542 * -- nyc
543 */
544
545 static inline void __free_one_page(struct page *page,
546 struct zone *zone, unsigned int order,
547 int migratetype)
548 {
549 unsigned long page_idx;
550 unsigned long combined_idx;
551 unsigned long uninitialized_var(buddy_idx);
552 struct page *buddy;
553
554 VM_BUG_ON(!zone_is_initialized(zone));
555
556 if (unlikely(PageCompound(page)))
557 if (unlikely(destroy_compound_page(page, order)))
558 return;
559
560 VM_BUG_ON(migratetype == -1);
561
562 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
563
564 VM_BUG_ON(page_idx & ((1 << order) - 1));
565 VM_BUG_ON(bad_range(zone, page));
566
567 while (order < MAX_ORDER-1) {
568 buddy_idx = __find_buddy_index(page_idx, order);
569 buddy = page + (buddy_idx - page_idx);
570 if (!page_is_buddy(page, buddy, order))
571 break;
572 /*
573 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
574 * merge with it and move up one order.
575 */
576 if (page_is_guard(buddy)) {
577 clear_page_guard_flag(buddy);
578 set_page_private(page, 0);
579 __mod_zone_freepage_state(zone, 1 << order,
580 migratetype);
581 } else {
582 list_del(&buddy->lru);
583 zone->free_area[order].nr_free--;
584 rmv_page_order(buddy);
585 }
586 combined_idx = buddy_idx & page_idx;
587 page = page + (combined_idx - page_idx);
588 page_idx = combined_idx;
589 order++;
590 }
591 set_page_order(page, order);
592
593 /*
594 * If this is not the largest possible page, check if the buddy
595 * of the next-highest order is free. If it is, it's possible
596 * that pages are being freed that will coalesce soon. In case,
597 * that is happening, add the free page to the tail of the list
598 * so it's less likely to be used soon and more likely to be merged
599 * as a higher order page
600 */
601 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
602 struct page *higher_page, *higher_buddy;
603 combined_idx = buddy_idx & page_idx;
604 higher_page = page + (combined_idx - page_idx);
605 buddy_idx = __find_buddy_index(combined_idx, order + 1);
606 higher_buddy = higher_page + (buddy_idx - combined_idx);
607 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
608 list_add_tail(&page->lru,
609 &zone->free_area[order].free_list[migratetype]);
610 goto out;
611 }
612 }
613
614 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
615 out:
616 zone->free_area[order].nr_free++;
617 }
618
619 static inline int free_pages_check(struct page *page)
620 {
621 if (unlikely(page_mapcount(page) |
622 (page->mapping != NULL) |
623 (atomic_read(&page->_count) != 0) |
624 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
625 (mem_cgroup_bad_page_check(page)))) {
626 bad_page(page);
627 return 1;
628 }
629 page_nid_reset_last(page);
630 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
631 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
632 return 0;
633 }
634
635 /*
636 * Frees a number of pages from the PCP lists
637 * Assumes all pages on list are in same zone, and of same order.
638 * count is the number of pages to free.
639 *
640 * If the zone was previously in an "all pages pinned" state then look to
641 * see if this freeing clears that state.
642 *
643 * And clear the zone's pages_scanned counter, to hold off the "all pages are
644 * pinned" detection logic.
645 */
646 static void free_pcppages_bulk(struct zone *zone, int count,
647 struct per_cpu_pages *pcp)
648 {
649 int migratetype = 0;
650 int batch_free = 0;
651 int to_free = count;
652
653 spin_lock(&zone->lock);
654 zone->pages_scanned = 0;
655
656 while (to_free) {
657 struct page *page;
658 struct list_head *list;
659
660 /*
661 * Remove pages from lists in a round-robin fashion. A
662 * batch_free count is maintained that is incremented when an
663 * empty list is encountered. This is so more pages are freed
664 * off fuller lists instead of spinning excessively around empty
665 * lists
666 */
667 do {
668 batch_free++;
669 if (++migratetype == MIGRATE_PCPTYPES)
670 migratetype = 0;
671 list = &pcp->lists[migratetype];
672 } while (list_empty(list));
673
674 /* This is the only non-empty list. Free them all. */
675 if (batch_free == MIGRATE_PCPTYPES)
676 batch_free = to_free;
677
678 do {
679 int mt; /* migratetype of the to-be-freed page */
680
681 page = list_entry(list->prev, struct page, lru);
682 /* must delete as __free_one_page list manipulates */
683 list_del(&page->lru);
684 mt = get_freepage_migratetype(page);
685 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
686 __free_one_page(page, zone, 0, mt);
687 trace_mm_page_pcpu_drain(page, 0, mt);
688 if (likely(!is_migrate_isolate_page(page))) {
689 __mod_zone_page_state(zone, NR_FREE_PAGES, 1);
690 if (is_migrate_cma(mt))
691 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
692 }
693 } while (--to_free && --batch_free && !list_empty(list));
694 }
695 spin_unlock(&zone->lock);
696 }
697
698 static void free_one_page(struct zone *zone, struct page *page, int order,
699 int migratetype)
700 {
701 spin_lock(&zone->lock);
702 zone->pages_scanned = 0;
703
704 __free_one_page(page, zone, order, migratetype);
705 if (unlikely(!is_migrate_isolate(migratetype)))
706 __mod_zone_freepage_state(zone, 1 << order, migratetype);
707 spin_unlock(&zone->lock);
708 }
709
710 static bool free_pages_prepare(struct page *page, unsigned int order)
711 {
712 int i;
713 int bad = 0;
714
715 trace_mm_page_free(page, order);
716 kmemcheck_free_shadow(page, order);
717
718 if (PageAnon(page))
719 page->mapping = NULL;
720 for (i = 0; i < (1 << order); i++)
721 bad += free_pages_check(page + i);
722 if (bad)
723 return false;
724
725 if (!PageHighMem(page)) {
726 debug_check_no_locks_freed(page_address(page),
727 PAGE_SIZE << order);
728 debug_check_no_obj_freed(page_address(page),
729 PAGE_SIZE << order);
730 }
731 arch_free_page(page, order);
732 kernel_map_pages(page, 1 << order, 0);
733
734 return true;
735 }
736
737 static void __free_pages_ok(struct page *page, unsigned int order)
738 {
739 unsigned long flags;
740 int migratetype;
741
742 if (!free_pages_prepare(page, order))
743 return;
744
745 local_irq_save(flags);
746 __count_vm_events(PGFREE, 1 << order);
747 migratetype = get_pageblock_migratetype(page);
748 set_freepage_migratetype(page, migratetype);
749 free_one_page(page_zone(page), page, order, migratetype);
750 local_irq_restore(flags);
751 }
752
753 void __init __free_pages_bootmem(struct page *page, unsigned int order)
754 {
755 unsigned int nr_pages = 1 << order;
756 struct page *p = page;
757 unsigned int loop;
758
759 prefetchw(p);
760 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
761 prefetchw(p + 1);
762 __ClearPageReserved(p);
763 set_page_count(p, 0);
764 }
765 __ClearPageReserved(p);
766 set_page_count(p, 0);
767
768 page_zone(page)->managed_pages += nr_pages;
769 set_page_refcounted(page);
770 __free_pages(page, order);
771 }
772
773 #ifdef CONFIG_CMA
774 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
775 void __init init_cma_reserved_pageblock(struct page *page)
776 {
777 unsigned i = pageblock_nr_pages;
778 struct page *p = page;
779
780 do {
781 __ClearPageReserved(p);
782 set_page_count(p, 0);
783 } while (++p, --i);
784
785 set_page_refcounted(page);
786 set_pageblock_migratetype(page, MIGRATE_CMA);
787 __free_pages(page, pageblock_order);
788 adjust_managed_page_count(page, pageblock_nr_pages);
789 }
790 #endif
791
792 /*
793 * The order of subdivision here is critical for the IO subsystem.
794 * Please do not alter this order without good reasons and regression
795 * testing. Specifically, as large blocks of memory are subdivided,
796 * the order in which smaller blocks are delivered depends on the order
797 * they're subdivided in this function. This is the primary factor
798 * influencing the order in which pages are delivered to the IO
799 * subsystem according to empirical testing, and this is also justified
800 * by considering the behavior of a buddy system containing a single
801 * large block of memory acted on by a series of small allocations.
802 * This behavior is a critical factor in sglist merging's success.
803 *
804 * -- nyc
805 */
806 static inline void expand(struct zone *zone, struct page *page,
807 int low, int high, struct free_area *area,
808 int migratetype)
809 {
810 unsigned long size = 1 << high;
811
812 while (high > low) {
813 area--;
814 high--;
815 size >>= 1;
816 VM_BUG_ON(bad_range(zone, &page[size]));
817
818 #ifdef CONFIG_DEBUG_PAGEALLOC
819 if (high < debug_guardpage_minorder()) {
820 /*
821 * Mark as guard pages (or page), that will allow to
822 * merge back to allocator when buddy will be freed.
823 * Corresponding page table entries will not be touched,
824 * pages will stay not present in virtual address space
825 */
826 INIT_LIST_HEAD(&page[size].lru);
827 set_page_guard_flag(&page[size]);
828 set_page_private(&page[size], high);
829 /* Guard pages are not available for any usage */
830 __mod_zone_freepage_state(zone, -(1 << high),
831 migratetype);
832 continue;
833 }
834 #endif
835 list_add(&page[size].lru, &area->free_list[migratetype]);
836 area->nr_free++;
837 set_page_order(&page[size], high);
838 }
839 }
840
841 /*
842 * This page is about to be returned from the page allocator
843 */
844 static inline int check_new_page(struct page *page)
845 {
846 if (unlikely(page_mapcount(page) |
847 (page->mapping != NULL) |
848 (atomic_read(&page->_count) != 0) |
849 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
850 (mem_cgroup_bad_page_check(page)))) {
851 bad_page(page);
852 return 1;
853 }
854 return 0;
855 }
856
857 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
858 {
859 int i;
860
861 for (i = 0; i < (1 << order); i++) {
862 struct page *p = page + i;
863 if (unlikely(check_new_page(p)))
864 return 1;
865 }
866
867 set_page_private(page, 0);
868 set_page_refcounted(page);
869
870 arch_alloc_page(page, order);
871 kernel_map_pages(page, 1 << order, 1);
872
873 if (gfp_flags & __GFP_ZERO)
874 prep_zero_page(page, order, gfp_flags);
875
876 if (order && (gfp_flags & __GFP_COMP))
877 prep_compound_page(page, order);
878
879 return 0;
880 }
881
882 /*
883 * Go through the free lists for the given migratetype and remove
884 * the smallest available page from the freelists
885 */
886 static inline
887 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
888 int migratetype)
889 {
890 unsigned int current_order;
891 struct free_area *area;
892 struct page *page;
893
894 /* Find a page of the appropriate size in the preferred list */
895 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
896 area = &(zone->free_area[current_order]);
897 if (list_empty(&area->free_list[migratetype]))
898 continue;
899
900 page = list_entry(area->free_list[migratetype].next,
901 struct page, lru);
902 list_del(&page->lru);
903 rmv_page_order(page);
904 area->nr_free--;
905 expand(zone, page, order, current_order, area, migratetype);
906 return page;
907 }
908
909 return NULL;
910 }
911
912
913 /*
914 * This array describes the order lists are fallen back to when
915 * the free lists for the desirable migrate type are depleted
916 */
917 static int fallbacks[MIGRATE_TYPES][4] = {
918 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
919 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
920 #ifdef CONFIG_CMA
921 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
922 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
923 #else
924 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
925 #endif
926 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
927 #ifdef CONFIG_MEMORY_ISOLATION
928 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
929 #endif
930 };
931
932 /*
933 * Move the free pages in a range to the free lists of the requested type.
934 * Note that start_page and end_pages are not aligned on a pageblock
935 * boundary. If alignment is required, use move_freepages_block()
936 */
937 int move_freepages(struct zone *zone,
938 struct page *start_page, struct page *end_page,
939 int migratetype)
940 {
941 struct page *page;
942 unsigned long order;
943 int pages_moved = 0;
944
945 #ifndef CONFIG_HOLES_IN_ZONE
946 /*
947 * page_zone is not safe to call in this context when
948 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
949 * anyway as we check zone boundaries in move_freepages_block().
950 * Remove at a later date when no bug reports exist related to
951 * grouping pages by mobility
952 */
953 BUG_ON(page_zone(start_page) != page_zone(end_page));
954 #endif
955
956 for (page = start_page; page <= end_page;) {
957 /* Make sure we are not inadvertently changing nodes */
958 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
959
960 if (!pfn_valid_within(page_to_pfn(page))) {
961 page++;
962 continue;
963 }
964
965 if (!PageBuddy(page)) {
966 page++;
967 continue;
968 }
969
970 order = page_order(page);
971 list_move(&page->lru,
972 &zone->free_area[order].free_list[migratetype]);
973 set_freepage_migratetype(page, migratetype);
974 page += 1 << order;
975 pages_moved += 1 << order;
976 }
977
978 return pages_moved;
979 }
980
981 int move_freepages_block(struct zone *zone, struct page *page,
982 int migratetype)
983 {
984 unsigned long start_pfn, end_pfn;
985 struct page *start_page, *end_page;
986
987 start_pfn = page_to_pfn(page);
988 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
989 start_page = pfn_to_page(start_pfn);
990 end_page = start_page + pageblock_nr_pages - 1;
991 end_pfn = start_pfn + pageblock_nr_pages - 1;
992
993 /* Do not cross zone boundaries */
994 if (!zone_spans_pfn(zone, start_pfn))
995 start_page = page;
996 if (!zone_spans_pfn(zone, end_pfn))
997 return 0;
998
999 return move_freepages(zone, start_page, end_page, migratetype);
1000 }
1001
1002 static void change_pageblock_range(struct page *pageblock_page,
1003 int start_order, int migratetype)
1004 {
1005 int nr_pageblocks = 1 << (start_order - pageblock_order);
1006
1007 while (nr_pageblocks--) {
1008 set_pageblock_migratetype(pageblock_page, migratetype);
1009 pageblock_page += pageblock_nr_pages;
1010 }
1011 }
1012
1013 /*
1014 * If breaking a large block of pages, move all free pages to the preferred
1015 * allocation list. If falling back for a reclaimable kernel allocation, be
1016 * more aggressive about taking ownership of free pages.
1017 *
1018 * On the other hand, never change migration type of MIGRATE_CMA pageblocks
1019 * nor move CMA pages to different free lists. We don't want unmovable pages
1020 * to be allocated from MIGRATE_CMA areas.
1021 *
1022 * Returns the new migratetype of the pageblock (or the same old migratetype
1023 * if it was unchanged).
1024 */
1025 static int try_to_steal_freepages(struct zone *zone, struct page *page,
1026 int start_type, int fallback_type)
1027 {
1028 int current_order = page_order(page);
1029
1030 if (is_migrate_cma(fallback_type))
1031 return fallback_type;
1032
1033 /* Take ownership for orders >= pageblock_order */
1034 if (current_order >= pageblock_order) {
1035 change_pageblock_range(page, current_order, start_type);
1036 return start_type;
1037 }
1038
1039 if (current_order >= pageblock_order / 2 ||
1040 start_type == MIGRATE_RECLAIMABLE ||
1041 page_group_by_mobility_disabled) {
1042 int pages;
1043
1044 pages = move_freepages_block(zone, page, start_type);
1045
1046 /* Claim the whole block if over half of it is free */
1047 if (pages >= (1 << (pageblock_order-1)) ||
1048 page_group_by_mobility_disabled) {
1049
1050 set_pageblock_migratetype(page, start_type);
1051 return start_type;
1052 }
1053
1054 }
1055
1056 return fallback_type;
1057 }
1058
1059 /* Remove an element from the buddy allocator from the fallback list */
1060 static inline struct page *
1061 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
1062 {
1063 struct free_area *area;
1064 int current_order;
1065 struct page *page;
1066 int migratetype, new_type, i;
1067
1068 /* Find the largest possible block of pages in the other list */
1069 for (current_order = MAX_ORDER-1; current_order >= order;
1070 --current_order) {
1071 for (i = 0;; i++) {
1072 migratetype = fallbacks[start_migratetype][i];
1073
1074 /* MIGRATE_RESERVE handled later if necessary */
1075 if (migratetype == MIGRATE_RESERVE)
1076 break;
1077
1078 area = &(zone->free_area[current_order]);
1079 if (list_empty(&area->free_list[migratetype]))
1080 continue;
1081
1082 page = list_entry(area->free_list[migratetype].next,
1083 struct page, lru);
1084 area->nr_free--;
1085
1086 new_type = try_to_steal_freepages(zone, page,
1087 start_migratetype,
1088 migratetype);
1089
1090 /* Remove the page from the freelists */
1091 list_del(&page->lru);
1092 rmv_page_order(page);
1093
1094 /*
1095 * Borrow the excess buddy pages as well, irrespective
1096 * of whether we stole freepages, or took ownership of
1097 * the pageblock or not.
1098 *
1099 * Exception: When borrowing from MIGRATE_CMA, release
1100 * the excess buddy pages to CMA itself.
1101 */
1102 expand(zone, page, order, current_order, area,
1103 is_migrate_cma(migratetype)
1104 ? migratetype : start_migratetype);
1105
1106 trace_mm_page_alloc_extfrag(page, order,
1107 current_order, start_migratetype, migratetype,
1108 new_type == start_migratetype);
1109
1110 return page;
1111 }
1112 }
1113
1114 return NULL;
1115 }
1116
1117 /*
1118 * Do the hard work of removing an element from the buddy allocator.
1119 * Call me with the zone->lock already held.
1120 */
1121 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1122 int migratetype)
1123 {
1124 struct page *page;
1125
1126 retry_reserve:
1127 page = __rmqueue_smallest(zone, order, migratetype);
1128
1129 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1130 page = __rmqueue_fallback(zone, order, migratetype);
1131
1132 /*
1133 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1134 * is used because __rmqueue_smallest is an inline function
1135 * and we want just one call site
1136 */
1137 if (!page) {
1138 migratetype = MIGRATE_RESERVE;
1139 goto retry_reserve;
1140 }
1141 }
1142
1143 trace_mm_page_alloc_zone_locked(page, order, migratetype);
1144 return page;
1145 }
1146
1147 /*
1148 * Obtain a specified number of elements from the buddy allocator, all under
1149 * a single hold of the lock, for efficiency. Add them to the supplied list.
1150 * Returns the number of new pages which were placed at *list.
1151 */
1152 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1153 unsigned long count, struct list_head *list,
1154 int migratetype, int cold)
1155 {
1156 int mt = migratetype, i;
1157
1158 spin_lock(&zone->lock);
1159 for (i = 0; i < count; ++i) {
1160 struct page *page = __rmqueue(zone, order, migratetype);
1161 if (unlikely(page == NULL))
1162 break;
1163
1164 /*
1165 * Split buddy pages returned by expand() are received here
1166 * in physical page order. The page is added to the callers and
1167 * list and the list head then moves forward. From the callers
1168 * perspective, the linked list is ordered by page number in
1169 * some conditions. This is useful for IO devices that can
1170 * merge IO requests if the physical pages are ordered
1171 * properly.
1172 */
1173 if (likely(cold == 0))
1174 list_add(&page->lru, list);
1175 else
1176 list_add_tail(&page->lru, list);
1177 if (IS_ENABLED(CONFIG_CMA)) {
1178 mt = get_pageblock_migratetype(page);
1179 if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))
1180 mt = migratetype;
1181 }
1182 set_freepage_migratetype(page, mt);
1183 list = &page->lru;
1184 if (is_migrate_cma(mt))
1185 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1186 -(1 << order));
1187 }
1188 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1189 spin_unlock(&zone->lock);
1190 return i;
1191 }
1192
1193 #ifdef CONFIG_NUMA
1194 /*
1195 * Called from the vmstat counter updater to drain pagesets of this
1196 * currently executing processor on remote nodes after they have
1197 * expired.
1198 *
1199 * Note that this function must be called with the thread pinned to
1200 * a single processor.
1201 */
1202 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1203 {
1204 unsigned long flags;
1205 int to_drain;
1206 unsigned long batch;
1207
1208 local_irq_save(flags);
1209 batch = ACCESS_ONCE(pcp->batch);
1210 if (pcp->count >= batch)
1211 to_drain = batch;
1212 else
1213 to_drain = pcp->count;
1214 if (to_drain > 0) {
1215 free_pcppages_bulk(zone, to_drain, pcp);
1216 pcp->count -= to_drain;
1217 }
1218 local_irq_restore(flags);
1219 }
1220 #endif
1221
1222 /*
1223 * Drain pages of the indicated processor.
1224 *
1225 * The processor must either be the current processor and the
1226 * thread pinned to the current processor or a processor that
1227 * is not online.
1228 */
1229 static void drain_pages(unsigned int cpu)
1230 {
1231 unsigned long flags;
1232 struct zone *zone;
1233
1234 for_each_populated_zone(zone) {
1235 struct per_cpu_pageset *pset;
1236 struct per_cpu_pages *pcp;
1237
1238 local_irq_save(flags);
1239 pset = per_cpu_ptr(zone->pageset, cpu);
1240
1241 pcp = &pset->pcp;
1242 if (pcp->count) {
1243 free_pcppages_bulk(zone, pcp->count, pcp);
1244 pcp->count = 0;
1245 }
1246 local_irq_restore(flags);
1247 }
1248 }
1249
1250 /*
1251 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1252 */
1253 void drain_local_pages(void *arg)
1254 {
1255 drain_pages(smp_processor_id());
1256 }
1257
1258 /*
1259 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1260 *
1261 * Note that this code is protected against sending an IPI to an offline
1262 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1263 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1264 * nothing keeps CPUs from showing up after we populated the cpumask and
1265 * before the call to on_each_cpu_mask().
1266 */
1267 void drain_all_pages(void)
1268 {
1269 int cpu;
1270 struct per_cpu_pageset *pcp;
1271 struct zone *zone;
1272
1273 /*
1274 * Allocate in the BSS so we wont require allocation in
1275 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1276 */
1277 static cpumask_t cpus_with_pcps;
1278
1279 /*
1280 * We don't care about racing with CPU hotplug event
1281 * as offline notification will cause the notified
1282 * cpu to drain that CPU pcps and on_each_cpu_mask
1283 * disables preemption as part of its processing
1284 */
1285 for_each_online_cpu(cpu) {
1286 bool has_pcps = false;
1287 for_each_populated_zone(zone) {
1288 pcp = per_cpu_ptr(zone->pageset, cpu);
1289 if (pcp->pcp.count) {
1290 has_pcps = true;
1291 break;
1292 }
1293 }
1294 if (has_pcps)
1295 cpumask_set_cpu(cpu, &cpus_with_pcps);
1296 else
1297 cpumask_clear_cpu(cpu, &cpus_with_pcps);
1298 }
1299 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1300 }
1301
1302 #ifdef CONFIG_HIBERNATION
1303
1304 void mark_free_pages(struct zone *zone)
1305 {
1306 unsigned long pfn, max_zone_pfn;
1307 unsigned long flags;
1308 int order, t;
1309 struct list_head *curr;
1310
1311 if (zone_is_empty(zone))
1312 return;
1313
1314 spin_lock_irqsave(&zone->lock, flags);
1315
1316 max_zone_pfn = zone_end_pfn(zone);
1317 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1318 if (pfn_valid(pfn)) {
1319 struct page *page = pfn_to_page(pfn);
1320
1321 if (!swsusp_page_is_forbidden(page))
1322 swsusp_unset_page_free(page);
1323 }
1324
1325 for_each_migratetype_order(order, t) {
1326 list_for_each(curr, &zone->free_area[order].free_list[t]) {
1327 unsigned long i;
1328
1329 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1330 for (i = 0; i < (1UL << order); i++)
1331 swsusp_set_page_free(pfn_to_page(pfn + i));
1332 }
1333 }
1334 spin_unlock_irqrestore(&zone->lock, flags);
1335 }
1336 #endif /* CONFIG_PM */
1337
1338 /*
1339 * Free a 0-order page
1340 * cold == 1 ? free a cold page : free a hot page
1341 */
1342 void free_hot_cold_page(struct page *page, int cold)
1343 {
1344 struct zone *zone = page_zone(page);
1345 struct per_cpu_pages *pcp;
1346 unsigned long flags;
1347 int migratetype;
1348
1349 if (!free_pages_prepare(page, 0))
1350 return;
1351
1352 migratetype = get_pageblock_migratetype(page);
1353 set_freepage_migratetype(page, migratetype);
1354 local_irq_save(flags);
1355 __count_vm_event(PGFREE);
1356
1357 /*
1358 * We only track unmovable, reclaimable and movable on pcp lists.
1359 * Free ISOLATE pages back to the allocator because they are being
1360 * offlined but treat RESERVE as movable pages so we can get those
1361 * areas back if necessary. Otherwise, we may have to free
1362 * excessively into the page allocator
1363 */
1364 if (migratetype >= MIGRATE_PCPTYPES) {
1365 if (unlikely(is_migrate_isolate(migratetype))) {
1366 free_one_page(zone, page, 0, migratetype);
1367 goto out;
1368 }
1369 migratetype = MIGRATE_MOVABLE;
1370 }
1371
1372 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1373 if (cold)
1374 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1375 else
1376 list_add(&page->lru, &pcp->lists[migratetype]);
1377 pcp->count++;
1378 if (pcp->count >= pcp->high) {
1379 unsigned long batch = ACCESS_ONCE(pcp->batch);
1380 free_pcppages_bulk(zone, batch, pcp);
1381 pcp->count -= batch;
1382 }
1383
1384 out:
1385 local_irq_restore(flags);
1386 }
1387
1388 /*
1389 * Free a list of 0-order pages
1390 */
1391 void free_hot_cold_page_list(struct list_head *list, int cold)
1392 {
1393 struct page *page, *next;
1394
1395 list_for_each_entry_safe(page, next, list, lru) {
1396 trace_mm_page_free_batched(page, cold);
1397 free_hot_cold_page(page, cold);
1398 }
1399 }
1400
1401 /*
1402 * split_page takes a non-compound higher-order page, and splits it into
1403 * n (1<<order) sub-pages: page[0..n]
1404 * Each sub-page must be freed individually.
1405 *
1406 * Note: this is probably too low level an operation for use in drivers.
1407 * Please consult with lkml before using this in your driver.
1408 */
1409 void split_page(struct page *page, unsigned int order)
1410 {
1411 int i;
1412
1413 VM_BUG_ON(PageCompound(page));
1414 VM_BUG_ON(!page_count(page));
1415
1416 #ifdef CONFIG_KMEMCHECK
1417 /*
1418 * Split shadow pages too, because free(page[0]) would
1419 * otherwise free the whole shadow.
1420 */
1421 if (kmemcheck_page_is_tracked(page))
1422 split_page(virt_to_page(page[0].shadow), order);
1423 #endif
1424
1425 for (i = 1; i < (1 << order); i++)
1426 set_page_refcounted(page + i);
1427 }
1428 EXPORT_SYMBOL_GPL(split_page);
1429
1430 static int __isolate_free_page(struct page *page, unsigned int order)
1431 {
1432 unsigned long watermark;
1433 struct zone *zone;
1434 int mt;
1435
1436 BUG_ON(!PageBuddy(page));
1437
1438 zone = page_zone(page);
1439 mt = get_pageblock_migratetype(page);
1440
1441 if (!is_migrate_isolate(mt)) {
1442 /* Obey watermarks as if the page was being allocated */
1443 watermark = low_wmark_pages(zone) + (1 << order);
1444 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1445 return 0;
1446
1447 __mod_zone_freepage_state(zone, -(1UL << order), mt);
1448 }
1449
1450 /* Remove page from free list */
1451 list_del(&page->lru);
1452 zone->free_area[order].nr_free--;
1453 rmv_page_order(page);
1454
1455 /* Set the pageblock if the isolated page is at least a pageblock */
1456 if (order >= pageblock_order - 1) {
1457 struct page *endpage = page + (1 << order) - 1;
1458 for (; page < endpage; page += pageblock_nr_pages) {
1459 int mt = get_pageblock_migratetype(page);
1460 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
1461 set_pageblock_migratetype(page,
1462 MIGRATE_MOVABLE);
1463 }
1464 }
1465
1466 return 1UL << order;
1467 }
1468
1469 /*
1470 * Similar to split_page except the page is already free. As this is only
1471 * being used for migration, the migratetype of the block also changes.
1472 * As this is called with interrupts disabled, the caller is responsible
1473 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1474 * are enabled.
1475 *
1476 * Note: this is probably too low level an operation for use in drivers.
1477 * Please consult with lkml before using this in your driver.
1478 */
1479 int split_free_page(struct page *page)
1480 {
1481 unsigned int order;
1482 int nr_pages;
1483
1484 order = page_order(page);
1485
1486 nr_pages = __isolate_free_page(page, order);
1487 if (!nr_pages)
1488 return 0;
1489
1490 /* Split into individual pages */
1491 set_page_refcounted(page);
1492 split_page(page, order);
1493 return nr_pages;
1494 }
1495
1496 /*
1497 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1498 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1499 * or two.
1500 */
1501 static inline
1502 struct page *buffered_rmqueue(struct zone *preferred_zone,
1503 struct zone *zone, int order, gfp_t gfp_flags,
1504 int migratetype)
1505 {
1506 unsigned long flags;
1507 struct page *page;
1508 int cold = !!(gfp_flags & __GFP_COLD);
1509
1510 again:
1511 if (likely(order == 0)) {
1512 struct per_cpu_pages *pcp;
1513 struct list_head *list;
1514
1515 local_irq_save(flags);
1516 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1517 list = &pcp->lists[migratetype];
1518 if (list_empty(list)) {
1519 pcp->count += rmqueue_bulk(zone, 0,
1520 pcp->batch, list,
1521 migratetype, cold);
1522 if (unlikely(list_empty(list)))
1523 goto failed;
1524 }
1525
1526 if (cold)
1527 page = list_entry(list->prev, struct page, lru);
1528 else
1529 page = list_entry(list->next, struct page, lru);
1530
1531 list_del(&page->lru);
1532 pcp->count--;
1533 } else {
1534 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1535 /*
1536 * __GFP_NOFAIL is not to be used in new code.
1537 *
1538 * All __GFP_NOFAIL callers should be fixed so that they
1539 * properly detect and handle allocation failures.
1540 *
1541 * We most definitely don't want callers attempting to
1542 * allocate greater than order-1 page units with
1543 * __GFP_NOFAIL.
1544 */
1545 WARN_ON_ONCE(order > 1);
1546 }
1547 spin_lock_irqsave(&zone->lock, flags);
1548 page = __rmqueue(zone, order, migratetype);
1549 spin_unlock(&zone->lock);
1550 if (!page)
1551 goto failed;
1552 __mod_zone_freepage_state(zone, -(1 << order),
1553 get_pageblock_migratetype(page));
1554 }
1555
1556 __mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
1557 __count_zone_vm_events(PGALLOC, zone, 1 << order);
1558 zone_statistics(preferred_zone, zone, gfp_flags);
1559 local_irq_restore(flags);
1560
1561 VM_BUG_ON(bad_range(zone, page));
1562 if (prep_new_page(page, order, gfp_flags))
1563 goto again;
1564 return page;
1565
1566 failed:
1567 local_irq_restore(flags);
1568 return NULL;
1569 }
1570
1571 #ifdef CONFIG_FAIL_PAGE_ALLOC
1572
1573 static struct {
1574 struct fault_attr attr;
1575
1576 u32 ignore_gfp_highmem;
1577 u32 ignore_gfp_wait;
1578 u32 min_order;
1579 } fail_page_alloc = {
1580 .attr = FAULT_ATTR_INITIALIZER,
1581 .ignore_gfp_wait = 1,
1582 .ignore_gfp_highmem = 1,
1583 .min_order = 1,
1584 };
1585
1586 static int __init setup_fail_page_alloc(char *str)
1587 {
1588 return setup_fault_attr(&fail_page_alloc.attr, str);
1589 }
1590 __setup("fail_page_alloc=", setup_fail_page_alloc);
1591
1592 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1593 {
1594 if (order < fail_page_alloc.min_order)
1595 return false;
1596 if (gfp_mask & __GFP_NOFAIL)
1597 return false;
1598 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1599 return false;
1600 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1601 return false;
1602
1603 return should_fail(&fail_page_alloc.attr, 1 << order);
1604 }
1605
1606 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1607
1608 static int __init fail_page_alloc_debugfs(void)
1609 {
1610 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1611 struct dentry *dir;
1612
1613 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1614 &fail_page_alloc.attr);
1615 if (IS_ERR(dir))
1616 return PTR_ERR(dir);
1617
1618 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1619 &fail_page_alloc.ignore_gfp_wait))
1620 goto fail;
1621 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1622 &fail_page_alloc.ignore_gfp_highmem))
1623 goto fail;
1624 if (!debugfs_create_u32("min-order", mode, dir,
1625 &fail_page_alloc.min_order))
1626 goto fail;
1627
1628 return 0;
1629 fail:
1630 debugfs_remove_recursive(dir);
1631
1632 return -ENOMEM;
1633 }
1634
1635 late_initcall(fail_page_alloc_debugfs);
1636
1637 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1638
1639 #else /* CONFIG_FAIL_PAGE_ALLOC */
1640
1641 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1642 {
1643 return false;
1644 }
1645
1646 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1647
1648 /*
1649 * Return true if free pages are above 'mark'. This takes into account the order
1650 * of the allocation.
1651 */
1652 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1653 int classzone_idx, int alloc_flags, long free_pages)
1654 {
1655 /* free_pages my go negative - that's OK */
1656 long min = mark;
1657 long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1658 int o;
1659 long free_cma = 0;
1660
1661 free_pages -= (1 << order) - 1;
1662 if (alloc_flags & ALLOC_HIGH)
1663 min -= min / 2;
1664 if (alloc_flags & ALLOC_HARDER)
1665 min -= min / 4;
1666 #ifdef CONFIG_CMA
1667 /* If allocation can't use CMA areas don't use free CMA pages */
1668 if (!(alloc_flags & ALLOC_CMA))
1669 free_cma = zone_page_state(z, NR_FREE_CMA_PAGES);
1670 #endif
1671
1672 if (free_pages - free_cma <= min + lowmem_reserve)
1673 return false;
1674 for (o = 0; o < order; o++) {
1675 /* At the next order, this order's pages become unavailable */
1676 free_pages -= z->free_area[o].nr_free << o;
1677
1678 /* Require fewer higher order pages to be free */
1679 min >>= 1;
1680
1681 if (free_pages <= min)
1682 return false;
1683 }
1684 return true;
1685 }
1686
1687 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1688 int classzone_idx, int alloc_flags)
1689 {
1690 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1691 zone_page_state(z, NR_FREE_PAGES));
1692 }
1693
1694 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1695 int classzone_idx, int alloc_flags)
1696 {
1697 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1698
1699 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1700 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1701
1702 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1703 free_pages);
1704 }
1705
1706 #ifdef CONFIG_NUMA
1707 /*
1708 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1709 * skip over zones that are not allowed by the cpuset, or that have
1710 * been recently (in last second) found to be nearly full. See further
1711 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1712 * that have to skip over a lot of full or unallowed zones.
1713 *
1714 * If the zonelist cache is present in the passed in zonelist, then
1715 * returns a pointer to the allowed node mask (either the current
1716 * tasks mems_allowed, or node_states[N_MEMORY].)
1717 *
1718 * If the zonelist cache is not available for this zonelist, does
1719 * nothing and returns NULL.
1720 *
1721 * If the fullzones BITMAP in the zonelist cache is stale (more than
1722 * a second since last zap'd) then we zap it out (clear its bits.)
1723 *
1724 * We hold off even calling zlc_setup, until after we've checked the
1725 * first zone in the zonelist, on the theory that most allocations will
1726 * be satisfied from that first zone, so best to examine that zone as
1727 * quickly as we can.
1728 */
1729 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1730 {
1731 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1732 nodemask_t *allowednodes; /* zonelist_cache approximation */
1733
1734 zlc = zonelist->zlcache_ptr;
1735 if (!zlc)
1736 return NULL;
1737
1738 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1739 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1740 zlc->last_full_zap = jiffies;
1741 }
1742
1743 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1744 &cpuset_current_mems_allowed :
1745 &node_states[N_MEMORY];
1746 return allowednodes;
1747 }
1748
1749 /*
1750 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1751 * if it is worth looking at further for free memory:
1752 * 1) Check that the zone isn't thought to be full (doesn't have its
1753 * bit set in the zonelist_cache fullzones BITMAP).
1754 * 2) Check that the zones node (obtained from the zonelist_cache
1755 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1756 * Return true (non-zero) if zone is worth looking at further, or
1757 * else return false (zero) if it is not.
1758 *
1759 * This check -ignores- the distinction between various watermarks,
1760 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1761 * found to be full for any variation of these watermarks, it will
1762 * be considered full for up to one second by all requests, unless
1763 * we are so low on memory on all allowed nodes that we are forced
1764 * into the second scan of the zonelist.
1765 *
1766 * In the second scan we ignore this zonelist cache and exactly
1767 * apply the watermarks to all zones, even it is slower to do so.
1768 * We are low on memory in the second scan, and should leave no stone
1769 * unturned looking for a free page.
1770 */
1771 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1772 nodemask_t *allowednodes)
1773 {
1774 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1775 int i; /* index of *z in zonelist zones */
1776 int n; /* node that zone *z is on */
1777
1778 zlc = zonelist->zlcache_ptr;
1779 if (!zlc)
1780 return 1;
1781
1782 i = z - zonelist->_zonerefs;
1783 n = zlc->z_to_n[i];
1784
1785 /* This zone is worth trying if it is allowed but not full */
1786 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1787 }
1788
1789 /*
1790 * Given 'z' scanning a zonelist, set the corresponding bit in
1791 * zlc->fullzones, so that subsequent attempts to allocate a page
1792 * from that zone don't waste time re-examining it.
1793 */
1794 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1795 {
1796 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1797 int i; /* index of *z in zonelist zones */
1798
1799 zlc = zonelist->zlcache_ptr;
1800 if (!zlc)
1801 return;
1802
1803 i = z - zonelist->_zonerefs;
1804
1805 set_bit(i, zlc->fullzones);
1806 }
1807
1808 /*
1809 * clear all zones full, called after direct reclaim makes progress so that
1810 * a zone that was recently full is not skipped over for up to a second
1811 */
1812 static void zlc_clear_zones_full(struct zonelist *zonelist)
1813 {
1814 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1815
1816 zlc = zonelist->zlcache_ptr;
1817 if (!zlc)
1818 return;
1819
1820 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1821 }
1822
1823 static bool zone_local(struct zone *local_zone, struct zone *zone)
1824 {
1825 return node_distance(local_zone->node, zone->node) == LOCAL_DISTANCE;
1826 }
1827
1828 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1829 {
1830 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1831 }
1832
1833 static void __paginginit init_zone_allows_reclaim(int nid)
1834 {
1835 int i;
1836
1837 for_each_online_node(i)
1838 if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1839 node_set(i, NODE_DATA(nid)->reclaim_nodes);
1840 else
1841 zone_reclaim_mode = 1;
1842 }
1843
1844 #else /* CONFIG_NUMA */
1845
1846 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1847 {
1848 return NULL;
1849 }
1850
1851 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1852 nodemask_t *allowednodes)
1853 {
1854 return 1;
1855 }
1856
1857 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1858 {
1859 }
1860
1861 static void zlc_clear_zones_full(struct zonelist *zonelist)
1862 {
1863 }
1864
1865 static bool zone_local(struct zone *local_zone, struct zone *zone)
1866 {
1867 return true;
1868 }
1869
1870 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1871 {
1872 return true;
1873 }
1874
1875 static inline void init_zone_allows_reclaim(int nid)
1876 {
1877 }
1878 #endif /* CONFIG_NUMA */
1879
1880 /*
1881 * get_page_from_freelist goes through the zonelist trying to allocate
1882 * a page.
1883 */
1884 static struct page *
1885 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1886 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1887 struct zone *preferred_zone, int migratetype)
1888 {
1889 struct zoneref *z;
1890 struct page *page = NULL;
1891 int classzone_idx;
1892 struct zone *zone;
1893 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1894 int zlc_active = 0; /* set if using zonelist_cache */
1895 int did_zlc_setup = 0; /* just call zlc_setup() one time */
1896
1897 classzone_idx = zone_idx(preferred_zone);
1898 zonelist_scan:
1899 /*
1900 * Scan zonelist, looking for a zone with enough free.
1901 * See also __cpuset_node_allowed_softwall() comment in kernel/cpuset.c.
1902 */
1903 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1904 high_zoneidx, nodemask) {
1905 unsigned long mark;
1906
1907 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1908 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1909 continue;
1910 if ((alloc_flags & ALLOC_CPUSET) &&
1911 !cpuset_zone_allowed_softwall(zone, gfp_mask))
1912 continue;
1913 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1914 if (unlikely(alloc_flags & ALLOC_NO_WATERMARKS))
1915 goto try_this_zone;
1916 /*
1917 * Distribute pages in proportion to the individual
1918 * zone size to ensure fair page aging. The zone a
1919 * page was allocated in should have no effect on the
1920 * time the page has in memory before being reclaimed.
1921 *
1922 * When zone_reclaim_mode is enabled, try to stay in
1923 * local zones in the fastpath. If that fails, the
1924 * slowpath is entered, which will do another pass
1925 * starting with the local zones, but ultimately fall
1926 * back to remote zones that do not partake in the
1927 * fairness round-robin cycle of this zonelist.
1928 */
1929 if (alloc_flags & ALLOC_WMARK_LOW) {
1930 if (zone_page_state(zone, NR_ALLOC_BATCH) <= 0)
1931 continue;
1932 if (zone_reclaim_mode &&
1933 !zone_local(preferred_zone, zone))
1934 continue;
1935 }
1936 /*
1937 * When allocating a page cache page for writing, we
1938 * want to get it from a zone that is within its dirty
1939 * limit, such that no single zone holds more than its
1940 * proportional share of globally allowed dirty pages.
1941 * The dirty limits take into account the zone's
1942 * lowmem reserves and high watermark so that kswapd
1943 * should be able to balance it without having to
1944 * write pages from its LRU list.
1945 *
1946 * This may look like it could increase pressure on
1947 * lower zones by failing allocations in higher zones
1948 * before they are full. But the pages that do spill
1949 * over are limited as the lower zones are protected
1950 * by this very same mechanism. It should not become
1951 * a practical burden to them.
1952 *
1953 * XXX: For now, allow allocations to potentially
1954 * exceed the per-zone dirty limit in the slowpath
1955 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1956 * which is important when on a NUMA setup the allowed
1957 * zones are together not big enough to reach the
1958 * global limit. The proper fix for these situations
1959 * will require awareness of zones in the
1960 * dirty-throttling and the flusher threads.
1961 */
1962 if ((alloc_flags & ALLOC_WMARK_LOW) &&
1963 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1964 goto this_zone_full;
1965
1966 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1967 if (!zone_watermark_ok(zone, order, mark,
1968 classzone_idx, alloc_flags)) {
1969 int ret;
1970
1971 if (IS_ENABLED(CONFIG_NUMA) &&
1972 !did_zlc_setup && nr_online_nodes > 1) {
1973 /*
1974 * we do zlc_setup if there are multiple nodes
1975 * and before considering the first zone allowed
1976 * by the cpuset.
1977 */
1978 allowednodes = zlc_setup(zonelist, alloc_flags);
1979 zlc_active = 1;
1980 did_zlc_setup = 1;
1981 }
1982
1983 if (zone_reclaim_mode == 0 ||
1984 !zone_allows_reclaim(preferred_zone, zone))
1985 goto this_zone_full;
1986
1987 /*
1988 * As we may have just activated ZLC, check if the first
1989 * eligible zone has failed zone_reclaim recently.
1990 */
1991 if (IS_ENABLED(CONFIG_NUMA) && zlc_active &&
1992 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1993 continue;
1994
1995 ret = zone_reclaim(zone, gfp_mask, order);
1996 switch (ret) {
1997 case ZONE_RECLAIM_NOSCAN:
1998 /* did not scan */
1999 continue;
2000 case ZONE_RECLAIM_FULL:
2001 /* scanned but unreclaimable */
2002 continue;
2003 default:
2004 /* did we reclaim enough */
2005 if (zone_watermark_ok(zone, order, mark,
2006 classzone_idx, alloc_flags))
2007 goto try_this_zone;
2008
2009 /*
2010 * Failed to reclaim enough to meet watermark.
2011 * Only mark the zone full if checking the min
2012 * watermark or if we failed to reclaim just
2013 * 1<<order pages or else the page allocator
2014 * fastpath will prematurely mark zones full
2015 * when the watermark is between the low and
2016 * min watermarks.
2017 */
2018 if (((alloc_flags & ALLOC_WMARK_MASK) == ALLOC_WMARK_MIN) ||
2019 ret == ZONE_RECLAIM_SOME)
2020 goto this_zone_full;
2021
2022 continue;
2023 }
2024 }
2025
2026 try_this_zone:
2027 page = buffered_rmqueue(preferred_zone, zone, order,
2028 gfp_mask, migratetype);
2029 if (page)
2030 break;
2031 this_zone_full:
2032 if (IS_ENABLED(CONFIG_NUMA))
2033 zlc_mark_zone_full(zonelist, z);
2034 }
2035
2036 if (unlikely(IS_ENABLED(CONFIG_NUMA) && page == NULL && zlc_active)) {
2037 /* Disable zlc cache for second zonelist scan */
2038 zlc_active = 0;
2039 goto zonelist_scan;
2040 }
2041
2042 if (page)
2043 /*
2044 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
2045 * necessary to allocate the page. The expectation is
2046 * that the caller is taking steps that will free more
2047 * memory. The caller should avoid the page being used
2048 * for !PFMEMALLOC purposes.
2049 */
2050 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
2051
2052 return page;
2053 }
2054
2055 /*
2056 * Large machines with many possible nodes should not always dump per-node
2057 * meminfo in irq context.
2058 */
2059 static inline bool should_suppress_show_mem(void)
2060 {
2061 bool ret = false;
2062
2063 #if NODES_SHIFT > 8
2064 ret = in_interrupt();
2065 #endif
2066 return ret;
2067 }
2068
2069 static DEFINE_RATELIMIT_STATE(nopage_rs,
2070 DEFAULT_RATELIMIT_INTERVAL,
2071 DEFAULT_RATELIMIT_BURST);
2072
2073 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2074 {
2075 unsigned int filter = SHOW_MEM_FILTER_NODES;
2076
2077 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2078 debug_guardpage_minorder() > 0)
2079 return;
2080
2081 /*
2082 * Walking all memory to count page types is very expensive and should
2083 * be inhibited in non-blockable contexts.
2084 */
2085 if (!(gfp_mask & __GFP_WAIT))
2086 filter |= SHOW_MEM_FILTER_PAGE_COUNT;
2087
2088 /*
2089 * This documents exceptions given to allocations in certain
2090 * contexts that are allowed to allocate outside current's set
2091 * of allowed nodes.
2092 */
2093 if (!(gfp_mask & __GFP_NOMEMALLOC))
2094 if (test_thread_flag(TIF_MEMDIE) ||
2095 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2096 filter &= ~SHOW_MEM_FILTER_NODES;
2097 if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2098 filter &= ~SHOW_MEM_FILTER_NODES;
2099
2100 if (fmt) {
2101 struct va_format vaf;
2102 va_list args;
2103
2104 va_start(args, fmt);
2105
2106 vaf.fmt = fmt;
2107 vaf.va = &args;
2108
2109 pr_warn("%pV", &vaf);
2110
2111 va_end(args);
2112 }
2113
2114 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2115 current->comm, order, gfp_mask);
2116
2117 dump_stack();
2118 if (!should_suppress_show_mem())
2119 show_mem(filter);
2120 }
2121
2122 static inline int
2123 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2124 unsigned long did_some_progress,
2125 unsigned long pages_reclaimed)
2126 {
2127 /* Do not loop if specifically requested */
2128 if (gfp_mask & __GFP_NORETRY)
2129 return 0;
2130
2131 /* Always retry if specifically requested */
2132 if (gfp_mask & __GFP_NOFAIL)
2133 return 1;
2134
2135 /*
2136 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2137 * making forward progress without invoking OOM. Suspend also disables
2138 * storage devices so kswapd will not help. Bail if we are suspending.
2139 */
2140 if (!did_some_progress && pm_suspended_storage())
2141 return 0;
2142
2143 /*
2144 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2145 * means __GFP_NOFAIL, but that may not be true in other
2146 * implementations.
2147 */
2148 if (order <= PAGE_ALLOC_COSTLY_ORDER)
2149 return 1;
2150
2151 /*
2152 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2153 * specified, then we retry until we no longer reclaim any pages
2154 * (above), or we've reclaimed an order of pages at least as
2155 * large as the allocation's order. In both cases, if the
2156 * allocation still fails, we stop retrying.
2157 */
2158 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2159 return 1;
2160
2161 return 0;
2162 }
2163
2164 static inline struct page *
2165 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2166 struct zonelist *zonelist, enum zone_type high_zoneidx,
2167 nodemask_t *nodemask, struct zone *preferred_zone,
2168 int migratetype)
2169 {
2170 struct page *page;
2171
2172 /* Acquire the OOM killer lock for the zones in zonelist */
2173 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2174 schedule_timeout_uninterruptible(1);
2175 return NULL;
2176 }
2177
2178 /*
2179 * Go through the zonelist yet one more time, keep very high watermark
2180 * here, this is only to catch a parallel oom killing, we must fail if
2181 * we're still under heavy pressure.
2182 */
2183 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2184 order, zonelist, high_zoneidx,
2185 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2186 preferred_zone, migratetype);
2187 if (page)
2188 goto out;
2189
2190 if (!(gfp_mask & __GFP_NOFAIL)) {
2191 /* The OOM killer will not help higher order allocs */
2192 if (order > PAGE_ALLOC_COSTLY_ORDER)
2193 goto out;
2194 /* The OOM killer does not needlessly kill tasks for lowmem */
2195 if (high_zoneidx < ZONE_NORMAL)
2196 goto out;
2197 /*
2198 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2199 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2200 * The caller should handle page allocation failure by itself if
2201 * it specifies __GFP_THISNODE.
2202 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2203 */
2204 if (gfp_mask & __GFP_THISNODE)
2205 goto out;
2206 }
2207 /* Exhausted what can be done so it's blamo time */
2208 out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2209
2210 out:
2211 clear_zonelist_oom(zonelist, gfp_mask);
2212 return page;
2213 }
2214
2215 #ifdef CONFIG_COMPACTION
2216 /* Try memory compaction for high-order allocations before reclaim */
2217 static struct page *
2218 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2219 struct zonelist *zonelist, enum zone_type high_zoneidx,
2220 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2221 int migratetype, bool sync_migration,
2222 bool *contended_compaction, bool *deferred_compaction,
2223 unsigned long *did_some_progress)
2224 {
2225 if (!order)
2226 return NULL;
2227
2228 if (compaction_deferred(preferred_zone, order)) {
2229 *deferred_compaction = true;
2230 return NULL;
2231 }
2232
2233 current->flags |= PF_MEMALLOC;
2234 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2235 nodemask, sync_migration,
2236 contended_compaction);
2237 current->flags &= ~PF_MEMALLOC;
2238
2239 if (*did_some_progress != COMPACT_SKIPPED) {
2240 struct page *page;
2241
2242 /* Page migration frees to the PCP lists but we want merging */
2243 drain_pages(get_cpu());
2244 put_cpu();
2245
2246 page = get_page_from_freelist(gfp_mask, nodemask,
2247 order, zonelist, high_zoneidx,
2248 alloc_flags & ~ALLOC_NO_WATERMARKS,
2249 preferred_zone, migratetype);
2250 if (page) {
2251 preferred_zone->compact_blockskip_flush = false;
2252 preferred_zone->compact_considered = 0;
2253 preferred_zone->compact_defer_shift = 0;
2254 if (order >= preferred_zone->compact_order_failed)
2255 preferred_zone->compact_order_failed = order + 1;
2256 count_vm_event(COMPACTSUCCESS);
2257 return page;
2258 }
2259
2260 /*
2261 * It's bad if compaction run occurs and fails.
2262 * The most likely reason is that pages exist,
2263 * but not enough to satisfy watermarks.
2264 */
2265 count_vm_event(COMPACTFAIL);
2266
2267 /*
2268 * As async compaction considers a subset of pageblocks, only
2269 * defer if the failure was a sync compaction failure.
2270 */
2271 if (sync_migration)
2272 defer_compaction(preferred_zone, order);
2273
2274 cond_resched();
2275 }
2276
2277 return NULL;
2278 }
2279 #else
2280 static inline struct page *
2281 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2282 struct zonelist *zonelist, enum zone_type high_zoneidx,
2283 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2284 int migratetype, bool sync_migration,
2285 bool *contended_compaction, bool *deferred_compaction,
2286 unsigned long *did_some_progress)
2287 {
2288 return NULL;
2289 }
2290 #endif /* CONFIG_COMPACTION */
2291
2292 /* Perform direct synchronous page reclaim */
2293 static int
2294 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2295 nodemask_t *nodemask)
2296 {
2297 struct reclaim_state reclaim_state;
2298 int progress;
2299
2300 cond_resched();
2301
2302 /* We now go into synchronous reclaim */
2303 cpuset_memory_pressure_bump();
2304 current->flags |= PF_MEMALLOC;
2305 lockdep_set_current_reclaim_state(gfp_mask);
2306 reclaim_state.reclaimed_slab = 0;
2307 current->reclaim_state = &reclaim_state;
2308
2309 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2310
2311 current->reclaim_state = NULL;
2312 lockdep_clear_current_reclaim_state();
2313 current->flags &= ~PF_MEMALLOC;
2314
2315 cond_resched();
2316
2317 return progress;
2318 }
2319
2320 /* The really slow allocator path where we enter direct reclaim */
2321 static inline struct page *
2322 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2323 struct zonelist *zonelist, enum zone_type high_zoneidx,
2324 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2325 int migratetype, unsigned long *did_some_progress)
2326 {
2327 struct page *page = NULL;
2328 bool drained = false;
2329
2330 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2331 nodemask);
2332 if (unlikely(!(*did_some_progress)))
2333 return NULL;
2334
2335 /* After successful reclaim, reconsider all zones for allocation */
2336 if (IS_ENABLED(CONFIG_NUMA))
2337 zlc_clear_zones_full(zonelist);
2338
2339 retry:
2340 page = get_page_from_freelist(gfp_mask, nodemask, order,
2341 zonelist, high_zoneidx,
2342 alloc_flags & ~ALLOC_NO_WATERMARKS,
2343 preferred_zone, migratetype);
2344
2345 /*
2346 * If an allocation failed after direct reclaim, it could be because
2347 * pages are pinned on the per-cpu lists. Drain them and try again
2348 */
2349 if (!page && !drained) {
2350 drain_all_pages();
2351 drained = true;
2352 goto retry;
2353 }
2354
2355 return page;
2356 }
2357
2358 /*
2359 * This is called in the allocator slow-path if the allocation request is of
2360 * sufficient urgency to ignore watermarks and take other desperate measures
2361 */
2362 static inline struct page *
2363 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2364 struct zonelist *zonelist, enum zone_type high_zoneidx,
2365 nodemask_t *nodemask, struct zone *preferred_zone,
2366 int migratetype)
2367 {
2368 struct page *page;
2369
2370 do {
2371 page = get_page_from_freelist(gfp_mask, nodemask, order,
2372 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2373 preferred_zone, migratetype);
2374
2375 if (!page && gfp_mask & __GFP_NOFAIL)
2376 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2377 } while (!page && (gfp_mask & __GFP_NOFAIL));
2378
2379 return page;
2380 }
2381
2382 static void prepare_slowpath(gfp_t gfp_mask, unsigned int order,
2383 struct zonelist *zonelist,
2384 enum zone_type high_zoneidx,
2385 struct zone *preferred_zone)
2386 {
2387 struct zoneref *z;
2388 struct zone *zone;
2389
2390 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
2391 if (!(gfp_mask & __GFP_NO_KSWAPD))
2392 wakeup_kswapd(zone, order, zone_idx(preferred_zone));
2393 /*
2394 * Only reset the batches of zones that were actually
2395 * considered in the fast path, we don't want to
2396 * thrash fairness information for zones that are not
2397 * actually part of this zonelist's round-robin cycle.
2398 */
2399 if (zone_reclaim_mode && !zone_local(preferred_zone, zone))
2400 continue;
2401 mod_zone_page_state(zone, NR_ALLOC_BATCH,
2402 high_wmark_pages(zone) -
2403 low_wmark_pages(zone) -
2404 zone_page_state(zone, NR_ALLOC_BATCH));
2405 }
2406 }
2407
2408 static inline int
2409 gfp_to_alloc_flags(gfp_t gfp_mask)
2410 {
2411 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2412 const gfp_t wait = gfp_mask & __GFP_WAIT;
2413
2414 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2415 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2416
2417 /*
2418 * The caller may dip into page reserves a bit more if the caller
2419 * cannot run direct reclaim, or if the caller has realtime scheduling
2420 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2421 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2422 */
2423 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2424
2425 if (!wait) {
2426 /*
2427 * Not worth trying to allocate harder for
2428 * __GFP_NOMEMALLOC even if it can't schedule.
2429 */
2430 if (!(gfp_mask & __GFP_NOMEMALLOC))
2431 alloc_flags |= ALLOC_HARDER;
2432 /*
2433 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2434 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2435 */
2436 alloc_flags &= ~ALLOC_CPUSET;
2437 } else if (unlikely(rt_task(current)) && !in_interrupt())
2438 alloc_flags |= ALLOC_HARDER;
2439
2440 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2441 if (gfp_mask & __GFP_MEMALLOC)
2442 alloc_flags |= ALLOC_NO_WATERMARKS;
2443 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2444 alloc_flags |= ALLOC_NO_WATERMARKS;
2445 else if (!in_interrupt() &&
2446 ((current->flags & PF_MEMALLOC) ||
2447 unlikely(test_thread_flag(TIF_MEMDIE))))
2448 alloc_flags |= ALLOC_NO_WATERMARKS;
2449 }
2450 #ifdef CONFIG_CMA
2451 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2452 alloc_flags |= ALLOC_CMA;
2453 #endif
2454 return alloc_flags;
2455 }
2456
2457 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2458 {
2459 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2460 }
2461
2462 static inline struct page *
2463 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2464 struct zonelist *zonelist, enum zone_type high_zoneidx,
2465 nodemask_t *nodemask, struct zone *preferred_zone,
2466 int migratetype)
2467 {
2468 const gfp_t wait = gfp_mask & __GFP_WAIT;
2469 struct page *page = NULL;
2470 int alloc_flags;
2471 unsigned long pages_reclaimed = 0;
2472 unsigned long did_some_progress;
2473 bool sync_migration = false;
2474 bool deferred_compaction = false;
2475 bool contended_compaction = false;
2476
2477 /*
2478 * In the slowpath, we sanity check order to avoid ever trying to
2479 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2480 * be using allocators in order of preference for an area that is
2481 * too large.
2482 */
2483 if (order >= MAX_ORDER) {
2484 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2485 return NULL;
2486 }
2487
2488 /*
2489 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2490 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2491 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2492 * using a larger set of nodes after it has established that the
2493 * allowed per node queues are empty and that nodes are
2494 * over allocated.
2495 */
2496 if (IS_ENABLED(CONFIG_NUMA) &&
2497 (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2498 goto nopage;
2499
2500 restart:
2501 prepare_slowpath(gfp_mask, order, zonelist,
2502 high_zoneidx, preferred_zone);
2503
2504 /*
2505 * OK, we're below the kswapd watermark and have kicked background
2506 * reclaim. Now things get more complex, so set up alloc_flags according
2507 * to how we want to proceed.
2508 */
2509 alloc_flags = gfp_to_alloc_flags(gfp_mask);
2510
2511 /*
2512 * Find the true preferred zone if the allocation is unconstrained by
2513 * cpusets.
2514 */
2515 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2516 first_zones_zonelist(zonelist, high_zoneidx, NULL,
2517 &preferred_zone);
2518
2519 rebalance:
2520 /* This is the last chance, in general, before the goto nopage. */
2521 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2522 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2523 preferred_zone, migratetype);
2524 if (page)
2525 goto got_pg;
2526
2527 /* Allocate without watermarks if the context allows */
2528 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2529 /*
2530 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2531 * the allocation is high priority and these type of
2532 * allocations are system rather than user orientated
2533 */
2534 zonelist = node_zonelist(numa_node_id(), gfp_mask);
2535
2536 page = __alloc_pages_high_priority(gfp_mask, order,
2537 zonelist, high_zoneidx, nodemask,
2538 preferred_zone, migratetype);
2539 if (page) {
2540 goto got_pg;
2541 }
2542 }
2543
2544 /* Atomic allocations - we can't balance anything */
2545 if (!wait)
2546 goto nopage;
2547
2548 /* Avoid recursion of direct reclaim */
2549 if (current->flags & PF_MEMALLOC)
2550 goto nopage;
2551
2552 /* Avoid allocations with no watermarks from looping endlessly */
2553 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2554 goto nopage;
2555
2556 /*
2557 * Try direct compaction. The first pass is asynchronous. Subsequent
2558 * attempts after direct reclaim are synchronous
2559 */
2560 page = __alloc_pages_direct_compact(gfp_mask, order,
2561 zonelist, high_zoneidx,
2562 nodemask,
2563 alloc_flags, preferred_zone,
2564 migratetype, sync_migration,
2565 &contended_compaction,
2566 &deferred_compaction,
2567 &did_some_progress);
2568 if (page)
2569 goto got_pg;
2570 sync_migration = true;
2571
2572 /*
2573 * If compaction is deferred for high-order allocations, it is because
2574 * sync compaction recently failed. In this is the case and the caller
2575 * requested a movable allocation that does not heavily disrupt the
2576 * system then fail the allocation instead of entering direct reclaim.
2577 */
2578 if ((deferred_compaction || contended_compaction) &&
2579 (gfp_mask & __GFP_NO_KSWAPD))
2580 goto nopage;
2581
2582 /* Try direct reclaim and then allocating */
2583 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2584 zonelist, high_zoneidx,
2585 nodemask,
2586 alloc_flags, preferred_zone,
2587 migratetype, &did_some_progress);
2588 if (page)
2589 goto got_pg;
2590
2591 /*
2592 * If we failed to make any progress reclaiming, then we are
2593 * running out of options and have to consider going OOM
2594 */
2595 if (!did_some_progress) {
2596 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2597 if (oom_killer_disabled)
2598 goto nopage;
2599 /* Coredumps can quickly deplete all memory reserves */
2600 if ((current->flags & PF_DUMPCORE) &&
2601 !(gfp_mask & __GFP_NOFAIL))
2602 goto nopage;
2603 page = __alloc_pages_may_oom(gfp_mask, order,
2604 zonelist, high_zoneidx,
2605 nodemask, preferred_zone,
2606 migratetype);
2607 if (page)
2608 goto got_pg;
2609
2610 if (!(gfp_mask & __GFP_NOFAIL)) {
2611 /*
2612 * The oom killer is not called for high-order
2613 * allocations that may fail, so if no progress
2614 * is being made, there are no other options and
2615 * retrying is unlikely to help.
2616 */
2617 if (order > PAGE_ALLOC_COSTLY_ORDER)
2618 goto nopage;
2619 /*
2620 * The oom killer is not called for lowmem
2621 * allocations to prevent needlessly killing
2622 * innocent tasks.
2623 */
2624 if (high_zoneidx < ZONE_NORMAL)
2625 goto nopage;
2626 }
2627
2628 goto restart;
2629 }
2630 }
2631
2632 /* Check if we should retry the allocation */
2633 pages_reclaimed += did_some_progress;
2634 if (should_alloc_retry(gfp_mask, order, did_some_progress,
2635 pages_reclaimed)) {
2636 /* Wait for some write requests to complete then retry */
2637 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2638 goto rebalance;
2639 } else {
2640 /*
2641 * High-order allocations do not necessarily loop after
2642 * direct reclaim and reclaim/compaction depends on compaction
2643 * being called after reclaim so call directly if necessary
2644 */
2645 page = __alloc_pages_direct_compact(gfp_mask, order,
2646 zonelist, high_zoneidx,
2647 nodemask,
2648 alloc_flags, preferred_zone,
2649 migratetype, sync_migration,
2650 &contended_compaction,
2651 &deferred_compaction,
2652 &did_some_progress);
2653 if (page)
2654 goto got_pg;
2655 }
2656
2657 nopage:
2658 warn_alloc_failed(gfp_mask, order, NULL);
2659 return page;
2660 got_pg:
2661 if (kmemcheck_enabled)
2662 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2663
2664 return page;
2665 }
2666
2667 /*
2668 * This is the 'heart' of the zoned buddy allocator.
2669 */
2670 struct page *
2671 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2672 struct zonelist *zonelist, nodemask_t *nodemask)
2673 {
2674 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2675 struct zone *preferred_zone;
2676 struct page *page = NULL;
2677 int migratetype = allocflags_to_migratetype(gfp_mask);
2678 unsigned int cpuset_mems_cookie;
2679 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2680 struct mem_cgroup *memcg = NULL;
2681
2682 gfp_mask &= gfp_allowed_mask;
2683
2684 lockdep_trace_alloc(gfp_mask);
2685
2686 might_sleep_if(gfp_mask & __GFP_WAIT);
2687
2688 if (should_fail_alloc_page(gfp_mask, order))
2689 return NULL;
2690
2691 /*
2692 * Check the zones suitable for the gfp_mask contain at least one
2693 * valid zone. It's possible to have an empty zonelist as a result
2694 * of GFP_THISNODE and a memoryless node
2695 */
2696 if (unlikely(!zonelist->_zonerefs->zone))
2697 return NULL;
2698
2699 /*
2700 * Will only have any effect when __GFP_KMEMCG is set. This is
2701 * verified in the (always inline) callee
2702 */
2703 if (!memcg_kmem_newpage_charge(gfp_mask, &memcg, order))
2704 return NULL;
2705
2706 retry_cpuset:
2707 cpuset_mems_cookie = get_mems_allowed();
2708
2709 /* The preferred zone is used for statistics later */
2710 first_zones_zonelist(zonelist, high_zoneidx,
2711 nodemask ? : &cpuset_current_mems_allowed,
2712 &preferred_zone);
2713 if (!preferred_zone)
2714 goto out;
2715
2716 #ifdef CONFIG_CMA
2717 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2718 alloc_flags |= ALLOC_CMA;
2719 #endif
2720 /* First allocation attempt */
2721 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2722 zonelist, high_zoneidx, alloc_flags,
2723 preferred_zone, migratetype);
2724 if (unlikely(!page)) {
2725 /*
2726 * Runtime PM, block IO and its error handling path
2727 * can deadlock because I/O on the device might not
2728 * complete.
2729 */
2730 gfp_mask = memalloc_noio_flags(gfp_mask);
2731 page = __alloc_pages_slowpath(gfp_mask, order,
2732 zonelist, high_zoneidx, nodemask,
2733 preferred_zone, migratetype);
2734 }
2735
2736 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2737
2738 out:
2739 /*
2740 * When updating a task's mems_allowed, it is possible to race with
2741 * parallel threads in such a way that an allocation can fail while
2742 * the mask is being updated. If a page allocation is about to fail,
2743 * check if the cpuset changed during allocation and if so, retry.
2744 */
2745 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2746 goto retry_cpuset;
2747
2748 memcg_kmem_commit_charge(page, memcg, order);
2749
2750 return page;
2751 }
2752 EXPORT_SYMBOL(__alloc_pages_nodemask);
2753
2754 /*
2755 * Common helper functions.
2756 */
2757 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2758 {
2759 struct page *page;
2760
2761 /*
2762 * __get_free_pages() returns a 32-bit address, which cannot represent
2763 * a highmem page
2764 */
2765 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2766
2767 page = alloc_pages(gfp_mask, order);
2768 if (!page)
2769 return 0;
2770 return (unsigned long) page_address(page);
2771 }
2772 EXPORT_SYMBOL(__get_free_pages);
2773
2774 unsigned long get_zeroed_page(gfp_t gfp_mask)
2775 {
2776 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2777 }
2778 EXPORT_SYMBOL(get_zeroed_page);
2779
2780 void __free_pages(struct page *page, unsigned int order)
2781 {
2782 if (put_page_testzero(page)) {
2783 if (order == 0)
2784 free_hot_cold_page(page, 0);
2785 else
2786 __free_pages_ok(page, order);
2787 }
2788 }
2789
2790 EXPORT_SYMBOL(__free_pages);
2791
2792 void free_pages(unsigned long addr, unsigned int order)
2793 {
2794 if (addr != 0) {
2795 VM_BUG_ON(!virt_addr_valid((void *)addr));
2796 __free_pages(virt_to_page((void *)addr), order);
2797 }
2798 }
2799
2800 EXPORT_SYMBOL(free_pages);
2801
2802 /*
2803 * __free_memcg_kmem_pages and free_memcg_kmem_pages will free
2804 * pages allocated with __GFP_KMEMCG.
2805 *
2806 * Those pages are accounted to a particular memcg, embedded in the
2807 * corresponding page_cgroup. To avoid adding a hit in the allocator to search
2808 * for that information only to find out that it is NULL for users who have no
2809 * interest in that whatsoever, we provide these functions.
2810 *
2811 * The caller knows better which flags it relies on.
2812 */
2813 void __free_memcg_kmem_pages(struct page *page, unsigned int order)
2814 {
2815 memcg_kmem_uncharge_pages(page, order);
2816 __free_pages(page, order);
2817 }
2818
2819 void free_memcg_kmem_pages(unsigned long addr, unsigned int order)
2820 {
2821 if (addr != 0) {
2822 VM_BUG_ON(!virt_addr_valid((void *)addr));
2823 __free_memcg_kmem_pages(virt_to_page((void *)addr), order);
2824 }
2825 }
2826
2827 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2828 {
2829 if (addr) {
2830 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2831 unsigned long used = addr + PAGE_ALIGN(size);
2832
2833 split_page(virt_to_page((void *)addr), order);
2834 while (used < alloc_end) {
2835 free_page(used);
2836 used += PAGE_SIZE;
2837 }
2838 }
2839 return (void *)addr;
2840 }
2841
2842 /**
2843 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2844 * @size: the number of bytes to allocate
2845 * @gfp_mask: GFP flags for the allocation
2846 *
2847 * This function is similar to alloc_pages(), except that it allocates the
2848 * minimum number of pages to satisfy the request. alloc_pages() can only
2849 * allocate memory in power-of-two pages.
2850 *
2851 * This function is also limited by MAX_ORDER.
2852 *
2853 * Memory allocated by this function must be released by free_pages_exact().
2854 */
2855 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2856 {
2857 unsigned int order = get_order(size);
2858 unsigned long addr;
2859
2860 addr = __get_free_pages(gfp_mask, order);
2861 return make_alloc_exact(addr, order, size);
2862 }
2863 EXPORT_SYMBOL(alloc_pages_exact);
2864
2865 /**
2866 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2867 * pages on a node.
2868 * @nid: the preferred node ID where memory should be allocated
2869 * @size: the number of bytes to allocate
2870 * @gfp_mask: GFP flags for the allocation
2871 *
2872 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2873 * back.
2874 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2875 * but is not exact.
2876 */
2877 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2878 {
2879 unsigned order = get_order(size);
2880 struct page *p = alloc_pages_node(nid, gfp_mask, order);
2881 if (!p)
2882 return NULL;
2883 return make_alloc_exact((unsigned long)page_address(p), order, size);
2884 }
2885 EXPORT_SYMBOL(alloc_pages_exact_nid);
2886
2887 /**
2888 * free_pages_exact - release memory allocated via alloc_pages_exact()
2889 * @virt: the value returned by alloc_pages_exact.
2890 * @size: size of allocation, same value as passed to alloc_pages_exact().
2891 *
2892 * Release the memory allocated by a previous call to alloc_pages_exact.
2893 */
2894 void free_pages_exact(void *virt, size_t size)
2895 {
2896 unsigned long addr = (unsigned long)virt;
2897 unsigned long end = addr + PAGE_ALIGN(size);
2898
2899 while (addr < end) {
2900 free_page(addr);
2901 addr += PAGE_SIZE;
2902 }
2903 }
2904 EXPORT_SYMBOL(free_pages_exact);
2905
2906 /**
2907 * nr_free_zone_pages - count number of pages beyond high watermark
2908 * @offset: The zone index of the highest zone
2909 *
2910 * nr_free_zone_pages() counts the number of counts pages which are beyond the
2911 * high watermark within all zones at or below a given zone index. For each
2912 * zone, the number of pages is calculated as:
2913 * managed_pages - high_pages
2914 */
2915 static unsigned long nr_free_zone_pages(int offset)
2916 {
2917 struct zoneref *z;
2918 struct zone *zone;
2919
2920 /* Just pick one node, since fallback list is circular */
2921 unsigned long sum = 0;
2922
2923 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2924
2925 for_each_zone_zonelist(zone, z, zonelist, offset) {
2926 unsigned long size = zone->managed_pages;
2927 unsigned long high = high_wmark_pages(zone);
2928 if (size > high)
2929 sum += size - high;
2930 }
2931
2932 return sum;
2933 }
2934
2935 /**
2936 * nr_free_buffer_pages - count number of pages beyond high watermark
2937 *
2938 * nr_free_buffer_pages() counts the number of pages which are beyond the high
2939 * watermark within ZONE_DMA and ZONE_NORMAL.
2940 */
2941 unsigned long nr_free_buffer_pages(void)
2942 {
2943 return nr_free_zone_pages(gfp_zone(GFP_USER));
2944 }
2945 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2946
2947 /**
2948 * nr_free_pagecache_pages - count number of pages beyond high watermark
2949 *
2950 * nr_free_pagecache_pages() counts the number of pages which are beyond the
2951 * high watermark within all zones.
2952 */
2953 unsigned long nr_free_pagecache_pages(void)
2954 {
2955 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2956 }
2957
2958 static inline void show_node(struct zone *zone)
2959 {
2960 if (IS_ENABLED(CONFIG_NUMA))
2961 printk("Node %d ", zone_to_nid(zone));
2962 }
2963
2964 void si_meminfo(struct sysinfo *val)
2965 {
2966 val->totalram = totalram_pages;
2967 val->sharedram = 0;
2968 val->freeram = global_page_state(NR_FREE_PAGES);
2969 val->bufferram = nr_blockdev_pages();
2970 val->totalhigh = totalhigh_pages;
2971 val->freehigh = nr_free_highpages();
2972 val->mem_unit = PAGE_SIZE;
2973 }
2974
2975 EXPORT_SYMBOL(si_meminfo);
2976
2977 #ifdef CONFIG_NUMA
2978 void si_meminfo_node(struct sysinfo *val, int nid)
2979 {
2980 int zone_type; /* needs to be signed */
2981 unsigned long managed_pages = 0;
2982 pg_data_t *pgdat = NODE_DATA(nid);
2983
2984 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
2985 managed_pages += pgdat->node_zones[zone_type].managed_pages;
2986 val->totalram = managed_pages;
2987 val->freeram = node_page_state(nid, NR_FREE_PAGES);
2988 #ifdef CONFIG_HIGHMEM
2989 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
2990 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2991 NR_FREE_PAGES);
2992 #else
2993 val->totalhigh = 0;
2994 val->freehigh = 0;
2995 #endif
2996 val->mem_unit = PAGE_SIZE;
2997 }
2998 #endif
2999
3000 /*
3001 * Determine whether the node should be displayed or not, depending on whether
3002 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3003 */
3004 bool skip_free_areas_node(unsigned int flags, int nid)
3005 {
3006 bool ret = false;
3007 unsigned int cpuset_mems_cookie;
3008
3009 if (!(flags & SHOW_MEM_FILTER_NODES))
3010 goto out;
3011
3012 do {
3013 cpuset_mems_cookie = get_mems_allowed();
3014 ret = !node_isset(nid, cpuset_current_mems_allowed);
3015 } while (!put_mems_allowed(cpuset_mems_cookie));
3016 out:
3017 return ret;
3018 }
3019
3020 #define K(x) ((x) << (PAGE_SHIFT-10))
3021
3022 static void show_migration_types(unsigned char type)
3023 {
3024 static const char types[MIGRATE_TYPES] = {
3025 [MIGRATE_UNMOVABLE] = 'U',
3026 [MIGRATE_RECLAIMABLE] = 'E',
3027 [MIGRATE_MOVABLE] = 'M',
3028 [MIGRATE_RESERVE] = 'R',
3029 #ifdef CONFIG_CMA
3030 [MIGRATE_CMA] = 'C',
3031 #endif
3032 #ifdef CONFIG_MEMORY_ISOLATION
3033 [MIGRATE_ISOLATE] = 'I',
3034 #endif
3035 };
3036 char tmp[MIGRATE_TYPES + 1];
3037 char *p = tmp;
3038 int i;
3039
3040 for (i = 0; i < MIGRATE_TYPES; i++) {
3041 if (type & (1 << i))
3042 *p++ = types[i];
3043 }
3044
3045 *p = '\0';
3046 printk("(%s) ", tmp);
3047 }
3048
3049 /*
3050 * Show free area list (used inside shift_scroll-lock stuff)
3051 * We also calculate the percentage fragmentation. We do this by counting the
3052 * memory on each free list with the exception of the first item on the list.
3053 * Suppresses nodes that are not allowed by current's cpuset if
3054 * SHOW_MEM_FILTER_NODES is passed.
3055 */
3056 void show_free_areas(unsigned int filter)
3057 {
3058 int cpu;
3059 struct zone *zone;
3060
3061 for_each_populated_zone(zone) {
3062 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3063 continue;
3064 show_node(zone);
3065 printk("%s per-cpu:\n", zone->name);
3066
3067 for_each_online_cpu(cpu) {
3068 struct per_cpu_pageset *pageset;
3069
3070 pageset = per_cpu_ptr(zone->pageset, cpu);
3071
3072 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
3073 cpu, pageset->pcp.high,
3074 pageset->pcp.batch, pageset->pcp.count);
3075 }
3076 }
3077
3078 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3079 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3080 " unevictable:%lu"
3081 " dirty:%lu writeback:%lu unstable:%lu\n"
3082 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3083 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3084 " free_cma:%lu\n",
3085 global_page_state(NR_ACTIVE_ANON),
3086 global_page_state(NR_INACTIVE_ANON),
3087 global_page_state(NR_ISOLATED_ANON),
3088 global_page_state(NR_ACTIVE_FILE),
3089 global_page_state(NR_INACTIVE_FILE),
3090 global_page_state(NR_ISOLATED_FILE),
3091 global_page_state(NR_UNEVICTABLE),
3092 global_page_state(NR_FILE_DIRTY),
3093 global_page_state(NR_WRITEBACK),
3094 global_page_state(NR_UNSTABLE_NFS),
3095 global_page_state(NR_FREE_PAGES),
3096 global_page_state(NR_SLAB_RECLAIMABLE),
3097 global_page_state(NR_SLAB_UNRECLAIMABLE),
3098 global_page_state(NR_FILE_MAPPED),
3099 global_page_state(NR_SHMEM),
3100 global_page_state(NR_PAGETABLE),
3101 global_page_state(NR_BOUNCE),
3102 global_page_state(NR_FREE_CMA_PAGES));
3103
3104 for_each_populated_zone(zone) {
3105 int i;
3106
3107 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3108 continue;
3109 show_node(zone);
3110 printk("%s"
3111 " free:%lukB"
3112 " min:%lukB"
3113 " low:%lukB"
3114 " high:%lukB"
3115 " active_anon:%lukB"
3116 " inactive_anon:%lukB"
3117 " active_file:%lukB"
3118 " inactive_file:%lukB"
3119 " unevictable:%lukB"
3120 " isolated(anon):%lukB"
3121 " isolated(file):%lukB"
3122 " present:%lukB"
3123 " managed:%lukB"
3124 " mlocked:%lukB"
3125 " dirty:%lukB"
3126 " writeback:%lukB"
3127 " mapped:%lukB"
3128 " shmem:%lukB"
3129 " slab_reclaimable:%lukB"
3130 " slab_unreclaimable:%lukB"
3131 " kernel_stack:%lukB"
3132 " pagetables:%lukB"
3133 " unstable:%lukB"
3134 " bounce:%lukB"
3135 " free_cma:%lukB"
3136 " writeback_tmp:%lukB"
3137 " pages_scanned:%lu"
3138 " all_unreclaimable? %s"
3139 "\n",
3140 zone->name,
3141 K(zone_page_state(zone, NR_FREE_PAGES)),
3142 K(min_wmark_pages(zone)),
3143 K(low_wmark_pages(zone)),
3144 K(high_wmark_pages(zone)),
3145 K(zone_page_state(zone, NR_ACTIVE_ANON)),
3146 K(zone_page_state(zone, NR_INACTIVE_ANON)),
3147 K(zone_page_state(zone, NR_ACTIVE_FILE)),
3148 K(zone_page_state(zone, NR_INACTIVE_FILE)),
3149 K(zone_page_state(zone, NR_UNEVICTABLE)),
3150 K(zone_page_state(zone, NR_ISOLATED_ANON)),
3151 K(zone_page_state(zone, NR_ISOLATED_FILE)),
3152 K(zone->present_pages),
3153 K(zone->managed_pages),
3154 K(zone_page_state(zone, NR_MLOCK)),
3155 K(zone_page_state(zone, NR_FILE_DIRTY)),
3156 K(zone_page_state(zone, NR_WRITEBACK)),
3157 K(zone_page_state(zone, NR_FILE_MAPPED)),
3158 K(zone_page_state(zone, NR_SHMEM)),
3159 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3160 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3161 zone_page_state(zone, NR_KERNEL_STACK) *
3162 THREAD_SIZE / 1024,
3163 K(zone_page_state(zone, NR_PAGETABLE)),
3164 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3165 K(zone_page_state(zone, NR_BOUNCE)),
3166 K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3167 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3168 zone->pages_scanned,
3169 (!zone_reclaimable(zone) ? "yes" : "no")
3170 );
3171 printk("lowmem_reserve[]:");
3172 for (i = 0; i < MAX_NR_ZONES; i++)
3173 printk(" %lu", zone->lowmem_reserve[i]);
3174 printk("\n");
3175 }
3176
3177 for_each_populated_zone(zone) {
3178 unsigned long nr[MAX_ORDER], flags, order, total = 0;
3179 unsigned char types[MAX_ORDER];
3180
3181 if (skip_free_areas_node(filter, zone_to_nid(zone)))
3182 continue;
3183 show_node(zone);
3184 printk("%s: ", zone->name);
3185
3186 spin_lock_irqsave(&zone->lock, flags);
3187 for (order = 0; order < MAX_ORDER; order++) {
3188 struct free_area *area = &zone->free_area[order];
3189 int type;
3190
3191 nr[order] = area->nr_free;
3192 total += nr[order] << order;
3193
3194 types[order] = 0;
3195 for (type = 0; type < MIGRATE_TYPES; type++) {
3196 if (!list_empty(&area->free_list[type]))
3197 types[order] |= 1 << type;
3198 }
3199 }
3200 spin_unlock_irqrestore(&zone->lock, flags);
3201 for (order = 0; order < MAX_ORDER; order++) {
3202 printk("%lu*%lukB ", nr[order], K(1UL) << order);
3203 if (nr[order])
3204 show_migration_types(types[order]);
3205 }
3206 printk("= %lukB\n", K(total));
3207 }
3208
3209 hugetlb_show_meminfo();
3210
3211 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3212
3213 show_swap_cache_info();
3214 }
3215
3216 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3217 {
3218 zoneref->zone = zone;
3219 zoneref->zone_idx = zone_idx(zone);
3220 }
3221
3222 /*
3223 * Builds allocation fallback zone lists.
3224 *
3225 * Add all populated zones of a node to the zonelist.
3226 */
3227 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3228 int nr_zones)
3229 {
3230 struct zone *zone;
3231 enum zone_type zone_type = MAX_NR_ZONES;
3232
3233 do {
3234 zone_type--;
3235 zone = pgdat->node_zones + zone_type;
3236 if (populated_zone(zone)) {
3237 zoneref_set_zone(zone,
3238 &zonelist->_zonerefs[nr_zones++]);
3239 check_highest_zone(zone_type);
3240 }
3241 } while (zone_type);
3242
3243 return nr_zones;
3244 }
3245
3246
3247 /*
3248 * zonelist_order:
3249 * 0 = automatic detection of better ordering.
3250 * 1 = order by ([node] distance, -zonetype)
3251 * 2 = order by (-zonetype, [node] distance)
3252 *
3253 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3254 * the same zonelist. So only NUMA can configure this param.
3255 */
3256 #define ZONELIST_ORDER_DEFAULT 0
3257 #define ZONELIST_ORDER_NODE 1
3258 #define ZONELIST_ORDER_ZONE 2
3259
3260 /* zonelist order in the kernel.
3261 * set_zonelist_order() will set this to NODE or ZONE.
3262 */
3263 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3264 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3265
3266
3267 #ifdef CONFIG_NUMA
3268 /* The value user specified ....changed by config */
3269 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3270 /* string for sysctl */
3271 #define NUMA_ZONELIST_ORDER_LEN 16
3272 char numa_zonelist_order[16] = "default";
3273
3274 /*
3275 * interface for configure zonelist ordering.
3276 * command line option "numa_zonelist_order"
3277 * = "[dD]efault - default, automatic configuration.
3278 * = "[nN]ode - order by node locality, then by zone within node
3279 * = "[zZ]one - order by zone, then by locality within zone
3280 */
3281
3282 static int __parse_numa_zonelist_order(char *s)
3283 {
3284 if (*s == 'd' || *s == 'D') {
3285 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3286 } else if (*s == 'n' || *s == 'N') {
3287 user_zonelist_order = ZONELIST_ORDER_NODE;
3288 } else if (*s == 'z' || *s == 'Z') {
3289 user_zonelist_order = ZONELIST_ORDER_ZONE;
3290 } else {
3291 printk(KERN_WARNING
3292 "Ignoring invalid numa_zonelist_order value: "
3293 "%s\n", s);
3294 return -EINVAL;
3295 }
3296 return 0;
3297 }
3298
3299 static __init int setup_numa_zonelist_order(char *s)
3300 {
3301 int ret;
3302
3303 if (!s)
3304 return 0;
3305
3306 ret = __parse_numa_zonelist_order(s);
3307 if (ret == 0)
3308 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3309
3310 return ret;
3311 }
3312 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3313
3314 /*
3315 * sysctl handler for numa_zonelist_order
3316 */
3317 int numa_zonelist_order_handler(ctl_table *table, int write,
3318 void __user *buffer, size_t *length,
3319 loff_t *ppos)
3320 {
3321 char saved_string[NUMA_ZONELIST_ORDER_LEN];
3322 int ret;
3323 static DEFINE_MUTEX(zl_order_mutex);
3324
3325 mutex_lock(&zl_order_mutex);
3326 if (write) {
3327 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
3328 ret = -EINVAL;
3329 goto out;
3330 }
3331 strcpy(saved_string, (char *)table->data);
3332 }
3333 ret = proc_dostring(table, write, buffer, length, ppos);
3334 if (ret)
3335 goto out;
3336 if (write) {
3337 int oldval = user_zonelist_order;
3338
3339 ret = __parse_numa_zonelist_order((char *)table->data);
3340 if (ret) {
3341 /*
3342 * bogus value. restore saved string
3343 */
3344 strncpy((char *)table->data, saved_string,
3345 NUMA_ZONELIST_ORDER_LEN);
3346 user_zonelist_order = oldval;
3347 } else if (oldval != user_zonelist_order) {
3348 mutex_lock(&zonelists_mutex);
3349 build_all_zonelists(NULL, NULL);
3350 mutex_unlock(&zonelists_mutex);
3351 }
3352 }
3353 out:
3354 mutex_unlock(&zl_order_mutex);
3355 return ret;
3356 }
3357
3358
3359 #define MAX_NODE_LOAD (nr_online_nodes)
3360 static int node_load[MAX_NUMNODES];
3361
3362 /**
3363 * find_next_best_node - find the next node that should appear in a given node's fallback list
3364 * @node: node whose fallback list we're appending
3365 * @used_node_mask: nodemask_t of already used nodes
3366 *
3367 * We use a number of factors to determine which is the next node that should
3368 * appear on a given node's fallback list. The node should not have appeared
3369 * already in @node's fallback list, and it should be the next closest node
3370 * according to the distance array (which contains arbitrary distance values
3371 * from each node to each node in the system), and should also prefer nodes
3372 * with no CPUs, since presumably they'll have very little allocation pressure
3373 * on them otherwise.
3374 * It returns -1 if no node is found.
3375 */
3376 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3377 {
3378 int n, val;
3379 int min_val = INT_MAX;
3380 int best_node = NUMA_NO_NODE;
3381 const struct cpumask *tmp = cpumask_of_node(0);
3382
3383 /* Use the local node if we haven't already */
3384 if (!node_isset(node, *used_node_mask)) {
3385 node_set(node, *used_node_mask);
3386 return node;
3387 }
3388
3389 for_each_node_state(n, N_MEMORY) {
3390
3391 /* Don't want a node to appear more than once */
3392 if (node_isset(n, *used_node_mask))
3393 continue;
3394
3395 /* Use the distance array to find the distance */
3396 val = node_distance(node, n);
3397
3398 /* Penalize nodes under us ("prefer the next node") */
3399 val += (n < node);
3400
3401 /* Give preference to headless and unused nodes */
3402 tmp = cpumask_of_node(n);
3403 if (!cpumask_empty(tmp))
3404 val += PENALTY_FOR_NODE_WITH_CPUS;
3405
3406 /* Slight preference for less loaded node */
3407 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3408 val += node_load[n];
3409
3410 if (val < min_val) {
3411 min_val = val;
3412 best_node = n;
3413 }
3414 }
3415
3416 if (best_node >= 0)
3417 node_set(best_node, *used_node_mask);
3418
3419 return best_node;
3420 }
3421
3422
3423 /*
3424 * Build zonelists ordered by node and zones within node.
3425 * This results in maximum locality--normal zone overflows into local
3426 * DMA zone, if any--but risks exhausting DMA zone.
3427 */
3428 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3429 {
3430 int j;
3431 struct zonelist *zonelist;
3432
3433 zonelist = &pgdat->node_zonelists[0];
3434 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3435 ;
3436 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3437 zonelist->_zonerefs[j].zone = NULL;
3438 zonelist->_zonerefs[j].zone_idx = 0;
3439 }
3440
3441 /*
3442 * Build gfp_thisnode zonelists
3443 */
3444 static void build_thisnode_zonelists(pg_data_t *pgdat)
3445 {
3446 int j;
3447 struct zonelist *zonelist;
3448
3449 zonelist = &pgdat->node_zonelists[1];
3450 j = build_zonelists_node(pgdat, zonelist, 0);
3451 zonelist->_zonerefs[j].zone = NULL;
3452 zonelist->_zonerefs[j].zone_idx = 0;
3453 }
3454
3455 /*
3456 * Build zonelists ordered by zone and nodes within zones.
3457 * This results in conserving DMA zone[s] until all Normal memory is
3458 * exhausted, but results in overflowing to remote node while memory
3459 * may still exist in local DMA zone.
3460 */
3461 static int node_order[MAX_NUMNODES];
3462
3463 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3464 {
3465 int pos, j, node;
3466 int zone_type; /* needs to be signed */
3467 struct zone *z;
3468 struct zonelist *zonelist;
3469
3470 zonelist = &pgdat->node_zonelists[0];
3471 pos = 0;
3472 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3473 for (j = 0; j < nr_nodes; j++) {
3474 node = node_order[j];
3475 z = &NODE_DATA(node)->node_zones[zone_type];
3476 if (populated_zone(z)) {
3477 zoneref_set_zone(z,
3478 &zonelist->_zonerefs[pos++]);
3479 check_highest_zone(zone_type);
3480 }
3481 }
3482 }
3483 zonelist->_zonerefs[pos].zone = NULL;
3484 zonelist->_zonerefs[pos].zone_idx = 0;
3485 }
3486
3487 static int default_zonelist_order(void)
3488 {
3489 int nid, zone_type;
3490 unsigned long low_kmem_size, total_size;
3491 struct zone *z;
3492 int average_size;
3493 /*
3494 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3495 * If they are really small and used heavily, the system can fall
3496 * into OOM very easily.
3497 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3498 */
3499 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3500 low_kmem_size = 0;
3501 total_size = 0;
3502 for_each_online_node(nid) {
3503 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3504 z = &NODE_DATA(nid)->node_zones[zone_type];
3505 if (populated_zone(z)) {
3506 if (zone_type < ZONE_NORMAL)
3507 low_kmem_size += z->managed_pages;
3508 total_size += z->managed_pages;
3509 } else if (zone_type == ZONE_NORMAL) {
3510 /*
3511 * If any node has only lowmem, then node order
3512 * is preferred to allow kernel allocations
3513 * locally; otherwise, they can easily infringe
3514 * on other nodes when there is an abundance of
3515 * lowmem available to allocate from.
3516 */
3517 return ZONELIST_ORDER_NODE;
3518 }
3519 }
3520 }
3521 if (!low_kmem_size || /* there are no DMA area. */
3522 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3523 return ZONELIST_ORDER_NODE;
3524 /*
3525 * look into each node's config.
3526 * If there is a node whose DMA/DMA32 memory is very big area on
3527 * local memory, NODE_ORDER may be suitable.
3528 */
3529 average_size = total_size /
3530 (nodes_weight(node_states[N_MEMORY]) + 1);
3531 for_each_online_node(nid) {
3532 low_kmem_size = 0;
3533 total_size = 0;
3534 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3535 z = &NODE_DATA(nid)->node_zones[zone_type];
3536 if (populated_zone(z)) {
3537 if (zone_type < ZONE_NORMAL)
3538 low_kmem_size += z->present_pages;
3539 total_size += z->present_pages;
3540 }
3541 }
3542 if (low_kmem_size &&
3543 total_size > average_size && /* ignore small node */
3544 low_kmem_size > total_size * 70/100)
3545 return ZONELIST_ORDER_NODE;
3546 }
3547 return ZONELIST_ORDER_ZONE;
3548 }
3549
3550 static void set_zonelist_order(void)
3551 {
3552 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3553 current_zonelist_order = default_zonelist_order();
3554 else
3555 current_zonelist_order = user_zonelist_order;
3556 }
3557
3558 static void build_zonelists(pg_data_t *pgdat)
3559 {
3560 int j, node, load;
3561 enum zone_type i;
3562 nodemask_t used_mask;
3563 int local_node, prev_node;
3564 struct zonelist *zonelist;
3565 int order = current_zonelist_order;
3566
3567 /* initialize zonelists */
3568 for (i = 0; i < MAX_ZONELISTS; i++) {
3569 zonelist = pgdat->node_zonelists + i;
3570 zonelist->_zonerefs[0].zone = NULL;
3571 zonelist->_zonerefs[0].zone_idx = 0;
3572 }
3573
3574 /* NUMA-aware ordering of nodes */
3575 local_node = pgdat->node_id;
3576 load = nr_online_nodes;
3577 prev_node = local_node;
3578 nodes_clear(used_mask);
3579
3580 memset(node_order, 0, sizeof(node_order));
3581 j = 0;
3582
3583 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3584 /*
3585 * We don't want to pressure a particular node.
3586 * So adding penalty to the first node in same
3587 * distance group to make it round-robin.
3588 */
3589 if (node_distance(local_node, node) !=
3590 node_distance(local_node, prev_node))
3591 node_load[node] = load;
3592
3593 prev_node = node;
3594 load--;
3595 if (order == ZONELIST_ORDER_NODE)
3596 build_zonelists_in_node_order(pgdat, node);
3597 else
3598 node_order[j++] = node; /* remember order */
3599 }
3600
3601 if (order == ZONELIST_ORDER_ZONE) {
3602 /* calculate node order -- i.e., DMA last! */
3603 build_zonelists_in_zone_order(pgdat, j);
3604 }
3605
3606 build_thisnode_zonelists(pgdat);
3607 }
3608
3609 /* Construct the zonelist performance cache - see further mmzone.h */
3610 static void build_zonelist_cache(pg_data_t *pgdat)
3611 {
3612 struct zonelist *zonelist;
3613 struct zonelist_cache *zlc;
3614 struct zoneref *z;
3615
3616 zonelist = &pgdat->node_zonelists[0];
3617 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3618 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3619 for (z = zonelist->_zonerefs; z->zone; z++)
3620 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3621 }
3622
3623 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3624 /*
3625 * Return node id of node used for "local" allocations.
3626 * I.e., first node id of first zone in arg node's generic zonelist.
3627 * Used for initializing percpu 'numa_mem', which is used primarily
3628 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3629 */
3630 int local_memory_node(int node)
3631 {
3632 struct zone *zone;
3633
3634 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3635 gfp_zone(GFP_KERNEL),
3636 NULL,
3637 &zone);
3638 return zone->node;
3639 }
3640 #endif
3641
3642 #else /* CONFIG_NUMA */
3643
3644 static void set_zonelist_order(void)
3645 {
3646 current_zonelist_order = ZONELIST_ORDER_ZONE;
3647 }
3648
3649 static void build_zonelists(pg_data_t *pgdat)
3650 {
3651 int node, local_node;
3652 enum zone_type j;
3653 struct zonelist *zonelist;
3654
3655 local_node = pgdat->node_id;
3656
3657 zonelist = &pgdat->node_zonelists[0];
3658 j = build_zonelists_node(pgdat, zonelist, 0);
3659
3660 /*
3661 * Now we build the zonelist so that it contains the zones
3662 * of all the other nodes.
3663 * We don't want to pressure a particular node, so when
3664 * building the zones for node N, we make sure that the
3665 * zones coming right after the local ones are those from
3666 * node N+1 (modulo N)
3667 */
3668 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3669 if (!node_online(node))
3670 continue;
3671 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3672 }
3673 for (node = 0; node < local_node; node++) {
3674 if (!node_online(node))
3675 continue;
3676 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
3677 }
3678
3679 zonelist->_zonerefs[j].zone = NULL;
3680 zonelist->_zonerefs[j].zone_idx = 0;
3681 }
3682
3683 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3684 static void build_zonelist_cache(pg_data_t *pgdat)
3685 {
3686 pgdat->node_zonelists[0].zlcache_ptr = NULL;
3687 }
3688
3689 #endif /* CONFIG_NUMA */
3690
3691 /*
3692 * Boot pageset table. One per cpu which is going to be used for all
3693 * zones and all nodes. The parameters will be set in such a way
3694 * that an item put on a list will immediately be handed over to
3695 * the buddy list. This is safe since pageset manipulation is done
3696 * with interrupts disabled.
3697 *
3698 * The boot_pagesets must be kept even after bootup is complete for
3699 * unused processors and/or zones. They do play a role for bootstrapping
3700 * hotplugged processors.
3701 *
3702 * zoneinfo_show() and maybe other functions do
3703 * not check if the processor is online before following the pageset pointer.
3704 * Other parts of the kernel may not check if the zone is available.
3705 */
3706 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3707 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3708 static void setup_zone_pageset(struct zone *zone);
3709
3710 /*
3711 * Global mutex to protect against size modification of zonelists
3712 * as well as to serialize pageset setup for the new populated zone.
3713 */
3714 DEFINE_MUTEX(zonelists_mutex);
3715
3716 /* return values int ....just for stop_machine() */
3717 static int __build_all_zonelists(void *data)
3718 {
3719 int nid;
3720 int cpu;
3721 pg_data_t *self = data;
3722
3723 #ifdef CONFIG_NUMA
3724 memset(node_load, 0, sizeof(node_load));
3725 #endif
3726
3727 if (self && !node_online(self->node_id)) {
3728 build_zonelists(self);
3729 build_zonelist_cache(self);
3730 }
3731
3732 for_each_online_node(nid) {
3733 pg_data_t *pgdat = NODE_DATA(nid);
3734
3735 build_zonelists(pgdat);
3736 build_zonelist_cache(pgdat);
3737 }
3738
3739 /*
3740 * Initialize the boot_pagesets that are going to be used
3741 * for bootstrapping processors. The real pagesets for
3742 * each zone will be allocated later when the per cpu
3743 * allocator is available.
3744 *
3745 * boot_pagesets are used also for bootstrapping offline
3746 * cpus if the system is already booted because the pagesets
3747 * are needed to initialize allocators on a specific cpu too.
3748 * F.e. the percpu allocator needs the page allocator which
3749 * needs the percpu allocator in order to allocate its pagesets
3750 * (a chicken-egg dilemma).
3751 */
3752 for_each_possible_cpu(cpu) {
3753 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3754
3755 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3756 /*
3757 * We now know the "local memory node" for each node--
3758 * i.e., the node of the first zone in the generic zonelist.
3759 * Set up numa_mem percpu variable for on-line cpus. During
3760 * boot, only the boot cpu should be on-line; we'll init the
3761 * secondary cpus' numa_mem as they come on-line. During
3762 * node/memory hotplug, we'll fixup all on-line cpus.
3763 */
3764 if (cpu_online(cpu))
3765 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3766 #endif
3767 }
3768
3769 return 0;
3770 }
3771
3772 /*
3773 * Called with zonelists_mutex held always
3774 * unless system_state == SYSTEM_BOOTING.
3775 */
3776 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3777 {
3778 set_zonelist_order();
3779
3780 if (system_state == SYSTEM_BOOTING) {
3781 __build_all_zonelists(NULL);
3782 mminit_verify_zonelist();
3783 cpuset_init_current_mems_allowed();
3784 } else {
3785 #ifdef CONFIG_MEMORY_HOTPLUG
3786 if (zone)
3787 setup_zone_pageset(zone);
3788 #endif
3789 /* we have to stop all cpus to guarantee there is no user
3790 of zonelist */
3791 stop_machine(__build_all_zonelists, pgdat, NULL);
3792 /* cpuset refresh routine should be here */
3793 }
3794 vm_total_pages = nr_free_pagecache_pages();
3795 /*
3796 * Disable grouping by mobility if the number of pages in the
3797 * system is too low to allow the mechanism to work. It would be
3798 * more accurate, but expensive to check per-zone. This check is
3799 * made on memory-hotadd so a system can start with mobility
3800 * disabled and enable it later
3801 */
3802 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3803 page_group_by_mobility_disabled = 1;
3804 else
3805 page_group_by_mobility_disabled = 0;
3806
3807 printk("Built %i zonelists in %s order, mobility grouping %s. "
3808 "Total pages: %ld\n",
3809 nr_online_nodes,
3810 zonelist_order_name[current_zonelist_order],
3811 page_group_by_mobility_disabled ? "off" : "on",
3812 vm_total_pages);
3813 #ifdef CONFIG_NUMA
3814 printk("Policy zone: %s\n", zone_names[policy_zone]);
3815 #endif
3816 }
3817
3818 /*
3819 * Helper functions to size the waitqueue hash table.
3820 * Essentially these want to choose hash table sizes sufficiently
3821 * large so that collisions trying to wait on pages are rare.
3822 * But in fact, the number of active page waitqueues on typical
3823 * systems is ridiculously low, less than 200. So this is even
3824 * conservative, even though it seems large.
3825 *
3826 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3827 * waitqueues, i.e. the size of the waitq table given the number of pages.
3828 */
3829 #define PAGES_PER_WAITQUEUE 256
3830
3831 #ifndef CONFIG_MEMORY_HOTPLUG
3832 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3833 {
3834 unsigned long size = 1;
3835
3836 pages /= PAGES_PER_WAITQUEUE;
3837
3838 while (size < pages)
3839 size <<= 1;
3840
3841 /*
3842 * Once we have dozens or even hundreds of threads sleeping
3843 * on IO we've got bigger problems than wait queue collision.
3844 * Limit the size of the wait table to a reasonable size.
3845 */
3846 size = min(size, 4096UL);
3847
3848 return max(size, 4UL);
3849 }
3850 #else
3851 /*
3852 * A zone's size might be changed by hot-add, so it is not possible to determine
3853 * a suitable size for its wait_table. So we use the maximum size now.
3854 *
3855 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3856 *
3857 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3858 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3859 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3860 *
3861 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3862 * or more by the traditional way. (See above). It equals:
3863 *
3864 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3865 * ia64(16K page size) : = ( 8G + 4M)byte.
3866 * powerpc (64K page size) : = (32G +16M)byte.
3867 */
3868 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3869 {
3870 return 4096UL;
3871 }
3872 #endif
3873
3874 /*
3875 * This is an integer logarithm so that shifts can be used later
3876 * to extract the more random high bits from the multiplicative
3877 * hash function before the remainder is taken.
3878 */
3879 static inline unsigned long wait_table_bits(unsigned long size)
3880 {
3881 return ffz(~size);
3882 }
3883
3884 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3885
3886 /*
3887 * Check if a pageblock contains reserved pages
3888 */
3889 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3890 {
3891 unsigned long pfn;
3892
3893 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3894 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3895 return 1;
3896 }
3897 return 0;
3898 }
3899
3900 /*
3901 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3902 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3903 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3904 * higher will lead to a bigger reserve which will get freed as contiguous
3905 * blocks as reclaim kicks in
3906 */
3907 static void setup_zone_migrate_reserve(struct zone *zone)
3908 {
3909 unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3910 struct page *page;
3911 unsigned long block_migratetype;
3912 int reserve;
3913
3914 /*
3915 * Get the start pfn, end pfn and the number of blocks to reserve
3916 * We have to be careful to be aligned to pageblock_nr_pages to
3917 * make sure that we always check pfn_valid for the first page in
3918 * the block.
3919 */
3920 start_pfn = zone->zone_start_pfn;
3921 end_pfn = zone_end_pfn(zone);
3922 start_pfn = roundup(start_pfn, pageblock_nr_pages);
3923 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3924 pageblock_order;
3925
3926 /*
3927 * Reserve blocks are generally in place to help high-order atomic
3928 * allocations that are short-lived. A min_free_kbytes value that
3929 * would result in more than 2 reserve blocks for atomic allocations
3930 * is assumed to be in place to help anti-fragmentation for the
3931 * future allocation of hugepages at runtime.
3932 */
3933 reserve = min(2, reserve);
3934
3935 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3936 if (!pfn_valid(pfn))
3937 continue;
3938 page = pfn_to_page(pfn);
3939
3940 /* Watch out for overlapping nodes */
3941 if (page_to_nid(page) != zone_to_nid(zone))
3942 continue;
3943
3944 block_migratetype = get_pageblock_migratetype(page);
3945
3946 /* Only test what is necessary when the reserves are not met */
3947 if (reserve > 0) {
3948 /*
3949 * Blocks with reserved pages will never free, skip
3950 * them.
3951 */
3952 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3953 if (pageblock_is_reserved(pfn, block_end_pfn))
3954 continue;
3955
3956 /* If this block is reserved, account for it */
3957 if (block_migratetype == MIGRATE_RESERVE) {
3958 reserve--;
3959 continue;
3960 }
3961
3962 /* Suitable for reserving if this block is movable */
3963 if (block_migratetype == MIGRATE_MOVABLE) {
3964 set_pageblock_migratetype(page,
3965 MIGRATE_RESERVE);
3966 move_freepages_block(zone, page,
3967 MIGRATE_RESERVE);
3968 reserve--;
3969 continue;
3970 }
3971 }
3972
3973 /*
3974 * If the reserve is met and this is a previous reserved block,
3975 * take it back
3976 */
3977 if (block_migratetype == MIGRATE_RESERVE) {
3978 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3979 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3980 }
3981 }
3982 }
3983
3984 /*
3985 * Initially all pages are reserved - free ones are freed
3986 * up by free_all_bootmem() once the early boot process is
3987 * done. Non-atomic initialization, single-pass.
3988 */
3989 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3990 unsigned long start_pfn, enum memmap_context context)
3991 {
3992 struct page *page;
3993 unsigned long end_pfn = start_pfn + size;
3994 unsigned long pfn;
3995 struct zone *z;
3996
3997 if (highest_memmap_pfn < end_pfn - 1)
3998 highest_memmap_pfn = end_pfn - 1;
3999
4000 z = &NODE_DATA(nid)->node_zones[zone];
4001 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4002 /*
4003 * There can be holes in boot-time mem_map[]s
4004 * handed to this function. They do not
4005 * exist on hotplugged memory.
4006 */
4007 if (context == MEMMAP_EARLY) {
4008 if (!early_pfn_valid(pfn))
4009 continue;
4010 if (!early_pfn_in_nid(pfn, nid))
4011 continue;
4012 }
4013 page = pfn_to_page(pfn);
4014 set_page_links(page, zone, nid, pfn);
4015 mminit_verify_page_links(page, zone, nid, pfn);
4016 init_page_count(page);
4017 page_mapcount_reset(page);
4018 page_nid_reset_last(page);
4019 SetPageReserved(page);
4020 /*
4021 * Mark the block movable so that blocks are reserved for
4022 * movable at startup. This will force kernel allocations
4023 * to reserve their blocks rather than leaking throughout
4024 * the address space during boot when many long-lived
4025 * kernel allocations are made. Later some blocks near
4026 * the start are marked MIGRATE_RESERVE by
4027 * setup_zone_migrate_reserve()
4028 *
4029 * bitmap is created for zone's valid pfn range. but memmap
4030 * can be created for invalid pages (for alignment)
4031 * check here not to call set_pageblock_migratetype() against
4032 * pfn out of zone.
4033 */
4034 if ((z->zone_start_pfn <= pfn)
4035 && (pfn < zone_end_pfn(z))
4036 && !(pfn & (pageblock_nr_pages - 1)))
4037 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4038
4039 INIT_LIST_HEAD(&page->lru);
4040 #ifdef WANT_PAGE_VIRTUAL
4041 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
4042 if (!is_highmem_idx(zone))
4043 set_page_address(page, __va(pfn << PAGE_SHIFT));
4044 #endif
4045 }
4046 }
4047
4048 static void __meminit zone_init_free_lists(struct zone *zone)
4049 {
4050 int order, t;
4051 for_each_migratetype_order(order, t) {
4052 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4053 zone->free_area[order].nr_free = 0;
4054 }
4055 }
4056
4057 #ifndef __HAVE_ARCH_MEMMAP_INIT
4058 #define memmap_init(size, nid, zone, start_pfn) \
4059 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4060 #endif
4061
4062 static int __meminit zone_batchsize(struct zone *zone)
4063 {
4064 #ifdef CONFIG_MMU
4065 int batch;
4066
4067 /*
4068 * The per-cpu-pages pools are set to around 1000th of the
4069 * size of the zone. But no more than 1/2 of a meg.
4070 *
4071 * OK, so we don't know how big the cache is. So guess.
4072 */
4073 batch = zone->managed_pages / 1024;
4074 if (batch * PAGE_SIZE > 512 * 1024)
4075 batch = (512 * 1024) / PAGE_SIZE;
4076 batch /= 4; /* We effectively *= 4 below */
4077 if (batch < 1)
4078 batch = 1;
4079
4080 /*
4081 * Clamp the batch to a 2^n - 1 value. Having a power
4082 * of 2 value was found to be more likely to have
4083 * suboptimal cache aliasing properties in some cases.
4084 *
4085 * For example if 2 tasks are alternately allocating
4086 * batches of pages, one task can end up with a lot
4087 * of pages of one half of the possible page colors
4088 * and the other with pages of the other colors.
4089 */
4090 batch = rounddown_pow_of_two(batch + batch/2) - 1;
4091
4092 return batch;
4093
4094 #else
4095 /* The deferral and batching of frees should be suppressed under NOMMU
4096 * conditions.
4097 *
4098 * The problem is that NOMMU needs to be able to allocate large chunks
4099 * of contiguous memory as there's no hardware page translation to
4100 * assemble apparent contiguous memory from discontiguous pages.
4101 *
4102 * Queueing large contiguous runs of pages for batching, however,
4103 * causes the pages to actually be freed in smaller chunks. As there
4104 * can be a significant delay between the individual batches being
4105 * recycled, this leads to the once large chunks of space being
4106 * fragmented and becoming unavailable for high-order allocations.
4107 */
4108 return 0;
4109 #endif
4110 }
4111
4112 /*
4113 * pcp->high and pcp->batch values are related and dependent on one another:
4114 * ->batch must never be higher then ->high.
4115 * The following function updates them in a safe manner without read side
4116 * locking.
4117 *
4118 * Any new users of pcp->batch and pcp->high should ensure they can cope with
4119 * those fields changing asynchronously (acording the the above rule).
4120 *
4121 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4122 * outside of boot time (or some other assurance that no concurrent updaters
4123 * exist).
4124 */
4125 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4126 unsigned long batch)
4127 {
4128 /* start with a fail safe value for batch */
4129 pcp->batch = 1;
4130 smp_wmb();
4131
4132 /* Update high, then batch, in order */
4133 pcp->high = high;
4134 smp_wmb();
4135
4136 pcp->batch = batch;
4137 }
4138
4139 /* a companion to pageset_set_high() */
4140 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4141 {
4142 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4143 }
4144
4145 static void pageset_init(struct per_cpu_pageset *p)
4146 {
4147 struct per_cpu_pages *pcp;
4148 int migratetype;
4149
4150 memset(p, 0, sizeof(*p));
4151
4152 pcp = &p->pcp;
4153 pcp->count = 0;
4154 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4155 INIT_LIST_HEAD(&pcp->lists[migratetype]);
4156 }
4157
4158 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4159 {
4160 pageset_init(p);
4161 pageset_set_batch(p, batch);
4162 }
4163
4164 /*
4165 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4166 * to the value high for the pageset p.
4167 */
4168 static void pageset_set_high(struct per_cpu_pageset *p,
4169 unsigned long high)
4170 {
4171 unsigned long batch = max(1UL, high / 4);
4172 if ((high / 4) > (PAGE_SHIFT * 8))
4173 batch = PAGE_SHIFT * 8;
4174
4175 pageset_update(&p->pcp, high, batch);
4176 }
4177
4178 static void __meminit pageset_set_high_and_batch(struct zone *zone,
4179 struct per_cpu_pageset *pcp)
4180 {
4181 if (percpu_pagelist_fraction)
4182 pageset_set_high(pcp,
4183 (zone->managed_pages /
4184 percpu_pagelist_fraction));
4185 else
4186 pageset_set_batch(pcp, zone_batchsize(zone));
4187 }
4188
4189 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4190 {
4191 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4192
4193 pageset_init(pcp);
4194 pageset_set_high_and_batch(zone, pcp);
4195 }
4196
4197 static void __meminit setup_zone_pageset(struct zone *zone)
4198 {
4199 int cpu;
4200 zone->pageset = alloc_percpu(struct per_cpu_pageset);
4201 for_each_possible_cpu(cpu)
4202 zone_pageset_init(zone, cpu);
4203 }
4204
4205 /*
4206 * Allocate per cpu pagesets and initialize them.
4207 * Before this call only boot pagesets were available.
4208 */
4209 void __init setup_per_cpu_pageset(void)
4210 {
4211 struct zone *zone;
4212
4213 for_each_populated_zone(zone)
4214 setup_zone_pageset(zone);
4215 }
4216
4217 static noinline __init_refok
4218 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4219 {
4220 int i;
4221 struct pglist_data *pgdat = zone->zone_pgdat;
4222 size_t alloc_size;
4223
4224 /*
4225 * The per-page waitqueue mechanism uses hashed waitqueues
4226 * per zone.
4227 */
4228 zone->wait_table_hash_nr_entries =
4229 wait_table_hash_nr_entries(zone_size_pages);
4230 zone->wait_table_bits =
4231 wait_table_bits(zone->wait_table_hash_nr_entries);
4232 alloc_size = zone->wait_table_hash_nr_entries
4233 * sizeof(wait_queue_head_t);
4234
4235 if (!slab_is_available()) {
4236 zone->wait_table = (wait_queue_head_t *)
4237 alloc_bootmem_node_nopanic(pgdat, alloc_size);
4238 } else {
4239 /*
4240 * This case means that a zone whose size was 0 gets new memory
4241 * via memory hot-add.
4242 * But it may be the case that a new node was hot-added. In
4243 * this case vmalloc() will not be able to use this new node's
4244 * memory - this wait_table must be initialized to use this new
4245 * node itself as well.
4246 * To use this new node's memory, further consideration will be
4247 * necessary.
4248 */
4249 zone->wait_table = vmalloc(alloc_size);
4250 }
4251 if (!zone->wait_table)
4252 return -ENOMEM;
4253
4254 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4255 init_waitqueue_head(zone->wait_table + i);
4256
4257 return 0;
4258 }
4259
4260 static __meminit void zone_pcp_init(struct zone *zone)
4261 {
4262 /*
4263 * per cpu subsystem is not up at this point. The following code
4264 * relies on the ability of the linker to provide the
4265 * offset of a (static) per cpu variable into the per cpu area.
4266 */
4267 zone->pageset = &boot_pageset;
4268
4269 if (zone->present_pages)
4270 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
4271 zone->name, zone->present_pages,
4272 zone_batchsize(zone));
4273 }
4274
4275 int __meminit init_currently_empty_zone(struct zone *zone,
4276 unsigned long zone_start_pfn,
4277 unsigned long size,
4278 enum memmap_context context)
4279 {
4280 struct pglist_data *pgdat = zone->zone_pgdat;
4281 int ret;
4282 ret = zone_wait_table_init(zone, size);
4283 if (ret)
4284 return ret;
4285 pgdat->nr_zones = zone_idx(zone) + 1;
4286
4287 zone->zone_start_pfn = zone_start_pfn;
4288
4289 mminit_dprintk(MMINIT_TRACE, "memmap_init",
4290 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
4291 pgdat->node_id,
4292 (unsigned long)zone_idx(zone),
4293 zone_start_pfn, (zone_start_pfn + size));
4294
4295 zone_init_free_lists(zone);
4296
4297 return 0;
4298 }
4299
4300 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4301 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4302 /*
4303 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4304 * Architectures may implement their own version but if add_active_range()
4305 * was used and there are no special requirements, this is a convenient
4306 * alternative
4307 */
4308 int __meminit __early_pfn_to_nid(unsigned long pfn)
4309 {
4310 unsigned long start_pfn, end_pfn;
4311 int nid;
4312 /*
4313 * NOTE: The following SMP-unsafe globals are only used early in boot
4314 * when the kernel is running single-threaded.
4315 */
4316 static unsigned long __meminitdata last_start_pfn, last_end_pfn;
4317 static int __meminitdata last_nid;
4318
4319 if (last_start_pfn <= pfn && pfn < last_end_pfn)
4320 return last_nid;
4321
4322 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
4323 if (nid != -1) {
4324 last_start_pfn = start_pfn;
4325 last_end_pfn = end_pfn;
4326 last_nid = nid;
4327 }
4328
4329 return nid;
4330 }
4331 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4332
4333 int __meminit early_pfn_to_nid(unsigned long pfn)
4334 {
4335 int nid;
4336
4337 nid = __early_pfn_to_nid(pfn);
4338 if (nid >= 0)
4339 return nid;
4340 /* just returns 0 */
4341 return 0;
4342 }
4343
4344 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4345 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4346 {
4347 int nid;
4348
4349 nid = __early_pfn_to_nid(pfn);
4350 if (nid >= 0 && nid != node)
4351 return false;
4352 return true;
4353 }
4354 #endif
4355
4356 /**
4357 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4358 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4359 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4360 *
4361 * If an architecture guarantees that all ranges registered with
4362 * add_active_ranges() contain no holes and may be freed, this
4363 * this function may be used instead of calling free_bootmem() manually.
4364 */
4365 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4366 {
4367 unsigned long start_pfn, end_pfn;
4368 int i, this_nid;
4369
4370 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4371 start_pfn = min(start_pfn, max_low_pfn);
4372 end_pfn = min(end_pfn, max_low_pfn);
4373
4374 if (start_pfn < end_pfn)
4375 free_bootmem_node(NODE_DATA(this_nid),
4376 PFN_PHYS(start_pfn),
4377 (end_pfn - start_pfn) << PAGE_SHIFT);
4378 }
4379 }
4380
4381 /**
4382 * sparse_memory_present_with_active_regions - Call memory_present for each active range
4383 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4384 *
4385 * If an architecture guarantees that all ranges registered with
4386 * add_active_ranges() contain no holes and may be freed, this
4387 * function may be used instead of calling memory_present() manually.
4388 */
4389 void __init sparse_memory_present_with_active_regions(int nid)
4390 {
4391 unsigned long start_pfn, end_pfn;
4392 int i, this_nid;
4393
4394 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4395 memory_present(this_nid, start_pfn, end_pfn);
4396 }
4397
4398 /**
4399 * get_pfn_range_for_nid - Return the start and end page frames for a node
4400 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4401 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4402 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4403 *
4404 * It returns the start and end page frame of a node based on information
4405 * provided by an arch calling add_active_range(). If called for a node
4406 * with no available memory, a warning is printed and the start and end
4407 * PFNs will be 0.
4408 */
4409 void __meminit get_pfn_range_for_nid(unsigned int nid,
4410 unsigned long *start_pfn, unsigned long *end_pfn)
4411 {
4412 unsigned long this_start_pfn, this_end_pfn;
4413 int i;
4414
4415 *start_pfn = -1UL;
4416 *end_pfn = 0;
4417
4418 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4419 *start_pfn = min(*start_pfn, this_start_pfn);
4420 *end_pfn = max(*end_pfn, this_end_pfn);
4421 }
4422
4423 if (*start_pfn == -1UL)
4424 *start_pfn = 0;
4425 }
4426
4427 /*
4428 * This finds a zone that can be used for ZONE_MOVABLE pages. The
4429 * assumption is made that zones within a node are ordered in monotonic
4430 * increasing memory addresses so that the "highest" populated zone is used
4431 */
4432 static void __init find_usable_zone_for_movable(void)
4433 {
4434 int zone_index;
4435 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4436 if (zone_index == ZONE_MOVABLE)
4437 continue;
4438
4439 if (arch_zone_highest_possible_pfn[zone_index] >
4440 arch_zone_lowest_possible_pfn[zone_index])
4441 break;
4442 }
4443
4444 VM_BUG_ON(zone_index == -1);
4445 movable_zone = zone_index;
4446 }
4447
4448 /*
4449 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4450 * because it is sized independent of architecture. Unlike the other zones,
4451 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4452 * in each node depending on the size of each node and how evenly kernelcore
4453 * is distributed. This helper function adjusts the zone ranges
4454 * provided by the architecture for a given node by using the end of the
4455 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4456 * zones within a node are in order of monotonic increases memory addresses
4457 */
4458 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4459 unsigned long zone_type,
4460 unsigned long node_start_pfn,
4461 unsigned long node_end_pfn,
4462 unsigned long *zone_start_pfn,
4463 unsigned long *zone_end_pfn)
4464 {
4465 /* Only adjust if ZONE_MOVABLE is on this node */
4466 if (zone_movable_pfn[nid]) {
4467 /* Size ZONE_MOVABLE */
4468 if (zone_type == ZONE_MOVABLE) {
4469 *zone_start_pfn = zone_movable_pfn[nid];
4470 *zone_end_pfn = min(node_end_pfn,
4471 arch_zone_highest_possible_pfn[movable_zone]);
4472
4473 /* Adjust for ZONE_MOVABLE starting within this range */
4474 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4475 *zone_end_pfn > zone_movable_pfn[nid]) {
4476 *zone_end_pfn = zone_movable_pfn[nid];
4477
4478 /* Check if this whole range is within ZONE_MOVABLE */
4479 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
4480 *zone_start_pfn = *zone_end_pfn;
4481 }
4482 }
4483
4484 /*
4485 * Return the number of pages a zone spans in a node, including holes
4486 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4487 */
4488 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4489 unsigned long zone_type,
4490 unsigned long node_start_pfn,
4491 unsigned long node_end_pfn,
4492 unsigned long *ignored)
4493 {
4494 unsigned long zone_start_pfn, zone_end_pfn;
4495
4496 /* Get the start and end of the zone */
4497 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4498 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4499 adjust_zone_range_for_zone_movable(nid, zone_type,
4500 node_start_pfn, node_end_pfn,
4501 &zone_start_pfn, &zone_end_pfn);
4502
4503 /* Check that this node has pages within the zone's required range */
4504 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4505 return 0;
4506
4507 /* Move the zone boundaries inside the node if necessary */
4508 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4509 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4510
4511 /* Return the spanned pages */
4512 return zone_end_pfn - zone_start_pfn;
4513 }
4514
4515 /*
4516 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4517 * then all holes in the requested range will be accounted for.
4518 */
4519 unsigned long __meminit __absent_pages_in_range(int nid,
4520 unsigned long range_start_pfn,
4521 unsigned long range_end_pfn)
4522 {
4523 unsigned long nr_absent = range_end_pfn - range_start_pfn;
4524 unsigned long start_pfn, end_pfn;
4525 int i;
4526
4527 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4528 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4529 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4530 nr_absent -= end_pfn - start_pfn;
4531 }
4532 return nr_absent;
4533 }
4534
4535 /**
4536 * absent_pages_in_range - Return number of page frames in holes within a range
4537 * @start_pfn: The start PFN to start searching for holes
4538 * @end_pfn: The end PFN to stop searching for holes
4539 *
4540 * It returns the number of pages frames in memory holes within a range.
4541 */
4542 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4543 unsigned long end_pfn)
4544 {
4545 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4546 }
4547
4548 /* Return the number of page frames in holes in a zone on a node */
4549 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4550 unsigned long zone_type,
4551 unsigned long node_start_pfn,
4552 unsigned long node_end_pfn,
4553 unsigned long *ignored)
4554 {
4555 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4556 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4557 unsigned long zone_start_pfn, zone_end_pfn;
4558
4559 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4560 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4561
4562 adjust_zone_range_for_zone_movable(nid, zone_type,
4563 node_start_pfn, node_end_pfn,
4564 &zone_start_pfn, &zone_end_pfn);
4565 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4566 }
4567
4568 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4569 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4570 unsigned long zone_type,
4571 unsigned long node_start_pfn,
4572 unsigned long node_end_pfn,
4573 unsigned long *zones_size)
4574 {
4575 return zones_size[zone_type];
4576 }
4577
4578 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4579 unsigned long zone_type,
4580 unsigned long node_start_pfn,
4581 unsigned long node_end_pfn,
4582 unsigned long *zholes_size)
4583 {
4584 if (!zholes_size)
4585 return 0;
4586
4587 return zholes_size[zone_type];
4588 }
4589
4590 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4591
4592 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4593 unsigned long node_start_pfn,
4594 unsigned long node_end_pfn,
4595 unsigned long *zones_size,
4596 unsigned long *zholes_size)
4597 {
4598 unsigned long realtotalpages, totalpages = 0;
4599 enum zone_type i;
4600
4601 for (i = 0; i < MAX_NR_ZONES; i++)
4602 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4603 node_start_pfn,
4604 node_end_pfn,
4605 zones_size);
4606 pgdat->node_spanned_pages = totalpages;
4607
4608 realtotalpages = totalpages;
4609 for (i = 0; i < MAX_NR_ZONES; i++)
4610 realtotalpages -=
4611 zone_absent_pages_in_node(pgdat->node_id, i,
4612 node_start_pfn, node_end_pfn,
4613 zholes_size);
4614 pgdat->node_present_pages = realtotalpages;
4615 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4616 realtotalpages);
4617 }
4618
4619 #ifndef CONFIG_SPARSEMEM
4620 /*
4621 * Calculate the size of the zone->blockflags rounded to an unsigned long
4622 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4623 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4624 * round what is now in bits to nearest long in bits, then return it in
4625 * bytes.
4626 */
4627 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
4628 {
4629 unsigned long usemapsize;
4630
4631 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
4632 usemapsize = roundup(zonesize, pageblock_nr_pages);
4633 usemapsize = usemapsize >> pageblock_order;
4634 usemapsize *= NR_PAGEBLOCK_BITS;
4635 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4636
4637 return usemapsize / 8;
4638 }
4639
4640 static void __init setup_usemap(struct pglist_data *pgdat,
4641 struct zone *zone,
4642 unsigned long zone_start_pfn,
4643 unsigned long zonesize)
4644 {
4645 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
4646 zone->pageblock_flags = NULL;
4647 if (usemapsize)
4648 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4649 usemapsize);
4650 }
4651 #else
4652 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
4653 unsigned long zone_start_pfn, unsigned long zonesize) {}
4654 #endif /* CONFIG_SPARSEMEM */
4655
4656 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4657
4658 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4659 void __paginginit set_pageblock_order(void)
4660 {
4661 unsigned int order;
4662
4663 /* Check that pageblock_nr_pages has not already been setup */
4664 if (pageblock_order)
4665 return;
4666
4667 if (HPAGE_SHIFT > PAGE_SHIFT)
4668 order = HUGETLB_PAGE_ORDER;
4669 else
4670 order = MAX_ORDER - 1;
4671
4672 /*
4673 * Assume the largest contiguous order of interest is a huge page.
4674 * This value may be variable depending on boot parameters on IA64 and
4675 * powerpc.
4676 */
4677 pageblock_order = order;
4678 }
4679 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4680
4681 /*
4682 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4683 * is unused as pageblock_order is set at compile-time. See
4684 * include/linux/pageblock-flags.h for the values of pageblock_order based on
4685 * the kernel config
4686 */
4687 void __paginginit set_pageblock_order(void)
4688 {
4689 }
4690
4691 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4692
4693 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
4694 unsigned long present_pages)
4695 {
4696 unsigned long pages = spanned_pages;
4697
4698 /*
4699 * Provide a more accurate estimation if there are holes within
4700 * the zone and SPARSEMEM is in use. If there are holes within the
4701 * zone, each populated memory region may cost us one or two extra
4702 * memmap pages due to alignment because memmap pages for each
4703 * populated regions may not naturally algined on page boundary.
4704 * So the (present_pages >> 4) heuristic is a tradeoff for that.
4705 */
4706 if (spanned_pages > present_pages + (present_pages >> 4) &&
4707 IS_ENABLED(CONFIG_SPARSEMEM))
4708 pages = present_pages;
4709
4710 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
4711 }
4712
4713 /*
4714 * Set up the zone data structures:
4715 * - mark all pages reserved
4716 * - mark all memory queues empty
4717 * - clear the memory bitmaps
4718 *
4719 * NOTE: pgdat should get zeroed by caller.
4720 */
4721 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4722 unsigned long node_start_pfn, unsigned long node_end_pfn,
4723 unsigned long *zones_size, unsigned long *zholes_size)
4724 {
4725 enum zone_type j;
4726 int nid = pgdat->node_id;
4727 unsigned long zone_start_pfn = pgdat->node_start_pfn;
4728 int ret;
4729
4730 pgdat_resize_init(pgdat);
4731 #ifdef CONFIG_NUMA_BALANCING
4732 spin_lock_init(&pgdat->numabalancing_migrate_lock);
4733 pgdat->numabalancing_migrate_nr_pages = 0;
4734 pgdat->numabalancing_migrate_next_window = jiffies;
4735 #endif
4736 init_waitqueue_head(&pgdat->kswapd_wait);
4737 init_waitqueue_head(&pgdat->pfmemalloc_wait);
4738 pgdat_page_cgroup_init(pgdat);
4739
4740 for (j = 0; j < MAX_NR_ZONES; j++) {
4741 struct zone *zone = pgdat->node_zones + j;
4742 unsigned long size, realsize, freesize, memmap_pages;
4743
4744 size = zone_spanned_pages_in_node(nid, j, node_start_pfn,
4745 node_end_pfn, zones_size);
4746 realsize = freesize = size - zone_absent_pages_in_node(nid, j,
4747 node_start_pfn,
4748 node_end_pfn,
4749 zholes_size);
4750
4751 /*
4752 * Adjust freesize so that it accounts for how much memory
4753 * is used by this zone for memmap. This affects the watermark
4754 * and per-cpu initialisations
4755 */
4756 memmap_pages = calc_memmap_size(size, realsize);
4757 if (freesize >= memmap_pages) {
4758 freesize -= memmap_pages;
4759 if (memmap_pages)
4760 printk(KERN_DEBUG
4761 " %s zone: %lu pages used for memmap\n",
4762 zone_names[j], memmap_pages);
4763 } else
4764 printk(KERN_WARNING
4765 " %s zone: %lu pages exceeds freesize %lu\n",
4766 zone_names[j], memmap_pages, freesize);
4767
4768 /* Account for reserved pages */
4769 if (j == 0 && freesize > dma_reserve) {
4770 freesize -= dma_reserve;
4771 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
4772 zone_names[0], dma_reserve);
4773 }
4774
4775 if (!is_highmem_idx(j))
4776 nr_kernel_pages += freesize;
4777 /* Charge for highmem memmap if there are enough kernel pages */
4778 else if (nr_kernel_pages > memmap_pages * 2)
4779 nr_kernel_pages -= memmap_pages;
4780 nr_all_pages += freesize;
4781
4782 zone->spanned_pages = size;
4783 zone->present_pages = realsize;
4784 /*
4785 * Set an approximate value for lowmem here, it will be adjusted
4786 * when the bootmem allocator frees pages into the buddy system.
4787 * And all highmem pages will be managed by the buddy system.
4788 */
4789 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
4790 #ifdef CONFIG_NUMA
4791 zone->node = nid;
4792 zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
4793 / 100;
4794 zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
4795 #endif
4796 zone->name = zone_names[j];
4797 spin_lock_init(&zone->lock);
4798 spin_lock_init(&zone->lru_lock);
4799 zone_seqlock_init(zone);
4800 zone->zone_pgdat = pgdat;
4801 zone_pcp_init(zone);
4802
4803 /* For bootup, initialized properly in watermark setup */
4804 mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
4805
4806 lruvec_init(&zone->lruvec);
4807 if (!size)
4808 continue;
4809
4810 set_pageblock_order();
4811 setup_usemap(pgdat, zone, zone_start_pfn, size);
4812 ret = init_currently_empty_zone(zone, zone_start_pfn,
4813 size, MEMMAP_EARLY);
4814 BUG_ON(ret);
4815 memmap_init(size, nid, j, zone_start_pfn);
4816 zone_start_pfn += size;
4817 }
4818 }
4819
4820 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4821 {
4822 /* Skip empty nodes */
4823 if (!pgdat->node_spanned_pages)
4824 return;
4825
4826 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4827 /* ia64 gets its own node_mem_map, before this, without bootmem */
4828 if (!pgdat->node_mem_map) {
4829 unsigned long size, start, end;
4830 struct page *map;
4831
4832 /*
4833 * The zone's endpoints aren't required to be MAX_ORDER
4834 * aligned but the node_mem_map endpoints must be in order
4835 * for the buddy allocator to function correctly.
4836 */
4837 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4838 end = pgdat_end_pfn(pgdat);
4839 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4840 size = (end - start) * sizeof(struct page);
4841 map = alloc_remap(pgdat->node_id, size);
4842 if (!map)
4843 map = alloc_bootmem_node_nopanic(pgdat, size);
4844 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4845 }
4846 #ifndef CONFIG_NEED_MULTIPLE_NODES
4847 /*
4848 * With no DISCONTIG, the global mem_map is just set as node 0's
4849 */
4850 if (pgdat == NODE_DATA(0)) {
4851 mem_map = NODE_DATA(0)->node_mem_map;
4852 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4853 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4854 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4855 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4856 }
4857 #endif
4858 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4859 }
4860
4861 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4862 unsigned long node_start_pfn, unsigned long *zholes_size)
4863 {
4864 pg_data_t *pgdat = NODE_DATA(nid);
4865 unsigned long start_pfn = 0;
4866 unsigned long end_pfn = 0;
4867
4868 /* pg_data_t should be reset to zero when it's allocated */
4869 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4870
4871 pgdat->node_id = nid;
4872 pgdat->node_start_pfn = node_start_pfn;
4873 init_zone_allows_reclaim(nid);
4874 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4875 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
4876 #endif
4877 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
4878 zones_size, zholes_size);
4879
4880 alloc_node_mem_map(pgdat);
4881 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4882 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4883 nid, (unsigned long)pgdat,
4884 (unsigned long)pgdat->node_mem_map);
4885 #endif
4886
4887 free_area_init_core(pgdat, start_pfn, end_pfn,
4888 zones_size, zholes_size);
4889 }
4890
4891 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4892
4893 #if MAX_NUMNODES > 1
4894 /*
4895 * Figure out the number of possible node ids.
4896 */
4897 void __init setup_nr_node_ids(void)
4898 {
4899 unsigned int node;
4900 unsigned int highest = 0;
4901
4902 for_each_node_mask(node, node_possible_map)
4903 highest = node;
4904 nr_node_ids = highest + 1;
4905 }
4906 #endif
4907
4908 /**
4909 * node_map_pfn_alignment - determine the maximum internode alignment
4910 *
4911 * This function should be called after node map is populated and sorted.
4912 * It calculates the maximum power of two alignment which can distinguish
4913 * all the nodes.
4914 *
4915 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4916 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4917 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4918 * shifted, 1GiB is enough and this function will indicate so.
4919 *
4920 * This is used to test whether pfn -> nid mapping of the chosen memory
4921 * model has fine enough granularity to avoid incorrect mapping for the
4922 * populated node map.
4923 *
4924 * Returns the determined alignment in pfn's. 0 if there is no alignment
4925 * requirement (single node).
4926 */
4927 unsigned long __init node_map_pfn_alignment(void)
4928 {
4929 unsigned long accl_mask = 0, last_end = 0;
4930 unsigned long start, end, mask;
4931 int last_nid = -1;
4932 int i, nid;
4933
4934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4935 if (!start || last_nid < 0 || last_nid == nid) {
4936 last_nid = nid;
4937 last_end = end;
4938 continue;
4939 }
4940
4941 /*
4942 * Start with a mask granular enough to pin-point to the
4943 * start pfn and tick off bits one-by-one until it becomes
4944 * too coarse to separate the current node from the last.
4945 */
4946 mask = ~((1 << __ffs(start)) - 1);
4947 while (mask && last_end <= (start & (mask << 1)))
4948 mask <<= 1;
4949
4950 /* accumulate all internode masks */
4951 accl_mask |= mask;
4952 }
4953
4954 /* convert mask to number of pages */
4955 return ~accl_mask + 1;
4956 }
4957
4958 /* Find the lowest pfn for a node */
4959 static unsigned long __init find_min_pfn_for_node(int nid)
4960 {
4961 unsigned long min_pfn = ULONG_MAX;
4962 unsigned long start_pfn;
4963 int i;
4964
4965 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4966 min_pfn = min(min_pfn, start_pfn);
4967
4968 if (min_pfn == ULONG_MAX) {
4969 printk(KERN_WARNING
4970 "Could not find start_pfn for node %d\n", nid);
4971 return 0;
4972 }
4973
4974 return min_pfn;
4975 }
4976
4977 /**
4978 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4979 *
4980 * It returns the minimum PFN based on information provided via
4981 * add_active_range().
4982 */
4983 unsigned long __init find_min_pfn_with_active_regions(void)
4984 {
4985 return find_min_pfn_for_node(MAX_NUMNODES);
4986 }
4987
4988 /*
4989 * early_calculate_totalpages()
4990 * Sum pages in active regions for movable zone.
4991 * Populate N_MEMORY for calculating usable_nodes.
4992 */
4993 static unsigned long __init early_calculate_totalpages(void)
4994 {
4995 unsigned long totalpages = 0;
4996 unsigned long start_pfn, end_pfn;
4997 int i, nid;
4998
4999 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5000 unsigned long pages = end_pfn - start_pfn;
5001
5002 totalpages += pages;
5003 if (pages)
5004 node_set_state(nid, N_MEMORY);
5005 }
5006 return totalpages;
5007 }
5008
5009 /*
5010 * Find the PFN the Movable zone begins in each node. Kernel memory
5011 * is spread evenly between nodes as long as the nodes have enough
5012 * memory. When they don't, some nodes will have more kernelcore than
5013 * others
5014 */
5015 static void __init find_zone_movable_pfns_for_nodes(void)
5016 {
5017 int i, nid;
5018 unsigned long usable_startpfn;
5019 unsigned long kernelcore_node, kernelcore_remaining;
5020 /* save the state before borrow the nodemask */
5021 nodemask_t saved_node_state = node_states[N_MEMORY];
5022 unsigned long totalpages = early_calculate_totalpages();
5023 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5024
5025 /*
5026 * If movablecore was specified, calculate what size of
5027 * kernelcore that corresponds so that memory usable for
5028 * any allocation type is evenly spread. If both kernelcore
5029 * and movablecore are specified, then the value of kernelcore
5030 * will be used for required_kernelcore if it's greater than
5031 * what movablecore would have allowed.
5032 */
5033 if (required_movablecore) {
5034 unsigned long corepages;
5035
5036 /*
5037 * Round-up so that ZONE_MOVABLE is at least as large as what
5038 * was requested by the user
5039 */
5040 required_movablecore =
5041 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5042 corepages = totalpages - required_movablecore;
5043
5044 required_kernelcore = max(required_kernelcore, corepages);
5045 }
5046
5047 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
5048 if (!required_kernelcore)
5049 goto out;
5050
5051 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5052 find_usable_zone_for_movable();
5053 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5054
5055 restart:
5056 /* Spread kernelcore memory as evenly as possible throughout nodes */
5057 kernelcore_node = required_kernelcore / usable_nodes;
5058 for_each_node_state(nid, N_MEMORY) {
5059 unsigned long start_pfn, end_pfn;
5060
5061 /*
5062 * Recalculate kernelcore_node if the division per node
5063 * now exceeds what is necessary to satisfy the requested
5064 * amount of memory for the kernel
5065 */
5066 if (required_kernelcore < kernelcore_node)
5067 kernelcore_node = required_kernelcore / usable_nodes;
5068
5069 /*
5070 * As the map is walked, we track how much memory is usable
5071 * by the kernel using kernelcore_remaining. When it is
5072 * 0, the rest of the node is usable by ZONE_MOVABLE
5073 */
5074 kernelcore_remaining = kernelcore_node;
5075
5076 /* Go through each range of PFNs within this node */
5077 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5078 unsigned long size_pages;
5079
5080 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5081 if (start_pfn >= end_pfn)
5082 continue;
5083
5084 /* Account for what is only usable for kernelcore */
5085 if (start_pfn < usable_startpfn) {
5086 unsigned long kernel_pages;
5087 kernel_pages = min(end_pfn, usable_startpfn)
5088 - start_pfn;
5089
5090 kernelcore_remaining -= min(kernel_pages,
5091 kernelcore_remaining);
5092 required_kernelcore -= min(kernel_pages,
5093 required_kernelcore);
5094
5095 /* Continue if range is now fully accounted */
5096 if (end_pfn <= usable_startpfn) {
5097
5098 /*
5099 * Push zone_movable_pfn to the end so
5100 * that if we have to rebalance
5101 * kernelcore across nodes, we will
5102 * not double account here
5103 */
5104 zone_movable_pfn[nid] = end_pfn;
5105 continue;
5106 }
5107 start_pfn = usable_startpfn;
5108 }
5109
5110 /*
5111 * The usable PFN range for ZONE_MOVABLE is from
5112 * start_pfn->end_pfn. Calculate size_pages as the
5113 * number of pages used as kernelcore
5114 */
5115 size_pages = end_pfn - start_pfn;
5116 if (size_pages > kernelcore_remaining)
5117 size_pages = kernelcore_remaining;
5118 zone_movable_pfn[nid] = start_pfn + size_pages;
5119
5120 /*
5121 * Some kernelcore has been met, update counts and
5122 * break if the kernelcore for this node has been
5123 * satisfied
5124 */
5125 required_kernelcore -= min(required_kernelcore,
5126 size_pages);
5127 kernelcore_remaining -= size_pages;
5128 if (!kernelcore_remaining)
5129 break;
5130 }
5131 }
5132
5133 /*
5134 * If there is still required_kernelcore, we do another pass with one
5135 * less node in the count. This will push zone_movable_pfn[nid] further
5136 * along on the nodes that still have memory until kernelcore is
5137 * satisfied
5138 */
5139 usable_nodes--;
5140 if (usable_nodes && required_kernelcore > usable_nodes)
5141 goto restart;
5142
5143 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5144 for (nid = 0; nid < MAX_NUMNODES; nid++)
5145 zone_movable_pfn[nid] =
5146 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5147
5148 out:
5149 /* restore the node_state */
5150 node_states[N_MEMORY] = saved_node_state;
5151 }
5152
5153 /* Any regular or high memory on that node ? */
5154 static void check_for_memory(pg_data_t *pgdat, int nid)
5155 {
5156 enum zone_type zone_type;
5157
5158 if (N_MEMORY == N_NORMAL_MEMORY)
5159 return;
5160
5161 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5162 struct zone *zone = &pgdat->node_zones[zone_type];
5163 if (zone->present_pages) {
5164 node_set_state(nid, N_HIGH_MEMORY);
5165 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5166 zone_type <= ZONE_NORMAL)
5167 node_set_state(nid, N_NORMAL_MEMORY);
5168 break;
5169 }
5170 }
5171 }
5172
5173 /**
5174 * free_area_init_nodes - Initialise all pg_data_t and zone data
5175 * @max_zone_pfn: an array of max PFNs for each zone
5176 *
5177 * This will call free_area_init_node() for each active node in the system.
5178 * Using the page ranges provided by add_active_range(), the size of each
5179 * zone in each node and their holes is calculated. If the maximum PFN
5180 * between two adjacent zones match, it is assumed that the zone is empty.
5181 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5182 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5183 * starts where the previous one ended. For example, ZONE_DMA32 starts
5184 * at arch_max_dma_pfn.
5185 */
5186 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5187 {
5188 unsigned long start_pfn, end_pfn;
5189 int i, nid;
5190
5191 /* Record where the zone boundaries are */
5192 memset(arch_zone_lowest_possible_pfn, 0,
5193 sizeof(arch_zone_lowest_possible_pfn));
5194 memset(arch_zone_highest_possible_pfn, 0,
5195 sizeof(arch_zone_highest_possible_pfn));
5196 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5197 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5198 for (i = 1; i < MAX_NR_ZONES; i++) {
5199 if (i == ZONE_MOVABLE)
5200 continue;
5201 arch_zone_lowest_possible_pfn[i] =
5202 arch_zone_highest_possible_pfn[i-1];
5203 arch_zone_highest_possible_pfn[i] =
5204 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5205 }
5206 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5207 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5208
5209 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
5210 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5211 find_zone_movable_pfns_for_nodes();
5212
5213 /* Print out the zone ranges */
5214 printk("Zone ranges:\n");
5215 for (i = 0; i < MAX_NR_ZONES; i++) {
5216 if (i == ZONE_MOVABLE)
5217 continue;
5218 printk(KERN_CONT " %-8s ", zone_names[i]);
5219 if (arch_zone_lowest_possible_pfn[i] ==
5220 arch_zone_highest_possible_pfn[i])
5221 printk(KERN_CONT "empty\n");
5222 else
5223 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
5224 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
5225 (arch_zone_highest_possible_pfn[i]
5226 << PAGE_SHIFT) - 1);
5227 }
5228
5229 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
5230 printk("Movable zone start for each node\n");
5231 for (i = 0; i < MAX_NUMNODES; i++) {
5232 if (zone_movable_pfn[i])
5233 printk(" Node %d: %#010lx\n", i,
5234 zone_movable_pfn[i] << PAGE_SHIFT);
5235 }
5236
5237 /* Print out the early node map */
5238 printk("Early memory node ranges\n");
5239 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
5240 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid,
5241 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
5242
5243 /* Initialise every node */
5244 mminit_verify_pageflags_layout();
5245 setup_nr_node_ids();
5246 for_each_online_node(nid) {
5247 pg_data_t *pgdat = NODE_DATA(nid);
5248 free_area_init_node(nid, NULL,
5249 find_min_pfn_for_node(nid), NULL);
5250
5251 /* Any memory on that node */
5252 if (pgdat->node_present_pages)
5253 node_set_state(nid, N_MEMORY);
5254 check_for_memory(pgdat, nid);
5255 }
5256 }
5257
5258 static int __init cmdline_parse_core(char *p, unsigned long *core)
5259 {
5260 unsigned long long coremem;
5261 if (!p)
5262 return -EINVAL;
5263
5264 coremem = memparse(p, &p);
5265 *core = coremem >> PAGE_SHIFT;
5266
5267 /* Paranoid check that UL is enough for the coremem value */
5268 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
5269
5270 return 0;
5271 }
5272
5273 /*
5274 * kernelcore=size sets the amount of memory for use for allocations that
5275 * cannot be reclaimed or migrated.
5276 */
5277 static int __init cmdline_parse_kernelcore(char *p)
5278 {
5279 return cmdline_parse_core(p, &required_kernelcore);
5280 }
5281
5282 /*
5283 * movablecore=size sets the amount of memory for use for allocations that
5284 * can be reclaimed or migrated.
5285 */
5286 static int __init cmdline_parse_movablecore(char *p)
5287 {
5288 return cmdline_parse_core(p, &required_movablecore);
5289 }
5290
5291 early_param("kernelcore", cmdline_parse_kernelcore);
5292 early_param("movablecore", cmdline_parse_movablecore);
5293
5294 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5295
5296 void adjust_managed_page_count(struct page *page, long count)
5297 {
5298 spin_lock(&managed_page_count_lock);
5299 page_zone(page)->managed_pages += count;
5300 totalram_pages += count;
5301 #ifdef CONFIG_HIGHMEM
5302 if (PageHighMem(page))
5303 totalhigh_pages += count;
5304 #endif
5305 spin_unlock(&managed_page_count_lock);
5306 }
5307 EXPORT_SYMBOL(adjust_managed_page_count);
5308
5309 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
5310 {
5311 void *pos;
5312 unsigned long pages = 0;
5313
5314 start = (void *)PAGE_ALIGN((unsigned long)start);
5315 end = (void *)((unsigned long)end & PAGE_MASK);
5316 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
5317 if ((unsigned int)poison <= 0xFF)
5318 memset(pos, poison, PAGE_SIZE);
5319 free_reserved_page(virt_to_page(pos));
5320 }
5321
5322 if (pages && s)
5323 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
5324 s, pages << (PAGE_SHIFT - 10), start, end);
5325
5326 return pages;
5327 }
5328 EXPORT_SYMBOL(free_reserved_area);
5329
5330 #ifdef CONFIG_HIGHMEM
5331 void free_highmem_page(struct page *page)
5332 {
5333 __free_reserved_page(page);
5334 totalram_pages++;
5335 page_zone(page)->managed_pages++;
5336 totalhigh_pages++;
5337 }
5338 #endif
5339
5340
5341 void __init mem_init_print_info(const char *str)
5342 {
5343 unsigned long physpages, codesize, datasize, rosize, bss_size;
5344 unsigned long init_code_size, init_data_size;
5345
5346 physpages = get_num_physpages();
5347 codesize = _etext - _stext;
5348 datasize = _edata - _sdata;
5349 rosize = __end_rodata - __start_rodata;
5350 bss_size = __bss_stop - __bss_start;
5351 init_data_size = __init_end - __init_begin;
5352 init_code_size = _einittext - _sinittext;
5353
5354 /*
5355 * Detect special cases and adjust section sizes accordingly:
5356 * 1) .init.* may be embedded into .data sections
5357 * 2) .init.text.* may be out of [__init_begin, __init_end],
5358 * please refer to arch/tile/kernel/vmlinux.lds.S.
5359 * 3) .rodata.* may be embedded into .text or .data sections.
5360 */
5361 #define adj_init_size(start, end, size, pos, adj) \
5362 do { \
5363 if (start <= pos && pos < end && size > adj) \
5364 size -= adj; \
5365 } while (0)
5366
5367 adj_init_size(__init_begin, __init_end, init_data_size,
5368 _sinittext, init_code_size);
5369 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
5370 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
5371 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
5372 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
5373
5374 #undef adj_init_size
5375
5376 printk("Memory: %luK/%luK available "
5377 "(%luK kernel code, %luK rwdata, %luK rodata, "
5378 "%luK init, %luK bss, %luK reserved"
5379 #ifdef CONFIG_HIGHMEM
5380 ", %luK highmem"
5381 #endif
5382 "%s%s)\n",
5383 nr_free_pages() << (PAGE_SHIFT-10), physpages << (PAGE_SHIFT-10),
5384 codesize >> 10, datasize >> 10, rosize >> 10,
5385 (init_data_size + init_code_size) >> 10, bss_size >> 10,
5386 (physpages - totalram_pages) << (PAGE_SHIFT-10),
5387 #ifdef CONFIG_HIGHMEM
5388 totalhigh_pages << (PAGE_SHIFT-10),
5389 #endif
5390 str ? ", " : "", str ? str : "");
5391 }
5392
5393 /**
5394 * set_dma_reserve - set the specified number of pages reserved in the first zone
5395 * @new_dma_reserve: The number of pages to mark reserved
5396 *
5397 * The per-cpu batchsize and zone watermarks are determined by present_pages.
5398 * In the DMA zone, a significant percentage may be consumed by kernel image
5399 * and other unfreeable allocations which can skew the watermarks badly. This
5400 * function may optionally be used to account for unfreeable pages in the
5401 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5402 * smaller per-cpu batchsize.
5403 */
5404 void __init set_dma_reserve(unsigned long new_dma_reserve)
5405 {
5406 dma_reserve = new_dma_reserve;
5407 }
5408
5409 void __init free_area_init(unsigned long *zones_size)
5410 {
5411 free_area_init_node(0, zones_size,
5412 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5413 }
5414
5415 static int page_alloc_cpu_notify(struct notifier_block *self,
5416 unsigned long action, void *hcpu)
5417 {
5418 int cpu = (unsigned long)hcpu;
5419
5420 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5421 lru_add_drain_cpu(cpu);
5422 drain_pages(cpu);
5423
5424 /*
5425 * Spill the event counters of the dead processor
5426 * into the current processors event counters.
5427 * This artificially elevates the count of the current
5428 * processor.
5429 */
5430 vm_events_fold_cpu(cpu);
5431
5432 /*
5433 * Zero the differential counters of the dead processor
5434 * so that the vm statistics are consistent.
5435 *
5436 * This is only okay since the processor is dead and cannot
5437 * race with what we are doing.
5438 */
5439 cpu_vm_stats_fold(cpu);
5440 }
5441 return NOTIFY_OK;
5442 }
5443
5444 void __init page_alloc_init(void)
5445 {
5446 hotcpu_notifier(page_alloc_cpu_notify, 0);
5447 }
5448
5449 /*
5450 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5451 * or min_free_kbytes changes.
5452 */
5453 static void calculate_totalreserve_pages(void)
5454 {
5455 struct pglist_data *pgdat;
5456 unsigned long reserve_pages = 0;
5457 enum zone_type i, j;
5458
5459 for_each_online_pgdat(pgdat) {
5460 for (i = 0; i < MAX_NR_ZONES; i++) {
5461 struct zone *zone = pgdat->node_zones + i;
5462 unsigned long max = 0;
5463
5464 /* Find valid and maximum lowmem_reserve in the zone */
5465 for (j = i; j < MAX_NR_ZONES; j++) {
5466 if (zone->lowmem_reserve[j] > max)
5467 max = zone->lowmem_reserve[j];
5468 }
5469
5470 /* we treat the high watermark as reserved pages. */
5471 max += high_wmark_pages(zone);
5472
5473 if (max > zone->managed_pages)
5474 max = zone->managed_pages;
5475 reserve_pages += max;
5476 /*
5477 * Lowmem reserves are not available to
5478 * GFP_HIGHUSER page cache allocations and
5479 * kswapd tries to balance zones to their high
5480 * watermark. As a result, neither should be
5481 * regarded as dirtyable memory, to prevent a
5482 * situation where reclaim has to clean pages
5483 * in order to balance the zones.
5484 */
5485 zone->dirty_balance_reserve = max;
5486 }
5487 }
5488 dirty_balance_reserve = reserve_pages;
5489 totalreserve_pages = reserve_pages;
5490 }
5491
5492 /*
5493 * setup_per_zone_lowmem_reserve - called whenever
5494 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5495 * has a correct pages reserved value, so an adequate number of
5496 * pages are left in the zone after a successful __alloc_pages().
5497 */
5498 static void setup_per_zone_lowmem_reserve(void)
5499 {
5500 struct pglist_data *pgdat;
5501 enum zone_type j, idx;
5502
5503 for_each_online_pgdat(pgdat) {
5504 for (j = 0; j < MAX_NR_ZONES; j++) {
5505 struct zone *zone = pgdat->node_zones + j;
5506 unsigned long managed_pages = zone->managed_pages;
5507
5508 zone->lowmem_reserve[j] = 0;
5509
5510 idx = j;
5511 while (idx) {
5512 struct zone *lower_zone;
5513
5514 idx--;
5515
5516 if (sysctl_lowmem_reserve_ratio[idx] < 1)
5517 sysctl_lowmem_reserve_ratio[idx] = 1;
5518
5519 lower_zone = pgdat->node_zones + idx;
5520 lower_zone->lowmem_reserve[j] = managed_pages /
5521 sysctl_lowmem_reserve_ratio[idx];
5522 managed_pages += lower_zone->managed_pages;
5523 }
5524 }
5525 }
5526
5527 /* update totalreserve_pages */
5528 calculate_totalreserve_pages();
5529 }
5530
5531 static void __setup_per_zone_wmarks(void)
5532 {
5533 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5534 unsigned long lowmem_pages = 0;
5535 struct zone *zone;
5536 unsigned long flags;
5537
5538 /* Calculate total number of !ZONE_HIGHMEM pages */
5539 for_each_zone(zone) {
5540 if (!is_highmem(zone))
5541 lowmem_pages += zone->managed_pages;
5542 }
5543
5544 for_each_zone(zone) {
5545 u64 tmp;
5546
5547 spin_lock_irqsave(&zone->lock, flags);
5548 tmp = (u64)pages_min * zone->managed_pages;
5549 do_div(tmp, lowmem_pages);
5550 if (is_highmem(zone)) {
5551 /*
5552 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5553 * need highmem pages, so cap pages_min to a small
5554 * value here.
5555 *
5556 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5557 * deltas controls asynch page reclaim, and so should
5558 * not be capped for highmem.
5559 */
5560 unsigned long min_pages;
5561
5562 min_pages = zone->managed_pages / 1024;
5563 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
5564 zone->watermark[WMARK_MIN] = min_pages;
5565 } else {
5566 /*
5567 * If it's a lowmem zone, reserve a number of pages
5568 * proportionate to the zone's size.
5569 */
5570 zone->watermark[WMARK_MIN] = tmp;
5571 }
5572
5573 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
5574 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5575
5576 __mod_zone_page_state(zone, NR_ALLOC_BATCH,
5577 high_wmark_pages(zone) -
5578 low_wmark_pages(zone) -
5579 zone_page_state(zone, NR_ALLOC_BATCH));
5580
5581 setup_zone_migrate_reserve(zone);
5582 spin_unlock_irqrestore(&zone->lock, flags);
5583 }
5584
5585 /* update totalreserve_pages */
5586 calculate_totalreserve_pages();
5587 }
5588
5589 /**
5590 * setup_per_zone_wmarks - called when min_free_kbytes changes
5591 * or when memory is hot-{added|removed}
5592 *
5593 * Ensures that the watermark[min,low,high] values for each zone are set
5594 * correctly with respect to min_free_kbytes.
5595 */
5596 void setup_per_zone_wmarks(void)
5597 {
5598 mutex_lock(&zonelists_mutex);
5599 __setup_per_zone_wmarks();
5600 mutex_unlock(&zonelists_mutex);
5601 }
5602
5603 /*
5604 * The inactive anon list should be small enough that the VM never has to
5605 * do too much work, but large enough that each inactive page has a chance
5606 * to be referenced again before it is swapped out.
5607 *
5608 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5609 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5610 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5611 * the anonymous pages are kept on the inactive list.
5612 *
5613 * total target max
5614 * memory ratio inactive anon
5615 * -------------------------------------
5616 * 10MB 1 5MB
5617 * 100MB 1 50MB
5618 * 1GB 3 250MB
5619 * 10GB 10 0.9GB
5620 * 100GB 31 3GB
5621 * 1TB 101 10GB
5622 * 10TB 320 32GB
5623 */
5624 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5625 {
5626 unsigned int gb, ratio;
5627
5628 /* Zone size in gigabytes */
5629 gb = zone->managed_pages >> (30 - PAGE_SHIFT);
5630 if (gb)
5631 ratio = int_sqrt(10 * gb);
5632 else
5633 ratio = 1;
5634
5635 zone->inactive_ratio = ratio;
5636 }
5637
5638 static void __meminit setup_per_zone_inactive_ratio(void)
5639 {
5640 struct zone *zone;
5641
5642 for_each_zone(zone)
5643 calculate_zone_inactive_ratio(zone);
5644 }
5645
5646 /*
5647 * Initialise min_free_kbytes.
5648 *
5649 * For small machines we want it small (128k min). For large machines
5650 * we want it large (64MB max). But it is not linear, because network
5651 * bandwidth does not increase linearly with machine size. We use
5652 *
5653 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5654 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5655 *
5656 * which yields
5657 *
5658 * 16MB: 512k
5659 * 32MB: 724k
5660 * 64MB: 1024k
5661 * 128MB: 1448k
5662 * 256MB: 2048k
5663 * 512MB: 2896k
5664 * 1024MB: 4096k
5665 * 2048MB: 5792k
5666 * 4096MB: 8192k
5667 * 8192MB: 11584k
5668 * 16384MB: 16384k
5669 */
5670 int __meminit init_per_zone_wmark_min(void)
5671 {
5672 unsigned long lowmem_kbytes;
5673 int new_min_free_kbytes;
5674
5675 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5676 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5677
5678 if (new_min_free_kbytes > user_min_free_kbytes) {
5679 min_free_kbytes = new_min_free_kbytes;
5680 if (min_free_kbytes < 128)
5681 min_free_kbytes = 128;
5682 if (min_free_kbytes > 65536)
5683 min_free_kbytes = 65536;
5684 } else {
5685 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5686 new_min_free_kbytes, user_min_free_kbytes);
5687 }
5688 setup_per_zone_wmarks();
5689 refresh_zone_stat_thresholds();
5690 setup_per_zone_lowmem_reserve();
5691 setup_per_zone_inactive_ratio();
5692 return 0;
5693 }
5694 module_init(init_per_zone_wmark_min)
5695
5696 /*
5697 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5698 * that we can call two helper functions whenever min_free_kbytes
5699 * changes.
5700 */
5701 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5702 void __user *buffer, size_t *length, loff_t *ppos)
5703 {
5704 proc_dointvec(table, write, buffer, length, ppos);
5705 if (write) {
5706 user_min_free_kbytes = min_free_kbytes;
5707 setup_per_zone_wmarks();
5708 }
5709 return 0;
5710 }
5711
5712 #ifdef CONFIG_NUMA
5713 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5714 void __user *buffer, size_t *length, loff_t *ppos)
5715 {
5716 struct zone *zone;
5717 int rc;
5718
5719 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5720 if (rc)
5721 return rc;
5722
5723 for_each_zone(zone)
5724 zone->min_unmapped_pages = (zone->managed_pages *
5725 sysctl_min_unmapped_ratio) / 100;
5726 return 0;
5727 }
5728
5729 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5730 void __user *buffer, size_t *length, loff_t *ppos)
5731 {
5732 struct zone *zone;
5733 int rc;
5734
5735 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5736 if (rc)
5737 return rc;
5738
5739 for_each_zone(zone)
5740 zone->min_slab_pages = (zone->managed_pages *
5741 sysctl_min_slab_ratio) / 100;
5742 return 0;
5743 }
5744 #endif
5745
5746 /*
5747 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5748 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5749 * whenever sysctl_lowmem_reserve_ratio changes.
5750 *
5751 * The reserve ratio obviously has absolutely no relation with the
5752 * minimum watermarks. The lowmem reserve ratio can only make sense
5753 * if in function of the boot time zone sizes.
5754 */
5755 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5756 void __user *buffer, size_t *length, loff_t *ppos)
5757 {
5758 proc_dointvec_minmax(table, write, buffer, length, ppos);
5759 setup_per_zone_lowmem_reserve();
5760 return 0;
5761 }
5762
5763 /*
5764 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5765 * cpu. It is the fraction of total pages in each zone that a hot per cpu
5766 * pagelist can have before it gets flushed back to buddy allocator.
5767 */
5768 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5769 void __user *buffer, size_t *length, loff_t *ppos)
5770 {
5771 struct zone *zone;
5772 unsigned int cpu;
5773 int ret;
5774
5775 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5776 if (!write || (ret < 0))
5777 return ret;
5778
5779 mutex_lock(&pcp_batch_high_lock);
5780 for_each_populated_zone(zone) {
5781 unsigned long high;
5782 high = zone->managed_pages / percpu_pagelist_fraction;
5783 for_each_possible_cpu(cpu)
5784 pageset_set_high(per_cpu_ptr(zone->pageset, cpu),
5785 high);
5786 }
5787 mutex_unlock(&pcp_batch_high_lock);
5788 return 0;
5789 }
5790
5791 int hashdist = HASHDIST_DEFAULT;
5792
5793 #ifdef CONFIG_NUMA
5794 static int __init set_hashdist(char *str)
5795 {
5796 if (!str)
5797 return 0;
5798 hashdist = simple_strtoul(str, &str, 0);
5799 return 1;
5800 }
5801 __setup("hashdist=", set_hashdist);
5802 #endif
5803
5804 /*
5805 * allocate a large system hash table from bootmem
5806 * - it is assumed that the hash table must contain an exact power-of-2
5807 * quantity of entries
5808 * - limit is the number of hash buckets, not the total allocation size
5809 */
5810 void *__init alloc_large_system_hash(const char *tablename,
5811 unsigned long bucketsize,
5812 unsigned long numentries,
5813 int scale,
5814 int flags,
5815 unsigned int *_hash_shift,
5816 unsigned int *_hash_mask,
5817 unsigned long low_limit,
5818 unsigned long high_limit)
5819 {
5820 unsigned long long max = high_limit;
5821 unsigned long log2qty, size;
5822 void *table = NULL;
5823
5824 /* allow the kernel cmdline to have a say */
5825 if (!numentries) {
5826 /* round applicable memory size up to nearest megabyte */
5827 numentries = nr_kernel_pages;
5828
5829 /* It isn't necessary when PAGE_SIZE >= 1MB */
5830 if (PAGE_SHIFT < 20)
5831 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
5832
5833 /* limit to 1 bucket per 2^scale bytes of low memory */
5834 if (scale > PAGE_SHIFT)
5835 numentries >>= (scale - PAGE_SHIFT);
5836 else
5837 numentries <<= (PAGE_SHIFT - scale);
5838
5839 /* Make sure we've got at least a 0-order allocation.. */
5840 if (unlikely(flags & HASH_SMALL)) {
5841 /* Makes no sense without HASH_EARLY */
5842 WARN_ON(!(flags & HASH_EARLY));
5843 if (!(numentries >> *_hash_shift)) {
5844 numentries = 1UL << *_hash_shift;
5845 BUG_ON(!numentries);
5846 }
5847 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5848 numentries = PAGE_SIZE / bucketsize;
5849 }
5850 numentries = roundup_pow_of_two(numentries);
5851
5852 /* limit allocation size to 1/16 total memory by default */
5853 if (max == 0) {
5854 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5855 do_div(max, bucketsize);
5856 }
5857 max = min(max, 0x80000000ULL);
5858
5859 if (numentries < low_limit)
5860 numentries = low_limit;
5861 if (numentries > max)
5862 numentries = max;
5863
5864 log2qty = ilog2(numentries);
5865
5866 do {
5867 size = bucketsize << log2qty;
5868 if (flags & HASH_EARLY)
5869 table = alloc_bootmem_nopanic(size);
5870 else if (hashdist)
5871 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5872 else {
5873 /*
5874 * If bucketsize is not a power-of-two, we may free
5875 * some pages at the end of hash table which
5876 * alloc_pages_exact() automatically does
5877 */
5878 if (get_order(size) < MAX_ORDER) {
5879 table = alloc_pages_exact(size, GFP_ATOMIC);
5880 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5881 }
5882 }
5883 } while (!table && size > PAGE_SIZE && --log2qty);
5884
5885 if (!table)
5886 panic("Failed to allocate %s hash table\n", tablename);
5887
5888 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5889 tablename,
5890 (1UL << log2qty),
5891 ilog2(size) - PAGE_SHIFT,
5892 size);
5893
5894 if (_hash_shift)
5895 *_hash_shift = log2qty;
5896 if (_hash_mask)
5897 *_hash_mask = (1 << log2qty) - 1;
5898
5899 return table;
5900 }
5901
5902 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5903 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5904 unsigned long pfn)
5905 {
5906 #ifdef CONFIG_SPARSEMEM
5907 return __pfn_to_section(pfn)->pageblock_flags;
5908 #else
5909 return zone->pageblock_flags;
5910 #endif /* CONFIG_SPARSEMEM */
5911 }
5912
5913 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5914 {
5915 #ifdef CONFIG_SPARSEMEM
5916 pfn &= (PAGES_PER_SECTION-1);
5917 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5918 #else
5919 pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
5920 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5921 #endif /* CONFIG_SPARSEMEM */
5922 }
5923
5924 /**
5925 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5926 * @page: The page within the block of interest
5927 * @start_bitidx: The first bit of interest to retrieve
5928 * @end_bitidx: The last bit of interest
5929 * returns pageblock_bits flags
5930 */
5931 unsigned long get_pageblock_flags_group(struct page *page,
5932 int start_bitidx, int end_bitidx)
5933 {
5934 struct zone *zone;
5935 unsigned long *bitmap;
5936 unsigned long pfn, bitidx;
5937 unsigned long flags = 0;
5938 unsigned long value = 1;
5939
5940 zone = page_zone(page);
5941 pfn = page_to_pfn(page);
5942 bitmap = get_pageblock_bitmap(zone, pfn);
5943 bitidx = pfn_to_bitidx(zone, pfn);
5944
5945 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5946 if (test_bit(bitidx + start_bitidx, bitmap))
5947 flags |= value;
5948
5949 return flags;
5950 }
5951
5952 /**
5953 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5954 * @page: The page within the block of interest
5955 * @start_bitidx: The first bit of interest
5956 * @end_bitidx: The last bit of interest
5957 * @flags: The flags to set
5958 */
5959 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5960 int start_bitidx, int end_bitidx)
5961 {
5962 struct zone *zone;
5963 unsigned long *bitmap;
5964 unsigned long pfn, bitidx;
5965 unsigned long value = 1;
5966
5967 zone = page_zone(page);
5968 pfn = page_to_pfn(page);
5969 bitmap = get_pageblock_bitmap(zone, pfn);
5970 bitidx = pfn_to_bitidx(zone, pfn);
5971 VM_BUG_ON(!zone_spans_pfn(zone, pfn));
5972
5973 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5974 if (flags & value)
5975 __set_bit(bitidx + start_bitidx, bitmap);
5976 else
5977 __clear_bit(bitidx + start_bitidx, bitmap);
5978 }
5979
5980 /*
5981 * This function checks whether pageblock includes unmovable pages or not.
5982 * If @count is not zero, it is okay to include less @count unmovable pages
5983 *
5984 * PageLRU check without isolation or lru_lock could race so that
5985 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5986 * expect this function should be exact.
5987 */
5988 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
5989 bool skip_hwpoisoned_pages)
5990 {
5991 unsigned long pfn, iter, found;
5992 int mt;
5993
5994 /*
5995 * For avoiding noise data, lru_add_drain_all() should be called
5996 * If ZONE_MOVABLE, the zone never contains unmovable pages
5997 */
5998 if (zone_idx(zone) == ZONE_MOVABLE)
5999 return false;
6000 mt = get_pageblock_migratetype(page);
6001 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6002 return false;
6003
6004 pfn = page_to_pfn(page);
6005 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6006 unsigned long check = pfn + iter;
6007
6008 if (!pfn_valid_within(check))
6009 continue;
6010
6011 page = pfn_to_page(check);
6012
6013 /*
6014 * Hugepages are not in LRU lists, but they're movable.
6015 * We need not scan over tail pages bacause we don't
6016 * handle each tail page individually in migration.
6017 */
6018 if (PageHuge(page)) {
6019 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6020 continue;
6021 }
6022
6023 /*
6024 * We can't use page_count without pin a page
6025 * because another CPU can free compound page.
6026 * This check already skips compound tails of THP
6027 * because their page->_count is zero at all time.
6028 */
6029 if (!atomic_read(&page->_count)) {
6030 if (PageBuddy(page))
6031 iter += (1 << page_order(page)) - 1;
6032 continue;
6033 }
6034
6035 /*
6036 * The HWPoisoned page may be not in buddy system, and
6037 * page_count() is not 0.
6038 */
6039 if (skip_hwpoisoned_pages && PageHWPoison(page))
6040 continue;
6041
6042 if (!PageLRU(page))
6043 found++;
6044 /*
6045 * If there are RECLAIMABLE pages, we need to check it.
6046 * But now, memory offline itself doesn't call shrink_slab()
6047 * and it still to be fixed.
6048 */
6049 /*
6050 * If the page is not RAM, page_count()should be 0.
6051 * we don't need more check. This is an _used_ not-movable page.
6052 *
6053 * The problematic thing here is PG_reserved pages. PG_reserved
6054 * is set to both of a memory hole page and a _used_ kernel
6055 * page at boot.
6056 */
6057 if (found > count)
6058 return true;
6059 }
6060 return false;
6061 }
6062
6063 bool is_pageblock_removable_nolock(struct page *page)
6064 {
6065 struct zone *zone;
6066 unsigned long pfn;
6067
6068 /*
6069 * We have to be careful here because we are iterating over memory
6070 * sections which are not zone aware so we might end up outside of
6071 * the zone but still within the section.
6072 * We have to take care about the node as well. If the node is offline
6073 * its NODE_DATA will be NULL - see page_zone.
6074 */
6075 if (!node_online(page_to_nid(page)))
6076 return false;
6077
6078 zone = page_zone(page);
6079 pfn = page_to_pfn(page);
6080 if (!zone_spans_pfn(zone, pfn))
6081 return false;
6082
6083 return !has_unmovable_pages(zone, page, 0, true);
6084 }
6085
6086 #ifdef CONFIG_CMA
6087
6088 static unsigned long pfn_max_align_down(unsigned long pfn)
6089 {
6090 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6091 pageblock_nr_pages) - 1);
6092 }
6093
6094 static unsigned long pfn_max_align_up(unsigned long pfn)
6095 {
6096 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6097 pageblock_nr_pages));
6098 }
6099
6100 /* [start, end) must belong to a single zone. */
6101 static int __alloc_contig_migrate_range(struct compact_control *cc,
6102 unsigned long start, unsigned long end)
6103 {
6104 /* This function is based on compact_zone() from compaction.c. */
6105 unsigned long nr_reclaimed;
6106 unsigned long pfn = start;
6107 unsigned int tries = 0;
6108 int ret = 0;
6109
6110 migrate_prep();
6111
6112 while (pfn < end || !list_empty(&cc->migratepages)) {
6113 if (fatal_signal_pending(current)) {
6114 ret = -EINTR;
6115 break;
6116 }
6117
6118 if (list_empty(&cc->migratepages)) {
6119 cc->nr_migratepages = 0;
6120 pfn = isolate_migratepages_range(cc->zone, cc,
6121 pfn, end, true);
6122 if (!pfn) {
6123 ret = -EINTR;
6124 break;
6125 }
6126 tries = 0;
6127 } else if (++tries == 5) {
6128 ret = ret < 0 ? ret : -EBUSY;
6129 break;
6130 }
6131
6132 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6133 &cc->migratepages);
6134 cc->nr_migratepages -= nr_reclaimed;
6135
6136 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6137 0, MIGRATE_SYNC, MR_CMA);
6138 }
6139 if (ret < 0) {
6140 putback_movable_pages(&cc->migratepages);
6141 return ret;
6142 }
6143 return 0;
6144 }
6145
6146 /**
6147 * alloc_contig_range() -- tries to allocate given range of pages
6148 * @start: start PFN to allocate
6149 * @end: one-past-the-last PFN to allocate
6150 * @migratetype: migratetype of the underlaying pageblocks (either
6151 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6152 * in range must have the same migratetype and it must
6153 * be either of the two.
6154 *
6155 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6156 * aligned, however it's the caller's responsibility to guarantee that
6157 * we are the only thread that changes migrate type of pageblocks the
6158 * pages fall in.
6159 *
6160 * The PFN range must belong to a single zone.
6161 *
6162 * Returns zero on success or negative error code. On success all
6163 * pages which PFN is in [start, end) are allocated for the caller and
6164 * need to be freed with free_contig_range().
6165 */
6166 int alloc_contig_range(unsigned long start, unsigned long end,
6167 unsigned migratetype)
6168 {
6169 unsigned long outer_start, outer_end;
6170 int ret = 0, order;
6171
6172 struct compact_control cc = {
6173 .nr_migratepages = 0,
6174 .order = -1,
6175 .zone = page_zone(pfn_to_page(start)),
6176 .sync = true,
6177 .ignore_skip_hint = true,
6178 };
6179 INIT_LIST_HEAD(&cc.migratepages);
6180
6181 /*
6182 * What we do here is we mark all pageblocks in range as
6183 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6184 * have different sizes, and due to the way page allocator
6185 * work, we align the range to biggest of the two pages so
6186 * that page allocator won't try to merge buddies from
6187 * different pageblocks and change MIGRATE_ISOLATE to some
6188 * other migration type.
6189 *
6190 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6191 * migrate the pages from an unaligned range (ie. pages that
6192 * we are interested in). This will put all the pages in
6193 * range back to page allocator as MIGRATE_ISOLATE.
6194 *
6195 * When this is done, we take the pages in range from page
6196 * allocator removing them from the buddy system. This way
6197 * page allocator will never consider using them.
6198 *
6199 * This lets us mark the pageblocks back as
6200 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6201 * aligned range but not in the unaligned, original range are
6202 * put back to page allocator so that buddy can use them.
6203 */
6204
6205 ret = start_isolate_page_range(pfn_max_align_down(start),
6206 pfn_max_align_up(end), migratetype,
6207 false);
6208 if (ret)
6209 return ret;
6210
6211 ret = __alloc_contig_migrate_range(&cc, start, end);
6212 if (ret)
6213 goto done;
6214
6215 /*
6216 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
6217 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6218 * more, all pages in [start, end) are free in page allocator.
6219 * What we are going to do is to allocate all pages from
6220 * [start, end) (that is remove them from page allocator).
6221 *
6222 * The only problem is that pages at the beginning and at the
6223 * end of interesting range may be not aligned with pages that
6224 * page allocator holds, ie. they can be part of higher order
6225 * pages. Because of this, we reserve the bigger range and
6226 * once this is done free the pages we are not interested in.
6227 *
6228 * We don't have to hold zone->lock here because the pages are
6229 * isolated thus they won't get removed from buddy.
6230 */
6231
6232 lru_add_drain_all();
6233 drain_all_pages();
6234
6235 order = 0;
6236 outer_start = start;
6237 while (!PageBuddy(pfn_to_page(outer_start))) {
6238 if (++order >= MAX_ORDER) {
6239 ret = -EBUSY;
6240 goto done;
6241 }
6242 outer_start &= ~0UL << order;
6243 }
6244
6245 /* Make sure the range is really isolated. */
6246 if (test_pages_isolated(outer_start, end, false)) {
6247 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
6248 outer_start, end);
6249 ret = -EBUSY;
6250 goto done;
6251 }
6252
6253
6254 /* Grab isolated pages from freelists. */
6255 outer_end = isolate_freepages_range(&cc, outer_start, end);
6256 if (!outer_end) {
6257 ret = -EBUSY;
6258 goto done;
6259 }
6260
6261 /* Free head and tail (if any) */
6262 if (start != outer_start)
6263 free_contig_range(outer_start, start - outer_start);
6264 if (end != outer_end)
6265 free_contig_range(end, outer_end - end);
6266
6267 done:
6268 undo_isolate_page_range(pfn_max_align_down(start),
6269 pfn_max_align_up(end), migratetype);
6270 return ret;
6271 }
6272
6273 void free_contig_range(unsigned long pfn, unsigned nr_pages)
6274 {
6275 unsigned int count = 0;
6276
6277 for (; nr_pages--; pfn++) {
6278 struct page *page = pfn_to_page(pfn);
6279
6280 count += page_count(page) != 1;
6281 __free_page(page);
6282 }
6283 WARN(count != 0, "%d pages are still in use!\n", count);
6284 }
6285 #endif
6286
6287 #ifdef CONFIG_MEMORY_HOTPLUG
6288 /*
6289 * The zone indicated has a new number of managed_pages; batch sizes and percpu
6290 * page high values need to be recalulated.
6291 */
6292 void __meminit zone_pcp_update(struct zone *zone)
6293 {
6294 unsigned cpu;
6295 mutex_lock(&pcp_batch_high_lock);
6296 for_each_possible_cpu(cpu)
6297 pageset_set_high_and_batch(zone,
6298 per_cpu_ptr(zone->pageset, cpu));
6299 mutex_unlock(&pcp_batch_high_lock);
6300 }
6301 #endif
6302
6303 void zone_pcp_reset(struct zone *zone)
6304 {
6305 unsigned long flags;
6306 int cpu;
6307 struct per_cpu_pageset *pset;
6308
6309 /* avoid races with drain_pages() */
6310 local_irq_save(flags);
6311 if (zone->pageset != &boot_pageset) {
6312 for_each_online_cpu(cpu) {
6313 pset = per_cpu_ptr(zone->pageset, cpu);
6314 drain_zonestat(zone, pset);
6315 }
6316 free_percpu(zone->pageset);
6317 zone->pageset = &boot_pageset;
6318 }
6319 local_irq_restore(flags);
6320 }
6321
6322 #ifdef CONFIG_MEMORY_HOTREMOVE
6323 /*
6324 * All pages in the range must be isolated before calling this.
6325 */
6326 void
6327 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
6328 {
6329 struct page *page;
6330 struct zone *zone;
6331 int order, i;
6332 unsigned long pfn;
6333 unsigned long flags;
6334 /* find the first valid pfn */
6335 for (pfn = start_pfn; pfn < end_pfn; pfn++)
6336 if (pfn_valid(pfn))
6337 break;
6338 if (pfn == end_pfn)
6339 return;
6340 zone = page_zone(pfn_to_page(pfn));
6341 spin_lock_irqsave(&zone->lock, flags);
6342 pfn = start_pfn;
6343 while (pfn < end_pfn) {
6344 if (!pfn_valid(pfn)) {
6345 pfn++;
6346 continue;
6347 }
6348 page = pfn_to_page(pfn);
6349 /*
6350 * The HWPoisoned page may be not in buddy system, and
6351 * page_count() is not 0.
6352 */
6353 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
6354 pfn++;
6355 SetPageReserved(page);
6356 continue;
6357 }
6358
6359 BUG_ON(page_count(page));
6360 BUG_ON(!PageBuddy(page));
6361 order = page_order(page);
6362 #ifdef CONFIG_DEBUG_VM
6363 printk(KERN_INFO "remove from free list %lx %d %lx\n",
6364 pfn, 1 << order, end_pfn);
6365 #endif
6366 list_del(&page->lru);
6367 rmv_page_order(page);
6368 zone->free_area[order].nr_free--;
6369 #ifdef CONFIG_HIGHMEM
6370 if (PageHighMem(page))
6371 totalhigh_pages -= 1 << order;
6372 #endif
6373 for (i = 0; i < (1 << order); i++)
6374 SetPageReserved((page+i));
6375 pfn += (1 << order);
6376 }
6377 spin_unlock_irqrestore(&zone->lock, flags);
6378 }
6379 #endif
6380
6381 #ifdef CONFIG_MEMORY_FAILURE
6382 bool is_free_buddy_page(struct page *page)
6383 {
6384 struct zone *zone = page_zone(page);
6385 unsigned long pfn = page_to_pfn(page);
6386 unsigned long flags;
6387 int order;
6388
6389 spin_lock_irqsave(&zone->lock, flags);
6390 for (order = 0; order < MAX_ORDER; order++) {
6391 struct page *page_head = page - (pfn & ((1 << order) - 1));
6392
6393 if (PageBuddy(page_head) && page_order(page_head) >= order)
6394 break;
6395 }
6396 spin_unlock_irqrestore(&zone->lock, flags);
6397
6398 return order < MAX_ORDER;
6399 }
6400 #endif
6401
6402 static const struct trace_print_flags pageflag_names[] = {
6403 {1UL << PG_locked, "locked" },
6404 {1UL << PG_error, "error" },
6405 {1UL << PG_referenced, "referenced" },
6406 {1UL << PG_uptodate, "uptodate" },
6407 {1UL << PG_dirty, "dirty" },
6408 {1UL << PG_lru, "lru" },
6409 {1UL << PG_active, "active" },
6410 {1UL << PG_slab, "slab" },
6411 {1UL << PG_owner_priv_1, "owner_priv_1" },
6412 {1UL << PG_arch_1, "arch_1" },
6413 {1UL << PG_reserved, "reserved" },
6414 {1UL << PG_private, "private" },
6415 {1UL << PG_private_2, "private_2" },
6416 {1UL << PG_writeback, "writeback" },
6417 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6418 {1UL << PG_head, "head" },
6419 {1UL << PG_tail, "tail" },
6420 #else
6421 {1UL << PG_compound, "compound" },
6422 #endif
6423 {1UL << PG_swapcache, "swapcache" },
6424 {1UL << PG_mappedtodisk, "mappedtodisk" },
6425 {1UL << PG_reclaim, "reclaim" },
6426 {1UL << PG_swapbacked, "swapbacked" },
6427 {1UL << PG_unevictable, "unevictable" },
6428 #ifdef CONFIG_MMU
6429 {1UL << PG_mlocked, "mlocked" },
6430 #endif
6431 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6432 {1UL << PG_uncached, "uncached" },
6433 #endif
6434 #ifdef CONFIG_MEMORY_FAILURE
6435 {1UL << PG_hwpoison, "hwpoison" },
6436 #endif
6437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6438 {1UL << PG_compound_lock, "compound_lock" },
6439 #endif
6440 };
6441
6442 static void dump_page_flags(unsigned long flags)
6443 {
6444 const char *delim = "";
6445 unsigned long mask;
6446 int i;
6447
6448 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6449
6450 printk(KERN_ALERT "page flags: %#lx(", flags);
6451
6452 /* remove zone id */
6453 flags &= (1UL << NR_PAGEFLAGS) - 1;
6454
6455 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6456
6457 mask = pageflag_names[i].mask;
6458 if ((flags & mask) != mask)
6459 continue;
6460
6461 flags &= ~mask;
6462 printk("%s%s", delim, pageflag_names[i].name);
6463 delim = "|";
6464 }
6465
6466 /* check for left over flags */
6467 if (flags)
6468 printk("%s%#lx", delim, flags);
6469
6470 printk(")\n");
6471 }
6472
6473 void dump_page(struct page *page)
6474 {
6475 printk(KERN_ALERT
6476 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6477 page, atomic_read(&page->_count), page_mapcount(page),
6478 page->mapping, page->index);
6479 dump_page_flags(page->flags);
6480 mem_cgroup_print_bad_page(page);
6481 }
This page took 0.254587 seconds and 5 git commands to generate.