mm-swap-add-swap_cluster_list-checkpatch-fixes
[deliverable/linux.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION (8)
76
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93
94 /*
95 * Array of node states.
96 */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 [N_CPU] = { { [0] = 1UL } },
109 #endif /* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122
123 /*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 return page->index;
134 }
135
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 page->index = migratetype;
139 }
140
141 #ifdef CONFIG_PM_SLEEP
142 /*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
150
151 static gfp_t saved_gfp_mask;
152
153 void pm_restore_gfp_mask(void)
154 {
155 WARN_ON(!mutex_is_locked(&pm_mutex));
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
160 }
161
162 void pm_restrict_gfp_mask(void)
163 {
164 WARN_ON(!mutex_is_locked(&pm_mutex));
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169
170 bool pm_suspended_storage(void)
171 {
172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 return false;
174 return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181
182 static void __free_pages_ok(struct page *page, unsigned int order);
183
184 /*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
194 */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 32,
204 #endif
205 32,
206 };
207
208 EXPORT_SYMBOL(totalram_pages);
209
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 "DMA32",
216 #endif
217 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 "HighMem",
220 #endif
221 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 "Device",
224 #endif
225 };
226
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232 #ifdef CONFIG_CMA
233 "CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237 #endif
238 };
239
240 compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248 #endif
249 };
250
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata nr_memory_reserve;
258
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278
279 int page_group_by_mobility_disabled __read_mostly;
280
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 return true;
294
295 return false;
296 }
297
298 /*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305 {
306 unsigned long max_initialise;
307
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
317
318 (*nr_initialised)++;
319 if ((*nr_initialised > max_initialise) &&
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 return false;
335 }
336
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340 {
341 return true;
342 }
343 #endif
344
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366
367 /**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380 {
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398 {
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406
407 /**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419 {
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444 }
445
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
450 migratetype = MIGRATE_UNMOVABLE;
451
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454 }
455
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
462 unsigned long sp, start_pfn;
463
464 do {
465 seq = zone_span_seqbegin(zone);
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
468 if (!zone_spans_pfn(zone, pfn))
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
472 if (ret)
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
476
477 return ret;
478 }
479
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 if (!pfn_valid_within(page_to_pfn(page)))
483 return 0;
484 if (zone != page_zone(page))
485 return 0;
486
487 return 1;
488 }
489 /*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 if (page_outside_zone_boundaries(zone, page))
495 return 1;
496 if (!page_is_consistent(zone, page))
497 return 1;
498
499 return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 return 0;
505 }
506 #endif
507
508 static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
510 {
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
525 pr_alert(
526 "BUG: Bad page state: %lu messages suppressed\n",
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
536 current->comm, page_to_pfn(page));
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
542 dump_page_owner(page);
543
544 print_modules();
545 dump_stack();
546 out:
547 /* Leave bad fields for debug, except PageBuddy could make trouble */
548 page_mapcount_reset(page); /* remove PageBuddy */
549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551
552 /*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556 *
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559 *
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
562 *
563 * The first tail page's ->compound_order holds the order of allocation.
564 * This usage means that zero-order pages may not be compound.
565 */
566
567 void free_compound_page(struct page *page)
568 {
569 __free_pages_ok(page, compound_order(page));
570 }
571
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 int i;
575 int nr_pages = 1 << order;
576
577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
582 set_page_count(p, 0);
583 p->mapping = TAIL_MAPPING;
584 set_compound_head(p, page);
585 }
586 atomic_set(compound_mapcount_ptr(page), -1);
587 }
588
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 if (!buf)
599 return -EINVAL;
600 return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603
604 static bool need_debug_guardpage(void)
605 {
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
610 if (!debug_guardpage_minorder())
611 return false;
612
613 return true;
614 }
615
616 static void init_debug_guardpage(void)
617 {
618 if (!debug_pagealloc_enabled())
619 return;
620
621 if (!debug_guardpage_minorder())
622 return;
623
624 _debug_guardpage_enabled = true;
625 }
626
627 struct page_ext_operations debug_guardpage_ops = {
628 .need = need_debug_guardpage,
629 .init = init_debug_guardpage,
630 };
631
632 static int __init debug_guardpage_minorder_setup(char *buf)
633 {
634 unsigned long res;
635
636 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
637 pr_err("Bad debug_guardpage_minorder value\n");
638 return 0;
639 }
640 _debug_guardpage_minorder = res;
641 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
642 return 0;
643 }
644 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
645
646 static inline bool set_page_guard(struct zone *zone, struct page *page,
647 unsigned int order, int migratetype)
648 {
649 struct page_ext *page_ext;
650
651 if (!debug_guardpage_enabled())
652 return false;
653
654 if (order >= debug_guardpage_minorder())
655 return false;
656
657 page_ext = lookup_page_ext(page);
658 if (unlikely(!page_ext))
659 return false;
660
661 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
662
663 INIT_LIST_HEAD(&page->lru);
664 set_page_private(page, order);
665 /* Guard pages are not available for any usage */
666 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
667
668 return true;
669 }
670
671 static inline void clear_page_guard(struct zone *zone, struct page *page,
672 unsigned int order, int migratetype)
673 {
674 struct page_ext *page_ext;
675
676 if (!debug_guardpage_enabled())
677 return;
678
679 page_ext = lookup_page_ext(page);
680 if (unlikely(!page_ext))
681 return;
682
683 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
684
685 set_page_private(page, 0);
686 if (!is_migrate_isolate(migratetype))
687 __mod_zone_freepage_state(zone, (1 << order), migratetype);
688 }
689 #else
690 struct page_ext_operations debug_guardpage_ops;
691 static inline bool set_page_guard(struct zone *zone, struct page *page,
692 unsigned int order, int migratetype) { return false; }
693 static inline void clear_page_guard(struct zone *zone, struct page *page,
694 unsigned int order, int migratetype) {}
695 #endif
696
697 static inline void set_page_order(struct page *page, unsigned int order)
698 {
699 set_page_private(page, order);
700 __SetPageBuddy(page);
701 }
702
703 static inline void rmv_page_order(struct page *page)
704 {
705 __ClearPageBuddy(page);
706 set_page_private(page, 0);
707 }
708
709 /*
710 * This function checks whether a page is free && is the buddy
711 * we can do coalesce a page and its buddy if
712 * (a) the buddy is not in a hole &&
713 * (b) the buddy is in the buddy system &&
714 * (c) a page and its buddy have the same order &&
715 * (d) a page and its buddy are in the same zone.
716 *
717 * For recording whether a page is in the buddy system, we set ->_mapcount
718 * PAGE_BUDDY_MAPCOUNT_VALUE.
719 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
720 * serialized by zone->lock.
721 *
722 * For recording page's order, we use page_private(page).
723 */
724 static inline int page_is_buddy(struct page *page, struct page *buddy,
725 unsigned int order)
726 {
727 if (!pfn_valid_within(page_to_pfn(buddy)))
728 return 0;
729
730 if (page_is_guard(buddy) && page_order(buddy) == order) {
731 if (page_zone_id(page) != page_zone_id(buddy))
732 return 0;
733
734 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
735
736 return 1;
737 }
738
739 if (PageBuddy(buddy) && page_order(buddy) == order) {
740 /*
741 * zone check is done late to avoid uselessly
742 * calculating zone/node ids for pages that could
743 * never merge.
744 */
745 if (page_zone_id(page) != page_zone_id(buddy))
746 return 0;
747
748 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
749
750 return 1;
751 }
752 return 0;
753 }
754
755 /*
756 * Freeing function for a buddy system allocator.
757 *
758 * The concept of a buddy system is to maintain direct-mapped table
759 * (containing bit values) for memory blocks of various "orders".
760 * The bottom level table contains the map for the smallest allocatable
761 * units of memory (here, pages), and each level above it describes
762 * pairs of units from the levels below, hence, "buddies".
763 * At a high level, all that happens here is marking the table entry
764 * at the bottom level available, and propagating the changes upward
765 * as necessary, plus some accounting needed to play nicely with other
766 * parts of the VM system.
767 * At each level, we keep a list of pages, which are heads of continuous
768 * free pages of length of (1 << order) and marked with _mapcount
769 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
770 * field.
771 * So when we are allocating or freeing one, we can derive the state of the
772 * other. That is, if we allocate a small block, and both were
773 * free, the remainder of the region must be split into blocks.
774 * If a block is freed, and its buddy is also free, then this
775 * triggers coalescing into a block of larger size.
776 *
777 * -- nyc
778 */
779
780 static inline void __free_one_page(struct page *page,
781 unsigned long pfn,
782 struct zone *zone, unsigned int order,
783 int migratetype)
784 {
785 unsigned long page_idx;
786 unsigned long combined_idx;
787 unsigned long uninitialized_var(buddy_idx);
788 struct page *buddy;
789 unsigned int max_order;
790
791 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
792
793 VM_BUG_ON(!zone_is_initialized(zone));
794 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
795
796 VM_BUG_ON(migratetype == -1);
797 if (likely(!is_migrate_isolate(migratetype)))
798 __mod_zone_freepage_state(zone, 1 << order, migratetype);
799
800 page_idx = pfn & ((1 << MAX_ORDER) - 1);
801
802 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
803 VM_BUG_ON_PAGE(bad_range(zone, page), page);
804
805 continue_merging:
806 while (order < max_order - 1) {
807 buddy_idx = __find_buddy_index(page_idx, order);
808 buddy = page + (buddy_idx - page_idx);
809 if (!page_is_buddy(page, buddy, order))
810 goto done_merging;
811 /*
812 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
813 * merge with it and move up one order.
814 */
815 if (page_is_guard(buddy)) {
816 clear_page_guard(zone, buddy, order, migratetype);
817 } else {
818 list_del(&buddy->lru);
819 zone->free_area[order].nr_free--;
820 rmv_page_order(buddy);
821 }
822 combined_idx = buddy_idx & page_idx;
823 page = page + (combined_idx - page_idx);
824 page_idx = combined_idx;
825 order++;
826 }
827 if (max_order < MAX_ORDER) {
828 /* If we are here, it means order is >= pageblock_order.
829 * We want to prevent merge between freepages on isolate
830 * pageblock and normal pageblock. Without this, pageblock
831 * isolation could cause incorrect freepage or CMA accounting.
832 *
833 * We don't want to hit this code for the more frequent
834 * low-order merging.
835 */
836 if (unlikely(has_isolate_pageblock(zone))) {
837 int buddy_mt;
838
839 buddy_idx = __find_buddy_index(page_idx, order);
840 buddy = page + (buddy_idx - page_idx);
841 buddy_mt = get_pageblock_migratetype(buddy);
842
843 if (migratetype != buddy_mt
844 && (is_migrate_isolate(migratetype) ||
845 is_migrate_isolate(buddy_mt)))
846 goto done_merging;
847 }
848 max_order++;
849 goto continue_merging;
850 }
851
852 done_merging:
853 set_page_order(page, order);
854
855 /*
856 * If this is not the largest possible page, check if the buddy
857 * of the next-highest order is free. If it is, it's possible
858 * that pages are being freed that will coalesce soon. In case,
859 * that is happening, add the free page to the tail of the list
860 * so it's less likely to be used soon and more likely to be merged
861 * as a higher order page
862 */
863 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
864 struct page *higher_page, *higher_buddy;
865 combined_idx = buddy_idx & page_idx;
866 higher_page = page + (combined_idx - page_idx);
867 buddy_idx = __find_buddy_index(combined_idx, order + 1);
868 higher_buddy = higher_page + (buddy_idx - combined_idx);
869 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
870 list_add_tail(&page->lru,
871 &zone->free_area[order].free_list[migratetype]);
872 goto out;
873 }
874 }
875
876 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
877 out:
878 zone->free_area[order].nr_free++;
879 }
880
881 /*
882 * A bad page could be due to a number of fields. Instead of multiple branches,
883 * try and check multiple fields with one check. The caller must do a detailed
884 * check if necessary.
885 */
886 static inline bool page_expected_state(struct page *page,
887 unsigned long check_flags)
888 {
889 if (unlikely(atomic_read(&page->_mapcount) != -1))
890 return false;
891
892 if (unlikely((unsigned long)page->mapping |
893 page_ref_count(page) |
894 #ifdef CONFIG_MEMCG
895 (unsigned long)page->mem_cgroup |
896 #endif
897 (page->flags & check_flags)))
898 return false;
899
900 return true;
901 }
902
903 static void free_pages_check_bad(struct page *page)
904 {
905 const char *bad_reason;
906 unsigned long bad_flags;
907
908 bad_reason = NULL;
909 bad_flags = 0;
910
911 if (unlikely(atomic_read(&page->_mapcount) != -1))
912 bad_reason = "nonzero mapcount";
913 if (unlikely(page->mapping != NULL))
914 bad_reason = "non-NULL mapping";
915 if (unlikely(page_ref_count(page) != 0))
916 bad_reason = "nonzero _refcount";
917 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
918 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
919 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
920 }
921 #ifdef CONFIG_MEMCG
922 if (unlikely(page->mem_cgroup))
923 bad_reason = "page still charged to cgroup";
924 #endif
925 bad_page(page, bad_reason, bad_flags);
926 }
927
928 static inline int free_pages_check(struct page *page)
929 {
930 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
931 return 0;
932
933 /* Something has gone sideways, find it */
934 free_pages_check_bad(page);
935 return 1;
936 }
937
938 static int free_tail_pages_check(struct page *head_page, struct page *page)
939 {
940 int ret = 1;
941
942 /*
943 * We rely page->lru.next never has bit 0 set, unless the page
944 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
945 */
946 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
947
948 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
949 ret = 0;
950 goto out;
951 }
952 switch (page - head_page) {
953 case 1:
954 /* the first tail page: ->mapping is compound_mapcount() */
955 if (unlikely(compound_mapcount(page))) {
956 bad_page(page, "nonzero compound_mapcount", 0);
957 goto out;
958 }
959 break;
960 case 2:
961 /*
962 * the second tail page: ->mapping is
963 * page_deferred_list().next -- ignore value.
964 */
965 break;
966 default:
967 if (page->mapping != TAIL_MAPPING) {
968 bad_page(page, "corrupted mapping in tail page", 0);
969 goto out;
970 }
971 break;
972 }
973 if (unlikely(!PageTail(page))) {
974 bad_page(page, "PageTail not set", 0);
975 goto out;
976 }
977 if (unlikely(compound_head(page) != head_page)) {
978 bad_page(page, "compound_head not consistent", 0);
979 goto out;
980 }
981 ret = 0;
982 out:
983 page->mapping = NULL;
984 clear_compound_head(page);
985 return ret;
986 }
987
988 static __always_inline bool free_pages_prepare(struct page *page,
989 unsigned int order, bool check_free)
990 {
991 int bad = 0;
992
993 VM_BUG_ON_PAGE(PageTail(page), page);
994
995 trace_mm_page_free(page, order);
996 kmemcheck_free_shadow(page, order);
997
998 /*
999 * Check tail pages before head page information is cleared to
1000 * avoid checking PageCompound for order-0 pages.
1001 */
1002 if (unlikely(order)) {
1003 bool compound = PageCompound(page);
1004 int i;
1005
1006 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1007
1008 if (compound)
1009 ClearPageDoubleMap(page);
1010 for (i = 1; i < (1 << order); i++) {
1011 if (compound)
1012 bad += free_tail_pages_check(page, page + i);
1013 if (unlikely(free_pages_check(page + i))) {
1014 bad++;
1015 continue;
1016 }
1017 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1018 }
1019 }
1020 if (PageMappingFlags(page))
1021 page->mapping = NULL;
1022 if (memcg_kmem_enabled() && PageKmemcg(page))
1023 memcg_kmem_uncharge(page, order);
1024 if (check_free)
1025 bad += free_pages_check(page);
1026 if (bad)
1027 return false;
1028
1029 page_cpupid_reset_last(page);
1030 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1031 reset_page_owner(page, order);
1032
1033 if (!PageHighMem(page)) {
1034 debug_check_no_locks_freed(page_address(page),
1035 PAGE_SIZE << order);
1036 debug_check_no_obj_freed(page_address(page),
1037 PAGE_SIZE << order);
1038 }
1039 arch_free_page(page, order);
1040 kernel_poison_pages(page, 1 << order, 0);
1041 kernel_map_pages(page, 1 << order, 0);
1042 kasan_free_pages(page, order);
1043
1044 return true;
1045 }
1046
1047 #ifdef CONFIG_DEBUG_VM
1048 static inline bool free_pcp_prepare(struct page *page)
1049 {
1050 return free_pages_prepare(page, 0, true);
1051 }
1052
1053 static inline bool bulkfree_pcp_prepare(struct page *page)
1054 {
1055 return false;
1056 }
1057 #else
1058 static bool free_pcp_prepare(struct page *page)
1059 {
1060 return free_pages_prepare(page, 0, false);
1061 }
1062
1063 static bool bulkfree_pcp_prepare(struct page *page)
1064 {
1065 return free_pages_check(page);
1066 }
1067 #endif /* CONFIG_DEBUG_VM */
1068
1069 /*
1070 * Frees a number of pages from the PCP lists
1071 * Assumes all pages on list are in same zone, and of same order.
1072 * count is the number of pages to free.
1073 *
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1076 *
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1079 */
1080 static void free_pcppages_bulk(struct zone *zone, int count,
1081 struct per_cpu_pages *pcp)
1082 {
1083 int migratetype = 0;
1084 int batch_free = 0;
1085 unsigned long nr_scanned;
1086 bool isolated_pageblocks;
1087
1088 spin_lock(&zone->lock);
1089 isolated_pageblocks = has_isolate_pageblock(zone);
1090 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1091 if (nr_scanned)
1092 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1093
1094 while (count) {
1095 struct page *page;
1096 struct list_head *list;
1097
1098 /*
1099 * Remove pages from lists in a round-robin fashion. A
1100 * batch_free count is maintained that is incremented when an
1101 * empty list is encountered. This is so more pages are freed
1102 * off fuller lists instead of spinning excessively around empty
1103 * lists
1104 */
1105 do {
1106 batch_free++;
1107 if (++migratetype == MIGRATE_PCPTYPES)
1108 migratetype = 0;
1109 list = &pcp->lists[migratetype];
1110 } while (list_empty(list));
1111
1112 /* This is the only non-empty list. Free them all. */
1113 if (batch_free == MIGRATE_PCPTYPES)
1114 batch_free = count;
1115
1116 do {
1117 int mt; /* migratetype of the to-be-freed page */
1118
1119 page = list_last_entry(list, struct page, lru);
1120 /* must delete as __free_one_page list manipulates */
1121 list_del(&page->lru);
1122
1123 mt = get_pcppage_migratetype(page);
1124 /* MIGRATE_ISOLATE page should not go to pcplists */
1125 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1126 /* Pageblock could have been isolated meanwhile */
1127 if (unlikely(isolated_pageblocks))
1128 mt = get_pageblock_migratetype(page);
1129
1130 if (bulkfree_pcp_prepare(page))
1131 continue;
1132
1133 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1134 trace_mm_page_pcpu_drain(page, 0, mt);
1135 } while (--count && --batch_free && !list_empty(list));
1136 }
1137 spin_unlock(&zone->lock);
1138 }
1139
1140 static void free_one_page(struct zone *zone,
1141 struct page *page, unsigned long pfn,
1142 unsigned int order,
1143 int migratetype)
1144 {
1145 unsigned long nr_scanned;
1146 spin_lock(&zone->lock);
1147 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1148 if (nr_scanned)
1149 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1150
1151 if (unlikely(has_isolate_pageblock(zone) ||
1152 is_migrate_isolate(migratetype))) {
1153 migratetype = get_pfnblock_migratetype(page, pfn);
1154 }
1155 __free_one_page(page, pfn, zone, order, migratetype);
1156 spin_unlock(&zone->lock);
1157 }
1158
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 unsigned long zone, int nid)
1161 {
1162 set_page_links(page, zone, nid, pfn);
1163 init_page_count(page);
1164 page_mapcount_reset(page);
1165 page_cpupid_reset_last(page);
1166
1167 INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 if (!is_highmem_idx(zone))
1171 set_page_address(page, __va(pfn << PAGE_SHIFT));
1172 #endif
1173 }
1174
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 int nid)
1177 {
1178 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179 }
1180
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1183 {
1184 pg_data_t *pgdat;
1185 int nid, zid;
1186
1187 if (!early_page_uninitialised(pfn))
1188 return;
1189
1190 nid = early_pfn_to_nid(pfn);
1191 pgdat = NODE_DATA(nid);
1192
1193 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 struct zone *zone = &pgdat->node_zones[zid];
1195
1196 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 break;
1198 }
1199 __init_single_pfn(pfn, zid, nid);
1200 }
1201 #else
1202 static inline void init_reserved_page(unsigned long pfn)
1203 {
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206
1207 /*
1208 * Initialised pages do not have PageReserved set. This function is
1209 * called for each range allocated by the bootmem allocator and
1210 * marks the pages PageReserved. The remaining valid pages are later
1211 * sent to the buddy page allocator.
1212 */
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 {
1215 unsigned long start_pfn = PFN_DOWN(start);
1216 unsigned long end_pfn = PFN_UP(end);
1217
1218 for (; start_pfn < end_pfn; start_pfn++) {
1219 if (pfn_valid(start_pfn)) {
1220 struct page *page = pfn_to_page(start_pfn);
1221
1222 init_reserved_page(start_pfn);
1223
1224 /* Avoid false-positive PageTail() */
1225 INIT_LIST_HEAD(&page->lru);
1226
1227 SetPageReserved(page);
1228 }
1229 }
1230 }
1231
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1233 {
1234 unsigned long flags;
1235 int migratetype;
1236 unsigned long pfn = page_to_pfn(page);
1237
1238 if (!free_pages_prepare(page, order, true))
1239 return;
1240
1241 migratetype = get_pfnblock_migratetype(page, pfn);
1242 local_irq_save(flags);
1243 __count_vm_events(PGFREE, 1 << order);
1244 free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 local_irq_restore(flags);
1246 }
1247
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 unsigned int nr_pages = 1 << order;
1251 struct page *p = page;
1252 unsigned int loop;
1253
1254 prefetchw(p);
1255 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 prefetchw(p + 1);
1257 __ClearPageReserved(p);
1258 set_page_count(p, 0);
1259 }
1260 __ClearPageReserved(p);
1261 set_page_count(p, 0);
1262
1263 page_zone(page)->managed_pages += nr_pages;
1264 set_page_refcounted(page);
1265 __free_pages(page, order);
1266 }
1267
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 static DEFINE_SPINLOCK(early_pfn_lock);
1276 int nid;
1277
1278 spin_lock(&early_pfn_lock);
1279 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 if (nid < 0)
1281 nid = first_online_node;
1282 spin_unlock(&early_pfn_lock);
1283
1284 return nid;
1285 }
1286 #endif
1287
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 struct mminit_pfnnid_cache *state)
1291 {
1292 int nid;
1293
1294 nid = __early_pfn_to_nid(pfn, state);
1295 if (nid >= 0 && nid != node)
1296 return false;
1297 return true;
1298 }
1299
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305
1306 #else
1307
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 struct mminit_pfnnid_cache *state)
1314 {
1315 return true;
1316 }
1317 #endif
1318
1319
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 unsigned int order)
1322 {
1323 if (early_page_uninitialised(pfn))
1324 return;
1325 return __free_pages_boot_core(page, order);
1326 }
1327
1328 /*
1329 * Check that the whole (or subset of) a pageblock given by the interval of
1330 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331 * with the migration of free compaction scanner. The scanners then need to
1332 * use only pfn_valid_within() check for arches that allow holes within
1333 * pageblocks.
1334 *
1335 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336 *
1337 * It's possible on some configurations to have a setup like node0 node1 node0
1338 * i.e. it's possible that all pages within a zones range of pages do not
1339 * belong to a single zone. We assume that a border between node0 and node1
1340 * can occur within a single pageblock, but not a node0 node1 node0
1341 * interleaving within a single pageblock. It is therefore sufficient to check
1342 * the first and last page of a pageblock and avoid checking each individual
1343 * page in a pageblock.
1344 */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 unsigned long end_pfn, struct zone *zone)
1347 {
1348 struct page *start_page;
1349 struct page *end_page;
1350
1351 /* end_pfn is one past the range we are checking */
1352 end_pfn--;
1353
1354 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 return NULL;
1356
1357 start_page = pfn_to_page(start_pfn);
1358
1359 if (page_zone(start_page) != zone)
1360 return NULL;
1361
1362 end_page = pfn_to_page(end_pfn);
1363
1364 /* This gives a shorter code than deriving page_zone(end_page) */
1365 if (page_zone_id(start_page) != page_zone_id(end_page))
1366 return NULL;
1367
1368 return start_page;
1369 }
1370
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 unsigned long block_start_pfn = zone->zone_start_pfn;
1374 unsigned long block_end_pfn;
1375
1376 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 for (; block_start_pfn < zone_end_pfn(zone);
1378 block_start_pfn = block_end_pfn,
1379 block_end_pfn += pageblock_nr_pages) {
1380
1381 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382
1383 if (!__pageblock_pfn_to_page(block_start_pfn,
1384 block_end_pfn, zone))
1385 return;
1386 }
1387
1388 /* We confirm that there is no hole */
1389 zone->contiguous = true;
1390 }
1391
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 zone->contiguous = false;
1395 }
1396
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 unsigned long pfn, int nr_pages)
1400 {
1401 int i;
1402
1403 if (!page)
1404 return;
1405
1406 /* Free a large naturally-aligned chunk if possible */
1407 if (nr_pages == pageblock_nr_pages &&
1408 (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 __free_pages_boot_core(page, pageblock_order);
1411 return;
1412 }
1413
1414 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 __free_pages_boot_core(page, 0);
1418 }
1419 }
1420
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 complete(&pgdat_init_all_done_comp);
1429 }
1430
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 pg_data_t *pgdat = data;
1435 int nid = pgdat->node_id;
1436 struct mminit_pfnnid_cache nid_init_state = { };
1437 unsigned long start = jiffies;
1438 unsigned long nr_pages = 0;
1439 unsigned long walk_start, walk_end;
1440 int i, zid;
1441 struct zone *zone;
1442 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444
1445 if (first_init_pfn == ULONG_MAX) {
1446 pgdat_init_report_one_done();
1447 return 0;
1448 }
1449
1450 /* Bind memory initialisation thread to a local node if possible */
1451 if (!cpumask_empty(cpumask))
1452 set_cpus_allowed_ptr(current, cpumask);
1453
1454 /* Sanity check boundaries */
1455 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 pgdat->first_deferred_pfn = ULONG_MAX;
1458
1459 /* Only the highest zone is deferred so find it */
1460 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 zone = pgdat->node_zones + zid;
1462 if (first_init_pfn < zone_end_pfn(zone))
1463 break;
1464 }
1465
1466 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 unsigned long pfn, end_pfn;
1468 struct page *page = NULL;
1469 struct page *free_base_page = NULL;
1470 unsigned long free_base_pfn = 0;
1471 int nr_to_free = 0;
1472
1473 end_pfn = min(walk_end, zone_end_pfn(zone));
1474 pfn = first_init_pfn;
1475 if (pfn < walk_start)
1476 pfn = walk_start;
1477 if (pfn < zone->zone_start_pfn)
1478 pfn = zone->zone_start_pfn;
1479
1480 for (; pfn < end_pfn; pfn++) {
1481 if (!pfn_valid_within(pfn))
1482 goto free_range;
1483
1484 /*
1485 * Ensure pfn_valid is checked every
1486 * pageblock_nr_pages for memory holes
1487 */
1488 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 if (!pfn_valid(pfn)) {
1490 page = NULL;
1491 goto free_range;
1492 }
1493 }
1494
1495 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 page = NULL;
1497 goto free_range;
1498 }
1499
1500 /* Minimise pfn page lookups and scheduler checks */
1501 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 page++;
1503 } else {
1504 nr_pages += nr_to_free;
1505 deferred_free_range(free_base_page,
1506 free_base_pfn, nr_to_free);
1507 free_base_page = NULL;
1508 free_base_pfn = nr_to_free = 0;
1509
1510 page = pfn_to_page(pfn);
1511 cond_resched();
1512 }
1513
1514 if (page->flags) {
1515 VM_BUG_ON(page_zone(page) != zone);
1516 goto free_range;
1517 }
1518
1519 __init_single_page(page, pfn, zid, nid);
1520 if (!free_base_page) {
1521 free_base_page = page;
1522 free_base_pfn = pfn;
1523 nr_to_free = 0;
1524 }
1525 nr_to_free++;
1526
1527 /* Where possible, batch up pages for a single free */
1528 continue;
1529 free_range:
1530 /* Free the current block of pages to allocator */
1531 nr_pages += nr_to_free;
1532 deferred_free_range(free_base_page, free_base_pfn,
1533 nr_to_free);
1534 free_base_page = NULL;
1535 free_base_pfn = nr_to_free = 0;
1536 }
1537 /* Free the last block of pages to allocator */
1538 nr_pages += nr_to_free;
1539 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540
1541 first_init_pfn = max(end_pfn, first_init_pfn);
1542 }
1543
1544 /* Sanity check that the next zone really is unpopulated */
1545 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546
1547 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 jiffies_to_msecs(jiffies - start));
1549
1550 pgdat_init_report_one_done();
1551 return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554
1555 void __init page_alloc_init_late(void)
1556 {
1557 struct zone *zone;
1558
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 int nid;
1561
1562 /* There will be num_node_state(N_MEMORY) threads */
1563 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 for_each_node_state(nid, N_MEMORY) {
1565 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 }
1567
1568 /* Block until all are initialised */
1569 wait_for_completion(&pgdat_init_all_done_comp);
1570
1571 /* Reinit limits that are based on free pages after the kernel is up */
1572 files_maxfiles_init();
1573 #endif
1574
1575 for_each_populated_zone(zone)
1576 set_zone_contiguous(zone);
1577 }
1578
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 unsigned i = pageblock_nr_pages;
1584 struct page *p = page;
1585
1586 do {
1587 __ClearPageReserved(p);
1588 set_page_count(p, 0);
1589 } while (++p, --i);
1590
1591 set_pageblock_migratetype(page, MIGRATE_CMA);
1592
1593 if (pageblock_order >= MAX_ORDER) {
1594 i = pageblock_nr_pages;
1595 p = page;
1596 do {
1597 set_page_refcounted(p);
1598 __free_pages(p, MAX_ORDER - 1);
1599 p += MAX_ORDER_NR_PAGES;
1600 } while (i -= MAX_ORDER_NR_PAGES);
1601 } else {
1602 set_page_refcounted(page);
1603 __free_pages(page, pageblock_order);
1604 }
1605
1606 adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609
1610 /*
1611 * The order of subdivision here is critical for the IO subsystem.
1612 * Please do not alter this order without good reasons and regression
1613 * testing. Specifically, as large blocks of memory are subdivided,
1614 * the order in which smaller blocks are delivered depends on the order
1615 * they're subdivided in this function. This is the primary factor
1616 * influencing the order in which pages are delivered to the IO
1617 * subsystem according to empirical testing, and this is also justified
1618 * by considering the behavior of a buddy system containing a single
1619 * large block of memory acted on by a series of small allocations.
1620 * This behavior is a critical factor in sglist merging's success.
1621 *
1622 * -- nyc
1623 */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 int low, int high, struct free_area *area,
1626 int migratetype)
1627 {
1628 unsigned long size = 1 << high;
1629
1630 while (high > low) {
1631 area--;
1632 high--;
1633 size >>= 1;
1634 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635
1636 /*
1637 * Mark as guard pages (or page), that will allow to
1638 * merge back to allocator when buddy will be freed.
1639 * Corresponding page table entries will not be touched,
1640 * pages will stay not present in virtual address space
1641 */
1642 if (set_page_guard(zone, &page[size], high, migratetype))
1643 continue;
1644
1645 list_add(&page[size].lru, &area->free_list[migratetype]);
1646 area->nr_free++;
1647 set_page_order(&page[size], high);
1648 }
1649 }
1650
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 const char *bad_reason = NULL;
1654 unsigned long bad_flags = 0;
1655
1656 if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 bad_reason = "nonzero mapcount";
1658 if (unlikely(page->mapping != NULL))
1659 bad_reason = "non-NULL mapping";
1660 if (unlikely(page_ref_count(page) != 0))
1661 bad_reason = "nonzero _count";
1662 if (unlikely(page->flags & __PG_HWPOISON)) {
1663 bad_reason = "HWPoisoned (hardware-corrupted)";
1664 bad_flags = __PG_HWPOISON;
1665 /* Don't complain about hwpoisoned pages */
1666 page_mapcount_reset(page); /* remove PageBuddy */
1667 return;
1668 }
1669 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 }
1673 #ifdef CONFIG_MEMCG
1674 if (unlikely(page->mem_cgroup))
1675 bad_reason = "page still charged to cgroup";
1676 #endif
1677 bad_page(page, bad_reason, bad_flags);
1678 }
1679
1680 /*
1681 * This page is about to be returned from the page allocator
1682 */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 if (likely(page_expected_state(page,
1686 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 return 0;
1688
1689 check_new_page_bad(page);
1690 return 1;
1691 }
1692
1693 static inline bool free_pages_prezeroed(bool poisoned)
1694 {
1695 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 page_poisoning_enabled() && poisoned;
1697 }
1698
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 return false;
1703 }
1704
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 int i;
1723 for (i = 0; i < (1 << order); i++) {
1724 struct page *p = page + i;
1725
1726 if (unlikely(check_new_page(p)))
1727 return true;
1728 }
1729
1730 return false;
1731 }
1732
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 gfp_t gfp_flags)
1735 {
1736 set_page_private(page, 0);
1737 set_page_refcounted(page);
1738
1739 arch_alloc_page(page, order);
1740 kernel_map_pages(page, 1 << order, 1);
1741 kernel_poison_pages(page, 1 << order, 1);
1742 kasan_alloc_pages(page, order);
1743 set_page_owner(page, order, gfp_flags);
1744 }
1745
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 unsigned int alloc_flags)
1748 {
1749 int i;
1750 bool poisoned = true;
1751
1752 for (i = 0; i < (1 << order); i++) {
1753 struct page *p = page + i;
1754 if (poisoned)
1755 poisoned &= page_is_poisoned(p);
1756 }
1757
1758 post_alloc_hook(page, order, gfp_flags);
1759
1760 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1761 for (i = 0; i < (1 << order); i++)
1762 clear_highpage(page + i);
1763
1764 if (order && (gfp_flags & __GFP_COMP))
1765 prep_compound_page(page, order);
1766
1767 /*
1768 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1769 * allocate the page. The expectation is that the caller is taking
1770 * steps that will free more memory. The caller should avoid the page
1771 * being used for !PFMEMALLOC purposes.
1772 */
1773 if (alloc_flags & ALLOC_NO_WATERMARKS)
1774 set_page_pfmemalloc(page);
1775 else
1776 clear_page_pfmemalloc(page);
1777 }
1778
1779 /*
1780 * Go through the free lists for the given migratetype and remove
1781 * the smallest available page from the freelists
1782 */
1783 static inline
1784 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1785 int migratetype)
1786 {
1787 unsigned int current_order;
1788 struct free_area *area;
1789 struct page *page;
1790
1791 /* Find a page of the appropriate size in the preferred list */
1792 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1793 area = &(zone->free_area[current_order]);
1794 page = list_first_entry_or_null(&area->free_list[migratetype],
1795 struct page, lru);
1796 if (!page)
1797 continue;
1798 list_del(&page->lru);
1799 rmv_page_order(page);
1800 area->nr_free--;
1801 expand(zone, page, order, current_order, area, migratetype);
1802 set_pcppage_migratetype(page, migratetype);
1803 return page;
1804 }
1805
1806 return NULL;
1807 }
1808
1809
1810 /*
1811 * This array describes the order lists are fallen back to when
1812 * the free lists for the desirable migrate type are depleted
1813 */
1814 static int fallbacks[MIGRATE_TYPES][4] = {
1815 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1816 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1817 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1818 #ifdef CONFIG_CMA
1819 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1820 #endif
1821 #ifdef CONFIG_MEMORY_ISOLATION
1822 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1823 #endif
1824 };
1825
1826 #ifdef CONFIG_CMA
1827 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1828 unsigned int order)
1829 {
1830 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1831 }
1832 #else
1833 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1834 unsigned int order) { return NULL; }
1835 #endif
1836
1837 /*
1838 * Move the free pages in a range to the free lists of the requested type.
1839 * Note that start_page and end_pages are not aligned on a pageblock
1840 * boundary. If alignment is required, use move_freepages_block()
1841 */
1842 int move_freepages(struct zone *zone,
1843 struct page *start_page, struct page *end_page,
1844 int migratetype)
1845 {
1846 struct page *page;
1847 unsigned int order;
1848 int pages_moved = 0;
1849
1850 #ifndef CONFIG_HOLES_IN_ZONE
1851 /*
1852 * page_zone is not safe to call in this context when
1853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1854 * anyway as we check zone boundaries in move_freepages_block().
1855 * Remove at a later date when no bug reports exist related to
1856 * grouping pages by mobility
1857 */
1858 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1859 #endif
1860
1861 for (page = start_page; page <= end_page;) {
1862 /* Make sure we are not inadvertently changing nodes */
1863 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1864
1865 if (!pfn_valid_within(page_to_pfn(page))) {
1866 page++;
1867 continue;
1868 }
1869
1870 if (!PageBuddy(page)) {
1871 page++;
1872 continue;
1873 }
1874
1875 order = page_order(page);
1876 list_move(&page->lru,
1877 &zone->free_area[order].free_list[migratetype]);
1878 page += 1 << order;
1879 pages_moved += 1 << order;
1880 }
1881
1882 return pages_moved;
1883 }
1884
1885 int move_freepages_block(struct zone *zone, struct page *page,
1886 int migratetype)
1887 {
1888 unsigned long start_pfn, end_pfn;
1889 struct page *start_page, *end_page;
1890
1891 start_pfn = page_to_pfn(page);
1892 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1893 start_page = pfn_to_page(start_pfn);
1894 end_page = start_page + pageblock_nr_pages - 1;
1895 end_pfn = start_pfn + pageblock_nr_pages - 1;
1896
1897 /* Do not cross zone boundaries */
1898 if (!zone_spans_pfn(zone, start_pfn))
1899 start_page = page;
1900 if (!zone_spans_pfn(zone, end_pfn))
1901 return 0;
1902
1903 return move_freepages(zone, start_page, end_page, migratetype);
1904 }
1905
1906 static void change_pageblock_range(struct page *pageblock_page,
1907 int start_order, int migratetype)
1908 {
1909 int nr_pageblocks = 1 << (start_order - pageblock_order);
1910
1911 while (nr_pageblocks--) {
1912 set_pageblock_migratetype(pageblock_page, migratetype);
1913 pageblock_page += pageblock_nr_pages;
1914 }
1915 }
1916
1917 /*
1918 * When we are falling back to another migratetype during allocation, try to
1919 * steal extra free pages from the same pageblocks to satisfy further
1920 * allocations, instead of polluting multiple pageblocks.
1921 *
1922 * If we are stealing a relatively large buddy page, it is likely there will
1923 * be more free pages in the pageblock, so try to steal them all. For
1924 * reclaimable and unmovable allocations, we steal regardless of page size,
1925 * as fragmentation caused by those allocations polluting movable pageblocks
1926 * is worse than movable allocations stealing from unmovable and reclaimable
1927 * pageblocks.
1928 */
1929 static bool can_steal_fallback(unsigned int order, int start_mt)
1930 {
1931 /*
1932 * Leaving this order check is intended, although there is
1933 * relaxed order check in next check. The reason is that
1934 * we can actually steal whole pageblock if this condition met,
1935 * but, below check doesn't guarantee it and that is just heuristic
1936 * so could be changed anytime.
1937 */
1938 if (order >= pageblock_order)
1939 return true;
1940
1941 if (order >= pageblock_order / 2 ||
1942 start_mt == MIGRATE_RECLAIMABLE ||
1943 start_mt == MIGRATE_UNMOVABLE ||
1944 page_group_by_mobility_disabled)
1945 return true;
1946
1947 return false;
1948 }
1949
1950 /*
1951 * This function implements actual steal behaviour. If order is large enough,
1952 * we can steal whole pageblock. If not, we first move freepages in this
1953 * pageblock and check whether half of pages are moved or not. If half of
1954 * pages are moved, we can change migratetype of pageblock and permanently
1955 * use it's pages as requested migratetype in the future.
1956 */
1957 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1958 int start_type)
1959 {
1960 unsigned int current_order = page_order(page);
1961 int pages;
1962
1963 /* Take ownership for orders >= pageblock_order */
1964 if (current_order >= pageblock_order) {
1965 change_pageblock_range(page, current_order, start_type);
1966 return;
1967 }
1968
1969 pages = move_freepages_block(zone, page, start_type);
1970
1971 /* Claim the whole block if over half of it is free */
1972 if (pages >= (1 << (pageblock_order-1)) ||
1973 page_group_by_mobility_disabled)
1974 set_pageblock_migratetype(page, start_type);
1975 }
1976
1977 /*
1978 * Check whether there is a suitable fallback freepage with requested order.
1979 * If only_stealable is true, this function returns fallback_mt only if
1980 * we can steal other freepages all together. This would help to reduce
1981 * fragmentation due to mixed migratetype pages in one pageblock.
1982 */
1983 int find_suitable_fallback(struct free_area *area, unsigned int order,
1984 int migratetype, bool only_stealable, bool *can_steal)
1985 {
1986 int i;
1987 int fallback_mt;
1988
1989 if (area->nr_free == 0)
1990 return -1;
1991
1992 *can_steal = false;
1993 for (i = 0;; i++) {
1994 fallback_mt = fallbacks[migratetype][i];
1995 if (fallback_mt == MIGRATE_TYPES)
1996 break;
1997
1998 if (list_empty(&area->free_list[fallback_mt]))
1999 continue;
2000
2001 if (can_steal_fallback(order, migratetype))
2002 *can_steal = true;
2003
2004 if (!only_stealable)
2005 return fallback_mt;
2006
2007 if (*can_steal)
2008 return fallback_mt;
2009 }
2010
2011 return -1;
2012 }
2013
2014 /*
2015 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2016 * there are no empty page blocks that contain a page with a suitable order
2017 */
2018 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2019 unsigned int alloc_order)
2020 {
2021 int mt;
2022 unsigned long max_managed, flags;
2023
2024 /*
2025 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2026 * Check is race-prone but harmless.
2027 */
2028 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2029 if (zone->nr_reserved_highatomic >= max_managed)
2030 return;
2031
2032 spin_lock_irqsave(&zone->lock, flags);
2033
2034 /* Recheck the nr_reserved_highatomic limit under the lock */
2035 if (zone->nr_reserved_highatomic >= max_managed)
2036 goto out_unlock;
2037
2038 /* Yoink! */
2039 mt = get_pageblock_migratetype(page);
2040 if (mt != MIGRATE_HIGHATOMIC &&
2041 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2042 zone->nr_reserved_highatomic += pageblock_nr_pages;
2043 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2044 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2045 }
2046
2047 out_unlock:
2048 spin_unlock_irqrestore(&zone->lock, flags);
2049 }
2050
2051 /*
2052 * Used when an allocation is about to fail under memory pressure. This
2053 * potentially hurts the reliability of high-order allocations when under
2054 * intense memory pressure but failed atomic allocations should be easier
2055 * to recover from than an OOM.
2056 */
2057 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2058 {
2059 struct zonelist *zonelist = ac->zonelist;
2060 unsigned long flags;
2061 struct zoneref *z;
2062 struct zone *zone;
2063 struct page *page;
2064 int order;
2065
2066 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2067 ac->nodemask) {
2068 /* Preserve at least one pageblock */
2069 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2070 continue;
2071
2072 spin_lock_irqsave(&zone->lock, flags);
2073 for (order = 0; order < MAX_ORDER; order++) {
2074 struct free_area *area = &(zone->free_area[order]);
2075
2076 page = list_first_entry_or_null(
2077 &area->free_list[MIGRATE_HIGHATOMIC],
2078 struct page, lru);
2079 if (!page)
2080 continue;
2081
2082 /*
2083 * It should never happen but changes to locking could
2084 * inadvertently allow a per-cpu drain to add pages
2085 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2086 * and watch for underflows.
2087 */
2088 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2089 zone->nr_reserved_highatomic);
2090
2091 /*
2092 * Convert to ac->migratetype and avoid the normal
2093 * pageblock stealing heuristics. Minimally, the caller
2094 * is doing the work and needs the pages. More
2095 * importantly, if the block was always converted to
2096 * MIGRATE_UNMOVABLE or another type then the number
2097 * of pageblocks that cannot be completely freed
2098 * may increase.
2099 */
2100 set_pageblock_migratetype(page, ac->migratetype);
2101 move_freepages_block(zone, page, ac->migratetype);
2102 spin_unlock_irqrestore(&zone->lock, flags);
2103 return;
2104 }
2105 spin_unlock_irqrestore(&zone->lock, flags);
2106 }
2107 }
2108
2109 /* Remove an element from the buddy allocator from the fallback list */
2110 static inline struct page *
2111 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2112 {
2113 struct free_area *area;
2114 unsigned int current_order;
2115 struct page *page;
2116 int fallback_mt;
2117 bool can_steal;
2118
2119 /* Find the largest possible block of pages in the other list */
2120 for (current_order = MAX_ORDER-1;
2121 current_order >= order && current_order <= MAX_ORDER-1;
2122 --current_order) {
2123 area = &(zone->free_area[current_order]);
2124 fallback_mt = find_suitable_fallback(area, current_order,
2125 start_migratetype, false, &can_steal);
2126 if (fallback_mt == -1)
2127 continue;
2128
2129 page = list_first_entry(&area->free_list[fallback_mt],
2130 struct page, lru);
2131 if (can_steal)
2132 steal_suitable_fallback(zone, page, start_migratetype);
2133
2134 /* Remove the page from the freelists */
2135 area->nr_free--;
2136 list_del(&page->lru);
2137 rmv_page_order(page);
2138
2139 expand(zone, page, order, current_order, area,
2140 start_migratetype);
2141 /*
2142 * The pcppage_migratetype may differ from pageblock's
2143 * migratetype depending on the decisions in
2144 * find_suitable_fallback(). This is OK as long as it does not
2145 * differ for MIGRATE_CMA pageblocks. Those can be used as
2146 * fallback only via special __rmqueue_cma_fallback() function
2147 */
2148 set_pcppage_migratetype(page, start_migratetype);
2149
2150 trace_mm_page_alloc_extfrag(page, order, current_order,
2151 start_migratetype, fallback_mt);
2152
2153 return page;
2154 }
2155
2156 return NULL;
2157 }
2158
2159 /*
2160 * Do the hard work of removing an element from the buddy allocator.
2161 * Call me with the zone->lock already held.
2162 */
2163 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2164 int migratetype)
2165 {
2166 struct page *page;
2167
2168 page = __rmqueue_smallest(zone, order, migratetype);
2169 if (unlikely(!page)) {
2170 if (migratetype == MIGRATE_MOVABLE)
2171 page = __rmqueue_cma_fallback(zone, order);
2172
2173 if (!page)
2174 page = __rmqueue_fallback(zone, order, migratetype);
2175 }
2176
2177 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2178 return page;
2179 }
2180
2181 /*
2182 * Obtain a specified number of elements from the buddy allocator, all under
2183 * a single hold of the lock, for efficiency. Add them to the supplied list.
2184 * Returns the number of new pages which were placed at *list.
2185 */
2186 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2187 unsigned long count, struct list_head *list,
2188 int migratetype, bool cold)
2189 {
2190 int i;
2191
2192 spin_lock(&zone->lock);
2193 for (i = 0; i < count; ++i) {
2194 struct page *page = __rmqueue(zone, order, migratetype);
2195 if (unlikely(page == NULL))
2196 break;
2197
2198 if (unlikely(check_pcp_refill(page)))
2199 continue;
2200
2201 /*
2202 * Split buddy pages returned by expand() are received here
2203 * in physical page order. The page is added to the callers and
2204 * list and the list head then moves forward. From the callers
2205 * perspective, the linked list is ordered by page number in
2206 * some conditions. This is useful for IO devices that can
2207 * merge IO requests if the physical pages are ordered
2208 * properly.
2209 */
2210 if (likely(!cold))
2211 list_add(&page->lru, list);
2212 else
2213 list_add_tail(&page->lru, list);
2214 list = &page->lru;
2215 if (is_migrate_cma(get_pcppage_migratetype(page)))
2216 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2217 -(1 << order));
2218 }
2219 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2220 spin_unlock(&zone->lock);
2221 return i;
2222 }
2223
2224 #ifdef CONFIG_NUMA
2225 /*
2226 * Called from the vmstat counter updater to drain pagesets of this
2227 * currently executing processor on remote nodes after they have
2228 * expired.
2229 *
2230 * Note that this function must be called with the thread pinned to
2231 * a single processor.
2232 */
2233 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2234 {
2235 unsigned long flags;
2236 int to_drain, batch;
2237
2238 local_irq_save(flags);
2239 batch = READ_ONCE(pcp->batch);
2240 to_drain = min(pcp->count, batch);
2241 if (to_drain > 0) {
2242 free_pcppages_bulk(zone, to_drain, pcp);
2243 pcp->count -= to_drain;
2244 }
2245 local_irq_restore(flags);
2246 }
2247 #endif
2248
2249 /*
2250 * Drain pcplists of the indicated processor and zone.
2251 *
2252 * The processor must either be the current processor and the
2253 * thread pinned to the current processor or a processor that
2254 * is not online.
2255 */
2256 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2257 {
2258 unsigned long flags;
2259 struct per_cpu_pageset *pset;
2260 struct per_cpu_pages *pcp;
2261
2262 local_irq_save(flags);
2263 pset = per_cpu_ptr(zone->pageset, cpu);
2264
2265 pcp = &pset->pcp;
2266 if (pcp->count) {
2267 free_pcppages_bulk(zone, pcp->count, pcp);
2268 pcp->count = 0;
2269 }
2270 local_irq_restore(flags);
2271 }
2272
2273 /*
2274 * Drain pcplists of all zones on the indicated processor.
2275 *
2276 * The processor must either be the current processor and the
2277 * thread pinned to the current processor or a processor that
2278 * is not online.
2279 */
2280 static void drain_pages(unsigned int cpu)
2281 {
2282 struct zone *zone;
2283
2284 for_each_populated_zone(zone) {
2285 drain_pages_zone(cpu, zone);
2286 }
2287 }
2288
2289 /*
2290 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2291 *
2292 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2293 * the single zone's pages.
2294 */
2295 void drain_local_pages(struct zone *zone)
2296 {
2297 int cpu = smp_processor_id();
2298
2299 if (zone)
2300 drain_pages_zone(cpu, zone);
2301 else
2302 drain_pages(cpu);
2303 }
2304
2305 /*
2306 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2307 *
2308 * When zone parameter is non-NULL, spill just the single zone's pages.
2309 *
2310 * Note that this code is protected against sending an IPI to an offline
2311 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2312 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2313 * nothing keeps CPUs from showing up after we populated the cpumask and
2314 * before the call to on_each_cpu_mask().
2315 */
2316 void drain_all_pages(struct zone *zone)
2317 {
2318 int cpu;
2319
2320 /*
2321 * Allocate in the BSS so we wont require allocation in
2322 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2323 */
2324 static cpumask_t cpus_with_pcps;
2325
2326 /*
2327 * We don't care about racing with CPU hotplug event
2328 * as offline notification will cause the notified
2329 * cpu to drain that CPU pcps and on_each_cpu_mask
2330 * disables preemption as part of its processing
2331 */
2332 for_each_online_cpu(cpu) {
2333 struct per_cpu_pageset *pcp;
2334 struct zone *z;
2335 bool has_pcps = false;
2336
2337 if (zone) {
2338 pcp = per_cpu_ptr(zone->pageset, cpu);
2339 if (pcp->pcp.count)
2340 has_pcps = true;
2341 } else {
2342 for_each_populated_zone(z) {
2343 pcp = per_cpu_ptr(z->pageset, cpu);
2344 if (pcp->pcp.count) {
2345 has_pcps = true;
2346 break;
2347 }
2348 }
2349 }
2350
2351 if (has_pcps)
2352 cpumask_set_cpu(cpu, &cpus_with_pcps);
2353 else
2354 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2355 }
2356 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2357 zone, 1);
2358 }
2359
2360 #ifdef CONFIG_HIBERNATION
2361
2362 void mark_free_pages(struct zone *zone)
2363 {
2364 unsigned long pfn, max_zone_pfn;
2365 unsigned long flags;
2366 unsigned int order, t;
2367 struct page *page;
2368
2369 if (zone_is_empty(zone))
2370 return;
2371
2372 spin_lock_irqsave(&zone->lock, flags);
2373
2374 max_zone_pfn = zone_end_pfn(zone);
2375 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2376 if (pfn_valid(pfn)) {
2377 page = pfn_to_page(pfn);
2378
2379 if (page_zone(page) != zone)
2380 continue;
2381
2382 if (!swsusp_page_is_forbidden(page))
2383 swsusp_unset_page_free(page);
2384 }
2385
2386 for_each_migratetype_order(order, t) {
2387 list_for_each_entry(page,
2388 &zone->free_area[order].free_list[t], lru) {
2389 unsigned long i;
2390
2391 pfn = page_to_pfn(page);
2392 for (i = 0; i < (1UL << order); i++)
2393 swsusp_set_page_free(pfn_to_page(pfn + i));
2394 }
2395 }
2396 spin_unlock_irqrestore(&zone->lock, flags);
2397 }
2398 #endif /* CONFIG_PM */
2399
2400 /*
2401 * Free a 0-order page
2402 * cold == true ? free a cold page : free a hot page
2403 */
2404 void free_hot_cold_page(struct page *page, bool cold)
2405 {
2406 struct zone *zone = page_zone(page);
2407 struct per_cpu_pages *pcp;
2408 unsigned long flags;
2409 unsigned long pfn = page_to_pfn(page);
2410 int migratetype;
2411
2412 if (!free_pcp_prepare(page))
2413 return;
2414
2415 migratetype = get_pfnblock_migratetype(page, pfn);
2416 set_pcppage_migratetype(page, migratetype);
2417 local_irq_save(flags);
2418 __count_vm_event(PGFREE);
2419
2420 /*
2421 * We only track unmovable, reclaimable and movable on pcp lists.
2422 * Free ISOLATE pages back to the allocator because they are being
2423 * offlined but treat RESERVE as movable pages so we can get those
2424 * areas back if necessary. Otherwise, we may have to free
2425 * excessively into the page allocator
2426 */
2427 if (migratetype >= MIGRATE_PCPTYPES) {
2428 if (unlikely(is_migrate_isolate(migratetype))) {
2429 free_one_page(zone, page, pfn, 0, migratetype);
2430 goto out;
2431 }
2432 migratetype = MIGRATE_MOVABLE;
2433 }
2434
2435 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2436 if (!cold)
2437 list_add(&page->lru, &pcp->lists[migratetype]);
2438 else
2439 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2440 pcp->count++;
2441 if (pcp->count >= pcp->high) {
2442 unsigned long batch = READ_ONCE(pcp->batch);
2443 free_pcppages_bulk(zone, batch, pcp);
2444 pcp->count -= batch;
2445 }
2446
2447 out:
2448 local_irq_restore(flags);
2449 }
2450
2451 /*
2452 * Free a list of 0-order pages
2453 */
2454 void free_hot_cold_page_list(struct list_head *list, bool cold)
2455 {
2456 struct page *page, *next;
2457
2458 list_for_each_entry_safe(page, next, list, lru) {
2459 trace_mm_page_free_batched(page, cold);
2460 free_hot_cold_page(page, cold);
2461 }
2462 }
2463
2464 /*
2465 * split_page takes a non-compound higher-order page, and splits it into
2466 * n (1<<order) sub-pages: page[0..n]
2467 * Each sub-page must be freed individually.
2468 *
2469 * Note: this is probably too low level an operation for use in drivers.
2470 * Please consult with lkml before using this in your driver.
2471 */
2472 void split_page(struct page *page, unsigned int order)
2473 {
2474 int i;
2475
2476 VM_BUG_ON_PAGE(PageCompound(page), page);
2477 VM_BUG_ON_PAGE(!page_count(page), page);
2478
2479 #ifdef CONFIG_KMEMCHECK
2480 /*
2481 * Split shadow pages too, because free(page[0]) would
2482 * otherwise free the whole shadow.
2483 */
2484 if (kmemcheck_page_is_tracked(page))
2485 split_page(virt_to_page(page[0].shadow), order);
2486 #endif
2487
2488 for (i = 1; i < (1 << order); i++)
2489 set_page_refcounted(page + i);
2490 split_page_owner(page, order);
2491 }
2492 EXPORT_SYMBOL_GPL(split_page);
2493
2494 int __isolate_free_page(struct page *page, unsigned int order)
2495 {
2496 unsigned long watermark;
2497 struct zone *zone;
2498 int mt;
2499
2500 BUG_ON(!PageBuddy(page));
2501
2502 zone = page_zone(page);
2503 mt = get_pageblock_migratetype(page);
2504
2505 if (!is_migrate_isolate(mt)) {
2506 /*
2507 * Obey watermarks as if the page was being allocated. We can
2508 * emulate a high-order watermark check with a raised order-0
2509 * watermark, because we already know our high-order page
2510 * exists.
2511 */
2512 watermark = min_wmark_pages(zone) + (1UL << order);
2513 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2514 return 0;
2515
2516 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2517 }
2518
2519 /* Remove page from free list */
2520 list_del(&page->lru);
2521 zone->free_area[order].nr_free--;
2522 rmv_page_order(page);
2523
2524 /*
2525 * Set the pageblock if the isolated page is at least half of a
2526 * pageblock
2527 */
2528 if (order >= pageblock_order - 1) {
2529 struct page *endpage = page + (1 << order) - 1;
2530 for (; page < endpage; page += pageblock_nr_pages) {
2531 int mt = get_pageblock_migratetype(page);
2532 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2533 set_pageblock_migratetype(page,
2534 MIGRATE_MOVABLE);
2535 }
2536 }
2537
2538
2539 return 1UL << order;
2540 }
2541
2542 /*
2543 * Update NUMA hit/miss statistics
2544 *
2545 * Must be called with interrupts disabled.
2546 *
2547 * When __GFP_OTHER_NODE is set assume the node of the preferred
2548 * zone is the local node. This is useful for daemons who allocate
2549 * memory on behalf of other processes.
2550 */
2551 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2552 gfp_t flags)
2553 {
2554 #ifdef CONFIG_NUMA
2555 int local_nid = numa_node_id();
2556 enum zone_stat_item local_stat = NUMA_LOCAL;
2557
2558 if (unlikely(flags & __GFP_OTHER_NODE)) {
2559 local_stat = NUMA_OTHER;
2560 local_nid = preferred_zone->node;
2561 }
2562
2563 if (z->node == local_nid) {
2564 __inc_zone_state(z, NUMA_HIT);
2565 __inc_zone_state(z, local_stat);
2566 } else {
2567 __inc_zone_state(z, NUMA_MISS);
2568 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2569 }
2570 #endif
2571 }
2572
2573 /*
2574 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2575 */
2576 static inline
2577 struct page *buffered_rmqueue(struct zone *preferred_zone,
2578 struct zone *zone, unsigned int order,
2579 gfp_t gfp_flags, unsigned int alloc_flags,
2580 int migratetype)
2581 {
2582 unsigned long flags;
2583 struct page *page;
2584 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2585
2586 if (likely(order == 0)) {
2587 struct per_cpu_pages *pcp;
2588 struct list_head *list;
2589
2590 local_irq_save(flags);
2591 do {
2592 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2593 list = &pcp->lists[migratetype];
2594 if (list_empty(list)) {
2595 pcp->count += rmqueue_bulk(zone, 0,
2596 pcp->batch, list,
2597 migratetype, cold);
2598 if (unlikely(list_empty(list)))
2599 goto failed;
2600 }
2601
2602 if (cold)
2603 page = list_last_entry(list, struct page, lru);
2604 else
2605 page = list_first_entry(list, struct page, lru);
2606
2607 list_del(&page->lru);
2608 pcp->count--;
2609
2610 } while (check_new_pcp(page));
2611 } else {
2612 /*
2613 * We most definitely don't want callers attempting to
2614 * allocate greater than order-1 page units with __GFP_NOFAIL.
2615 */
2616 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2617 spin_lock_irqsave(&zone->lock, flags);
2618
2619 do {
2620 page = NULL;
2621 if (alloc_flags & ALLOC_HARDER) {
2622 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2623 if (page)
2624 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2625 }
2626 if (!page)
2627 page = __rmqueue(zone, order, migratetype);
2628 } while (page && check_new_pages(page, order));
2629 spin_unlock(&zone->lock);
2630 if (!page)
2631 goto failed;
2632 __mod_zone_freepage_state(zone, -(1 << order),
2633 get_pcppage_migratetype(page));
2634 }
2635
2636 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2637 zone_statistics(preferred_zone, zone, gfp_flags);
2638 local_irq_restore(flags);
2639
2640 VM_BUG_ON_PAGE(bad_range(zone, page), page);
2641 return page;
2642
2643 failed:
2644 local_irq_restore(flags);
2645 return NULL;
2646 }
2647
2648 #ifdef CONFIG_FAIL_PAGE_ALLOC
2649
2650 static struct {
2651 struct fault_attr attr;
2652
2653 bool ignore_gfp_highmem;
2654 bool ignore_gfp_reclaim;
2655 u32 min_order;
2656 } fail_page_alloc = {
2657 .attr = FAULT_ATTR_INITIALIZER,
2658 .ignore_gfp_reclaim = true,
2659 .ignore_gfp_highmem = true,
2660 .min_order = 1,
2661 };
2662
2663 static int __init setup_fail_page_alloc(char *str)
2664 {
2665 return setup_fault_attr(&fail_page_alloc.attr, str);
2666 }
2667 __setup("fail_page_alloc=", setup_fail_page_alloc);
2668
2669 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2670 {
2671 if (order < fail_page_alloc.min_order)
2672 return false;
2673 if (gfp_mask & __GFP_NOFAIL)
2674 return false;
2675 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2676 return false;
2677 if (fail_page_alloc.ignore_gfp_reclaim &&
2678 (gfp_mask & __GFP_DIRECT_RECLAIM))
2679 return false;
2680
2681 return should_fail(&fail_page_alloc.attr, 1 << order);
2682 }
2683
2684 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2685
2686 static int __init fail_page_alloc_debugfs(void)
2687 {
2688 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2689 struct dentry *dir;
2690
2691 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2692 &fail_page_alloc.attr);
2693 if (IS_ERR(dir))
2694 return PTR_ERR(dir);
2695
2696 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2697 &fail_page_alloc.ignore_gfp_reclaim))
2698 goto fail;
2699 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2700 &fail_page_alloc.ignore_gfp_highmem))
2701 goto fail;
2702 if (!debugfs_create_u32("min-order", mode, dir,
2703 &fail_page_alloc.min_order))
2704 goto fail;
2705
2706 return 0;
2707 fail:
2708 debugfs_remove_recursive(dir);
2709
2710 return -ENOMEM;
2711 }
2712
2713 late_initcall(fail_page_alloc_debugfs);
2714
2715 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2716
2717 #else /* CONFIG_FAIL_PAGE_ALLOC */
2718
2719 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2720 {
2721 return false;
2722 }
2723
2724 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2725
2726 /*
2727 * Return true if free base pages are above 'mark'. For high-order checks it
2728 * will return true of the order-0 watermark is reached and there is at least
2729 * one free page of a suitable size. Checking now avoids taking the zone lock
2730 * to check in the allocation paths if no pages are free.
2731 */
2732 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2733 int classzone_idx, unsigned int alloc_flags,
2734 long free_pages)
2735 {
2736 long min = mark;
2737 int o;
2738 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2739
2740 /* free_pages may go negative - that's OK */
2741 free_pages -= (1 << order) - 1;
2742
2743 if (alloc_flags & ALLOC_HIGH)
2744 min -= min / 2;
2745
2746 /*
2747 * If the caller does not have rights to ALLOC_HARDER then subtract
2748 * the high-atomic reserves. This will over-estimate the size of the
2749 * atomic reserve but it avoids a search.
2750 */
2751 if (likely(!alloc_harder))
2752 free_pages -= z->nr_reserved_highatomic;
2753 else
2754 min -= min / 4;
2755
2756 #ifdef CONFIG_CMA
2757 /* If allocation can't use CMA areas don't use free CMA pages */
2758 if (!(alloc_flags & ALLOC_CMA))
2759 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2760 #endif
2761
2762 /*
2763 * Check watermarks for an order-0 allocation request. If these
2764 * are not met, then a high-order request also cannot go ahead
2765 * even if a suitable page happened to be free.
2766 */
2767 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2768 return false;
2769
2770 /* If this is an order-0 request then the watermark is fine */
2771 if (!order)
2772 return true;
2773
2774 /* For a high-order request, check at least one suitable page is free */
2775 for (o = order; o < MAX_ORDER; o++) {
2776 struct free_area *area = &z->free_area[o];
2777 int mt;
2778
2779 if (!area->nr_free)
2780 continue;
2781
2782 if (alloc_harder)
2783 return true;
2784
2785 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2786 if (!list_empty(&area->free_list[mt]))
2787 return true;
2788 }
2789
2790 #ifdef CONFIG_CMA
2791 if ((alloc_flags & ALLOC_CMA) &&
2792 !list_empty(&area->free_list[MIGRATE_CMA])) {
2793 return true;
2794 }
2795 #endif
2796 }
2797 return false;
2798 }
2799
2800 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2801 int classzone_idx, unsigned int alloc_flags)
2802 {
2803 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2804 zone_page_state(z, NR_FREE_PAGES));
2805 }
2806
2807 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2808 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2809 {
2810 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2811 long cma_pages = 0;
2812
2813 #ifdef CONFIG_CMA
2814 /* If allocation can't use CMA areas don't use free CMA pages */
2815 if (!(alloc_flags & ALLOC_CMA))
2816 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2817 #endif
2818
2819 /*
2820 * Fast check for order-0 only. If this fails then the reserves
2821 * need to be calculated. There is a corner case where the check
2822 * passes but only the high-order atomic reserve are free. If
2823 * the caller is !atomic then it'll uselessly search the free
2824 * list. That corner case is then slower but it is harmless.
2825 */
2826 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2827 return true;
2828
2829 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2830 free_pages);
2831 }
2832
2833 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2834 unsigned long mark, int classzone_idx)
2835 {
2836 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2837
2838 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2839 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2840
2841 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2842 free_pages);
2843 }
2844
2845 #ifdef CONFIG_NUMA
2846 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2847 {
2848 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2849 RECLAIM_DISTANCE;
2850 }
2851 #else /* CONFIG_NUMA */
2852 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2853 {
2854 return true;
2855 }
2856 #endif /* CONFIG_NUMA */
2857
2858 /*
2859 * get_page_from_freelist goes through the zonelist trying to allocate
2860 * a page.
2861 */
2862 static struct page *
2863 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2864 const struct alloc_context *ac)
2865 {
2866 struct zoneref *z = ac->preferred_zoneref;
2867 struct zone *zone;
2868 struct pglist_data *last_pgdat_dirty_limit = NULL;
2869
2870 /*
2871 * Scan zonelist, looking for a zone with enough free.
2872 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2873 */
2874 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2875 ac->nodemask) {
2876 struct page *page;
2877 unsigned long mark;
2878
2879 if (cpusets_enabled() &&
2880 (alloc_flags & ALLOC_CPUSET) &&
2881 !__cpuset_zone_allowed(zone, gfp_mask))
2882 continue;
2883 /*
2884 * When allocating a page cache page for writing, we
2885 * want to get it from a node that is within its dirty
2886 * limit, such that no single node holds more than its
2887 * proportional share of globally allowed dirty pages.
2888 * The dirty limits take into account the node's
2889 * lowmem reserves and high watermark so that kswapd
2890 * should be able to balance it without having to
2891 * write pages from its LRU list.
2892 *
2893 * XXX: For now, allow allocations to potentially
2894 * exceed the per-node dirty limit in the slowpath
2895 * (spread_dirty_pages unset) before going into reclaim,
2896 * which is important when on a NUMA setup the allowed
2897 * nodes are together not big enough to reach the
2898 * global limit. The proper fix for these situations
2899 * will require awareness of nodes in the
2900 * dirty-throttling and the flusher threads.
2901 */
2902 if (ac->spread_dirty_pages) {
2903 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2904 continue;
2905
2906 if (!node_dirty_ok(zone->zone_pgdat)) {
2907 last_pgdat_dirty_limit = zone->zone_pgdat;
2908 continue;
2909 }
2910 }
2911
2912 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2913 if (!zone_watermark_fast(zone, order, mark,
2914 ac_classzone_idx(ac), alloc_flags)) {
2915 int ret;
2916
2917 /* Checked here to keep the fast path fast */
2918 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2919 if (alloc_flags & ALLOC_NO_WATERMARKS)
2920 goto try_this_zone;
2921
2922 if (node_reclaim_mode == 0 ||
2923 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2924 continue;
2925
2926 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2927 switch (ret) {
2928 case NODE_RECLAIM_NOSCAN:
2929 /* did not scan */
2930 continue;
2931 case NODE_RECLAIM_FULL:
2932 /* scanned but unreclaimable */
2933 continue;
2934 default:
2935 /* did we reclaim enough */
2936 if (zone_watermark_ok(zone, order, mark,
2937 ac_classzone_idx(ac), alloc_flags))
2938 goto try_this_zone;
2939
2940 continue;
2941 }
2942 }
2943
2944 try_this_zone:
2945 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2946 gfp_mask, alloc_flags, ac->migratetype);
2947 if (page) {
2948 prep_new_page(page, order, gfp_mask, alloc_flags);
2949
2950 /*
2951 * If this is a high-order atomic allocation then check
2952 * if the pageblock should be reserved for the future
2953 */
2954 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2955 reserve_highatomic_pageblock(page, zone, order);
2956
2957 return page;
2958 }
2959 }
2960
2961 return NULL;
2962 }
2963
2964 /*
2965 * Large machines with many possible nodes should not always dump per-node
2966 * meminfo in irq context.
2967 */
2968 static inline bool should_suppress_show_mem(void)
2969 {
2970 bool ret = false;
2971
2972 #if NODES_SHIFT > 8
2973 ret = in_interrupt();
2974 #endif
2975 return ret;
2976 }
2977
2978 static DEFINE_RATELIMIT_STATE(nopage_rs,
2979 DEFAULT_RATELIMIT_INTERVAL,
2980 DEFAULT_RATELIMIT_BURST);
2981
2982 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2983 {
2984 unsigned int filter = SHOW_MEM_FILTER_NODES;
2985
2986 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2987 debug_guardpage_minorder() > 0)
2988 return;
2989
2990 /*
2991 * This documents exceptions given to allocations in certain
2992 * contexts that are allowed to allocate outside current's set
2993 * of allowed nodes.
2994 */
2995 if (!(gfp_mask & __GFP_NOMEMALLOC))
2996 if (test_thread_flag(TIF_MEMDIE) ||
2997 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2998 filter &= ~SHOW_MEM_FILTER_NODES;
2999 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3000 filter &= ~SHOW_MEM_FILTER_NODES;
3001
3002 if (fmt) {
3003 struct va_format vaf;
3004 va_list args;
3005
3006 va_start(args, fmt);
3007
3008 vaf.fmt = fmt;
3009 vaf.va = &args;
3010
3011 pr_warn("%pV", &vaf);
3012
3013 va_end(args);
3014 }
3015
3016 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
3017 current->comm, order, gfp_mask, &gfp_mask);
3018 dump_stack();
3019 if (!should_suppress_show_mem())
3020 show_mem(filter);
3021 }
3022
3023 static inline struct page *
3024 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3025 const struct alloc_context *ac, unsigned long *did_some_progress)
3026 {
3027 struct oom_control oc = {
3028 .zonelist = ac->zonelist,
3029 .nodemask = ac->nodemask,
3030 .memcg = NULL,
3031 .gfp_mask = gfp_mask,
3032 .order = order,
3033 };
3034 struct page *page;
3035
3036 *did_some_progress = 0;
3037
3038 /*
3039 * Acquire the oom lock. If that fails, somebody else is
3040 * making progress for us.
3041 */
3042 if (!mutex_trylock(&oom_lock)) {
3043 *did_some_progress = 1;
3044 schedule_timeout_uninterruptible(1);
3045 return NULL;
3046 }
3047
3048 /*
3049 * Go through the zonelist yet one more time, keep very high watermark
3050 * here, this is only to catch a parallel oom killing, we must fail if
3051 * we're still under heavy pressure.
3052 */
3053 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3054 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3055 if (page)
3056 goto out;
3057
3058 if (!(gfp_mask & __GFP_NOFAIL)) {
3059 /* Coredumps can quickly deplete all memory reserves */
3060 if (current->flags & PF_DUMPCORE)
3061 goto out;
3062 /* The OOM killer will not help higher order allocs */
3063 if (order > PAGE_ALLOC_COSTLY_ORDER)
3064 goto out;
3065 /* The OOM killer does not needlessly kill tasks for lowmem */
3066 if (ac->high_zoneidx < ZONE_NORMAL)
3067 goto out;
3068 if (pm_suspended_storage())
3069 goto out;
3070 /*
3071 * XXX: GFP_NOFS allocations should rather fail than rely on
3072 * other request to make a forward progress.
3073 * We are in an unfortunate situation where out_of_memory cannot
3074 * do much for this context but let's try it to at least get
3075 * access to memory reserved if the current task is killed (see
3076 * out_of_memory). Once filesystems are ready to handle allocation
3077 * failures more gracefully we should just bail out here.
3078 */
3079
3080 /* The OOM killer may not free memory on a specific node */
3081 if (gfp_mask & __GFP_THISNODE)
3082 goto out;
3083 }
3084 /* Exhausted what can be done so it's blamo time */
3085 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3086 *did_some_progress = 1;
3087
3088 if (gfp_mask & __GFP_NOFAIL) {
3089 page = get_page_from_freelist(gfp_mask, order,
3090 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3091 /*
3092 * fallback to ignore cpuset restriction if our nodes
3093 * are depleted
3094 */
3095 if (!page)
3096 page = get_page_from_freelist(gfp_mask, order,
3097 ALLOC_NO_WATERMARKS, ac);
3098 }
3099 }
3100 out:
3101 mutex_unlock(&oom_lock);
3102 return page;
3103 }
3104
3105 /*
3106 * Maximum number of compaction retries wit a progress before OOM
3107 * killer is consider as the only way to move forward.
3108 */
3109 #define MAX_COMPACT_RETRIES 16
3110
3111 #ifdef CONFIG_COMPACTION
3112 /* Try memory compaction for high-order allocations before reclaim */
3113 static struct page *
3114 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3115 unsigned int alloc_flags, const struct alloc_context *ac,
3116 enum compact_priority prio, enum compact_result *compact_result)
3117 {
3118 struct page *page;
3119
3120 if (!order)
3121 return NULL;
3122
3123 current->flags |= PF_MEMALLOC;
3124 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3125 prio);
3126 current->flags &= ~PF_MEMALLOC;
3127
3128 if (*compact_result <= COMPACT_INACTIVE)
3129 return NULL;
3130
3131 /*
3132 * At least in one zone compaction wasn't deferred or skipped, so let's
3133 * count a compaction stall
3134 */
3135 count_vm_event(COMPACTSTALL);
3136
3137 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3138
3139 if (page) {
3140 struct zone *zone = page_zone(page);
3141
3142 zone->compact_blockskip_flush = false;
3143 compaction_defer_reset(zone, order, true);
3144 count_vm_event(COMPACTSUCCESS);
3145 return page;
3146 }
3147
3148 /*
3149 * It's bad if compaction run occurs and fails. The most likely reason
3150 * is that pages exist, but not enough to satisfy watermarks.
3151 */
3152 count_vm_event(COMPACTFAIL);
3153
3154 cond_resched();
3155
3156 return NULL;
3157 }
3158
3159 #else
3160 static inline struct page *
3161 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3162 unsigned int alloc_flags, const struct alloc_context *ac,
3163 enum compact_priority prio, enum compact_result *compact_result)
3164 {
3165 *compact_result = COMPACT_SKIPPED;
3166 return NULL;
3167 }
3168
3169 #endif /* CONFIG_COMPACTION */
3170
3171 static inline bool
3172 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3173 enum compact_result compact_result,
3174 enum compact_priority *compact_priority,
3175 int compaction_retries)
3176 {
3177 struct zone *zone;
3178 struct zoneref *z;
3179
3180 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3181 return false;
3182
3183 /*
3184 * There are setups with compaction disabled which would prefer to loop
3185 * inside the allocator rather than hit the oom killer prematurely.
3186 * Let's give them a good hope and keep retrying while the order-0
3187 * watermarks are OK.
3188 */
3189 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3190 ac->nodemask) {
3191 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3192 ac_classzone_idx(ac), alloc_flags))
3193 return true;
3194 }
3195 return false;
3196 }
3197
3198 /* Perform direct synchronous page reclaim */
3199 static int
3200 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3201 const struct alloc_context *ac)
3202 {
3203 struct reclaim_state reclaim_state;
3204 int progress;
3205
3206 cond_resched();
3207
3208 /* We now go into synchronous reclaim */
3209 cpuset_memory_pressure_bump();
3210 current->flags |= PF_MEMALLOC;
3211 lockdep_set_current_reclaim_state(gfp_mask);
3212 reclaim_state.reclaimed_slab = 0;
3213 current->reclaim_state = &reclaim_state;
3214
3215 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3216 ac->nodemask);
3217
3218 current->reclaim_state = NULL;
3219 lockdep_clear_current_reclaim_state();
3220 current->flags &= ~PF_MEMALLOC;
3221
3222 cond_resched();
3223
3224 return progress;
3225 }
3226
3227 /* The really slow allocator path where we enter direct reclaim */
3228 static inline struct page *
3229 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3230 unsigned int alloc_flags, const struct alloc_context *ac,
3231 unsigned long *did_some_progress)
3232 {
3233 struct page *page = NULL;
3234 bool drained = false;
3235
3236 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3237 if (unlikely(!(*did_some_progress)))
3238 return NULL;
3239
3240 retry:
3241 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3242
3243 /*
3244 * If an allocation failed after direct reclaim, it could be because
3245 * pages are pinned on the per-cpu lists or in high alloc reserves.
3246 * Shrink them them and try again
3247 */
3248 if (!page && !drained) {
3249 unreserve_highatomic_pageblock(ac);
3250 drain_all_pages(NULL);
3251 drained = true;
3252 goto retry;
3253 }
3254
3255 return page;
3256 }
3257
3258 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3259 {
3260 struct zoneref *z;
3261 struct zone *zone;
3262 pg_data_t *last_pgdat = NULL;
3263
3264 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3265 ac->high_zoneidx, ac->nodemask) {
3266 if (last_pgdat != zone->zone_pgdat)
3267 wakeup_kswapd(zone, order, ac->high_zoneidx);
3268 last_pgdat = zone->zone_pgdat;
3269 }
3270 }
3271
3272 static inline unsigned int
3273 gfp_to_alloc_flags(gfp_t gfp_mask)
3274 {
3275 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3276
3277 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3278 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3279
3280 /*
3281 * The caller may dip into page reserves a bit more if the caller
3282 * cannot run direct reclaim, or if the caller has realtime scheduling
3283 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3284 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3285 */
3286 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3287
3288 if (gfp_mask & __GFP_ATOMIC) {
3289 /*
3290 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3291 * if it can't schedule.
3292 */
3293 if (!(gfp_mask & __GFP_NOMEMALLOC))
3294 alloc_flags |= ALLOC_HARDER;
3295 /*
3296 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3297 * comment for __cpuset_node_allowed().
3298 */
3299 alloc_flags &= ~ALLOC_CPUSET;
3300 } else if (unlikely(rt_task(current)) && !in_interrupt())
3301 alloc_flags |= ALLOC_HARDER;
3302
3303 #ifdef CONFIG_CMA
3304 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3305 alloc_flags |= ALLOC_CMA;
3306 #endif
3307 return alloc_flags;
3308 }
3309
3310 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3311 {
3312 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3313 return false;
3314
3315 if (gfp_mask & __GFP_MEMALLOC)
3316 return true;
3317 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3318 return true;
3319 if (!in_interrupt() &&
3320 ((current->flags & PF_MEMALLOC) ||
3321 unlikely(test_thread_flag(TIF_MEMDIE))))
3322 return true;
3323
3324 return false;
3325 }
3326
3327 /*
3328 * Maximum number of reclaim retries without any progress before OOM killer
3329 * is consider as the only way to move forward.
3330 */
3331 #define MAX_RECLAIM_RETRIES 16
3332
3333 /*
3334 * Checks whether it makes sense to retry the reclaim to make a forward progress
3335 * for the given allocation request.
3336 * The reclaim feedback represented by did_some_progress (any progress during
3337 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3338 * any progress in a row) is considered as well as the reclaimable pages on the
3339 * applicable zone list (with a backoff mechanism which is a function of
3340 * no_progress_loops).
3341 *
3342 * Returns true if a retry is viable or false to enter the oom path.
3343 */
3344 static inline bool
3345 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3346 struct alloc_context *ac, int alloc_flags,
3347 bool did_some_progress, int no_progress_loops)
3348 {
3349 struct zone *zone;
3350 struct zoneref *z;
3351
3352 /*
3353 * Make sure we converge to OOM if we cannot make any progress
3354 * several times in the row.
3355 */
3356 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3357 return false;
3358
3359 /*
3360 * Keep reclaiming pages while there is a chance this will lead
3361 * somewhere. If none of the target zones can satisfy our allocation
3362 * request even if all reclaimable pages are considered then we are
3363 * screwed and have to go OOM.
3364 */
3365 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3366 ac->nodemask) {
3367 unsigned long available;
3368 unsigned long reclaimable;
3369
3370 available = reclaimable = zone_reclaimable_pages(zone);
3371 available -= DIV_ROUND_UP(no_progress_loops * available,
3372 MAX_RECLAIM_RETRIES);
3373 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3374
3375 /*
3376 * Would the allocation succeed if we reclaimed the whole
3377 * available?
3378 */
3379 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3380 ac_classzone_idx(ac), alloc_flags, available)) {
3381 /*
3382 * If we didn't make any progress and have a lot of
3383 * dirty + writeback pages then we should wait for
3384 * an IO to complete to slow down the reclaim and
3385 * prevent from pre mature OOM
3386 */
3387 if (!did_some_progress) {
3388 unsigned long write_pending;
3389
3390 write_pending = zone_page_state_snapshot(zone,
3391 NR_ZONE_WRITE_PENDING);
3392
3393 if (2 * write_pending > reclaimable) {
3394 congestion_wait(BLK_RW_ASYNC, HZ/10);
3395 return true;
3396 }
3397 }
3398
3399 /*
3400 * Memory allocation/reclaim might be called from a WQ
3401 * context and the current implementation of the WQ
3402 * concurrency control doesn't recognize that
3403 * a particular WQ is congested if the worker thread is
3404 * looping without ever sleeping. Therefore we have to
3405 * do a short sleep here rather than calling
3406 * cond_resched().
3407 */
3408 if (current->flags & PF_WQ_WORKER)
3409 schedule_timeout_uninterruptible(1);
3410 else
3411 cond_resched();
3412
3413 return true;
3414 }
3415 }
3416
3417 return false;
3418 }
3419
3420 static inline struct page *
3421 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3422 struct alloc_context *ac)
3423 {
3424 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3425 struct page *page = NULL;
3426 unsigned int alloc_flags;
3427 unsigned long did_some_progress;
3428 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3429 enum compact_result compact_result;
3430 int compaction_retries = 0;
3431 int no_progress_loops = 0;
3432
3433 /*
3434 * In the slowpath, we sanity check order to avoid ever trying to
3435 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3436 * be using allocators in order of preference for an area that is
3437 * too large.
3438 */
3439 if (order >= MAX_ORDER) {
3440 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3441 return NULL;
3442 }
3443
3444 /*
3445 * We also sanity check to catch abuse of atomic reserves being used by
3446 * callers that are not in atomic context.
3447 */
3448 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3449 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3450 gfp_mask &= ~__GFP_ATOMIC;
3451
3452 /*
3453 * The fast path uses conservative alloc_flags to succeed only until
3454 * kswapd needs to be woken up, and to avoid the cost of setting up
3455 * alloc_flags precisely. So we do that now.
3456 */
3457 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3458
3459 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3460 wake_all_kswapds(order, ac);
3461
3462 /*
3463 * The adjusted alloc_flags might result in immediate success, so try
3464 * that first
3465 */
3466 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3467 if (page)
3468 goto got_pg;
3469
3470 /*
3471 * For costly allocations, try direct compaction first, as it's likely
3472 * that we have enough base pages and don't need to reclaim. Don't try
3473 * that for allocations that are allowed to ignore watermarks, as the
3474 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3475 */
3476 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3477 !gfp_pfmemalloc_allowed(gfp_mask)) {
3478 page = __alloc_pages_direct_compact(gfp_mask, order,
3479 alloc_flags, ac,
3480 INIT_COMPACT_PRIORITY,
3481 &compact_result);
3482 if (page)
3483 goto got_pg;
3484
3485 /*
3486 * Checks for costly allocations with __GFP_NORETRY, which
3487 * includes THP page fault allocations
3488 */
3489 if (gfp_mask & __GFP_NORETRY) {
3490 /*
3491 * If compaction is deferred for high-order allocations,
3492 * it is because sync compaction recently failed. If
3493 * this is the case and the caller requested a THP
3494 * allocation, we do not want to heavily disrupt the
3495 * system, so we fail the allocation instead of entering
3496 * direct reclaim.
3497 */
3498 if (compact_result == COMPACT_DEFERRED)
3499 goto nopage;
3500
3501 /*
3502 * Looks like reclaim/compaction is worth trying, but
3503 * sync compaction could be very expensive, so keep
3504 * using async compaction.
3505 */
3506 compact_priority = INIT_COMPACT_PRIORITY;
3507 }
3508 }
3509
3510 retry:
3511 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3512 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3513 wake_all_kswapds(order, ac);
3514
3515 if (gfp_pfmemalloc_allowed(gfp_mask))
3516 alloc_flags = ALLOC_NO_WATERMARKS;
3517
3518 /*
3519 * Reset the zonelist iterators if memory policies can be ignored.
3520 * These allocations are high priority and system rather than user
3521 * orientated.
3522 */
3523 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3524 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3525 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3526 ac->high_zoneidx, ac->nodemask);
3527 }
3528
3529 /* Attempt with potentially adjusted zonelist and alloc_flags */
3530 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3531 if (page)
3532 goto got_pg;
3533
3534 /* Caller is not willing to reclaim, we can't balance anything */
3535 if (!can_direct_reclaim) {
3536 /*
3537 * All existing users of the __GFP_NOFAIL are blockable, so warn
3538 * of any new users that actually allow this type of allocation
3539 * to fail.
3540 */
3541 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3542 goto nopage;
3543 }
3544
3545 /* Avoid recursion of direct reclaim */
3546 if (current->flags & PF_MEMALLOC) {
3547 /*
3548 * __GFP_NOFAIL request from this context is rather bizarre
3549 * because we cannot reclaim anything and only can loop waiting
3550 * for somebody to do a work for us.
3551 */
3552 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3553 cond_resched();
3554 goto retry;
3555 }
3556 goto nopage;
3557 }
3558
3559 /* Avoid allocations with no watermarks from looping endlessly */
3560 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3561 goto nopage;
3562
3563
3564 /* Try direct reclaim and then allocating */
3565 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3566 &did_some_progress);
3567 if (page)
3568 goto got_pg;
3569
3570 /* Try direct compaction and then allocating */
3571 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3572 compact_priority, &compact_result);
3573 if (page)
3574 goto got_pg;
3575
3576 if (order && compaction_made_progress(compact_result))
3577 compaction_retries++;
3578
3579 /* Do not loop if specifically requested */
3580 if (gfp_mask & __GFP_NORETRY)
3581 goto nopage;
3582
3583 /*
3584 * Do not retry costly high order allocations unless they are
3585 * __GFP_REPEAT
3586 */
3587 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3588 goto nopage;
3589
3590 /*
3591 * Costly allocations might have made a progress but this doesn't mean
3592 * their order will become available due to high fragmentation so
3593 * always increment the no progress counter for them
3594 */
3595 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3596 no_progress_loops = 0;
3597 else
3598 no_progress_loops++;
3599
3600 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3601 did_some_progress > 0, no_progress_loops))
3602 goto retry;
3603
3604 /*
3605 * It doesn't make any sense to retry for the compaction if the order-0
3606 * reclaim is not able to make any progress because the current
3607 * implementation of the compaction depends on the sufficient amount
3608 * of free memory (see __compaction_suitable)
3609 */
3610 if (did_some_progress > 0 &&
3611 should_compact_retry(ac, order, alloc_flags,
3612 compact_result, &compact_priority,
3613 compaction_retries))
3614 goto retry;
3615
3616 /* Reclaim has failed us, start killing things */
3617 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3618 if (page)
3619 goto got_pg;
3620
3621 /* Retry as long as the OOM killer is making progress */
3622 if (did_some_progress) {
3623 no_progress_loops = 0;
3624 goto retry;
3625 }
3626
3627 nopage:
3628 warn_alloc_failed(gfp_mask, order, NULL);
3629 got_pg:
3630 return page;
3631 }
3632
3633 /*
3634 * This is the 'heart' of the zoned buddy allocator.
3635 */
3636 struct page *
3637 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3638 struct zonelist *zonelist, nodemask_t *nodemask)
3639 {
3640 struct page *page;
3641 unsigned int cpuset_mems_cookie;
3642 unsigned int alloc_flags = ALLOC_WMARK_LOW;
3643 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3644 struct alloc_context ac = {
3645 .high_zoneidx = gfp_zone(gfp_mask),
3646 .zonelist = zonelist,
3647 .nodemask = nodemask,
3648 .migratetype = gfpflags_to_migratetype(gfp_mask),
3649 };
3650
3651 if (cpusets_enabled()) {
3652 alloc_mask |= __GFP_HARDWALL;
3653 alloc_flags |= ALLOC_CPUSET;
3654 if (!ac.nodemask)
3655 ac.nodemask = &cpuset_current_mems_allowed;
3656 }
3657
3658 gfp_mask &= gfp_allowed_mask;
3659
3660 lockdep_trace_alloc(gfp_mask);
3661
3662 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3663
3664 if (should_fail_alloc_page(gfp_mask, order))
3665 return NULL;
3666
3667 /*
3668 * Check the zones suitable for the gfp_mask contain at least one
3669 * valid zone. It's possible to have an empty zonelist as a result
3670 * of __GFP_THISNODE and a memoryless node
3671 */
3672 if (unlikely(!zonelist->_zonerefs->zone))
3673 return NULL;
3674
3675 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3676 alloc_flags |= ALLOC_CMA;
3677
3678 retry_cpuset:
3679 cpuset_mems_cookie = read_mems_allowed_begin();
3680
3681 /* Dirty zone balancing only done in the fast path */
3682 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3683
3684 /*
3685 * The preferred zone is used for statistics but crucially it is
3686 * also used as the starting point for the zonelist iterator. It
3687 * may get reset for allocations that ignore memory policies.
3688 */
3689 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3690 ac.high_zoneidx, ac.nodemask);
3691 if (!ac.preferred_zoneref) {
3692 page = NULL;
3693 goto no_zone;
3694 }
3695
3696 /* First allocation attempt */
3697 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3698 if (likely(page))
3699 goto out;
3700
3701 /*
3702 * Runtime PM, block IO and its error handling path can deadlock
3703 * because I/O on the device might not complete.
3704 */
3705 alloc_mask = memalloc_noio_flags(gfp_mask);
3706 ac.spread_dirty_pages = false;
3707
3708 /*
3709 * Restore the original nodemask if it was potentially replaced with
3710 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3711 */
3712 if (cpusets_enabled())
3713 ac.nodemask = nodemask;
3714 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3715
3716 no_zone:
3717 /*
3718 * When updating a task's mems_allowed, it is possible to race with
3719 * parallel threads in such a way that an allocation can fail while
3720 * the mask is being updated. If a page allocation is about to fail,
3721 * check if the cpuset changed during allocation and if so, retry.
3722 */
3723 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3724 alloc_mask = gfp_mask;
3725 goto retry_cpuset;
3726 }
3727
3728 out:
3729 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3730 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3731 __free_pages(page, order);
3732 page = NULL;
3733 }
3734
3735 if (kmemcheck_enabled && page)
3736 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3737
3738 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3739
3740 return page;
3741 }
3742 EXPORT_SYMBOL(__alloc_pages_nodemask);
3743
3744 /*
3745 * Common helper functions.
3746 */
3747 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3748 {
3749 struct page *page;
3750
3751 /*
3752 * __get_free_pages() returns a 32-bit address, which cannot represent
3753 * a highmem page
3754 */
3755 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3756
3757 page = alloc_pages(gfp_mask, order);
3758 if (!page)
3759 return 0;
3760 return (unsigned long) page_address(page);
3761 }
3762 EXPORT_SYMBOL(__get_free_pages);
3763
3764 unsigned long get_zeroed_page(gfp_t gfp_mask)
3765 {
3766 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3767 }
3768 EXPORT_SYMBOL(get_zeroed_page);
3769
3770 void __free_pages(struct page *page, unsigned int order)
3771 {
3772 if (put_page_testzero(page)) {
3773 if (order == 0)
3774 free_hot_cold_page(page, false);
3775 else
3776 __free_pages_ok(page, order);
3777 }
3778 }
3779
3780 EXPORT_SYMBOL(__free_pages);
3781
3782 void free_pages(unsigned long addr, unsigned int order)
3783 {
3784 if (addr != 0) {
3785 VM_BUG_ON(!virt_addr_valid((void *)addr));
3786 __free_pages(virt_to_page((void *)addr), order);
3787 }
3788 }
3789
3790 EXPORT_SYMBOL(free_pages);
3791
3792 /*
3793 * Page Fragment:
3794 * An arbitrary-length arbitrary-offset area of memory which resides
3795 * within a 0 or higher order page. Multiple fragments within that page
3796 * are individually refcounted, in the page's reference counter.
3797 *
3798 * The page_frag functions below provide a simple allocation framework for
3799 * page fragments. This is used by the network stack and network device
3800 * drivers to provide a backing region of memory for use as either an
3801 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3802 */
3803 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3804 gfp_t gfp_mask)
3805 {
3806 struct page *page = NULL;
3807 gfp_t gfp = gfp_mask;
3808
3809 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3810 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3811 __GFP_NOMEMALLOC;
3812 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3813 PAGE_FRAG_CACHE_MAX_ORDER);
3814 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3815 #endif
3816 if (unlikely(!page))
3817 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3818
3819 nc->va = page ? page_address(page) : NULL;
3820
3821 return page;
3822 }
3823
3824 void *__alloc_page_frag(struct page_frag_cache *nc,
3825 unsigned int fragsz, gfp_t gfp_mask)
3826 {
3827 unsigned int size = PAGE_SIZE;
3828 struct page *page;
3829 int offset;
3830
3831 if (unlikely(!nc->va)) {
3832 refill:
3833 page = __page_frag_refill(nc, gfp_mask);
3834 if (!page)
3835 return NULL;
3836
3837 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3838 /* if size can vary use size else just use PAGE_SIZE */
3839 size = nc->size;
3840 #endif
3841 /* Even if we own the page, we do not use atomic_set().
3842 * This would break get_page_unless_zero() users.
3843 */
3844 page_ref_add(page, size - 1);
3845
3846 /* reset page count bias and offset to start of new frag */
3847 nc->pfmemalloc = page_is_pfmemalloc(page);
3848 nc->pagecnt_bias = size;
3849 nc->offset = size;
3850 }
3851
3852 offset = nc->offset - fragsz;
3853 if (unlikely(offset < 0)) {
3854 page = virt_to_page(nc->va);
3855
3856 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3857 goto refill;
3858
3859 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3860 /* if size can vary use size else just use PAGE_SIZE */
3861 size = nc->size;
3862 #endif
3863 /* OK, page count is 0, we can safely set it */
3864 set_page_count(page, size);
3865
3866 /* reset page count bias and offset to start of new frag */
3867 nc->pagecnt_bias = size;
3868 offset = size - fragsz;
3869 }
3870
3871 nc->pagecnt_bias--;
3872 nc->offset = offset;
3873
3874 return nc->va + offset;
3875 }
3876 EXPORT_SYMBOL(__alloc_page_frag);
3877
3878 /*
3879 * Frees a page fragment allocated out of either a compound or order 0 page.
3880 */
3881 void __free_page_frag(void *addr)
3882 {
3883 struct page *page = virt_to_head_page(addr);
3884
3885 if (unlikely(put_page_testzero(page)))
3886 __free_pages_ok(page, compound_order(page));
3887 }
3888 EXPORT_SYMBOL(__free_page_frag);
3889
3890 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3891 size_t size)
3892 {
3893 if (addr) {
3894 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3895 unsigned long used = addr + PAGE_ALIGN(size);
3896
3897 split_page(virt_to_page((void *)addr), order);
3898 while (used < alloc_end) {
3899 free_page(used);
3900 used += PAGE_SIZE;
3901 }
3902 }
3903 return (void *)addr;
3904 }
3905
3906 /**
3907 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3908 * @size: the number of bytes to allocate
3909 * @gfp_mask: GFP flags for the allocation
3910 *
3911 * This function is similar to alloc_pages(), except that it allocates the
3912 * minimum number of pages to satisfy the request. alloc_pages() can only
3913 * allocate memory in power-of-two pages.
3914 *
3915 * This function is also limited by MAX_ORDER.
3916 *
3917 * Memory allocated by this function must be released by free_pages_exact().
3918 */
3919 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3920 {
3921 unsigned int order = get_order(size);
3922 unsigned long addr;
3923
3924 addr = __get_free_pages(gfp_mask, order);
3925 return make_alloc_exact(addr, order, size);
3926 }
3927 EXPORT_SYMBOL(alloc_pages_exact);
3928
3929 /**
3930 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3931 * pages on a node.
3932 * @nid: the preferred node ID where memory should be allocated
3933 * @size: the number of bytes to allocate
3934 * @gfp_mask: GFP flags for the allocation
3935 *
3936 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3937 * back.
3938 */
3939 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3940 {
3941 unsigned int order = get_order(size);
3942 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3943 if (!p)
3944 return NULL;
3945 return make_alloc_exact((unsigned long)page_address(p), order, size);
3946 }
3947
3948 /**
3949 * free_pages_exact - release memory allocated via alloc_pages_exact()
3950 * @virt: the value returned by alloc_pages_exact.
3951 * @size: size of allocation, same value as passed to alloc_pages_exact().
3952 *
3953 * Release the memory allocated by a previous call to alloc_pages_exact.
3954 */
3955 void free_pages_exact(void *virt, size_t size)
3956 {
3957 unsigned long addr = (unsigned long)virt;
3958 unsigned long end = addr + PAGE_ALIGN(size);
3959
3960 while (addr < end) {
3961 free_page(addr);
3962 addr += PAGE_SIZE;
3963 }
3964 }
3965 EXPORT_SYMBOL(free_pages_exact);
3966
3967 /**
3968 * nr_free_zone_pages - count number of pages beyond high watermark
3969 * @offset: The zone index of the highest zone
3970 *
3971 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3972 * high watermark within all zones at or below a given zone index. For each
3973 * zone, the number of pages is calculated as:
3974 * managed_pages - high_pages
3975 */
3976 static unsigned long nr_free_zone_pages(int offset)
3977 {
3978 struct zoneref *z;
3979 struct zone *zone;
3980
3981 /* Just pick one node, since fallback list is circular */
3982 unsigned long sum = 0;
3983
3984 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3985
3986 for_each_zone_zonelist(zone, z, zonelist, offset) {
3987 unsigned long size = zone->managed_pages;
3988 unsigned long high = high_wmark_pages(zone);
3989 if (size > high)
3990 sum += size - high;
3991 }
3992
3993 return sum;
3994 }
3995
3996 /**
3997 * nr_free_buffer_pages - count number of pages beyond high watermark
3998 *
3999 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4000 * watermark within ZONE_DMA and ZONE_NORMAL.
4001 */
4002 unsigned long nr_free_buffer_pages(void)
4003 {
4004 return nr_free_zone_pages(gfp_zone(GFP_USER));
4005 }
4006 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4007
4008 /**
4009 * nr_free_pagecache_pages - count number of pages beyond high watermark
4010 *
4011 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4012 * high watermark within all zones.
4013 */
4014 unsigned long nr_free_pagecache_pages(void)
4015 {
4016 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4017 }
4018
4019 static inline void show_node(struct zone *zone)
4020 {
4021 if (IS_ENABLED(CONFIG_NUMA))
4022 printk("Node %d ", zone_to_nid(zone));
4023 }
4024
4025 long si_mem_available(void)
4026 {
4027 long available;
4028 unsigned long pagecache;
4029 unsigned long wmark_low = 0;
4030 unsigned long pages[NR_LRU_LISTS];
4031 struct zone *zone;
4032 int lru;
4033
4034 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4035 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4036
4037 for_each_zone(zone)
4038 wmark_low += zone->watermark[WMARK_LOW];
4039
4040 /*
4041 * Estimate the amount of memory available for userspace allocations,
4042 * without causing swapping.
4043 */
4044 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4045
4046 /*
4047 * Not all the page cache can be freed, otherwise the system will
4048 * start swapping. Assume at least half of the page cache, or the
4049 * low watermark worth of cache, needs to stay.
4050 */
4051 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4052 pagecache -= min(pagecache / 2, wmark_low);
4053 available += pagecache;
4054
4055 /*
4056 * Part of the reclaimable slab consists of items that are in use,
4057 * and cannot be freed. Cap this estimate at the low watermark.
4058 */
4059 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4060 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4061
4062 if (available < 0)
4063 available = 0;
4064 return available;
4065 }
4066 EXPORT_SYMBOL_GPL(si_mem_available);
4067
4068 void si_meminfo(struct sysinfo *val)
4069 {
4070 val->totalram = totalram_pages;
4071 val->sharedram = global_node_page_state(NR_SHMEM);
4072 val->freeram = global_page_state(NR_FREE_PAGES);
4073 val->bufferram = nr_blockdev_pages();
4074 val->totalhigh = totalhigh_pages;
4075 val->freehigh = nr_free_highpages();
4076 val->mem_unit = PAGE_SIZE;
4077 }
4078
4079 EXPORT_SYMBOL(si_meminfo);
4080
4081 #ifdef CONFIG_NUMA
4082 void si_meminfo_node(struct sysinfo *val, int nid)
4083 {
4084 int zone_type; /* needs to be signed */
4085 unsigned long managed_pages = 0;
4086 unsigned long managed_highpages = 0;
4087 unsigned long free_highpages = 0;
4088 pg_data_t *pgdat = NODE_DATA(nid);
4089
4090 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4091 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4092 val->totalram = managed_pages;
4093 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4094 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4095 #ifdef CONFIG_HIGHMEM
4096 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4097 struct zone *zone = &pgdat->node_zones[zone_type];
4098
4099 if (is_highmem(zone)) {
4100 managed_highpages += zone->managed_pages;
4101 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4102 }
4103 }
4104 val->totalhigh = managed_highpages;
4105 val->freehigh = free_highpages;
4106 #else
4107 val->totalhigh = managed_highpages;
4108 val->freehigh = free_highpages;
4109 #endif
4110 val->mem_unit = PAGE_SIZE;
4111 }
4112 #endif
4113
4114 /*
4115 * Determine whether the node should be displayed or not, depending on whether
4116 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4117 */
4118 bool skip_free_areas_node(unsigned int flags, int nid)
4119 {
4120 bool ret = false;
4121 unsigned int cpuset_mems_cookie;
4122
4123 if (!(flags & SHOW_MEM_FILTER_NODES))
4124 goto out;
4125
4126 do {
4127 cpuset_mems_cookie = read_mems_allowed_begin();
4128 ret = !node_isset(nid, cpuset_current_mems_allowed);
4129 } while (read_mems_allowed_retry(cpuset_mems_cookie));
4130 out:
4131 return ret;
4132 }
4133
4134 #define K(x) ((x) << (PAGE_SHIFT-10))
4135
4136 static void show_migration_types(unsigned char type)
4137 {
4138 static const char types[MIGRATE_TYPES] = {
4139 [MIGRATE_UNMOVABLE] = 'U',
4140 [MIGRATE_MOVABLE] = 'M',
4141 [MIGRATE_RECLAIMABLE] = 'E',
4142 [MIGRATE_HIGHATOMIC] = 'H',
4143 #ifdef CONFIG_CMA
4144 [MIGRATE_CMA] = 'C',
4145 #endif
4146 #ifdef CONFIG_MEMORY_ISOLATION
4147 [MIGRATE_ISOLATE] = 'I',
4148 #endif
4149 };
4150 char tmp[MIGRATE_TYPES + 1];
4151 char *p = tmp;
4152 int i;
4153
4154 for (i = 0; i < MIGRATE_TYPES; i++) {
4155 if (type & (1 << i))
4156 *p++ = types[i];
4157 }
4158
4159 *p = '\0';
4160 printk("(%s) ", tmp);
4161 }
4162
4163 /*
4164 * Show free area list (used inside shift_scroll-lock stuff)
4165 * We also calculate the percentage fragmentation. We do this by counting the
4166 * memory on each free list with the exception of the first item on the list.
4167 *
4168 * Bits in @filter:
4169 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4170 * cpuset.
4171 */
4172 void show_free_areas(unsigned int filter)
4173 {
4174 unsigned long free_pcp = 0;
4175 int cpu;
4176 struct zone *zone;
4177 pg_data_t *pgdat;
4178
4179 for_each_populated_zone(zone) {
4180 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4181 continue;
4182
4183 for_each_online_cpu(cpu)
4184 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4185 }
4186
4187 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4188 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4189 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4190 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4191 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4192 " free:%lu free_pcp:%lu free_cma:%lu\n",
4193 global_node_page_state(NR_ACTIVE_ANON),
4194 global_node_page_state(NR_INACTIVE_ANON),
4195 global_node_page_state(NR_ISOLATED_ANON),
4196 global_node_page_state(NR_ACTIVE_FILE),
4197 global_node_page_state(NR_INACTIVE_FILE),
4198 global_node_page_state(NR_ISOLATED_FILE),
4199 global_node_page_state(NR_UNEVICTABLE),
4200 global_node_page_state(NR_FILE_DIRTY),
4201 global_node_page_state(NR_WRITEBACK),
4202 global_node_page_state(NR_UNSTABLE_NFS),
4203 global_page_state(NR_SLAB_RECLAIMABLE),
4204 global_page_state(NR_SLAB_UNRECLAIMABLE),
4205 global_node_page_state(NR_FILE_MAPPED),
4206 global_node_page_state(NR_SHMEM),
4207 global_page_state(NR_PAGETABLE),
4208 global_page_state(NR_BOUNCE),
4209 global_page_state(NR_FREE_PAGES),
4210 free_pcp,
4211 global_page_state(NR_FREE_CMA_PAGES));
4212
4213 for_each_online_pgdat(pgdat) {
4214 printk("Node %d"
4215 " active_anon:%lukB"
4216 " inactive_anon:%lukB"
4217 " active_file:%lukB"
4218 " inactive_file:%lukB"
4219 " unevictable:%lukB"
4220 " isolated(anon):%lukB"
4221 " isolated(file):%lukB"
4222 " mapped:%lukB"
4223 " dirty:%lukB"
4224 " writeback:%lukB"
4225 " shmem:%lukB"
4226 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4227 " shmem_thp: %lukB"
4228 " shmem_pmdmapped: %lukB"
4229 " anon_thp: %lukB"
4230 #endif
4231 " writeback_tmp:%lukB"
4232 " unstable:%lukB"
4233 " pages_scanned:%lu"
4234 " all_unreclaimable? %s"
4235 "\n",
4236 pgdat->node_id,
4237 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4238 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4239 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4240 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4241 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4242 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4243 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4244 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4245 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4246 K(node_page_state(pgdat, NR_WRITEBACK)),
4247 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4248 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4249 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4250 * HPAGE_PMD_NR),
4251 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4252 #endif
4253 K(node_page_state(pgdat, NR_SHMEM)),
4254 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4255 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4256 node_page_state(pgdat, NR_PAGES_SCANNED),
4257 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4258 }
4259
4260 for_each_populated_zone(zone) {
4261 int i;
4262
4263 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4264 continue;
4265
4266 free_pcp = 0;
4267 for_each_online_cpu(cpu)
4268 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4269
4270 show_node(zone);
4271 printk("%s"
4272 " free:%lukB"
4273 " min:%lukB"
4274 " low:%lukB"
4275 " high:%lukB"
4276 " active_anon:%lukB"
4277 " inactive_anon:%lukB"
4278 " active_file:%lukB"
4279 " inactive_file:%lukB"
4280 " unevictable:%lukB"
4281 " writepending:%lukB"
4282 " present:%lukB"
4283 " managed:%lukB"
4284 " mlocked:%lukB"
4285 " slab_reclaimable:%lukB"
4286 " slab_unreclaimable:%lukB"
4287 " kernel_stack:%lukB"
4288 " pagetables:%lukB"
4289 " bounce:%lukB"
4290 " free_pcp:%lukB"
4291 " local_pcp:%ukB"
4292 " free_cma:%lukB"
4293 "\n",
4294 zone->name,
4295 K(zone_page_state(zone, NR_FREE_PAGES)),
4296 K(min_wmark_pages(zone)),
4297 K(low_wmark_pages(zone)),
4298 K(high_wmark_pages(zone)),
4299 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4300 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4301 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4302 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4303 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4304 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4305 K(zone->present_pages),
4306 K(zone->managed_pages),
4307 K(zone_page_state(zone, NR_MLOCK)),
4308 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4309 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4310 zone_page_state(zone, NR_KERNEL_STACK_KB),
4311 K(zone_page_state(zone, NR_PAGETABLE)),
4312 K(zone_page_state(zone, NR_BOUNCE)),
4313 K(free_pcp),
4314 K(this_cpu_read(zone->pageset->pcp.count)),
4315 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4316 printk("lowmem_reserve[]:");
4317 for (i = 0; i < MAX_NR_ZONES; i++)
4318 printk(" %ld", zone->lowmem_reserve[i]);
4319 printk("\n");
4320 }
4321
4322 for_each_populated_zone(zone) {
4323 unsigned int order;
4324 unsigned long nr[MAX_ORDER], flags, total = 0;
4325 unsigned char types[MAX_ORDER];
4326
4327 if (skip_free_areas_node(filter, zone_to_nid(zone)))
4328 continue;
4329 show_node(zone);
4330 printk("%s: ", zone->name);
4331
4332 spin_lock_irqsave(&zone->lock, flags);
4333 for (order = 0; order < MAX_ORDER; order++) {
4334 struct free_area *area = &zone->free_area[order];
4335 int type;
4336
4337 nr[order] = area->nr_free;
4338 total += nr[order] << order;
4339
4340 types[order] = 0;
4341 for (type = 0; type < MIGRATE_TYPES; type++) {
4342 if (!list_empty(&area->free_list[type]))
4343 types[order] |= 1 << type;
4344 }
4345 }
4346 spin_unlock_irqrestore(&zone->lock, flags);
4347 for (order = 0; order < MAX_ORDER; order++) {
4348 printk("%lu*%lukB ", nr[order], K(1UL) << order);
4349 if (nr[order])
4350 show_migration_types(types[order]);
4351 }
4352 printk("= %lukB\n", K(total));
4353 }
4354
4355 hugetlb_show_meminfo();
4356
4357 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4358
4359 show_swap_cache_info();
4360 }
4361
4362 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4363 {
4364 zoneref->zone = zone;
4365 zoneref->zone_idx = zone_idx(zone);
4366 }
4367
4368 /*
4369 * Builds allocation fallback zone lists.
4370 *
4371 * Add all populated zones of a node to the zonelist.
4372 */
4373 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4374 int nr_zones)
4375 {
4376 struct zone *zone;
4377 enum zone_type zone_type = MAX_NR_ZONES;
4378
4379 do {
4380 zone_type--;
4381 zone = pgdat->node_zones + zone_type;
4382 if (managed_zone(zone)) {
4383 zoneref_set_zone(zone,
4384 &zonelist->_zonerefs[nr_zones++]);
4385 check_highest_zone(zone_type);
4386 }
4387 } while (zone_type);
4388
4389 return nr_zones;
4390 }
4391
4392
4393 /*
4394 * zonelist_order:
4395 * 0 = automatic detection of better ordering.
4396 * 1 = order by ([node] distance, -zonetype)
4397 * 2 = order by (-zonetype, [node] distance)
4398 *
4399 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4400 * the same zonelist. So only NUMA can configure this param.
4401 */
4402 #define ZONELIST_ORDER_DEFAULT 0
4403 #define ZONELIST_ORDER_NODE 1
4404 #define ZONELIST_ORDER_ZONE 2
4405
4406 /* zonelist order in the kernel.
4407 * set_zonelist_order() will set this to NODE or ZONE.
4408 */
4409 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4410 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4411
4412
4413 #ifdef CONFIG_NUMA
4414 /* The value user specified ....changed by config */
4415 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4416 /* string for sysctl */
4417 #define NUMA_ZONELIST_ORDER_LEN 16
4418 char numa_zonelist_order[16] = "default";
4419
4420 /*
4421 * interface for configure zonelist ordering.
4422 * command line option "numa_zonelist_order"
4423 * = "[dD]efault - default, automatic configuration.
4424 * = "[nN]ode - order by node locality, then by zone within node
4425 * = "[zZ]one - order by zone, then by locality within zone
4426 */
4427
4428 static int __parse_numa_zonelist_order(char *s)
4429 {
4430 if (*s == 'd' || *s == 'D') {
4431 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4432 } else if (*s == 'n' || *s == 'N') {
4433 user_zonelist_order = ZONELIST_ORDER_NODE;
4434 } else if (*s == 'z' || *s == 'Z') {
4435 user_zonelist_order = ZONELIST_ORDER_ZONE;
4436 } else {
4437 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
4438 return -EINVAL;
4439 }
4440 return 0;
4441 }
4442
4443 static __init int setup_numa_zonelist_order(char *s)
4444 {
4445 int ret;
4446
4447 if (!s)
4448 return 0;
4449
4450 ret = __parse_numa_zonelist_order(s);
4451 if (ret == 0)
4452 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4453
4454 return ret;
4455 }
4456 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4457
4458 /*
4459 * sysctl handler for numa_zonelist_order
4460 */
4461 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4462 void __user *buffer, size_t *length,
4463 loff_t *ppos)
4464 {
4465 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4466 int ret;
4467 static DEFINE_MUTEX(zl_order_mutex);
4468
4469 mutex_lock(&zl_order_mutex);
4470 if (write) {
4471 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4472 ret = -EINVAL;
4473 goto out;
4474 }
4475 strcpy(saved_string, (char *)table->data);
4476 }
4477 ret = proc_dostring(table, write, buffer, length, ppos);
4478 if (ret)
4479 goto out;
4480 if (write) {
4481 int oldval = user_zonelist_order;
4482
4483 ret = __parse_numa_zonelist_order((char *)table->data);
4484 if (ret) {
4485 /*
4486 * bogus value. restore saved string
4487 */
4488 strncpy((char *)table->data, saved_string,
4489 NUMA_ZONELIST_ORDER_LEN);
4490 user_zonelist_order = oldval;
4491 } else if (oldval != user_zonelist_order) {
4492 mutex_lock(&zonelists_mutex);
4493 build_all_zonelists(NULL, NULL);
4494 mutex_unlock(&zonelists_mutex);
4495 }
4496 }
4497 out:
4498 mutex_unlock(&zl_order_mutex);
4499 return ret;
4500 }
4501
4502
4503 #define MAX_NODE_LOAD (nr_online_nodes)
4504 static int node_load[MAX_NUMNODES];
4505
4506 /**
4507 * find_next_best_node - find the next node that should appear in a given node's fallback list
4508 * @node: node whose fallback list we're appending
4509 * @used_node_mask: nodemask_t of already used nodes
4510 *
4511 * We use a number of factors to determine which is the next node that should
4512 * appear on a given node's fallback list. The node should not have appeared
4513 * already in @node's fallback list, and it should be the next closest node
4514 * according to the distance array (which contains arbitrary distance values
4515 * from each node to each node in the system), and should also prefer nodes
4516 * with no CPUs, since presumably they'll have very little allocation pressure
4517 * on them otherwise.
4518 * It returns -1 if no node is found.
4519 */
4520 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4521 {
4522 int n, val;
4523 int min_val = INT_MAX;
4524 int best_node = NUMA_NO_NODE;
4525 const struct cpumask *tmp = cpumask_of_node(0);
4526
4527 /* Use the local node if we haven't already */
4528 if (!node_isset(node, *used_node_mask)) {
4529 node_set(node, *used_node_mask);
4530 return node;
4531 }
4532
4533 for_each_node_state(n, N_MEMORY) {
4534
4535 /* Don't want a node to appear more than once */
4536 if (node_isset(n, *used_node_mask))
4537 continue;
4538
4539 /* Use the distance array to find the distance */
4540 val = node_distance(node, n);
4541
4542 /* Penalize nodes under us ("prefer the next node") */
4543 val += (n < node);
4544
4545 /* Give preference to headless and unused nodes */
4546 tmp = cpumask_of_node(n);
4547 if (!cpumask_empty(tmp))
4548 val += PENALTY_FOR_NODE_WITH_CPUS;
4549
4550 /* Slight preference for less loaded node */
4551 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4552 val += node_load[n];
4553
4554 if (val < min_val) {
4555 min_val = val;
4556 best_node = n;
4557 }
4558 }
4559
4560 if (best_node >= 0)
4561 node_set(best_node, *used_node_mask);
4562
4563 return best_node;
4564 }
4565
4566
4567 /*
4568 * Build zonelists ordered by node and zones within node.
4569 * This results in maximum locality--normal zone overflows into local
4570 * DMA zone, if any--but risks exhausting DMA zone.
4571 */
4572 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4573 {
4574 int j;
4575 struct zonelist *zonelist;
4576
4577 zonelist = &pgdat->node_zonelists[0];
4578 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4579 ;
4580 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4581 zonelist->_zonerefs[j].zone = NULL;
4582 zonelist->_zonerefs[j].zone_idx = 0;
4583 }
4584
4585 /*
4586 * Build gfp_thisnode zonelists
4587 */
4588 static void build_thisnode_zonelists(pg_data_t *pgdat)
4589 {
4590 int j;
4591 struct zonelist *zonelist;
4592
4593 zonelist = &pgdat->node_zonelists[1];
4594 j = build_zonelists_node(pgdat, zonelist, 0);
4595 zonelist->_zonerefs[j].zone = NULL;
4596 zonelist->_zonerefs[j].zone_idx = 0;
4597 }
4598
4599 /*
4600 * Build zonelists ordered by zone and nodes within zones.
4601 * This results in conserving DMA zone[s] until all Normal memory is
4602 * exhausted, but results in overflowing to remote node while memory
4603 * may still exist in local DMA zone.
4604 */
4605 static int node_order[MAX_NUMNODES];
4606
4607 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4608 {
4609 int pos, j, node;
4610 int zone_type; /* needs to be signed */
4611 struct zone *z;
4612 struct zonelist *zonelist;
4613
4614 zonelist = &pgdat->node_zonelists[0];
4615 pos = 0;
4616 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4617 for (j = 0; j < nr_nodes; j++) {
4618 node = node_order[j];
4619 z = &NODE_DATA(node)->node_zones[zone_type];
4620 if (managed_zone(z)) {
4621 zoneref_set_zone(z,
4622 &zonelist->_zonerefs[pos++]);
4623 check_highest_zone(zone_type);
4624 }
4625 }
4626 }
4627 zonelist->_zonerefs[pos].zone = NULL;
4628 zonelist->_zonerefs[pos].zone_idx = 0;
4629 }
4630
4631 #if defined(CONFIG_64BIT)
4632 /*
4633 * Devices that require DMA32/DMA are relatively rare and do not justify a
4634 * penalty to every machine in case the specialised case applies. Default
4635 * to Node-ordering on 64-bit NUMA machines
4636 */
4637 static int default_zonelist_order(void)
4638 {
4639 return ZONELIST_ORDER_NODE;
4640 }
4641 #else
4642 /*
4643 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4644 * by the kernel. If processes running on node 0 deplete the low memory zone
4645 * then reclaim will occur more frequency increasing stalls and potentially
4646 * be easier to OOM if a large percentage of the zone is under writeback or
4647 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4648 * Hence, default to zone ordering on 32-bit.
4649 */
4650 static int default_zonelist_order(void)
4651 {
4652 return ZONELIST_ORDER_ZONE;
4653 }
4654 #endif /* CONFIG_64BIT */
4655
4656 static void set_zonelist_order(void)
4657 {
4658 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4659 current_zonelist_order = default_zonelist_order();
4660 else
4661 current_zonelist_order = user_zonelist_order;
4662 }
4663
4664 static void build_zonelists(pg_data_t *pgdat)
4665 {
4666 int i, node, load;
4667 nodemask_t used_mask;
4668 int local_node, prev_node;
4669 struct zonelist *zonelist;
4670 unsigned int order = current_zonelist_order;
4671
4672 /* initialize zonelists */
4673 for (i = 0; i < MAX_ZONELISTS; i++) {
4674 zonelist = pgdat->node_zonelists + i;
4675 zonelist->_zonerefs[0].zone = NULL;
4676 zonelist->_zonerefs[0].zone_idx = 0;
4677 }
4678
4679 /* NUMA-aware ordering of nodes */
4680 local_node = pgdat->node_id;
4681 load = nr_online_nodes;
4682 prev_node = local_node;
4683 nodes_clear(used_mask);
4684
4685 memset(node_order, 0, sizeof(node_order));
4686 i = 0;
4687
4688 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4689 /*
4690 * We don't want to pressure a particular node.
4691 * So adding penalty to the first node in same
4692 * distance group to make it round-robin.
4693 */
4694 if (node_distance(local_node, node) !=
4695 node_distance(local_node, prev_node))
4696 node_load[node] = load;
4697
4698 prev_node = node;
4699 load--;
4700 if (order == ZONELIST_ORDER_NODE)
4701 build_zonelists_in_node_order(pgdat, node);
4702 else
4703 node_order[i++] = node; /* remember order */
4704 }
4705
4706 if (order == ZONELIST_ORDER_ZONE) {
4707 /* calculate node order -- i.e., DMA last! */
4708 build_zonelists_in_zone_order(pgdat, i);
4709 }
4710
4711 build_thisnode_zonelists(pgdat);
4712 }
4713
4714 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4715 /*
4716 * Return node id of node used for "local" allocations.
4717 * I.e., first node id of first zone in arg node's generic zonelist.
4718 * Used for initializing percpu 'numa_mem', which is used primarily
4719 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4720 */
4721 int local_memory_node(int node)
4722 {
4723 struct zoneref *z;
4724
4725 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4726 gfp_zone(GFP_KERNEL),
4727 NULL);
4728 return z->zone->node;
4729 }
4730 #endif
4731
4732 static void setup_min_unmapped_ratio(void);
4733 static void setup_min_slab_ratio(void);
4734 #else /* CONFIG_NUMA */
4735
4736 static void set_zonelist_order(void)
4737 {
4738 current_zonelist_order = ZONELIST_ORDER_ZONE;
4739 }
4740
4741 static void build_zonelists(pg_data_t *pgdat)
4742 {
4743 int node, local_node;
4744 enum zone_type j;
4745 struct zonelist *zonelist;
4746
4747 local_node = pgdat->node_id;
4748
4749 zonelist = &pgdat->node_zonelists[0];
4750 j = build_zonelists_node(pgdat, zonelist, 0);
4751
4752 /*
4753 * Now we build the zonelist so that it contains the zones
4754 * of all the other nodes.
4755 * We don't want to pressure a particular node, so when
4756 * building the zones for node N, we make sure that the
4757 * zones coming right after the local ones are those from
4758 * node N+1 (modulo N)
4759 */
4760 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4761 if (!node_online(node))
4762 continue;
4763 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4764 }
4765 for (node = 0; node < local_node; node++) {
4766 if (!node_online(node))
4767 continue;
4768 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4769 }
4770
4771 zonelist->_zonerefs[j].zone = NULL;
4772 zonelist->_zonerefs[j].zone_idx = 0;
4773 }
4774
4775 #endif /* CONFIG_NUMA */
4776
4777 /*
4778 * Boot pageset table. One per cpu which is going to be used for all
4779 * zones and all nodes. The parameters will be set in such a way
4780 * that an item put on a list will immediately be handed over to
4781 * the buddy list. This is safe since pageset manipulation is done
4782 * with interrupts disabled.
4783 *
4784 * The boot_pagesets must be kept even after bootup is complete for
4785 * unused processors and/or zones. They do play a role for bootstrapping
4786 * hotplugged processors.
4787 *
4788 * zoneinfo_show() and maybe other functions do
4789 * not check if the processor is online before following the pageset pointer.
4790 * Other parts of the kernel may not check if the zone is available.
4791 */
4792 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4793 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4794 static void setup_zone_pageset(struct zone *zone);
4795
4796 /*
4797 * Global mutex to protect against size modification of zonelists
4798 * as well as to serialize pageset setup for the new populated zone.
4799 */
4800 DEFINE_MUTEX(zonelists_mutex);
4801
4802 /* return values int ....just for stop_machine() */
4803 static int __build_all_zonelists(void *data)
4804 {
4805 int nid;
4806 int cpu;
4807 pg_data_t *self = data;
4808
4809 #ifdef CONFIG_NUMA
4810 memset(node_load, 0, sizeof(node_load));
4811 #endif
4812
4813 if (self && !node_online(self->node_id)) {
4814 build_zonelists(self);
4815 }
4816
4817 for_each_online_node(nid) {
4818 pg_data_t *pgdat = NODE_DATA(nid);
4819
4820 build_zonelists(pgdat);
4821 }
4822
4823 /*
4824 * Initialize the boot_pagesets that are going to be used
4825 * for bootstrapping processors. The real pagesets for
4826 * each zone will be allocated later when the per cpu
4827 * allocator is available.
4828 *
4829 * boot_pagesets are used also for bootstrapping offline
4830 * cpus if the system is already booted because the pagesets
4831 * are needed to initialize allocators on a specific cpu too.
4832 * F.e. the percpu allocator needs the page allocator which
4833 * needs the percpu allocator in order to allocate its pagesets
4834 * (a chicken-egg dilemma).
4835 */
4836 for_each_possible_cpu(cpu) {
4837 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4838
4839 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4840 /*
4841 * We now know the "local memory node" for each node--
4842 * i.e., the node of the first zone in the generic zonelist.
4843 * Set up numa_mem percpu variable for on-line cpus. During
4844 * boot, only the boot cpu should be on-line; we'll init the
4845 * secondary cpus' numa_mem as they come on-line. During
4846 * node/memory hotplug, we'll fixup all on-line cpus.
4847 */
4848 if (cpu_online(cpu))
4849 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4850 #endif
4851 }
4852
4853 return 0;
4854 }
4855
4856 static noinline void __init
4857 build_all_zonelists_init(void)
4858 {
4859 __build_all_zonelists(NULL);
4860 mminit_verify_zonelist();
4861 cpuset_init_current_mems_allowed();
4862 }
4863
4864 /*
4865 * Called with zonelists_mutex held always
4866 * unless system_state == SYSTEM_BOOTING.
4867 *
4868 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4869 * [we're only called with non-NULL zone through __meminit paths] and
4870 * (2) call of __init annotated helper build_all_zonelists_init
4871 * [protected by SYSTEM_BOOTING].
4872 */
4873 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4874 {
4875 set_zonelist_order();
4876
4877 if (system_state == SYSTEM_BOOTING) {
4878 build_all_zonelists_init();
4879 } else {
4880 #ifdef CONFIG_MEMORY_HOTPLUG
4881 if (zone)
4882 setup_zone_pageset(zone);
4883 #endif
4884 /* we have to stop all cpus to guarantee there is no user
4885 of zonelist */
4886 stop_machine(__build_all_zonelists, pgdat, NULL);
4887 /* cpuset refresh routine should be here */
4888 }
4889 vm_total_pages = nr_free_pagecache_pages();
4890 /*
4891 * Disable grouping by mobility if the number of pages in the
4892 * system is too low to allow the mechanism to work. It would be
4893 * more accurate, but expensive to check per-zone. This check is
4894 * made on memory-hotadd so a system can start with mobility
4895 * disabled and enable it later
4896 */
4897 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4898 page_group_by_mobility_disabled = 1;
4899 else
4900 page_group_by_mobility_disabled = 0;
4901
4902 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4903 nr_online_nodes,
4904 zonelist_order_name[current_zonelist_order],
4905 page_group_by_mobility_disabled ? "off" : "on",
4906 vm_total_pages);
4907 #ifdef CONFIG_NUMA
4908 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4909 #endif
4910 }
4911
4912 /*
4913 * Helper functions to size the waitqueue hash table.
4914 * Essentially these want to choose hash table sizes sufficiently
4915 * large so that collisions trying to wait on pages are rare.
4916 * But in fact, the number of active page waitqueues on typical
4917 * systems is ridiculously low, less than 200. So this is even
4918 * conservative, even though it seems large.
4919 *
4920 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4921 * waitqueues, i.e. the size of the waitq table given the number of pages.
4922 */
4923 #define PAGES_PER_WAITQUEUE 256
4924
4925 #ifndef CONFIG_MEMORY_HOTPLUG
4926 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4927 {
4928 unsigned long size = 1;
4929
4930 pages /= PAGES_PER_WAITQUEUE;
4931
4932 while (size < pages)
4933 size <<= 1;
4934
4935 /*
4936 * Once we have dozens or even hundreds of threads sleeping
4937 * on IO we've got bigger problems than wait queue collision.
4938 * Limit the size of the wait table to a reasonable size.
4939 */
4940 size = min(size, 4096UL);
4941
4942 return max(size, 4UL);
4943 }
4944 #else
4945 /*
4946 * A zone's size might be changed by hot-add, so it is not possible to determine
4947 * a suitable size for its wait_table. So we use the maximum size now.
4948 *
4949 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4950 *
4951 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4952 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4953 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4954 *
4955 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4956 * or more by the traditional way. (See above). It equals:
4957 *
4958 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4959 * ia64(16K page size) : = ( 8G + 4M)byte.
4960 * powerpc (64K page size) : = (32G +16M)byte.
4961 */
4962 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4963 {
4964 return 4096UL;
4965 }
4966 #endif
4967
4968 /*
4969 * This is an integer logarithm so that shifts can be used later
4970 * to extract the more random high bits from the multiplicative
4971 * hash function before the remainder is taken.
4972 */
4973 static inline unsigned long wait_table_bits(unsigned long size)
4974 {
4975 return ffz(~size);
4976 }
4977
4978 /*
4979 * Initially all pages are reserved - free ones are freed
4980 * up by free_all_bootmem() once the early boot process is
4981 * done. Non-atomic initialization, single-pass.
4982 */
4983 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4984 unsigned long start_pfn, enum memmap_context context)
4985 {
4986 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4987 unsigned long end_pfn = start_pfn + size;
4988 pg_data_t *pgdat = NODE_DATA(nid);
4989 unsigned long pfn;
4990 unsigned long nr_initialised = 0;
4991 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4992 struct memblock_region *r = NULL, *tmp;
4993 #endif
4994
4995 if (highest_memmap_pfn < end_pfn - 1)
4996 highest_memmap_pfn = end_pfn - 1;
4997
4998 /*
4999 * Honor reservation requested by the driver for this ZONE_DEVICE
5000 * memory
5001 */
5002 if (altmap && start_pfn == altmap->base_pfn)
5003 start_pfn += altmap->reserve;
5004
5005 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5006 /*
5007 * There can be holes in boot-time mem_map[]s handed to this
5008 * function. They do not exist on hotplugged memory.
5009 */
5010 if (context != MEMMAP_EARLY)
5011 goto not_early;
5012
5013 if (!early_pfn_valid(pfn))
5014 continue;
5015 if (!early_pfn_in_nid(pfn, nid))
5016 continue;
5017 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5018 break;
5019
5020 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5021 /*
5022 * Check given memblock attribute by firmware which can affect
5023 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5024 * mirrored, it's an overlapped memmap init. skip it.
5025 */
5026 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5027 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5028 for_each_memblock(memory, tmp)
5029 if (pfn < memblock_region_memory_end_pfn(tmp))
5030 break;
5031 r = tmp;
5032 }
5033 if (pfn >= memblock_region_memory_base_pfn(r) &&
5034 memblock_is_mirror(r)) {
5035 /* already initialized as NORMAL */
5036 pfn = memblock_region_memory_end_pfn(r);
5037 continue;
5038 }
5039 }
5040 #endif
5041
5042 not_early:
5043 /*
5044 * Mark the block movable so that blocks are reserved for
5045 * movable at startup. This will force kernel allocations
5046 * to reserve their blocks rather than leaking throughout
5047 * the address space during boot when many long-lived
5048 * kernel allocations are made.
5049 *
5050 * bitmap is created for zone's valid pfn range. but memmap
5051 * can be created for invalid pages (for alignment)
5052 * check here not to call set_pageblock_migratetype() against
5053 * pfn out of zone.
5054 */
5055 if (!(pfn & (pageblock_nr_pages - 1))) {
5056 struct page *page = pfn_to_page(pfn);
5057
5058 __init_single_page(page, pfn, zone, nid);
5059 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5060 } else {
5061 __init_single_pfn(pfn, zone, nid);
5062 }
5063 }
5064 }
5065
5066 static void __meminit zone_init_free_lists(struct zone *zone)
5067 {
5068 unsigned int order, t;
5069 for_each_migratetype_order(order, t) {
5070 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5071 zone->free_area[order].nr_free = 0;
5072 }
5073 }
5074
5075 #ifndef __HAVE_ARCH_MEMMAP_INIT
5076 #define memmap_init(size, nid, zone, start_pfn) \
5077 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5078 #endif
5079
5080 static int zone_batchsize(struct zone *zone)
5081 {
5082 #ifdef CONFIG_MMU
5083 int batch;
5084
5085 /*
5086 * The per-cpu-pages pools are set to around 1000th of the
5087 * size of the zone. But no more than 1/2 of a meg.
5088 *
5089 * OK, so we don't know how big the cache is. So guess.
5090 */
5091 batch = zone->managed_pages / 1024;
5092 if (batch * PAGE_SIZE > 512 * 1024)
5093 batch = (512 * 1024) / PAGE_SIZE;
5094 batch /= 4; /* We effectively *= 4 below */
5095 if (batch < 1)
5096 batch = 1;
5097
5098 /*
5099 * Clamp the batch to a 2^n - 1 value. Having a power
5100 * of 2 value was found to be more likely to have
5101 * suboptimal cache aliasing properties in some cases.
5102 *
5103 * For example if 2 tasks are alternately allocating
5104 * batches of pages, one task can end up with a lot
5105 * of pages of one half of the possible page colors
5106 * and the other with pages of the other colors.
5107 */
5108 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5109
5110 return batch;
5111
5112 #else
5113 /* The deferral and batching of frees should be suppressed under NOMMU
5114 * conditions.
5115 *
5116 * The problem is that NOMMU needs to be able to allocate large chunks
5117 * of contiguous memory as there's no hardware page translation to
5118 * assemble apparent contiguous memory from discontiguous pages.
5119 *
5120 * Queueing large contiguous runs of pages for batching, however,
5121 * causes the pages to actually be freed in smaller chunks. As there
5122 * can be a significant delay between the individual batches being
5123 * recycled, this leads to the once large chunks of space being
5124 * fragmented and becoming unavailable for high-order allocations.
5125 */
5126 return 0;
5127 #endif
5128 }
5129
5130 /*
5131 * pcp->high and pcp->batch values are related and dependent on one another:
5132 * ->batch must never be higher then ->high.
5133 * The following function updates them in a safe manner without read side
5134 * locking.
5135 *
5136 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5137 * those fields changing asynchronously (acording the the above rule).
5138 *
5139 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5140 * outside of boot time (or some other assurance that no concurrent updaters
5141 * exist).
5142 */
5143 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5144 unsigned long batch)
5145 {
5146 /* start with a fail safe value for batch */
5147 pcp->batch = 1;
5148 smp_wmb();
5149
5150 /* Update high, then batch, in order */
5151 pcp->high = high;
5152 smp_wmb();
5153
5154 pcp->batch = batch;
5155 }
5156
5157 /* a companion to pageset_set_high() */
5158 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5159 {
5160 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5161 }
5162
5163 static void pageset_init(struct per_cpu_pageset *p)
5164 {
5165 struct per_cpu_pages *pcp;
5166 int migratetype;
5167
5168 memset(p, 0, sizeof(*p));
5169
5170 pcp = &p->pcp;
5171 pcp->count = 0;
5172 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5173 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5174 }
5175
5176 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5177 {
5178 pageset_init(p);
5179 pageset_set_batch(p, batch);
5180 }
5181
5182 /*
5183 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5184 * to the value high for the pageset p.
5185 */
5186 static void pageset_set_high(struct per_cpu_pageset *p,
5187 unsigned long high)
5188 {
5189 unsigned long batch = max(1UL, high / 4);
5190 if ((high / 4) > (PAGE_SHIFT * 8))
5191 batch = PAGE_SHIFT * 8;
5192
5193 pageset_update(&p->pcp, high, batch);
5194 }
5195
5196 static void pageset_set_high_and_batch(struct zone *zone,
5197 struct per_cpu_pageset *pcp)
5198 {
5199 if (percpu_pagelist_fraction)
5200 pageset_set_high(pcp,
5201 (zone->managed_pages /
5202 percpu_pagelist_fraction));
5203 else
5204 pageset_set_batch(pcp, zone_batchsize(zone));
5205 }
5206
5207 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5208 {
5209 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5210
5211 pageset_init(pcp);
5212 pageset_set_high_and_batch(zone, pcp);
5213 }
5214
5215 static void __meminit setup_zone_pageset(struct zone *zone)
5216 {
5217 int cpu;
5218 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5219 for_each_possible_cpu(cpu)
5220 zone_pageset_init(zone, cpu);
5221 }
5222
5223 /*
5224 * Allocate per cpu pagesets and initialize them.
5225 * Before this call only boot pagesets were available.
5226 */
5227 void __init setup_per_cpu_pageset(void)
5228 {
5229 struct pglist_data *pgdat;
5230 struct zone *zone;
5231
5232 for_each_populated_zone(zone)
5233 setup_zone_pageset(zone);
5234
5235 for_each_online_pgdat(pgdat)
5236 pgdat->per_cpu_nodestats =
5237 alloc_percpu(struct per_cpu_nodestat);
5238 }
5239
5240 static noinline __ref
5241 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5242 {
5243 int i;
5244 size_t alloc_size;
5245
5246 /*
5247 * The per-page waitqueue mechanism uses hashed waitqueues
5248 * per zone.
5249 */
5250 zone->wait_table_hash_nr_entries =
5251 wait_table_hash_nr_entries(zone_size_pages);
5252 zone->wait_table_bits =
5253 wait_table_bits(zone->wait_table_hash_nr_entries);
5254 alloc_size = zone->wait_table_hash_nr_entries
5255 * sizeof(wait_queue_head_t);
5256
5257 if (!slab_is_available()) {
5258 zone->wait_table = (wait_queue_head_t *)
5259 memblock_virt_alloc_node_nopanic(
5260 alloc_size, zone->zone_pgdat->node_id);
5261 } else {
5262 /*
5263 * This case means that a zone whose size was 0 gets new memory
5264 * via memory hot-add.
5265 * But it may be the case that a new node was hot-added. In
5266 * this case vmalloc() will not be able to use this new node's
5267 * memory - this wait_table must be initialized to use this new
5268 * node itself as well.
5269 * To use this new node's memory, further consideration will be
5270 * necessary.
5271 */
5272 zone->wait_table = vmalloc(alloc_size);
5273 }
5274 if (!zone->wait_table)
5275 return -ENOMEM;
5276
5277 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5278 init_waitqueue_head(zone->wait_table + i);
5279
5280 return 0;
5281 }
5282
5283 static __meminit void zone_pcp_init(struct zone *zone)
5284 {
5285 /*
5286 * per cpu subsystem is not up at this point. The following code
5287 * relies on the ability of the linker to provide the
5288 * offset of a (static) per cpu variable into the per cpu area.
5289 */
5290 zone->pageset = &boot_pageset;
5291
5292 if (populated_zone(zone))
5293 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5294 zone->name, zone->present_pages,
5295 zone_batchsize(zone));
5296 }
5297
5298 int __meminit init_currently_empty_zone(struct zone *zone,
5299 unsigned long zone_start_pfn,
5300 unsigned long size)
5301 {
5302 struct pglist_data *pgdat = zone->zone_pgdat;
5303 int ret;
5304 ret = zone_wait_table_init(zone, size);
5305 if (ret)
5306 return ret;
5307 pgdat->nr_zones = zone_idx(zone) + 1;
5308
5309 zone->zone_start_pfn = zone_start_pfn;
5310
5311 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5312 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5313 pgdat->node_id,
5314 (unsigned long)zone_idx(zone),
5315 zone_start_pfn, (zone_start_pfn + size));
5316
5317 zone_init_free_lists(zone);
5318
5319 return 0;
5320 }
5321
5322 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5323 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5324
5325 /*
5326 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5327 */
5328 int __meminit __early_pfn_to_nid(unsigned long pfn,
5329 struct mminit_pfnnid_cache *state)
5330 {
5331 unsigned long start_pfn, end_pfn;
5332 int nid;
5333
5334 if (state->last_start <= pfn && pfn < state->last_end)
5335 return state->last_nid;
5336
5337 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5338 if (nid != -1) {
5339 state->last_start = start_pfn;
5340 state->last_end = end_pfn;
5341 state->last_nid = nid;
5342 }
5343
5344 return nid;
5345 }
5346 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5347
5348 /**
5349 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5350 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5351 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5352 *
5353 * If an architecture guarantees that all ranges registered contain no holes
5354 * and may be freed, this this function may be used instead of calling
5355 * memblock_free_early_nid() manually.
5356 */
5357 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5358 {
5359 unsigned long start_pfn, end_pfn;
5360 int i, this_nid;
5361
5362 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5363 start_pfn = min(start_pfn, max_low_pfn);
5364 end_pfn = min(end_pfn, max_low_pfn);
5365
5366 if (start_pfn < end_pfn)
5367 memblock_free_early_nid(PFN_PHYS(start_pfn),
5368 (end_pfn - start_pfn) << PAGE_SHIFT,
5369 this_nid);
5370 }
5371 }
5372
5373 /**
5374 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5375 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5376 *
5377 * If an architecture guarantees that all ranges registered contain no holes and may
5378 * be freed, this function may be used instead of calling memory_present() manually.
5379 */
5380 void __init sparse_memory_present_with_active_regions(int nid)
5381 {
5382 unsigned long start_pfn, end_pfn;
5383 int i, this_nid;
5384
5385 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5386 memory_present(this_nid, start_pfn, end_pfn);
5387 }
5388
5389 /**
5390 * get_pfn_range_for_nid - Return the start and end page frames for a node
5391 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5392 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5393 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5394 *
5395 * It returns the start and end page frame of a node based on information
5396 * provided by memblock_set_node(). If called for a node
5397 * with no available memory, a warning is printed and the start and end
5398 * PFNs will be 0.
5399 */
5400 void __meminit get_pfn_range_for_nid(unsigned int nid,
5401 unsigned long *start_pfn, unsigned long *end_pfn)
5402 {
5403 unsigned long this_start_pfn, this_end_pfn;
5404 int i;
5405
5406 *start_pfn = -1UL;
5407 *end_pfn = 0;
5408
5409 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5410 *start_pfn = min(*start_pfn, this_start_pfn);
5411 *end_pfn = max(*end_pfn, this_end_pfn);
5412 }
5413
5414 if (*start_pfn == -1UL)
5415 *start_pfn = 0;
5416 }
5417
5418 /*
5419 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5420 * assumption is made that zones within a node are ordered in monotonic
5421 * increasing memory addresses so that the "highest" populated zone is used
5422 */
5423 static void __init find_usable_zone_for_movable(void)
5424 {
5425 int zone_index;
5426 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5427 if (zone_index == ZONE_MOVABLE)
5428 continue;
5429
5430 if (arch_zone_highest_possible_pfn[zone_index] >
5431 arch_zone_lowest_possible_pfn[zone_index])
5432 break;
5433 }
5434
5435 VM_BUG_ON(zone_index == -1);
5436 movable_zone = zone_index;
5437 }
5438
5439 /*
5440 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5441 * because it is sized independent of architecture. Unlike the other zones,
5442 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5443 * in each node depending on the size of each node and how evenly kernelcore
5444 * is distributed. This helper function adjusts the zone ranges
5445 * provided by the architecture for a given node by using the end of the
5446 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5447 * zones within a node are in order of monotonic increases memory addresses
5448 */
5449 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5450 unsigned long zone_type,
5451 unsigned long node_start_pfn,
5452 unsigned long node_end_pfn,
5453 unsigned long *zone_start_pfn,
5454 unsigned long *zone_end_pfn)
5455 {
5456 /* Only adjust if ZONE_MOVABLE is on this node */
5457 if (zone_movable_pfn[nid]) {
5458 /* Size ZONE_MOVABLE */
5459 if (zone_type == ZONE_MOVABLE) {
5460 *zone_start_pfn = zone_movable_pfn[nid];
5461 *zone_end_pfn = min(node_end_pfn,
5462 arch_zone_highest_possible_pfn[movable_zone]);
5463
5464 /* Adjust for ZONE_MOVABLE starting within this range */
5465 } else if (!mirrored_kernelcore &&
5466 *zone_start_pfn < zone_movable_pfn[nid] &&
5467 *zone_end_pfn > zone_movable_pfn[nid]) {
5468 *zone_end_pfn = zone_movable_pfn[nid];
5469
5470 /* Check if this whole range is within ZONE_MOVABLE */
5471 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5472 *zone_start_pfn = *zone_end_pfn;
5473 }
5474 }
5475
5476 /*
5477 * Return the number of pages a zone spans in a node, including holes
5478 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5479 */
5480 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5481 unsigned long zone_type,
5482 unsigned long node_start_pfn,
5483 unsigned long node_end_pfn,
5484 unsigned long *zone_start_pfn,
5485 unsigned long *zone_end_pfn,
5486 unsigned long *ignored)
5487 {
5488 /* When hotadd a new node from cpu_up(), the node should be empty */
5489 if (!node_start_pfn && !node_end_pfn)
5490 return 0;
5491
5492 /* Get the start and end of the zone */
5493 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5494 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5495 adjust_zone_range_for_zone_movable(nid, zone_type,
5496 node_start_pfn, node_end_pfn,
5497 zone_start_pfn, zone_end_pfn);
5498
5499 /* Check that this node has pages within the zone's required range */
5500 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5501 return 0;
5502
5503 /* Move the zone boundaries inside the node if necessary */
5504 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5505 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5506
5507 /* Return the spanned pages */
5508 return *zone_end_pfn - *zone_start_pfn;
5509 }
5510
5511 /*
5512 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5513 * then all holes in the requested range will be accounted for.
5514 */
5515 unsigned long __meminit __absent_pages_in_range(int nid,
5516 unsigned long range_start_pfn,
5517 unsigned long range_end_pfn)
5518 {
5519 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5520 unsigned long start_pfn, end_pfn;
5521 int i;
5522
5523 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5524 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5525 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5526 nr_absent -= end_pfn - start_pfn;
5527 }
5528 return nr_absent;
5529 }
5530
5531 /**
5532 * absent_pages_in_range - Return number of page frames in holes within a range
5533 * @start_pfn: The start PFN to start searching for holes
5534 * @end_pfn: The end PFN to stop searching for holes
5535 *
5536 * It returns the number of pages frames in memory holes within a range.
5537 */
5538 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5539 unsigned long end_pfn)
5540 {
5541 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5542 }
5543
5544 /* Return the number of page frames in holes in a zone on a node */
5545 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5546 unsigned long zone_type,
5547 unsigned long node_start_pfn,
5548 unsigned long node_end_pfn,
5549 unsigned long *ignored)
5550 {
5551 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5552 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5553 unsigned long zone_start_pfn, zone_end_pfn;
5554 unsigned long nr_absent;
5555
5556 /* When hotadd a new node from cpu_up(), the node should be empty */
5557 if (!node_start_pfn && !node_end_pfn)
5558 return 0;
5559
5560 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5561 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5562
5563 adjust_zone_range_for_zone_movable(nid, zone_type,
5564 node_start_pfn, node_end_pfn,
5565 &zone_start_pfn, &zone_end_pfn);
5566 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5567
5568 /*
5569 * ZONE_MOVABLE handling.
5570 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5571 * and vice versa.
5572 */
5573 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5574 unsigned long start_pfn, end_pfn;
5575 struct memblock_region *r;
5576
5577 for_each_memblock(memory, r) {
5578 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5579 zone_start_pfn, zone_end_pfn);
5580 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5581 zone_start_pfn, zone_end_pfn);
5582
5583 if (zone_type == ZONE_MOVABLE &&
5584 memblock_is_mirror(r))
5585 nr_absent += end_pfn - start_pfn;
5586
5587 if (zone_type == ZONE_NORMAL &&
5588 !memblock_is_mirror(r))
5589 nr_absent += end_pfn - start_pfn;
5590 }
5591 }
5592
5593 return nr_absent;
5594 }
5595
5596 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5597 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5598 unsigned long zone_type,
5599 unsigned long node_start_pfn,
5600 unsigned long node_end_pfn,
5601 unsigned long *zone_start_pfn,
5602 unsigned long *zone_end_pfn,
5603 unsigned long *zones_size)
5604 {
5605 unsigned int zone;
5606
5607 *zone_start_pfn = node_start_pfn;
5608 for (zone = 0; zone < zone_type; zone++)
5609 *zone_start_pfn += zones_size[zone];
5610
5611 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5612
5613 return zones_size[zone_type];
5614 }
5615
5616 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5617 unsigned long zone_type,
5618 unsigned long node_start_pfn,
5619 unsigned long node_end_pfn,
5620 unsigned long *zholes_size)
5621 {
5622 if (!zholes_size)
5623 return 0;
5624
5625 return zholes_size[zone_type];
5626 }
5627
5628 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5629
5630 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5631 unsigned long node_start_pfn,
5632 unsigned long node_end_pfn,
5633 unsigned long *zones_size,
5634 unsigned long *zholes_size)
5635 {
5636 unsigned long realtotalpages = 0, totalpages = 0;
5637 enum zone_type i;
5638
5639 for (i = 0; i < MAX_NR_ZONES; i++) {
5640 struct zone *zone = pgdat->node_zones + i;
5641 unsigned long zone_start_pfn, zone_end_pfn;
5642 unsigned long size, real_size;
5643
5644 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5645 node_start_pfn,
5646 node_end_pfn,
5647 &zone_start_pfn,
5648 &zone_end_pfn,
5649 zones_size);
5650 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5651 node_start_pfn, node_end_pfn,
5652 zholes_size);
5653 if (size)
5654 zone->zone_start_pfn = zone_start_pfn;
5655 else
5656 zone->zone_start_pfn = 0;
5657 zone->spanned_pages = size;
5658 zone->present_pages = real_size;
5659
5660 totalpages += size;
5661 realtotalpages += real_size;
5662 }
5663
5664 pgdat->node_spanned_pages = totalpages;
5665 pgdat->node_present_pages = realtotalpages;
5666 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5667 realtotalpages);
5668 }
5669
5670 #ifndef CONFIG_SPARSEMEM
5671 /*
5672 * Calculate the size of the zone->blockflags rounded to an unsigned long
5673 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5674 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5675 * round what is now in bits to nearest long in bits, then return it in
5676 * bytes.
5677 */
5678 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5679 {
5680 unsigned long usemapsize;
5681
5682 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5683 usemapsize = roundup(zonesize, pageblock_nr_pages);
5684 usemapsize = usemapsize >> pageblock_order;
5685 usemapsize *= NR_PAGEBLOCK_BITS;
5686 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5687
5688 return usemapsize / 8;
5689 }
5690
5691 static void __init setup_usemap(struct pglist_data *pgdat,
5692 struct zone *zone,
5693 unsigned long zone_start_pfn,
5694 unsigned long zonesize)
5695 {
5696 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5697 zone->pageblock_flags = NULL;
5698 if (usemapsize)
5699 zone->pageblock_flags =
5700 memblock_virt_alloc_node_nopanic(usemapsize,
5701 pgdat->node_id);
5702 }
5703 #else
5704 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5705 unsigned long zone_start_pfn, unsigned long zonesize) {}
5706 #endif /* CONFIG_SPARSEMEM */
5707
5708 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5709
5710 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5711 void __paginginit set_pageblock_order(void)
5712 {
5713 unsigned int order;
5714
5715 /* Check that pageblock_nr_pages has not already been setup */
5716 if (pageblock_order)
5717 return;
5718
5719 if (HPAGE_SHIFT > PAGE_SHIFT)
5720 order = HUGETLB_PAGE_ORDER;
5721 else
5722 order = MAX_ORDER - 1;
5723
5724 /*
5725 * Assume the largest contiguous order of interest is a huge page.
5726 * This value may be variable depending on boot parameters on IA64 and
5727 * powerpc.
5728 */
5729 pageblock_order = order;
5730 }
5731 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5732
5733 /*
5734 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5735 * is unused as pageblock_order is set at compile-time. See
5736 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5737 * the kernel config
5738 */
5739 void __paginginit set_pageblock_order(void)
5740 {
5741 }
5742
5743 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5744
5745 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5746 unsigned long present_pages)
5747 {
5748 unsigned long pages = spanned_pages;
5749
5750 /*
5751 * Provide a more accurate estimation if there are holes within
5752 * the zone and SPARSEMEM is in use. If there are holes within the
5753 * zone, each populated memory region may cost us one or two extra
5754 * memmap pages due to alignment because memmap pages for each
5755 * populated regions may not naturally algined on page boundary.
5756 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5757 */
5758 if (spanned_pages > present_pages + (present_pages >> 4) &&
5759 IS_ENABLED(CONFIG_SPARSEMEM))
5760 pages = present_pages;
5761
5762 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5763 }
5764
5765 /*
5766 * Set up the zone data structures:
5767 * - mark all pages reserved
5768 * - mark all memory queues empty
5769 * - clear the memory bitmaps
5770 *
5771 * NOTE: pgdat should get zeroed by caller.
5772 */
5773 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5774 {
5775 enum zone_type j;
5776 int nid = pgdat->node_id;
5777 int ret;
5778
5779 pgdat_resize_init(pgdat);
5780 #ifdef CONFIG_NUMA_BALANCING
5781 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5782 pgdat->numabalancing_migrate_nr_pages = 0;
5783 pgdat->numabalancing_migrate_next_window = jiffies;
5784 #endif
5785 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5786 spin_lock_init(&pgdat->split_queue_lock);
5787 INIT_LIST_HEAD(&pgdat->split_queue);
5788 pgdat->split_queue_len = 0;
5789 #endif
5790 init_waitqueue_head(&pgdat->kswapd_wait);
5791 init_waitqueue_head(&pgdat->pfmemalloc_wait);
5792 #ifdef CONFIG_COMPACTION
5793 init_waitqueue_head(&pgdat->kcompactd_wait);
5794 #endif
5795 pgdat_page_ext_init(pgdat);
5796 spin_lock_init(&pgdat->lru_lock);
5797 lruvec_init(node_lruvec(pgdat));
5798
5799 for (j = 0; j < MAX_NR_ZONES; j++) {
5800 struct zone *zone = pgdat->node_zones + j;
5801 unsigned long size, realsize, freesize, memmap_pages;
5802 unsigned long zone_start_pfn = zone->zone_start_pfn;
5803
5804 size = zone->spanned_pages;
5805 realsize = freesize = zone->present_pages;
5806
5807 /*
5808 * Adjust freesize so that it accounts for how much memory
5809 * is used by this zone for memmap. This affects the watermark
5810 * and per-cpu initialisations
5811 */
5812 memmap_pages = calc_memmap_size(size, realsize);
5813 if (!is_highmem_idx(j)) {
5814 if (freesize >= memmap_pages) {
5815 freesize -= memmap_pages;
5816 if (memmap_pages)
5817 printk(KERN_DEBUG
5818 " %s zone: %lu pages used for memmap\n",
5819 zone_names[j], memmap_pages);
5820 } else
5821 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
5822 zone_names[j], memmap_pages, freesize);
5823 }
5824
5825 /* Account for reserved pages */
5826 if (j == 0 && freesize > nr_memory_reserve) {
5827 freesize -= nr_memory_reserve;
5828 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
5829 zone_names[0], nr_memory_reserve);
5830 }
5831
5832 if (!is_highmem_idx(j))
5833 nr_kernel_pages += freesize;
5834 /* Charge for highmem memmap if there are enough kernel pages */
5835 else if (nr_kernel_pages > memmap_pages * 2)
5836 nr_kernel_pages -= memmap_pages;
5837 nr_all_pages += freesize;
5838
5839 /*
5840 * Set an approximate value for lowmem here, it will be adjusted
5841 * when the bootmem allocator frees pages into the buddy system.
5842 * And all highmem pages will be managed by the buddy system.
5843 */
5844 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5845 #ifdef CONFIG_NUMA
5846 zone->node = nid;
5847 #endif
5848 zone->name = zone_names[j];
5849 zone->zone_pgdat = pgdat;
5850 spin_lock_init(&zone->lock);
5851 zone_seqlock_init(zone);
5852 zone_pcp_init(zone);
5853
5854 if (!size)
5855 continue;
5856
5857 set_pageblock_order();
5858 setup_usemap(pgdat, zone, zone_start_pfn, size);
5859 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5860 BUG_ON(ret);
5861 memmap_init(size, nid, j, zone_start_pfn);
5862 }
5863 }
5864
5865 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5866 {
5867 unsigned long __maybe_unused start = 0;
5868 unsigned long __maybe_unused offset = 0;
5869
5870 /* Skip empty nodes */
5871 if (!pgdat->node_spanned_pages)
5872 return;
5873
5874 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5875 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5876 offset = pgdat->node_start_pfn - start;
5877 /* ia64 gets its own node_mem_map, before this, without bootmem */
5878 if (!pgdat->node_mem_map) {
5879 unsigned long size, end;
5880 struct page *map;
5881
5882 /*
5883 * The zone's endpoints aren't required to be MAX_ORDER
5884 * aligned but the node_mem_map endpoints must be in order
5885 * for the buddy allocator to function correctly.
5886 */
5887 end = pgdat_end_pfn(pgdat);
5888 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5889 size = (end - start) * sizeof(struct page);
5890 map = alloc_remap(pgdat->node_id, size);
5891 if (!map)
5892 map = memblock_virt_alloc_node_nopanic(size,
5893 pgdat->node_id);
5894 pgdat->node_mem_map = map + offset;
5895 }
5896 #ifndef CONFIG_NEED_MULTIPLE_NODES
5897 /*
5898 * With no DISCONTIG, the global mem_map is just set as node 0's
5899 */
5900 if (pgdat == NODE_DATA(0)) {
5901 mem_map = NODE_DATA(0)->node_mem_map;
5902 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5903 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5904 mem_map -= offset;
5905 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5906 }
5907 #endif
5908 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5909 }
5910
5911 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5912 unsigned long node_start_pfn, unsigned long *zholes_size)
5913 {
5914 pg_data_t *pgdat = NODE_DATA(nid);
5915 unsigned long start_pfn = 0;
5916 unsigned long end_pfn = 0;
5917
5918 /* pg_data_t should be reset to zero when it's allocated */
5919 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5920
5921 reset_deferred_meminit(pgdat);
5922 pgdat->node_id = nid;
5923 pgdat->node_start_pfn = node_start_pfn;
5924 pgdat->per_cpu_nodestats = NULL;
5925 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5926 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5927 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5928 (u64)start_pfn << PAGE_SHIFT,
5929 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5930 #else
5931 start_pfn = node_start_pfn;
5932 #endif
5933 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5934 zones_size, zholes_size);
5935
5936 alloc_node_mem_map(pgdat);
5937 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5938 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5939 nid, (unsigned long)pgdat,
5940 (unsigned long)pgdat->node_mem_map);
5941 #endif
5942
5943 free_area_init_core(pgdat);
5944 }
5945
5946 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5947
5948 #if MAX_NUMNODES > 1
5949 /*
5950 * Figure out the number of possible node ids.
5951 */
5952 void __init setup_nr_node_ids(void)
5953 {
5954 unsigned int highest;
5955
5956 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5957 nr_node_ids = highest + 1;
5958 }
5959 #endif
5960
5961 /**
5962 * node_map_pfn_alignment - determine the maximum internode alignment
5963 *
5964 * This function should be called after node map is populated and sorted.
5965 * It calculates the maximum power of two alignment which can distinguish
5966 * all the nodes.
5967 *
5968 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5969 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5970 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5971 * shifted, 1GiB is enough and this function will indicate so.
5972 *
5973 * This is used to test whether pfn -> nid mapping of the chosen memory
5974 * model has fine enough granularity to avoid incorrect mapping for the
5975 * populated node map.
5976 *
5977 * Returns the determined alignment in pfn's. 0 if there is no alignment
5978 * requirement (single node).
5979 */
5980 unsigned long __init node_map_pfn_alignment(void)
5981 {
5982 unsigned long accl_mask = 0, last_end = 0;
5983 unsigned long start, end, mask;
5984 int last_nid = -1;
5985 int i, nid;
5986
5987 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5988 if (!start || last_nid < 0 || last_nid == nid) {
5989 last_nid = nid;
5990 last_end = end;
5991 continue;
5992 }
5993
5994 /*
5995 * Start with a mask granular enough to pin-point to the
5996 * start pfn and tick off bits one-by-one until it becomes
5997 * too coarse to separate the current node from the last.
5998 */
5999 mask = ~((1 << __ffs(start)) - 1);
6000 while (mask && last_end <= (start & (mask << 1)))
6001 mask <<= 1;
6002
6003 /* accumulate all internode masks */
6004 accl_mask |= mask;
6005 }
6006
6007 /* convert mask to number of pages */
6008 return ~accl_mask + 1;
6009 }
6010
6011 /* Find the lowest pfn for a node */
6012 static unsigned long __init find_min_pfn_for_node(int nid)
6013 {
6014 unsigned long min_pfn = ULONG_MAX;
6015 unsigned long start_pfn;
6016 int i;
6017
6018 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6019 min_pfn = min(min_pfn, start_pfn);
6020
6021 if (min_pfn == ULONG_MAX) {
6022 pr_warn("Could not find start_pfn for node %d\n", nid);
6023 return 0;
6024 }
6025
6026 return min_pfn;
6027 }
6028
6029 /**
6030 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6031 *
6032 * It returns the minimum PFN based on information provided via
6033 * memblock_set_node().
6034 */
6035 unsigned long __init find_min_pfn_with_active_regions(void)
6036 {
6037 return find_min_pfn_for_node(MAX_NUMNODES);
6038 }
6039
6040 /*
6041 * early_calculate_totalpages()
6042 * Sum pages in active regions for movable zone.
6043 * Populate N_MEMORY for calculating usable_nodes.
6044 */
6045 static unsigned long __init early_calculate_totalpages(void)
6046 {
6047 unsigned long totalpages = 0;
6048 unsigned long start_pfn, end_pfn;
6049 int i, nid;
6050
6051 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6052 unsigned long pages = end_pfn - start_pfn;
6053
6054 totalpages += pages;
6055 if (pages)
6056 node_set_state(nid, N_MEMORY);
6057 }
6058 return totalpages;
6059 }
6060
6061 /*
6062 * Find the PFN the Movable zone begins in each node. Kernel memory
6063 * is spread evenly between nodes as long as the nodes have enough
6064 * memory. When they don't, some nodes will have more kernelcore than
6065 * others
6066 */
6067 static void __init find_zone_movable_pfns_for_nodes(void)
6068 {
6069 int i, nid;
6070 unsigned long usable_startpfn;
6071 unsigned long kernelcore_node, kernelcore_remaining;
6072 /* save the state before borrow the nodemask */
6073 nodemask_t saved_node_state = node_states[N_MEMORY];
6074 unsigned long totalpages = early_calculate_totalpages();
6075 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6076 struct memblock_region *r;
6077
6078 /* Need to find movable_zone earlier when movable_node is specified. */
6079 find_usable_zone_for_movable();
6080
6081 /*
6082 * If movable_node is specified, ignore kernelcore and movablecore
6083 * options.
6084 */
6085 if (movable_node_is_enabled()) {
6086 for_each_memblock(memory, r) {
6087 if (!memblock_is_hotpluggable(r))
6088 continue;
6089
6090 nid = r->nid;
6091
6092 usable_startpfn = PFN_DOWN(r->base);
6093 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6094 min(usable_startpfn, zone_movable_pfn[nid]) :
6095 usable_startpfn;
6096 }
6097
6098 goto out2;
6099 }
6100
6101 /*
6102 * If kernelcore=mirror is specified, ignore movablecore option
6103 */
6104 if (mirrored_kernelcore) {
6105 bool mem_below_4gb_not_mirrored = false;
6106
6107 for_each_memblock(memory, r) {
6108 if (memblock_is_mirror(r))
6109 continue;
6110
6111 nid = r->nid;
6112
6113 usable_startpfn = memblock_region_memory_base_pfn(r);
6114
6115 if (usable_startpfn < 0x100000) {
6116 mem_below_4gb_not_mirrored = true;
6117 continue;
6118 }
6119
6120 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6121 min(usable_startpfn, zone_movable_pfn[nid]) :
6122 usable_startpfn;
6123 }
6124
6125 if (mem_below_4gb_not_mirrored)
6126 pr_warn("This configuration results in unmirrored kernel memory.");
6127
6128 goto out2;
6129 }
6130
6131 /*
6132 * If movablecore=nn[KMG] was specified, calculate what size of
6133 * kernelcore that corresponds so that memory usable for
6134 * any allocation type is evenly spread. If both kernelcore
6135 * and movablecore are specified, then the value of kernelcore
6136 * will be used for required_kernelcore if it's greater than
6137 * what movablecore would have allowed.
6138 */
6139 if (required_movablecore) {
6140 unsigned long corepages;
6141
6142 /*
6143 * Round-up so that ZONE_MOVABLE is at least as large as what
6144 * was requested by the user
6145 */
6146 required_movablecore =
6147 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6148 required_movablecore = min(totalpages, required_movablecore);
6149 corepages = totalpages - required_movablecore;
6150
6151 required_kernelcore = max(required_kernelcore, corepages);
6152 }
6153
6154 /*
6155 * If kernelcore was not specified or kernelcore size is larger
6156 * than totalpages, there is no ZONE_MOVABLE.
6157 */
6158 if (!required_kernelcore || required_kernelcore >= totalpages)
6159 goto out;
6160
6161 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6162 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6163
6164 restart:
6165 /* Spread kernelcore memory as evenly as possible throughout nodes */
6166 kernelcore_node = required_kernelcore / usable_nodes;
6167 for_each_node_state(nid, N_MEMORY) {
6168 unsigned long start_pfn, end_pfn;
6169
6170 /*
6171 * Recalculate kernelcore_node if the division per node
6172 * now exceeds what is necessary to satisfy the requested
6173 * amount of memory for the kernel
6174 */
6175 if (required_kernelcore < kernelcore_node)
6176 kernelcore_node = required_kernelcore / usable_nodes;
6177
6178 /*
6179 * As the map is walked, we track how much memory is usable
6180 * by the kernel using kernelcore_remaining. When it is
6181 * 0, the rest of the node is usable by ZONE_MOVABLE
6182 */
6183 kernelcore_remaining = kernelcore_node;
6184
6185 /* Go through each range of PFNs within this node */
6186 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6187 unsigned long size_pages;
6188
6189 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6190 if (start_pfn >= end_pfn)
6191 continue;
6192
6193 /* Account for what is only usable for kernelcore */
6194 if (start_pfn < usable_startpfn) {
6195 unsigned long kernel_pages;
6196 kernel_pages = min(end_pfn, usable_startpfn)
6197 - start_pfn;
6198
6199 kernelcore_remaining -= min(kernel_pages,
6200 kernelcore_remaining);
6201 required_kernelcore -= min(kernel_pages,
6202 required_kernelcore);
6203
6204 /* Continue if range is now fully accounted */
6205 if (end_pfn <= usable_startpfn) {
6206
6207 /*
6208 * Push zone_movable_pfn to the end so
6209 * that if we have to rebalance
6210 * kernelcore across nodes, we will
6211 * not double account here
6212 */
6213 zone_movable_pfn[nid] = end_pfn;
6214 continue;
6215 }
6216 start_pfn = usable_startpfn;
6217 }
6218
6219 /*
6220 * The usable PFN range for ZONE_MOVABLE is from
6221 * start_pfn->end_pfn. Calculate size_pages as the
6222 * number of pages used as kernelcore
6223 */
6224 size_pages = end_pfn - start_pfn;
6225 if (size_pages > kernelcore_remaining)
6226 size_pages = kernelcore_remaining;
6227 zone_movable_pfn[nid] = start_pfn + size_pages;
6228
6229 /*
6230 * Some kernelcore has been met, update counts and
6231 * break if the kernelcore for this node has been
6232 * satisfied
6233 */
6234 required_kernelcore -= min(required_kernelcore,
6235 size_pages);
6236 kernelcore_remaining -= size_pages;
6237 if (!kernelcore_remaining)
6238 break;
6239 }
6240 }
6241
6242 /*
6243 * If there is still required_kernelcore, we do another pass with one
6244 * less node in the count. This will push zone_movable_pfn[nid] further
6245 * along on the nodes that still have memory until kernelcore is
6246 * satisfied
6247 */
6248 usable_nodes--;
6249 if (usable_nodes && required_kernelcore > usable_nodes)
6250 goto restart;
6251
6252 out2:
6253 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6254 for (nid = 0; nid < MAX_NUMNODES; nid++)
6255 zone_movable_pfn[nid] =
6256 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6257
6258 out:
6259 /* restore the node_state */
6260 node_states[N_MEMORY] = saved_node_state;
6261 }
6262
6263 /* Any regular or high memory on that node ? */
6264 static void check_for_memory(pg_data_t *pgdat, int nid)
6265 {
6266 enum zone_type zone_type;
6267
6268 if (N_MEMORY == N_NORMAL_MEMORY)
6269 return;
6270
6271 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6272 struct zone *zone = &pgdat->node_zones[zone_type];
6273 if (populated_zone(zone)) {
6274 node_set_state(nid, N_HIGH_MEMORY);
6275 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6276 zone_type <= ZONE_NORMAL)
6277 node_set_state(nid, N_NORMAL_MEMORY);
6278 break;
6279 }
6280 }
6281 }
6282
6283 /**
6284 * free_area_init_nodes - Initialise all pg_data_t and zone data
6285 * @max_zone_pfn: an array of max PFNs for each zone
6286 *
6287 * This will call free_area_init_node() for each active node in the system.
6288 * Using the page ranges provided by memblock_set_node(), the size of each
6289 * zone in each node and their holes is calculated. If the maximum PFN
6290 * between two adjacent zones match, it is assumed that the zone is empty.
6291 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6292 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6293 * starts where the previous one ended. For example, ZONE_DMA32 starts
6294 * at arch_max_dma_pfn.
6295 */
6296 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6297 {
6298 unsigned long start_pfn, end_pfn;
6299 int i, nid;
6300
6301 /* Record where the zone boundaries are */
6302 memset(arch_zone_lowest_possible_pfn, 0,
6303 sizeof(arch_zone_lowest_possible_pfn));
6304 memset(arch_zone_highest_possible_pfn, 0,
6305 sizeof(arch_zone_highest_possible_pfn));
6306
6307 start_pfn = find_min_pfn_with_active_regions();
6308
6309 for (i = 0; i < MAX_NR_ZONES; i++) {
6310 if (i == ZONE_MOVABLE)
6311 continue;
6312
6313 end_pfn = max(max_zone_pfn[i], start_pfn);
6314 arch_zone_lowest_possible_pfn[i] = start_pfn;
6315 arch_zone_highest_possible_pfn[i] = end_pfn;
6316
6317 start_pfn = end_pfn;
6318 }
6319 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6320 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6321
6322 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6323 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6324 find_zone_movable_pfns_for_nodes();
6325
6326 /* Print out the zone ranges */
6327 pr_info("Zone ranges:\n");
6328 for (i = 0; i < MAX_NR_ZONES; i++) {
6329 if (i == ZONE_MOVABLE)
6330 continue;
6331 pr_info(" %-8s ", zone_names[i]);
6332 if (arch_zone_lowest_possible_pfn[i] ==
6333 arch_zone_highest_possible_pfn[i])
6334 pr_cont("empty\n");
6335 else
6336 pr_cont("[mem %#018Lx-%#018Lx]\n",
6337 (u64)arch_zone_lowest_possible_pfn[i]
6338 << PAGE_SHIFT,
6339 ((u64)arch_zone_highest_possible_pfn[i]
6340 << PAGE_SHIFT) - 1);
6341 }
6342
6343 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6344 pr_info("Movable zone start for each node\n");
6345 for (i = 0; i < MAX_NUMNODES; i++) {
6346 if (zone_movable_pfn[i])
6347 pr_info(" Node %d: %#018Lx\n", i,
6348 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6349 }
6350
6351 /* Print out the early node map */
6352 pr_info("Early memory node ranges\n");
6353 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6354 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6355 (u64)start_pfn << PAGE_SHIFT,
6356 ((u64)end_pfn << PAGE_SHIFT) - 1);
6357
6358 /* Initialise every node */
6359 mminit_verify_pageflags_layout();
6360 setup_nr_node_ids();
6361 for_each_online_node(nid) {
6362 pg_data_t *pgdat = NODE_DATA(nid);
6363 free_area_init_node(nid, NULL,
6364 find_min_pfn_for_node(nid), NULL);
6365
6366 /* Any memory on that node */
6367 if (pgdat->node_present_pages)
6368 node_set_state(nid, N_MEMORY);
6369 check_for_memory(pgdat, nid);
6370 }
6371 }
6372
6373 static int __init cmdline_parse_core(char *p, unsigned long *core)
6374 {
6375 unsigned long long coremem;
6376 if (!p)
6377 return -EINVAL;
6378
6379 coremem = memparse(p, &p);
6380 *core = coremem >> PAGE_SHIFT;
6381
6382 /* Paranoid check that UL is enough for the coremem value */
6383 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6384
6385 return 0;
6386 }
6387
6388 /*
6389 * kernelcore=size sets the amount of memory for use for allocations that
6390 * cannot be reclaimed or migrated.
6391 */
6392 static int __init cmdline_parse_kernelcore(char *p)
6393 {
6394 /* parse kernelcore=mirror */
6395 if (parse_option_str(p, "mirror")) {
6396 mirrored_kernelcore = true;
6397 return 0;
6398 }
6399
6400 return cmdline_parse_core(p, &required_kernelcore);
6401 }
6402
6403 /*
6404 * movablecore=size sets the amount of memory for use for allocations that
6405 * can be reclaimed or migrated.
6406 */
6407 static int __init cmdline_parse_movablecore(char *p)
6408 {
6409 return cmdline_parse_core(p, &required_movablecore);
6410 }
6411
6412 early_param("kernelcore", cmdline_parse_kernelcore);
6413 early_param("movablecore", cmdline_parse_movablecore);
6414
6415 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6416
6417 void adjust_managed_page_count(struct page *page, long count)
6418 {
6419 spin_lock(&managed_page_count_lock);
6420 page_zone(page)->managed_pages += count;
6421 totalram_pages += count;
6422 #ifdef CONFIG_HIGHMEM
6423 if (PageHighMem(page))
6424 totalhigh_pages += count;
6425 #endif
6426 spin_unlock(&managed_page_count_lock);
6427 }
6428 EXPORT_SYMBOL(adjust_managed_page_count);
6429
6430 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6431 {
6432 void *pos;
6433 unsigned long pages = 0;
6434
6435 start = (void *)PAGE_ALIGN((unsigned long)start);
6436 end = (void *)((unsigned long)end & PAGE_MASK);
6437 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6438 if ((unsigned int)poison <= 0xFF)
6439 memset(pos, poison, PAGE_SIZE);
6440 free_reserved_page(virt_to_page(pos));
6441 }
6442
6443 if (pages && s)
6444 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6445 s, pages << (PAGE_SHIFT - 10), start, end);
6446
6447 return pages;
6448 }
6449 EXPORT_SYMBOL(free_reserved_area);
6450
6451 #ifdef CONFIG_HIGHMEM
6452 void free_highmem_page(struct page *page)
6453 {
6454 __free_reserved_page(page);
6455 totalram_pages++;
6456 page_zone(page)->managed_pages++;
6457 totalhigh_pages++;
6458 }
6459 #endif
6460
6461
6462 void __init mem_init_print_info(const char *str)
6463 {
6464 unsigned long physpages, codesize, datasize, rosize, bss_size;
6465 unsigned long init_code_size, init_data_size;
6466
6467 physpages = get_num_physpages();
6468 codesize = _etext - _stext;
6469 datasize = _edata - _sdata;
6470 rosize = __end_rodata - __start_rodata;
6471 bss_size = __bss_stop - __bss_start;
6472 init_data_size = __init_end - __init_begin;
6473 init_code_size = _einittext - _sinittext;
6474
6475 /*
6476 * Detect special cases and adjust section sizes accordingly:
6477 * 1) .init.* may be embedded into .data sections
6478 * 2) .init.text.* may be out of [__init_begin, __init_end],
6479 * please refer to arch/tile/kernel/vmlinux.lds.S.
6480 * 3) .rodata.* may be embedded into .text or .data sections.
6481 */
6482 #define adj_init_size(start, end, size, pos, adj) \
6483 do { \
6484 if (start <= pos && pos < end && size > adj) \
6485 size -= adj; \
6486 } while (0)
6487
6488 adj_init_size(__init_begin, __init_end, init_data_size,
6489 _sinittext, init_code_size);
6490 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6491 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6492 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6493 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6494
6495 #undef adj_init_size
6496
6497 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6498 #ifdef CONFIG_HIGHMEM
6499 ", %luK highmem"
6500 #endif
6501 "%s%s)\n",
6502 nr_free_pages() << (PAGE_SHIFT - 10),
6503 physpages << (PAGE_SHIFT - 10),
6504 codesize >> 10, datasize >> 10, rosize >> 10,
6505 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6506 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6507 totalcma_pages << (PAGE_SHIFT - 10),
6508 #ifdef CONFIG_HIGHMEM
6509 totalhigh_pages << (PAGE_SHIFT - 10),
6510 #endif
6511 str ? ", " : "", str ? str : "");
6512 }
6513
6514 /**
6515 * set_memory_reserve - set number of pages reserved in the first zone
6516 * @nr_reserve: The number of pages to mark reserved
6517 * @inc: true increment to existing value; false set new value.
6518 *
6519 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6520 * In the DMA zone, a significant percentage may be consumed by kernel image
6521 * and other unfreeable allocations which can skew the watermarks badly. This
6522 * function may optionally be used to account for unfreeable pages in the
6523 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6524 * smaller per-cpu batchsize.
6525 */
6526 void __init set_memory_reserve(unsigned long nr_reserve, bool inc)
6527 {
6528 if (inc)
6529 nr_memory_reserve += nr_reserve;
6530 else
6531 nr_memory_reserve = nr_reserve;
6532 }
6533
6534 void __init free_area_init(unsigned long *zones_size)
6535 {
6536 free_area_init_node(0, zones_size,
6537 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6538 }
6539
6540 static int page_alloc_cpu_notify(struct notifier_block *self,
6541 unsigned long action, void *hcpu)
6542 {
6543 int cpu = (unsigned long)hcpu;
6544
6545 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6546 lru_add_drain_cpu(cpu);
6547 drain_pages(cpu);
6548
6549 /*
6550 * Spill the event counters of the dead processor
6551 * into the current processors event counters.
6552 * This artificially elevates the count of the current
6553 * processor.
6554 */
6555 vm_events_fold_cpu(cpu);
6556
6557 /*
6558 * Zero the differential counters of the dead processor
6559 * so that the vm statistics are consistent.
6560 *
6561 * This is only okay since the processor is dead and cannot
6562 * race with what we are doing.
6563 */
6564 cpu_vm_stats_fold(cpu);
6565 }
6566 return NOTIFY_OK;
6567 }
6568
6569 void __init page_alloc_init(void)
6570 {
6571 hotcpu_notifier(page_alloc_cpu_notify, 0);
6572 }
6573
6574 /*
6575 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6576 * or min_free_kbytes changes.
6577 */
6578 static void calculate_totalreserve_pages(void)
6579 {
6580 struct pglist_data *pgdat;
6581 unsigned long reserve_pages = 0;
6582 enum zone_type i, j;
6583
6584 for_each_online_pgdat(pgdat) {
6585
6586 pgdat->totalreserve_pages = 0;
6587
6588 for (i = 0; i < MAX_NR_ZONES; i++) {
6589 struct zone *zone = pgdat->node_zones + i;
6590 long max = 0;
6591
6592 /* Find valid and maximum lowmem_reserve in the zone */
6593 for (j = i; j < MAX_NR_ZONES; j++) {
6594 if (zone->lowmem_reserve[j] > max)
6595 max = zone->lowmem_reserve[j];
6596 }
6597
6598 /* we treat the high watermark as reserved pages. */
6599 max += high_wmark_pages(zone);
6600
6601 if (max > zone->managed_pages)
6602 max = zone->managed_pages;
6603
6604 pgdat->totalreserve_pages += max;
6605
6606 reserve_pages += max;
6607 }
6608 }
6609 totalreserve_pages = reserve_pages;
6610 }
6611
6612 /*
6613 * setup_per_zone_lowmem_reserve - called whenever
6614 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6615 * has a correct pages reserved value, so an adequate number of
6616 * pages are left in the zone after a successful __alloc_pages().
6617 */
6618 static void setup_per_zone_lowmem_reserve(void)
6619 {
6620 struct pglist_data *pgdat;
6621 enum zone_type j, idx;
6622
6623 for_each_online_pgdat(pgdat) {
6624 for (j = 0; j < MAX_NR_ZONES; j++) {
6625 struct zone *zone = pgdat->node_zones + j;
6626 unsigned long managed_pages = zone->managed_pages;
6627
6628 zone->lowmem_reserve[j] = 0;
6629
6630 idx = j;
6631 while (idx) {
6632 struct zone *lower_zone;
6633
6634 idx--;
6635
6636 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6637 sysctl_lowmem_reserve_ratio[idx] = 1;
6638
6639 lower_zone = pgdat->node_zones + idx;
6640 lower_zone->lowmem_reserve[j] = managed_pages /
6641 sysctl_lowmem_reserve_ratio[idx];
6642 managed_pages += lower_zone->managed_pages;
6643 }
6644 }
6645 }
6646
6647 /* update totalreserve_pages */
6648 calculate_totalreserve_pages();
6649 }
6650
6651 static void __setup_per_zone_wmarks(void)
6652 {
6653 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6654 unsigned long lowmem_pages = 0;
6655 struct zone *zone;
6656 unsigned long flags;
6657
6658 /* Calculate total number of !ZONE_HIGHMEM pages */
6659 for_each_zone(zone) {
6660 if (!is_highmem(zone))
6661 lowmem_pages += zone->managed_pages;
6662 }
6663
6664 for_each_zone(zone) {
6665 u64 tmp;
6666
6667 spin_lock_irqsave(&zone->lock, flags);
6668 tmp = (u64)pages_min * zone->managed_pages;
6669 do_div(tmp, lowmem_pages);
6670 if (is_highmem(zone)) {
6671 /*
6672 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6673 * need highmem pages, so cap pages_min to a small
6674 * value here.
6675 *
6676 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6677 * deltas control asynch page reclaim, and so should
6678 * not be capped for highmem.
6679 */
6680 unsigned long min_pages;
6681
6682 min_pages = zone->managed_pages / 1024;
6683 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6684 zone->watermark[WMARK_MIN] = min_pages;
6685 } else {
6686 /*
6687 * If it's a lowmem zone, reserve a number of pages
6688 * proportionate to the zone's size.
6689 */
6690 zone->watermark[WMARK_MIN] = tmp;
6691 }
6692
6693 /*
6694 * Set the kswapd watermarks distance according to the
6695 * scale factor in proportion to available memory, but
6696 * ensure a minimum size on small systems.
6697 */
6698 tmp = max_t(u64, tmp >> 2,
6699 mult_frac(zone->managed_pages,
6700 watermark_scale_factor, 10000));
6701
6702 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6703 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6704
6705 spin_unlock_irqrestore(&zone->lock, flags);
6706 }
6707
6708 /* update totalreserve_pages */
6709 calculate_totalreserve_pages();
6710 }
6711
6712 /**
6713 * setup_per_zone_wmarks - called when min_free_kbytes changes
6714 * or when memory is hot-{added|removed}
6715 *
6716 * Ensures that the watermark[min,low,high] values for each zone are set
6717 * correctly with respect to min_free_kbytes.
6718 */
6719 void setup_per_zone_wmarks(void)
6720 {
6721 mutex_lock(&zonelists_mutex);
6722 __setup_per_zone_wmarks();
6723 mutex_unlock(&zonelists_mutex);
6724 }
6725
6726 /*
6727 * Initialise min_free_kbytes.
6728 *
6729 * For small machines we want it small (128k min). For large machines
6730 * we want it large (64MB max). But it is not linear, because network
6731 * bandwidth does not increase linearly with machine size. We use
6732 *
6733 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6734 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6735 *
6736 * which yields
6737 *
6738 * 16MB: 512k
6739 * 32MB: 724k
6740 * 64MB: 1024k
6741 * 128MB: 1448k
6742 * 256MB: 2048k
6743 * 512MB: 2896k
6744 * 1024MB: 4096k
6745 * 2048MB: 5792k
6746 * 4096MB: 8192k
6747 * 8192MB: 11584k
6748 * 16384MB: 16384k
6749 */
6750 int __meminit init_per_zone_wmark_min(void)
6751 {
6752 unsigned long lowmem_kbytes;
6753 int new_min_free_kbytes;
6754
6755 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6756 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6757
6758 if (new_min_free_kbytes > user_min_free_kbytes) {
6759 min_free_kbytes = new_min_free_kbytes;
6760 if (min_free_kbytes < 128)
6761 min_free_kbytes = 128;
6762 if (min_free_kbytes > 65536)
6763 min_free_kbytes = 65536;
6764 } else {
6765 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6766 new_min_free_kbytes, user_min_free_kbytes);
6767 }
6768 setup_per_zone_wmarks();
6769 refresh_zone_stat_thresholds();
6770 setup_per_zone_lowmem_reserve();
6771
6772 #ifdef CONFIG_NUMA
6773 setup_min_unmapped_ratio();
6774 setup_min_slab_ratio();
6775 #endif
6776
6777 return 0;
6778 }
6779 core_initcall(init_per_zone_wmark_min)
6780
6781 /*
6782 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6783 * that we can call two helper functions whenever min_free_kbytes
6784 * changes.
6785 */
6786 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6787 void __user *buffer, size_t *length, loff_t *ppos)
6788 {
6789 int rc;
6790
6791 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6792 if (rc)
6793 return rc;
6794
6795 if (write) {
6796 user_min_free_kbytes = min_free_kbytes;
6797 setup_per_zone_wmarks();
6798 }
6799 return 0;
6800 }
6801
6802 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6803 void __user *buffer, size_t *length, loff_t *ppos)
6804 {
6805 int rc;
6806
6807 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6808 if (rc)
6809 return rc;
6810
6811 if (write)
6812 setup_per_zone_wmarks();
6813
6814 return 0;
6815 }
6816
6817 #ifdef CONFIG_NUMA
6818 static void setup_min_unmapped_ratio(void)
6819 {
6820 pg_data_t *pgdat;
6821 struct zone *zone;
6822
6823 for_each_online_pgdat(pgdat)
6824 pgdat->min_unmapped_pages = 0;
6825
6826 for_each_zone(zone)
6827 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6828 sysctl_min_unmapped_ratio) / 100;
6829 }
6830
6831
6832 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6833 void __user *buffer, size_t *length, loff_t *ppos)
6834 {
6835 int rc;
6836
6837 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6838 if (rc)
6839 return rc;
6840
6841 setup_min_unmapped_ratio();
6842
6843 return 0;
6844 }
6845
6846 static void setup_min_slab_ratio(void)
6847 {
6848 pg_data_t *pgdat;
6849 struct zone *zone;
6850
6851 for_each_online_pgdat(pgdat)
6852 pgdat->min_slab_pages = 0;
6853
6854 for_each_zone(zone)
6855 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6856 sysctl_min_slab_ratio) / 100;
6857 }
6858
6859 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6860 void __user *buffer, size_t *length, loff_t *ppos)
6861 {
6862 int rc;
6863
6864 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6865 if (rc)
6866 return rc;
6867
6868 setup_min_slab_ratio();
6869
6870 return 0;
6871 }
6872 #endif
6873
6874 /*
6875 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6876 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6877 * whenever sysctl_lowmem_reserve_ratio changes.
6878 *
6879 * The reserve ratio obviously has absolutely no relation with the
6880 * minimum watermarks. The lowmem reserve ratio can only make sense
6881 * if in function of the boot time zone sizes.
6882 */
6883 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6884 void __user *buffer, size_t *length, loff_t *ppos)
6885 {
6886 proc_dointvec_minmax(table, write, buffer, length, ppos);
6887 setup_per_zone_lowmem_reserve();
6888 return 0;
6889 }
6890
6891 /*
6892 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6893 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6894 * pagelist can have before it gets flushed back to buddy allocator.
6895 */
6896 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6897 void __user *buffer, size_t *length, loff_t *ppos)
6898 {
6899 struct zone *zone;
6900 int old_percpu_pagelist_fraction;
6901 int ret;
6902
6903 mutex_lock(&pcp_batch_high_lock);
6904 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6905
6906 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6907 if (!write || ret < 0)
6908 goto out;
6909
6910 /* Sanity checking to avoid pcp imbalance */
6911 if (percpu_pagelist_fraction &&
6912 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6913 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6914 ret = -EINVAL;
6915 goto out;
6916 }
6917
6918 /* No change? */
6919 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6920 goto out;
6921
6922 for_each_populated_zone(zone) {
6923 unsigned int cpu;
6924
6925 for_each_possible_cpu(cpu)
6926 pageset_set_high_and_batch(zone,
6927 per_cpu_ptr(zone->pageset, cpu));
6928 }
6929 out:
6930 mutex_unlock(&pcp_batch_high_lock);
6931 return ret;
6932 }
6933
6934 #ifdef CONFIG_NUMA
6935 int hashdist = HASHDIST_DEFAULT;
6936
6937 static int __init set_hashdist(char *str)
6938 {
6939 if (!str)
6940 return 0;
6941 hashdist = simple_strtoul(str, &str, 0);
6942 return 1;
6943 }
6944 __setup("hashdist=", set_hashdist);
6945 #endif
6946
6947 /*
6948 * allocate a large system hash table from bootmem
6949 * - it is assumed that the hash table must contain an exact power-of-2
6950 * quantity of entries
6951 * - limit is the number of hash buckets, not the total allocation size
6952 */
6953 void *__init alloc_large_system_hash(const char *tablename,
6954 unsigned long bucketsize,
6955 unsigned long numentries,
6956 int scale,
6957 int flags,
6958 unsigned int *_hash_shift,
6959 unsigned int *_hash_mask,
6960 unsigned long low_limit,
6961 unsigned long high_limit)
6962 {
6963 unsigned long long max = high_limit;
6964 unsigned long log2qty, size;
6965 void *table = NULL;
6966
6967 /* allow the kernel cmdline to have a say */
6968 if (!numentries) {
6969 /* round applicable memory size up to nearest megabyte */
6970 numentries = nr_kernel_pages;
6971
6972 /* It isn't necessary when PAGE_SIZE >= 1MB */
6973 if (PAGE_SHIFT < 20)
6974 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6975
6976 /* limit to 1 bucket per 2^scale bytes of low memory */
6977 if (scale > PAGE_SHIFT)
6978 numentries >>= (scale - PAGE_SHIFT);
6979 else
6980 numentries <<= (PAGE_SHIFT - scale);
6981
6982 /* Make sure we've got at least a 0-order allocation.. */
6983 if (unlikely(flags & HASH_SMALL)) {
6984 /* Makes no sense without HASH_EARLY */
6985 WARN_ON(!(flags & HASH_EARLY));
6986 if (!(numentries >> *_hash_shift)) {
6987 numentries = 1UL << *_hash_shift;
6988 BUG_ON(!numentries);
6989 }
6990 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6991 numentries = PAGE_SIZE / bucketsize;
6992 }
6993 numentries = roundup_pow_of_two(numentries);
6994
6995 /* limit allocation size to 1/16 total memory by default */
6996 if (max == 0) {
6997 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6998 do_div(max, bucketsize);
6999 }
7000 max = min(max, 0x80000000ULL);
7001
7002 if (numentries < low_limit)
7003 numentries = low_limit;
7004 if (numentries > max)
7005 numentries = max;
7006
7007 log2qty = ilog2(numentries);
7008
7009 do {
7010 size = bucketsize << log2qty;
7011 if (flags & HASH_EARLY)
7012 table = memblock_virt_alloc_nopanic(size, 0);
7013 else if (hashdist)
7014 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7015 else {
7016 /*
7017 * If bucketsize is not a power-of-two, we may free
7018 * some pages at the end of hash table which
7019 * alloc_pages_exact() automatically does
7020 */
7021 if (get_order(size) < MAX_ORDER) {
7022 table = alloc_pages_exact(size, GFP_ATOMIC);
7023 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7024 }
7025 }
7026 } while (!table && size > PAGE_SIZE && --log2qty);
7027
7028 if (!table)
7029 panic("Failed to allocate %s hash table\n", tablename);
7030
7031 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7032 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7033
7034 if (_hash_shift)
7035 *_hash_shift = log2qty;
7036 if (_hash_mask)
7037 *_hash_mask = (1 << log2qty) - 1;
7038
7039 return table;
7040 }
7041
7042 /*
7043 * This function checks whether pageblock includes unmovable pages or not.
7044 * If @count is not zero, it is okay to include less @count unmovable pages
7045 *
7046 * PageLRU check without isolation or lru_lock could race so that
7047 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7048 * expect this function should be exact.
7049 */
7050 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7051 bool skip_hwpoisoned_pages)
7052 {
7053 unsigned long pfn, iter, found;
7054 int mt;
7055
7056 /*
7057 * For avoiding noise data, lru_add_drain_all() should be called
7058 * If ZONE_MOVABLE, the zone never contains unmovable pages
7059 */
7060 if (zone_idx(zone) == ZONE_MOVABLE)
7061 return false;
7062 mt = get_pageblock_migratetype(page);
7063 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7064 return false;
7065
7066 pfn = page_to_pfn(page);
7067 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7068 unsigned long check = pfn + iter;
7069
7070 if (!pfn_valid_within(check))
7071 continue;
7072
7073 page = pfn_to_page(check);
7074
7075 /*
7076 * Hugepages are not in LRU lists, but they're movable.
7077 * We need not scan over tail pages bacause we don't
7078 * handle each tail page individually in migration.
7079 */
7080 if (PageHuge(page)) {
7081 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7082 continue;
7083 }
7084
7085 /*
7086 * We can't use page_count without pin a page
7087 * because another CPU can free compound page.
7088 * This check already skips compound tails of THP
7089 * because their page->_refcount is zero at all time.
7090 */
7091 if (!page_ref_count(page)) {
7092 if (PageBuddy(page))
7093 iter += (1 << page_order(page)) - 1;
7094 continue;
7095 }
7096
7097 /*
7098 * The HWPoisoned page may be not in buddy system, and
7099 * page_count() is not 0.
7100 */
7101 if (skip_hwpoisoned_pages && PageHWPoison(page))
7102 continue;
7103
7104 if (!PageLRU(page))
7105 found++;
7106 /*
7107 * If there are RECLAIMABLE pages, we need to check
7108 * it. But now, memory offline itself doesn't call
7109 * shrink_node_slabs() and it still to be fixed.
7110 */
7111 /*
7112 * If the page is not RAM, page_count()should be 0.
7113 * we don't need more check. This is an _used_ not-movable page.
7114 *
7115 * The problematic thing here is PG_reserved pages. PG_reserved
7116 * is set to both of a memory hole page and a _used_ kernel
7117 * page at boot.
7118 */
7119 if (found > count)
7120 return true;
7121 }
7122 return false;
7123 }
7124
7125 bool is_pageblock_removable_nolock(struct page *page)
7126 {
7127 struct zone *zone;
7128 unsigned long pfn;
7129
7130 /*
7131 * We have to be careful here because we are iterating over memory
7132 * sections which are not zone aware so we might end up outside of
7133 * the zone but still within the section.
7134 * We have to take care about the node as well. If the node is offline
7135 * its NODE_DATA will be NULL - see page_zone.
7136 */
7137 if (!node_online(page_to_nid(page)))
7138 return false;
7139
7140 zone = page_zone(page);
7141 pfn = page_to_pfn(page);
7142 if (!zone_spans_pfn(zone, pfn))
7143 return false;
7144
7145 return !has_unmovable_pages(zone, page, 0, true);
7146 }
7147
7148 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7149
7150 static unsigned long pfn_max_align_down(unsigned long pfn)
7151 {
7152 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7153 pageblock_nr_pages) - 1);
7154 }
7155
7156 static unsigned long pfn_max_align_up(unsigned long pfn)
7157 {
7158 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7159 pageblock_nr_pages));
7160 }
7161
7162 /* [start, end) must belong to a single zone. */
7163 static int __alloc_contig_migrate_range(struct compact_control *cc,
7164 unsigned long start, unsigned long end)
7165 {
7166 /* This function is based on compact_zone() from compaction.c. */
7167 unsigned long nr_reclaimed;
7168 unsigned long pfn = start;
7169 unsigned int tries = 0;
7170 int ret = 0;
7171
7172 migrate_prep();
7173
7174 while (pfn < end || !list_empty(&cc->migratepages)) {
7175 if (fatal_signal_pending(current)) {
7176 ret = -EINTR;
7177 break;
7178 }
7179
7180 if (list_empty(&cc->migratepages)) {
7181 cc->nr_migratepages = 0;
7182 pfn = isolate_migratepages_range(cc, pfn, end);
7183 if (!pfn) {
7184 ret = -EINTR;
7185 break;
7186 }
7187 tries = 0;
7188 } else if (++tries == 5) {
7189 ret = ret < 0 ? ret : -EBUSY;
7190 break;
7191 }
7192
7193 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7194 &cc->migratepages);
7195 cc->nr_migratepages -= nr_reclaimed;
7196
7197 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7198 NULL, 0, cc->mode, MR_CMA);
7199 }
7200 if (ret < 0) {
7201 putback_movable_pages(&cc->migratepages);
7202 return ret;
7203 }
7204 return 0;
7205 }
7206
7207 /**
7208 * alloc_contig_range() -- tries to allocate given range of pages
7209 * @start: start PFN to allocate
7210 * @end: one-past-the-last PFN to allocate
7211 * @migratetype: migratetype of the underlaying pageblocks (either
7212 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7213 * in range must have the same migratetype and it must
7214 * be either of the two.
7215 *
7216 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7217 * aligned, however it's the caller's responsibility to guarantee that
7218 * we are the only thread that changes migrate type of pageblocks the
7219 * pages fall in.
7220 *
7221 * The PFN range must belong to a single zone.
7222 *
7223 * Returns zero on success or negative error code. On success all
7224 * pages which PFN is in [start, end) are allocated for the caller and
7225 * need to be freed with free_contig_range().
7226 */
7227 int alloc_contig_range(unsigned long start, unsigned long end,
7228 unsigned migratetype)
7229 {
7230 unsigned long outer_start, outer_end;
7231 unsigned int order;
7232 int ret = 0;
7233
7234 struct compact_control cc = {
7235 .nr_migratepages = 0,
7236 .order = -1,
7237 .zone = page_zone(pfn_to_page(start)),
7238 .mode = MIGRATE_SYNC,
7239 .ignore_skip_hint = true,
7240 };
7241 INIT_LIST_HEAD(&cc.migratepages);
7242
7243 /*
7244 * What we do here is we mark all pageblocks in range as
7245 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7246 * have different sizes, and due to the way page allocator
7247 * work, we align the range to biggest of the two pages so
7248 * that page allocator won't try to merge buddies from
7249 * different pageblocks and change MIGRATE_ISOLATE to some
7250 * other migration type.
7251 *
7252 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7253 * migrate the pages from an unaligned range (ie. pages that
7254 * we are interested in). This will put all the pages in
7255 * range back to page allocator as MIGRATE_ISOLATE.
7256 *
7257 * When this is done, we take the pages in range from page
7258 * allocator removing them from the buddy system. This way
7259 * page allocator will never consider using them.
7260 *
7261 * This lets us mark the pageblocks back as
7262 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7263 * aligned range but not in the unaligned, original range are
7264 * put back to page allocator so that buddy can use them.
7265 */
7266
7267 ret = start_isolate_page_range(pfn_max_align_down(start),
7268 pfn_max_align_up(end), migratetype,
7269 false);
7270 if (ret)
7271 return ret;
7272
7273 /*
7274 * In case of -EBUSY, we'd like to know which page causes problem.
7275 * So, just fall through. We will check it in test_pages_isolated().
7276 */
7277 ret = __alloc_contig_migrate_range(&cc, start, end);
7278 if (ret && ret != -EBUSY)
7279 goto done;
7280
7281 /*
7282 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7283 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7284 * more, all pages in [start, end) are free in page allocator.
7285 * What we are going to do is to allocate all pages from
7286 * [start, end) (that is remove them from page allocator).
7287 *
7288 * The only problem is that pages at the beginning and at the
7289 * end of interesting range may be not aligned with pages that
7290 * page allocator holds, ie. they can be part of higher order
7291 * pages. Because of this, we reserve the bigger range and
7292 * once this is done free the pages we are not interested in.
7293 *
7294 * We don't have to hold zone->lock here because the pages are
7295 * isolated thus they won't get removed from buddy.
7296 */
7297
7298 lru_add_drain_all();
7299 drain_all_pages(cc.zone);
7300
7301 order = 0;
7302 outer_start = start;
7303 while (!PageBuddy(pfn_to_page(outer_start))) {
7304 if (++order >= MAX_ORDER) {
7305 outer_start = start;
7306 break;
7307 }
7308 outer_start &= ~0UL << order;
7309 }
7310
7311 if (outer_start != start) {
7312 order = page_order(pfn_to_page(outer_start));
7313
7314 /*
7315 * outer_start page could be small order buddy page and
7316 * it doesn't include start page. Adjust outer_start
7317 * in this case to report failed page properly
7318 * on tracepoint in test_pages_isolated()
7319 */
7320 if (outer_start + (1UL << order) <= start)
7321 outer_start = start;
7322 }
7323
7324 /* Make sure the range is really isolated. */
7325 if (test_pages_isolated(outer_start, end, false)) {
7326 pr_info("%s: [%lx, %lx) PFNs busy\n",
7327 __func__, outer_start, end);
7328 ret = -EBUSY;
7329 goto done;
7330 }
7331
7332 /* Grab isolated pages from freelists. */
7333 outer_end = isolate_freepages_range(&cc, outer_start, end);
7334 if (!outer_end) {
7335 ret = -EBUSY;
7336 goto done;
7337 }
7338
7339 /* Free head and tail (if any) */
7340 if (start != outer_start)
7341 free_contig_range(outer_start, start - outer_start);
7342 if (end != outer_end)
7343 free_contig_range(end, outer_end - end);
7344
7345 done:
7346 undo_isolate_page_range(pfn_max_align_down(start),
7347 pfn_max_align_up(end), migratetype);
7348 return ret;
7349 }
7350
7351 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7352 {
7353 unsigned int count = 0;
7354
7355 for (; nr_pages--; pfn++) {
7356 struct page *page = pfn_to_page(pfn);
7357
7358 count += page_count(page) != 1;
7359 __free_page(page);
7360 }
7361 WARN(count != 0, "%d pages are still in use!\n", count);
7362 }
7363 #endif
7364
7365 #ifdef CONFIG_MEMORY_HOTPLUG
7366 /*
7367 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7368 * page high values need to be recalulated.
7369 */
7370 void __meminit zone_pcp_update(struct zone *zone)
7371 {
7372 unsigned cpu;
7373 mutex_lock(&pcp_batch_high_lock);
7374 for_each_possible_cpu(cpu)
7375 pageset_set_high_and_batch(zone,
7376 per_cpu_ptr(zone->pageset, cpu));
7377 mutex_unlock(&pcp_batch_high_lock);
7378 }
7379 #endif
7380
7381 void zone_pcp_reset(struct zone *zone)
7382 {
7383 unsigned long flags;
7384 int cpu;
7385 struct per_cpu_pageset *pset;
7386
7387 /* avoid races with drain_pages() */
7388 local_irq_save(flags);
7389 if (zone->pageset != &boot_pageset) {
7390 for_each_online_cpu(cpu) {
7391 pset = per_cpu_ptr(zone->pageset, cpu);
7392 drain_zonestat(zone, pset);
7393 }
7394 free_percpu(zone->pageset);
7395 zone->pageset = &boot_pageset;
7396 }
7397 local_irq_restore(flags);
7398 }
7399
7400 #ifdef CONFIG_MEMORY_HOTREMOVE
7401 /*
7402 * All pages in the range must be in a single zone and isolated
7403 * before calling this.
7404 */
7405 void
7406 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7407 {
7408 struct page *page;
7409 struct zone *zone;
7410 unsigned int order, i;
7411 unsigned long pfn;
7412 unsigned long flags;
7413 /* find the first valid pfn */
7414 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7415 if (pfn_valid(pfn))
7416 break;
7417 if (pfn == end_pfn)
7418 return;
7419 zone = page_zone(pfn_to_page(pfn));
7420 spin_lock_irqsave(&zone->lock, flags);
7421 pfn = start_pfn;
7422 while (pfn < end_pfn) {
7423 if (!pfn_valid(pfn)) {
7424 pfn++;
7425 continue;
7426 }
7427 page = pfn_to_page(pfn);
7428 /*
7429 * The HWPoisoned page may be not in buddy system, and
7430 * page_count() is not 0.
7431 */
7432 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7433 pfn++;
7434 SetPageReserved(page);
7435 continue;
7436 }
7437
7438 BUG_ON(page_count(page));
7439 BUG_ON(!PageBuddy(page));
7440 order = page_order(page);
7441 #ifdef CONFIG_DEBUG_VM
7442 pr_info("remove from free list %lx %d %lx\n",
7443 pfn, 1 << order, end_pfn);
7444 #endif
7445 list_del(&page->lru);
7446 rmv_page_order(page);
7447 zone->free_area[order].nr_free--;
7448 for (i = 0; i < (1 << order); i++)
7449 SetPageReserved((page+i));
7450 pfn += (1 << order);
7451 }
7452 spin_unlock_irqrestore(&zone->lock, flags);
7453 }
7454 #endif
7455
7456 bool is_free_buddy_page(struct page *page)
7457 {
7458 struct zone *zone = page_zone(page);
7459 unsigned long pfn = page_to_pfn(page);
7460 unsigned long flags;
7461 unsigned int order;
7462
7463 spin_lock_irqsave(&zone->lock, flags);
7464 for (order = 0; order < MAX_ORDER; order++) {
7465 struct page *page_head = page - (pfn & ((1 << order) - 1));
7466
7467 if (PageBuddy(page_head) && page_order(page_head) >= order)
7468 break;
7469 }
7470 spin_unlock_irqrestore(&zone->lock, flags);
7471
7472 return order < MAX_ORDER;
7473 }
This page took 0.239372 seconds and 5 git commands to generate.